

Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-03-20T08:27:51Z

Some rights reserved. For more information, please see the item record link above.

Title Simple algorithms for predicate suggestions using similarity
and co-occurrence

Author(s) Oren, Eyal; Gerke, Sebastian; Decker, Stefan

Publication
Date 2007

Publication
Information

Eyal Oren, Sebastian Gerke, Stefan Decker "Simple algorithms
for predicate suggestions using similarity and co-occurrence",
Proceedings of the European Semantic Web Conference, 2007.

Publisher Association for Computing Machinery

Link to
publisher's

version
http://doi.acm.org/10.1007/978-3-540-72667-8_13

Item record http://hdl.handle.net/10379/540

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/

Simple Algorithms for Predicate Suggestions
using Similarity and Co-Occurrence

Eyal Oren, Sebastian Gerke, and Stefan Decker

Digital Enterprise Research Institute
National University of Ireland, Galway

Galway, Ireland
firstname.lastname@deri.org

Abstract When creating Semantic Web data, users have to make a crit-
ical choice for a vocabulary: only through shared vocabularies can mean-
ing be established. A centralised policy prevents terminology divergence
but would restrict users needlessly. As seen in collaborative tagging en-
vironments, suggestion mechanisms help terminology convergerce with-
out forcing users. We introduce two domain-independent algorithms for
recommending predicates (RDF statements) about resources, based on
statistical dataset analysis. The first algorithm is based on similarity be-
tween resources, the second one is based on co-occurrence of predicates.
Experimental evaluation shows very promising results: a high precision
with relatively high recall in linear runtime performance.

1 Introduction

The Semantic Web is decentralised in terms of autonomy, allowing everyone to
make any statement, but centralised in terms of vocabulary: others can only
understand statements that use familiar terminology. Given this situation, we
consider the following problem: how to ensure that individuals, free to use arbi-
trary terminology, converge towards shared vocabularies?

As a particular use case we consider authoring in Semantic Wikis [12, 14, 18].
These enhanced Wikis allow users to describe information both in free text and
through semantic descriptions. Allowing users to make arbitrary statements is
important, since it ensures domain-independence of the Wiki.

Without further considerations, the authoring freedom in Semantic Wikis
would result in statements with different vocabularies, defying the purpose of
the Semantic Wiki. A terminology policy could be enforced but that would highly
restrict users. A suggestion mechanism, recommending terminology based on the
dataset, would help converge terminology without forcing users, as demonstrated
in collaborative tagging [9, 10].

In collaborative data entry, participants construct a dataset by continuously
and independently adding further statements to existing data. Each participant
faces the question: when creating Semantic Web data, which vocabulary to use?
To ensure convergence, the answer is: use the most relevant and frequently oc-
curring vocabulary.

Finding the most frequent vocabulary is straightforward: one can simply
count the occurrences. We therefore focus on finding the relevant vocabulary.
Datasets typically contain heterogeneous data. Finding the vocabulary that is
relevant for one resource therefore means: finding similar resources and use their
vocabulary.

Problem statement Our problem is thus to suggest relevant and frequent termi-
nology for extending a resource in an RDF dataset based on similarity with other
resources and our question is how well simple algorithms solve this problem?

We present two algorithms that address this problem, based on the follow-
ing hypotheses that simple algorithms do well enough: (a) computing resource
similarity based only on outgoing arcs yields good results; (b) approximating
resource similarity through pairwise predicate co-occurrence yields good results.

We will present the two algorithms in sections 2 and 3, and their imple-
mentation in section 4. We verify our hypotheses and the performance of these
algorithms empirically in section 5. We conclude with a discussion of related
work in section 6.

2 Classification-based algorithm

The task of the suggestion algorithm is to find, for a certain resource in focus,
predicates to further describe that resource. The general idea of the classification-
based algorithm is to divide the knowledge base in two groups, those similar
to the current resource and those not similar, and to suggest the frequently
occurring predicates from the similar group.

For example, figure 1 shows a simple knowledge base with three resources:
the person “John”, with his name, some friends, and homepage, the book “The
Pelican Brief”, with its title and author, and the person “Stefan”, with his
name. We want to suggest relevant predicates for “Stefan” based only on the
given graph.

