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Abstract
This thesis is concerned with the development of methodologies for image and

video quality assessment for the automotive environment, and the use of those method-

ologies for evaluating the effect of image and video degradations in automotive vision

systems. Image quality metrics are important tools for optimizing system design

parameters associated with image acquisition, compression and transmission. While

optimizing systems for perceptual quality is already a common element of consumer

electronics devices, in the automotive environment Advanced Driver Assistance Sys-

tems (ADAS) incorporating machine vision applications such as automated pedestrian

detection are becoming a more widely-used feature of vehicular vision systems and

the quality requirements of such systems present an additional challenge. As such,

automotive image quality must also be tuned for optimal machine vision performance.

In this thesis, quality is considered from the perspective of both machine vision

performance and perceptual quality. An evaluation of the effect of image degrada-

tions on pedestrian detection performance is first carried out. This study highlights

the quality impact of different imaging system degradations, such as compression ar-

tifacts, on pedestrian detection performance. It is demonstrated that improvements

in detection performance can be achieved by training detection algorithms on im-

ages with a wide variety of degradations. A full-reference objective image quality

assessment algorithm based on Histograms of Oriented Gradients (HOGs) is also

proposed that correlates closely with pedestrian detection performance on degraded

video frames. A system for No-Reference distortion classification, suitable for real-

time operation, is also proposed. The classification system, based on natural image

statistics, is combined with a multi-classifier approach to pedestrian detection in or-

der to increase pedestrian detection performance on degraded images. Furthermore,
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Abstract iii

a new approach for predicting the subjective Quality of Experience (QoE) of fish-eye

to rectilinear transformed images is proposed. Improved correlation with subjective

human opinion is achieved by weighting local quality scores with saliency information.

Finally, an automotive specific video quality database is presented consisting of 50

video sequences and associated human saliency data and mean opinion scores. The

influence of packet loss on visual QoE for high bandwidth automotive networks is

also considered. The results show that increasing the level of packet loss has almost

no effect on visual attention, despite significant differences in the MOS scores with

different levels of packet loss.
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Chapter 1

Introduction

1.1 Motivation

Although road safety in Europe has improved considerably in the last 20 years [1]

it remains a major societal issue, with an unacceptable number of fatalities occurring

on our roads every year. For example, in 2011, more than 30,000 people died from

road accidents in the European Union [2], equivalent to the population of a medium

sized town. Moreover, for every death on European roads there are an estimated 4

permanently disabling injuries such as damage to the spinal cord or the brain. In

total, well over a million people are injured on European roads every year, the eco-

nomic cost of which has been estimated as 130 billion euros [1]. In 2010, the EU

commission adopted an ambitious road safety program aimed at reducing European

road deaths by 50% by the year 2020 [1]. Making vehicles safer is an important

component of efforts to reduce road traffic injuries and many technologies are being

applied to prevent crashes. For example, anti-skid electronic stability control is now

1
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increasingly required as a mandatory safety feature for new passenger cars and light

duty vehicles. Measures intended to reduce the risk and severity of pedestrian im-

pact are also becoming important in vehicle design, with computer vision systems

increasingly being used for driver assistance [3]. Vision systems may simply provide

additional visual information in situations where the driver’s view may be obstructed,

for example when reverse parking or encountering cross traffic situations with lim-

ited visibility. However in many cases Advanced Driver Assistance Systems (ADAS)

incorporate sophisticated machine vision software that actively processes video data

and works to mitigate collisions [4]. An important class of ADAS is the detection of

Vulnerable Road Users (VRUs), who are defined in the European Commission’s intel-

ligent transport systems directive as: “non-motorised road users, such as pedestrians

and cyclists as well as motor-cyclists and persons with disabilities or reduced mobil-

ity and orientation” [5]. In particular, the task of pedestrian detection from cameras

mounted on a vehicle has become increasingly important to a number of automotive

safety applications such as collision avoidance and autonomous driving [6, 7, 8, 9, 10].

Clearly, automotive vision systems are safety critical, and hence the quality of

video displayed to the driver, or processed by a machine vision algorithm is of

paramount importance, but despite the fact that research into ADAS has grown

significantly in recent years, a surprisingly small amount of research has examined

the impact of image degradations on driver assistance system performance. In the

automotive environment this is a topic of considerable importance since imperfec-

tions in visual quality can occur in a variety of ways. Typical automotive vision

systems use Complementary Metal-Oxide-Semiconductor (CMOS) sensors with ultra
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wide fields of view. Degradations in image quality can occur as a result of sensor noise

at image capture, lossy compression, or transmission errors [11, 12, 13]. Evaluating

the influence of such degradations on the quality of automotive systems is an im-

portant step towards developing robust driver assistance systems. At present, while

there are methods in existence for subjective and objective image and video quality

assessment that are widely applied in consumer applications, there are no accepted

industry standards or tools specifically for the automotive environment. This thesis

aims to address this gap by developing tools and techniques to quantify the quality

of video used in automotive vision systems.

Typically, in order to quantify the perceptual quality of an image or video se-

quence, subjective tests must be carried out in which a sizeable number of human

observers are shown a series of images or video sequences whose quality they are

asked to rate on a particular scale [14]. The mean score of each image is termed the

Mean Opinion Score (MOS) and is representative of the perceived quality of that im-

age or video. Subjective tests can often provide reliable assessments of quality since

they may be designed to accurately represent a specific application. Such large scale

subjective tests have been carried out for generic video data and the results have

been made publicly available to the research community, for example in [15, 16, 17].

Methodologies for subjective assessment of video quality are very well described by

the International Telecommunications Union (ITU) for certain applications, such as

television broadcasting [14] or multimedia applications [18]. However, the concept of

video quality for automotive vision systems differs greatly from that of entertainment

based consumer image quality, since in the automotive environment, the subjective
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satisfaction of the user depends upon achieving a particular task, such as event de-

tection or object recognition [19, 20]. Unfortunately, there is no clear definition of

quality in the context of automotive vision systems, even if one limits consideration

to quality as perceived by a human observer, i.e. the driver. In [21], the authors make

a distinction between the “naturalness” and “usefulness” of an automotive image. The

“naturalness” of an automotive image is generally accepted as being closely related

to the traditional notion of perceptual image quality. A natural image should be a

faithful representation of the road ahead. For example, it should contain recogniz-

able signal colours and be free from noise or compression artifacts. On the other

hand, the same image with exaggerated local contrast and sharpness may be more

“useful” if it allows the driver to see more detail, such as a pedestrian on a dark

street. In an automotive context, the amount of information that can be extracted

from a scene determines its “usefulness” [21]. For this reason, a typical automotive

vision system will employ the use of fish-eye lenses with Fields Of View (FOV) of

up to 190 degrees. These lenses are more useful as they enable drivers to see more

objects approaching from the sides. The enhanced FOV is also convenient for driver

assistance technologies such as side collision warning systems. Fish-eye lenses, though

offering an enhanced FOV, introduce significant non-linear radial distortion to an im-

age, which is manifested in straight lines being mapped to curves. Furthermore, the

perspective of projection of a given scene in the fish-eye view differs greatly from the

projection of the same scene in a rectilinear pin-hole camera, thus making it difficult

for drivers to accurately judge distances to other vehicles and pedestrians. To miti-

gate this problem, automotive fish-eye images are often partially or wholly corrected



Chapter 1: Introduction 5

for radial distortion. The use of polynomial models to correct radially distorted im-

ages to the more familiar rectilinear image form is well established [22]. Polynomial

mapping can in turn introduce interpolation artifacts to the transformed image. Due

to the fact that radial image resolution gradually decreases from the centre of the

image to its peripheral areas, blurring in the peripheral areas of the images can also

occur [23]. These distortions can significantly reduce the perceived visual quality of

the transformed rectilinear image in cases where the focus of interest is in the area

of reduced spatial resolution, however to what extent they reduce the “usefulness”

of such images for object recognition or the completion of a particular task, such

as reverse parking, is unclear. In order to accurately predict quality for recognition

of objects of interest in the scene, it is necessary to consider the scene content of

each image or video, paying particular attention to regions of high visual saliency.

However, despite the fact that fish-eye lenses are becoming increasingly popular in

applications such as video surveillance, robotics and automotive vision systems, little

subjective or objective assessment of the perceptual quality of these images has been

carried out.

Although the distinction between naturalness and usefulness is important when

considering quality as perceived by the driver, the situation becomes more compli-

cated when considering machine vision. Increasingly, image processing algorithms are

making use of automotive cameras for applications such as automatic pedestrian or

vehicle detection. The question then arises as to whether an image that is useful to

the human driver is equally useful to a machine vision algorithm. Unfortunately, this

is often not the case. For example, depending on the content of an image, the addition
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(a) (b)

Figure 1.1: Impact of noise on human vs. machine vision. Figure (a) is an original

clean image. Green boxes indicate detection of pedestrians by a high performance

machine vision algorithm. The presence of noise in (b) can go unnoticed to a human

viewer due to masking effects, whereas noise can have a significant effect on the

performance of the pedestrian detection algorithm.
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of noise may go unnoticed to a human viewer due to masking effects, whereas even a

modest amount of noise will typically impair the performance of image processing al-

gorithms (as shown in Figure 1.1). Similarly, interpolation artifacts may occur at high

frequencies which are difficult for a human viewer to discern (as illustrated in Figure

1.2), nevertheless the presence of such artifacts are sufficient to degrade the perfor-

mance of a pedestrian detection algorithm. These examples raise important safety

concerns for automotive vision engineers since a seemingly imperceptible change in

image quality can significantly alter the performance of machine vision algorithms.

While optimizing systems for perceptual quality is important, systems must also be

tuned for optimal machine vision performance. In this thesis it is demonstrated

that the human visual system (HVS) may not always perceive image distortions that

adversely affect machine vision performance and as such, existing Image Quality As-

sessment (IQA) algorithms are not necessarily reliable predictors of machine vision

performance on transmitted video sequences, prompting the need to measure quality

in a way that is meaningful for machine vision algorithms, and stimulating the devel-

opment of more appropriate algorithms for the automotive environment. This is the

primary focus of this thesis.
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(a) (b)

Figure 1.2: (a) Original clean image. “Ringing” caused by JPEG2000 (JP2) compres-

sion (b) can occur at high spatial frequencies which are difficult for the human visual

system to discern, nonetheless the presence of this distortion is sufficient to degrade

the performance of a pedestrian detection algorithm by causing an increase in false

positives (indicated by spurious green boxes).
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1.2 Contributions of this Thesis

1.2.1 Contributions

This thesis is concerned with the development of methodologies for image and

video quality assessment appropriate to the automotive environment, and the use

of those methodologies for evaluating the effect of image and video degradations in

automotive vision systems. More specifically, the primary contributions of this thesis

are as follows:

1. An evaluation of the effect of image degradations on pedestrian detection per-

formance has been carried out. This study highlights the quality impact of

different design decisions, such as compression levels, on pedestrian detection

performance. It is demonstrated that improvements in detection performance

can be achieved by training detection algorithms on images with a wide variety

of degradations.

2. A Full-Reference (FR) IQA metric based on Histograms of Oriented Gradi-

ents (HOGs) is proposed. The metric accurately predicts the performance of

pedestrian detection algorithms on degraded images.

3. A system for No-Reference (NR) distortion classification is proposed. The clas-

sification metric, based on natural image statistics, is combined with a multi-

classifier approach to pedestrian detection in order to increase detection per-

formance on degraded images. The proposed system enhances the pedestrian

detection performance of existing methods and has the potential to be used
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in real-time in-vehicle networks to improve pedestrian detection performance

across a wide range of image and video quality.

4. A new approach for predicting the Quality of Experience (QoE) of fish-eye to

rectilinear transformed images is proposed. Improved correlation with human

opinion is achieved by weighting local quality scores with saliency information.

5. A new automotive specific video quality database is presented consisting of 50

video sequences and associated human saliency data and MOS values. The

influence of packet loss on visual QoE for automotive data networks is investi-

gated. The results show that increasing the level of packet loss had almost no

effect on visual attention, despite significant differences in the MOS scores of

different levels of packet loss.

6. A saliency based framework for No Reference (NR) video quality assessment

of packet loss degraded video is proposed. The metric considers the visibility

of packet losses in automotive scenes. It is computationally efficient and offers

improved correlation with human opinion over existing methods.
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1.2.2 Publications

The publications that have resulted from this research are as follows:

Journal Publications (copies of accepted journal papers are included in Appendix C)

∙ Anthony Winterlich, Ciaran Hughes, Liam Kilmartin, Martin Glavin, Edward

Jones; “An oriented gradient based image quality metric for pedestrian detection

performance evaluation.” Signal Processing: Image Communication. Vol. 31,

February 2015, Pages 61-75

∙ Anthony Winterlich, Patrick Denny, Liam Kilmartin, Martin Glavin, Edward

Jones; “Performance optimization for pedestrian detection on degraded video

using natural scene statistics.”SPIE Journal of Electronic Imaging. Vol. 23

Issue 6, 2014

∙ Shane Tuohy, Anthony Winterlich *, Brian McGinley, Martin Glavin, Edward

Jones, Patrick Denny, Liam Kilmartin; “Evaluating the influence of packet loss

on visual quality of perception for high bandwidth automotive networks.”Signal

Processing: Image Communication. Vol. 43, April 2016, Pages 15-27

Conference Publications

∙ Anthony Winterlich, Vladimir Zlokolica, Patrick Denny, Liam Kilmartin, Mar-

tin Glavin, Edward Jones; “A saliency weighted no-reference blur metric for the

automotive environment.” Proceedings of the Fifth International Workshop on

Quality of Multimedia Experience (QoMEX), 2013

*Denotes corresponding author
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∙ Anthony Winterlich, Ciaran Hughes, Liam Kilmartin, Martin Glavin, Edward

Jones; “Evaluation of the effect of image artifacts on pedestrian detection in

the automotive environment.” Transport Research Arena (TRA) Conference,

Athens, April 2012, Gold medal winner in the Young European Arena of Re-

search competition (field of Safety and Security).

1.3 Thesis Structure

The remainder of this thesis is organised as follows:

Chapter 2 - Background

This chapter describes the overall process of digital image creation that leads to an

“uncompressed” image and discusses the automotive imaging context in which images

gathered on multiple cameras are compressed and transmitted over a local network.

It also provides background on the state of the art in current objective image quality

research. Existing full-reference (FR) and no-reference (NR) image quality metrics

(largely applied in consumer applications) are described and their relative merits and

disadvantages are discussed. The state of the art in pedestrian detection algorithms

is also introduced. In particular, the pedestrian detection algorithms used in this

research are discussed in detail.

Chapter 3 - Full reference Image Quality Assessment for Pedestrian Detection

This chapter evaluates the effects of video acquisition and compression artifacts on

the performance of a number of state-of-the-art pedestrian detection algorithms. It
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is demonstrated that the HVS may not perceive distortions that adversely affect ma-

chine vision performance. As a result, existing FR image quality metrics are not

necessarily accurate predictors of machine vision performance on automotive video

sequences. To address this problem, a novel, computationally inexpensive, FR objec-

tive quality metric based on HOG vectors is proposed for the automotive environment.

Chapter 4 - Detection Optimization using Natural Scene Statistics

In this chapter Natural Scene Statistics (NSS) are used to blindly categorise distorted

video frames by distortion type and level without the use of an explicit reference. Im-

age quality statistics are combined with a multi-classifier detection framework for

optimal pedestrian detection performance with varying image quality. The proposed

method provides statistically significant improvements over current approaches based

on single classifiers when tested on two large pedestrian databases containing a wide

variety of artificially added distortion. The improvement in detection performance is

further demonstrated on real video data captured from multiple cameras containing

varying levels of sensor noise and compression artifacts.

Chapter 5 - Evaluating the Influence of Saliency on Perceptual Quality in Auto-

motive Vision Systems

This chapter examines the issue of subjective quality in automotive video. First, the

results of a subjective image quality evaluation specifically of automotive images are

presented. Based on this subjective test, a new approach for predicting the Quality

of Experience (QoE) of fish-eye to rectilinear transformed images used in automotive
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vision applications is proposed. Fundamental descriptors from the Fourier transform

are used to predict perceptual quality. It is demonstrated that locally weighting

descriptors according to visual saliency maps improves correlation with subjective

MOS. Additionally, an automotive specific video quality database was gathered for

this research, consisting of 50 video sequences and associated human saliency data

and MOS values. The influence of packet loss on visual QoE for high bandwidth

automotive networks is examined, using this new database. The results show that

increasing the level of packet loss has almost no effect on visual attention, despite

significant differences in MOS values with different levels of packet loss.

Chapter 6 - Conclusions and Future Work

This final chapter revisits the work presented throughout this thesis and summarises

the main results and conclusions reached. Some potential avenues for future work are

also briefly explored.
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Background

2.1 Introduction

This chapter describes the overall process of digital image creation and discusses

the state of the art related to the research described in this thesis, as evidenced by

relevant literature. A discussion on current approaches to image quality assessment is

presented. Relevant IQA methods are described and their potential advantages and

limitations discussed in the context of automotive visual quality assessment.

2.2 Digital Image Creation

2.2.1 Image Optics

In a typical digital camera the lens forms an image of the scene on the digital

image sensor. Anti-aliasing and infrared cut off filters are situated between the lens

and sensor to prevent unwanted spatial and spectral scene components from being

15
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imaged, and a cover glass is placed over the lens to protect the imaging surface from

dust. The basic imaging element of a digital camera sensor is called a pixel. The

optical efficiency of a digital camera is determined by the size of the photosensitive

area of each pixel and by the point spread function (PSF) of the lens. The PSF is

the image created by the lens of a point of light in the scene. In general the higher

the quality of the lens, the narrower the PSF. In order to maximise optical efficiency

the PSF should be sufficiently small so that the image of a point of light falls entirely

on the photosensitive area of a single pixel. In many consumer cameras this desirable

property of optical imaging is too costly to realise. In practice, the PSF of the lens

can be larger than the photosensitive area of the pixel, resulting in decreased optical

efficiency. Light may also leak into neighbouring pixels to create a phenomenon know

as cross-talk. A more detailed discussion of the PSF and the pixel sizes of modern

cameras can be found in [24].

2.2.2 Image Filters

Since a digital sensor consists of a rectangular grid of pixels, it captures a sampled

version of the image formed by the lens. In signal and image processing, aliasing is

an effect that causes different signals to become indistinguishable when sampled.

It causes distortions or image artifacts that result in the image reconstructed from

samples being different from the original image. Aliasing in an image is usually

associated with distortions in high frequency regions and can be reduced by reducing

the pixel size, however this approach is expensive as it requires additional processing

and storage resources and also necessitates a reduction in size of the PSF of the lens.
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Instead, aliasing is typically reduced by band limiting the captured image through

the use of an anti-aliasing filter, wherein the image is optically low pass filtered, thus

eliminating the high frequencies that cause aliasing.

For low-end consumer image optics the cost of including an anti-aliasing filter can

be prohibitive and so an alternative is to use a lens of lower quality, which produces a

more blurred image. Although such a design choice produces a fixed upper bound on

image quality, the cost-quality trade-off is often acceptable for consumer applications.

The principle of anti-aliasing remains the same, namely eliminating the higher spatial

frequencies from the image formed on the sensor.

2.2.3 Sensor Optics

Currently, all image sensors in digital cameras use integrating sensing technology.

Each pixel accumulates light-induced photo-charge for a finite exposure time and is

then read out. Most sensors convert 20 - 60% of photons into charge. The signal

output from the sensors is typically linear with accumulated charge. Sensors are

usually grouped according to their fabrication process into Charge-Coupled Devices

(CCD) or Complementary Metal Oxide Semiconductor (CMOS) sensors. The key

difference between these groups is that CCD sensors transport charge from each pixel

to an output gate, where charge is converted into a measurable signal. CMOS sensors

convert charge into voltage within each pixel and send that signal to the sensor output.

In the automotive industry, due to their lower cost and power consumption CMOS

sensors are by far the more prevalent.

Sensor artifacts can degrade the quality of the uncompressed image captured by
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a digital camera in a variety of ways. For example, because there is no light-shielded

storage in most CMOS sensors, charge cannot be stored for any significant amount of

time before readout, therefore most sensors use a rolling shutter readout scheme, in

which pixels are read out one row at a time. Although the rolling shutter approach

provides a simple and cost-effective solution for pixel read out, distortions occur

because different image lines are exposed over different intervals of time. The motion

of either the camera or subject can cause geometric distortions such as skew that can

cause problems in automotive imaging.

Defective pixels are another source of sensor artifact. Defective pixels are pixels

whose response is abnormal enough to be disregarded after readout. Pixel defects

may arise from an impurity in the silicon crystal, a flaw in a filter, an electronic

fault or a surface flaw on the sensor such as a scratch or a piece of dirt. Isolated

pixel defects are common and can be easily concealed in the processing path, however

because CMOS sensors address pixels with row and column selection, both row and

column defects are possible. Furthermore, defects on the surface of the sensor may

affect a cluster of pixels. In some CMOS designs, multiple pixels (usually 2 or 4)

share the same circuitry for conversion of charge to voltage, so a failure in circuitry

can affect multiple pixels.

Camera noise is a further source of image defects that arises in digital cameras.

An example is “fixed pattern noise”, which is characterised by the same pattern of

brighter and darker pixels occurring in images taken under the same illumination

conditions. It occurs due to variations in the geometries and sizes of individual

pixels and can be mitigated to a large extent by camera calibration under known
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illumination conditions. Other noise sources occur from the electronics and tend to

be more noticeable in low light conditions when pixel gain is increased.

Chromatic aberrations occur in the image capture process due to the nature of

the lens material and the varying effects that it has on different wavelengths of light.

In the final image, a common result is lateral chromatic aberration, where the colour

channels are displaced on the sensor, or axial chromatic aberration, where the colour

channels have different sharpness [25].

Notwithstanding the many image defects that can occur in the image acquisition

process, this thesis is primarily concerned with distortion effects that occur in the post

processing pipeline after images are acquired in the sensor (including in particular

compression artifacts and transmission errors); therefore, the effects of distortions

that occur during acquisition will not be considered in further detail.

2.2.4 Digital Image Formats

The Bayer pattern, introduced in 1976 is a colour filter array designed to mimic

the light sensitive physiology of the HVS. The HVS obtains luminance information

mostly from green wavelengths of light, while colour information is derived from blue

and red wavelengths. Thus the Bayer pattern has twice as many green sensors as red

or blue. The resulting pattern, illustrated in Figure 2.1 is used almost exclusively on

modern image sensors.

From Figure 2.1 it can be seen that colour pixels of a Bayer pattern sensor do

not overlap each other spatially. This Bayer pattern image that is obtained from

the image sensor is referred to as a raw or uncompressed image. The raw image is
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Figure 2.1: Bayer colour filter array (figure taken from wikimedia.org, reproduced

under the GNU free documentation license).

converted to other digital image formats for further post processing.

The next step in the digital image pipeline is typically a conversion of the image

to the RGB colour space to allow for gamma conversion. RGB is a convenient colour

model for computer graphics because the HVS works in a similar, though not identical

way, to an RGB colour space. However, standard RGB colour space formats use a

non-linear encoding of the intended intensities of the primary colours, which is further

dependent on the luminance and tonal distributions of the current scene. As this is

too complex to correct in a single step, the gamma is typically corrected at this stage

with colour and luminance balancing occurring after 𝑌 𝐶𝑏𝐶𝑟 conversion. 𝑌 𝐶𝑏𝐶𝑟 is

used as a part of the color image pipeline in video and digital photography systems.

Y is the luma component and 𝐶𝑏 and 𝐶𝑟 are the blue-difference and red-difference

chroma components. 𝑌 𝐶𝑏𝐶𝑟 is not an absolute colour space but rather it is a way

of encoding RGB information that takes advantage of a particular characteristic of
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human perception. The HVS is less sensitive to the compression of colour data than to

the compression of luminance data. Moving the image to 𝑌 𝐶𝑏𝐶𝑟 format is a first step

towards image compression. The most common 𝑌 𝐶𝑏𝐶𝑟 format is YUV. The YUV

model defines a colour space in terms of one luminance (Y) and two chrominance

(UV) components.

