

Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-05-14T05:14:57Z

Some rights reserved. For more information, please see the item record link above.

Title Describing Linked Datasets - On the Design and Usage of
voiD, the 'Vocabulary of Interlinked Datasets'

Author(s) Cyganiak, Richard; Hausenblas, Michael

Publication
Date 2009

Publication
Information

Keith Alexander, Richard Cyganiak, Michael Hausenblas, Jun
Zhao "Describing Linked Datasets - On the Design and Usage
of voiD, the 'Vocabulary of Interlinked Datasets'", Linked Data
on the Web Workshop (LDOW 09), in conjunction with 18th
International World Wide Web Conference (WWW 09), 2009.

Item record http://hdl.handle.net/10379/543

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/

Describing Linked Datasets

On the Design and Usage of voiD, the “Vocabulary Of Interlinked Datasets”

Keith Alexander
∗

Talis Ltd.
Richard Cyganiak

†

DERI, National University of
Ireland, Galway

Michael Hausenblas
‡

DERI, National University of
Ireland, Galway

Jun Zhao
§

Department of Zoology,
University of Oxford

ABSTRACT
In this paper we discuss the design and implementation of
voiD, the “Vocabulary Of Interlinked Datasets”, a vocabu-
lary that allows to formally describe linked RDF datasets.
We report on use cases for voiD, the current state of the
specification and its potential applications in the context of
linked datasets.

1. INTRODUCTION
With the growth of the number of linked datasets [12],

automating certain tasks, such as discovery, selection and
optimisation, becomes more and more important. Now, one
might argue that URIs and RDF [17] are all one needs to ex-
plore the linked datasets; follow-your-nose1, however bears
some inherent problems. The possible links that can be fol-
lowed from a starting URI raises both performance and trust
issues. The main reason for these issues lies in the granu-
larity level of the available descriptions. Additionally, the
dynamics of the data-sources [13] also has an impact on the
performance of, say, a crawl over a collection of datasets;
and the reliability of secondary data resources [26].

In the early days of linked data (2006 and 2007) [5] the
main focus of the community was on publishing data and
finding good practices. Now, in the second phase, other
issues such as usability, quality, performance, reliability of
the infrastructure and the data in the linked data ecosystem
are increasingly recognized to be important.

How can we overcome the limitations of follow-your-nose
while retaining the self-descriptive momentum and being
able to exploit available tools, methodologies, etc.? A sim-
ple yet effective approach is to decrease granularity. Rather
than talking about single resources, we talk about something
which up to now only existed in drawings, such as in the
LOD cloud2, which graphically represents the landscape of

∗keith.alexander@talis.com
†richard.cyganiak@cyganiak.de
‡michael.hausenblas@deri.org
§jun.zhao@zoo.ox.ac.uk
1http://esw.w3.org/topic/FollowLinksForMoreInformation
2http://www4.wiwiss.fu-berlin.de/bizer/pub/
lod-datasets_2008-09-18.html

Copyright is held by the author/owner(s).
LDOW2009, April 20, 2009, Madrid, Spain.
.

linked data on the Web using bubbles for datasets and arcs
between bubbles for the links between these datasets. The
voiD vocabulary, the “Vocabulary Of Interlinked Datasets”,
allows one to describe datasets (the bubbles) and linksets

(the arcs between the bubbles), and in turn enables a num-
ber of tasks to be automated in a scalable manner.

The remainder of this paper is as follows: in Section 2 we
discuss some use cases that provide the motivation for voiD.
Then, in Section 3 we report on the design of the voiD core
vocabulary and its usage along with other vocabularies such
as Dublin Core [25]. We describe the publication and the
consumption of voiD descriptions in Section 4. In Section 5
we discuss current and potential applications of voiD and
report on related work in Section 6. We discuss future plans
and conclude in Section 7.

2. USE CASES
In the following we will describe our motivation use cases

for voiD. In the context of linked data, we basically differ-
entiate between:

• on the one hand linked data publisher (a person or
organisation exposing structured data as RDF on the
Web and interlink it with other datasets), and

• linked data consumer on the other hand; these might
be machines, for example using a semantic indexer or
a query engine or, as well, humans, e.g., when using a
Web of Data browser such as Tabulator [4].

It is worth noting that the following use cases are not
necessarily restricted to the linked data domain.

2.1 Efficient Discovery of Datasets

2.1.1 Dataset Publisher
A dataset publisher might not be identical with the party

who created the raw datasets, but one who publishes them
onto the Web in a more accessible format. A dataset pub-
lisher wants to be able to publish metadata about the dataset
such that:

• The dataset can be found and aggregated by search
engine applications, or discovered in relevant searches;

• The metadata provides clear licensing information so
that consumers can know how they can use the data

and to whom they should attribute credits for creat-
ing/publishing the dataset;

• That consumers can obtain information about access
interfaces, such as APIs and SPARQL endpoints.