Figure 1: Example knowledge base

2

Listing 1.1: Classification-based algorithm� �
def suggest(r, resources)

select similar resources
similar resources = resources.select { |r’| similarity(r,r’) > threshold }

then collect all predicates from similar resources
candidates = similar resources.collect { |r’| r’.predicates }

then rank all candidate predicates
return rank(candidates)

end� �
The algorithm consists of two steps, as shown in listing 1.1. In the first step,

we divide all existing resources in the knowledge base into two sets, the similar
and unsimilar ones. In the second step, we look at all predicates from the similar
group and rank them using a ranking function. In the remainder of this section,
we explore each step in more detail: how to define similarity between resources,
and how to rank the selected predicates.

2.1 Preliminaries

First we introduce some necessary definitions:

Definition 1 (RDF Graph). An RDF graph G is defined as G = (V,E, L, l)
where V is the set of vertices (subjects and objects), E is the set of edges (pred-
icates), L is the set of labels, l : E → L is the labelling function for predicates.
The projection source : E → V and target : E → V return the source and target
nodes of a given edge.

Definition 2 (Outgoing edges). The set of outgoing edges Eo(v) of a vertex
is defined as: Eo(v) = {e ∈ E|source(e) = v} ⊆ E. The bag of labels L(E) of a
set of edges is defined as L(E) = [l(e)|e ∈ E]. The bag of labels Lo(v) of outgoing
edges of a vertex v is defined as Lo(v) = L(Eo(v)). The set of outgoing edges of
v whose label is l is defined as Eo(v, l) = {e ∈ Eo(v)|l(e) = l}.

2.2 Classification step

In the first step, we classify resources into those similar to the current one, and
those not similar. The main requirement for the similarity metric is domain-
independence: the algorithm should not rely on domain-specific knowledge. We
use two well-known, widely used generic similarity metrics [2, 3]: the containment
of one resource in another and their mutual resemblance.

Since we are interested in suggesting new predicates, we use these metrics to
compare existing predicates of resources. Containment thus defines resource sim-
ilarity as the amount of predicates of the first resource that are also contained
in the second resource, as shown in equation (1). Resemblance measures how
many of all predicates used in at least one of the two resources are used in both

3

resources, as shown in equation (2). For example, in figure 1, the resource “Ste-
fan” uses the predicate “name” and the resource “John” uses “name”, “knows”
and “homepage”, resulting in a containment value (of “Stefan” in “John”) of 1
and a resemblance of 1

3 .

sc(v′, v) =
|O(v) ∩O(v′)|

|O(v)|
(1)

sr(v′, v) =
|O(v) ∩O(v′)|
|O(v) ∪O(v′)|

. (2)

Since predicates can have multiple values, when computing this containment
or resemblance metrics we need to decide whether to count multiple predicate
occurrences once or several times.

In the example, the resource “John” uses the “knows” predicate twice with
different values; we can either count these two occurrences only once, thus using
O(v) as a set, as shown in equation (3). The resemblance between “Stefan” and
“John” would then be 1

3 . But we could also count each occurrences separately,
using O(v) as a bag as shown in equation (4), yielding a resemblance of 1

4 .

Os(v) = {l(e)|e ∈ Eo(v)} (3)

Ob(v) = [l(e)|e ∈ Eo(v)] (4)

If we generalise from these two choices, the result of the first phase is the set
of similar resources Vs(v), as defined in equation (5), where st is some similarity
threshold and s(v, v′) is either resemblance or containment measure. For exam-
ple, with a threshold of 0.9 the set of similar resources to “Stefan” would consist
only of the resource “John”.

Vs(v) = {v′ ∈ V : s(v, v′) ≥ st} (5)

2.3 Ranking step

After classifying all resources into two groups we collect all predicates from the
set of similar resources Vs(v) and use them as candidates for the suggestion.
Since there might be many candidates, we need to rank these candidates and
suggest the more useful predicates first. The most straightforward ranking func-
tion is based on the occurrence frequency of these predicates in the set of similar
resources.