2.2.5 Image Compression

JPEG: In the automotive industry JPEG is the most common type of image

compression [26, 27]. The term JPEG is an acronym for the “Joint Photographic

Experts Group”, who are responsible for the JPEG standard. The starting point

for JPEG compression is the corrected YUV image. The two colour components

are typically down-sampled since they are of less importance to the HVS. Next, the

three channels, Y, U and V are split into 8 × 8 macroblocks. Each 8 × 8 block is

then transformed into the frequency domain via a normalized, 2D discrete cosine

transform (DCT). The next step in the compression process is quantization. The

HVS is not good at detecting high frequency variations in brightness, therefore the

amount of high frequency information in the image can be greatly reduced. A simple

approach is to divide each frequency domain component by a fixed value and round to

the nearest integer. The rounding operation, together with chroma sub-sampling are

the lossy parts of the JPEG compression algorithm. Typically, many high frequency

components of the DCT domain will be rounded to zero. Entropy encoding is then

employed to further compress the image, however this process is lossless and therefore

does not affect the image quality.
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JPEG 2000: JPEG 2000 (JP2) is an image compression standard and coding

system created by the Joint Photographic Experts Group committee in 2000 with the

intention of superseding the JPEG standard. After color transformation, the image

is split into so-called tiles, rectangular regions of the image that are transformed and

encoded separately. Tiles can be any size, and it is also possible to consider the

whole image as one single tile. Dividing the image into tiles is advantageous since

the decoder needs less memory to decode the image and can opt to decode only

selected tiles to achieve a partial decoding of the image. However a disadvantage of

this approach is that the quality of the picture decreases due to a lower peak signal-

to-noise ratio and using many tiles can create a blocking effect similar to the JPEG

standard.

The tiles are then wavelet transformed to an arbitrary depth. After the wavelet

transform, the coefficients are scalar-quantized to reduce the number of bits used to

represent them. The output is a set of integer numbers that are encoded bit-by-

bit. The parameter that can be changed to set the final quality is the quantization

step size: the greater the step size, the greater the compression and resulting loss of

quality.

In the automotive applications considered in this thesis, multiple camera streams

may be employed for advanced driver assistance systems (ADAS) such as automatic

breaking and reverse parking assistance. As a result, images or video from multiple

sources must be compressed and transmitted over an in-car network before either

being displayed to the driver or used for computer vision applications. Hence, this

thesis deals with the image quality degradations associated with image compression
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and network transmission in the automotive environment, from the point of view of

the driver’s perception of quality, and also examines the impact of image degradations

in automotive computer vision applications.

2.3 Objective Metrics for Perceptual Quality

In general, there are two categories of IQA methods, namely subjective and objec-

tive assessment. As mentioned in Chapter 1, the Mean Opinion Score (MOS) is the

most widely used subjective assessment technique, however there are several prob-

lems with obtaining MOS scores for image analysis. A wide variety of possible test

methods and test parameters must be considered and meticulous set-up and control

of each experiment is required. Furthermore a large number of observers are required

and their subjective assessment of quality must be screened. The process of subjective

testing is complex and time consuming and the results from such tests are generally

useful only for development purposes; clearly such tests cannot be used for production

testing, in-system debugging, or be incorporated into real-time vision systems.

To facilitate automatic assessment of image and video quality many objective IQA

algorithms have been proposed in the literature. These algorithms can be classified

according to their use, or not, of an original reference image. “Full-reference” (FR)

IQA algorithms are algorithms that make use of a reference image. The reference

image is assumed to be of perfect visual quality and is usually compared with the

distorted image at the pixel level. Differences between the images are quantified

in order to derive a quality score. A number of so-called “reduced-reference” (RR)

image quality metrics have also been proposed, removing the need to store the entire
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original image by computing a few statistics from the distorted image and comparing

them with the corresponding stored statistics of the original image. “No-Reference”

(NR) IQA algorithms, on the other hand attempt to rate quality without the use of

a reference image.

2.3.1 Full Reference Image Quality Algorithms

Full reference (FR) image quality metrics are important tools for optimizing sys-

tem design parameters associated with image acquisition, compression and transmis-

sion. In this section some FR perceptual quality algorithms that are commonly cited

in the literature are reviewed. A number of these are based on relatively simple

measures computed from the reference and test images, while others are more sophis-

ticated and utilise known elements of the human visual system (HVS). In general, as

noted previously, the goal of these algorithms is to produce a metric for image quality

that correlates well with subjective opinions based on MOS.

PSNR: For over half a century the peak signal to noise ratio (PSNR) has been

the most widely used performance metric in the field of image processing [28]. It is

defined as follows: Let 𝑥 = {𝑥𝑖|𝑖 = 1, 2, . . . , 𝑁} and 𝑦 = {𝑦𝑖|𝑖 = 1, 2, . . . , 𝑁} represent

two images, where 𝑁 is the number of pixels and 𝑥𝑖 and 𝑦𝑖 are the intensities of the

𝑖𝑡ℎ pixels in images 𝑥 and 𝑦 respectively. Then

𝑀𝑆𝐸 =
1

𝑁

𝑁∑︁
𝑖=1

(𝑥𝑖 − 𝑦𝑖)
2 (2.1)

and

𝑃𝑆𝑁𝑅 = 10𝐿𝑜𝑔10
𝐿2

𝑀𝑆𝐸
(2.2)
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where 𝐿 is the dynamic range of allowable pixel intensities. A disadvantage of

PSNR is that it assumes that distortion is only caused by additive signal-independent

noise. Unfortunately, this assumption is a gross over-simplification as modern image

processing techniques such as compression and distortion correction can introduce

degradation in images in a variety of ways. As a result, correlation between PSNR

and subjective image quality is known to be poor [29]. Nevertheless, PSNR remains

a widely used image quality metric since it is easy to compute. It has a clear physical

meaning, i.e. it represents the energy of the error signal and it is preserved after

unitary transformations such as the Fourier transform. Additionally, PSNR is often

used as a benchmark for more advanced IQA metrics. However, in recent years, much

more effort has been devoted to assessing the perceptual quality of an image or video

sequence [30] and many alternative IQA metrics have been proposed.

VSNR: Chandler and Hemami presented a wavelet-based visual signal to noise

ratio (VSNR) measure for natural images in [31]. VSNR operates under the following

framework: firstly, the “visibility” of the distortions in the image is determined. This is

achieved through the computation of salient distortion thresholds which are derived

from wavelet based models of visual masking and visual summation. Distortions

which are below the saliency threshold are considered non-salient, that is, they are

not considered to affect the visual quality of an image. Hence images containing only

non-salient distortions are considered to be of pristine visual quality. If distortions

are above the saliency threshold, a multi-scale wavelet decomposition of the image is

performed. The VSNR measure is given by:

𝑉 𝑆𝑁𝑅 = 10𝑙𝑜𝑔10

(︁𝐶2(𝐼)

𝑉 𝐷2

)︁
(2.3)
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where 𝐶(𝐼) denotes the 𝑅𝑀𝑆 contrast of the original image 𝐼 and 𝑉 𝐷 is a measure

of visual distortion derived from a linear combination of perceived distortion and per-

ceived global precedence. In tests on the Laboratory for Image and Video Engineering

(LIVE) image database [32], VSNR correlates well with subjective scores, particularly

with additive white Gaussian noise (AWGN) distortion where correlation with sub-

jective opinion is 0.978 using Pearson’s linear correlation coefficient. A limitation of

VSNR is that it is measured on the entire image and hence does not offer spatially

localized quality information that could be useful in block-based image processing

algorithms.

NQM: The noise quality measure (NQM) was originally proposed to evaluate

the quality of images degraded only by noise [33]. Nevertheless, NQM also shows

acceptable results in the presence of other types of image degradation [34]. The

NQM algorithm operates by processing the original and distorted images through

a model restoration algorithm based on Peli’s contrast pyramid [35]. The authors

modify the pyramid by defining a threshold that varies for each spatial frequency

band and each pixel in the bandpass images, to account for contrast masking. If

𝑂𝑠(𝑥, 𝑦) and 𝐼𝑠(𝑥, 𝑦) denote the processed reference and processed distorted images

respectively then the NQM is given by:

𝑁𝑄𝑀𝑑𝑏 = 10𝑙𝑜𝑔
Σ𝑥Σ𝑦𝑂

2
𝑠(𝑥, 𝑦)

Σ𝑥Σ𝑦(𝑂𝑠(𝑥, 𝑦) − 𝐼𝑠(𝑥, 𝑦))2
(2.4)

An advantage of this approach is that variations in contrast sensitivity with distance

and image dimensions can be taken into account. Like VSNR, NQM correlates well

with subjective quality scores for AWGN degraded images, however, in general, more

recent metrics offer statistically superior correlation with subjective mean opinion
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scores [36].

While the above image quality metrics rely on low-level properties of vision, alter-

native approaches attempt to model aspects of the HVS in order to more accurately

assess image quality.

SSIM: In [15] Wang et al. proposed the structural similarity (SSIM) index, which

is based on the assumption that the HVS has evolved to extract structural informa-

tion from natural scenes. The perceived quality of an image is therefore related to

the structural fidelity between a distorted image and the original. The SSIM system

separates the task of similarity measurement into three components: luminance, con-

trast and structure. First, the luminance of each signal is compared. If 𝑥 and 𝑦 are

two aligned images, the luminance of 𝑥 is estimated from the mean intensity, defined

as:

𝜇𝑥 =
1

𝑛

𝑁∑︁
𝑖=1

𝑥𝑖 (2.5)

The luminance comparison function 𝑙(𝑥, 𝑦) is then a function of 𝜇𝑥 and 𝜇𝑦. The mean

intensity is removed from the signal and the standard deviation is used as an estimate

of signal contrast. An unbiased estimate in discrete form is given by:

𝜎𝑥 =
1

𝑁 − 1

𝑁∑︁
𝑖=1

(𝑥𝑖 − 𝜇𝑖)
2 (2.6)

The contrast comparison 𝑐(𝑥, 𝑦) is then the comparison of 𝜎𝑥 and 𝜎𝑦. The signal is

then normalized by its own standard deviation, so that the two signals being compared

have unit standard deviation. The structure comparison 𝑠(𝑥, 𝑦) is conducted on the

normalized signals 𝑥−𝜇𝑥

𝜎𝑥
and 𝑦−𝜇𝑦

𝜎𝑦
. The correlation (inner product) between these

vectors is a simple and effective measure to quantify the structural similarity. Finally
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the three components are combined to yield an overall similarity measure:

𝑆 = 𝑙(𝑥, 𝑦) · 𝑐(𝑥, 𝑦) · 𝑠(𝑥, 𝑦)). (2.7)

The SSIM index has been shown to correlate highly with human opinion scores of

images containing a range of distortions. For example, the algorithm achieved correla-

tion coefficients of 0.970, 0.943 and 0.956 on the AWGN, JPEG and JP2 compression

subsets of the LIVE image database, respectively [37].

IFC: Other HVS based models include the Information Fidelity Criterion (IFC)

which was proposed in [38]. The IFC is an information-theoretic approach to image

quality evaluation in which Gaussian Scale Mixtures (GSMs) are computed in the

wavelet domain across multiple sub-bands. Visual quality is then estimated by quan-

tifying the mutual information between the GSM models of the original and distorted

images. For the source model a single sub-band of the wavelet decomposition is mod-

eled as a GSM Random Field (RF), 𝐶 = {𝐶𝑖 : 𝑖 ∈ 𝐼}, where 𝐼 denotes a set of spacial

indices for the RF. 𝐶 is a product of two stationary RFs that are independent of each

other:

𝐶 = 𝑆 · 𝑈 = {𝑆𝑖 · 𝑈𝑖 : 𝑖 ∈ 𝐼} (2.8)

where 𝑆 = {𝑆𝑖 : 𝑖 ∈ 𝐼} is an RF of positive scalars and 𝑈 = {𝑈𝑖 : 𝑖 ∈ 𝐼} is a Gaussian

scalar RF with mean zero and variance 𝜎2
𝑈 .

The distortion in the channel is modeled as a simple signal attenuation and addi-

tive Gaussian noise model in each sub-band:

𝐷 = 𝐺𝐶 + 𝑉 = {𝑔𝑖𝐶𝑖 + 𝑉𝑖 : 𝑖 ∈ 𝐼} (2.9)

where 𝐶 denotes the RF from a sub-band in the reference signal, 𝐷 = {𝐷𝑖 : 𝑖 ∈ 𝐼}
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denotes the RF from the corresponding sub-band of the distorted signal, 𝐺 = {𝑔𝑖 :

𝑖 ∈ 𝐼} is a deterministic scalar attenuation field, and 𝑉 = {𝑉𝑖 : 𝑖 ∈ 𝐼} is a stationary

additive zero-mean Gaussian noise RF with variance 𝜎2
𝑉 . Given the statistical models

for the source and distorted channels above, the conditional mutual information,

denoted 𝐼
(︁
𝐶𝑁 ;𝐷𝑁 |𝑆𝑁

)︁
is computed for each sub-band. The IFC is then obtained

by summing over all sub-bands as follows:

𝐼𝐹𝐶 =
∑︁

𝑘∈𝑠𝑢𝑏-𝑏𝑎𝑛𝑑𝑠
𝐼
(︁
𝐶𝑁𝑘,𝑘;𝐷𝑁𝑘,𝑘|𝑆𝑁𝑘,𝑘

)︁
(2.10)

where 𝐶𝑁𝑘,𝑘 denotes 𝑁𝑘 coefficients from the RF 𝐶𝑘 of the 𝑘𝑡ℎ sub-band, and similarly

for 𝐷𝑁𝑘,𝑘 and 𝑆𝑁𝑘,𝑘.

VIF: The Visual Information Fidelity (VIF) metric, proposed in [39], has been

shown to correlate highly with human opinion for multiple distortion types. VIF is

an extension of the IFC, which takes into consideration the fact that the human visual

system limits the amount of information that can be extracted from a visual signal.

The VIF metric therefore aims to quantify the loss of information to the HVS channel

relative to the amount of information lost from the source signal to the distortion

channel. Letting 𝐼
(︁
𝐶𝑁 ;𝐸𝑁 |𝑆𝑁

)︁
, and 𝐼

(︁
𝐶𝑁 ;𝐹𝑁 |𝑆𝑁

)︁
denote the information that

could ideally be extracted by the HVS from a particular sub-band of the reference

and distorted images respectively, VIF is given by:

𝑉 𝐼𝐹 =

∑︀
𝑘∈𝑠𝑢𝑏-𝑏𝑎𝑛𝑑𝑠 𝐼

(︁
𝐶𝑁𝑘,𝑘;𝐹𝑁𝑘,𝑘|𝑆𝑁𝑘,𝑘

)︁
∑︀

𝑘∈𝑠𝑢𝑏-𝑏𝑎𝑛𝑑𝑠 𝐼
(︁
𝐶𝑁𝑘,𝑘;𝐸𝑁𝑘,𝑘|𝑆𝑁𝑘,𝑘

)︁ (2.11)

where, as before, 𝐶𝑁𝑘,𝑘 denotes 𝑁𝑘 coefficients from the RF 𝐶𝑘 of the 𝑘𝑡ℎ sub-band,

and similarly for 𝐸𝑁𝑘,𝑘, 𝐹𝑁𝑘,𝑘 and 𝑆𝑁𝑘,𝑘. A particularly interesting feature of VIF

is that linear contrast enhancement of the reference image is taken into account.
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Assuming such an enhancement does not add any additional noise, the enhanced

image will be rated as superior in quality to the reference image.

MLSIM A Multi-Level Similarity index (MLSIM) for IQA was proposed in [40].

The MLSIM is based on the principle that the HVS determines image quality mainly

according to details extracted from low level gradient information. The Prewitt mag-

nitude [41] of the reference 𝑓 and distorted image 𝑔 are computed to obtain 𝑓𝑝 and

𝑔𝑝. The images are then segmented into multiple levels based on thresholding of their

Prewitt magnitudes, to obtain 𝐿𝑖(𝑓𝑝) and 𝐿𝑖(𝑔𝑝). For each level 𝑖, the coefficients of

the first and second order Riesz transforms 𝑅𝑗(𝐿𝑖(𝑓𝑝)) and 𝑅𝑗(𝐿𝑖(𝑓𝑝)), 𝑗 = 1, . . . , 5

are computed. Five different values for the regional mutual information (RMI) pro-

posed by [42] are then computed for each level, with the average RMI value for level

𝑖 denoted 𝑅𝑀𝐼𝑖(𝑓, 𝑔). The MLSIM value is given by:

𝑀𝐿𝑆𝐼𝑀(𝑓, 𝑔) =
𝑁∑︁
𝑖=1

𝜔𝑖 ·𝑅𝑀𝐼𝑖(𝑓, 𝑔) (2.12)

where 𝜔𝑖, 𝑖 = 1, . . . , 𝑁 are weighting factors for each level.

A disadvantage of the IFC, VIF and MLSIM algorithms is their computation

time [43, 44, 40], which limits their utility in real-time applications. More recently, a

number of advances in the area of image quality evaluation have been proposed that

incorporate sophisticated models of visual saliency information, while also improving

computational performance. These include:

FSIM: In [45], Zhang et al. propose a novel feature similarity (FSIM) index for

full reference image quality assessment. The main feature used in FSIM is the dimen-

sionless phase congruency (PC) which measures the significance of a local structure.

Since PC is contrast invariant, and contrast information affects the HVS’s perception
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of image quality, the image gradient magnitude (GM) is also incorporated into the

model as an additional feature. PC and GM play complementary roles in characteriz-

ing the local image quality. FSIM has been shown to achieve higher consistency with

subjective evaluations than alternative IQA metrics [45]. The metric is computed as

follows. Let the similarity between two images 𝑓 and 𝑔 be given by:

𝑆𝐿(𝑥) = [𝑆𝑃𝐶(𝑥)] · [𝑆𝐺(𝑥)] (2.13)

where 𝑆𝑃𝐶(𝑥) and 𝑆𝐺(𝑥) are similarity measures of the computed PC and GM of the

reference and distorted images. Then FSIM is defined as:

𝐹𝑆𝐼𝑀 =

∑︀
𝑥∈Ω 𝑆𝐿(𝑥) · 𝑃𝐶𝑚(𝑥)∑︀

𝑥∈Ω 𝑃𝐶𝑚(𝑥)
(2.14)

where Ω is the entire image spatial domain, and 𝑃𝐶𝑀(𝑥) is the maximum phase

congruency of the reference and distorted images.

SR-SIM: The spectral residual based similarity index (SR-SIM) proposed in [44] is

a novel, computationally inexpensive image quality metric based on spectral residual

visual saliency. SR-SIM differs from FSIM only in that the Spectral Residual Visual

Saliency (SRVS), denoted 𝑅 is used as a substitute for 𝑃𝐶 so that:

𝑆𝑅-𝑆𝐼𝑀 =

∑︀
𝑥∈Ω 𝑆𝐿(𝑥) ·𝑅𝑚(𝑥)∑︀

𝑥∈Ω 𝑅𝑚(𝑥)
(2.15)

where Ω is the entire image spatial domain, 𝑅𝑀(𝑥) is the maximum phase congruency

of the reference and distorted images, and in this case the similarity measure 𝑆𝐿(𝑥)

is given by:

𝑆𝐿(𝑥) = [𝑆𝑅(𝑥)] · [𝑆𝐺(𝑥)] (2.16)

. Extensive experiments were conducted on three large-scale IQA data sets which
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indicated that SR-SIM is capable of achieving very high correlation with human

perceptual judgement.

IW-SSIM: In [46], Wang and Li weight the local quality measures of a number

of full reference image quality metrics with the local information content, which is

estimated in units of bits, using advanced statistical models of natural images. The

results show that intelligent weighting of local quality scores can considerably im-

prove the correlation of a quality metric to subjective opinion scores. The proposed

information content-weighted structural similarity measure (IW-SSIM), is an exten-

sion of SSIM. In [40] a multi-scale (MS) image quality approach was proposed that

incorporates SSIM scores at different scales. Let 𝑥𝑗,𝑖 and 𝑦𝑗,𝑖 be the 𝑖𝑡ℎ local image

patches at the 𝑗𝑡ℎ scale, and let 𝑁𝑗 be the number of evaluation windows in the scale,

then the 𝑗𝑡ℎ scale SSIM evaluation is given by:

𝑆𝑆𝐼𝑀𝑗 =
1

𝑁𝑗

∑︁
𝑖

𝑐(𝑥𝑗,𝑖, 𝑦𝑗,𝑖) · 𝑠(𝑥𝑗,𝑖, 𝑦𝑗,𝑖)). (2.17)

for 𝑗 = 1, . . . ,𝑀 − 1, and

𝑆𝑆𝐼𝑀𝑗 =
1

𝑁𝑗

∑︁
𝑖

𝑙(𝑥𝑗,𝑖, 𝑦𝑗,𝑖) · 𝑐(𝑥𝑗,𝑖, 𝑦𝑗,𝑖) · 𝑠(𝑥𝑗,𝑖, 𝑦𝑗,𝑖)). (2.18)

for 𝑗 = 𝑀 , where 𝑀 is the number of scales. The overall MS-SSIM measure is then

defined as:

𝑀𝑆-𝑆𝑆𝐼𝑀 =
𝑀∏︁
𝑗=1

(𝑆𝑆𝐼𝑀𝑗)
𝛽𝑗 (2.19)

where the 𝛽𝑗 values are obtained through psychophysical experiments. By combin-

ing information content weighting with MS-SSIM, Wang and Li defined an informa-

tion content weighted SSIM measure (IW-SSIM). Let 𝑤𝑗,𝑖 be the information content

weight computed at the 𝑖𝑡ℎ spatial location in the 𝑗𝑡ℎ scale, then the 𝑗𝑡ℎ scale IW-SSIM
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measure is defined as:

𝐼𝑊 -𝑆𝑆𝐼𝑀𝑗 =

∑︀
𝑖 𝑤𝑗,𝑖 · 𝑐(𝑥𝑗,𝑖, 𝑦𝑗,𝑖) · 𝑠(𝑥𝑗,𝑖, 𝑦𝑗,𝑖))∑︀

𝑤𝑗,𝑖

. (2.20)

for 𝑗 = 1, . . . ,𝑀 − 1, and

𝐼𝑊 -𝑆𝑆𝐼𝑀𝑗 =
1

𝑁𝑗

∑︁
𝑖

𝑙(𝑥𝑗,𝑖, 𝑦𝑗,𝑖) · 𝑐(𝑥𝑗,𝑖, 𝑦𝑗,𝑖) · 𝑠(𝑥𝑗,𝑖, 𝑦𝑗,𝑖)). (2.21)

for 𝑗 = 𝑀 . The final IW-SSIM metric is thus computed as:

𝐼𝑊 -𝑆𝑆𝐼𝑀 =
𝑀∏︁
𝑗=1

(𝐼𝑊 -𝑆𝑆𝐼𝑀𝑗)
𝛽𝑗 (2.22)

2.3.2 Reduced Reference Image Quality Algorithms

Reduced-reference (RR) image quality metrics provide a solution that lies between

FR and NR models. They are designed to predict the perceptual quality of distorted

images using only partial information from the reference images. These partial RR

features usually have a much lower data rate than the image data. RR methods are

useful in a number of applications, for example in real-time visual communication

systems, as they can be used to monitor image quality degradations and control the

resources available for video streaming; the partial information about the reference

image can be communicated along with the distorted image with relatively low over-

head. Existing RR IQA algorithms typically use one of three different approaches [47].

The most common approach is based on modelling image distortions. This approach

is particularly useful for specific application environments where the distortion type

is known. For example, in [48] Gunawan and Ghanbari presented a reduced reference

objective quality metric for compressed video. Discriminative analysis of harmonic
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strength was computed from edge-detected pictures to provide harmonic gain and loss

information. Harmonic gain and loss correspond to blockiness and blurring artifacts

associated with image compression. The proposed approach achieved good correla-

tion with subjective opinions from the Video Quality Experts Group (VQEG) Test

Phase 1 video sequences [49]. In [50], a RR model was described wherein features

were extracted from spatial-temporal blocks to determine quality. The first feature,

a measure of overall spatial information is used to detect localized blurring in the

distorted video sequence, while a second feature, which measures the angular distri-

bution of spatial gradients, provides a simple means of incorporating variations in

the sensitivity of the HVS to angular orientation. A third feature is used to measure

distortions in the chrominance channels. These features have been shown to provide

close correlation to MOS values and require little additional bandwidth [50, 51].

The second type of approach is based on modelling the HVS e.g. [52, 53]. Typi-

cally, perceptual features motivated from computational models of low level vision are

extracted from the reference image to provide a reduced description of image quality.

