

Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-03-20T09:08:18Z

Some rights reserved. For more information, please see the item record link above.

Title WSMX: A Semantic Service Oriented Middleware for B2B
Integration

Author(s) Kotinurmi, Paavo; Moran, Matthew; Vitvar, Tomas; Zaremba,
Maciej

Publication
Date 2006

Publication
Information

Thomas Haselwanter, Paavo Kotinurmi, Matthew Moran,
Tomas Vitvar, Maciej Zaremba "WSMX: A Semantic Service
Oriented Middleware for B2B Integration", Proceedings of the
4th International Conference on Service Oriented Computing,
Springer-Verlag LNCS, 2006.

Publisher Springer

Link to
publisher's

version
http://dx.doi.org/10.1007/11948148_43

Item record http://hdl.handle.net/10379/522

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/

WSMX: A Semantic Service Oriented
Middleware for B2B Integration?

Thomas Haselwanter1, Paavo Kotinurmi1,2, Matthew Moran1, Tomas Vitvar1,
and Maciej Zaremba1

1 Digital Enterprise Research Institute
University of Innsbruck, Austria

National University of Ireland in Galway, Ireland
firstname.lastname@deri.org

2 Helsinki University of Technology, Finland

Abstract In this paper we present a B2B integration scenario building
on the principles of Semantic Web services. For this scenario we show the
benefits of semantic descriptions used within the integration process to
enable conversation between systems with data and process mediation of
services. We illustrate our approach on the WSMX – a middleware plat-
form built specifically to enact semantic service oriented architectures.

1 Introduction

Although Business-to-Business (B2B) standards such as RosettaNet, EDI and
ebXML have brought new value to inter-enterprise integration, they still suffer
from two drawbacks. All partners must agree to use the same standard and often
the rigid configuration of standards makes them difficult to reconfigure, reuse
and maintain. In order to overcome some of the difficulties of B2B integration,
semantic technologies offer a promising potential to enable more flexible integra-
tion that is more adaptive to changes that might occur over a software system’s
lifetime [4]. There remains, however, very few realistic publicly implemented sce-
narios demonstrating the benefits of this technology. In this respect, we aim to
showcase how Semantic Web service (SWS) technology can be used to facili-
tate the dynamics for B2B integration. We base our work on specifications of
WSMO[5], WSML[5] and WSMX[3] providing a conceptual framework, ontology
language and execution environment for Semantic Web services. In addition, we
make use of the RosettaNet B2B standard – an industry standard providing def-
inition of inter-company choreographies (e.g. PIP3A4 Request Purchase Order
(PO)) as well as structure and semantics for business messages. In this paper
we show how these technologies are used in a real-world scenario involving (1)
semantic representation of XML schema for RosettaNet as well as a proprietary
purchase order using the WSML ontology language, (2) semantic representa-
tion of services provided by partners using WSMO, (3) executing a conversation

?
This work is supported by the Science Foundation Ireland Grant No. SFI/02/CE1/I131, and
the EU projects Knowledge Web (FP6-507482), DIP (FP6-507483) and ASG (FP6-C004617).

between partner services using the WSMX integration middleware, and (4) ap-
plication of data and process mediation between heterogeneous services where
necessary.

2 Architecture

In figure 1, a fictitious trading company called Moon uses two back-end systems
to manage its order processing, namely, a Customer Relationship Management
system (CRM) and an Order Management system (OMS). Moon has signed
agreements to exchange purchase order messages with a partner company called
Blue using the RosettaNet PIP 3A4. We use SWS technology to facilitate con-
versation between all systems, to mediate between the PIP 3A4 and the XML
schema used by Moon, and to ensure that the message exchange between both
parties is correctly choreographed. Following is a description of the basic blocks
of the architecture.

WSMX middleware

C
om

m
un

ic
at

io
n

M
an

ag
er

Pa
rs

er

D
is

co
ve

ry

D
at

a
M

ed
ia

to
r

C
ho

re
og

ra
ph

y
En

gi
ne

Pr
oc

es
s

M
ed

ia
to

r

Execution Semantics

Persistence Layer

Services Ontologies Mediators

Adapter

C
R

M
/O

M
S-

W
SM

X
A

da
pt

er

Customer
Relationship

System
(CRM)

Order
Management

System
(OMS)

Blue Company

R
os

et
ta

N
et

-W
SM

X
A

da
pt

er

Send PO

Receive
POC

Adapter Moon Back-end
Systems

Moon Company

RosettaNet
System

Figure 1. Architecture Overview

– Existing Systems. The existing systems are Moon’s back-end applications
including CRM and OMS systems as well as Blue’s RosettaNet system. Each
system communicates using different formats, i.e. Blue’s RosettaNet system
communicates according to the RosettaNet PIP 3A4 PO, whereas commu-
nication with the CRM and OMS systems is proprietary, specified in their
WSDL descriptions.

