
 
Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-03-20T10:30:00Z

 

Some rights reserved. For more information, please see the item record link above.
 

Title Semi-automatic Integration of Learned Ontologies into a
Collaborative Framework

Author(s) Nováek, Vít; Handschuh, Siegfried

Publication
Date 2007

Publication
Information

Vit Novacek, Loredana Laera, Siegfried Handschuh "Semi-
automatic Integration of Learned Ontologies into a
Collaborative Framework", Proceedings of IWOD/ESWC
2007, in conjunction with ESWC 2007, 2007.

Item record http://hdl.handle.net/10379/559

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/


Semi-automatic Integration of Learned

Ontologies into a Collaborative Framework⋆

Vı́t Nováček1, Loredana Laera2, and Siegfried Handschuh1

1Digital Enterprise Research Institute, National University of Ireland, Galway
IDA Business Park, Lower Dangan, Galway, Ireland

E-mail: first name.last name@deri.org
2Department of Computer Science

University of Liverpool, UK
E-mail: lori@csc.liv.ac.uk

Abstract. The paper presents a novel ontology lifecycle scenario that
explicitly takes the dynamics and data-intensiveness of real world ap-
plications into account. Changing and growing knowledge is handled by
semi-automatic incorporation of ontology learning results into a collabo-
rative ontology development framework. This integration bases mainly
on automatic negotiation of agreed alignments, inconsistency resolution,
an ontology versioning system and support of natural language gene-
ration tools, which alleviate the end-user effort in the incorporation of
new knowledge. The architecture of the respective framework and notes
on its progressive implementation are presented.

1 Introduction and Motivation

Ontologies on the Semantic Web, especially in case of real world applications,
are very likely subject to change given the dynamic nature of domain know-
ledge. Knowledge changes and evolves over time as experience accumulates – it
is revised and augmented in the light of deeper understanding; new facts are
getting known while some of the old ones need to be revised and/or retracted at
the same time.

This holds especially for scientific domains – we have to incorporate newly
discovered facts and possibly change the inappropriate old ones in the respective
ontology as the scientific research evolves further. However, even virtually any
industrial domain is dynamic – changes typically occur in product portfolios,
personal structure or industrial processes, which can all be reflected by an onto-
logy in a knowledge management policy.

In these domains, ontology construction is usually the result of collaboration
(which involves cooperation among ontology engineers and domain experts)

⋆ This work has been supported by the EU IST 6th framework’s Network of Excellence
‘Knowledge Web’ (FP6-507482) and partially by Academy of Sciences of the
Czech Republic, ‘Information Society’ national research program, the grant AV
1ET100300419.



through a manual process of the extraction of the knowledge. However, it is not
always feasible to process all the relevant data and extract the knowledge from
them manually, since we might not have a sufficiently large committee of ontology
engineers and/or dedicated experts at hand in order to process new data anytime
it occurs. This implies a need for (partial) automation of ontology extraction and
management processes in dynamic and data-intensive environments. This can be
achieved by ontology learning [15]. Therefore, a lifecycle of an ontology develop-
ment process apt for universal application in scientific and/or industrial domains
should also support appropriate mechanisms for dealing with the large amounts
of knowledge that are dynamic in nature.

While there has been a great deal of work on ontology learning for onto-
logy construction, e.g. [2], as well as on collaborative ontology development [18],
relatively little attention has been paid to the integration of both approaches
within an ontology lifecycle scenario. In this paper, we introduce our framework
for practical handling of dynamic and large data-sets in an ontology lifecycle,
focusing particularly on dynamic integration of learned knowledge into collabo-
ratively developed ontologies. One of the key elements supporting our integration
is the ability to reach an agreement on the semantics of the terms used in these
ontologies. Since the ontologies are created under different circumstances and
conditions and thus might represent different perspectives over similar know-
ledge, the achievement of an agreement will necessarily come through a (partially
automated) negotiation process.

The dynamic nature of knowledge is one of the most challenging problems
in the current Semantic Web research. Here we provide a solution for dealing
with dynamics in large scale, based on properly developed connection of onto-
logy learning and dynamic collaborative development. We do not concentrate on
formal specification of respective ontology integration operators, we focus rather
on implementation of them, following certain practical requirements:

1. the ability to process new knowledge (resources) automatically whenever it
appears and when it is inappropriate for humans to incorporate it;

2. the ability to automatically compare the new knowledge with a “master”
ontology that is manually and collaboratively designed and select the new
knowledge accordingly;

3. the ability to resolve inconsistencies between the new and current knowledge,
possibly favouring the assertions from presumably more complex and precise
master ontology against the learned ones;

4. the ability to automatically sort the new knowledge according to user-defined
preferences and present it to them in a very simple way, thus further allevi-
ating human efforts in the task of final incorporation of the knowledge.

