
 
Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-03-20T09:44:15Z

 

Some rights reserved. For more information, please see the item record link above.
 

Title Middleware support for the "Internet of Things"

Author(s) Aberer, Karl; Hauswirth, Manfred

Publication
Date 2006

Publication
Information

Karl Aberer, Manfred Hauswirth, Ali Salehi "Middleware
support for the "Internet of Things"", 5th GI/ITG KuVS
Fachgespräch "Drahtlose Sensornetze", 2006.

Item record http://hdl.handle.net/10379/525

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/


Middleware support for the “Internet of Things” �

Karl Aberer, Manfred Hauswirth, Ali Salehi

School of Computer and Communication Sciences
Ecole Polytechnique Fédérale de Lausanne (EPFL)

CH-1015 Lausanne, Switzerland

Abstract. The “Internet of Things” intends to enhance items of our everyday life
with information and/or processing and interconnect them, so that computers can
sense, integrate, present, and react on all kinds of aspects of the physical world.
As this implies that enormous numbers of data sources need to be connected
and related to each other, flexible and dynamic middleware support essentially
providing zero-programming deployment is a key requirement to cope with the
sheer scale of this task and the heterogeneity of available technologies. In this pa-
per we briefly overview our Global Sensor Networks (GSN) middleware which
supports these tasks and offers a flexible, zero-programming deployment and in-
tegration infrastructure. GSN’s central concept is the virtual sensor abstraction
which enables the user to declaratively specify XML-based deployment descrip-
tors in combination with the possibility to integrate sensor network data through
plain SQL queries over local and remote sensor data sources. The GSN imple-
mentation is available from http://globalsn.sourceforge.net/.

1 Introduction

In the sensor network domain most of the ongoing work focuses on energy efficient
routing, aggregation, and data management algorithms inside a single sensor network.
The deployment, application development, and standardization aspects received little
attention so far. However, as the price of sensors diminishes rapidly we can soon ex-
pect to see very large numbers of heterogeneous sensor devices and sensor networks
being deployed to support the vision of the “Internet of Things” [1]. Major challenges
in this “Sensor Internet” environment are (1) minimizing the development and deploy-
ment efforts which are key cost factor in large-scale systems and (2) the data-oriented
integration of very large numbers of data sources. Despite the heterogeneity of the avail-
able platforms, their requirements for processing, storing, querying and publishing data,
however, are similar and the main differences among various software platforms are the
different abstractions for the sensors and sensor networks.

Our Global Sensor Networks (GSN) middleware addresses these problems and pro-
vides a uniform platform for fast and flexible integration and deployment of heteroge-
neous sensor networks. The design of GSN follows four main design goals: Simplicity
(a minimal set of powerful abstractions which can be easily configured and adopted),
adaptivity (adding new types of sensor networks and dynamic (re-) configuration of

�

The work presented in this paper was supported (in part) by the National Competence Center
in Research on Mobile Information and Communication Systems (NCCR-MICS), a center
supported by the Swiss National Science Foundation under grant number 5005-67322 and was
(partly) carried out in the framework of the EPFL Center for Global Computing.



data sources has to be supported during run-time), scalability (peer-to-peer architec-
ture), and light-weight implementation (small memory foot-print, low hardware and
bandwidth requirements, web-based management tools).

In the following, we will give a concise overview of GSN and how it provides an
infrastructure to support the “Internet of Things”. Section 2 discusses the virtual sen-
sor abstraction, Section 3 highlights GSN’s data stream processing functionalities, and
Section 4 describes its architecture. For a detailed description of these issues we refer
the reader to [2]. Section 5 then discusses GSN’s dynamic plug-and-play functionali-
ties which rely on simple semantic descriptions based on the IEEE 1451 standard [3] to
identify sensors and dynamically integrate them into GSN. This is a key enabling tech-
nology in GSN supporting fully dynamic and zero-programming integration of data
sources in GSN.