An advantage of this approach is that the perceptual features extracted from the

image are not directly related to any specific distortion type and hence could poten-

tially provide distortion independent assessment of image quality. A third approach

is based on modelling Natural Scene Statistics (NSS). The underlying assumption

behind NSS approaches is that most image distortions disturb image statistics and

make the distorted image somewhat “unnatural”. The distance between the reference

and distorted image statistics can thus be measured and used to predict degrada-

tions in perceptual image quality. In [54], Wang and Simoncelli proposed an RR
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IQA method based on a NSS model in the wavelet transform domain. Specifically,

it was shown that the marginal distribution of the wavelet coefficients of a particu-

lar sub-band changes in different ways for different types of image distortions. The

Kullback-Leibler (KL) distance is used to measure the difference in marginal probabil-

ity distributions of the wavelet coefficients extracted from both reference and degraded

images. An advantage of this approach is that only a relatively small number of RR

features are required for image quality evaluation. A similar approach is used in [47],

wherein Li and Wang describe a RR IQA method that is inspired by the divisive

normalisation transform (DNT) described in [55]. By using a GSM statistical model

of image wavelet coefficients, DNT transforms of the reference and degraded images

are computed. Again, quality is assessed by comparing the difference in probability

distributions of extracted features using the KL distance.

A family of RR video quality metrics was introduced in [56] and [57] that incorpo-

rate both spatial and temporal differences in entropy. A GSM model for the wavelet

coefficients of frames and frame differences was used to measure the amount of spa-

tial and temporal information differences between the reference and degraded videos

respectively. The spatial and temporal differences were then combined to obtain

spatio-temporal reduced reference entropic differences.

Finally, a recently proposed RR quality metric for compressed video [58] com-

bined two of the above approaches by incorporating spatial information loss and the

temporal characteristics of the inter-frame histogram. In the spatial domain, an en-

ergy variation descriptor is proposed to measure the energy change of each individual

encoded frame after quantisation. In the temporal domain, the Generalised Gaussian
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Density (GGD) function is used to capture the statistics of the interframe histogram

distribution. The proposed metric outperformed FR metrics such as PSNR and SSIM

in an evaluation on the LIVE video database.

2.3.3 No-Reference Image Quality Algorithms

While the availability of a reference image greatly simplifies the task of quality

assessment, in automotive vision applications such algorithms are generally limited to

use in the system design stage where they may be used to optimize visual quality and

machine vision performance. However, for real-time applications, a reference image

is typically unavailable when image quality needs to be computed. “No-reference”

(NR) image and video quality algorithms, on the other hand, have the potential to

be incorporated into real-time automotive vision systems where they may be used,

for example, to dynamically control compression rates in compressed video in order

to guarantee a particular quality of service.

Like RR metrics, the majority of NR algorithms are distortion specific; for exam-

ple, there are many algorithms that rate the quality of compressed [59, 60, 61, 62,

63, 64, 65], blurred [66, 67, 68, 23, 69] or channel distorted [70, 71] images. These

NR algorithms estimate the level of a particular distortion present in an image and

map this value to a quality score by using a priori information on subjective opin-

ion scores. Distortion specific metrics are useful in systems where there is a single

predominant distortion, for example in JPEG2000 compression, in which “ringing”

artifacts are prevalent [72, 73]. Ringing is caused by the quantisation of high fre-

quency coefficients in transform coding and is characterized by ripples around sharp
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edges. In [61] a NR algorithm for ringing artifacts was developed. The algorithm

estimates the visibility of ringing artifacts by comparing them to the activity of the

local background, and was shown to correlate closely with subjective data.

While distortion-specific RR IQA algorithms produce a close correlation to hu-

man opinion for specific distortions, in the automotive environment such algorithms

may be somewhat limited, since degradations in video quality can occur from various

other sources such as sensor noise, transmission artifacts or video compression. Fur-

thermore, automotive vision systems operate over a diverse range of landscapes and

environmental conditions making it difficult to predict the most prevalent distortion,

which will likely change depending on scene complexity and illumination [21].

Recently, distortion-independent approaches which are based on the statistical

properties of natural images have been shown to provide good performance in pre-

dicting perceived image quality.

Such approaches are based on the hypothesis that natural images follow regular

statistical properties that are altered by the presence of distortions [74]. As an ex-

ample, consider the grey-scale values of two neighbouring pixels. If many different

locations in an image are selected in random order, and the grey-scale values of the

pixels as the observed values of two random variables are considered, these random

variables will not be independent. Intuitively, it is clear that two neighbouring pixels

tend to have very similar grey-scale values. Such regular properties associated with

natural images are referred to as NSS. Deviations from these statistics can be quan-

tified to predict perceptual image quality. Since NSS models effectively assess the

“naturalness” of an image, they necessarily provide a distortion independent assess-
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ment of perceived image quality. However, research has shown that different distortion

types alter the statistics of natural images in characteristic ways, and hence NSS have

been used to categorise degraded images by distortion type for example in [75] and

[76].

In [77], the Distortion Identification-based Image Verity and INtegrity Evaluation

(DIIVINE) index was proposed. The algorithm is based on a two-stage framework

involving distortion identification followed by distortion-specific quality assessment.

A distorted image is decomposed using a scale space orientation decomposition to

form oriented band pass responses. A series of statistical features are then extracted

from the sub-band coefficients and stacked to form a vector, which is a statistical

description of the distortions in the image. The feature vectors can then be utilized

to evaluate the probability of the image containing a particular distortion.

A similar approach called BLind Image Integrity Notator using DCT Statistics

(BLIINDS-II) was described in [78] and [79]. A small number of features were com-

puted from an NSS model of block DCT coefficients. These features were then used to

train a regression model which accurately predicted perceived image quality. While

both of these NR IQA metrics provide high correlation with perceptual image quality,

computation of the required features is expensive [75] and hence achieving real time

implementation would likely be challenging. To this end, transform-free models for

NR IQA have been developed, for example, a general-purpose NR IQA approach based

on visual codebooks was proposed in [80] which utilized Gabor-filter-based local fea-

tures extracted from local image patches to capture NSS. Two relatively new image

quality metrics, Blind/Referenceless Image Spatial QUality Evaluator (BRISQUE)
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and Natural Image Quality Evaluator (NIQE) were introduced in [81] and [75]. Both

the BRISQUE and NIQE metrics have been shown to offer comparable performance

with the transform-based NR IQA models mentioned above. However both algorithms

operate on multiscale spatial pixel data and hence are inexpensive to compute, making

them good choices for real-time automotive applications. BRISQUE uses “quality-

aware” spatial features to train a regression model for IQA, while NIQE develops a

model for undistorted “pristine” images and measures deviations in the statistics of

the test image from those in the pristine model. Finally, in [82] Zhang and Chandler

proposed an efficient NR IQA algorithm using a log-derivative statistical model of

natural scenes. The method is termed DErivative Statistics-based QUality Evalua-

tor (DESIQUE) and utilizes statistical features from both the spatial and frequency

domains. Although similar to BRISQUE, the log-derivative based analysis used in

DESIQUE provides greater sensitivity to local contrast changes and allows for easier

modelling of extracted features. These improvements mean that DESIQUE achieves

statistically significant performance improvements over other transform-based NR

IQA algorithms, but at much greater computational efficiency [82].

2.4 Objective Quality Assessment for Machine Vi-

sion

In the context of advanced driver assistance systems, numerous machine vision al-

gorithms have been developed for tasks including object detection. One such task of

particular interest is automated pedestrian detection. In recent years, much research
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has been devoted to this subject, with numerous algorithms having been proposed

in the literature [83, 84, 85, 86]. Although computer vision approaches have made

significant progress in this area, there is still room for improvement, particularly for

applications that require very accurate responses in real time. A key challenge lies in

developing algorithms that exhibit high accuracy and reliability across a wide variety

of environmental, implementation and inter-vehicle communication factors, such as il-

lumination, scene content, capture geometry and image compression. A limited body

of work has examined various factors that affect detection performance, for example,

[87] examines the impact of pedestrian size and position, as well as occlusion statistics

on pedestrian detection performance, while environmental and illumination conditions

are discussed in [88]. Certainly these factors affect image quality and hence detection

performance. However, there is no clear distinction between scene dependent quality

factors such as occlusion and illumination, and image quality factors associated with

image capture and compression. In this thesis image quality factors associated with

image capture, lossy compression and transmission errors are considered, all of which

are important in automotive vision systems. Quantifying the loss of performance in

detection algorithms due to these degradations is of great interest to the automotive

vision community, since knowledge of detection performance in the presence of distor-

tions could be used to guide system configuration or control of compression ratio for

driver assistance systems, ensuring good overall system design, and robust detection

performance across a wide range of image and video quality. To date, relatively little

research has been carried out in this area. Examples in an alternative application

area include [89], in which the authors examined the influence of image distortions
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on a commonly used face detection algorithm, and [90], wherein acceptable bit-rates

for human face identification were examined. In [91], the influence of image quality

degradations from JPEG and H.264 compression algorithms on the performance of

an infra-red pedestrian detection algorithm were investigated, however results were

reported only in terms of tracking rate at 4 seconds before impact, and the maximum

distance at which a pedestrian can be detected. These quality criteria are insufficient

to describe detection algorithm performance since there is no consideration of false

positives.

2.5 Concluding Remarks

This chapter has described the overall process of digital image creation that leads

to an “uncompressed” image. The state of the art in current approaches toward

image quality assessment has also been discussed. Considering the many automotive

imaging applications that have been deployed in recent years, there is a surprising

lack of analysis of image quality in the automotive environment. While some research

has been carried out on factors that influence machine vision performance, little

effort has been focused towards deriving quality parameters specifically for automotive

applications. This thesis aims to address this gap by examining the influence of image

degradations on automotive systems and assessing the suitability of current image

quality metrics that could be used in this space.

The next chapter discusses the effects of some transmission artifacts on the per-

formance of a number of common pedestrian detection algorithms, and develops an

image quality metric that is designed to accurately predict pedestrian detection al-
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gorithm performance in the presence of such artifacts.



Chapter 3

Full Reference Image Quality

Assessment for Pedestrian Detection

3.1 Introduction

In typical automotive vision systems, degradation in image quality can occur

for a number of reasons. Among the more important sources of degradation are

lossy compression of images or video, or noise originating in the image acquisition

or transmission process (e.g. sensor noise). Quantifying the loss of performance of

detection algorithms due to these degradations typically requires the availability of a

“gold” standard in the form of annotated test databases which are both expensive and

time consuming to produce. It would be desirable to utilise an objective IQA metric

that accurately predicts the performance of machine vision algorithms on degraded

images and video themselves. Such a metric could be used as a predictor of the

impact of choice of system parameters (e.g. compression ratio (CR) in image/video

43
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compression) on pedestrian detection performance. It may also obviate, or at least

reduce, the need to carry out extensive machine vision performance evaluation using

large annotated data sets.

In this chapter the effects of transmission artifacts on the performance of a number

of state-of-the-art pedestrian detection algorithms are evaluated. It is demonstrated

that the HVS may not perceive distortions that adversely affect machine vision per-

formance; consequently, existing FR image quality metrics (which correlate with HVS

performance) are not necessarily accurate predictors of machine vision performance

on transmitted video sequences. To address this problem, a novel, computationally

inexpensive, FR objective quality metric based on histograms of oriented gradients

is proposed. The proposed metric is specifically designed to predict detection algo-

rithm performance in the presence of degradations. The metric can be used at the

system design stage in order to optimize image capture parameters for machine vision

performance without the need for annotated test databases.

3.2 Pedestrian Detection Algorithms

The field of pedestrian detection research has been extremely active in recent

years with many implementations of pedestrian detection algorithms proposed in

the literature. For a comprehensive evaluation of the state-of-the-art in pedestrian

detection algorithms, the reader is referred to [87]. In this section we briefly outline

some of the key features extracted from an image that are useful for object detection,

and that form the basis for the work described in this chapter.

Many of the algorithms described in recent literature utilise some form of His-
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togram of Oriented Gradient (HOG) descriptors, first proposed in [85]. HOGs are

feature descriptors used for the purpose of object detection in which local object

appearance is characterized by the distribution of local intensity gradients or edge di-

rections. Shape features are another common cue for detection. Gavrila and Philomin

[92] employed the Hausdorff distance transform and a template hierarchy to match

image edges to a set of shape templates, while Wu and Nevatia [93] used a large

pool of short line and curve segments known as ‘edgelets’ to represent shape locally.

Another feature used for pedestrian detection are ‘shapelets’ [94] which are shape

descriptors discriminatively learned from gradients in local patches.

More recent algorithms look to improve pedestrian detection performance by ex-

ploiting a combination of features. Wojek and Schiele [95] showed that a combination

of Haar-like features, shape context [96] and HOG features outperforms any individ-

ual feature. Wang et al. [97] combined a texture descriptor based on local binary

patterns (LBP) [98] with HOG, while Felzenszwalb et al. [99] described a framework

including the detection of object parts and a statistically learned deformable model

that relates these parts. The Pairwise Geometrical Histogram (PGH) is a generaliza-

tion of the Chain Code Histogram (CCH). It is a powerful shape descriptor that is

applied to contours matching and is not affected by rotation. Recently, in [100], Yong

et al. combined Haar-like features and PGHs for vehicle detection, while Yao and

Deng [101] combined shapelet and Haar-like wavelets to develop a robust pedestrian

detection approach.

Meanwhile, work on improving the computational efficiency of feature detection

includes Zhu et al. [102] who exploited the “Integral Histogram” [103] to efficiently
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compute the HOG feature. In [104], Dóllar et al. proposed a fast method for approx-

imating features at multiple scales using a sparsely sampled image pyramid.

In this chapter we are concerned with evaluating the impact of image degradations

on pedestrian detection performance. The performance of three pedestrian detection

algorithms on images degraded by distortions commonly found in automotive vision

systems is first examined. The three algorithms chosen include the widely used HOG

detector [85], as well as two recent state-of-the-art detection algorithms, namely In-

tegral Channel Features (ICF) [86] and Deformable Parts-based Model (DPM) [99].

In the following section each of the algorithms is briefly described and the reasons

for choosing the HOG vector as the feature descriptor in the subsequent analysis is

explained.

3.3 Histogram of Oriented Gradients

Although research in pedestrian detection is quite diverse, almost all modern

algorithms, including the top 14 ranked algorithms assessed in [87], employ some

form of HOG vectors. Furthermore, HOG coupled with SVM classification continues

to be widely used in automotive applications for different detection tasks, largely due

to the fact that recent advances enable real-time in-vehicle implementations [105, 106].

The general idea behind HOG features is that local object appearance and shape can

be characterized by the distribution of local intensity gradients or edge directions.

Typically, this is achieved by first carrying out image pre-processing such as gamma

correction and then dividing the image frame into small spatial regions or ‘cells’. A

histogram of edge orientations is computed over the pixels of each cell. The histogram
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entries are combined to make up the feature representation. For better invariance to

illumination, cell values are contrast normalized before processing. This is achieved by

grouping cells into larger spatial blocks and contrast normalizing each block. Lowe-

style clipped L2 norm (L2-Hys) block normalization, described in [107], has been

found to give good performance in subsequent classification tasks. The normalized

descriptor blocks are termed HOG descriptors. The detection window consists of

a dense, overlapping grid of HOG descriptors and the resulting combined feature

vector is commonly processed through a linear Support Vector Machine (SVM) for

classification. SVMs are supervised learning models that analyse image features and

recognise patterns. Given a set of training examples, each categorised as a positive

or negative sample, an SVM training algorithm builds a model that labels new image

samples as either positive or negative based on the new image feature’s similarity with

the training set. A block diagram of the HOG-based pedestrian detection algorithm

is presented in Figure 3.1 [85].
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Figure 3.1: An overview of Dalal and Triggs’ feature extraction and object detection

chain [85].

The performance of the detection algorithm is affected by the way in which the

gradients are computed. Good performance is achieved using a simple 1-D mask with

no Gaussian smoothing. HOG vectors have several advantages over other features

since they tend to capture edge and gradient structures that are very characteristic

of local shape. The HOG feature is also largely invariant to translations or rotations

providing they are much smaller than the local spatial and orientation bin sizes. In

[85], Dalal and Triggs demonstrated that good parameters for pedestrian detection
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are found by coarse spatial sampling and fine orientation sampling. Such parameter

settings, given in Table 3.1, allow accurate detection even with large movements of

pedestrians’ limbs. Recent studies [85, 108, 109] have demonstrated that HOG based

detectors greatly outperform alternative methods such as the Haar wavelet, Scale

Invariant Feature Transformation (SIFT), and shape context approaches.

Table 3.1: Default HOG descriptor Properties

Parameter Value
Window size 64 x 128 pixels
Spatial block size 2 x 2 cells
Cell size 8 x 8 pixels
Number of orientations 9
Overlap 8 x 8 pixels
Gaussian smoothing No
Histogram normalization L2-hys
Gamma correction Yes
Max # of detection scalings 64

Integral Channel Features (ICF) [86] is a detection technique in which multiple

registered image channels are computed using linear and non-linear transformations of

the input image, and then features such as local sums, histograms, and Haar features

and their various generalizations are efficiently computed using integral images. The

authors of [86] demonstrated that when designed properly, integral channel features

not only outperform other features including HOG, they are also insensitive to exact

parameter settings, allow for more accurate spatial localization during detection, and

result in fast detectors when coupled with cascade classifiers. The authors reported

that the number of frames per second (fps) at which selected channels can be com-

puted for 320 × 240 images, as tested on a standard PC, were: LUV colour channels
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at 135 fps, gradient magnitude at 140 fps, and gradient histograms (with 6 bins) at

60 fps. Computing all 10 channel images can be performed at 40 fps. Furthermore, in

[110], by efficiently handling different scales and transferring computation from test

time to training time, the authors presented a new detector based on ICF which is

capable of processing images at over 100 fps.

DPM is an object detection algorithm based on mixtures of multi-scale deformable

part models. The algorithm, described in [99], is capable of training with partially

labelled data and is particularly useful for representing highly variable objects such

as pedestrians. The parts based model involves linear filters that are applied to

dense feature maps. Feature maps are derived from a variation of the HOG feature.

Maps are computed at different scales using a feature pyramid, which is computed by

repeated smoothing and sub-sampling of the image. The DPM algorithm achieved

very accurate results in the PASCAL object detection challenges [111].

3.4 HOG-based Image Quality Assessment

As indicated in chapter 2, the HVS does not always perceive image degradations

that impact the performance of pedestrian detection. It follows that current per-

ceptual IQA algorithms, which correlate closely with human perception, may not be

reliable indicators of machine vision performance, which motivates the development

of specific IQA algorithms that correlate with pedestrian detection performance. This

problem is addressed here. The choice of feature used in the proposed IQA algorithm

is motivated by examining some characteristic behaviour of pedestrian detection per-

formance on degraded images.
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In general, even a modest amount of AWGN has a significant effect on the per-

formance of detection algorithms. For example, in Figure 3.2, all four pedestrians

were detected in the reference image. A failure to detect two pedestrians occurred in

the noisy images at PSNR levels of over 30dB (Figure 3.2(b)). Such levels of noise

are common in automotive image systems, particularly in low light conditions. On

the other hand, the introduction of blocking and ringing artifacts, characteristic of

JPEG and JP2 compression algorithms respectively, typically caused an increase in

false positives, therefore reducing the precision of the detection algorithm (see Fig-

ure 3.2(c)) though without necessarily reducing the true positive rate. Figure 3.2(d)

shows an example where the image has been corrupted by AWGN and subsequently

compressed with JPEG compression.

Since HOG features and their various generalizations are widely used in pedes-

trian detection algorithms, examining the HOG vectors of both reference and dis-

torted images can provide a rich set of statistics for image quality evaluation. Figure

3.3 illustrates the HOG vectors extracted from two sample corrupted images (3.3(c),

3.3(d)) and from their corresponding reference image (3.3(b)). The outlines of both

pedestrians can be seen quite clearly in the oriented histograms extracted from the

reference image and in this case resulted in two correct detections with no false posi-

tives. The features extracted from the compressed image clearly show a significant loss

in gradient information, but due to the quantization process in JPEG compression,

the majority of information loss occurs at high spatial frequencies, which typically

represent texture. In this example the majority of loss has occurred on the road

and the woman’s coat, however the outline of both pedestrians can still be easily
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(a) (b)

(c) (d)

Figure 3.2: A typical example of algorithm performance (HOG+SVM) on AWGN

corrupted (b) JPEG compressed (c) and both noise corrupted and compressed (d)

images.
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discerned. This particular example resulted in correct classification of both pedes-

trians without any false positives. However, in general detection performance tends

to deteriorate rapidly at compression ratios over 30:1. This level of compression is

common in automotive vision systems, hence balancing the need to compress images

with maintaining sufficient quality for machine vision performance is a challenging

design problem. The addition of AWGN to the image degrades the extracted features

and makes it difficult to determine image structure (Figure 3.3(c)). In this example,

neither pedestrian was correctly detected by the detection algorithm.

The individual histogram cells are examined in more detail in Figure 3.4, where

a histogram derived from the reference image is shown in 3.4(a). The orientation of

the edge is clearly discernible. A close-up view of a single noise degraded histogram

cell is shown in Figure 3.4(b). The addition of AWGN leads to a loss of gradient

information. Notice that the noise corrupted histogram allocates an almost equal

weight to each oriented gradient, making it difficult to discern image edges. This loss

of edge information explains the poor performance of the detection algorithm on noise

degraded images and also explains why the presence of noise does not contribute to

an increase in false positives. On the other hand, reference and corresponding JPEG

compressed histogram cells are shown in Figures 3.4(c) and 3.4(d), respectively. Note

that the loss of high frequency components in the compressed image leads to a “non-

edge” (3.4(c)) being incorrectly classified as an edge. This behaviour explains the

increase in the algorithm’s false positives as compression rates increase.
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(a) (b)

(c) (d)

Figure 3.3: HOG vectors associated with (b), an uncompressed; (c), JPEG

compressed (with CR=33:1); and (d), AWGN-corrupted (with mean=0 and

variance=10−2) version of a reference frame (a).
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(a) (b)

(c) (d)

Figure 3.4: HOG vectors associated with (a) a reference “edge”; (b) an AWGN cor-

rupted version of the same reference edge; (c) a reference “non-edge” and (d) a com-

pressed version of (c). The HOGs were computed at a single scale using 8 × 8 pixel

cells.
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Since the extracted HOG features typically contain the most pertinent structural

information in a scene, they have the largest impact on pedestrian detection perfor-

mance. Changes in gradient information therefore directly influence the final classi-

fication result, as outlined in the preceding discussion. Given that the HOG features

represent the most relevant information for pedestrian detection, it is hypothesised

that an objective metric that captures the error between reference and degraded HOG

features will accurately predict the performance of pedestrian detection algorithms

on images of varying quality. To investigate this hypothesis, the Mean Squared Error

(MSE) is computed between reference and degraded HOG vectors.

There are a number of reasons why the MSE is a good choice for representing the

error between both vectors. Apart from being computationally inexpensive it is also

a convenient metric for optimization problems since it is differentiable and symmet-

ric. Minimum-MSE problems are generally easy to formulate since the gradient and

Hessian matrix of the MSE are easy to compute [30]. In fact, it is often the case that

minimum-MSE problems have closed form analytical solutions.

3.4.1 Algorithm Details

The HOG feature is extracted by dividing the image into multiple overlapping

blocks of the same size and quantizing the gradient direction of all pixels into 9

orientations. In this analysis, each block is an 8 × 8 image patch that has 50%

overlap with its neighbours. The Matlab code used to extract the HOG vectors is

available as part of Piotr’s Image and Video Matlab toolbox [112]. The HOG vectors

were extracted at a single scale to minimize computational complexity, with default
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parameters as listed in appendix A. The proposed IQA algorithm is termed the HOG

Mean Squared Error (HMSE) and is defined as follows:

consider two discrete HOG vectors 𝑥 = {𝑥𝑖|𝑖 = 1, 2, . . . , 𝑁} and 𝑦 = {𝑦𝑖|𝑖 =

1, 2, . . . , 𝑁}, where 𝑁 is the number of entries in each vector, and 𝑥𝑖 and 𝑦𝑖 are the

gradient magnitudes of the 𝑖𝑡ℎ entry in vectors 𝑥 and 𝑦 respectively. Then HMSE is

given by:

𝐻𝑀𝑆𝐸 =
1

𝑁

𝑁∑︁
𝑖=1

(𝑥𝑖 − 𝑦𝑖)
2 (3.1)

3.5 Experimental Results

3.5.1 Database Creation

In order to evaluate the proposed metric against existing IQA algorithms a database

of distorted images was created. The approach used was to consider the effects of

3 different types of degradation on commonly used pedestrian detection algorithms.