On one hand, using the automatic methods, we are able to deal with large
amounts of changing data. On the other hand, the final incorporation of new
knowledge is to be decided by the human users, repairing possible errors and
inappropriate findings of the automatic techniques. The key to success and
applicability is to let machines do most of the tedious and time-consuming work
and provide people with concise and simple suggestions on ontology integration.



The rest of the paper is organized as follows: Section 2 presents a brief
discussion of related work. Section 3 gives an overview of our ontology lifecycle
scenario and framework, whereas Section 4 presents the integration of manually
designed and learned ontologies in more detail. Finally, in Section 5 we give a
simple illustrative example of concrete usage of the our integration approach.
Section 6 concludes the paper and sums up our future work.

2 Related Work

Recent overviews of the state-of-the-art in ontologies and related methodologies
can be found in [9]. However, none of them offers a direct solution to the
previously mentioned problems. Methontology [8] is a methodology developed for
designing ontologies to serve as a base for extending it towards evolving onto-
logies. The ODESeW and WebODE suite [4] projects provide an infrastructure
and tools for semantic application development/management, which is also in
the process of being extended for networked and evolving ontologies. However,
they focus rather on the application development part of the problem than on
the ontology evolution parts.

The above projects have all focused on either a single part of ontology
evolution, or on a rather abstract study of the knowledge management cycle.
However, mechanisms that would provide a clue on how to incorporate the
dynamics into the lifecycle are typically put off only by introduction of the ver-
sion management, which we find insufficient. Moreover, the need for automatic
methods of ontology acquisition in data-intensive environments is acknowledged,
but the place of the automatic techniques is usually not distinguished in the
dynamic lifecycle settings. The work [10] describes a way of machine-assisted
refinement of automatically learnt ontologies. Our approach [17] offers a broader
picture of how to deal with the dynamics in a general lifecycle scenario. In this
paper we concentrate on the combination of ontology learning and manual (col-
laborative) development in dynamic settings.

3 DINO – A Dynamic Ontology Lifecycle Scenario

DINO is an abbreviation of three key elements of our ontology lifecycle scenario
and framework – Dynamics, INtegration and Ontology. However, the first two
can also be Data and INtensive. All these features express the primary aim of
our efforts – to make the knowledge efficiently and reasonably manageable in

data-intensive and dynamic domains.
Figure 1 below depicts the scheme of the proposed dynamic and application-

oriented ontology lifecycle that deals with the problems mentioned in the pre-
vious sections.

Our ontology lifecycle builds on four basic phases of an ontology lifecycle:
creation (comprises both manual and automatic ontology development and up-
date approaches), versioning, evaluation and negotiation (comprises ontology



Fig. 1. Dynamics in the ontology lifecycle

alignment and merging as well as negotiation among different possible align-
ments). The four main phases are indicated by the boxes annotated by respec-
tive names. Ontologies or their instances in time are represented by circles, with
arrows expressing various kinds of information flow. The A boxes present actors
(institutions, companies, research teams etc.) involved in ontology development,
where A1 is zoomed-in in order to show the lifecycle’s components in detail.

The general dynamics of the lifecycle goes as follows. The community experts
(or dedicated ontology engineers) develop a (relatively precise and complex)
domain ontology (the Community part of the Creation component). They use
means for continuous ontology evaluation and versioning to maintain high quality
and manage changes during the development process. If the amount of data
suitable for knowledge extraction is too large to be managed by the commu-
nity, ontology learning takes its place. Its results are evaluated and partially
(we take only the results with quality above a certain threshold into account)
integrated into the more precise (but typically relatively small) reference com-
munity ontology. The integration is based on alignment and merging covered
by the negotiation component. Its proposal and implementation principles form
the key contribution of this paper (see Section 4 for details). The negotiation

component takes its place also when interchanging or sharing the knowledge
with other independent actors in the field. All the phases support ontologies in
the standard OWL format [1], (namely in its OWL DL flavour), although some
phases may not support the full range of the syntactic structures available (e.g.
natural language generation from triples, as introduced in Section 4.7 here and
in [16]). In the following we concentrate on the integration component. More
information on other parts of the lifecycle can be found in [17].