In this example, since only the resource “John” is similar to “Stefan”, the
candidates would be “knows” and “homepage”, ignoring the predicates that
“Stefan” uses already. Out of these two candidates, “knows” would be ranked
first since it appears most frequently.

But again, since predicates in RDF can be multi-valued, we can define the
(relative) occurrence frequency of a label l in the set of similar resources Vs(v) in
two ways. We can either count each predicate occurrence, as shown in equation

4

(6). Or we can count each occurrence only once, or stated differently, count the
set X of resources that use l in their outgoing edges and divide them by the total
number of resources, as shown in equations (7). In the latter case, “knows” and
“homepage” would be ranked the same since they are both used by one resource.

rv(e) = fp
s (v, l) =

∑
v′∈Vs(v) |Eo(v′, l)| · w(v, v′)∑
v′∈Vs(v) |Eo(v′)| · w(v, v′)

(6)

rv(e) = fr
s (v, l) =

∑
v′∈X w(v, v′)∑

v′∈Vs(v) w(v, v′)

X = {v ∈ Vs(v)|l ∈ O(v)} (7)

In both methods of counting, we could allow for a weighting factor w(v, v′).
The reason for this is that even in the set of similar resources Vs(v), some are
more similar than other: in ranking the predicates, it would be natural to “pro-
mote” the predicates from similar resources over those from less similar resources.
If we choose to prefer predicates from resources more similar to v, the weight
factor could be given by the resource similarity, shown in equation (8). A sim-
pler approach would not to weigh the predicates, as shown in equation (9). In
our example, these methods would yield the same ranking since both candidates
originate from the same resource “John”.

ws(v, v′) = s(v, v′) (8)

wc(v, v′) =
{

1 : v′ ∈ Vs(v)
0 : v′ ∈ Vn(v) (9)

2.4 Qualitative results

To investigate our hypothesis, we have evaluated the performance and quality
of the algorithm using various different datasets. We are interested in the qual-
ity of the basic algorithm (using containment, counting multi-valued predicates
only once, and without weighting) and in whether the various parameters, while
reducing simplicity, improve the basic algorithm. We present and discuss these
results in section 5.

2.5 Performance

Regarding the runtime performance of the algorithm, we can analyse the de-
scription in listing 1.1. We see that, ignoring data access, the overall algorithm
should run linearly to the number of resources: The first phase, classifying the
similar resources, runs linear to the number of resources r and the average num-
ber of predicates per resource p: comparing the similarity of each resource against
the one resource in focus by comparing all their predicates. The second phase,

5

ranking, is linear in the number of candidates c. The complete algorithm would
therefore run in O(r · p + c), which is linear in r, since p will be constant on
average and c is presumably smaller than r.

However, in practice we cannot ignore lookup performance on large datasets.
To compute similarity, we need to lookup all predicates of each resource. De-
pending on the lookup performance of the used datastore, this could cause the
whole algorithm to run logarithmic or even quadratic to the size of the dataset,
rendering the algorithm impractible for reasonably large datasets.

A simple solution would be to materialise the similarity between resources
in memory, obliterating the need for data lookup during suggestion time. Direct
materialisation however has two problems: the required memory space would be
quadratic in the size of the dataset, and updating one resource (prone to happen
often in a data entry scenario) would require recalculation of all similarity values
with respect to this resource.

The next algorithm remedies exactly this problem and allows materialisation
without large memory requirements.

3 Co-occurrence-based algorithm

The general idea of the co-occurrence-based algorithm is to approximate resource
similarity through the co-occurrence of predicates. Since usually datasets con-
tain far less predicates than resources, predicate co-occurrence requires far less
space than resource similarity. We then further reduce the required space by not
considering the complete power set over all predicates, but instead approximate
full co-occurrence through binary co-occurrences. We thus consider only pair-
wise occurrences of predicates, suggest predicate candidates for each pairwise
occurrence, and combine these candidates through intersection.

We therefore make two assumptions on the probabilistic model of the dataset:
(1) that predicate co-occurrence correlates with resource similarity, and (2) that
considering binary predicate co-occurrences to be independent events (which
they are not) yields acceptable predictions. The latter allows us to pairwise
consider binary co-occurrences instead of all permutations.

