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ABSTRACT
An important aspect of Semantic Web technologies is the
issue of identity and uniquely identifying resources, which
is essential for integrating data across sources. Currently,
there is poor agreement on the use of common URIs for the
same instances across sources and as a result a naively in-
tegrated dataset might miss associations between resources.
To solve the problem, we present a method for performing
large-scale object consolidation to merge identifiers of equiv-
alent instances occurring across data sources; the algorithm
is based on the analysis of defined inverse functional prop-
erties: properties which have values unique to an instance.
We apply our object consolidation algorithm to a dataset of
over 72M instances collected from more than 3M Web doc-
uments, and offer evaluation and discussion on the resulting
integrated graph.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing

General Terms
Algorithms, Design

Keywords
object consolidation, semantic web, entity-centric, smushing

1. INTRODUCTION
A number of prominent ontologies have emerged on the

Semantic Web as the de facto choice for describing data in
specific domains. Examples are Friend of a Friend1 (FOAF)
for describing people, Semantically-Interlinked Online Com-
munities2 (SIOC) for specifying online communities, and

∗This work has been supported by Science Foundation Ire-
land (SFI/02/CE1/I131)
1http://www.foaf-project.org/
2http://www.sioc-project.org/

Copyright is held by the author/owner(s).
ACM 0-89791-88-6/97/05.

Simple Knowledge Organisation System3 (SKOS) for encod-
ing classification schemes and thesauri. Classes and proper-
ties in these specifications are identified via common iden-
tifiers in the form of URIs4 which are consistently used
across sources. On the instance level, however, there is
still little agreement between sources on the use of common
URIs to identify specific entities, such as people, forums,
or categories. In fact, since the assignment of URIs to in-
stances is optional within the Resource Description Frame-
work (RDF), many entities are described anonymously with-
out use of a URI. Where agreement on URIs for resources
cannot be reached, multiple URIs may exist for the one re-
source.

The problem of object consolidation has received signifi-
cant attention in the database community under the names
of record linkage, instance fusion, and duplicate identifica-
tion. Due to the lack of formal specification for determining
equivalences, these approaches are mostly concerned with
probabilistic methods. In more formal approaches, proper-
ties unique to an entity can be used to determine its identity;
examples are personal public services numbers or email ad-
dresses which can be used to identify people. On the Seman-
tic Web, these ”inverse functional properties” are specified
in Web Ontology Language (OWL) descriptions. For exam-
ple, from the FOAF specification one can determine that
foaf:mbox (a person’s email address) is a property unique
to a person; hence, two instances sharing the same value for
foaf:mbox properties must be the same real-world entity.

There is much more agreement on values that are estab-
lished in real-world areas or widely used applications such
as email addresses or instant messaging usernames than on
seemingly artificial URIs as the identifying factor of enti-
ties. Thus, equivalence of identifiers based on inverse func-
tional properties has to be taken into account when merg-
ing RDF graphs, since infrequent reuse of instance identi-
fiers across sources leads to problematic data integration:
the total knowledge contribution for an entity may be frag-
mented over multiple instances. One desired outcome of the
Semantic Web effort is a massive data graph spanning the
Web, and agreement on identifiers is crucial to achieving
a well-connected graph where associations between entities
are recorded correctly. Fusing identifiers is especially im-
portant for entity-centric applications relying on RDF data,

3http://www.w3.org/2004/02/skos/
4http://www.ietf.org/rfc/rfc2396.txt



such as search and query engines, interactive browsing tools
and data mining systems.

There are a number of challenges related to performing
object consolidation on Semantic Web data:

• The Web is massive in size, therefore methods operat-
ing on considerable fractions of the Web require scal-
able algorithms. In particular, we require an algorithm
that scales object consolidation to the Web.

• Data gathered from the Web has been created by a
large number of people and exhibits a lot of variance
in terms of quality and completeness. Therefore, we
require our algorithm to be robust in the face of po-
tentially problematic data.

• We wish to reduce the number of URIs denoting the
same entity to a single canonical URI. We require a
method to make such a decision through various anal-
yses on the use of the candidate idenitifiers in the data.