4 Dynamic Integration of Newly Learned Knowledge in

the DINO Framework

The key novelty of the presented lifecycle scenario is its support for incorporation
of changing knowledge in data-intensive domains. This is achieved by implemen-
tation of a specific integration mechanism. Its scheme is depicted in Figure 21.
The particular components and their connections are described in the following
paragraphs.

Fig. 2. Dynamic integration scheme

The integration scheme details the usage of generic lifecycle’s components
– mainly the negotiation and versioning – in the process of incorporation of
learned ontologies into the collaboratively developed ones. However, the generic
components serve only as a base for specific wrappers. Each of the phases of
integration and their connections are described in the following sections.

4.1 Ontology Learning Wrapper

In this phase, machine learning and NLP methods are used for the processing of
relevant resources and extracting knowledge from them (ontology learning). The
ontology learning is realised using the Text2Onto framework [3]. We interface the
toolbox indirectly within the collaborative ontology development portal based
on MarcOnt Portal architecture (see Section 4.2). Configuration of the learning
algorithms is set using a special user interface in the portal. The settings is used
for batch processing of the new resources fed to the ontology learning component.

1 The full arrows symbolise data flow in the scheme. Long-dashed arrows indicate
production of a triple representation/dump of an ontology (the TD squares). The
short-dashed arrows represent user involvement either in ontology production or
extension preference sets’ definition.



The results of one round of ontology learning – the OL circle in Figure 2 – are
optionally evaluated or refined using the Text2Onto confidence values and passed
to the alignment/negotiation wrapper (see Section 4.3).

4.2 Ontology Collaborative Development Portal

The whole integration as well as the DINO framework is based on the MarcOnt
Portal architecture [11] for collaborative ontology development. It is a part of a
broader initiative aimed mainly at utilisation of various digital library develop-
ment and maintenance efforts2.

MarcOnt Portal offers domain-independent means for efficient distributed
and collaborative ontology development. It supports features like ontology edi-
ting, ontology versioning (supported by the SemVersion system [21]), voting on
ontology changes and evaluation of these votes. The elements of DINO realising
various parts of the lifecycle are being implemented into the portal’s core, with
access provided by respective new parts of portal’s user and administrative
interfaces.

The ontology being developed using the portal’s collaborative interfaces is
the master reference ontology in the whole lifecycle. It is also the source for
the deployment of an official version of the ontology. The OM circle in Figure 2
represents its dump that serves as a reference to be integrated with the OL onto-
logy resulting from the learning process. The final suggestions (see Section 4.7)
form a base for a next version of the OM ontology submitted after the integration.

4.3 Ontology Alignment/Negotiation (A/N) Wrapper

Once the learned ontology OL and the master ontology OM have been crea-
ted, they need to be reconciled since they cover the same domain, but might
be structured differently. The reconciliation of these ontologies depends on the
ability to reach an agreement on the semantics of the terms used. The agreement
takes the form of an alignment between the ontologies, that is, a set of corres-
pondences (or mappings) between the concepts, individuals and properties in
the ontologies. However, the ontologies are developed in different contexts and
under different conditions and thus they might represent different perspectives
over similar knowledge, so the process by which to come to an agreement will
necessarily only come through a negotiation process. The negotiation process
is performed using argumentation-based negotiation that uses preferences over
the types of correspondences in order to choose the mappings that will be used
to finally merge the ontologies (see Section 4.4). The preferences depend on
the context and situation. A major feature of this context is the ontology,
and the structural features thereof, such as the depth of the subclass hierarchy
and branching factor, ratio of properties to concepts, etc. The analysis of the
components of the ontology is aligned with the approach to ontology evaluation,
demonstrated in [5], and can be formalized in terms of feature metrics. Thus

2 See http://www.marcont.org for details on the whole MarcOnt Initiative.



the preferences can be determined on the characteristics of the ontology. For
example, we can select a preference for terminological mapping if the ontology
is lacking in structure, or prefer extensional mapping if the ontology is rich in
instances.

Thus, the alignment/negotiation wrapper interfaces two tools – one for the
ontology alignment discovery and one for negotiation of agreed alignment. We
call these tools AKit and NKit, respectively, within this section. For the former,
we use the ontology alignment API [6] developed by INRIA Rhone-Alpes3. For
the negotiation we use the framework described in [13]. Both tools are used
by the wrapper in order to produce OA – an ontology consisting of axioms4

merging classes, individuals and properties in the OL and OM ontologies. It is
used in consequent factual merging and refinement in the ontology reasoning
and management wrapper (see Section 4.4 for details).