It is in the best interest of a dataset publisher to provide
potential users of the data with information that supports
them in accessing and using the dataset.

2.1.2 Search Engine Provider
A search engine provider wants to discover detailed de-

scriptions about datasets efficiently. A crawler has stum-
bled upon an individual RDF document on the Web. How
will it discover metadata that applies to the entire dataset
and cannot be repeated in every single document? The sim-
ple approach of just putting the voiD description online and
linking it from somewhere on the site does not meet our
needs, as it could take the crawler a long time to find the
description. It is important that the voiD description is
discoverable as soon as the crawler finds the first RDF doc-
ument, so that the crawler can use voiD metadata to guide
its processing of the data.

The Sindice search engine [23] already uses Semantic Site-
maps [7] to enable discovery and efficient processing of data-
sets. It seems natural to address the situations above by
building on Semantic Sitemaps.

2.2 Expressing Research Data
A developer working together with biologists wants to help

domain experts to find research data published by their peer
colleagues. These are often produced for a particular exper-
iment, for a particular study or publication, or hosted by
a particular public database. Scientists might know whose
datasets they would prefer to access because they often have
a clear idea about their content or they trust more on that
data provider. When looking for new datasets, they might
search for datasets that provide relevant content (such as in-
formation about genes, proteins, or micro-array gene expres-
sion), that are produced in a right experiment environment,
or that provide additional information that will complement
their local experiment results.

To find the right dataset and to make this dataset accessi-
ble for biologists in a user-facing application, the developer
often has to go through the following process:

• Locate a dataset that contains information relevant
to biologists’ research interests, such as information
about a specific organism; or more specifically, ge-
nomic information about a particular organism;

• Find out how this dataset can be programmatically ac-
cessed, as an RDF dump, through SPARQL endpoint
or any other protocol;

• Find out the licence associated with the dataset, mak-
ing sure that data are accessible under open-access li-
cence or certain attribution;

• Understand the content of the dataset in order to per-
form an alignment with other datasets. Information
about URIs used in the dataset can help one with the
data identity alignment, schema(s) used in the dataset
for data schema alignment, and its links with other
datasets for assisting data integration.

2.3 Effective Dataset Selection
A consumer may have discovered several datasets, for ex-

ample as a result of an indexer query. The question then
arises how to select appropriate datasets from this list of
potential candidates. The consumer, either a human or a
query federation engine, might wish to define “appropriate-
ness” along the following criteria:

1. The content of the dataset, that is, what the dataset
mainly is about. Based on some kind of categorisation
scheme a selection could take place;

2. The interlinking to other datasets, that is, to which
other datasets and how the dataset is interlinked;

3. Vocabularies used in the dataset.

The criteria listed above can be understood in terms of
quality and quantity. For example, one might be interested
only in datasets containing foaf:interest links to a certain
other dataset. Or, where the number of links are of inter-
est, one may specify that only datasets with more than one
million links should be taken into account.

2.4 Query Optimisation
With many datasets now on the Web both connectable

(through shared vocabulary terms) and connecting (by link-
ing to resources in other datasets), it is naturally desirable
to query across multiple datasets at once with SPARQL.

Optimisation of SPARQL queries can be achieved in a
static way. A set of logical rules [22] can be applied to a
query engine, to calculate all equivalent query plans for a
given query and then choose the most optimised query plan
to be executed. To optimise SPARQL queries dynamically,
i.e., deciding the best execution approach during the exe-
cution phase [14], one can use the statistical information
about datasets, such as how much information is provided
about a particular entity or property. This information can
be used by the query mediator to optimise query plans by,
for example, modifying the order in which a query pattern is
executed according to the estimated size of data results [8].

3. VOCABULARY DESIGN
The Vocabulary of Interlinked Datasets (voiD) [2] is a vo-

cabulary and a set of instructions that enables the discovery
and usage of linked datasets. The principle of the voiD ef-
fort is to use real requirements to guide the scope of the
design, and to re-use existing vocabularies wherever possi-
ble instead of creating our own. Therefore, we have kept
the creation of new classes and properties under the voiD
namespace (http://rdfs.org/ns/void#) to the minimum.

3.1 Datasets
In the following, we will define and explain the basic con-

cepts voiD operates with. A fundamental entity in voiD is
a dataset.

Definition 1. A dataset is a set of RDF triples that are
published, maintained or aggregated by a single provider.

We think of a dataset as a meaningful collection of triples,
that deal with a certain topic, originate from a certain source
or process, are hosted on a certain server, or are aggregated
by a certain custodian. The term thus has a social dimension

that is not easy to capture in a formal definition. This dif-
ferentiates datasets from RDF graphs [17], which are purely
mathematical constructs. Any arbitrary set of RDF triples
is an RDF graph, by definition, regardless of the triples’ se-
mantics. Also, typically a dataset is accessible on the Web,
for example through resolvable HTTP URIs or through a
SPARQL endpoint, and it contains sufficiently many triples
that there is benefit in providing a concise summary.