There are a number of pedestrian detection databases freely available for use by the

research community, for example [113] and [114]. In this work, both the Penn-Fudan

database for pedestrian detection and segmentation [115] and the set of test images

provided in the Institut National de Recherche en Informatique et en Automatique

(INRIA) database [85] were used as the reference data sets. The Penn-Fudan database

consists of scenes taken around a college campus and on urban streets. The primary

reference (undistorted data) set consists of 173 images, each of which contains at least

one pedestrian. The entire set of positive test images from the INRIA data set further

complement the undistorted data set. The INRIA test data set consists of 288 images
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consisting of many scenes with multiple pedestrians and includes challenging exam-

ples of pedestrians partly hidden from view either by other pedestrians or vehicles.

Furthermore, the data set includes a wide range of environmental lighting conditions

including pedestrians standing in dark shadow or bright sunlight. The combined ref-

erence set thus contains a total of 461 images in which there are approximately 1,000

annotated pedestrians, including a variety of conditions, however, the reference set

does not include images taken in rain, fog or any other extreme weather conditions.

Such data sets are not readily available. In any case, the purpose of this experiment

was to determine the effect of degradations introduced by the image acquisition and

in-vehicle transmission system rather than environmental distortions on the perfor-

mance of pedestrian detection algorithms, i.e. any artifact that distorts the displayed

image from that of the ideal or “natural image”, that, for example, the driver can see

through his or her window.

The types of image degradation that are most prevalent in automotive images are

compression artifacts and noise [11, 13]. For each of the three degradations in the

experiment, a model with only one variable parameter was used in order to simplify

control of the degradation level. Forty values for the variable parameter in each

model were chosen to ensure that the data set of degraded images contained a wide

distribution of quality levels with reasonable granularity. A similar approach has been

utilized in a number of image quality databases including [116] and [117]

Motion JPEG is currently one of the most popular methods of compression for

real-time automotive video [118], however JPEG compressed images are known to ex-

hibit blocking artifacts [119]. Blocking artifacts are common to all block-DCT based
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image compression techniques. In JPEG compression the discrete cosine transform is

typically performed on 8 × 8 pixel blocks in each image frame and the coefficients in

each block are quantized separately [120]. This is done by simply dividing each com-

ponent in the frequency domain by a constant for that component, and then rounding

to the nearest integer. The JPEG standard [121] specifies the 8x8 quantization matrix

used at the quantization stage. The rounding operation is the main lossy operation

in the compression process, assuming the DCT computation is performed with suf-

ficiently high precision. As a result, it is typically the case that many of the higher

frequency components are rounded to zero, while lower frequency components tend to

become small positive or negative numbers, which take fewer bits to represent. The

quantization process, however, can result in artificial horizontal and vertical borders

between each block. Blocking artifacts can also be caused by transmission errors,

which can affect entire regions of blocks in an image. Forty sets of JPEG compressed

images were created by applying different CRs to the reference set. Adapting the

level of compression in the model was achieved by weighting the quantization matrix

by a quality factor Q, where Q = 100 represents the lowest rate of compression (and,

hence highest visual quality), and Q = 0 represents the highest rate of compression

(and hence lowest visual quality).

Although JPEG compression is the current industry standard, a more recent com-

pression algorithm is the JPEG2000 (JP2) standard. It is therefore of interest to

compare the performance of both compression algorithms. An image distortion found

more prevalently in JP2 compression is ringing [72]. Ringing is caused by the quan-

tization of high frequency coefficients in transform coding and is characterized by
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ripples around sharp edges. An example of this phenomenon was shown in Figure

1.2. Forty CRs were applied to the reference set to create sets of JP2 compressed

images.

Sensor noise is a further distortion that can affect automotive image quality. Forty

sets of noise corrupted images were created by applying AWGN to the reference im-

ages; an example can be seen in Figure 1.1. The variance of the noise was altered

in order to create different noise levels, with higher variance corresponding to higher

levels of AWGN. Overall, this process produced 120 sets of the reference data set

consisting of varying levels of the three distortion types. An identical distortion

parameter was applied to all images in any particular set. The complete data set

therefore consists of over 55,000 images in which there are a total of over 120,000

annotated pedestrians under varying levels of distortion. The specific quality param-

eters used for each distortion type are detailed in appendix A. Matlab scripts for

generating these images are included in appendix B.

3.5.2 Evaluating Detector Performance

The performance of three pedestrian detection algorithms, namely HOG+SVM

[85], DPM [99] and ICF [86] were evaluated on the data set of degraded images. The

default parameters for each algorithm were used and each detector was trained on the

INRIA training set. Details of the default parameters for each algorithm are described

in appendix A. The method described by the Pattern Analysis, Statistical Modelling

and Computational Learning (PASCAL) visual objects classes challenge [111] was

followed to evaluate correct detection. A detection is considered to be correct if the
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area of overlap a between the predicted bounding box 𝐵𝑝 and ground truth bounding

box 𝐵𝑡 exceeds 0.5, as calculated by the formula:

𝑎 =
𝑎𝑟𝑒𝑎(𝐵𝑝 ∩𝐵𝑡)

𝑎𝑟𝑒𝑎(𝐵𝑝 ∪𝐵𝑡)
(3.2)

The precision recall curve was then computed for the reference set and all sets of

degraded images, where recall is defined as the number of true positives divided by

the total number of pedestrians, and precision is the number of true positives divided

by the total number of classifications returned by the algorithm (i.e. the number of

true positives added to the number of false positives).

The Average Precision (AP) [122] is a useful metric for performance evaluation

since it represents algorithm performance by a single value which reflects the shape

of the precision-recall curve. AP is calculated by ranking the test set by classifier

score, computing the precision at each rank and then averaging the result. In Fig-

ures 3.5-3.7 the ICF detection algorithm’s performance for each distortion type is

displayed. A higher area under the precision-recall curves represents higher detection

performance. Figure 3.5(a) illustrates the precision recall curves for various levels of

AWGN degraded reference sets. Figures 3.6(a) and 3.7(a) show the precision-recall

curves for different CRs of JPEG and JP2 compression respectively, where CR is de-

fined as the ratio between the uncompressed and compressed image sizes. Very similar

results were found for both HOG+SVM and DPM detection algorithms. Pearson’s

Linear Correlation Coefficients (PLCCs) of algorithm performance (measured in AP)

against degradation levels for all three algorithms are displayed in Table 3.2.

Interestingly, different distortions have very different effects on the performance

of the pedestrian detection algorithm. The presence of AWGN in an image severely
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Table 3.2: PLCC of Algorithm Performance Against Degradation

AWGN JPEG JP2

HOG+SVM 0.8216 0.6309 0.2314
ICF 0.7576 0.5410 0.1922

DPM 0.7913 0.6295 0.1791

impacts the recall of the detection algorithm. From Figure 3.5(b) it can be observed

that a significant reduction in AP occurs between variance values of 10−3 and 10−2.

These values correspond to PSNR scores of approximately 30 and 27dBs respectively.

Furthermore, for a large range of variances, the AP decreases linearly with increased

AWGN. This result is evident from the high correlation between AWGN corruption

and detection performance for all detection algorithms, however the same is not true

of either JPEG or JP2 compression, both of which have well-defined knee points in

the AP-CR curves. It can be seen from Figures 3.6(b) and 3.7(b) that high levels of

compression can be achieved with little reduction in detection performance. It is also

evident that blocking artifacts introduced by JPEG compression have a more seri-

ous impact on pedestrian classification than the ringing artifacts introduced by JP2

compression, affecting algorithm performance at much lower levels of compression.
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(a)

(b)

Figure 3.5: The precision recall curves for AWGN at different noise levels are shown

in (a). In (b) the relationship between noise variance and average precision is shown.
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(a)

(b)

Figure 3.6: The precision recall curves for levels of JPEG compression at different CRs

are shown in (a). In (b) the correlation between compression and average precision

is shown.
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(a)

(b)

Figure 3.7: The precision recall curves for levels of JP2 compression are shown in (a).

In (b) the correlation between compression and average precision is shown.
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3.5.3 Influence of Algorithm Retraining

Apart from choice of features, algorithm training is a significant factor affect-

ing overall detection performance [123]. The influence of classifier retraining on the

performance of all three detection algorithms was investigated. Each algorithm was

retrained multiple times on varying quality versions of the INRIA training set [85] in

order to assess the effect of training on overall detection performance. Details of the

training sets used are contained in appendix A. Only the results for the ICF algorithm

are presented and analysed in detail here as the behaviour for the other two detection

algorithms was quite similar.

To compare detectors, miss rates were plotted against False Positives Per Image

(FPPI) using log-log plots. This method was chosen instead of precision-recall curves

since there is typically an upper limit on the acceptable FPPI rate for pedestrian

detection in automotive applications. Detector performance is summarized using

the Log-Average Miss Rate (LAMR), as used in [87]. The LAMR is computed by

averaging the miss rates at 9 evenly spaced points (on a logarithmic scale) from 10−2

to 100 FPPI. Conceptually, the LAMR is similar to the average precision reported for

the PASCAL challenge [111], since it represents the entire curve by a single reference

value. As curves are somewhat linear in this range (e.g., see Fig. 3.8), the LAMR

is similar to the miss rate at 10−1 FPPI, but in general gives a more stable and

informative assessment of performance.

The results for the ICF detection algorithm are shown in Figures 3.8 - 3.12 where

lower curves represent lower FPPI and hence better detection performance. Training

the algorithm on the undistorted INRIA training data set provides optimal perfor-
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Figure 3.8: INRIA trained detector performance on varying levels of AWGN degra-

dation.

mance on the reference set with a LAMR of 15.73%, however this classifier is not

robust to image degradations such as AWGN or compression artifacts, as shown in

Figures 3.8 and 3.9.

Notice that the LAMRs increase significantly when degradations are added to

the images. On the other hand, training the classifier exclusively with poor quality

samples leads to the greatest reduction in miss rate for poor quality images.

Figure 3.10(a) illustrates the detection performance of the ICF detection algorithm

trained on low quality AWGN samples, on the AWGN data set. Not surprisingly, the

detection performance of this classifier on poor quality AWGN images is superior to

the reference-trained classifier, reducing LAMRs by over 30% in the case of images

corrupted with the highest levels of AWGN (variance 1 × 10−1).
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(a)

(b)

Figure 3.9: INRIA trained ICF detector performance on JPEG (a) and JP2 (b)

compressed images.
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Figure 3.10: AWGN trained ICF detector performance on varying levels of AWGN

degradation.

Improvements on heavily compressed images can also be achieved by training with

similarly compressed images. For example, in Figure 3.11 the LAMR on the highest

level of JPEG compressed images (CR:60:1) is reduced by over 10% compared with

the reference-trained classifier.

Unfortunately, these improvements come at a high cost to detection performance

on higher quality images, increasing LAMRs on the reference set by 16% and 23% for

AWGN and JPEG trained classifiers respectively. In Figure 3.12 the detection results

of classifiers trained using different paradigms, and tested on the entire data set are

shown. The experiments reveal that a wide range of image quality in the training set

optimizes algorithm performance across the entire test data set. Classifiers trained

with multiple levels of quality outperform the reference, AWGN and compression-
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Figure 3.11: JPEG trained ICF detector performance on varying levels of JPEG

compression.

trained classifiers, reducing LAMRs on the entire database by over 3%. Similar

performance improvements were found for both the HOG+SVM and DPM algorithms.

For the remainder of the experiments in this chapter, detection classifiers trained with

multiple levels of quality are used, since they offer the best detection performance on

the entire data set.
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Figure 3.12: Performance of classifiers trained in different ways. Training the ICF de-

tector with different levels of image quality influences detection performance. Optimal

performance was achieved on the data set by including a wide variety of degradations

in the training set.

3.5.4 Proposed IQA Algorithm Performance

The performance of the proposed HMSE metric was evaluated against eight ex-

isting IQA metrics described in Chapter 2. For each metric and each distortion type,

the relevant images were sorted into bins based on their metric score. For example,

since SSIM returns a score between zero and one, images were separated into 100

bins of width 0.01. In practice, not all bins contained images since an SSIM score

of below 0.2 was not achievable even in the presence of extreme distortion; however

the size of the database ensured that at least 60 consecutive bins contained a min-

imum of 100 images in all of the tests, in order to maximise coverage. In order to
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evaluate IQA algorithm performance, the AP and average IQA score for each bin

was computed. Optimally trained HOG+SVM, DPM and ICF classifiers were used

to assess detection performance. PLCC was then computed between IQA scores and

detection performance for each algorithm in order to determine the strength of each

IQA algorithm as a predictor of detection performance.

Table 3.3: PLCC of HOG+SVM Detection Performance Against Metric Scores

PSNR SSIM VSNR VIF NQM SR-SIM IWSSIM FSIM HMSE

JPEG 0.8107 0.8491 0.8214 0.8301 0.8255 0.8796 0.8817 0.9017 0.9343
JP2 0.5321 0.5487 0.5614 0.5118 0.6501 0.6372 0.5518 0.6054 0.8213

AWGN 0.9218 0.9497 0.9472 0.9443 0.9681 0.9600 0.9732 0.9828 0.9806
ALL 0.8721 0.8973 0.8802 0.8514 0.9187 0.9302 0.9217 0.9489 0.9659

Table 3.4: PLCC of DPM Detection Performance Against Metric Scores

PSNR SSIM VSNR VIF NQM SR-SIM IWSSIM FSIM HMSE

JPEG 0.8018 0.8517 0.8661 0.9016 0.9238 0.9234 0.9185 0.9012 0.9436
JP2 0.4011 0.4784 0.4318 0.4819 0.6318 0.7063 0.5527 0.5233 0.8501

AWGN 0.8710 0.9220 0.8911 0.9155 0.9737 0.9584 0.9673 0.9611 0.9617
ALL 0.8344 0.8986 0.8761 0.8902 0.9317 0.9440 0.9138 0.9254 0.9632

Table 3.5: PLCC of ICF Detection Performance Against Metric Scores

PSNR SSIM VSNR VIF NQM SR-SIM IWSSIM FSIM HMSE

JPEG 0.6348 0.7571 0.7071 0.7272 0.8316 0.8338 0.8417 0.8222 0.9007
JP2 0.4329 0.4704 0.4881 0.4911 0.5675 0.7536 0.5017 0.5265 0.8649

AWGN 0.8316 0.9350 0.8851 0.8598 0.9754 0.9650 0.9812 0.9767 0.9692
ALL 0.6912 0.9042 0.7810 0.7581 0.9112 0.9442 0.9628 0.9601 0.9788

The results, shown in Figure 3.13, and summarized in Tables 3.3 to 3.5 illustrate

the strong correlation between HMSE and pedestrian detection performance across all

types of image degradations in the data set. Over the entire data set, HMSE achieves
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a PLCC of over 0.96 for all pedestrian detection algorithms. On the subsets of the

data set corresponding to different distortions, the HMSE metric correlates best with

AWGN distortion, again achieving PLCCs of over 0.96 for all detection algorithms. In

general, AWGN is the “easiest” distortion to predict, with all IQA algorithms achiev-

ing high correlation with detection performance. Predicting algorithm performance

on JPEG and JP2 compressed images is more difficult, particularly for JP2 com-

pression. Most of the IQA algorithms achieved only weak correlation with detection

performance in this case. This is largely due to the fact that ringing artifacts, which

can cause false positives in detection, often occur at frequencies that are difficult for a

human viewer to perceive. Many common IQA algorithms may deliberately disregard

such distortions as part of their HVS model.

Despite these challenges, some of the recent IQA algorithms, particularly SR-

SIM correlate well with detection performance. This is likely because SR-SIM deter-

mines quality by measuring the difference between the reference and degraded images’

saliency maps. In SR-SIM the saliency maps are derived from gradient images ex-

tracted from the test images. Changes to low-level features will hence change the

derived saliency maps and increase the “distance” between reference and degraded

images.
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(a) (b)

(c) (d)

Figure 3.13: The correlation of HMSE with ICF detection performance for the entire

data set (a), the subset of AWGN corrupted images (b), and for JPEG (c), and JP2

(d) compressed subsets of the data set.
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3.5.5 Statistical Significance

In Tables 3.3 to 3.5 the correlation coefficients of HMSE and eight other IQA algo-

rithms were presented. Although the HMSE metric generally has higher correlation

with algorithm performance than other metrics, this deserves further consideration.

In this section, the statistical significance of these differences in correlation is exam-

ined. Given two correlation coefficients and their associated sample sizes, the Fisher

test [124] determines whether the two coefficients are statistically different from each

other. The correlation coefficients computed for each detection algorithm were ana-

lyzed for significance at the 95% confidence level. The results are tabulated in Tables

3.6 to 3.8 in a presentation style similar to [77]. Each row/column entry consists of

four symbols, which represent the entire, AWGN, JPEG, and JP2 data sets, respec-

tively. A one indicates the row IQA algorithm is statistically superior to the column

IQA algorithm. A dash (-) indicates statistical equivalence, while a zero indicates

that the row algorithm is statistically inferior to the column algorithm. The concen-

tration of “1”s in the first row (for HMSE) indicates that the prediction performance

of HMSE is statistically better than many of the other algorithms tested. For exam-

ple, on the entire data set, HMSE is statistically better than all other algorithms for

ICF performance prediction, and statistically better than seven of eight algorithms

for both DPM and HOG+SVM performance prediction.



Chapter 3: Full Reference Image Quality Assessment for Pedestrian Detection 76

Table 3.6: HOG+SVM: Statistical Significance Matrix

All/AWGN/JPEG/JP2 HMSE IWSSIM FSIM SR-SIM SSIM NQM VIF VSNR PSNR

HMSE - 1/-/1/1 -/-/-/1 1/1/1/1 1/1/1/1 1/-/1/1 1/1/1/1 1/1/1/1 1/1/1/1
IWSSIM 0/-/0/0 - -/0/-/- -/-/-/- -/1/-/- -/-/-/- 1/1/-/- -/1/-/- -/1/-/-
FSIM -/-/-/0 -/-/-/- - -/1/-/- 1/1/-/- -/-/1/- 1/1/1/- -11/1/- 1/1/1/-
SR-SIM 0/0/0/0 -/-/-/- -/0/-/- - -/-/-/- -/-/-/- 1/-/-/- 1/-/-/- 1/1/-/-
SSIM 0/0/0/0 -/0/-/- 0/0/-/- -/-/-/- - -/-/-/- -/-/-/- -/-/-/- -/-/-/-
NQM 0/-/0/0 -/-/-/- -/-/0/- -/-/-/- -/-/-/- - 1/1/-/- -/-/-/- -/1/-/-
VIF 0/0/0/0 0/0/-/- 0/0/0/- 0/-/-/- -/-/-/- 0/0/-/- - -/-/-/- -/-/-/-
VSNR 0/0/0/0 -/0/-/- 0/0/0/- 0/-/-/- -/-/-/- -/-/-/- -/-/-/- - -/-/-/-
PSNR 0/0/0/0 -/0/-/- 0/0/0/- 0/0/-/- -/-/-/- -/0/-/- -/-/-/- -/-/-/- -

Table 3.7: DPM: Statistical Significance Matrix

All/AWGN/JPEG/JP2 HMSE IWSSIM FSIM SR-SIM SSIM NQM VIF VSNR PSNR

HMSE - 1/-/-/1 1/-/1/1 -/-/-/1 1/1/1/1 1/-/-/1 1/1/1/1 1/1/1/1 1/1/1/1
IWSSIM 0/-/-/0 - -/-/-/- -/-/-/- -/1/1/- -/-/-/- -/1/-/- -/1/-/- 1/1/1/-
FSIM 0/-/0/0 -/-/-/- - -/-/-/0 -/1/-/- -/-/-/- -/1/-/- -/1/-/- 1/1/1/-
SR-SIM -/-/-/0 -/-/-/- -/-/-/1 - 1/1/1/1 -/-/-/- 1/1/-/- 1/1/1/1 1/1/1/1
SSIM 0/0/0/0 -/0/0/- -/0/-/- 0/0/0/0 - -/0/0/- -/-/-/1 -/-/1/- -/-/-/-
NQM 0/-/-/0 -/-/-/- -/-/-/- -/-/-/- -/1/1/- - -/1/-/- 1/1/1/1 1/1/1/1
VIF 0/0/0/0 -/0/-/- -/0/-/- 0/0/-/0 -/-/-/- -/0/-/- - -/-/-/- -/-/1/-
VSNR 0/0/0/0 -/0/-/- -/0/-/- 0/0/0/0 -/-/-/- 0/0/0/0 -/-/-/- - -/-/-/-
PSNR 0/0/0/0 0/0/0/- 0/0/0/- 0/0/0/0 -/-/-/- 0/0/0/0 -/-/0/- -/-/-/- -

Table 3.8: ICF: Statistical Significance Matrix

All/AWGN/JPEG/JP2 HMSE IWSSIM FSIM SR-SIM SSIM NQM VIF VSNR PSNR

HMSE - 1/-/-/1 1/-/1/1 1/-/-/1 1/1/1/1 1/-/1/1 1/1/1/1 1/1/1/1 1/1/1/1
IWSSIM 0/-/-/0 - -/-/-/- -/1/-/0 1/1/-/- 1/-/-/- 1/1/1/- 1/1/1/- 1/1/1/-
FSIM 0/-/0/0 -/-/-/- - -/-/-/0 1/1/-/- 1/-/-/- 1/1/-/- 1/1/1/1- 1/1/1/-
SR-SIM 0/-/-/0 -/0/-/1 -/-/-/1 - 1/1/-/1 1/-/-/1 1/1/-/1 1/1/1/1 1/1/1/1
SSIM 0/0/0/0 0/0/-/- 0/0/-/-/ 0/0/-/0 - -/0/-/- 1/1/-/- 1/1/-/- 1/1/-/-
NQM 0/-/0/0 0/-/-/- 0/-/-/- -/-/-/0 -/1/-/- - 1/1/-/- 1/1/1/- 1/1/1/-
VIF 0/0/0/0 0/0/0/- 0/0/-/- 0/0/-/0 0/0/-/- 0/0/-/- - -/-/-/- -/-/-/-
VSNR 0/0/0/0 0/0/0/- 0/0/0/- 0/0/0/0 0/0/-/- 0/0/0/- -/-/-/- - -/-/-/-
PSNR 0/0/0/0 0/0/0/- 0/0/0/- 0/0/0/0 0/0/-/- 0/0/0/- -/-/-/- -/-/-/- -
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3.5.6 Computational Complexity

In Table 3.9 the computational complexity of each of the IQA algorithms is eval-

uated. The time to compute the quality score of a typical test image of resolution

375 × 512 pixels on a 3.3GHz PC with 8GB of RAM operating on a single core is

reported. Unoptimized Matlab R○ code was used for all algorithms to ensure a fair

comparison. Notwithstanding the use of unoptimized code, it can be seen that HMSE

has low computational complexity, ranking second of all algorithms tested with re-

spect to running speed. Only PSNR offers lower computational complexity, however

HMSE achieves statistically better performance prediction than PSNR for all detec-

tion algorithms in this experiment. Furthermore, the computation time reported for

HMSE includes extraction of the HOG features. In current automotive vision systems,

the HOG feature may already be computed for detection algorithms. HMSE could

potentially be incorporated into such systems with little additional computational

cost.

Table 3.9: Complexity Analysis of HMSE

Algorithm Time(seconds)

PSNR 0.01
HMSE 0.03
SR-SIM 0.06
SSIM 0.12

MSSIM 0.18
NQM 0.46
VSNR 0.50

IWSSIM 0.67
IFC 1.14
VIF 1.15
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3.6 Discussion and Conclusions

A study on the influence of image artifacts on pedestrian detection performance

was carried out in this chapter. A particularly interesting result is that different

image artifacts have very different effects on the performance of image processing

algorithms. This is due to the fact that different types of degradation influence low-

level image features in characteristic ways, which in turn can impact the performance

of higher level machine vision algorithms such as pedestrian detection that make use

of particular features. Degradation in detection performance responded linearly with

increased AWGN, however for compression, knee points in algorithm performance

were found for both JPEG and JP2 compression algorithms; detection performance

was maintained at a reasonably good level until CR exceeded a certain value. These

results have applications in the system design stage as they could be used to optimize

image capture parameters for machine vision performance. The results also highlight

the impact of different compression algorithms on detection performance. For all

three pedestrian detection algorithms tested, it was found that JPEG compression

had a larger impact on detection performance than JP2 compression for similar CRs.