In this paper, we describe an object consolidation algo-
rithm which analyses inverse functional properties and is
used to identify and merge equivalent instances in an RDF
dataset with more than 400M statements obtained from
over 3M sources. Our approach consists of the following
steps: firstly, we determine a list of inverse functional prop-
erties from ontologies that are used to describe instances in
the dataset. Secondly, we determine the instances that are
equal based on the values of the inverse functional proper-
ties. Thirdly, we store the transitive closure of the equiva-
lences in a data structure for efficient lookup. Finally, we
determine a canonical URI for each equivalence chain, scan
the dataset and rewrite identifiers.

The contributions of this paper are as follows:

• We describe a method to perform object consolidation
on a large Web dataset, and determine multiple al-
ternatives to selecting a canonical URI from a list of
choices.

• We provide an empirical analysis on the RDF data
currently available online, and measure the effects of
object consolidation on the dataset.

The structure of the paper is as such: Section 2 introduces
a running example used in the paper. Section 3 provides
necessary definitions. Section 4 describes our object con-
solidation algorithm for identifying and merging equivalent
instances. Section 5 provides a before/after characterisa-
tion of our large Semantic Web dataset accompanied by a
runtime performance evaluation of the algorithm. Section 6
discusses related work, and Section 7 concludes.

2. RUNNING EXAMPLE
To motivate and illustrate the problem, we introduce in

the following some example data that will be referred to
throughout the text. Note that for brevity we use local pre-
fixes to abbreviate schema URIs for RDF, OWL, Friend of
a Friend, and Dublin Core vocabularies, i.e., please inter-
pret foaf:Person as the URL <http://xmlns.com/foaf/

0.1/Person>. In addition, we introduce a new namespace
pub5. Also, please note that we may abbreviate the concept
owl:InverseFunctionalProperty to owl:IFP.

5http://sw.deri.org/2006/11/research/publications.rdfs#

The example graphs in Figure 1 show partial RDF de-
scriptions for this paper and its two authors. The three
data graphs are obtained from three distinct sources, namely
http://sw.deri.org/~aidanh/foaf/foaf.rdf, http://sw.
deri.org/~aharth/foaf.rdf and also http://example.org/

index.rdf. Instances with different identifiers but referenc-
ing the same real-world entity are denoted in dotted, dashed,
and bold line patterns; instances representing the same en-
tity are denoted using the same pattern.

167064053 ahogan07objcon

http://sw.deri.org/~aidanh/foaf/foaf.rdf#Aidan_Hogan

_:genidA

foaf:knows

_:genidB

pub:primaryAuthorOf*

mailto:aidan.hogan@deri.org

foaf:mbox*

foaf:icqChatID* pub:key*

pub:Publication

rdf:type

http://sw.deri.org/~aidanh/foaf/foaf.rdf

http://sw.deri.org/~aharth/
foaf.rdf#ahog

mailto:aidan.hogan@deri.org

foaf:mbox*

foaf:Person

rdf:type

http://www.harth.org/~andreas/foaf.rdf#ah

foaf:knows

167064053

foaf:icqChatID*

http://sw.deri.org/~aharth/

foaf:homepage*

http://sw.deri.org/~aharth/foaf.rdf

_:genidE

_:genidC

pub:authorOf

http://sw.deri.org/~aharth/

foaf:homepage*

_:genidD

pub:primaryAuthorOf*

Performing Object Consol...

dc:title

ahogan07objcon

pub:key*

http://example.org/index.rdf

Figure 1: Three sample data graphs from three dif-
ferent sources. Inverse functional properties are de-
picted with an asterisk (*). Identifiers denoting the
same entity are denoted by a common line style.

In addition to the instance data graph, we assume that
we have knowledge about which properties are declared as
inverse functional in their respective ontology specification
document. For the example, our supposition is that we know
of the following inverse functional properties: pub:key re-
lates a document to a unique key; foaf:mbox, foaf:homepage
and foaf:icqChatID relate a person to their personal email
address, ICQ username, and homepage; and finally, the
property pub:primaryAuthorOf relates a primary author to
the respective paper. Please observe that Figure 1 adds
highlighting (line style and asterisk *) for illustration pur-
poses only; information about equivalences and schema can-
not be found in the original instance data.