The wrapper itself works according to the meta-code in Algorithm 1. The

Algorithm 1 Meta-algorithm of the alignment and negotiation
Require: OL, OM — ontologies in OWL format
Require: AKit, NKit — ontology alignment and alignment negotiation tools, respectively
Require: ALMSET — a set of the alignment methods to be used
Require: PREFSET — a set of alignment formal preferences corresponding to the OL, OM onto-

logies (to be used in N-kit)
1: SA ← ∅
2: for method ∈ ALMSET do

3: SA ← SA ∪ AKit.getAlignment(OL , OM , method)
4: end for

5: Aagreed ← NKit.negotiateAlignment(SA , PREFSET )
6: OA ← AKit.produceBridgeAxioms(Aagreed)
7: return OA

ontology alignment API offers several possibilities of actual alignment methods,
which range from trivial lexical equality detection through more sophisticated
string and edit-distance based algorithms to an iterative structural alignment
by the OLA algorithm [7]. The ontology alignment API has recently been ex-
tended by a method for the calculation of a similarity metric between ontology
entities, an adaptation of the SRMetric used in [20]. We also consider a set of
justifications, that explain why the mappings have been generated. This infor-
mation forms the basis for the negotiation framework that dynamically generates
arguments, supplies the reasons for the mapping choices and negotiate an agreed
alignment for both ontologies OL and OM .

4.4 Ontology Reasoning/Management (R/M) Wrapper

This wrapper is used for merging of the OL and OM ontologies. It uses Jena 2
Ontology API5. It merges the OL and OM ontologies according to the statements

3 See http://alignapi.gforge.inria.fr/ for up-to-date information on the API.
4 Using constructs like owl:equivalentClass, owl:sameAs, owl:equivalentProperty,

rdfs:subClassOf or rdfs:subPropertyOf.
5 See http://jena.sourceforge.net/ontology/index.html.



in OA, preferring the lexical labels from the master OM ontology when two labels
are said to be equivalent. Moreover, the wrapper checks for (some) possible
inconsistencies caused by the merging (using Jena’s simple OWL DL reasoner)
and attempts to resolve them favouring the assertions in the OM ontology, which
are supposed to be more relevant, again. The resulting ontology OI is passed
to the ontology diff wrapper. As the Jena ontology model is internally based
on a graph/triple (RDF) structure, it allows to easily export or transform an
ontology in a triple format needed for the consequent wrapper (see Section 4.5
for details).

Algorithm 2 describes the meta-code of the process arranged by the ontology
merging and reasoning wrapper. The inconsistency resolution is somewhat tricky.

Algorithm 2 Meta-algorithm of the merging and inconsistency resolution
Require: OL, OM , OA — ontologies in OWL format
Require: getEq() — function selecting all assertions of type owl:equivalentClass, owl:sameAs,

owl:equivalentProperty
Require: getRM() — function returning wrapper combining a generic ontology manager and

(incomplete OWL Full) reasoner bound to the given ontology
1: Otmp ← copy(OL)
2: OI ← copy(OM )
3: RM ← getRM(OM )
4: Rtmp ← getRM(Otmp)
5: RL ← getRM(OL)
6: RA ← getRM(OA)
7: RI ← getRM(OI )
8: equivalencies ← {owl : equivalentClass, owl : sameAs, owl : equivalentProperty}
9: UNIFIED ← ∅
10: for id ∈ getEq(OA) do

11: Rtmp.replaceLabels(id.OL, id.OM )
12: UNIFIED ← UNIFIED ∪ id.OM

13: end for

14: Rref ← copy(Rtmp)
15: for eq ∈ Rtmp.getAxiomsWithLabels(UNIFIED) do

16: Rtmp.retractAxioms(eq)
17: RI .addAxioms(eq)
18: end for

19: RA.removeAxiomsOfType(equivalencies)
20: RI .addAxioms(Rtmp.getAllAxioms())
21: RI .addAxioms(RA.getAllAxioms())
22: RI .resolveInconsistencies(Rref )
23: RI .augmentStructure()
24: return OI

However, we can apply a sort of “greedy” heuristic, considering the assertions
in the master OM ontology to be more valid. Therefore we query the Rref

structure (with the axioms of learned ontology, possibly with replaced labels) in
the resolution process. We currently handle the following inconsistencies:

– sub-class hierarchy cycles: these are resolved by cutting the cycle by re-
moving an owl:subClassOf statement present in Rref ;

– disjointness-subsumption conflicts: if classes are said to be disjoint and a
sub-class relationship holds between them or if they have common sub-classes
at the same time, the conflicting assertion indicated by Rref is removed;



– disjointness-instantiation conflicts: if an individual is said to be an in-
stance of classes that are disjoint, the assertion indicated by Rref is removed.