– Adapters. Since WSMX internally operates on the semantic level (WSML),
adapters facilitate lifting and lowering operations to transform between XML
and WSML. In addition, it also identifies the WSMO Goal that corresponds
to a PO request and sends it to WSMX.

– WSMX. WSMX is the integration platform which facilitates the integra-
tion process between different systems. The integration process is defined
by the WSMX execution semantics, i.e. interactions of middleware services
including discovery, mediation, invocation, choreography, repository, etc.

There are two phases to the integration of the Blue and Moon partners:
(1) integration setup phase and (2) integration runtime phase. During the setup

phase, the development of adapters, WSMO ontologies and services, rules for
lifting/lowering, mapping rules between ontologies are carried out for Roset-
taNet, OMS and CRM systems. The focus of this paper is on the runtime phase
describing interactions between Blue and Moon systems.

2.1 Activity Diagram

In this section we describe interactions between the Blue and Moon systems
facilitated by WSMX through its middleware services as depicted in the figure
2. We refer to parts of the figure using numbers before title of each subsection.

1 – Sending Request. A PIP3A4 PO message is sent from the RosettaNet
system to the entry point of the RosettaNet-WSMX adapter. On successful re-
ception of the message by the adapter, an acknowledgment is sent back to the
RosettaNet system. In the RosettaNet-WSMX adapter, the PO XML message
is lifted to WSML according to the PIP3A4 ontology and rules for lifting using
XSLT. Finally, a WSMO Goal is created from the PO message including the
definition of the desired capability and a choreography. The capability of the
requester (Blue company) is used during the discovery process whereas the Goal
choreography describes how the requester wishes to interact with the environ-
ment. After the goal is created, it is sent to WSMX through the AchieveGoal
entrypoint. In return, a context is received containing the identification of the
conversation – this information is used in subsequent asynchronous calls from
the requester.

2 – Discovery and Conversation Setup. The AchieveGoal entrypoint is
implemented by the WSMX Communication Manager – the WSMX middleware
service, which facilitates the inbound and outbound communication with the
WSMX environment. After receipt of the goal, the Communication Manager
initiates the execution semantics which manages the whole integration process.
The Communication Manager sends the WSML goal to the instance of the ex-
ecution semantics, which in turn invokes the WSMX Parser returning the Goal
parsed into an internal system object. The next step is to invoke the discovery
middleware service in order to match the requested capability of the Goal with
the capabilities of services registered in the WSMX repository. Since we do not
concentrate on the discovery in this paper, we use a very simplified approach
when only one service in the repository (CRM/OMS service) can be matched
with the goal. After discovery, the execution semantics registers both the re-
quester’s and the provider’s choreography with the Choreography Engine (these
choreographies are part of the goal and service descriptions respectively). Both
choreographies are set to a state where they wait for incoming messages that
could fire a transition rule. This completes the conversation setup.

3 – Conversation with Requester. The instance data for the goal is sent from
the RosettaNet-WSMX adapter to the WSMX asynchronously by invoking the
receiveData entrypoint. The data in WSML (WSMLmsg) is passed through the
Communication Manager to the execution semantics, they are parsed and sent to
the WSMX Process Mediator. The first task of the WSMX Process Mediator is to

Parsing WSMLmsg...

pa
rs

in
g

purchaseOrder (XML)

Blue Company
RosettaNet

System

parse (WSMLGoal)

Initiate
Execution
Semantics

Object Goal

discover(Goal) Get Services

Services

Discovered Service

registerChoreography
(Goal, Service)

receiveData
(context, WSMLmsg) ...

addData
(context, msg) mediate(SourceOnt,TargetOnt, msg)

achieveGoal(WSMLGoal)

context

send(msg’)
[searchCustomerRequest]

D
ata

M
ediation

purchaseOrderAck (XML)

searchCustomerRequest
(searchString)

receiveData
(context, WSMLmsg)

searchCustomerResponse
(customerObject)

... Parsing WSMLmsg...

addData
(context, msg)

Parsing WSMLmsg...

send(msg)
[createNewOrder]

createNewOrder
(WSMLmsg, context)createNewOrder (XML)

receiveData
(context, WSMLmsg)

orderID (XML) ... Parsing WSMLmsg...

addData
(contextId, msg)

...