The algorithm is based on association rule mining [1, 17] used for recom-
mendations in e.g. online stores: when buying one book, other books that are
often bought together with this book are recommended. In our case, books are
replaced by predicates and shopping transactions by resources.

3.1 Precomputation step

To better show the details of the algorithm, we extend our earlier example,
adding the person “Sebastian” and some more statements about John, as shown
in figure 2. Again, we want to suggest further predicates to the resource “Stefan”.

In the first step we calculate usage statistics of predicates in the knowledge
base. We count for each predicate, the resources that use this predicate, defined
in equation (10). Secondly, we count for each pair of predicates, the number of

6

Figure 2: Extended Knowledge Base

times they co-occur together in the same resource, as defined in equation (11).
The particular statistics for the example in figure 2 are given in table 1a and
table 1b.

occ(p) = | {v ∈ V |p ∈ Lo(v)} | (10)

coocc(p1, p2) = | {v ∈ V |p1 ∈ Lo(v) ∧ p2 ∈ Lo(v)} | (11)

predicate freq.

type 3
name 2
knows 1
homepage 2
firstname 1
author 1

(a) occurrence

ty
p
e

n
a
m

e

k
n
ow

s

h
o
m

ep
a
g
e

fi
rs

tn
a
m

e

a
u
th

o
r

type 3 2 1 2 1 1
name 2 2 1 2 1 0
knows 1 1 1 1 1 0
homepage 2 2 1 2 1 0
firstname 1 1 1 1 1 0
author 1 0 0 0 0 0

(b) co-occurrence

Table 1: Predicate occurrence and co-occurrence frequency

3.2 Suggestion step

In the second step, we compute suggestions for a given resource. We consider
all predicates in the knowledge base that occur more than once with each of the
predicates from “Stefan” as suggestion candidates, as defined in equation (12).

7

In our example, the predicates “type”, “knows”, and “firstname” are candidates
for the resource “Stefan”.

cooccurring(p1) = {p2 : coocc(p1, p2) > 1} (12)

For each candidate we calculate our confidence in suggesting it. As shown in
equation (13), the confidence for suggesting a predicate p for a selected resource
r, is formed by combining the confidence for p from each of r’s predicates pi. In
the earlier example, the total confidence for suggesting “type” is computed by
combining confidence(name ⇒ type) and confidence(homepage ⇒ type).

confidence(p, r) =
∏

pi∈cooccurring(p)∩Lo(r)

confidence(pi ⇒ p) (13)

Each constituent is computed as shown in equation (14): the confidence for
suggesting any p2 based on the existence of a p1 is given as the co-occurrence
frequency of p1 and p2 relative to the occurrence frequency of p1 by itself. In
our example, p2, the candidate, would be “type”, “knows”, or “firstname”, and
p1, the existing predicates, would be “name” and “homepage”. Intuitively, we
consider a relatively frequent co-occurrence as evidence for predicting p2.

confidence(p1 ⇒ p2) =
coocc(p1, p2)

occ(p1)
(14)

In our example, as shown in table 2, “type” co-occurs with both predicates
of “Stefan” 100% of the time, whereas the two other candidates (“knows” and
“firstname”) co-occur only 50% of the time with each of the predicates of “Ste-
fan”. We rank each candidate by the combined (unweighted) confidence: in this
example, “type” will be ranked first, with a combined confidence of 100%, and
the other two second, with a combined confidence of 25%.

candidate name homepage confidence

type 1.0 1.0 1.0
knows 0.5 0.5 0.25
firstname 0.5 0.5 0.25

Table 2: Relative co-occurrence ratios for Stefan

4 Implementation

We have implemented both algorithms in Ruby. We use the ActiveRDF [13]
datastore abstraction layer which allows us to run this algorithm on various RDF
datastores. The implementations are distributed as part of the ActiveRDF. We

8

Listing 1.2: Co-occurrrence as database views� �
create view occurrence as
select p, count(distinct s) as count
from triple
group by p;

create view cooccurrence as
select t0.p as p1, t1.p as p2, count(distinct t0.s) as count
from triple as t0 join triple as t1 on t0.s = t1.s and t0.p != t1.p
group by t0.p, t1.p� �

have also implemented the co-occurrence algorithm as a wrapper for an RDF
datastore, in particular for the rdflite1 RDF store.

