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Abstract

It is necessary to use simulation tools in the study of
wireless network. The object-oriented modular discrete
event network simulator, OMNeT++, can not only afford
many network simulation but has strong GUI support and
an embeddable simulation kernel. In this paper, a novel
realistic simulation framework (called R-simulator) is pro-
posed based on OMNeT++. R-Simulator has realistic GUI
and strong “message” management while considers the
node mobility and protocol stack. R-Simulator is also time-
saving and memory-efficient. The design process of R-
Simulator and its advantage on realistically displaying the
network are detailedly described. Based on R-Simulator,
we give examples to show its favorable performance.

1 Introduction

Simulation tools have been widely used in network re-
search. Because many problems need be analyzed by
simulation while they are NP-hard. In all network sim-
ulation tools, Oment++ is an appropriate simulation en-
vironment for network simulation because it is public-
source, component-based, modular and open-architecture
with strong GUI support and an embeddable simulation ker-
nel [8]. Although there have been several simulation tools,
such as NS2 [7], OMNeT++ is more easy to study and use
because of its convenience for model establishment, mod-
ularization, expandability and so on. Therefore, we design
R-Simulator based on OMNeT++. There are also several
simulation frameworks [10][1][5] [2][6][9][4], such as Sen-
sorSimulator created at Louisiana State University based on
the OMNeT++ environment [10]. The simulation frame-
work is extensible for developers and researchers to inves-
tigate topological, phenomenological, networking, robust-

ness and scaling issues, to explore arbitrary algorithms for
distributed sensor nodes, and to defeat those algorithms
through simulated failure. Besides the same purposes and
capacity, our simulator is also different from SensorSimula-
tor at the following aspects.

1) The interface of “SensorSimulator” in TKENV of
Oment++ is very tumultuous as shown in Figure 1. In Fig-
ure 1(a), TKENV displays the links between nodes and wire-
less channel module. Because the wireless channel module
exists, all arrows point from other nodes to the same point.
Therefore the display looks congested and jumbled, which
is not convenient to debug and to differentiate the messages.
The shortages still can not be relieved to obscure the links
between nodes and wireless channel module because the
messages transportation still results into congested and jum-
bled display, as shown in Figure 1(b). More fatal shortage
is that the network topology is not intuitionistic.

(a) Display the connections (b) Display not the connections
but the messages

Figure 1. The jumbled display of SensorSimulator

In R-simulator, no redundant links between nodes do ex-
ist, as shown in the examples in Section 3. R-simulator
removes the wireless channel module as shown in Figure
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2(b). Therefore, R-simulator has less submodule and less
complex. The memory space and time are saved and the
network topology can be intuitively visible.

2) The “Radio” submodule has very different function
in R-simulator and SensorSimulator. In SensorSimulator,
“Radio” submodule just stores the radio state and counts
the transmission power consumption. In R-simulator (see
Figure 2), “Radio” submodule not only has the function of
that in SensorSimulator but stores the information of the
link with its neighbors. In Section 2, we will give more
detailed description on the module.

3) There is a “Sensor” module in R-simulator but no this
kind of module in SensorSimulator. To add the module is
necessary because one node may have one or more sensors
and different kind of sensors have different character, such
as sensing range.

4) R-simulator has a “Memory” module but SensorSim-
ulator has not. In protocol stack, each layer may create
many messages and data. When the number of messages
and data is big, the requirement for memory space is also
very big and sometimes is too huge to continue the simula-
tion. So a “Memory’ module can manege these messages
and data, which can save memory space.

5) R-simulator has a “Mobility” module in addition.
The module decides whether a node moves or not and what
the mobility mode is.

6) R-simulator has a “DynSize”, a “TR” and an “SR”
module. “TR” indicates the radio transmission range and
“SR” indicates the sensing range. These modules are all
invisible in GUI. In Section 2, we will describe the function
of these three modules in detail.
We also consider the node and linkage fault. When any of
hardware components in a node or the software fails, the
node fault may occur. We add a short program for the node
or linkage fault in “Coordinator” module. Any module can
start the program to turn off the node but not the whole net-
work when it fails. The linkage fault may happen between
one node and its neighbors. So we use “Radio” module to
control the linkage fault.

The rest of the paper is organized as following. Section 2
describes the simulation model of R-simulator and its mod-
ules. Section 3 gives three simulation examples to show
the capacity of R-simulator. In Section 4, we conclude our
work and present some future work to improve our frame-
work and the relative programs for some protocols.