closeOrderAck (XML)

send(msg’)
[purchaseOrderConfirmation]

purchaseOrderConfirmation
(WSMLmsg, context)

purchaseOrderConfirmation
(XML)

end of conversation

Moon
OMS

Moon
CRM

Adapter
RosettaNet-

WSMX

Adapter
CRM/OMS-

WSMX

WSMX
Communication

Manager

WSMX
Execution
Semantics

WSMX
Choreography

Engine

WSMX
Parser

WSMX
Data

Mediatior

WSMX
Discovery

WSMX
Service
Registry

searchCustomerRequest
(WSMLmsg, context)

1 2

WSMX
Process
Mediator

msg’

updateChoreography
(context, msg’)

updateChoreography
(context, msg)

updateChoreography
(context, msg)

send(msg)
[closeOrder]

closeOrder
(WSMLmsg, context)closeOrder (XML)

addData
(contextId, msg) Data Mediation...

updateChoreography
(context, msg’)

end of conversation

orderConfirmation (XML)

receiveData
(context, WSMLmsg)

purchaseOrderConfirmationAck
(XML)

send(msg)
[addLineItem]

addLineItem
(WSMLmsg, context)addLineItem (XML)

addLineItemAck (XML)

3

4

Goal Choreography
State

Service Choreography
State

WSMLmsg Unparsed WSML
message

msg Parsed WSML message
into the memory object

msg’ Parsed WSML message
after data mediation

Legend

5

updateChoreography
(context, msg)

Figure 2. Activity Diagram

decide, which data will be added to requester’s or provider’s choreography3 – this
decision is based on analysis of both choreographies and concepts used by these
choreographies. Process Mediator first updates the memory of the requester’s
choreography with the information that the PO request has been sent. The
Process Mediator then evaluates how data should be added to the memory of
the provider’s choreography – data must be first mediated to the ontology used
by the provider. For this purpose, the source ontology of the requester, target
ontology of the provider and the instance data are passed to the WSMX Data
Mediator. Data mediation is performed by execution of mapping rules between
both ontologies (these mapping rules are stored within WSMX and have been
created and registered during the integration setup phase). Once mediation is
complete, the mediated data is added to the provider’s choreography.

4 – Conversation with Provider (opening order, add line items, closing
order). Once the requester’s and provider’s choreographies have been updated,
the Choreography Engine processes each to evaluate if any transition rules could
be fired. The requester’s choreography remains in the waiting state as no rule
can be evaluated at this stage. For the provider’s choreography, the Choreog-
raphy Engine finds the rule shown in the listing 1.1 (lines 14-21). Here, the
Choreography Engine matches the data in the memory with the the antecedent
of the rule and performs the action of the rule’s consequent. The rule says that
the message SearchCustomerRequest with data searchString should be sent to
the service provider (this data has been previously added to the choreography
memory after the mediation - here, searchString corresponds to the customerId
from the requester’s ontology). The Choreography Engine then waits for the
SearchCustomerResponse message to be sent as a response from the provider.
Sending the message to the service provider is initiated by Choreography En-
gine passing the message to the Communication Manager which, according to
the grounding defined in the choreography, passes the message to the searchCus-
tomer entrypoint of the CRM/OMS-WSMX Adapter. In the adapter, lowering
of the WSML message to XML is performed using the lowering rules for the
CRM/OMS ontology and the CRM XML Schema. After that, the actual ser-
vice of the CRM system behind the adapter is invoked, passing the parameter
of the searchString. The CRM system returns back to the CRM/OMS Adapter
a resulting customerObject captured in XML. The XML data is lifted to the
CRM/OMS ontology, passed to the WSMX, parsed, evaluated by the WSMX
Process Mediator and added to the provider’s choreography memory. Once the
memory of the provider’s choreography is updated, the next rule is evaluated
resulting in sending a createNewOrder message to the Moon OMS system. This
process is analogous to one described before. As a result, the orderID sent out
from the OMS system is again added to the memory of the provider’s choreog-
raphy. After the order is created (opened) in the OMS system, the individual
items to be ordered need to be added to that order. These items were previously
sent in one message as part of order request from Blue’s RosettaNet system (i.e.
a collection of ProductLineItem) which must be now sent to the OMS system
3 Choreographies of WSMO services are modeled as Abstract State Machines [2]

individually. As part of the data mediation in the step 3, the collection of items
from the RosettaNet order request have been split into individual items which
format is described by the provider’s ontology. At that stage, the Process Me-
diator also added these items into the provider’s choreography. The next rule
to be evaluated now is the rule of sending addLineItem message with data of
one lineItem from the choreography memory. Since there is more then one line
item in the memory, this rule will be evaluated several items until all line items
from the ontology have been sent to the OMS system. When all line items have
been sent, the next rule is to close the order in the OMS system. The closeOrder
message is sent out from the WSMX to the OMS system and since no additional
rules from the provider’s choreography can be evaluated, the choreography gets
to the end of conversation state.