Since rdflite uses a relational database with one table, triple(s,p,o), we
have implemented the (co)occurrence statistics as views on this database, com-
parable to [7]. Depending on the relational database, these views can be mate-
rialised or computed for each suggestion. The views, shown in listing 1.2, are a
straightforward translation of the equations (10) and (11) given before.

4.1 Example suggestions

Figure 3 shows an example of our suggestion system, for a randomly chosen
resource from a dataset2 about the Mindswap research group. The resource (a
blank node representing Dan Connolly) and its predicates, such as name and
email address, are listed on the left-hand side. Our suggestions, based on the
other resources in this dataset, are listed in ranked order on the right-hand side.

� �
:#1 foaf:name Dan Connolly .
:#1 owlweb:name Dan Connolly .
:#1 foaf:mbox mailto:connolly@w3.org .
:#1 owlweb:email mailto:connolly@w3.org .
:#1 owlweb:homepage

http://owl.mindswap.org/˜danC/ .
:#1 rdf:type owlweb:FamilyFriend .� �

� �
1. foaf:workInfoHomepage
2. foaf:homepage
3. owlweb:personalHomepage
4. owlweb:bachelorsFrom
5. owlweb:mastersFrom
6. owlweb:homepage
7. foaf:nick
8. owlweb:phdFrom� �

Figure 3: Suggested predicates (right) for example resource (left)

5 Evaluation

A predicate suggestion system is a kind of recommender system, using the opin-
ions of a community to help individuals decide between a potentially overwhelm-
1 http://wiki.activerdf.org/rdflite/
2 http://www.cs.umd.edu/∼hendler/2003/MindPeople4-30.rdf

9

http://wiki.activerdf.org/rdflite/
http://www.cs.umd.edu/~hendler/2003/MindPeople4-30.rdf

ing set of choices [6, 16]. In our case, this “potentially overwhelming set of
choices” is formed by the terminology (ontologies or schemas) available.

Evaluations of recommender systems can be divided into two categories [5, 6]:
when regarding recommendations as an information retrieval problem (selecting
the interesting predicates from all possible predicates), evaluation is usually per-
formed off-line, focused on accuracy, and measured using precision and recall.
When, on the other hand, recommendation is approached as a machine learn-
ing regression problem (learning and predicting user’s annotation preferences),
evaluation is commonly performed online, focused on utility and usefulness, and
measured using a training set and a test set.

5.1 Evaluation approach

Our evaluation combines both the information-retrieval and the machine-learning
approach: we show both precision and recall ratings and evaluate our approach
using training/testing datasets through a commonly applied technique of evalu-
ating prediction of deleted values from existing data [6].

Because the distribution of data can alter the performance of the algorithms
quite severely, we evaluated on five existing RDF datasets: a webcrawl3 of arbi-
trary RDF, the Mindswap research group4, a FOAF dataset5, a terror dataset6

augmented with terrorist data, and the ontoworld.org Semantic Wiki7. These
datasets have differing characteristics, as shown in Table 3: both large and
small, with homogeneous and heterogeneous data, and both highly structured
and highly unstructured distribution.

dataset classes resources triples

webcrawl 2 112 6766
mindpeople 14 273 1081
foaf 4 3123 10020
terror 25 1553 16632
ontoworld 42 4467 28593

Table 3: Evaluation datasets

Our primary evaluation technique is prediction of deleted values: we pick a
random resource from the dataset as a candidate for which further predicates
should be suggested. We then randomly remove one ore more statements about
this candidate and analyse if and at which rank position the removed predicates
are re-suggested. Repeated over n random resources this yields the average re-
suggestion rate (how often was the deleted predicate resuggested), the empty
3 http://www.activerdf.org/webcrawl 10k.nt
4 http://www.cs.umd.edu/∼hendler/2003/MindPeople4-30.rdf
5 http://rdfweb.org/2003/02/28/cwm-crawler-output.rdf
6 http://reliant.teknowledge.com/DAML/TerroristActs.owl
7 http://ontoworld.org/RDF/

10

http://www.activerdf.org/webcrawl_10k.nt
http://www.cs.umd.edu/~hendler/2003/MindPeople4-30.rdf
http://rdfweb.org/2003/02/28/cwm-crawler-output.rdf
http://reliant.teknowledge.com/DAML/TerroristActs.owl
http://ontoworld.org/RDF/

suggestion rate (how often were no suggestions given), and the average rank of
the resuggested predicate. Since in practice not all suggestions can be displayed
or will be considered by the user, we also show how many of the predicates were
resuggested within the top-k of suggestions.