The ultimate purpose of creating a void:Dataset instance
is that this single resource represents the entire RDF dataset,
and thus allows us to make statements about the entire
dataset within the standard RDF model. The relationship
between a void:Dataset instance and the concrete triples
contained in the dataset is established only in an operational
manner: A voiD description usually contains access informa-
tion, such as the address of a SPARQL endpoint where the
triples can be accessed.

We find that most datasets describe a well-defined set of
resources. Hence, a dataset can also be seen as a set of de-
scriptions for certain resources, which often share a common
URI prefix (such as http://dbpedia.org/resource/).

HTTP URIs have “owners”, due to their use of DNS do-
main names. URI ownership is defined as “a relation be-
tween a URI and a social entity, such as a person, organisa-
tion, or specification.”[15] Information about a URI that is
provided by the URI owner is called authoritative informa-
tion. We use this notion to define authoritative datasets:

Definition 2. A dataset is authoritative with respect to
a certain URI namespace if it contains information about
resources named by URIs in this namespace, and is published
by the URI owner.

A straightforward method of publishing authoritative data-
sets is by using resolvable HTTP URIs in the linked data
style. The URI owner also configures the server that re-
sponds when the URI is resolved. Therefore, if resolving
yields a description of the resource named by the URI, then
the data is authoritative.

The notion of authoritative information supports the so-
cial convention that a URI owner gets to decide what a URI
identifies. Providing authoritative information is how the
URI owner communicates this decision to the world. Even
if third parties disagree with that information, they can still
agree that they are talking about the same thing, which
would be much harder without the grounding provided by
the existence of an authoritative source.

3.2 Linksets
Besides datasets, voiD also deals with interlinking be-

tween datasets. Interlinking in voiD is a first-class citizens,
hence modelled as a class.

Figure 1: Interlinking modelling in voiD.

The conceptual model of voiD links is depicted in Fig. 1.
Let us assume there are two datasets. One of them contains
links to the other, that is, it contains RDF triples that con-
nect resources from both datasets. We model this in voiD
using two instances of void:Dataset, and another dataset
:LS1 which is a subset of one of the datasets, and declared
to be of type void:Linkset. We define void:Linkset as:

Definition 3. A linkset LS is a set of RDF triples where
for all triples ti = 〈si, pi, oi〉 ∈ LS, the subject is in one
dataset, i.e. all si are described in DSsrc, and the object is
in another dataset, i.e. all oi are described in DSsink.

The natural expectation is that both DSsrc and DSsink

are themselves described in voiD. We note that the triples
ti are often referred to as “interlinking triples”.

3.2.1 Inline links vs. 3rd-party links
In voiD we are able to model two different situations: the

classic LOD3 case vs. the 3rd-party case (Fig. 2). In the
classic LOD case, the linkset is a subset of one of the two
involved datasets, while in the 3rd-party case a third dataset
is involved that actually contains the linkset.

Though the 3rd-party cases is not yet widely implemented
in the context of linked data, this pattern of keeping links
separate from interlinked datasets has been well argued in
existing research such as found in the Hypertext commu-
nity [6]. In LOD, there are already first applications (RKB
explorer, see section 5.1), and it is very likely that such sys-
tems will evolve over time and grow considerably.

3.2.2 Interlinking Regarding Directionality
Independent of the former situation, voiD distinguishes

between the non-directed vs. directed cases. In some
cases one is interested in stating the direction of the in-
terlinking (for example with foaf:interest), and in other
situations the direction is of no interest (e.g., owl:sameAs),
as shown in Fig. 3.

In order to express the interlinking as outlined above, voiD
offers the following RDF properties:

• void:subset to state where the interlinking triples re-
side (read: a dataset :DS has a subset :LS);

• void:target to declare an interlinking target (for the
non-directed case); in the directed case, one can use
void:subjectsTarget and void:objectsTarget to de-
termine the direction (both being sub-properties of
void:target);

• void:linkPredicate to express the RDF property (type)
of the interlinking in a linkset.

We note that it is expected that per RDF predicate a re-
spective instance of void:Linkset could be created, depend-
ing on the needs of an application. Further, one may take
into consideration that due to the modelling of void:target
and its sub-properties, light-weight subsumption inferencing
may be necessary to apply generic queries that will not dis-
tinguish between the directed and non-directed case.