This is perhaps not a surprising result since JP2 compression is a more sophisticated

and recent algorithm than JPEG compression. Nevertheless, the difference between

the algorithms is significant, with JP2 facilitating compression ratios an order of

magnitude higher than JPEG without significantly impacting detection performance.

It has been demonstrated that preservation of low level image features is critical in

order to ensure robust performance of pedestrian detection algorithms.

Finally, a new IQA algorithm for performance prediction of pedestrian detection
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algorithms has been proposed. The proposed metric, HMSE, utilizes low level image

gradients to capture the structural information inherent in a scene. Although rela-

tively simple and computationally inexpensive, the metric correlates closely with algo-

rithm performance across a range of different image degradations which are typically

found in automotive vision systems. For the particular task of performance predic-

tion of pedestrian detection algorithms, the metric statistically outperforms current

state-of-the-art perceptual quality metrics such as SSIM, IWSSIM and FSIM.

Like many other algorithms, a disadvantage of HMSE is the need for a reference

image, which limits the applications of the proposed quality metric to system de-

sign and experimental performance evaluation. In the next chapter NR approaches

to pedestrian detection performance evaluation are discussed and a framework for

optimizing detection classification on degraded video sequences is proposed.



Chapter 4

Performance Optimization using

Natural Scene Statistics

4.1 Introduction

The previous chapter examined the effect of different degradations on pedestrian

detection performance, and established some basic results relating to the relationship

between image quality and detection performance. A new full-reference IQA metric

for predicting pedestrian detection performance was also proposed. In this chapter,

a much larger data set of automotive images and video sequences is created. It is

further verified that different transmission induced quality degradations affect the

performance of a pedestrian detection classifier, based on Integral Channel Features

[86, 125], in characteristic ways. Furthermore, the effect of classifier retraining on

improving the robustness of the detection algorithm to image quality degradations is

examined in more detail. Then, a novel detection framework which utilizes NR image

80
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quality statistics, based on [81], to categorise distorted frames and enhance the per-

formance of the detection algorithm through the use of multiple “distortion specific”

classifiers is introduced. NR image quality assessment and distortion classification are

combined with a multi-classifier approach to pedestrian detection in order to increase

detection performance on degraded images. To ensure robust detection performance,

the same setup as used for the best results in the original ICF paper [86], in which

learning is achieved via discrete Adaboost, is used throughout this chapter. The out-

come of this work opens up the possibility for development of a higher performing

pedestrian detection system, suitable for real-time detection, where NR image quality

is used to categorise the level of distortion and an appropriate classifier to maximise

performance for distortion level is chosen accordingly.

4.2 Multi-classifier Detection Framework

4.2.1 Database Creation

The majority of the experiments were performed on the INRIA [85] and Caltech

[87, 126] data sets; however, in order to further demonstrate the performance of the

proposed algorithm, it was also evaluated on real distortions using the pedestrian

subset of the ChangeDetection (CD) 2014 data set [127].

The INRIA data set described in Chapter 3 consists of a total of 1805 pedestrians

from a varied set of images. It is available at http://pascal.inrialpes.fr/data/

human/, along with annotation files to download for research purposes. The more

recent Caltech pedestrian detection benchmark consists of approximately 10 hours of
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640 × 480 30 fps video taken from a vehicle driving through regular traffic in an ur-

ban environment. The Caltech data set is much larger than the INRIA data set as it

consists of 350,000 labelled pedestrian bounding boxes in 250,000 frames. The pedes-

trians vary widely in appearance, pose and scale, thus the images collected are more

representative of real world applications and allow for in-depth analysis of existing

algorithms. The Caltech dataset and annotation files can be downloaded from http:

//www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/. Images are

stored in SEQ files. A SEQ file is a series of concatenated image frames with a fixed

size and header. It is is essentially the same as merging a directory of images into a sin-

gle file. SEQ files are convenient for storing videos because no video codec is required,

seeking is instant and exact, and SEQ files can be read on any operating system. The

main drawback is that each frame is encoded independently, resulting in increased

file size. Currently, either uncompressed, JPEG or PNG compressed frames are sup-

ported. The Caltech dataset is provided in uncompressed format and Matlab routines

for reading/writing/manipulating SEQ files can be found in Piotr’s Matlab Toolbox

(version 3.20 or later) available here: https://github.com/pdollar/toolbox. The

toolbox also includes routines for reading annotations.

The CD 2014 pedestrian detection data set contains 10 videos of pedestrians taken

with different cameras ranging from low-resolution Internet Protocol (IP) cameras to

mid-resolution camcorders. Due to the different lighting conditions and compression

settings in each video, the CD videos have varying levels of compression artifacts and

noise.

As in Chapter 3, video frames from both the INRIA and Caltech data sets were
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(a) (b) (c)

Figure 4.1: Sample images from the test data set. A reference “RAW” image is shown

in (a). “Blocking artifacts” caused by JPEG compression are evident on the side of

the blue van in (b). AWGN, which can be introduced during image capture, also

degrades the quality of the reference image, as illustrated in (c).

randomly separated into non-overlapping training (80%) and testing (20%) data sets

before both JPEG compressed and AWGN degraded versions of each set were cre-

ated. The original RAW versions of each data set were considered to be of ideal

image quality, since they contained no apparent degradations introduced by either

compression or noise artifacts. Twelve values were chosen for the variable parameter

in each model to ensure that the new data set of degraded images contained a wide

distribution of quality levels.

The same procedure as in Chapter 3 was used to add degradations to each image.

Twelve batches of JPEG compressed images were created by sampling Q on a log

scale as follows: Q = {60, 50, 30, 24, 19, 15, 12, 8, 6, 5, 4, 1}. The resulting batches

had average compression ratios of {13, 15, 20, 23, 27, 31, 34, 42, 46, 51, 57 and 65}

respectively. These values of Q were chosen to represent a wide range of subjective

quality levels. Similar values have been chosen in other well-known image quality



Chapter 4: Performance Optimization using Natural Scene Statistics 84

databases such as [116, 117, 16], however these databases use only 4-5 distortion

levels. The database used in this research therefore provides a more diverse set of

quality levels than in the current literature. The twelve levels of JPEG distortion are

henceforth referred to as 𝐽𝑃𝐸𝐺1 to 𝐽𝑃𝐸𝐺12.

Both charge coupled device (CCD) and complementary metal oxide semiconductor

(CMOS) technologies introduce sensor noise at image capture [128]. Typically, AWGN

is used to model this image degradation. A database of noise corrupted images

was created, wherein AWGN was added synthetically to the reference images. The

variance of the noise was set to values from the following set: 𝜎2 = {5× 10−5, 0.0006,

0.0015, 0.003, 0.006, 0.009, 0.014, 0.025, 0.045, 0.085, 0.2, 0.3}. Again, these values

were chosen to represent a wide range of quality levels, and are consistent with the

levels used in [116, 117, 16]. The twelve levels of AWGN are henceforth referred to

as 𝐴𝑊𝐺𝑁1 to 𝐴𝑊𝐺𝑁12. Examples of each distortion are illustrated in Figure 4.1.

These processes produced over 100,000 distorted images where a known distortion

parameter was applied to each image. The complete data set therefore consists of over

200,000 annotated pedestrians with twelve levels for each type of image degradation.

4.2.2 Natural Scene Statistics

One of the established fundamental statistical properties of natural images is that

two neighbouring pixels are correlated [74]. This can be easily demonstrated by a

scatter plot of the grayscale values of neighbouring pixels sampled from RAW images

from the database, which show a particular pattern as illustrated in Fig 4.2(a). Notice

that distortions such as JPEG compression (4.2(b)) and AWGN (Fig. 4.2.c) alter the
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(a) (b) (c)

Figure 4.2: Scatter plots of the grayscale values of neighbouring pixels are shown for

RAW (a), JPEG compressed (b), and AWGN corrupted (c) images. The values have

been scaled so that the mean is zero and variance one.

characteristic correlations of neighbouring pixels from that of their corresponding

RAW images. These characteristic deviations in scene statistics provide us with

information about the “naturalness” of the test image; such statistics derived from

images are often referred to as natural scene statistics (NSS). Figure 4.3 shows a cross

section of the correlation coefficients (with DC component removed) of a pixel with

all neighbour pixels for a RAW, JPEG compressed and AWGN corrupted image from

the data set. For RAW images, the coefficients are well modelled by a Laplacian

distribution, however it is evident that each distortion affects the distribution in a

characteristic way. For example, the addition of AWGN significantly decreases the

correlation of neighbouring pixel values, while image compression removes some of the

high frequency components in image blocks. The removal of these high frequencies

tends to smooth each block, increasing a pixel’s correlation with its neighbours. Such

characteristic image statistics have been used for example in [76] to blindly categorise

images by distortion type.
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Figure 4.3: One row of the covariance matrices of neighbour pixels (with DC coeffi-

cient removed) of RAW, AWGN corrupted and JPEG compressed images from the

data set.

The NIQE metric was used as a measure of perceived image quality since it is

efficient to compute and has been shown to correlate highly with human opinion

scores. The classical spatial NSS model adopted by NIQE is based on [129]. Each

image (I) was pre-processed using local mean removal and normalization:

𝐼(𝑖, 𝑗) =
(𝐼(𝑖, 𝑗) − 𝜇(𝑖, 𝑗))

(𝜎(𝑖, 𝑗))
(4.1)

where 𝑖 ∈ {1, 2, . . . ,𝑀}, 𝑗 ∈ {1, 2, . . . , 𝑁} are spatial indices, 𝑀 and 𝑁 are the im-

age dimensions, and 𝜇 and 𝜎 are the local mean and standard deviation respectively,

weighted by a 2-D circularly symmetric Gaussian weighting function. The statistics
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of local image patches were then characterized by so-called “quality-aware” NSS fea-

tures. Previous studies of NSS-based image quality have shown that the generalized

Gaussian distribution effectively captures the behaviour of NSS features extracted

from natural and distorted images. A simple model of the NSS features computed

from natural image patches was obtained by fitting them to a multivariate Gaussian

(MVG) model. The quality of a test image was then expressed as the distance (com-

puted from equation 4.2) between an MVG fit of the NSS features extracted from the

test image and an MVG model of the features extracted from a data set of natural

images:

𝐷(𝑣1, 𝑣2,Σ1,Σ2) =

√︂
((𝑣1 − 𝑣2)Γ (

(Σ1 + Σ2)

2
)−1 (𝑣1 − 𝑣2)) (4.2)

where 𝑣1 , 𝑣2 and Σ1, Σ2 are the mean vectors and covariance matrices of the natural

MVG model and the distorted image’s MVG model respectively and Γ is the Gamma

function:

Γ(𝑎) =

∫︁ ∞

0

𝑡𝑎−1𝑒−𝑡 𝑑𝑥 𝑎 > 0 (4.3)
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4.2.3 Allocating Images Into Quality Bins

In order to categorize the images in the data set, a model of the NSS features

computed from the RAW images was obtained by fitting them to an MVG density

according to [81]. One thousand of the INRIA training images were selected to

generate the RAW MVG model. The NIQE score of every image in the training data

set was then calculated. The images were binned according to their NIQE score and

distortion type. In practice it was found that RAW images typically had an NIQE

score below 4, JPEG compressed images typically ranged from 4 to 12, while AWGN

corrupted images had a larger range of perceived image quality, typically ranging

from 4 to over 16 on the NIQE scale (recall that the NIQE score for a particular

test image is the distance between the RAW modelled MVG and the MVG computed

from features extracted from the test image, therefore a lower value indicates better

quality).

By binning the training images in the data set according to their distortion type

and NIQE score the goal was to obtain new MVG models for specific distortion types

and levels. After visually inspecting the distorted images and examining the impact

of these distortions on pedestrian detection performance, bin widths of two NIQE

units were chosen. A similar bin width was used in [89]. It was ensured that at

least 1000 images were contained in each bin. The median score within each bin

served as the representative quality score for that bin. MVG models were obtained

from the samples in each bin, such that for any particular quality score, there existed

corresponding MVG models of both noise and JPEG degraded images. In practice

this means a total of 11 models were computed covering the entire spectrum of NIQE
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scores in the data set. These models were used to categorise distortion type. The bin

levels for each distortion type are detailed in appendix A.

The quality scores of the degraded images were quantified by comparing the MVG

model computed from the test images with that of the RAW model. All images below

a particular quality threshold (NIQE = 4) were considered to have ideal quality and

pedestrian detection was carried out with a classifier trained exclusively on non-

degraded images. For images with quality scores above this threshold, the distance

between the test image MVG and corresponding MVG models for each degradation

was computed, in order to categorise the test image as either JPEG compressed

or AWGN corrupted. Depending on the category of distortion, an appropriately

trained classifier was then utilized for pedestrian detection, with the objective of

improving performance on the test data set and increasing the robustness of the

detection algorithm to image degradations. Similar NSS features have been used for

distortion classification in [130] and [75] however these algorithms utilise SVMs for

distortion classification. The approach is summarised in Fig. 4.4.
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Figure 4.4: A framework for improved pedestrian detection performance through NR

image distortion categorization.
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4.3 Experimental Results

In order for the method to be effective, accurate distortion classification is impor-

tant, particularly for badly degraded images. We first used the INRIA and Caltech

test sets described previously to evaluate the categorization technique. Categorizing

high quality images is extremely difficult since very low levels of JPEG compression

or AWGN distortion typically do not introduce perceptual image distortions and con-

sequently do not significantly alter the scene statistics used for quality assessment.

However, equally, such distortions have little effect on the performance of pedestrian

detection algorithms. For example in Table 4.1, the LAMR of the detection algo-

rithm is reported for each batch of INRIA distorted images (where lower LAMR

represents higher detection performance). It is evident that the lowest two levels of

each distortion introduce very little degradation in detection performance.

Table 4.1: Detection Performance on the distorted database (LAMR)

Distortion level AWGN JPEG

0 (undistorted) 18.17 18.17
1 17.64 18.00
2 18.91 18.26
3 22.15 19.62
4 28.59 22.28
5 37.64 20.73
6 42.65 23.02
7 47.90 22.10
8 57.62 26.73
9 70.83 29.90
10 83.95 30.29
11 95.00 37.82
12 97.60 45.34
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For this reason, images with an NIQE score below 4 were considered to have ideal

quality, corresponding to 7% of the images in the distorted test set. The majority

(76% of INRIA and 99% of Caltech data sets) of RAW classified images came from

the first two levels of each distortion, representing the highest image qualities, while

almost all RAW classified images came from the first four levels of each distortion

type (99% INRIA, 100% Caltech). Optimal pedestrian detection performance on this

subset of RAW classified images was achieved by using a classifier trained exclusively

on the undistorted data set, hence the proposed detection framework remains appro-

priate for this subset of images. The classification results from the distorted image

data set are reported in Table 4.2 with the correct classification type for each distor-

tion level highlighted in bold font. The results of the remaining images in each data

set are summarized below:

∙ Correctly classified distortions: 99.37% (INRIA), 99.74% (Caltech)

∙ JPEG incorrectly classified as AWGN: 0.006% (INRIA), 0% (Caltech)

∙ AWGN incorrectly classified as JPEG: 1.10% (INRIA), 0.28% (Caltech)



Chapter 4: Performance Optimization using Natural Scene Statistics 93

Table 4.2: Classification performance on INRIA and Caltech data sets

Classification Percentages

RAW AWGN JPEG

Quality\data set INRIA Caltech INRIA Caltech INRIA Caltech

Undistorted 98.26 96.34 0 0 1.74 3.66
𝐴𝑊𝐺𝑁1 67.71 86.58 19.1 10.81 13.19 2.61
𝐴𝑊𝐺𝑁2 11.46 1.64 88.54 98.36 0 0
𝐴𝑊𝐺𝑁3 2.08 0 97.92 100 0 0
𝐴𝑊𝐺𝑁4 0.35 0 99.65 100 0 0
𝐴𝑊𝐺𝑁5 0 0 100 100 0 0
𝐴𝑊𝐺𝑁6 0 0 100 100 0 0
𝐴𝑊𝐺𝑁7 0 0 100 100 0 0
𝐴𝑊𝐺𝑁8 0 0 100 100 0 0
𝐴𝑊𝐺𝑁9 0 0 100 100 0 0
𝐴𝑊𝐺𝑁10 0 0 100 100 0 0
𝐴𝑊𝐺𝑁11 0 0 100 100 0 0
𝐴𝑊𝐺𝑁12 0 0 100 100 0 0
𝐽𝑃𝐸𝐺1 65.97 87.87 0.35 0 33.68 12.13
𝐽𝑃𝐸𝐺2 56.6 2.01 0.35 0 43.06 97.99
𝐽𝑃𝐸𝐺3 39.24 0.25 0 0 60.76 99.75
𝐽𝑃𝐸𝐺4 20.14 0.55 0 0 79.86 99.45
𝐽𝑃𝐸𝐺5 1.39 0 0 0 98.61 100
𝐽𝑃𝐸𝐺6 0 0 0 0 100 100
𝐽𝑃𝐸𝐺7 0 0 0 0 100 100
𝐽𝑃𝐸𝐺8 0 0 0 0 100 100
𝐽𝑃𝐸𝐺9 0 0 0 0 100 100
𝐽𝑃𝐸𝐺10 0 0 0 0 100 100
𝐽𝑃𝐸𝐺11 0 0 0 0 100 100
𝐽𝑃𝐸𝐺12 0 0 0 0 100 100
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A classification accuracy of 100% is encouraging, however in automotive imaging

systems levels of compression corresponding to the worst levels (10-12) of distortion

in our dataset are rare, and only likely in failure conditions or potentially when

driving in low light conditions. Nevertheless, classification accuracy remains high

for realistic levels of automotive compression (levels 4-6). Next, the influence of

image degradations on the performance of the pedestrian detection algorithm were

investigated. Figure 4.5 illustrates the degradation of performance of the RAW-

classifier pedestrian detection algorithm on AWGN corrupted and JPEG compressed

images in the data set. It is not surprising that the decrease in pedestrian detection

performance with increasing levels of degradation is mostly monotonic. However, it

is also interesting to note that the results from Chapter 3 have been validated on a

much larger pedestrian data set consisting of more realistic automotive scenes.
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(a)

(b)

Figure 4.5: LAMRs of pedestrian detection performance on the AWGN degraded

(a) and JPEG compressed (b) versions of the database. It is observed that for a

particular range of quality parameter, a small increase in image quality can yield a

large increase in detection performance.
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4.4 Classifier Retraining

Classifier retraining has been shown to be a significant factor affecting overall

detection performance [123]. The influence of classifier retraining on the performance

of the ICF pedestrian detection algorithm was investigated on this larger data set.

The detection algorithm was trained multiple times with distorted versions of the

INRIA and Caltech training data sets and tested on the non-overlapping test data

sets. From Figure 4.6, it can be seen that performance improvements can be gained

by training to specific distortion types and levels. For example, Figure 4.6(a) reports

the performance of a classifier trained with low quality AWGN corrupted images.

In comparison to Figure 4.5, it can be seen that this classifier improves detection

performance significantly on images of similar quality and distortion type to the

training set. For example, the LAMR of the RAW trained detection algorithm on

AWGN level 10 is 83.95%, compared with a LAMR of 58.49% using the AWGN

trained classifier. Similar improvements in quality are shown in Figure 4.6(b) for

JPEG compressed images. Details of the training samples used for each classifier are

listed in appendix A.

Although these classifiers optimize performance for specific distortion types and

quality levels, they are not the optimal solution for the entire data set. Again, an

optimized single classifier was obtained by training classifiers on images with a wide

range of quality degradations. However the single classifier offered only a modest

performance improvement over the RAW classifier on this larger data set. It was

attempted to improve performance further by increasing the size of the training set.

Classifiers were trained with all degraded versions of the INRIA and Caltech train-
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(a)

(b)

Figure 4.6: Performance of a classifier trained with poor quality AWGN images (a)

on all noise corrupted images in the data set, and performance of a classifier trained

with highly compressed JPEG images (b) on all JPEG compressed images.
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ing sets, consisting of over 18,000 and 100,000 images respectively in an attempt to

increase the detection algorithm’s robustness to image degradations. Again, little

resulting improvement in overall detection performance was found.

The proposed multi-classifier framework is well suited to the wide variety of im-

age quality levels that can occur in automotive visual communication channels and

hence ought to significantly improve overall detection performance. For each dis-

tortion type and NIQE bin width described in Section 4.2.3, a detection classifier

was trained with images from this specific quality level. The proposed categorization

methodology was then used to determine the appropriate classifier for each image in

the test data set. The results, shown in Figure 4.7, illustrate that the multi-classifier

detection framework offers significant improvement over RAW, optimal, and robust

single classifier performance. In Tables 4.3 and 4.4 the LAMRs for the top perform-

ing single classifiers on both INRIA and Caltech data sets are reported, as well as

the best performing distortion specific classifiers, which, for both JPEG compressed

and AWGN corrupted images, were achieved by training the detection classifier with

images ranging from 6 to 10 on the NIQE quality scale. The proposed multi-classifier

framework offers higher detection accuracy across both data sets and also for each

specific distortion, providing higher tolerance against degraded images than any of

the single classifiers. A Matlab script to evaluate detections against ground truth is

included in appendix B.

The performance of the proposed algorithm was further evaluated on real video

data that included impairments such as sensor noise and compression artifacts. All

outdoor video sequences of pedestrians from the CD 2014 data set [127] were selected
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Figure 4.7: The performance of the proposed multi-classifier “quality aware” detection

framework offers significant improvement over single classifier detection models on the

INRIA data set.

as a real video benchmark. Since the videos in the CD data set were obtained with

different cameras ranging in spatial resolution and compression parameters, the levels

of image quality vary from approximately 3 to 8 on the NIQE scale. The results are

summarised in Table 4.5 and Figure 4.8. The results show that the multi-classifier

framework is also the best performing algorithm on this data set, offering performance

gains of 3%-7% over the RAW trained classifier. In practical terms, this equates to

between 3%-7% less missed detections at a given false positive rate, thus improving

system performance and potentially reducing road fatalities.
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Table 4.3: Detection Classifier Performance (LAMR) on the INRIA data set

Classifier JPEG AWGN Full data set

RAW 28.25 52.59 41.47
Optimal 30.31 50.34 40.95
Robust 27.57 49.54 40.71
*JPEG 26.54 - -
*AWGN - 48.67 -
Proposed 25.00 42.82 35.95

Table 4.4: Detection Classifier Performance (LAMR) on the Caltech data set

Classifier JPEG AWGN Full data set

RAW 66.87 86.38 77.84
Optimal 65.43 87.91 76.02
Robust 64.06 85.31 76.47
*JPEG 63.70 - -
*AWGN - 83.77 -
Proposed 61.81 78.14 72.44

Note: Detection performance is reported as log-average miss rates (LAMR) where

lower scores represent higher performance. *JPEG and AWGN-specific classifiers are

only evaluated on their respective subsets of the image data set.

Table 4.5: Detection Classifier Performance on the ChangeDetection data set

Classifier LAMR

RAW 21.82
Robust 21.41
JPEG 27.58
AWGN 33.29

Proposed 17.51
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Figure 4.8: Relative performance of proposed multi-classifier detection framework,

compared to noise-specific classifiers. The multi-classifier “quality-aware” detection

framework is the best performing algorithm (in terms of LAMR) on real distortions

from the ChangeDetection data set.
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4.4.1 Computational Complexity

Since the features extracted for distortion classification are transform-free, the

multi-classifier framework has relatively low computational complexity. In Table 4.6

the time taken (in seconds) to extract the NSS features from an image of resolution

640 × 480 pixels on a 3.3GHz PC with 8 GB of RAM operating on a single core is

listed. Unoptimized MATLAB R○ code was used for all algorithms to ensure a fair

comparison. As Table 4.6 demonstrates, the NIQE feature extraction stage is much

more efficient than transform based methods such as BLIINDS or DIIVINE. This

suggests that the multi-classifier method can be readily incorporated into real-time

systems as typically, embedded automotive image processing algorithms are written

in highly optimized C++ code, which offers substantial run-time improvement over

MATLAB implementations.