Secondly, we measure suggestion precision (how many suggestions are valid)
and recall (how many valid suggestions have we missed) based on the schema
definition: we define “valid” predicates as those predicates that, according to the
schema, fall within the domain of the selected candidate. For recall computation,
we consider only predicates that are actually used in the dataset; since the
algorithm considers only instance data, unused predicates are unattainable.

5.2 Results

All tests were run on an AMD Opteron 1993MHz machine with 2GB of RAM.
The similarity algorithm was run 300 times over five random samples (n=100,
n=150, n=200, n=250, n=300) since its performance prevented us from using the
full datasets; the co-occurrence algorithm was run 20.000 times over the complete
datasets. In each run, we randomly selected a resource and deleted between one
and ten of its existing predicates. We then let the algorithms suggest additional
predicates and compare these to the randomly deleted predicates.

We first show the results of the two primary algorithms for each dataset:
table 4 shows the results of the classification-based algorithm, table 5 the results
of the co-occurrence-based algorithm. The tables show, for each dataset and for
all datasets combined, the resuggestion rate, empty suggestion rate and average
rank. It also shows the resuggestion rate when only considering the top-k results,
and the precision, recall, and the F1-measure for each algorithm.

We can see that in general the co-occurrence performs better than any of
the classification-based variants, especially when looking at the top-5 results.
We can see that the co-occurrence algorithm has very high precision (100%
on average). The co-occurrence algorithm has a slightly lower recall than the
classification-based ones, due to the intersection of candidates which results in
only high-confidence candidates. The F1-measure (harmonic mean of precision
and recall) shows that co-occurrence has the highest quality over all datasets.

dataset resugg. empty rank top-5 top-10 top-20 prec. recall F1

webcrawl 0.95 0.04 1.06 0.94 0.94 0.94 0.96 0.73 0.83
mindpeople 0.80 0.19 1.30 0.79 0.80 0.80 0.81 0.83 0.83
foaf 0.92 0.06 1.30 0.92 0.93 0.93 0.94 0.80 0.87
terror 0.98 0.02 1.10 0.97 0.97 0.98 0.98 0.91 0.95
ontoworld 0.85 0.13 1.39 0.84 0.84 0.85 0.87 0.72 0.79

average 0.90 0.08 1.22 0.89 0.90 0.90 0.92 0.80 0.85

Table 4: Results per dataset for classification-based algorithm

11

dataset resugg. empty rank top-5 top-10 top-20 prec. recall F1

webcrawl 1.00 0.00 1.18 0.99 0.99 1.00 1.00 0.74 0.85
mindpeople 1.00 0.00 1.23 1.00 1.00 1.00 1.00 0.76 0.87
foaf 1.00 0.00 1.51 0.95 1.00 1.00 1.00 0.59 0.74
terror 1.00 0.00 1.15 0.98 1.00 1.00 1.00 0.95 0.97
ontoworld 1.00 0.00 1.14 0.98 1.00 1.00 1.00 0.78 0.88

average 1.00 0.00 1.24 0.98 1.00 1.00 1.00 0.77 0.87

Table 5: Results per dataset for co-occurrence-based algorithm

Table 6 shows (again) the results for the primary algorithms and then lists
the results for each classification variant, averaged over all five datasets. We see
that using resemblance instead of containment yields very low results, which is
most probably due to a too high threshold value. The other variations do not
seem to affect the results much.