In listing 1 a sample voiD description is depicted describ-
ing the interlinking from DBpedia to DBLP. It is an example

3LOD ... Linking Open Data datasets, see http://esw.
w3.org/topic/SweoIG/TaskForces/CommunityProjects/
LinkingOpenData

(a) Classic LOD case: Describing the :DBpedia
dataset and its contained :DBpedia2DBLP linkset

(b) 3rd-party case: Describing the stand-alone
:DBpedia2DBLP linkset

Figure 2: Interlinking regarding authoritative datasets.

for a directed case. The description defines nothing about
who published this voiD description about DBpedia, which
means that it could also be an example for a 3rd-party case.
Further, the listing 2 shows a SPARQL query that is exe-
cuted against listing 1 to search for a dataset that is about
“computer science” and which is linked from DBpedia. The
result yields the dataset :DBLP.

3.3 Reuse of Other Vocabularies
In the voiD guide [1] we describe the reuse of other vocab-

ulary terms not directly defined in the core voiD vocabulary
alongside with voiD. Some important properties from other
vocabularies are listed in the following. We note that there
are many other aspects one may want to choose to describe
in a dataset. A complete description of recommended usage
can be found from the voiD user guide [1].

• Properties from the dcterms namespace for general
metadata, such as the publishing organization and pub-
lishing date of a dataset;

(a) Non-directed case.

(b) Directed case.

Figure 3: Interlinking regarding direction.

• foaf:homepage of the dataset’s homepage should be
used, to allow one to connect different descriptions of
the same dataset provided in different places on the
Web. The recommended process in voiD is IFP smush-
ing on foaf:homepage property;

• dcterms:subject should be used to categorise a dataset.
For the general case, we recommend the use of a DB-
pedia resource URI (http://dbpedia.org/resource/
XXX) to categorise a dataset, where XXX stands for
the thing which best describes the main topic of what
the dataset is about. However, DBpedia might not
contain concepts for describing some domain specific
datasets. For example, there are no exact DBpedia re-
source URIs for describing that a dataset is about “in
situ hybridisation image”. We hence encourage pub-
lishers to describe such datasets using concepts widely
adopted in their own communities, so that they can
not only capture precisely the categorisation of their
datasets but also ensure that these datasets could be
connected with other relevant data from their domains;

• Statistical information represented using the “Statis-
tical Core Vocabulary” (SCOVO)4 [11].

3.4 Dataset Licensing
As stated in Section 2, it is crucial for a data publisher to

associate appropriate licensing information with their pub-
lished data, so that potential users of the dataset would

4http://purl.org/NET/scovo

1 @prefix owl: <http :// www.w3.org /2002/07/ owl#> .
2 @prefix foaf: <http :// xmlns.com/foaf /0.1/ > .
3 @prefix dc: <http :// purl.org/dc/terms/> .
4 @prefix void: <http :// rdfs.org/ns/void#> .
5 @prefix dbp: <http :// dbpedia.org/resource/> .
6

7 :DBpedia a void:Dataset ;
8 foaf:homepage <http :// dbpedia.org/> ;
9 void:subset :DBpedia2DBLP .

10

11 :DBLP a void:Dataset ;
12 foaf:homepage <http :// dblp.l3s.de/d2r/> ;
13 dc:subject dbp:Computer_science ;
14 dc:subject dbp:Journal ;
15 dc:subject dbp:Proceedings .
16

17 :DBpedia2DBLP a void:Linkset ;
18 void:subjectsTarget :DBpedia ;
19 void:objectsTarget :DBLP ;
20 void:linkPredicate owl:sameAs .

Listing 1: An exemplary voiD description.

1 SELECT DISTINCT ?dataset
2 WHERE {
3 ?dataset a void:Dataset ;
4 dcterms:subject dbp:Computer_science .
5 ?linkset void:subjectsTarget :DBpedia ;
6 void:objectsTarget ?dataset .
7 }

Listing 2: An exemplary query on voiD.

know under which terms they can use it and what attri-
bution they should apply. The dcterms:license property
should be used to to point to the license under which a
dataset has been published. Further, to allow automatic
analysis of datasets, voiD also recommends a set of canoni-
cal identifiers for well-known licenses [1]. The example be-
low states that the DBpedia dataset is published under the
terms of the GNU Free Documentation License.

1 :DBpedia a void:Dataset ;
2 dcterms:license

<http :// www.gnu.org/copyleft/fdl.html > .

Listing 3: An exemplary voiD description about
data license.

Licensing of datasets is a complex issue. Datasets are col-
lections of facts rather than creative works, and different
laws apply. Scientists are most cautious about publishing
their datasets onto the Web and they might request very
specific or strict policies for sharing their data. Most li-
censes such as Creative Commons or the GPL are based on
copyright and are designed to protect creative works, but
not databases, and applying them to datasets might not
have the desired legal result. Meanwhile, efforts such as
Open Data Commons [19] and Science Commons [16] are
developing dedicated licenses for data.