When there are several removal candidate axioms involved in one inconsisten-
cy, we sort them according to the confidence provided by the Text2Onto lear-
ning algorithms [3], which is stored in the Rref reference structure. Similarly
to [10], we start removing the axioms with least overall confidence, until we
do not resolve the inconsistency (thus keeping the more “relevant” discoveries
intact). We keep the conflicting assertions when they all originate from the OM

master ontology and let the users to cope with this fact. Note that the sources of
inconsistencies are provided by simple natural language description and recorded
for further examinations by human users – they can eventually decide to favour
the learned assertions if appropriate for the given task in the given context.

The function augmentStructure() attempts to complete the structure of
learned axioms using the more precise and complex knowledge in the OM master
ontology. Currently, augmentation of owl:subClassOf and instantiation relations
using rdfs:domain and rdfs:range assertions in property definitions from OM

ontology is taken into account (see Section 5 for an example). More sophisticated
extensions are possible in the future.

If we want to include even the “equal” labels from the learned ontology,
we can omit the renaming and subtractions in lines 10-16 and 19 and include
the respective equality statements from OA into OI , together with respective
axioms from OL. The decision depends on users – whether they want to prefer
the labels from master ontology or not (e.g. when looking for possible unknown
synonyms of important terms from OM in domain resources; this could be useful
for example in the medicine domain in task of identification of different names
for the same drugs and/or proteins).

4.5 Ontology Diff Wrapper

Possible extension of a master ontology OM by elements contained in the merged
and refined ontology OI naturally corresponds to the differences between them.
These are discovered by means of the SemVersion library [21], which is interfaced
within this wrapper. In particular, the possible extensions are equal to the
additions OI brings into OM . We compute the additions from the triple-based
representation6 of OI and OM ontologies. The additions are passed to the triple
sorter then (see Section 4.6 for details).

4.6 Triple Sorter

The addition triples passed to this component form a base to the eventual ex-
tension suggestions for the domain experts. However, the number of additions

6 Since SemVersion does not currently support full OWL diff computations. The triple
representation is provided by the ontology R/M wrapper, as indicated by the TD
(triple dump) squares in Figure 2.



can generally be quite large, so an ordering that takes a relevance measure of
possible suggestions into account is needed. Thus we can for example eliminate
suggestions with low relevance level when presenting the final set to the users
(without overwhelming them with a large number of possibly irrelevant sugges-
tions).

As a possible solution to this task, we have proposed and implemented a
method based on string subsumption and Levenshtein distance [14]. These two
measures are used within relevance computation by comparing the predicate,
subject and object lexical labels of a triple to two sets (Sp, Sn) of words, provided
by users. The Sp and Sn sets contain preferred and unwanted words, respectively,
concerning the lexical level of optimal extensions.

Relevance score of a triple T with respect to the wanted/unwanted sets of
words Sp/Sn (relScore(T, Sp, Sn) below) is given by the formula:

relScore(T, Sp, Sn) = rel(T, Sp) − rel(T, Sn),

where rel(T, S) is a function measuring the relevance of the triple T with respect
to the words in the set S. The higher the value, the more relevant the triple is.
The function7 naturally measures the “closeness” of the T triple’s predicate,
subject and object labels to the set of terms in Sw (Sw stands for Sp or Sn).
The value of 1 is achieved when the label is a direct substring of or equal to
any word in Sw or vice versa. When the Levenshtein distance between the label
and a word in Sw is lower than or equal to the defined threshold t, the relevance
decreases from 1 by a value proportional to the fraction of the distance and t.
If this is not the case (i.e. the label’s distance is greater than t for each word
in SW ), a similar principle is applied for words of the possibly multi-word label
and the relevance is further proportionally decreased (the minimal possible value
being 0).