algorithm resugg. empty rank top-5 top-10 top-20 prec. recall F1

co-occurrence 1.00 0.00 1.24 0.98 1.00 1.00 1.00 0.77 0.87
similarity (default) 0.90 0.08 1.22 0.89 0.90 0.90 0.92 0.80 0.85

resemblance (sr) 0.10 0.86 1.01 0.11 0.11 0.11 0.14 0.99 0.24
similarity weigh (ws) 0.90 0.09 1.24 0.89 0.90 0.90 0.91 0.80 0.85
count predicates (fp

s) 0.91 0.08 1.48 0.89 0.90 0.91 0.92 0.80 0.85
threshold (st=0.8) 0.93 0.06 1.29 0.91 0.92 0.93 0.94 0.79 0.86

Table 6: Results of algorithm variants (averaged over all datasets)

Finally, Table 7 shows the performance times for the algorithms (only one
classification variant is shown since runtime is similar for all). Figure 4 shows
two graphs for these results; the left graph is zoomed for upto 300 resources, the
right graph shows the full results.

Timing for the co-occurrence algorithm is divided in matrix construction and
query answering. We evaluated the classification on two different datastores,
rdflite and Sesame8, to evaluate scaling independent of a particular datastore
implementation. We can see that the classification algorithm scales quadratic,
which is due to the linear lookup times of the used datastores, although the
Sesame datastore performs much better than rdflite.

Both variants of the co-occurrence algorithm perform well and scale linearly.
The materialised co-occurrence implementation performs better than the view-
based, which is due to the fact that the sqlite database does not support view
materialisation; as mentioned earlier, both approaches have their advantages.

The classification algorithm was too slow to include tests with more than 300
resources but that was again due to data lookups on the underlying datastore: the
algorithms themselves scale linearly when ignoring data-access. The materialised
8 http://www.openrdf.org

12

http://www.openrdf.org

co-occurrence implementation shows that we can circumvent data access, leading
to very good performance, without requiring lange memory space.

algorithm n=100 n=150 n=200 n=250 n=300 n=1555 n=3123 n=4467

sim. (rdflite) 1.64s 4.02s 8.51s 15.10s 30.22s – – –
sim. (Sesame) 0.71s 1.40s 2.74s 4.33s 7.88s – – –
co-occ. (view) 0.63s 0.0.78s 1.46s 1.00s 0.93s 7.72s 9.65s 10.10s
co-occ. (constr.) 0.21s 0.27s 0.46s 0.47s 0.70s 2.73s 4.71s 6.34s
co-occ. (query) 0.01s 0.01s 0.01s 0.01s 0.01s 0.01 0.01 0.01

Table 7: Runtime performance with n resources

 0

 5

 10

 15

 20

 25

 30

 35

 100 150 200 250 300

tim
e

(s
)

resources

cooc. constr.
cooc view

similarity (rdflite)
similarity (Sesame)

 0 1000 2000 3000 4000 5000

resources

Figure 4: Runtime performance

6 Related Work

Annotation tools such as OntoMat [4] support semi-automatic annotation of
documents; they suggest semantic annotation based on natural language anal-
ysis of the annotated resources, but do not take existing semantic descriptions
into account. Annotea [8] supports collaborative annotations but annotations
are made manually without a suggestion mechanism. Semantic Wikis such as

13

SemperWiki [14] or Semantic MediaWiki [18] allow arbitrary Semantic Web au-
thoring but do not guide users in selecting appropriate terminology.

Automatic schema mapping techniques [15] consider a similar problem (auto-
matically finding relations between elements of a schema) but typically operate
on class-level as opposed to instance level and use e.g. concept correlation to
unify schema elements [11] whereas we try to discover combined usage patterns
of predicates.

Our co-occurrence algorithm is based on association rule mining [1] but our
techniques for memory conservation differ: Agrawal et al. [1] focus on advanced
pruning techniques, whereas we approximate n-ary interdependencies using pair-
wise binary relations (resulting in a much simplified implementation). Further-
more, our technique allows online processing with incremental updates, whereas
their algorithms are iterative and need to run over the complete database.

7 Conclusion

We have discussed the problem of choosing vocabulary during Semantic Web
data entry; a crucial bottleneck, since only through shared vocabularies can
meaning be established. We introduced two algorithms for suggesting possible
predicates based on statistical data analysis.