3.5 Statistics
Of special interest to distributed SPARQL agents will

be the statistics about the triples available in the dataset,
described with the void:statItem predicate. We adopt

SCOVO for representing statistics. The main class in SCOVO
is the scovo:Item, which records a single number or statis-
tical value along with so called dimensions. We provide two
types of information for describing statistics:

• Statistics concerning the whole dataset or linkset, such
as overall triple count or fine-grained statistics, ex-
pressing the number of instances of a class or prop-
erty by using different pre-defined dimensions, includ-
ing void:numberOfResources, etc.;

• Attributing statistics to a source, recording where a
statistical datum stems from.

Listing 4 demonstrates possible statistic information one can
publish for their dataset. The current modelling of statistics

1 :DBpedia a void:Dataset ;
2 void:statItem [
3 rdf:value 20000;
4 scovo:dimension void:numberOfResources ;
5 scovo:dimension foaf:Person ;
6 dcterms:source <http :// wiki.dbpedia.org/> ;
7] .

Listing 4: Expressing statistics about a dataset in
voiD.

in voiD is still experimental. We had to make choices be-
tween (i) a precise usage of scovo through a rather verbose
expression and (ii) creations of shortcuts to express statistics
needed for describing linked datasets:

• Scovo has an implicit assumption that all scovo:Items
associated with the dataset they describe share the
same dimensions. This does not fit well with our re-
quirements for being able to mix items of different di-
mensions for a dataset. On the other hand, the correct
Scovo modelling would lead to awkwardly complex and
verbose notation for simple statistics.

• We encourage the use of classes and properties in places
where scovo requires an instance of scovo:Dimension.
This breaks the symmetry of the scovo model. scovo
would require us to create a scovo:Dimension for each
class or property. This would be quite verbose.

Because of the issues above, queries for statistics informa-
tion using SPARQL can be awkward. It will often require
a verbose check to make sure that an item has only certain
dimensions and no others.

3.6 Additional Terms in voiD
RDF datasets use one or more RDF-Schema vocabularies

or OWL ontologies, hence we provide the void:vocabulary

to list vocabularies used in a dataset. To express technical
features of a dataset, such as formats in which the data is
available, one can use void:feature. Further, a SPARQL
endpoint that provides access to a dataset via the SPARQL
protocol can be announced using the void:sparqlEndpoint

property. Listing 5 shows the usage of the terms described
above. We note that a complete list of the terms is available
from the voiD user guide [1].

1 :DBpedia void:sparqlEndpoint
<http :// dbpedia.org/sparql > ;

2 void:feature [dcterms:format
"application/rdf+xml" ;] ;

3 void:vocabulary
<http :// xmlns.com/foaf /0.1/ > .

Listing 5: Additional voiD terms usage.

4. PUBLICATION AND CONSUMPTION
We envision dataset publisher to offer a voiD description

along with their dataset. A voiD description typically has
two parts, (i) manually created part (categorisation, vocab-
ulary, license, etc.), and (ii) automatically generated part,
mainly regarding statistics.

In the following we will discuss the publication process of
voiD descriptions and their discovery in order to consume
them.

4.1 Publication
Publishing a voiD file means to physically deploy it on

the Web in an RDF serialisation. We have detailed out the
options in the voiD guide [1].

For dataset that are published as a collection RDF docu-
ments, as commonly seen in the linked data publishing style,
one can use a dcterms:isPartOf triple in each document to
link back to the URI identifying the voiD dataset, as shown
in listing 6. Resolving the dataset URI will answer a voiD
descriptions about the entire dataset, allowing agents to dis-
cover the voiD description when encountering an individual
document from the collection. The intuition behind using
the dcterms:isPartOf property is that the RDF document
contains an RDF graph whose triples are part of the dataset.

1 <http :// dbpedia.org/data/Berlin > dcterms:isPartOf
:DBpedia .

Listing 6: Use backlinks publish voiD description of
a dataset.

As discussed in [10], we can imagine that voiD descriptions
are crawled and indexed by semantic search engines (such
as Sindice [23] or Yahoo’s search monkey [18]) in order to
provide a central point of lookup.

4.2 Discovery via Sitemaps
A discovery mechanism for use by RDF-harvesting web

crawlers (Fig. 4) has been defined as follows:

1. Given a domain name, the client gets the file robots.txt
and searches for a line that starts with Sitemap:; the
rest of that line is the URI of a sitemap;

2. The semantic sitemaps extension to the sitemap pro-
tocol defines a <sc:dataset> element that can have a
<sc:datasetURI> child element. If present, the value
of that element is a URI that identifies the dataset
datasetURI;

3. The dataset URI datasetURI is dereferenced which
yields the voiD description of the dataset.

Figure 4: The voiD discovery-via-sitemaps process.