2 Virtual sensors
The key abstraction in GSN is the virtual sensor. Virtual sensors abstract from im-
plementation details of access to sensor data and they are the services provided and
managed by GSN. A virtual sensor corresponds either to a data stream received directly
from sensors or to a data stream derived from other virtual sensors. A virtual sensor can
have any number of input streams and produces one output stream. The specification of
a virtual sensor provides all necessary information required for deploying and using it,
including:

� metadata used for identification and discovery
� the structure of the data streams which the virtual sensor consumes and produces
� an SQL-based specification of the stream processing performed in a virtual sensor
� functional properties related to persistency, error handling, life-cycle management,

and physical deployment
To support rapid deployment, these properties of virtual sensors are provided in a

declarative deployment descriptor. Figure 1 shows a fragment of a virtual sensor defini-
tion which defines a sensor returning an averaged temperature from a remote virtual sen-
sor (wrapper="remote") which is accessed via the Internet through another GSN
instance (GSN instances cooperate in a peer-to-peer fashion).

�

�

�

�

...
<life-cycle pool-size="10" />
<output-structure>

<field name="TEMPERATURE" type="integer"/>
</output-structure>
<storage permanent-storage="true" size="10s" />
<input-stream name="dummy" rate="100" >

<stream-source alias="src1" sampling-rate="1" storage-size="1h">
<address wrapper="remote">
<predicate key="type" val="temperature" />
<predicate key="location" val="bc143" />

</address>
<query>select avg(temperature) from WRAPPER</query>

</stream-source>
<query>select * from src1</query>

</input-stream>
...

Fig. 1. Virtual sensor definition (fragment)
To specify the processing of the input streams we use SQL queries which refer to the

input streams by the reserved keyword WRAPPER. The <input-stream> element



provides all definitions required for identifying and processing an input stream of the
virtual sensor. The <life-cycle> element defines deployment aspects such as the
number of threads available for processing, the <storage> element controls how
stream data is stored persistently (among other attributes this controls the temporal
processing), and <output-structure> defines the structure of the produced output
stream. A detailed description of virtual sensors is provided in [2].

3 Data stream processing

In GSN a data stream is a sequence of timestamped tuples. The order of the data stream
is derived from the ordering of the timestamps and the GSN container provides basic
support to manage and manipulate the timestamps. These services essentially consist
of the following components: (1) a local clock at each GSN container, (2) implicit
management of a timestamp attribute, (3) implicit timestamping of tuples upon arrival at
the GSN container (reception time), and (4) a windowing mechanism which allows the
user to define count- or time-based windows on data streams. Multiple time attributes
can be associated with data streams and can be manipulated through SQL queries. The
production of a new output stream element of a virtual sensor is always triggered by the
arrival of a data stream element from one of its input streams. Informally, the processing
steps then are as follows:
1. The new data stream element is timestamped using the local clock.
2. Based on the timestamps for each input stream the stream elements are selected

according to the definition of the time window and the resulting sets of relations
are unnested into flat relations.

3. The input stream queries are evaluated and stored into temporary relations.
4. The output query for producing the output stream element is executed based on the

temporary relations.
5. The result is permanently stored if required and all consumers of the virtual sensor

are notified of the new stream element.
GSN’s query processing approach is related to TelegraphCQ as it separates the time-

related constructs from the actual query. Temporal specifications, e.g., the window size,
are provided in XML in the virtual sensor specification, while data processing is speci-
fied in SQL with the full range of operations allowed by the standard syntax.

4 GSN architecture

GSN follows a container-based architecture and each container can host and manage
one or more virtual sensors concurrently. The container manages every aspect of the
virtual sensors at runtime including remote access, interaction with the sensor net-
work, security, persistence, data filtering, concurrency, and access to and pooling of
resources which enables on-demand use and combination. Virtual sensor descriptions
hold user-definable key-value pairs which are published in a peer-to-peer directory so
that virtual sensors can be discovered and accessed based on any combination of their
properties, i.e., this provides a simple model of identification and discovery of virtual
sensors through metadata. GSN nodes communicate among each other in a peer-to-peer
fashion. Figure 2 depicts the internal architecture of a GSN node.