Table 4.6: Complexity Analysis of NSS features

Algorithm Time(seconds)

DIIVINE 82.42
BLIINDS-II 40.41

NIQE 0.24

4.5 Discussion and Conclusions

In this chapter a distorted image database with known distortion types and levels

has been created. It has been shown that for particular levels of JPEG compressed

images, a small improvement in quality can lead to a significant increase in the per-

formance of a pedestrian detection algorithm. This is an important result, since in
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most automotive vision systems, the effect of such quality degradations can often be

mitigated by controlling the compression ratio. The impact of classifier retraining

on the performance of the ICF pedestrian detection algorithm has been verified on a

large image data set. The results illustrate that detection performance is optimized

on distorted images by training a classifier specifically for distortion level and type.

These results have been used along with spatial NSS features to develop a method

for multi-classifier pedestrian detection that can be used in real-time (online mode),

and does not require reference images. The results of the experiments show that the

multi-classifier approach offers higher detection accuracy on distorted images than

single classifier performance. However in this study, JPEG and AWGN compression

are considered separately. In automotive applications, a noisy image is passed through

the imaging pipeline of a camera and then compressed. The algorithm was further

evaluated on such a general case of “real-world” images, again offering higher detection

accuracy. Hence the proposed framework represents an improvement on approaches

based on single classifiers, as used in most of the existing literature. Furthermore,

the image distortion categorization framework operates directly on multi-scale spatial

pixel data and hence is computationally efficient and suitable for real-time implemen-

tation [131].

A possible disadvantage of the proposed framework is an increase in complexity

as additional distortion types, such as motion and focus blur are added to the frame-

work. As more distortion types are included it would also become more difficult to

ensure high classification accuracy. This would be an interesting area for further re-

search. These challenges notwithstanding, a key advantage of the proposed detection
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framework is its high adaptability, since alternative statistical models can be derived

to suit the needs of particular image capture techniques.

The next chapter revisits the issue of perceptual quality assessment in the context

of video transmission, and examines the influence of saliency on perceptual assessment

of video corrupted by transmission errors.



Chapter 5

Evaluating the Influence of Saliency

on Perceptual Quality in Automotive

Vision Systems

5.1 Introduction

As noted previously, the Quality of Experience (QoE) concept for automotive

video differs substantially from the traditional QoE concept for broadcasting or other

consumer-related applications. In the automotive environment the subjective satis-

faction of the user is related to achieving a particular task related to driving [132].

Borji et. al [133], describe visual saliency as factors that render certain image regions

more conspicuous than others, for example image regions with different features from

their surroundings. In automotive applications, the driver’s attention is influenced

heavily by salient objects in a scene such as a pedestrian or oncoming vehicle, which

105
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serves to change the manner in which drivers perceive image and video quality.

This chapter returns to the issue of perceptual quality, and in particular the rela-

tionship between perceptual quality and visual saliency, and whether a quantitative

relationship can be established between the two.

In order to ascertain “ground truth” opinions on perceptual quality, image and

video quality data sets with appropriate scenarios were generated. The details of

each data set and subsequent subjective quality tests that were carried out are de-

scribed in this chapter. In particular, this chapter investigates how distortions, such

as blurring and packet losses, which are inherent to data acquisition in automotive

vision systems, influence visual saliency, and hence perceptual quality. In Section

5.2, the characteristics of the image data set used for the first set of experiments

that consider the effect of blurring are described. In Section 5.3, the subjective tests

completed are described and some insights into the characteristics of the distortions

used in the data set are considered, including loss of sharpness caused by radial lens

distortion. A no-reference metric based on blur is proposed in Section 5.4 as a means

of predicting the perceptual quality of fish-eye to rectilinear transformed automotive

images. Since packet loss is a form of temporal distortion, it is best evaluated using

video data. In Section 5.5 a new automotive video quality data set containing packet

losses is described. A subjective video quality experiment carried out on this video set

is described in Section 5.6. Eye tracking data were collected during the experiment

to monitor each subject’s viewing behaviour. Finally, in Section 5.7, a no-reference

image quality metric for video corrupted with packet losses is proposed.
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(a) (b)

Figure 5.1: Two diorama scenes from vision laboratory: scene (a) is illuminated evenly

with ambient white light of 86 lux; Scene (b) simulates street light illumination.

5.2 Image Data Set

The first data set developed was an image data set that consisted of 16 automotive

scenes. The scenes were chosen to span a range of typical automotive environments.

In particular, 6 indoor diorama scenes were captured in a purpose-built industrial

vision laboratory under controlled lighting conditions. The vision laboratory was

designed such that ambient light could be measured and controlled in all areas of

the scene. For example Figure 5.1(a) has a uniform illumination of 86 lux, which

is representative of a fully overcast morning or evening, while the scene in Figure

5.1(b) is illuminated by two sodium lights providing an average luminance of 15 lux

conforming to the recommendations for night-time lighting levels for roadways and

sidewalks [134].

Accounting for variations in lighting conditions is important since light is known

to affect human perception. For example, although the HVS is capable of adapting to
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a wide range of lighting conditions, high ambient light levels decrease its sensitivity

to small variations in contrast [135].

Other lighting conditions in the data set include a typical night-time driving scene

illuminated only by automobile headlamps, as well as a twilight driving scene with an

average illumination of 30 lux. The diorama scenes in the data set are complimented

by 10 real world outdoor automotive scenes captured in daylight driving conditions.

Both indoor and outdoor scenes were captured with both a standard (24mm) Nikon

lens and a 10.5mm Nikon fish-eye lens. An example of each image type is given in

Figure 5.2. The 10.5mm fish-eye lens has a horizontal Field Of View (FOV) of 138

degrees which is consistent with that of the forward facing cameras commonly used

in the automotive industry. The 24mm lens has a higher spatial resolution and hence

would be expected to produce images of higher perceptual quality. However, the

FOV of a standard rectilinear lens is insufficient for most automotive applications.

Nevertheless, images taken with this camera provide a benchmark representing high

perceptual quality.

As mentioned in Chapter 1, fish-eye lenses are problematic in automotive vision

systems since the radial distortion necessarily introduced by such lenses alters the

perspective of the image, making it difficult for drivers to accurately judge distance.

For this reason, fish-eye lenses are typically converted to rectilinear images before

being displayed to the driver.

In order to transform the 10.5mm fish-eye images, the approach described by

Scaramuzza et. al [136] was utilized. The method described in that paper requires

a calibration step, in which a few pictures of a planar pattern of known geometry
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(a) (b)

Figure 5.2: A Nikon 24mm image (a); and corresponding 10.5mm fish-eye image (b).

are taken at different locations in the image. A Taylor series expansion is then used

to model the image formation function, which projects a 3D real point onto a pixel

on the image plane. The coefficients of the Taylor series expansion are estimated by

solving a two-step least squares linear minimization problem. The order of the series

is then determined by minimising the re-projection error of the calibrated points.

This method was chosen for a number of reasons. Once the images are taken, the

calibration procedure is very fast and entirely automatic. Moreover, the Taylor series

approximation to the lens was found to be very accurate. In the experiments described

in this chapter, a checkerboard image was used to calibrate the 10.5mm Nikon fish-eye

lens. After calibration refinement, a Taylor series expansion of order 4 was computed

to approximate the image formation function. On images of resolution 4608 × 3072

pixels, the average re-projection error is only 1.51 pixels with a standard deviation of

± 0.74 pixels.

Some examples of the rectilinearly transformed images are shown in Figure 5.3.
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(a) (b)

Figure 5.3: 10.5mm fish-eye images corrected to rectilinear form using a Taylor series

expansion. (a) Image of Figure 5.1; (b) Image of Figure 5.2.

The scene in Figure 5.3(a) is the same as that used in Figure 5.1, while that in

Figure 5.3(b) is the same as that in Figure 5.2. Notice that the FOV in Figure 5.3(b)

is far wider than that of the corresponding 24mm image in Figure 5.2(a). Curved

beams in the fish-eye images of Figure 5.1(a) are mapped to straight lines in Figure

5.3(a). The complete image data set therefore contains three types of image, namely

24mm rectilinear images, 10.5mm fish-eye images and 10.5mm corrected-to-rectilinear

images.

5.3 Subjective Image Quality Studies

In order to assess the perceptual quality of the images in the data set, two Absolute

Category Rating with Hidden Reference (ACR-HR) [16] studies were conducted at

the National University of Ireland, Galway (NUI Galway) over the course of three

weeks. The subject pool consisted of 35 (mostly post-graduate) students from NUI
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Galway who had no previous exposure to subjective image tests. The subjects were

a mix of males and females with a male majority. A verbal confirmation of visual

acuity was obtained from each student prior to each study and all subjects were tested

for colour blindness. Each study involved a single viewing session lasting under 20

minutes, in order to minimise viewer fatigue [14]. In the first study, subjects were

asked to rate the usefulness of the images for the purpose of driver assistance. De

Ridder and Endrikhovski describe “usefulness” as the degree of apparent suitability

of an image with respect to a specific task [137]. For the second study, the same

set of images was used, but on this occasion the participants were asked simply to

rate the perceptual quality of each image. The average testing time per subject was

approximately 16 minutes.

An informal after-study questionnaire indicated that viewers did not experience

any fatigue during the course of the study.

Each study began with a short training session during which the subject was

presented with six images chosen to span the range of distortions contained in the

data set. The images used in the training session differed from those used in the actual

study but were of a similar nature. The studies used a data set of 48 images shown in

random order. Furthermore, the order was randomized for each subject and care was

taken to ensure that two consecutive images did not correspond to the same reference

image to minimise memory effects. Images were displayed on a 24 inch Dell ST2421L

monitor with a screen resolution of 1920×1080 pixels at a viewing distance of 1 metre.

The study took place in a dedicated viewing room with low background illumination

as per recommendations in [14]. A subject rejection procedure, described in [14]
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Figure 5.4: MOS scores evaluating the perceptual quality of images in the data set.

Note that the reference data set consists of 16 images, each of which is represented

three times in fish-eye, 24mm lens and rectilinear transformed versions.

was carried out that rejected one subject from each study. The remaining subjective

scores were then averaged across subjects to obtain Mean Opinion Scores (MOS) for

each image.

Figures 5.4 and 5.5 illustrate the MOS scores for the images in the database, for

usefulness and perceptual quality. Images taken with the 24mm lens have the highest

pixel resolution and also the highest perceptual quality, however the “usefulness” of

these images is far lower than that of both the fish-eye and corrected images due to the

much narrower field of view. Perceptual MOS scores for most rectilinear images were

comparable with those of the fish-eye images. Average MOS scores after conversion

to percentage values were 83.01, 73.78 and 73.09 for the 24mm, fish-eye and corrected
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Figure 5.5: MOS scores rating the “usefulness” of images in the data set for driver

assistance applications.

rectilinear images respectively. Additionally, results from the subjective study showed

that the corrected rectilinear images were almost equally as “useful” for automotive

driver assistance as the fish-eye images which have only a slightly wider field of view

(average MOS scores in percentage terms were 64.7 and 66.5 respectively, while fields

of view are 138 and 137 degrees respectively). Both of these images achieved far

greater MOS scores than the 24mm images (whose average MOS was 52.7) when

evaluated for “usefulness”.

The experiments also showed that the location of salient objects has a bearing

on the perceptual quality of a distorted image. For example, images “2” and “5”

in the data set (Shown in Figure 5.6(a) and (b) respectively) exhibit the highest

drop in perceptual quality relative to the fish-eye image after rectilinear correction.
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(a) (b)

Figure 5.6: Salient objects at the edge of transformed images suffer from distortions.

These distortions contribute to poor perceptual quality scores.

Notice that in both of these images an object of interest (a vehicle) is present at

the edge of the image where the error in the polynomial approximation to the lens is

greatest. These images suggest that naturalness plays an important role in perceptual

image quality, but also highlight the difficulty of evaluating perceptual quality in this

environment since the location of salient features in an image can affect a viewer’s

opinion of quality. There is no such drop in perceptual quality when salient objects

are absent from the peripheral areas of images, such as shown for example in the

images in Figure 5.7.
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(a) (b)

Figure 5.7: Transformed images that contain no salient objects in peripheral regions

do not suffer from a loss in perceptual quality.

Since fish-eye to rectilinear transformation results in a loss of spatial resolution

as a function of distance from the image centre, a noticeable decrease in sharpness

is evident in the peripheral areas of the transformed rectilinear images. This drop in

sharpness is illustrated in Figure 5.8. A block of pixels in the centre of the image

is compared to a similar block at the periphery of the image. In this particular

example two 64× 64 pixel blocks were chosen from the wall in the background. Both

sets of pixels are of a similar object and hence should have similar properties with

regard to colour and texture. However, a significant difference in high frequency

components is evident from the Fourier spectra shown as inserts in the Figure. The

Fourier spectrum from the centre of the image contains much more high frequency

energy than that obtained from the edge of the scene. The drop in high frequency

components represents a loss of fine detail in the image. The loss of sharpness is

further illustrated by analysing a horizontal strip of each image in the data set (in

the automotive environment a horizontal strip contains much more pertinent scene
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information than a vertical one, since a horizontal strip spans the width of the road

ahead, where objects of interest are most likely to be located). The decrease in high

frequency energy (calculated from spectral analysis) as a function of pixel distance

from the optical centre of the lens is shown in Figure 5.9. The black line in the Figure

represents the average high frequency energy across all fish-eye images at a particular

distance from the image centre. Although high frequency energy depends on the local

image content it is also evident that energy tends to decrease with distance from the

image centre.

Figure 5.8: A loss of resolution is characterised by less high frequency energy in the

Fourier spectrum.
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Figure 5.9: High Frequency energy loss in the Fourier Spectrum is used to estimate

local image sharpness. Images become more blurred as distance from the centre of

the image increases.

5.4 No-Reference Blur Metric

As noted in the introduction, blurring is an important form of distortion affecting

image quality that is a common component of typical automotive image acquisition

systems. Since image blur is non-uniform throughout automotive images, different

regions of an image may have significantly different perceptual quality. For this

reason it is necessary to consider which regions of the image may be more salient,

or contain more pertinent visual information to the driver. Such image regions are

more likely to attract the attention of the driver and hence more strongly influence
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his or her perception of image quality. To account for differences in image quality

caused by different levels of saliency, the local image quality score of an image region

can be weighted by its predicted visual importance. Such saliency weighted, no-

reference distortion metrics have been proposed, for example in [68, 138, 139]. These

metrics typically outperform their non-weighted equivalences since regions of visual

importance are weighted more highly than regions with little structural content. The

leading models of visual saliency [140, 141], including the well-known benchmark

saliency model developed by Itti, Koch and Niebur [142] may be organized into three

stages [141]. In Stage 1, feature vectors are extracted at locations over the image

plane. During Stage 2 an “activation map” (or maps) is formed using the feature

vectors. Finally, in Stage 3 the activation map (or maps, followed by a combination

of the maps into a single map) is normalized. These models are based on the properties

of the early HVS and in particular the theory of feature integration (also known as

bottom-up visual processing). This theory suggests that when the HVS perceives

a stimulus, features are registered early and in parallel, while objects are identified

separately at a later stage of processing.

In [141] a state-of-the-art bottom-up saliency model based on graph contribu-

tions termed Graph Based Visual Saliency (GBVS) was proposed. In a comparison

of GBVS [141] against existing algorithms on a data set of images of natural envi-

ronments the model compared favourably to the more traditional Itti-Koch-Niebur

algorithm achieving 98% correlation with human saliency estimates, compared to a

correlation of only 84% between the Itti-Koch-Niebur model and human saliency. An

example of the GBVS algorithm working on the data set used here is illustrated in
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(a) (b)

Figure 5.10: The “hot” regions on the image (b) correspond to areas of predicted high

visual saliency.

Figure 5.10. The “heat map” corresponds to image areas of high visual saliency. In

order to predict the perceptual quality of rectilinear transformed automotive images

both the graph based and Itti-Koch-Niebur visual saliency maps were computed for

each image in the data set. The Fourier energy of local image regions was then com-

puted and weighted by the normalized saliency map. An image quality metric 𝑄 was

then computed according to the following formula:

𝑄 =
1

𝑛

∑︁
𝑖𝑗

𝑆𝑖𝑗𝐹𝑖𝑗 (5.1)

where 𝑆𝑖𝑗 is the normalized local saliency weight (calculated according to either the

GBVS or Itti-Koch-Niebur methods), 𝐹𝑖𝑗 is the local high frequency energy of the

Fourier spectrum, and 𝑛 is the number of local regions computed in each image.

The predicted quality values from the proposed algorithm were correlated against

subjective perceptual MOS values from the subjective image study. The results are

illustrated in Table 5.1. Since the GBVS map outperformed the Itti-Koch-Niebur
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map, this method was chosen to weight the local sharpness scores for the remainder

of the analysis.

The saliency weighted algorithm is shown in Figure 5.11 to correlate closely with

perceptual quality for daylight driving conditions. Saliency information increases the

algorithm’s correlation with MOS values from 0.7732 to 0.8268.

Four of the images in the data set were taken in night-time driving conditions.

Correlation of metric score to perceptual quality for these images is poor, since poor

luminance and contrast can mask the presence of image blur. Moreover, in low

light conditions, the predominant image artifact affecting perceptual image quality is

thermal noise on the image sensor as can be seen in Figure 5.12. Nevertheless, the

results illustrate the importance of saliency in image quality evaluation. In the next

section the effects of quality impairments on automotive video are considered, taking

viewer saliency into account.

Table 5.1: Saliency Weighted Metric Performance

Pearson Correlation Coefficient
GBVS Quality Metric 0.8268
Itti-Koch-Neibur Quality Metric 0.7942
Non-Weighted Quality Metric 0.7732
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Figure 5.11: The performance of the proposed algorithm on the data set of trans-

formed images. The x-axis represents perceptual quality as a percentage, while the

y-axis represents the GBVS weighted quality metric.

Figure 5.12: Example image taken in low light conditions. Thermal noise from the

image sensor is the predominant distortion.
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5.5 Video Quality Data Set

Although image quality data sets can be useful for establishing ground truth

quality ratings for spatial lens degradations such as image blur, in order to evaluate

temporal impairments it is necessary to consider video data. In typical automotive

in-vehicle networks, video quality can be degraded due to packet losses, however

the influence of such quality impairments on the QoE of the driver is not well under-

stood. To investigate this impairment on quality, an automotive specific video quality

database was created by collecting real video data from an in-vehicle, driver assis-

tance system with a rear-facing camera. Ten reference video sequences were selected

from the collected data and subjected to varying degrees of simulated packet losses in

order to model a lossy automotive network. The impact of network impairments on

the viewer’s perception of video quality was then assessed by conducting a subjective

test. Saliency data were collected from each viewer to further assess the influence of

packet losses on visual attention.

5.5.1 Automotive Network Simulation Methodology

An automotive Ethernet network topology simulation was used to simulate real-

istic packet losses in the reference video sequences. Ethernet is fast becoming one

of the most utilized and well researched technologies in automotive networking [143].

There are a number of factors that make Ethernet an appealing choice for in-vehicle

networking. It is widely used outside of the automotive domain, unlike some cur-

rent generation technologies, therefore it is a cost effective option for high volume

manufacture. Additionally, its widespread deployment means that it is actively being



Chapter 5: Evaluating the Influence of Saliency on Perceptual Quality in
Automotive Vision Systems 123

developed and iterated upon to provide more functionality and higher bandwidth.

The network used in this experiment is based on the ns-3 simulation platform

[144], which allows the introduction of real traffic streams to a simulated network,

instead of relying on generic simulated traffic generators. Extensive work has been

carried out by Tuohy et al. [145] in modelling in-vehicle automotive networks. In

[145], a network simulation was developed to provide a platform for the preparation

of packet loss-impaired video. Packet loss was introduced to video streams through

the use of a mathematical error model on simulated Ethernet links connecting cameras

to a video receiver node. This works by marking packets which pass through a link

for dropping according to a mathematical model. Using a random number generator

and a pre-configured percentage value, packets are dropped in bursts such that the

overall occurrence of dropped packets is based on a random distribution, but also has

a predictable percentage.

A top-down diagram of the network topology proposed by Tuohy et al. [145, 146]

and used in these simulations is shown in Figure 5.13. The network models a triple

star or daisy chain in-vehicle network, a topology that is common in next generation

automotive networks [147, 148, 149]. Cameras were assumed to be the sources of the

video of interest, while additional sources of data were added to model other sources

of traffic that adds congestion to the network. The network contained the following

elements:

Optical Cameras: The camera nodes were attached to Linux containers, which

used a custom built video streaming application to send source videos of resolution

944 x 531 pixels at 25 frames per second across the simulated network. These samples
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were captured from cameras in a real world vehicle on public roads. The samples were

transmitted across the network as uncompressed RGB image frames , in order to avoid

the introduction of compression artifacts.

Infotainment and Miscellaneous Traffic: For infotainment and other traffic that is

not part of the video data of interest (which could come from a 3G internet connection

or wireless node within the vehicle), the flows were modelled as TCP streams.

CAN Gateway: The data rate of a CAN bus is limited by its length. Since a

vehicle is a small space and CAN connections within are generally less than 10 meters

in length, a bit rate of 400 kbps was assumed. A frame size of 20 bytes was used,

which represents the maximum frame size allowable by the CAN bus standard.

Radar Device: The Radar sensor device contained in the simulation outputs data

across a FlexRay gateway at 10 Mbps.

Samples were transmitted through the network at 4 different levels of impairment

to model video corruption due to the noisy automotive environment.

On the receiver side, a standard repetition type insertion repair technique [150]

was carried out on the received frames of video. While there exist a large number

of different techniques for the mitigation of packet loss [151], such as interpolation,

interleaving and retransmission, in an automotive scenario, the minimisation of delay

between receipt of a frame and its display to the driver is extremely important. The

repetition type insertion repair technique was chosen because it offers a combination

of low computational cost, high speed and good subjective performance.
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Figure 5.13: The network topology used to generate packet loss corrupted video
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5.6 Subjective Video Quality Experiments

5.6.1 Data Set Design

The goal of this subjective experiment was to evaluate the effect of packet loss on

the quality of user experience for automotive applications. The particular application

under test was a rear-facing camera automotive display system, normally utilized

for parking assistance systems. The reference video sequences used in the experiment

were all of urban driving scenes captured from a fish-eye, in-vehicle, rear-facing camera

at a frame rate of 25fps and cropped to an aspect ratio of 16:9.

Four levels of impairment (P1 - P4) were chosen to span a wide range of video

quality. The percentages of packet loss for each level of impairment (P1 - P4) were 1%,

2.5%, 5% and 10% respectively. Similar levels of packet loss were used in [151, 152].

Although 5% and 10% levels of loss are high for ethernet networks, future automotive

networks may employ inter-vehicular video transmission on networks more prone to

such high losses. Ten reference video sequences were used for the subjective test

varying from 8 to 24 seconds in duration. The average duration of the reference

videos was approximately 16 seconds.

An example of a video frame extracted from the simulation after being subjected

to 10% bursty packet loss can be seen in Figure 5.14. Large levels of impairment

result in ’blocky’ sections where movement has taken place between frames. These

impairments are visually similar to the effects that are seen on other types of streaming

video undergoing packet loss [151] [153].

Choosing appropriate sequences for a subjective quality test requires consideration
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Figure 5.14: An input and extracted output frame from simulation after undergoing

10% packet loss.

of both the spatial and temporal content of each scene [154]. Automotive video

quality tests should represent a wide range of spatial and temporal content in order

to represent as much diversity as possible. Of course, it is impossible to include

every conceivable automotive scene in a single subjective test, but increasing the

diversity of the test set improves a test’s accuracy. Including a wide variety of video

content in the test set serves two purposes. First, it allows the packet-loss recovery

algorithm to be tested rigorously. For example, scenes of low temporal activity may

be relatively unaffected by the receiver-side insertion-repair technique due to little

difference between two consecutive frames. On the other hand, a sequence with a

pedestrian running across the road could be problematic for an insertion-repair error

concealment algorithm since filling the missing video with prior content may cause

part of the pedestrian to disappear. Second, it is well known from psychological vision
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science that the sensitivity of the HVS to video impairments varies with the spatial

and temporal activity of the sequence [29]. Including a wide variety of spatial and

temporal content in the test set enabled an evaluation of these effects on the visual

attention of the viewer.