4.7 Mapping Triples to Natural Language Suggestions

The DINO framework is supposed to be used primarily by users who are not
experts in ontology engineering. Although the MarcOnt Portal [11] already offers
a simple ontology editing interface, we would like to further help the user in
ontology augmentation by the learned knowledge. Therefore the suggestions are
produced in the form of very simple natural language statements. These are
obtained directly from the sorted triples passed to this component, using a minor
modification of the generation process in CLIE described in [19]. Examples of
this final form of suggestions can be found in the next section. The suggestions
are still bound to the underlying triples, therefore the user can very easily add
the respective OWL axioms into the new version of the OM master ontology
without actually dealing with the intricate OWL syntax itself.

7 We described the relevance function in more detail in [17, 16], together with
complexity analysis (which is in feasible class of O(m log(m)) with respect to the
number of triples).



5 Evaluation and Usage Example

The DINO framework is still a work in progress, and thus no proper evaluation
has been carried out yet. However, preliminary evaluation of the core negotiation
and preference-based suggestion sorting techniques has been made. The imple-
mented sorting algorithm placed 80.7% of triples from a test sample into an
order intuitively prepared by a human user. Details on the sorting evaluation
are in [17, 16]. The negotiation component has been evaluated using the Ontology
Alignment Evaluation Initiative test suite8. Experiments on the impact of the
argumentation approach over a set of mappings and a comparison wrt. current
alignment tools is presented in [12]. The preliminary results of these experiments
are promising and suggest that the argumentation approach can be beneficial
and an effective solution to the problem of dynamically aligning heterogeneous
ontologies.

In the following we provide a simple illustrative example of concrete usage
of the DINO integration mechanism. Imagine a medical institution that has de-
veloped an ontology OM covering the basic concepts in clinical practice and
research, possibly with help of ontology engineering experts when deploying
the DINO framework. The ontology may need to be extended by new infor-
mation in research (e.g. when new treatments or diagnosis methods are develo-
ped and published). Related information can be found in respective documents
(research papers, industry white-papers, etc.). Figure 3 presents a sample text
fragment with the respective learned OWL OL ontology (we omit the namespace
for simplicity).

. . . while cerebellar astrocytoma

is usually discovered by means of

CT. . . using a diagnostic procedure

of scanning. . .GVHD, an immune

dysfunction. . .GVHD, a disease being a type

of dysfunction. . .

...

<owl:ObjectProperty rdf:ID="discovered-by"/>

<owl:Thing rdf:ID="CT"/>

<owl:Thing rdf:ID="cerebellar-astrocytoma">

<discovered-by rdf:resource="#CT"/>

</owl:Thing>

<owl:Class rdf:ID="diagnostic-procedure"/>

<owl:Class rdf:ID="immune-dysfunction"/>

<owl:Class rdf:ID="dysfunction"/>

<owl:Class rdf:ID="scanning">

<rdfs:subClassOf rdf:resource="#diagnostic-procedure"/>

</owl:Class>

<immune-dysfunction rdf:ID="GVHD"/>

<owl:Class rdf:ID="disease">

<rdfs:subClassOf rdf:resource="#dysfunction"/>

</owl:Class>

...

Fig. 3. A text sample and the learned ontology

The ontologies OL and OM are aligned and negotiated (see Figure 4). The
preferences have been chosen on the basis of the ontological information of
OL and OM (see Section 4.3 for details). The OM ontology and the ontology
OA, consisting of axioms produced from the negotiated mappings are shown in
Figure 5. When trying to merge the OM and OL ontologies into OI according

8 See http://oaei.ontologymatching.org/.



Fig. 4. Negotiated mappings

...

<owl:ObjectProperty rdf:ID="InstrumentalProperty"/>

<owl:ObjectProperty rdf:ID="DiscoveredUsing">

<rdfs:subPropertyOf rdf:resource="#InstrumentalProperty"/>

<rdfs:range rdf:resource="#Manifestation"/>

<rdfs:domain rdf:resource="#DiagnosisProcedure"/>

</owl:ObjectProperty>

<owl:Class rdf:ID="Manifestation"/>

<owl:Class rdf:ID="Procedure"/>

<owl:Class rdf:ID="DiagnosisProcedure">

<rdfs:subClassOf rdf:resource="#Procedure"/>

</owl:Class>

<owl:Class rdf:ID="SoftTissueCytoma"/>

<owl:Class rdf:ID="AstroCytoma">

<rdfs:subClassOf rdf:resource="#SoftTissueCytoma"/>

</owl:Class>

<owl:Class rdf:ID="Disease">

<owl:Class rdf:ID="Dysfunction">

<rdfs:subClassOf rdf:resource="#Disease"/>

</owl:Class>

...