5. VOID IN THE WILD
After releasing the first edition of voiD in early 2009, we

have seen a certain community uptake. People and organi-
sations would start using in different areas and for different
purposes, potentially far beyond what we have envisioned in
the realm of our own use cases. We report on known usages
of voiD in the following and point out potential application
areas.

5.1 Existing Applications

5.1.1 Tools for Creating voiD Descriptions
To boot-strap the process of creating voiD descriptions,

several tools are available: ve, the voiD editor (Fig. 5),
liftSSM5, an XSLT script able to boot-strap from a Semantic
Sitemap, and, for creating the quantitative, statistical data,
a new release of the NX parser6, offering a voiD export for
statistics.

5.1.2 “Linked Datasets Explorer” (LDE)
To let user browse and explore a collection of voiD de-

scriptions, we have developed the LDE demonstrator. Fig. 6
shows the current state of LDE7 which operates on a man-
ually created, so called “seed” set of voiD descriptions.

5.1.3 RKB explorer
The RKB explorer has a voiD site8 which enables querying

and browsing for CRS datasets. Further, the interlinking of
the RKB sites can be visualised using the underlying voiD
descriptions (Fig. 7).

5.1.4 Query Federation
Only recently Clarck-Parsia announced their voiD sup-

port9:

“There is a touch point with the linked data ef-
fort, which meant that the new voiD vocabulary

5http://rdfs.org/ns/void-guide#sec_4_3_Publishing_
tools
6http://sw.deri.org/2006/08/nxparser/release/
nxparser-1.1.jar
7http://ld2sd.deri.org/lde/
8http://void.rkbexplorer.com/
9http://clarkparsia.com/weblog/2009/02/04/
distributed-query-pellet-into-the-void/

for describing datasets turns out to be very useful
for describing the distributed data sources that
we query over, including their interrelations.”

Further, OpenLink plans to release its “Smart SPARQL
Federation capabilities”, based on voiD, soon.

5.1.5 Middleware
OpenLink’s Sponger Middleware uses voiD for generat-

ing linked data from non-RDF data sources such as HTML
pages. An example10 from http://linkeddata.uriburner.

com/ with the voiD description deployed as XHTML+RDFa
is shown in Fig. 8. Further, the statistics maintenance in
their Virtuoso Quad Store is performed based on voiD.

5.2 Potential Applications
We envision voiD to be applied in many scenarios, some

of which we have identified earlier in section 2. Only re-
cently, for example, we have started to develop a dataset
ranking algorithm based on voiD descriptions; this is subject
to more research. One could further apply voiD to DARQ
(Distributed ARQ) [22].

A totally different application domain is visualisation: for
example, “The Map of Data”11 in Sindice can be generated
automatically thanks to voiD.

Ultimately, to be of use, one wants applications that ben-
efit from voiD. Put in other words, this means that, given
there are applications that consume voiD and offer some
added value, the incentive for publishers to provide voiD
descriptions is self-evident. One such application could be
a sort of dynamic dataset selector which, configured with a
specification of the dataset (topics, license, interlinking with
certain other datasets) would at run-time of an application
discover and select appropriate datasets according to the
search specification.

6. RELATED WORK
To the best of our knowledge, no comparable approach

to voiD exists. That is, in the context of the Web of Data,
we are not aware of any specification that allows the de-
scription of datasets and their interlinking the way voiD
does. However, we acknowledge previous work of Semantic
Sitemaps [7] and build upon it.

In the scope of the Web of Documents, we note that at the
time of writing a W3C Working Draft of POWDER (Proto-
col for Web Description Resources) [3] is available. POW-
DER aims at providing information about Web resources,
such as scope, authoritative information, etc., without re-
trieving the resources themselves. POWDER comes in two
flavours, (i) as human-legible XML, and (ii) in an RDF ver-
sion. It also provides a GRDDL transformation to turn the
former into the latter. The descriptions can be applied to
groups of resources defined via listing of URIs, regular ex-
pressions, etc. Several publishing methods are suggested
(via HTML <link> in the header, HTTP Link: header or
using XHTML+RDFa). Especially in the Web of Trust,
POWDER is expected to play a vital role, though imple-
mentation complexity might hinder wide-spread adoption.

Further, OASIS’s XRDS (eXtensible Resource Descriptor
Sequence) [24] is an XML format for metadata discovery

10http://linkeddata.uriburner.com/about/html/http:
//twitter.com/mhausenblas#Dataset

11http://sindice.com/map

about a resource. The discovery protocol for XRDS doc-
uments given a URI was defined in 2006 as part of Yadis,
focusing on services such as OpenID and OAuth. In early
2008, XRDS-Simple was proposed12, but is now obsolete.