Given the instance information together with information
obtained from the ontology specification, we can deduce a
number of identifier equalities. Table 1 shows the inferred



http://www.harth.org/~andreas/foaf.rdf#ah =
genidA = genidE

http://sw.deri.org/~aidanh/...#Aidan Hogan =
http://sw.deri.org/~aharth/foaf.rdf#ahog = genidD

genidB = genidC

Table 1: Identifiers determined as being equal based
on matching owl:IFP values.

equalities.
Ideally, we would like to fuse the identifiers of the equal

instances to arrive at a graph where associations between
real world entities are expressed correctly. Figure 2 shows
the output of applying our object consolidation algorithm
to the data in Figure 1.

The rest of the paper is concerned with describing an al-
gorithm which starts with a large-scale instance graph of
data as exemplified in Figure 1, deduces equalities and man-
ages them efficiently, replaces equivalent identifiers with a
canonical one and arrives at a consolidated data graph as
illustrated in Figure 2.

3. PREREQUISITES
In the following section, we briefly describe the data in-

dexing we employ but firstly, we introduce the data format
used for representing the data graph.

We assume the reader is familiar with the basic notions of
RDF [10]. We use an extension of the RDF N-Triples format
for the description of our data. Namely, we extend the clas-
sical triple model (subject, predicate, object) with context.
We use context to encode the URL of the data source from
hence a triple originated. Whereas individual statements in
RDF N-Triples are called triples, we call triples with con-
text, ”quadruples” or ”quads”. We call the data format
used ”N-Quads”. Context is used as a means of tracking
the provenance of data, which is an important aspect in
evaluating object consolidation and how data is integrated
from different sources. Context can also be analysed in the
decision of which canonical URI to use, as discussed in Sec-
tion 4.4. What follows is a formal definition of the concepts
of a triple and quadruple.

Definition 3.1. (RDF Triple) Given a set of URI refer-
ences R, a set of blank nodes IDs B, and a set of literals L,
a triple (s, p, o) ∈ (R ∪ B) ×R × (R ∪ B ∪ L) is called an
RDF triple.

Definition 3.2. (Quadruple) A pair (t, c) with a triple
t and c ∈ (R) is called a quadruple or quad (s, p, o, c). For
a quad q, s(q) denotes the subject of the quad, p(q) denotes
the predicate, o(q) denotes the object and c(q) denotes the
context.

For the purposes of indexing, we store quadruples or quads
in sorted, blocked, compressed files on-disk. Lookups can be
carried out as index scans or via binary search. For the pur-
pose of our object consolidation algorithm, we re-configure
quads from their natural ordering of subject, predicate, ob-
ject, context (SPOC) to predicate, object, context, subject
(POCS). We create an on-disk POCS index over these re-
ordered quads and sort them respective to the POCS order.
The POCS index created for the purpose of this work is dis-
tributed according to a hash function over the predicate of

each quad. Further details of the distributed index are out-
side the scope of this paper; the index can be abstracted as
an on-disk data structure containing a list of sorted quads
in POCS ordering.

4. ALGORITHM
The following section discusses the operation of the ob-

ject consolidation algorithm used to merge equivalent in-
stances. The algorithm is run pre-query-time and the results
are materialised in the index. Therefore, we avoid possible
issues of the object consolidation algorithm affecting query
response times. Also, we can guarantee complete consolida-
tion through multiple iterations which could be too expen-
sive for a query-time algorithm.

We describe a once-off object consolidation algorithm which
operates on the data present in an index.

Specifically, in this section we describe

• our method for achieving a list of inverse functional
properties

• our algorithm for finding equivalences

• our data structure for storing equivalences in memory

• the process of picking the identifiers to consolidate to

• our method of rewriting the index (materialising equiv-
alences)

• the possible iterative nature of the algorithm

4.1 Obtaining Ontologies
Object consolidation for RDF data involves analysis of

inverse functional properties and their values. Properties
are defined as being inverse functional in their respective
ontologies. Thus, prior to object consolidation, to achieve
a list of properties which are inverse functional, we must
acquire the available ontologies which describe properties in
the dataset.

To achieve the ontology data applicable to the instance
data we have, we assume that the location of the ontol-
ogy describing a property or class (if available) is consis-
tent with the namespace URI of that property or class. To
obtain the list of namespaces, we perform an index scan
and for every property (resource in the predicate position)
or class (resource in the object position of a triple/quad
with predicate rdf:type) encountered we trim after the last
hash or slash to achieve that concept’s namespace URI. For
instance, we expect the ontology information for predicate
<http://xmlns.com/foaf/0.1/mbox> at the URL http://

xmlns.com/foaf/0.1/. During the index scan we preserve
a unique list of namespaces URIs, and upon completion of
the scan, we attempt to retrieve the data from these URLs,
using HTTP accept headers set to application/rdf+xml.