...

<owl:ObjectProperty rdf:ID="DiscoveredUsing">

<owl:equivalentProperty rdf:resource="#discovered-by"/>

</owl:ObjectProperty>

<AstroCytoma rdf:ID="cerebellar-astrocytoma"/>

<owl:Class rdf:ID="DiagnosisProcedure">

<owl:equivalentClass rdf:resource="#diagnostic-procedure"/>

</owl:Class>

<owl:Class rdf:ID="immune-dysfunction">

<owl:subClassOf rdf:resource="#Dysfunction"/>

</owl:Class>

<owl:Class rdf:ID="Dysfunction">

<owl:equivalentClass rdf:resource="#dysfunction"/>

</owl:Class>

...

Fig. 5. A master ontology sample and the respective mapping

to the technique described in Section 4.4, we find out that there is one inconsis-
tency – “disease” is said to be a subclass of “dysfunction” and vice versa, which
creates a cycle in the taxonomy. Therefore we remove the respective “invalid”
assertion that originated from the OL ontology. On the other hand, we can extend
the learned knowledge based on range and domain of the “DiscoveredUsing”
property. We can infer new assertions on the instantiation of “cerebellar astro-

cytoma” (instance of “Manifestation”) and “CT” (instance of “DiagnosisProce-

dure”).

Now we can produce the triples (with OL equivalent labels replaced by those
from OM ) from the OI merge, together with respective suggestions based on
the differences between OI and OM . We present the sorted triples and their
transformations into natural language statements9 in Table 1.

Note that the above example may be also used if we just need to align and
possibly extend the ontology with another institution’s knowledge base – the
only difference is that we do not perform the ontology learning and also omit
retractions in the integration process, as noted in Section 4.4. This can be applied
in the critical task of inter-mediation of medicine information, for example.

9 They are preceded by sample relevance values, corresponding to {Scanning,
discover, cytoma} and {subclass, disease, dysfunction} sets of preferred and
unwanted labels, respectively.



<AstroCytoma rdf:ID="cerebellar-astrocytoma"/> +0.667: CEREBELLAR ASTROCYTOMA is a new instance of ASTROCYTOMA.

<Manifestation rdf:ID="cerebellar-astrocytoma"/> +0.667: CEREBELLAR ASTROCYTOMA is a new instance of MANIFESTATION.

<DiagnosisProcedure rdf:ID="CT"/> +0.389: CT is a new instance of DIAGNOSIS PROCEDURE.

<immune-dysfunction rdf:ID="GVHD"/> +0.333: GVHD is a new instance of IMMUNE DYSFUNCTION.

<owl:Class rdf:ID="scanning">

<rdfs:subClassOf rdf:resource="#DiagnosisProcedure"/> -0.444: A new class SCANNING is a sub-class of DIAGNOSIS PROCEDURE.

</owl:Class>

<owl:Thing rdf:ID="cerebellar-astrocytoma">

<DiscoveredUsing rdf:resource="#CT"/> -0.667: CEREBELLAR ASTROCYTOMA is DISCOVERED USING CT.

</owl:Thing>

<owl:Class rdf:ID="immune-dysfunction">

<rdfs:subClassOf rdf:resource="#Dysfunction"/> -0.833: A new class IMMUNE DYSFUNCTION is a sub-class of DYSFUNCTION.

</owl:Class>

Table 1. Extension triples and the respective NL suggestions

6 Conclusions and Future Work

We have presented the basic principles of DINO – a novel framework for dyna-
mic ontology development in data-intensive domains. As a core contribution of
the paper, we have described the mechanism of integration of learned and colla-
boratively developed knowledge. It covers all the requirements specified in Sec-
tion 1. The proposed combination of automatic and collaborative tools in know-
ledge acquisition, integration and inconsistency resolution ensures production of
reliable, broad and precise ontologies when using DINO in dynamic settings.

Our present and future work concentrates mainly on full implementation
of the DINO framework by the respective extensions of the MarcOnt Portal
architecture. We also plan to continuously evaluate the framework in line with
demands of medicine industry (which we are currently specifying with help of
e-Health experts) and possibly other domains.

References

1. S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness, P. F.
Patel-Schneider, and L. A. Stein. OWL Web Ontology Language Reference, 2004.
Available at (February 2006): http://www.w3.org/TR/owl-ref/.

2. C. Brewster, F. Ciravegna, and Y. Wilks. User-centred ontology learning for know-
ledge management. In In Proceedings 7th International Workshop on Applications
of Natural Language to Information Systems, Stockholm., 2002.