Only very recently, the latest draft of “/host-meta” [21]
was proposed. The core of this proposal is a single “well-
known location”, /host-meta, acting as a directory of the
interesting metadata about a Web site. The format allows
different types of site metadata to be referenced by an URI
or included inline.

One could understand the “HTTP Link: header” [20] pro-
posal related to voiD, as it also supports discovery, offering
metadata about resources by resurrecting a (currently dep-
recated) feature of HTTP. This proposal is at the time of
writing still under vivid discussion and not yet seen stable.

Regarding federated SPARQL queries, DARQ (Distributed
ARQ) [22] proposes so called “service descriptions” that
are able to specify capabilities of a SPARQL endpoints.
The service descriptions enable the DARQ query engine
to decompose a query into sub-queries, each of which can
be answered by an individual service using query rewrit-
ing and cost-based query optimisation to speed-up query
execution. Further, we note an attempt called “SPARQL
Endpoint Description”13 that aimed to allow the announce-
ment of endpoint capabilities and contents, support discov-
ery through service directories, and supply browsing and
federation hints. Both proposals seem to be not further
maintained and/or have not reached wide-spread adoption.

Finally, we note that the W3C Technical Architecture
Group (TAG) started to contemplate about “Uniform Ac-
cess to Metadata”14, basically being a survey regarding the
problem of specifying a uniform method for obtaining infor-
mation pertaining to a resource without necessarily having
to parse a representation of the resource.

7. OUTLOOK
We have released the voiD vocabulary and voiD user guide

to linked data communities in January this year. In this re-
lease, we have used the use cases presented in section 2 to
guide the design scope of the voiD vocabulary. Supports
for describing the quality, provenance and versions of linked
datasets are to be addressed in the next release of voiD.
Also, the statistics modelling in the current voiD model is
still experimental. We are communicating with user com-
munities and the SCOVO team in order to propose a more
stable modelling in the coming release15. Additionally we
will liaison with initiatives such as the “Ontology Metadata
Vocabulary” [9] sharing similar goals.

To test and evaluate the usefulness of voiD, we need tools
that use voiD to support the discovery of datasets or the
SPARQL query federation. Fortunately, semantic query en-
gines like Sindice and SPARQL query processing systems
(like OpenLink) are adopting voiD in their implementations.
It is challenging to completely automate the creation of voiD
descriptions. We need tools like the NX parser to take as

12http://www.hueniverse.com/hueniverse/2008/03/
putting-xrds-si.html

13http://esw.w3.org/topic/SparqlEndpointDescription
14http://www.w3.org/2001/tag/doc/
uniform-access-20090205.html

15See http://code.google.com/p/void-impl/issues/
list?can=2&q=milestone:Release2.0forplannedissues.

much as possible of the heavy lifting for non-technical data
publishers as possible.

Acknowledgements
Our work has partly been supported by the European Com-
mission under Grant No. 217031, FP7/ICT-2007.1.2, project
“Domain Driven Design and Mashup Oriented Development
based on Open Source Java Metaframework for Pragmatic,
Reliable and Secure Web Development” (Romulus)16, and
the Joint Information Systems Committee [Project “Fly-
Web”]. The authors would further like to thank (alphabet-
ically): Orri Erling, Hugh Glaser, Olaf Hartig, Tom Heath,
Andreas Langegger, Ian Millard, Marc-Alexandre Nolin, Yves
Raimond, Yrjänä Rankka, Francois Scharffe, and Giovanni
Tummarello.

8. REFERENCES
[1] K. Alexander, R. Cyganiak, M. Hausenblas, and

J. Zhao. voiD guide—Using the Vocabulary of
Interlinked Datasets. Community Draft, voiD working
group, 2009. http://rdfs.org/ns/void-guide/.

[2] K. Alexander, R. Cyganiak, M. Hausenblas, and
J. Zhao. voiD, the “Vocabulary of Interlinked
Datasets”. Community Draft, voiD working group,
2009. http://rdfs.org/ns/void/.

[3] P. Archer, K. Smith, and A. Perego. Protocol for Web
Description Resources (POWDER): Description
Resources. W3C Working Draft 14 November 2008,
POWDER Working Group, 2008.

[4] T. Berners-Lee, Y. Chen, L. Chilton, D. Connolly,
R. Dhanaraj, J. Hollenbach, A. Lerer, and D. Sheets.
Tabulator: Exploring and analyzing linked data on
the Semantic Web. In In Proceedings of the 3rd
International Semantic Web User Interaction
Workshop (SWUI06), Athens, Georgia, USA, 2006.

[5] C. Bizer, T. Heath, K. Idehen, and T. Berners-Lee.
Linked Data on the Web (LDOW2008). In Linked
Data on the Web Workshop(WWW2008), 2008.

[6] L. A. Carr, D. C. DeRoure, W. Hall, and G. J. Hill.
The Distributed Link Service: A tool for publishers,
authors and readers). In Proceedings of the 4th
International World Wide Web Conference: The Web
Revolution), pages 647–656, Boston, USA, 1995.