2 Simulator Model and Modules

In this section, R-simulator framework and its modules
are described and the “Network Layer” module is designed
in detail as shown in Figure 2. Figure 2(b) shows the “Net-
work” module, which represents a complete structure of the
network layer. The R-simulator framework contains a “Tar-
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Figure 2. R-simulator framework and its modules

get”, a “Sensor Node” (see Figure 2(a)) and a “DynSize”
module. The “Target” module can represent a locomotive
car, a light or noise source, and so on. Here we do not give
detailed model for this module in order to decrease the com-
plexity of the “Network” module. Because we can simply
use the “Sensor Node” module to represent it by closing
the “Protocol stack” part of “Sensor Node” in Figure 2(a)
and changing the transmission mode. The “DynSize” mod-
ule in break-line frame isn’t displayed in GUI, such as in
the TKENV. The module dynamically decides how many
neighbors each node has, and accordingly decides a array
size in the “Radio []” module of the “Sensor Node” mod-
ule. The array stores the gates between a node and its
neighbors. Every message is transmitted to its neighbors
through these gates, meanwhile a copy is sent to the “TR”
module. Then “TR” module displays the transmission range
of the message according to the node’s transmission power
level. Like “TR”, the “SR” displays the sensing range of a
sensor when the sensor senses the phenomenon around it.
In the following subsection, we describe the “Sensor Node”
module and its submodel “Network Layer”.



Figure 3. GNEG displays R-SensorSimulator

All of these models are specified through the Network
Description Language (NED) and is displayed in GNED as
shown in Figure 3. The figure shows the “Sensor Node”
module and its submodules wrote in NED. The submod-
ules, connected by double-headed arrows, communicate
with each other by message and other isolated submod-
ules directly communicate with each other. These submod-
ules respectively correspond with those in Figure 2(a). NED
files are not used directly but are translated into C++ codes
by the NEDC compiler, then compiled by the C++ com-
piler and linked into the simulation executable. In Section
3, we use VC++ to compile these codes in Windows XP op-
erating system in order to compile and debug these codes
conveniently.

2.1 Sensor Node Module

Figure 2(a) shows the “Sensor Node” module, which
logically composes of three parts: protocol stack, coordina-
tor and hardware components. In the “protocol stack” part,
there are four modules: “App Layer”, “Network Layer”,
“Datalink Layer” and “Physical Layer”. These modules re-
spectively are mapped to four protocol layers: an applica-
tion layer, a network layer, a data link layer and a physical
layer.

The four layers have different functions [11]. The appli-
cation layer affords many application protocols explored for
many different areas, such as sensor management protocol,
task assignment and data advertisement protocol. Sensor
nodes are scattered densely in a field either close to or inside

the phenomenon and they need be linked together in order
to deliver data packets from one node to another. Therefore,
the network layer should supply topology control protocols
and routing protocols. The data link layer is responsible
for the multiplexing of data streams, data frame detection,
medium access and error control. It ensures reliable point-
to-point and point-to-multipoint connections. The multi-
plexing refers to create and detect data frame. The physi-
cal layer is responsible for frequency selection, carrier fre-
quency generation, signal detection, modulation and data
encryption.

The “hardware components” part contains six modules:
“Sensor[ ]”, “Battery”, “CPU”, “Memory”, “Mobility” and
“Radio[ ]”. The brackets added after “Sensor” and “Ra-
dio” indicate there are more than one gate in the “Sen-
sor[ ]” and “Radio[ ]” modules. Since a node may equip
several sensors for different phenomenons, which may have
completely different characters, the node should be able to
deal different sensor data at same time. Each gate in the
“Sensor[ ]” module represents a sensor and has a propaga-
tion model under it to represent the sensor channel, through
which the sensor decides which kind of stimuli it can re-
ceive and how the intensity of the stimuli if it can receive.
The “Radio[ ]” module stores the gates through which
one node communicates with its neighbors. Can a node be
a neighbor of others? It is decided by the “DynSize” module
in Figure 2(b). Suppose there is a node named N1 and n−1
other nodes named N2, · · ·, Nn when the whole network
totally contains n nodes. The “DynSize” module checks
whether N2 is in the maximal transmission range of N1 or
not, whether N3 is or not and so on. Till all other nodes are
checked, the number of the neighbors of N1 can be known.
Therefore, the size of the array in “Radio[ ]” of N1 also
can be confirmed. Suppose that the position information of
all nodes are stored in the file Position.ini, we use the
below pseudocode to initialize nodes and to establish the
connections from a node to its neighbors, therefore the size
of the arrays in the “Radio[ ]” can be confirmed.