3. P. Cimiano and J. Völker. Text2Onto - a framework for ontology learning and
data-driven change discovery. In Proceedings of the NLDB 2005 Conference, pages
227–238. Springer-Verlag, 2005.

4. O. Corcho, A. Lopez-Cima, and A. Gomez-Perez. The ODESeW 2.0 semantic
web application framework. In Proceedings of WWW 2006, pages 1049–1050, New
York, 2006. ACM Press.

5. K. Dellschaft and S. Staab. On how to perform a gold standard based evaluation of
ontology learning. In Proceedings of the International Semantic Web Conference.
Athens, GA, USA., 2006.

6. J. Euzenat. An API for ontology alignment. In ISWC 2004: Third International
Semantic Web Conference. Proceedings, pages 698–712. Springer-Verlag, 2004.

7. J. Euzenat, D. Loup, M. Touzani, and P. Valtchev. Ontology alignment with ola.
In Proceedings of the 3rd International Workshop on Evaluation of Ontology based
Tools (EON), Hiroshima, Japan, 2004. CEUR-WS.



8. M. Fernandez-Lopez, A. Gomez-Perez, and N. Juristo. Methontology: from
ontological art towards ontological engineering. In Proceedings of the AAAI97
Spring Symposium Series on Ontological Engineering, pages 33–40, Stanford, USA,
March 1997.

9. A. Gomez-Perez, M. Fernandez-Lopez, and O. Corcho. Ontological Engineering.
Advanced Information and Knowledge Processing. Springer-Verlag, 2004.

10. P. Haase and J. Völker. Ontology learning and reasoning - dealing with uncertainty
and inconsistency. In P. C. G. da Costa, K. B. Laskey, K. J. Laskey, and M. Pool,
editors, Proceedings of the Workshop on Uncertainty Reasoning for the Semantic
Web (URSW), pages 45–55, NOV 2005.

11. S. Kruk, J. Breslin, and S. Decker. MarcOnt initiative. Ĺıon Deliverable 3.01,
DERI, Galway, 2005.

12. L. Laera, I. Blacoe, V. Tamma, T. Payne, J. Euzenat, and T. Bench-Capon.
Argumentation over ontology correspondences in mas. In In Proceedings of the
Sixth International Joint Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS 2007), Honolulu, Hawaii, USA. To Appear, 2007.

13. L. Laera, V. Tamma, J. Euzenat, T. Bench-Capon, and T. R. Payne. Reaching
agreement over ontology alignments. In Proceedings of 5th International Semantic
Web Conference (ISWC 2006). Springer-Verlag, 2006.

14. V. I. Levenshtein. Binary codes capable of correcting deletions, insertions and
reversals. Cybernetics Control Theory, 10:707–710, 1966.

15. A. Maedche and S. Staab. Ontology learning. Handbook on Ontologies, 2004.
16. V. Nováček, M. Dabrowski, S. R. Kruk, and S. Handschuh. Extending community

ontology using automatically generated suggestions. In Proceedings of FLAIRS
2007. AAAI Press, 2007. In press.

17. V. Nováček, S. Handschuh, L. Laera, D. Maynard, M. Völkel, T. Groza, V. Tamma,
and S. R. Kruk. Report and prototype of dynamics in the ontology lifecycle
(D2.3.8v1). Deliverable 238v1, Knowledge Web, 2006.

18. Y. Sure, M. Erdmann, J. Angele, S. Staab, R. Studer, and D. Wenke. OntoEdit:
Collaborative Ontology Development for the Semantic Web. In 1st International
Semantic Web Conference (ISWC2002), Sardinia, 2002. Springer.

19. V. Tablan, T. Polajnar, H. Cunningham, and K. Bontcheva. User–friendly onto-
logy authoring using a controlled language. In Proceedings of LREC 2006 - 5th
International Conference on Language Resources and Evaluation. ELRA/ELDA
Paris, 2006.

20. V. Tamma, I. Blacoe, B. L. Smith, and M. Wooldridge. Introducing autonomic
behaviour in semantic web agents. In In Proceedings of the Fourth International
Semantic Web Conference (ISWC 2005), Galway, Ireland, November., 2005.

21. M. Völkel and T. Groza. SemVersion: RDF-based ontology versioning system. In
Proceedings of the IADIS International Conference WWW/Internet 2006 (ICWI
2006), 2006.