[7] R. Cyganiak, H. Stenzhorn, R. Delbru, S. Decker, and
G. Tummarello. Semantic Sitemaps: Efficient and
flexible access to datasets on the Semantic Web. In
Proceedings of the 5th European Semantic Web
Conference, volume 5021, pages 690–704, Tenerife,
Spain, 2008.

[8] O. Hartig and R. Heese. The SPARQL query graph
model for query optimization. In Proceedings of the
4th European Semantic Web Conference 2007, pages
564–578, Innsbruck, Austria, 2007.

[9] J. Hartmann, Y. Sure, P. Haase, R. Palma, and M. del
Carmen Suárez-Figueroa. OMV – Ontology Metadata
Vocabulary. In C. Welty, editor, ISWC 2005 - In
Ontology Patterns for the Semantic Web, 2005.

[10] M. Hausenblas. Discovery and usage of linked datasets
on the Web of data. In Talis NodMag 4, 2008.

16http://www.ict-romulus.eu/

[11] M. Hausenblas, W. Halb, Y. Raimond, L. Feigenbaum,
and D. Ayers. SCOVO: Using statistics on the Web of
data. In 6th European Semantic Web Conference
(ESWC2009), Semantic Web in Use Track, 2009.

[12] M. Hausenblas, W. Halb, Y. Raimond, and T. Heath.
What is the size of the Semantic Web. In Proceedings
of I-Semantics 2008, Graz, Austria, 2008.

[13] M. Hausenblas, W. Slany, and D. Ayers. A
performance and scalability metric for virtual RDF
graphs. In 3rd Workshop on Scripting for the
Semantic Web (SFSW07), Innsbruck, Austria, 2007.

[14] HP Lab. TDB/Optimizer.
http://jena.hpl.hp.com/wiki/TDB/Optimizer, 25
October, 2008. Accessed in March 2009.

[15] I. Jacobs and N. Walsh. Architecture of the World
Wide Web, Volume One. W3C Recommendation 15
December 2004, W3C Technical Architecture Group
(TAG), 2004.

[16] J. Klump, R. Bertelmann, J. Brase, M. Diepenbroek,
H. Grobe, H. Höck, M. Lautenschlager, U. Schindler,
I. Sens, and J. Wächter. Data publication in the open
access initiative. Data Science Journal, 5:79–83, 2006.

[17] G. Klyne, J. J. Carroll, and B. McBride. RDF/XML
Syntax Specification (Revised). W3C
Recommendation, RDF Core Working Group, 2004.

[18] P. Mika. Microsearch: An interface for semantic
search. In Semantic Search, International Workshop
located at the 5th European Semamntic Web
Conference (ESWC 2008), volume 334 of CEUR
Workshop Proceedings, pages 79–88. CEUR-WS.org,
2008.

[19] P. Miller, R. Styles, and T. Heath. Open data
commons, a license for open data. In Proceedings of
the Workshop on Linked Data on the Web
(WWW2008), 2008.

[20] M. Nottingham. Link relations and HTTP header
linking. Internet-Draft, 1 December 2008, IETF
Network Working Group, 2008.

[21] M. Nottingham and E. Hammer-Lahav. Host
metadata for the Web. Internet-Draft, 10 February
2009, IETF Network Working Group, 2009.

[22] B. Quilitz and U. Leser. Querying distributed RDF
data sources with SPARQL. In Proceedings of the 5th
European Semantic Web Conference 2008), pages
524–538. Springer, 2008.

[23] G. Tummarello, R. Delbru, and E. Oren. Sindice. com:
Weaving the open linked data. Proceedings of the 6th
International Semantic Web Conference 2007
(ISWC2007), 4825:552–565, 2007.

[24] G. Wachob, D. Reed, L. Chasen, W. Tan, and
S. Churchill. Extensible Resource Identifier (XRI)
Resolution Version 2.0. Committee Draft 03 28
February 2008, OASIS eXtensible Resource Identifier
(XRI) TC, 2008.

[25] S. Weibel, A. S. for Information Science, and
Technology. The Dublin Core: A simple content
description model for electronic resources. Bulletin of
the American Society for Information Science and
Technology, 24(1):9–11, 1997.

[26] J. Zhao, A. Miles, G. Klyne, and D. Shotton. Linked
data and provenance in biological data webs. Briefings
in Bioinformatics, 2008.

Figure 5: Manual creation of voiD descriptions with ve.

(a) Looking-up datasets. (b) Browsing datasets.

Figure 6: Linked Datasets Explorer (LDE).

Figure 7: Visualisation of RKB interlinking.

Figure 8: OpenLink’s instant-voiD-generator for structured HTML pages.