Query Processor

Notification Manager

Query Repository

Manager

Life Cycle

Storage

Integrity service

GSN/Web/Web−Services Interfaces

Pool of Virtual Sensors

Stream Quality Manager

Q
ue

ry
 M

an
ag

er

Virtual Sensor Manager

Input Stream Manager

Access control

Fig. 2. GSN container architecture

The virtual sensor manager (VSM) is responsible for providing access to the virtual
sensors, managing the delivery of sensor data, and providing the necessary administra-
tive infrastructure. Its life-cycle manager (LCM) subcomponent provides and manages
the resources provided to a virtual sensor and manages the interactions with a virtual
sensor (sensor readings, etc.) while the input stream manager (ISM) manages the input
streams and ensures stream quality (disconnections, unexpected delays, missing values,
etc.). The data from/to the VSM passes through the storage layer which is in charge of
providing and managing persistent storage for data streams. Query processing is done
by the query manager (QM) which includes the query processor being in charge of SQL
parsing, query planning, and execution of queries (using an adaptive query execution
plan). The query repository manages all registered queries (subscriptions) and defines
and maintains the set of currently active queries for the query processor. The notifica-
tion manager deals with the delivery of events and query results to the registered clients.
The notification manager has an extensible architecture which allows the user to cus-
tomize it to any required notification channel. The top three layers deal with access
mechanisms, access control, and integrity and security.

5 Zero-programming deployment
As described before, GSN reduces deployment to writing an XML file describing the
sensor-dependent properties. While having a single XML file (30-50 lines) describing
a virtual sensor is much simpler than low-level device-dependent programming, human
intervention is still required. To overcome this step, GSN uses the IEEE 1451 standard
[3] for automatic detection, configuration and calibration. An IEEE 1451-compliant
sensor provides a Transducer Electronic Data Sheet (TEDS) which is stored inside the
sensor. The TEDS provides a simple semantic description of the sensor, i.e., it describes
the sensor’s properties and measurement characteristics such as type of measurement,
scaling, and calibration information. A large number of sensors is already compliant to
IEEE 1451 and this number is growing steadily.

To support truly zero-programming, GSN uses the TEDS self-description feature
for the dynamic generation of virtual sensor descriptions by using a virtual sensor de-
scription template and deriving the sensor-dependent fields of the template from the
data extracted from the TEDS as shown in Figure 3(a).



(a) Automatic generation (b) Setup
Fig. 3. Zero-programming deployment

The node setup to support plug-and-play deployment is shown in Figure 3(b). At
least one base station capable of interacting with sensing devices (e.g., mica2, mica2dot,
BTnode) is needed. When a sensor node enters a detection area (depicted by an antenna
in the figure), GSN detects it, requests its TEDS, and dynamically instantiates a new
virtual sensor based on the TEDS. This means that by using TEDS GSN can detect,
identify, and automatically deploy sensors without human intervention. The generated
virtual sensor description is immediately included into the detecting GSN node’s repos-
itory and all processing dependent on the new sensor is executed. This is done on-the-fly
while GSN is running. At the moment TEDS provides only that information on a sensor
which enables interaction with it. Thus for some parts of the generated virtual sensor
description, e.g., security requirements, storage and resource management, etc., we use
default values.

The deployment of a sensor (network) in GSN implies making the produced data
accessible through the Internet via web services and a web interfaces. Thus also all
remote processing dependencies at any other node in the network of GSN nodes are
triggered. This enables truly global integration of mobile sensors. GSN periodically
asks for TEDS from all sensors to ensure that they are alive. If no response is provided
by a sensor GSN removes the previously created virtual sensor, frees the associated
resources and notifies dependent query and nodes.

6 Conclusions
GSN provides a flexible middleware for deployment of sensor networks meeting the
challenges that arise in real-world environments. Its plug-and-play deployment func-
tionality makes it specifically interesting as an infrastructure for the “Internet of Things,”
enabling completely new types of applications. For example, users or things could
be equipped with RFID tags not only holding static data but also specifying data-
processing tasks (queries), which GSN can recognize and include into its stream pro-
cessing. This provides data processing dynamicity besides physical mobility without
additional efforts for deployment. The GSN implementation is available from http:
//globalsn.sourceforge.net/ and a detailed description of GSN in provided in [2].

References
1. Gershenfeld, N., Krikorian, R., Cohen, D.: The Internet of Things. Scientific American (2004)
2. Aberer, K., Hauswirth, M., Salehi, A.: The Global Sensor Networks middleware for efficient

and flexible deployment and interconnection of sensor networks. Technical Report LSIR-
REPORT-2006-006, Ecole Polytechnique Fédérale de Lausanne (2006)

3. NIST: IEEE1451 (2006) http://ieee1451.nist.gov/.