The first algorithm is based on a simple intuitive principle of resource classi-
fication: we suggest predicates from similar resources. We have discussed para-
metric variations that differ in the definition of similarity. We showed that the
quality is good (F1 : 85%) and that variations in similarity computation do not
lead to much better results.

The second algorithm approximates resource similarity through pairwise pred-
icate co-occurrence, treating predicate occurrences as independent events (which
they are not). This simplifies computation and allows for memory-efficient mate-
rialisation, while still resulting in high-quality suggestions (F1 : 87%). Runtime
performance of the co-occurrence algorithm is good, scales linearly with the size
of the dataset, and is constant in the presence of materialisation.

We conclude that suggesting predicates based on resource similarity works
well and that, for this task, similarity based on outgoing arcs seems a “good-
enough” metric. Seeing that co-occurrence suggestion quality is even better than
in the classification algorithm, our second hypothesis on similarity approximation
using predicate co-occurrence seems to hold as well.

Acknowledgements This material is based upon works supported by the Science
Foundation Ireland under Grants No. SFI/02/CE1/I131 and SFI/04/BR/CS0694.

References

[1] R. Agrawal, T. Imielinski, and A. N. Swami. Mining association rules be-
tween sets of items in large databases. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pp. 207–216. 1993.

14

[2] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig. Syntactic
clustering of the web. Computer Networks, 29(8-13):1157–1166, 1997.

[3] D. Dhyani, W. K. Ng, and S. S. Bhowmick. A survey of web metrics. ACM
Computer Surveys, 34(4):469–503, 2002.

[4] S. Handschuh. Creating Ontology-based Metadata by Annotation for the
Semantic Web. Ph.D. thesis, University of Karlsruhe, 2005.

[5] C. Hayes, P. Massa, P. Avesani, and P. Cunningham. An on-line evaluation
framework for recommender systems. In Workshop on Personalization and
Recommendation in E-Commerce. 2002.

[6] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl. Evalu-
ating collaborative filtering recommender systems. ACM Transactions on
Information Systems, 22(1):5–53, 2004.

[7] M. Houtsma and A. Swami. Set-oriented data mining in relational
databases. Data and Knowledge Engineering, 17(3):245–262, 1995.

[8] J. Kahan, M. Koivunen, E. Prud’Hommeaux, and R. Swick. Annotea: An
open RDF infrastructure for shared web annotations. In Proceedings of the
International World-Wide Web Conference, pp. 623–632. 2001.

[9] B. Lund, T. Hammond, M. Flack, and T. Hannay. A case study – Connotea.
D-Lib Magazine, 11(4), 2005.

[10] C. Marlow, M. Naaman, D. Boyd, and M. Davis. HT06, tagging paper,
taxonomy, Flickr, academic article, to read. In Proceedings of the ACM
Conference on HyperText and Hypermedia. 2006.

[11] N. F. Noy and M. A. Musen. PROMPT: Algorithm and tool for automated
ontology merging and alignment. In Proceedings of the National Conference
on Artificial Intelligence (AAAI), pp. 450–455. 2000.

[12] E. Oren, J. G. Breslin, and S. Decker. How semantics make better wikis.
In Proceedings of the International World-Wide Web Conference. 2006.

[13] E. Oren, R. Delbru, S. Gerke, A. Haller, et al. ActiveRDF: Object-oriented
semantic web programming. In Proceedings of the International World-Wide
Web Conference. 2007.

[14] E. Oren, M. Völkel, J. G. Breslin, and S. Decker. Semantic wikis for personal
knowledge management. In Proceedings of the International Conference on
Database and Expert Systems Applications (DEXA). 2006.

[15] E. Rahm and P. A. Bernstein. A survey of approaches to automatic schema
matching. The VLDB Journal, 10(4):334–350, 2001.

[16] P. Resnick and H. R. Varian. Recommender systems. Communications of
the ACM, 40(3):56–58, 1997.

[17] R. Srikant and R. Agrawal. Mining generalized association rules. In Proceed-
ings of the International Conference on Very Large Data Bases (VLDB),
pp. 407–419. 1995.

[18] M. Völkel, M. Krötzsch, D. Vrandevic, H. Haller, et al. Semantic wikipedia.
In Proceedings of the International World-Wide Web Conference. 2006.

15