01.Get X, Y postion of all nodes from
Position.ini;

02.for( each of all nodes, named N1 )
03. for( other node, named N2)
04. Compute the distance between them;
05. if(the distance<=max communication

radius)
06. Set N2 as a neighbor of N1;
07. Add one to the size of N1’s Radio[];
08. Link N1’s Radio[] to N2’s Radio[];
09. endif
10. endfor
11.endfor

The “memory” module not only imitates the memorizer
in a node but also manages the messages and data cre-



ated by the simulation programs. Therefore, its first func-
tion, also a basic function, is to determines the size of mem-
ory space in a node, the memory rate and so on. An-
other important function of the module is to manager the
messages and data. During a long time or a large scale
simulation, a large amount of messages and data are
created and delay in the simulation system. Because they
can not be dealt in time, they occupy large memory space.
It increases the simulation cost and decreases the simulation
efficiency. Furthermore, there are often many undisposed
messages remained at the end of a simulation and OM-
NeT++ deals them one by one, which costs much time. The
“memory” arranges the messages and data and deletes
them all together when the simulation ends, which saves
memory and time. The “mobility” module decides whether
a node is mobile or not. It gives the velocity, direction and
acceleration if a node is mobile. The “Battary” and “CPU”
respectively imitate the battery and processor in a node.

2.2 Network Layer Model

Since the topology control is important and necessary to
decrease the power consumption and the network interfer-
ence and to increase the network capacity in WSN [16], we
design the “Network Layer” module as Figure 2(c). The
module contains two sub-modules: “routing” and “topol-
ogy control” (TC), and a “network layer information” con-
tainer, which stores neighbor information and routing table
as shown in Figure 4. In a simulation, the “routing” sub-
module runs routings. The “topology control” sub-module
executes TC protocols.

In the simulation examples of Section 3, the routing
is GEAR [17] because it can deal with “routing void”,
which is often created when the nodes is deployed ran-
domly and TC exists. Paper [16] lists many protocols in-
cluding CBTC(α)[13], GLSS/FLSS [14]. We also propose
new TC protocols: GAFT/LAFT while considering the ef-
fect of routing protocol and MAC protocol[12]. The simu-
lations on these five TC protocols and a simulation without
TC are designed and evaluated together. The simulation re-
sults are presented in Section 3.2. Before running the rout-
ing protocol, the TC protocols are first executed to obtain
the neighbor information, as shown in Figure 4(a), includ-
ing one-hop neighbors or two-hop neighbors if necessary.
In Figure 4(b), “ID” refers to the node address, which is
unique in the same network. “Pr” refers to the receive trans-
mission power on the receive node radio when the transmis-
sion power of sender node is adjusted to the maximal value.
“Link” indicates whether one node establishes logical link
with its neighbors or not. TC protocols can be locally or
globally run again if necessary. Based on “Neighbor infor-
mation”, the routing protocol builds routes among the net-
work and obtains the information stored in “Routing table”.

Several source nodes (source 1, 2 and so on as shown in
Figure 4(b)) may pass the same mediate node forwarding
to their own target node (target 1, 2 and so on). Therefore,
each node has one routing table and points at different next-
hop node (see “Next Hop 11”, “Next Hop 22” in Figure
4(b)) in different routes.
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Figure 4. Network layer information

There is other information, which can be stored in the
“Neighbor information” module, when users design their
own simulation. For example, the routing table may be very
different when different routing protocols are executed.

3 Simulation Examples

In the section, three simulation examples based on R-
simulator are given, which are the establishment of GEAR
[17], the target tracking and the performance comparison
among topologies. First, the simulation environment and
some parameters are set. Then, the simulation results are
presented and discussed.

3.1 Setting Simulation

A WSN contains several or hundreds of energy-limited
nodes, each one has an omni-directional antenna. It also
can gather the data from physical surrounding by the sen-
sors on it. We suppose nodes can adjust their transmission
power like MICA2/MICAZ [3]. A wireless sensor node can
receive the signal from another node if it is within the trans-
mission range of the sender. Otherwise, they relay the mes-
sages through multi-hop wireless links by using intermedi-
ate nodes. Consequently, each node also acts as a router,
forwarding data packets for other nodes. In the following
simulation examples, different number of nodes are ran-
domly deployed uniformly in a 1000m × 1000m region.
The maximal transmission range of each node is 262.5m.

In R-simulator, all messages are transmitted from one
node to others through “Radio[ ]” module, which acts as



the wireless medium. We use the free space propagation
model to predict the received signal power of each mes-
sage packet [15]. In “Physical Layer”, we control the data
transmission rate and add up energy cost because of trans-
mitting or receiving data. “DataLink Layer” is responsi-
ble for the multiplexing of data streams, data frame detec-
tion, medium access and error control. The multiplexing
refers to create and detect data frame. The length of data
frame is an important parameter in Medium Access Con-
trol(MAC). It is optimally about 59 byte in MICA2/Z for
data frame [3]. We respectively packet broadcast (used by
TC) and control message, such as RTS and CTS, into a
single frame. The data is cut and packed into data frame
according to the length of data frame. We use cQueue
to define two queues: Queue_of_message_frame and
Queue_of_data_frame, which respectively store the
message and data frame. Here, MAC802.11 is used to
afford medium access control and we write the following
codes to control the header of message or data frames.