To simplify the task of quantifying scene complexity, objective measurements were

used as recommended in [154]. The spatial perceptual information over the entire

video (SI) is defined as:

𝑆𝐼 = 𝑚𝑎𝑥𝑓𝑟𝑎𝑚𝑒(𝑠𝑡𝑑𝑠𝑝𝑎𝑐𝑒[𝑆𝑜𝑏𝑒𝑙(𝐹𝑛)]) (5.2)

where 𝐹𝑛 is the luminance-only video frame at frame number n, Sobel(X) is the

sobel filter operation on image X, 𝑚𝑎𝑥𝑓𝑟𝑎𝑚𝑒 is the maximum value in the video se-

quence, and the 𝑠𝑡𝑑𝑠𝑝𝑎𝑐𝑒 is the standard deviation of all pixels in a frame.

The temporal perceptual information (TI) is defined as:

𝑇𝐼 = 𝑚𝑎𝑥𝑓𝑟𝑎𝑚𝑒(𝑠𝑡𝑑𝑠𝑝𝑎𝑐𝑒[𝐹𝑛 − 𝐹𝑛−1]) (5.3)

Both SI and TI are combined according to Fenimore et al. [155] to determine the

complexity of the scene:

𝑆𝐼(𝐹𝑛) = 𝑟𝑚𝑠𝑠𝑝𝑎𝑐𝑒[𝑆𝑜𝑏𝑒𝑙(𝐹𝑛)] (5.4)

𝑇𝐼(𝐹𝑛) = 𝑟𝑚𝑠𝑠𝑝𝑎𝑐𝑒[𝐹𝑛 − 𝐹𝑛−1] (5.5)

where, 𝑟𝑚𝑠𝑠𝑝𝑎𝑐𝑒 is the root mean square over all pixels in a frame. The complexity

is then given as:
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Table 5.2: Characteristics of Reference Sequences

Video Sequence SI TI Complexity
1 86.98 14.43 3.10
2 91.46 13.10 3.08
3 118.91 15.65 3.28
4 117.11 6.85 2.90
5 118.49 3.16 2.57
6 91.40 18.13 3.23
7 105.59 6.28 2.82
8 88.04 6.73 2.78
9 110.17 14.99 3.22
10 107.90 7.84 2.92

𝐶 = 𝑙𝑜𝑔10

𝑛∑︁
1

𝑆𝐼(𝐹𝑛) × 𝑇𝐼(𝐹𝑛)

𝑛
(5.6)

The spatial and temporal perceptual information of the reference sequences used

in the study are reported in Table 5.2.

5.6.2 Subjective Test Methodology

The subjective test was performed using the Absolute Category Rating-Hidden

Reference (ACR-HR) method [18]. This method was chosen since typical rear-view

automotive vision systems utilize fish-eye lenses with fields-of-view of up to 190 de-

grees [23]. It has previously been mentioned that these lenses introduce radial distor-

tion to the image and so it is possible that the subjective opinion of a viewer could

be biased by such distortions. In the ACR-HR method, the reference sequences are

included in the subjective test, but without being identified to the subject. The ad-

dition of the hidden references avoids the potential problem of reference sequences

being given poor subjective scores due to radial distortion. Viewers therefore rate
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the reference sequences as they would any other test sequence. The quality scores are

then reported as differential mean opinion scores (DMOS) given by equation 5.7.

𝐷𝑀𝑂𝑆 = 𝑀𝑂𝑆(𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙) −𝑀𝑂𝑆(𝑑𝑒𝑔𝑟𝑎𝑑𝑒𝑑) (5.7)

The selected test methodology is derived from the ITU-T recommendation P.910

[18]. Only non-expert viewers, as defined by [153] participated in the subjective

tests. A total of 26 viewers undertook the study which involved a single session

lasting approximately 25 minutes in order to minimise viewer fatigue. An informal

after-study questionnaire indicated that viewers experienced little fatigue during the

course of the study. Each study began with a short training session, during which the

subjects were presented with video sequences chosen to span the range of impairments

contained in the test data. The actual study consisted of 50 video sequences shown

in random order. Furthermore, the order was randomized for each subject and care

was taken to ensure that two consecutive sequences did not correspond to the same

reference sequence in order to minimise memory effects. Subjects were instructed to

watch the entire sequence before voting, receiving on-screen instructions as to when

to vote. Subjective ratings were reported on the five-point scale: “Excellent”, “Good”,

“Fair”, “Poor”, and “Bad” [18]. The study took place in a dedicated viewing room with

low background illumination. Sequences were displayed on a 24 inch DELL ST2421L

monitor with a screen resolution of 1920×1080 pixels, with test sequences centered, at

their original resolution of 944× 531 pixels. The background screen illumination was

mid-grey, conforming to recommendations in [18]. The viewing distance was 70cm,

or approximately 4 times the video height. A subject rejection procedure outlined in
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[14] was carried out which rejected one subject. The remaining scores were averaged

across subjects to obtain the DMOS for each video sequence.

5.6.3 Eye-Tracking Data

Eye-tracking data were recorded for each subject so that the most salient regions

of each reference video sequence could be ascertained. Saliency data were also tracked

on the degraded images so that differences in viewing behaviour on images corrupted

with packet losses could be studied. In order to track and record each subject’s eye

movements, an Eyetribe tracker [156] was used. Unlike many infrared eye-tracking

systems, the Eyetribe tracker does not require the viewer to use a rigid head rest,

rather the viewer must only be located within the tracker’s trackbox, which is defined

as the volume of space wherein the subject can theoretically be reliably tracked by

the system. Thus the subject’s head movements were unrestricted for the duration of

each subjective experiment, enabling a more realistic viewing environment. A twelve

point calibration step was performed on each subject before beginning the test. The

calibration step took less than one minute and ensured that the accuracy of the eye-

tracking device was optimized for each subject. The pixel coordinates of each subject’s

gaze fixation were recorded for every frame of video viewed in the experiment.

5.6.4 Deriving a Saliency Map

A saliency map was derived from the spatial pattern of fixations in the eye tracking

data according to [157]. Each subject’s fixation location was recorded for each frame

of video data. The data from each subject were then averaged to obtain an average
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Figure 5.15: The saliency maps from a reference frame (a) and corresponding de-

graded frame (b).

fixation map (𝐹𝑀(𝑥,𝑦)) for each sequence. A Gaussian distribution, the width of

which approximates the size of the fovea (approximately 2∘ of visual angle) was then

applied to each fixation point (𝑥, 𝑦) in FM to obtain a mean saliency map (SM):

𝑆𝑀(𝑘, 𝑙) =
𝑇∑︁
𝑖=1

𝑒𝑥𝑝[−(𝑥𝑖 − 𝑘)2 + (𝑦𝑖 − 𝑙)2

𝜎2
] (5.8)

where 𝑆𝑀(𝑘, 𝑙) indicates the saliency map for each given pixel (𝑘, 𝑙) where 𝑘 ∈ [1,𝑀 ]

and 𝑙 ∈ [1, 𝑁 ]. 𝑇 is the total number of fixations, (𝑥𝑖, 𝑦𝑖) are the spatial coordinates

of the 𝑖𝑡ℎ fixation and 𝜎 is the standard deviation of the Gaussian distribution. The

intensity of the resulting saliency map was linearly normalized to the range [0,1].

Figure 5.15 illustrates an example SM derived from eye-tracking data obtained from

a hidden reference image (Figure 5.15(a)) and, a SM of the same video frame corrupted

with 10% packet loss (Figure 5.15(b)).

5.6.5 Analysis of the Subjective Test Results

In Figure 5.16, the DMOS scores are reported for each video sequence. Recall

that the DMOS score is the difference between the reference and degraded MOS
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Figure 5.16: The DMOS scores from the subjective video test.

scores, hence a lower DMOS score represents a higher quality rating, thus reflecting

lower perceptual impact of packet loss. It is observed that the decrease in perceptual

quality with respect to increasing packet loss is largely monotonic, however there are

a number of outliers which have significantly lower DMOS scores (higher perceptual

quality ratings) than expected for the level of packet loss. In particular, the largest

outlier (Sequence 5) is the sequence with the least movement, characterised by the

sequence’s TI score. The next two lowest DMOS scores also have low TI scores

(Sequences 7 and 10). These sequences contain many instances of packet loss that

were not noticed by the viewers due to similarities in consecutive frames. These

results highlight the need to consider the temporal information in a video sequence

in order to adequately assess quality impairments due to packet losses.

One of the key issues in studying perceptual quality is identifying factors which



Chapter 5: Evaluating the Influence of Saliency on Perceptual Quality in
Automotive Vision Systems 134

significantly alter visual attention. The Area Under the Curve (AUC) is a commonly

used indicator to compare saliency maps [158]. It evaluates the area under the Re-

ceiver Operating Characteristic (ROC) which is found by plotting the false positive

rate as a function of the true positive rate. Given a reference saliency map 𝑆𝑀𝑟𝑒𝑓

and degraded saliency map 𝑆𝑀𝑑𝑒𝑔, the ROC is derived from the number of pixels

labelled as salient in both 𝑆𝑀𝑟𝑒𝑓 and 𝑆𝑀𝑑𝑒𝑔 (true positives) versus the number of

pixels labelled as salient in 𝑆𝑀𝑟𝑒𝑓 that are not salient in 𝑆𝑀𝑑𝑒𝑔 (false positives). A

value of AUC = 1 indicates a perfect match, while a value of AUC = 0.5 indicates

only a random match.

Eye tracking data and visual saliency are subject to high inter-observer variability

[159]. Therefore in order to fairly evaluate the influence of packet loss on human

attention it is necessary to calculate an AUC upper-bound, taking inter-observer

variability into account. To determine an upper bound on similarity between saliency

maps, the procedure adopted in [159] was followed to determine the Upper Empirical

Similarity Limit (UESL). The UESL is defined as the maximum achievable similarity

between the saliency maps derived from two groups of human observers under the

same experimental conditions. For each reference video frame observed in the ACR-

HR subjective experiment, subjects were divided into two randomly chosen groups, A

and B, and their corresponding saliency maps 𝑆𝑀𝐴 and 𝑆𝑀𝐵 were calculated. The

UESL was then computed as:

𝑈𝐸𝑆𝐿 = 𝐴𝑈𝐶(𝑆𝑀𝐴, 𝑆𝑀𝐵) (5.9)

The influence of packet loss on visual attention could then be defined by the

normalized similarity (NS) which is the similarity between saliency maps obtained
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from both reference and degraded sequences, divided by the UESL:

𝑁𝑆 =
𝐴𝑈𝐶(𝑆𝑀𝑟𝑒𝑓 , 𝑆𝑀𝑑𝑒𝑔)

𝑈𝐸𝑆𝐿
(5.10)

The normalized similarity thus gives a measure of the similarity between saliency

maps obtained from video sequences with different quality levels, while taking inter-

observer variability into account. Lower values of NS indicate lower similarity between

saliency maps. It should be noted that because the limits are defined empirically, a

value of NS greater than 1 is possible. The normalized similarity was calculated for

every frame of every video sequence. A single NS score for each video sequence was

obtained by averaging the NS scores over all frames in the sequence. These average

NS values are shown in Table 5.3. The results show that increasing the level of packet

loss had almost no effect on visual attention, despite significant differences in the MOS

scores of different levels of packet loss. This is an interesting result and points to the

attention of the viewer being more strongly influenced by task related (also called top-

down) factors such as identifying potential dangers on the road, than so called bottom-

up sensory cues which are more related to low-level vision. A study carried out in

[158] found similar results in a free viewing task. To investigate this result further, the

frame by frame saliency data of each video sequence were examined. The results show

that there is little difference in viewer attention between the reference and corrupted

video sequences. Figures 5.17 and 5.18 illustrate this point. Figure 5.17 highlights the

similarity between saliency maps from a reference and corresponding corrupted video

sequence (with 10% packet loss). The normalized similarity between the corrupted

and reference saliency maps of this sequence is 0.9044, despite the corrupted sequence
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Table 5.3: normalized Similarity of Degraded Saliency Maps, as a function of packet

loss condition

Sequence P1 P2 P3 P4
1 0.8745 0.8686 0.8609 0.8706
2 0.9041 0.8876 0.9112 0.8944
3 0.8361 0.8543 0.8860 0.8667
4 0.8957 0.8806 0.9520 0.8766
5 0.9023 0.8949 0.9151 0.9192
6 0.8621 0.8678 0.8766 0.8468
7 0.8870 0.8974 0.9020 0.8593
8 0.8935 0.9029 0.9061 0.9183
9 0.8744 0.8763 0.8867 0.9044
10 0.8776 0.8859 0.8618 0.8821

having a DMOS score of over 2.5, indicating a high level of perceived degradation.

Peaks in UESL values in Figure 5.17(a) represent video frames where there is low

inter-observer variability. These frames correspond to the images shown in Figure

5.18(a) - (c), where there is a single pedestrian in the frame and hence a focus of

saliency. On the other hand, troughs in the UESL values from Figure 5.17(a) cor-

respond to frames (d) - (f) in Figure 5.18, which contain multiple pedestrians and

vehicles, and hence multiple regions of saliency. In general, it was found that the

presence of pedestrians in a video sequence had the strongest influence on visual

attention.
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(a) The UESL computed over an entire reference sequence. Peaks in the UESL represent a

high level of consistency between subjects’ eye-tracking data.

(b) The normalized similarity (0.9044) of the saliency maps indicate that packet loss has little

influence on visual attention, rather the content of the sequence determines the attention of

the viewer.

Figure 5.17: Similarity Between Saliency Maps
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Figure 5.18: The frames with lowest inter-observer variability (a-c) correspond to

frames with a single point of focus (a pedestrian), while frames with the highest

inter-observer variability (d-f) contain multiple salient regions (many pedestrians or

vehicles).

5.7 Development of a No-Reference Packet Loss Im-

age Quality Metric

Packet loss degradation in the data set is neither spatially nor temporally uniform.

Some areas of individual frames are degraded while the quality of other areas remains

unchanged. Table 5.4 details the correlation between quality scores from 3 objective

quality metrics and the subjective quality scores for the data set. The values are aver-

aged across all test video sequences. In the case of the PSNR and SSIM metrics, the

mean score across the entire sequence is used. Both PSNR and SSIM are full reference

metrics, however, even with the use of a reference image they do not correlate well

with human opinion scores for this type of packet loss. In fact, the recently-proposed
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no-reference video quality metric BLind Image Integrity Notator using DCT Statis-

tics (video BLIINDS) proposed in [160] outperforms both full-reference algorithms.

Nevertheless, the correlation with subjective MOS scores from the data set remains

poor. Quality prediction could be improved by deriving a model of perceptual quality

which incorporates the visibility of packet losses. This is considered in this section.

Due to the packet loss recovery model used (described in Sec. 5.5.1), the location

of instances of packet loss could be determined by computing the correlation (inner

product) between consecutive frames. Spatial regions where packet reconstruction has

occurred are identical to the previous frame and hence have a correlation of 1, while

non-corrupted image patches always have a correlation of less than 1. This is the case

even for stationary consecutive frame sequences, since slight variations in pixel values

always occur due to sensor noise at image capture. Although the method of locating

instances of packet loss is specific to this recovery algorithm, alternative packet loss

recovery methods typically introduce characteristic distortions in the video frame that

can be distinguished from an uncorrupted frame; hence this general approach can be

incorporated into alternative recovery algorithms with minor modifications.

Having found instances of packet losses based on correlation between consecu-

tive frames, the goal was to categorise each instance as either salient or non-salient.

For each frame containing a packet loss, the temporal difference between it and the

previous frame was calculated according to:

𝑇𝐼𝑓𝑟𝑎𝑚𝑒 = (𝑠𝑡𝑑𝑠𝑝𝑎𝑐𝑒[𝐹𝑛 − 𝐹𝑛−1]) (5.11)

where the 𝑠𝑡𝑑𝑠𝑝𝑎𝑐𝑒 is the standard deviation of all pixels in a frame.

It was hypothesised that packet losses are most salient if there is a large temporal
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difference between consecutive frames in the spatial region around a lost packet.

Therefore, the temporal difference at the borders of each lost packet was measured.

A border width of 10 pixels was chosen heuristically. Each local region around a

lost packet was defined as salient only if the temporal information of that region

exceeded a threshold of visibility chosen based on the quality scores observed from

the subjective experiments.

The spatial texture of the lost regions was also considered, since regions with

high texture have been shown to mask image degradations [28]. Entropy (H) is

a statistical measure of randomness that has been widely used to characterise the

texture of an image. The temporally salient packet loss regions were weighted by

the spatial entropy in order to account for spatial texture, where the entropy of a

probability density function 𝑝(𝑥) is defined as:

𝐻 = −
∫︁

𝑝(𝑥) ln 𝑝(𝑥)𝑑𝑥 (5.12)

The quality parameter 𝑄 for each frame is thus derived as the proportion of the

frame degraded by visible packet losses:

𝑄 = 1 −
∑︀𝑛

𝑖=1 𝑆𝑝𝑙

𝑛
(5.13)

where 𝑛 is the total number of pixels in the image matrix and 𝑆𝑝𝑙 are the computed

visible packet losses in a video frame. The overall quality score for the sequence is

computed as the average quality score across all frames of the sequence. By way

of example, Figure 5.19 shows an image frame corrupted by two packet losses. The

temporal difference between this frame and the previous frame in the sequence is
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Table 5.4: Correlation of Quality metrics with MOS

Metric PLCC
PSNR 0.3580
SSIM 0.3794

Video BLIINDS 0.4240

shown in Figure 5.19(b). The hypothesised “salient packet losses” are further weighted

by the local entropy (c) to derive the proposed quality statistic (d) for each image

frame. In this example, the most visible impairments due to packet losses occur

near the back wheel of the van and on the pedestrians to the right of the video

frame. These regions correspond to “highly salient packet losses” as predicted by the

quality metric. The performance of the proposed quality metric was evaluated on

ground truth MOS scores from the video database. Correlation between the derived

quality model and human opinion across the entire test data set is 0.8211, which is

significantly higher than the correlation for the other metrics shown in Table 5.4. The

proposed quality model significantly outperforms both the PSNR and SSIM metric,

as well as the more recent no-reference video BLIINDS algorithm, for video sequences

degraded with packet loss.
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(a) (b)

(c) (d)

Figure 5.19: A frame with two lost packets (a), the temporal difference between

frames (b), the entropy of the corrupted frame (c), and predicted salient packet loss

(d).

5.8 Discussion and Conclusions

In this chapter a method for evaluating the perceptual quality of automotive im-

ages that have been converted from fish-eye to rectilinear images was first presented.

It has also been demonstrated that the position of salient objects in a scene has a

significant effect on perceptual quality. The use of regions of interest to weight ob-

jective metrics has been shown to increase correlation with subjective opinion scores.

The influence of packet loss on QoE for automotive video has also been investigated.



Chapter 5: Evaluating the Influence of Saliency on Perceptual Quality in
Automotive Vision Systems 143

A data set of automotive video sequences was created and transmitted through an

automotive grade network simulation testbed with varying levels of packet loss. Sub-

jective tests were conducted to obtain ground truth MOS and saliency data. The

results indicate that packet losses do not significantly alter the visual attention of the

viewer. This is an important result, since it suggests that the visual attention of a

driver is more strongly influenced by top-down, task related factors such as watching

the road ahead for potential hazards, than by sensory cues, which are more related

to low-level vision. The MOS scores further suggest that packet losses in regions of

high temporal activity are more salient than those in regions of low temporal activ-

ity. A no-reference model for evaluating the quality of video corrupted with packet

losses was finally proposed. The results of the subjective experiment demonstrate

that the proposed model outperforms existing video quality metrics on a data set of

automotive video sequences. Furthermore, the model is generic and can be adapted

to suit the needs of alternative network topologies. Future research could include

the examination of alternative packet loss recovery mechanisms and their effect on

perceptual quality.



Chapter 6

Conclusions and Future Work

6.1 Project Summary and Conclusions

This thesis has considered some of the issues around image and video quality as-

sessment in the automotive environment, including methodologies for subjective and

objective assessment of quality. Studies on the influence of image artifacts on both a

human viewer’s perception of quality and the performance of pedestrian detection al-

gorithms have been carried out. An immediate conclusion of this thesis is that images

optimized for human perception of quality are not necessarily optimal for machine

vision performance. As a result, existing perceptual quality metrics do not always

accurately predict the performance of detection algorithms on degraded images.

A novel IQA metric that accurately predicts the performance of pedestrian de-

tection algorithms under varying image quality has been proposed in Chapter 3.

The proposed metric operates by comparing the underlying HOG vectors in both

the reference and degraded frames. The metric, termed HMSE, is computationally

144
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inexpensive and achieves higher correlation with algorithm performance for a num-

ber of recently-proposed pedestrian detection algorithms, compared to image quality

algorithms such as SSIM, FSIM and IWSSIM.

The metric is full reference and hence can be used at the system design stage in

order to optimize video quality for detection performance. However, such a metric is

unsuitable for real-time automotive implementations since typically a reference frame

is unavailable in such an environment. An analysis of image quality impairments and

their relationship to the performance of pedestrian detection algorithms has been

carried out. It has been shown for example that for particular levels of JPEG com-

pressed images, a small improvement in quality can lead to a significant increase in

the performance of a pedestrian detection algorithm. This is an important result,

since in most automotive vision systems, the effect of such quality degradations can

be mitigated by controlling the compression ratio. The results of this analysis have

shown that detection performance can be optimized on distorted images by training a

classifier specifically for distortion level and type. These results have been used along

with spatial NSS features to develop a no reference framework for multi-classifier

pedestrian detection in Chapter 4. The multi-classifier approach offers higher detec-

tion accuracy on distorted images than single classifier performance, including when

evaluated on a database with real-world impairments. The proposed framework rep-

resents an improvement on approaches based on single classifiers as used in most of

the existing literature; for example, a reduction in Log-Average-Miss-Rate (LAMR)

from 21.82 to 17.51 was obtained compared to a classifier trained only on high quality

images from the ChangeDetection data set [127]. Furthermore, since the approach
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operates directly on multi-scale spatial pixel data it is computationally efficient and

suitable for real-time implementation.

Analysis of the perceived quality of automotive images and video sequences has

been carried out through subjective quality tests in Chapter 5. The results demon-

strate that saliency plays an important role in the perception of quality. Moreover,

in the automotive environment, saliency is more strongly influenced by top-down,

rather than bottom-up, visual processing. For example, in the subjective video test

concerning packet loss impairments, pedestrians were almost always the most salient

feature in a frame, regardless of the location or rate of packet losses.

A method for evaluating the perceptual blur in automotive images that have been

converted from fish-eye to rectilinear images has been presented. The algorithm makes

use of saliency information by utilizing a graph-based visual saliency model to weight

local sharpness scores.

Finally, based on the ground truth saliency data collected from human observers,

a no-reference model for evaluating the perceptual quality of video corrupted with

packet losses has been proposed. Results from subjective experiments demonstrate

that the proposed model correlates closer to ground truth subjective quality opinions

than existing image quality metrics on a data set of automotive video sequences,

achieving a Pearson Linear Correlation Coefficient (PLCC) of 0.8211 with all video

sequences, compared with a PLCC of 0.4240 for the next best performing metric

tested. The algorithm is computationally inexpensive and could be used in real-time

automotive vision systems to monitor and adapt video quality.



Chapter 6: Conclusions and Future Work 147

6.2 Primary Contributions

The primary contributions of this thesis are listed below.

1. An evaluation of the effect of image impairments on pedestrian detection algo-

rithm performance has been carried out. The degree to which typical automo-

tive video quality degradations such as compression artifacts and sensor noise

affect the performance of pedestrian detection algorithms has been evaluated.

2. A full reference IQA algorithm based on HOG vectors has been proposed,

which correlates closely with pedestrian detection performance on degraded

video frames. The metric can be used to optimize automotive video settings

while mitigating the need for testing on large annotated databases.

3. A framework for no reference distortion classification has been presented. The

classification metric is based on natural image statistics. In tests conducted on

a large image database the algorithm correctly classified over 99% of distorted

images. The classification technique has been combined with a multi-classifier

approach to pedestrian detection in order to increase detection performance on

degraded images.

4. A new approach for predicting the QoE of fish-eye to rectilinear transformed im-

ages has been proposed. The algorithm incorporates a model of visual saliency

in order to improve correlation with human opinion scores.

5. An automotive specific video quality database has been presented consisting

of 50 video sequences with associated human saliency data and MOSes. The
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influence of packet loss on visual QoE for high bandwidth automotive networks

has been evaluated.

6. A saliency based framework for no reference video quality assessment of packet

loss degraded video has been proposed. The metric is computationally efficient

and correlates well with human opinion.