The listing 1.1 shows the fragment of the provider’s choreography and the
first selected rule from the requester’s choreography described above. The chore-
ography is described from the service point of view thus the rule says that the
service expects to receive the SearchCustomerRequest message and send the re-
ply SearchCustomerResponse message. The choreography is part of the service
definition which in addition also contains definition of non-functional properties
and capability. For brevity, these elements are not included in the listing.� �
1 ...
2 choreography MoonWSChoreography
3 stateSignature ”http://www.example.org/ontologies/sws−challenge/MoonWS#statesignature”
4 importsOntology { ”http://www.example.org/ontologies/sws−challenge/Moon”,
5 ”http://www.example.org/ontologies/choreographyOnto” }
6

7 in moon#SearchCustomerRequest withGrounding { ”http://intranet.moon.local/wsmx/services/
CRMOMSAdapter?WSDL#wsdl.interfaceMessageReference(CRMOMSAdapter/CRMsearch/
in0)”}

8 ...
9 out moon#SearchCustomerResponse

10 ...
11 controlled oasm#ControlState
12

13 transitionRules ”http://www.example.org/ontologies/sws−challenge/MoonWS#transitionRules”
14 forall {?controlstate, ?request} with (
15 ?controlstate[oasm#value hasValue oasm#InitialState] memberOf oasm#ControlState and
16 ?request memberOf moon#SearchCustomerRequest
17) do
18 add(?controlstate[oasm#value hasValue moonc#SearchCustomer])
19 delete(?controlstate[oasm#value hasValue oasm#InitialState])
20 add(# memberOf moon#SearchCustomerResponse)
21 endForall
22 ...� �

Listing 1.1. Requester’s Service Choreography

5 – Conversation with Requester (order confirmation, end of conver-
sation). When the order in OMS system is closed, the OMS system replies with
orderConfirmation. After lifting and parsing of the message, the Process Medi-
ator first invokes the mediation of the data to the requester’s ontology and then
adds the data to the memory of the requester’s choreography. The next rule of
the requester’s choreography can be then evaluated saying that purchaseOrder-
Confirmation message needs to be sent to the RosettaNet system. After the

message is sent, no additional rules can be evaluated from the requester’s chore-
ography, thus the choreography gets to the end of conversation state. Since both
requester’s and provider’s choreography are in the state of end of conversation,
the Choreography Engine notifies the execution semantics and the conversation
is closed.

3 Conclusion and Future Work

This work addresses the fact that although research into the area of Semantic
Web services is well established, there is a scarcity of implemented use cases
demonstrating the potential benefits. Existing approaches to dynamic or se-
mantic B2B integration such as [1], [4], [6] are mostly conceptual with lack of
demonstration and evaluation of real-world case scenarios. The system presented
here has been implemented according to the scenario from the SWS Challenge4

addressing data and process heterogeneities in a B2B integration. It has been
evaluated how our solution adapts to changes of back-end systems with needs
to change the execution code (success level 1), data/configuration of the system
(success level 2), no changes in code and data (success level 3)5. For data medi-
ation we had to make some changes in code due to forced limitations of existing
data mediation tools. For process mediation we changed only description of ser-
vice interfaces (choreographies) according to the changes in back-end systems.
Ultimately, we aim to the level when our system adapts without changes in
code and configuration – the adaptation will be purely based on reasoning over
semantic descriptions of services, their information models and interfaces. We
also plan to expand our solution to cover more B2B standards and to integrate
key enterprise infrastructure systems such as policy management, service quality
assurance, etc.

References

1. N. Anicic, N. Ivezic, and A. Jones. An Architecture for Semantic Enterprise Appli-
cation Integration Standards. In Interoperability of Enterprise Software and Appli-
cations, pp. 25–34. Springer, 2006.

2. E. Brger and R. Strk. Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer-Verlag, 2003.

3. A. Haller, et al. WSMX – A Semantic Service-Oriented Architecture. In Proc. of
the 3rd Int. Conf. on Web Services, pp. 321 – 328. IEEE Computer Society, 2005.

4. C. Preist, et al. Automated Business-to-Business Integration of a Logistics Supply
Chain using Semantic Web Services Technology. In Proc. of 4th Int. Semantic Web
Conference. 2005.

5. D. Roman, et al. Web Service Modeling Ontology. Applied Ontologies, 1(1):77 –
106, 2005.

6. K. Verma, et al. The METEOR-S Approach for Configuring and Executing Dynamic
Web Processes, available at http://lsdis.cs.uga.edu/projects/meteor-s/techRep6-24-
05.pdf. Tech. rep., 2005.

4 http://www.sws-challenge.org
5 http://sws-challenge.org/wiki/index.php/Workshop Budva