MAC_802_11_PACKET.h
struct MAC_802_11_Header{

int Source_Node_ID;
vector < int > Destination_Node_ID;

}
class MAC_802_11_Packet : public cMessage{

protected:
MAC_802_11_Header MACheader;
...

}

In “Apply Layer”, there is no application program or pro-
tocol but a simple program to create data periodically or to
receive and add up the data from bottom layer “Network
Layer”. The function of “Network Layer” is described in
subsection 2.2.

3.2 Simulation Results

The first example is the simulation for GEAR and the
simulation results are presented in Figure 5. All figures
show a quarter of the whole simulation scenario. In Fig-
ure 5(a), nodes are deployed but they are not linked. The
“DynSize” module establishes the linkages among all nodes
as shown in Figure 5(b). Since there is no a “Wireless
channel” like SensorSimulator at LSU, the whole simula-
tion scenario is very shapely and the topology is also very
clearly displayed. R-simulator is also very vivid as Figure
5(c) shows a node transmitting a message in its transmission
range. A circle centered at the node represents the transmis-
sion range. When the message is transmitted to its target,
the circle disappears. In other word, the circle is dynami-
cally displayed by R-simulator. In Figure 5, the node with
big size is the “sink”. GEAR starts at the sink and any other
node, which has established a route to the sink, becomes

red. The links on the established route become green as
shown in Figure 5(d).

(a) The nodes are deployed (b) The links between nodes are
established

(c) A node is transmitting a
message

(d) The establishment of routing is
in process

Figure 5. The implement for GEAR in R-simulator

The second example is the target tracking. After the net-
work implements the topology control and GEAR routing,
the routes between all nodes and the sink are established
as shown in Figure 5. Now the network can track a tar-
get, which is invading the network as shown in Figure 6(a).
In this sub-figure, the little square in the upper left repre-
sents the target, which is closing to the network and being
sensed by a node. The circle centered at the node represents
the sensing range. In Figure 6, the dot with big size is the
sink. The sink can be connected to a personal computer or
a internet. Here all nodes sense the target by the periodical
messages, which are broadcast by the target. In Figure 6(b),
the node, which senses the target, is transmitting a message
and sends the message to the sink through its neighbors. In
the process, the target continues moving. After a while, it
reach the middle of the network as shown in Figure 6(c). It
also is sensed by a node as shown in Figure 6(d) and the
node is sending a message to the sink through its neighbors.

The third example is the simulation for the comparison
among the topology control protocols, which is described
in Section 2.2. Note that the network layer information



(a) The target is invading and
broadcast a signal

(b) A node “senses” the target

(c) The target is in the network (d) A node senses the target

Figure 6. The target tracking in R-simulator

in Figure 4 should be stored in a vector container or a
Arraylist, which can save memory, especially when the
number of nodes reaches one hundred or more. Some statis-
tic data are drawn into curves as shown in Figure 7 and
8. In Figure 7, k is the vertex connectivity of a network.
GAFT/LAFT, GLSS/FLSS etc are all topology control pro-
tocols described in Section 2.2. One node establishes logi-
cal links with some of its neighbors after topology control.
In the figure, logical neighbors (degree) of a node are those
who have logical links with the node. In whole network, ev-
ery node has different amount of logical neighbors so there
must be a node has maximal amount. In Figure 7, there
are one hundred samples under each case of the number of
nodes. In Figure 8, the physical neighbors of a node is those
who in the transmission range of the node. The figure shows
the ratio of LD to PD under different connectivities.

4 Conclusion and Future Work

In this paper, we present our novel simulation
framework—R-simulator and describe its structure and
mechanism. Based on the framework, we give out three
examples to test its performance. The results show that R-
simulator is an extensible, object-oriented and event-based
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framework, which provides a favorable simulation frame-
work for users and researchers.

We will improve the C\C++ programs generated from
the NED files of R-simulator. It is important to low the
time and space complexity for the simulation framework.
Although there are many well known routing, MAC or
topology control protocols, which have been compiled into
C\C++ programs [8][7], they are not standard and have
weak portability. So it is necessary to canonically com-
pile some well known protocols into the C\C++ programs.
Furthermore, the further effort will be give to compare the
performance of R-simulator framework with others in the
memory utilization, execution time and so on.
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