6.3 Suggestions for Future Work

There are several potential areas of research that could be explored in future work.

Improving the robustness of detection algorithms to noise and compression arti-

facts is a pre-processing option that could be considered. In particular, it would be of

interest to analyze the effect of pre-processing images with de-noising and de-blocking

algorithms before extracting features for detection. From a quality perspective, such

processing may improve the perceptual quality of the resulting video and could also

potentially improve the detection performance of pedestrian detection algorithms.

However in real-time automotive systems, implementation of these pre-processing

steps would likely be challenging. It could also be of interest to evaluate reference

and test HOG vectors at multiple scales to examine whether or not there is an optimal

scale for image quality evaluation.

The framework for distortion categorization could be expanded to include other

types of distortion such as blurring. The addition of more distortions would increase

algorithm complexity and also make correct classification more difficult. Any resulting

improvement in detection performance would need to be evaluated in the context of
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additional complexity and computation time.

The interaction between spatial scene statistics and machine vision performance is

an interesting area of research which remains relatively unexplored. Future work could

examine the scene statistics of automotive images in more detail. For example, typical

automotive images use High Dynamic Range (HDR) image sensors with super-wide

fields of view. It is known that the statistics of HDR images differ from those of low

dynamic range images [161]. The super-wide field of view lenses also exhibit severe

radial distortion which is likely to further alter scene statistics. The question as to

whether or not distortions such as AWGN and degradations introduced by block-DCT

based image compression techniques introduce the same characteristic deviations in

the statistics of HDR and radially distorted images as are found in natural images is

a topic that could be explored in more detail. Indeed there are hardware solutions

to the wide FOV problem that could also be examined as a potential solution for

automotive applications.

Evaluating both perceptual image quality and machine vision performance in sub

optimal weather conditions is a research topic that is under-researched. Optimizing

detection performance in heavy rain or fog, for example, would be desirable.

Finally, the development of efficient, embedded implementations of the algorithms

proposed in this thesis, with real-time performance, is a further topic of interest.
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Appendix A

Experimental Details

A.1 Computing the HOG feature

Matlab code to efficiently compute the HOG feature is available as part of Piotr’s

Image and Video Matlab toolbox referenced in chapter 3. For the experiments in

this thesis the default parameters were used to extract the HOG vector, H. Namely

a binsize of width 8 pixels, 9 oriented gradients (nOrients = 9), and a histogram

clipping threshold of 0.2. Thus for an input image I, with dimensions ℎ×𝑤, the size

of the computed feature vector H is given by:

𝑓𝑙𝑜𝑜𝑟([
ℎ

𝑏𝑖𝑛𝑆𝑖𝑧𝑒
,

𝑤

𝑏𝑖𝑛𝑆𝑖𝑧𝑒
, 𝑛𝑂𝑟𝑖𝑒𝑛𝑡𝑠× 4]). (A.1)

Each binSize x binSize region, computes a histogram of gradients, with each gradi-

ent quantized by its angle and weighted by its magnitude. For colour images, the

gradient is computed separately for each colour channel and the one with maximum

magnitude is used. Tri-linear interpolation is used to place each gradient in the ap-

propriate spatial and orientation bin. For each resulting histogram (with nOrients
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bins), four different normalizations are computed using adjacent histograms, resulting

in a nOrients x 4 length feature vector for each region. To compute the normaliza-

tions, first for each block of adjacent 2 x 2 histograms their L2 norm is computed.

Each histogram thus has 4 different normalization values associated with it. Each

histogram bin is then normalized by each of the 4 different L2 norms, resulting in a

4 times expansion of the number of bins. Finally, any bin whose value is bigger than

the clipping threshold is set to the threshold value.

A.2 Algorithm Retraining

The quality parameters used for creating the data sets of distorted images in

Chapter 3 are listed in table A.1. Distortion levels used for the experiments in Chapter

4 are listed in table A.2

All three pedestrian detection algorithms evaluated in this thesis utilize a form of

HOG vector for pedestrian detection. The default parameters for each algorithm were

used. All algorithms use a binwidth (or cell size) of 8 pixels, 9 oriented gradients, and

a clipping threshold of 0.2. A spatial stride of 4 pixels was used between detection

windows.

In Chapter 3 distorted versions of the INRIA training set were used to retrain

each detection algorithm. For the AWGN trained model, each image in the training

set was distorted with AWGN of variance of 0.002. For the JPEG trained model, all

training images were JPEG compressed with Quality factor Q=50. The multi-quality

model was derived from training on all three sets of the training images (reference,

AWGN degraded and JPEG compressed.)
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In Chapter 4, each algorithm was retrained on distorted versions of the INRIA and

Caltech data sets. For each AWGN trained model, AWGN was added to every image

in the training set so that it’s NIQE score was within a particular range. Similarly,

for every JPEG trained model, every image in the data set was compressed so that its

NIQE score was within the desired range. Models were trained for all NIQE ranges

in table A.3
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Table A.1: Chapter 3: Quality parameters for Distorted data sets

Level AWGN (variance) JPEG (Q) JP2 (CR)

1 0.00001 95 2
2 0.00005 90 3
3 0.0001 85 4
4 0.0002 80 5
5 0.0004 75 6
6 0.0006 70 7
7 0.0008 65 8
8 0.001 60 9
8 0.0015 55 10
10 0.002 50 12
11 0.003 46 14
12 0.004 42 16
13 0.005 38 18
14 0.006 34 20
15 0.007 30 22
16 0.008 28 24
17 0.009 26 26
18 0.01 24 28
19 0.012 22 30
20 0.014 20 34
21 0.016 19 38
22 0.02 18 42
23 0.025 17 46
24 0.03 16 50
25 0.035 15 55
26 0.04 14 60
27 0.045 13 65
28 0.05 12 70
29 0.055 11 75
30 0.06 10 80
31 0.07 9 85
32 0.075 8 90
33 0.08 7 95
34 0.085 6 100
35 0.09 5 150
36 0.095 4 200
37 0.1 3 400
38 0.2 2 600
39 0..3 1 800
40 0.5 0 1000
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Table A.2: Chapter 4: Quality parameters for Distorted data sets

Level AWGN (variance) JPEG (Q)

1 0.00005 60
2 0.0006 50
3 0.0015 30
4 0.003 24
5 0.006 19
6 0.009 15
7 0.014 12
8 0.025 8
8 0.045 6
10 0.085 5
11 0.2 4
12 0.3 1

Table A.3: Chapter 4: Quality parameters for training models

Distortion type NIQE range

Reference 0-4
AWGN 4-6
AWGN 6-8
AWGN 8-10
AWGN 10-12
AWGN 12-14
AWGN > 14
JPEG 4-6
JPEG 6-8
JPEG 8-10
JPEG > 10
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Matlab scripts to generate degraded images.  

 

% File location for INRIA positive samples. This code assumes that the 

% INRIA database has been stored at the particular location indicated 

% below.  

% This function is used to generate the JPEG compressed database used 

% for the experiments reported in Chapter 3.  

 

listing = dir('C:\INRIAPerson\Test\pos\*.png'); 

filepath = 'C:\INRIAPerson\test\jpeg\'; 

% 40 quality parameters 

quality = 

[95,90,85,80,75,70,65,60,55,50,46,42,38,34,30,28,26,24,22,20,19,18,17,

16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0]; 

 

for j = 1:40 

    batch = num2str(quality(j)); 

    folder = strcat(filepath,batch); 

 

% check folder exists 

      if ~exist(folder, 'dir') 

      mkdir(folder); 

      end 

     

% for each of the 288 positive INRIA samples 

    for i = 1:288 

        filename = strcat(filepath,batch,'\',listing(i).name); 

        [a,b,c] = fileparts(filename); 

        filename = strcat(a,'\',b,'.jpg'); 

        

 %read files sequentially  

        getfile = strcat('C:\INRIAPerson\Test\pos\',listing(i).name); 

        I = imread(getfile); 

         

% Write degraded image file to folder 

        imwrite(I,filename,'Quality',quality(j)); 

     end 

end 

 

 

 

 

 

 

 

 

 

 



% File location for INRIA positive samples. This code assumes that the 

% INRIA database has been stored at the particular location indicated 

% below.  

% This function is used to generate the JPEG2K compressed database 

used % for the experiments reported in Chapter 3.  

 

% File location for INRIA positive samples 

listing = dir('C:\INRIAPerson\Test\pos\*.png'); 

filepath = 'C:\INRIAPerson\test\jpeg2k\'; 

 

% 40 compression parameters 

compression = 

[2,3,4,5,6,7,8,9,10,12,14,16,18,20,22,24,26,28,30,34,38,42,46,50,55,60

,65,70,75,80,85,90,95,100,150,200,400,600,800,1000]; 

 

for j = 1:40 

    batch = num2str(compression(j)); 

    folder = strcat(filepath,batch); 

     

% check folder exists 

    if ~exist(folder, 'dir') 

    mkdir(folder); 

    end 

     

% for each of the 288 positive INRIA samples 

    for i =1:288 

        filename = strcat(filepath,batch,'\',listing(i).name); 

        [a,b,c] = fileparts(filename); 

        filename = strcat(a,'\',b,'.jp2'); 

         

%read files sequentially 

        getfile = strcat('C:\INRIAPerson\Test\pos\',listing(i).name); 

        I = imread(getfile); 

         

% Write degraded image file to folder 

        imwrite(I,filename,'compression',compression(j)); 

         

     end 

end 

 

 

 

 

 

 

 

 

 



% File location for INRIA positive samples. This code assumes that the 

% INRIA database has been stored at the particular location indicated 

% below.  

% This function is used to generate the noise database used for the   

% experiments reported in Chapter 3.  

 

% File location for INRIA positive samples 

listing = dir('C:\INRIAPerson\Test\pos\*.png'); 

filepath = 'C:\INRIAPerson\test\noise\'; 

 

% 40 quality (variance) parameters 

for j = 1:40 

    variance = 

[0.00001,0.00005,0.0001,0.0002,0.0004,0.0006,0.0008,0.0010,0.0015... 

    

0.002,0.003,0.004,0.005,0.006,0.007,0.008,0.009,0.01,0.012,0.014... 

    

0.016,0.02,0.025,0.03,0.035,0.04,0.045,0.05,0.055,0.06,0.07,0.075,... 

    0.08,0.085,0.09,0.095,0.1,0.2,0.3,0.5]; 

 

    batch = num2str(j); 

    folder = strcat(filepath,batch); 

     

% check folder exists 

    if ~exist(folder, 'dir') 

    mkdir(folder); 

    end 

     

% for each of the 288 positive INRIA samples 

    for i = 1:288 

        filename = strcat(filepath,batch,'\',listing(i).name); 

        [a,b,c] = fileparts(filename); 

        filename = strcat(a,'\',b,'.bmp'); 

         

%read files sequentially 

        getfile = strcat('C:\INRIAPerson\Test\pos\',listing(i).name); 

        I = imread(getfile); 

        I = imnoise(I,'gaussian',0,variance(j)); 

         

% Write degraded image file to folder 

        imwrite(I,filename); 

    end 

end 

 

 

 



% Routine to evaluate detections against ground truth. Piotr Dollar’s 

% image processing toolbox is required and is available to download   

% at: https://github.com/pdollar/toolbox  

%This code was used for the experiments reported in Chapter 4 

 

% preload all classifiers (detection) 

load models\AcfInria1000Detector.mat; 

load models\AcfInriaNoise6to8Detector.mat; 

load models\AcfInriaJPEG6to8Detector.mat; 

load models\AcfInriaNoise8to10Detector.mat; 

load models\AcfInriaJPEG8to10Detector.mat; 

load models\AcfInriaNoise10to12Detector.mat; 

load models\AcfInriaJPEG10plusDetector.mat; 

load models\AcfInriaNoise12to14Detector.mat; 

load models\AcfInriaNoise14plusDetector.mat; 

load models\AcfInriaOptimalDetector.mat; 

load AcfInriaRobustDetector.mat; 

load AcfInriaRobustPristinePosDetector.mat'); 

 

datadir = 

'C:\Pedestrian_detection\cwd2014\pedestriandetectiondataset\pedestrian

s\input\'; 

d = 

dir('C:\Pedestrian_detection\cwd2014\pedestriandetectiondataset\pedest

rians\input\*.jpg'); 

[n,~] = size(d) 

writeFile = 'MultiClassifierNew.txt'; 

 

%ground truth directory 

gtDir = 

'C:\Pedestrian_detection\cwd2014\pedestriandetectiondataset\pedestrian

s\gt'; 

 

% set parameters 

    blocksizerow    = 96; 

    blocksizecol    = 96; 

    blockrowoverlap = 0; 

    blockcoloverlap = 0; 

    thr = 0.5;mul =0; ref = 10.^(-2:.25:0); 

    lims = [3.1e-3 1e1 .05 1]; 

 

display('detecting pedestrians...'); 

  

% display progress... 

 for i = 1:n 

     val = mod(i,100); 

     if (val == 0) 

         fprintf([num2str(i) '/' num2str(n) ' images processed\n']); 

     end 

 I = imread([datadir d(i).name]); 

 



 

%load pristine model 

 

load C:\INRIAPerson\niqe_release\modelparameters.mat; 

quality = 

computequality(I,blocksizerow,blocksizecol,blockrowoverlap,blockcolove

rlap,mu_prisparam,cov_prisparam); 

  

%select appropriate classifier 

 if (quality <= 6) 

  detector = PristineDetector; 

   

 elseif (quality <=8) 

    load C:\INRIAPerson\niqe_release\modelparameters_jpeg6to8.mat; 

    jpeg = 

computequality(I,blocksizerow,blocksizecol,blockrowoverlap,blockcolove

rlap,mu_prisparam,cov_prisparam); 

    load C:\INRIAPerson\niqe_release\modelparameters_noise6to8.mat; 

    noise = 

computequality(I,blocksizerow,blocksizecol,blockrowoverlap,blockcolove

rlap,mu_prisparam,cov_prisparam); 

          if (noise<=jpeg) 

             detector = Noise6to8Detector; 

          else 

              detector = JPEG6to8Detector; 

          end 

 

 elseif (quality <= 10) 

     load C:\INRIAPerson\niqe_release\modelparameters_jpeg8to10.mat; 

     jpeg = 

computequality(I,blocksizerow,blocksizecol,blockrowoverlap,blockcolove

rlap,mu_prisparam,cov_prisparam); 

     load C:\INRIAPerson\niqe_release\modelparameters_noise8to10.mat; 

     noise = 

computequality(I,blocksizerow,blocksizecol,blockrowoverlap,blockcolove

rlap,mu_prisparam,cov_prisparam); 

          if (noise<=jpeg) 

           detector = Noise8to10Detector; 

          else 

           detector = JPEG8to10Detector; 

          end 

           

 elseif (quality <= 12) 

    load C:\INRIAPerson\niqe_release\modelparameters_jpeg10to12.mat 

    jpeg = 

computequality(I,blocksizerow,blocksizecol,blockrowoverlap,blockcolove

rlap,mu_prisparam,cov_prisparam); 

    load C:\INRIAPerson\niqe_release\modelparameters_noise10to12.mat 

    noise = 

computequality(I,blocksizerow,blocksizecol,blockrowoverlap,blockcolove

rlap,mu_prisparam,cov_prisparam); 

          if (noise<=jpeg) 



              detector = Noise10to12Detector; 

          else 

              detector = JPEG10plusDetector; 

          end 

     

 elseif (quality <= 14) 

      load C:\INRIAPerson\niqe_release\modelparameters_jpeg12to14.mat; 

      jpeg = 

computequality(I,blocksizerow,blocksizecol,blockrowoverlap,blockcolove

rlap,mu_prisparam,cov_prisparam); 

  load C:\INRIAPerson\niqe_release\modelparameters_noise12to14.mat; 

      noise = 

computequality(I,blocksizerow,blocksizecol,blockrowoverlap,blockcolove

rlap,mu_prisparam,cov_prisparam); 

          if (noise<=jpeg) 

             detector = Noise12to14Detector; 

          else 

             detector = JPEG10plusDetector; 

          end 

           

 else  

      load C:\INRIAPerson\niqe_release\modelparameters_jpeg14plus.mat; 

      jpeg = 

computequality(I,blocksizerow,blocksizecol,blockrowoverlap,blockcolove

rlap,mu_prisparam,cov_prisparam); 

load C:\INRIAPerson\niqe_release\modelparameters_noise14plus.mat; 

      noise = 

computequality(I,blocksizerow,blocksizecol,blockrowoverlap,blockcolove

rlap,mu_prisparam,cov_prisparam); 

          if (noise<=jpeg) 

              detector = Noise14plusDetector; 

          else 

              detector = JPEG10plusDetector; 

               

          end 

end 

 

  

%bounding box 

 bbs = acfDetect(I, detector); 

 [m,~] = size(bbs); 

 x = zeros(m,1); 

 x(:,1) = i; % i is image id, to be pre-pended to bbs 

 dtI = cat(2,x,bbs); 

 

%write results to file 

dlmwrite(writeFile,dtI,'-append'); 

 

end 

 

 

 



display('Evaluating detection performance...'); 

% run evaluation using bbGt 

[gt,dt] = bbGt('loadAll',gtDir,writeFile); 

[gt,dt] = bbGt('evalRes',gt,dt,thr,mul); 

[fp,tp,score,miss] = bbGt('compRoc',gt,dt,1,ref); 

miss=exp(mean(log(max(1e-10,1-miss)))); roc=[score fp tp]; 

 

%plot roc 

figure(1);hold on; plotRoc([fp tp],'logx',1,'logy',1,'xLbl','fppi',... 

  'lims',lims,'color','g','smooth',1,'fpTarget',ref); 

title(sprintf('log-average miss rate = %.2f%%',miss*100)); 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



% The function (written by Zhou Wang) used to evaluate the SSIM index 

% for the experiments reported in Chapter 3 is reproduced here for    

% convenience.  

 

function [mssim, ssim_map] = ssim_index(img1, img2, K, window, L) 

 

%===================================================================== 

%SSIM Index, Version 1.0 

%Copyright(c) 2003 Zhou Wang 

%All Rights Reserved. 

% 

%The author was with Howard Hughes Medical Institute, and Laboratory 

%for Computational Vision at Center for Neural Science and Courant 

%Institute of Mathematical Sciences, New York University, USA. He is 

%currently with Department of Electrical and Computer Engineering, 

%University of Waterloo, Canada. 

% 

%--------------------------------------------------------------------- 

%Permission to use, copy, or modify this software and its 

documentation 

%for educational and research purposes only and without fee is hereby 

%granted, provided that this copyright notice and the original 

authors' 

%names appear on all copies and supporting documentation. This program 

%shall not be used, rewritten, or adapted as the basis of a commercial 

%software or hardware product without first obtaining permission of 

the 

%authors. The authors make no representations about the suitability of 

%this software for any purpose. It is provided "as is" without express 

%or implied warranty. 

%--------------------------------------------------------------------- 

% 

%This is an implementation of the algorithm for calculating the 

%Structural SIMilarity (SSIM) index between two images. Please refer 

%to the following paper: 

% 

%Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image 

%quality assessment: From error measurement to structural similarity" 

%IEEE Transactios on Image Processing, vol. 13, no. 4, Apr. 2004. 

% 

%Kindly report any suggestions or corrections to zhouwang@ieee.org 

% 

%--------------------------------------------------------------------- 

% 

%Input : (1) img1: the first image being compared 

%        (2) img2: the second image being compared 

%        (3) K: constants in the SSIM index formula (see the above 

%            reference). defualt value: K = [0.01 0.03] 

%        (4) window: local window for statistics (see the above 

%            reference). default widnow is Gaussian given by 

%            window = fspecial('gaussian', 11, 1.5); 

%        (5) L: dynamic range of the images. default: L = 255 



% 

%Output: (1) mssim: the mean SSIM index value between 2 images. 

%            If one of the images being compared is regarded as  

%            perfect quality, then mssim can be considered as the 

%            quality measure of the other image. 

%            If img1 = img2, then mssim = 1. 

%        (2) ssim_map: the SSIM index map of the test image. The map 

%            has a smaller size than the input images. The actual 

size: 

%            size(img1) - size(window) + 1. 

% 

%Default Usage: 

%   Given 2 test images img1 and img2, whose dynamic range is 0-255 

% 

%   [mssim ssim_map] = ssim_index(img1, img2); 

% 

%Advanced Usage: 

%   User defined parameters. For example 

% 

%   K = [0.05 0.05]; 

%   window = ones(8); 

%   L = 100; 

%   [mssim ssim_map] = ssim_index(img1, img2, K, window, L); 

% 

%See the results: 

% 

%   mssim                        %Gives the mssim value 

%   imshow(max(0, ssim_map).^4)  %Shows the SSIM index map 

% 

%==================================================================== 

if (nargin < 2 | nargin > 5) 

   mssim = -Inf; 

   ssim_map = -Inf; 

   return; 

end 

 

if (size(img1) ~= size(img2)) 

   mssim = -Inf; 

   ssim_map = -Inf; 

   return; 

end 

 

[M N] = size(img1); 

 

if (nargin == 2) 

   if ((M < 11) | (N < 11)) 

    mssim = -Inf; 

    ssim_map = -Inf; 

      return 

   end 

   window = fspecial('gaussian', 11, 1.5); % 

   K(1) = 0.01;      % default settings 



   K(2) = 0.03;           % 

   L = 255;                                  % 

end 

 

if (nargin == 3) 

   if ((M < 11) | (N < 11)) 

    mssim = -Inf; 

    ssim_map = -Inf; 

      return 

   end 

   window = fspecial('gaussian', 11, 1.5); 

   L = 255; 

   if (length(K) == 2) 

      if (K(1) < 0 | K(2) < 0) 

     mssim = -Inf; 

     ssim_map = -Inf; 

     return; 

      end 

   else 

    mssim = -Inf; 

    ssim_map = -Inf; 

    return; 

   end 

end 

 

if (nargin == 4) 

   [H W] = size(window); 

   if ((H*W) < 4 | (H > M) | (W > N)) 

    mssim = -Inf; 

    ssim_map = -Inf; 

      return 

   end 

   L = 255; 

   if (length(K) == 2) 

      if (K(1) < 0 | K(2) < 0) 

     mssim = -Inf; 

     ssim_map = -Inf; 

     return; 

      end 

   else 

    mssim = -Inf; 

    ssim_map = -Inf; 

    return; 

   end 

end 

 

if (nargin == 5) 

   [H W] = size(window); 

   if ((H*W) < 4 | (H > M) | (W > N)) 

    mssim = -Inf; 

    ssim_map = -Inf; 

      return 



   end 

   if (length(K) == 2) 

      if (K(1) < 0 | K(2) < 0) 

     mssim = -Inf; 

     ssim_map = -Inf; 

     return; 

      end 

   else 

    mssim = -Inf; 

    ssim_map = -Inf; 

    return; 

   end 

end 

 

C1 = (K(1)*L)^2; 

C2 = (K(2)*L)^2; 

window = window/sum(sum(window)); 

img1 = double(img1); 

img2 = double(img2); 

 

mu1   = filter2(window, img1, 'valid'); 

mu2   = filter2(window, img2, 'valid'); 

mu1_sq = mu1.*mu1; 

mu2_sq = mu2.*mu2; 

mu1_mu2 = mu1.*mu2; 

sigma1_sq = filter2(window, img1.*img1, 'valid') - mu1_sq; 

sigma2_sq = filter2(window, img2.*img2, 'valid') - mu2_sq; 

sigma12 = filter2(window, img1.*img2, 'valid') - mu1_mu2; 

 

if (C1 > 0 & C2 > 0) 

   ssim_map = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))./((mu1_sq + mu2_sq 

+ C1).*(sigma1_sq + sigma2_sq + C2)); 

else 

   numerator1 = 2*mu1_mu2 + C1; 

   numerator2 = 2*sigma12 + C2; 

 denominator1 = mu1_sq + mu2_sq + C1; 

   denominator2 = sigma1_sq + sigma2_sq + C2; 

   ssim_map = ones(size(mu1)); 

   index = (denominator1.*denominator2 > 0); 

   ssim_map(index) = 

(numerator1(index).*numerator2(index))./(denominator1(index).*denomina

tor2(index)); 

   index = (denominator1 ~= 0) & (denominator2 == 0); 

   ssim_map(index) = numerator1(index)./denominator1(index); 

end 

 

mssim = mean2(ssim_map); 

 

return 
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