Having retrieved the ontologies applicable to the dataset,
we now parse and scan these ontologies for properties which
are defined with value owl:IFP for rdfs:subPropertyOf or
rdf:type. All properties defined as such are inverse func-
tional and the full list of these properties’ URIs is written
to a file.

With a list of IFPs in hand, we can now begin detecting
equivalence of instances present in the dataset.



167064053

ahogan07objcon Performing Object Consol..

http://www.harth.org/~andreas/foaf.rdf#ah

foaf:icqChatID

http://sw.deri.org/~aidanh/foaf/foaf.rdf#Aidan_Hogan

foaf:knows

http://example.org/paper.pdf

pub:authorOf http://sw.deri.org/~aharth/

foaf:homepagefoaf:knows

http://sw.deri.org/~aharth/foaf.rdf#ahog

owl:sameAspub:primaryAuthorOf

mailto:aidan.hogan@deri.org

foaf:mbox

foaf:Person

rdf:type

pub:key dc:title

pub:Publication

rdf:type

Figure 2: Output of the object consolidation algorithm applied to the three graphs from Figure 1.

4.2 Detecting Equivalence
We begin with the formal definition of an instance and

instance equivalence, and then discuss in detail our method
of detecting equivalence between instances.

Definition 4.1. (Instance) Given our dataset a set of
quads Q, an instance I with identifier i ∈ (R ∪ B) has a
set of quads I ⊂ Q and optionally a set of in-linking quads
J ⊂ Q where for each quad q ∈ I, s(q) = i and for each
quad q ∈ J , o(q) = i.

Definition 4.2. (Instance Equivalence) Given an instance
I0 and an instance I1, and a set of inverse function prop-
erties IFP ⊂ R, instance I0 and I1 are equivalent if there
exists a quad q0 ∈ I0 and a quad q1 ∈ I1 such that p(q0) =
p(q1) ∈ IFP and o(q0) = o(q1). Instance equivalence is
reflexive, symmetric and transitive.

We use the term instance equivalence to refer to the case
whereby multiple instances with differing identifiers describe
the same resource or entity. Table ?? shows the equivalent
instances from Figure 1.

To find instances matching the criteria for equivalence
specified in Definition 4.2 we perform a sequential index scan
of the POCS index. Since the POCS index is sorted respec-
tive of predicate, then object, then context, then subject;
the POCS index contains groups of quads with the same
predicate and object values. Thus we require minimal over-
head to find quads q0 and q1 where p(q0) = p(q1) and o(q0)
= o(q1). With the additional constraint of q0&q1 ∈ IFP

we can say that s(q0) and s(q1) are different identifiers for
equivalent instances.

Algorithm 1 summarises the process.

Algorithm 1 find equivs(POCS, IFP)

for quads qk in POCS do
if p(qk−1) = p(qk) and p(qk) ∈ IFP then

if o(qk−1) = o(qk) then
store equivs(s(qk−1),s(qk))

end if
end if

end for
return eq.list

Now that we can detect equivalence, we require a data
structure for the algorithm to store these equivalences effi-
ciently.

4.3 Storing Equivalence Data
We design and implement an in-memory data structure to

maintain listings of equivalent instances. Thus we use a list

of lists to store the URIs of instances which meet the con-
straints for equivalence; this data structure can be thought
of as a list of rows of variable length with each row con-
taining instance identifiers. The identifiers in each row are
for equivalent instances. Thus we implement the reflexive,
symmetric and transitive properties of instance equivalence.

We also use a hashtable to implement an inverted index
which maps identifiers in the equivalent instance list to the
rows in which they are found. Thus, given an instance iden-
tifier i, we can find the row i appears in and from this we
can find all of the identifiers of the equivalent instances of i.
An identifier may only appear in one row at a time, specifi-
cally to satisfy transitivity. Equivalent identifiers are added
in pairs. If one identifier is already present in a row of the
list (as dictated by the inverted index) the other identifier is
added to that row. If both are already present in different
rows, both rows are merged. If neither is present a new row
is created. We call this data structure an equivalence list
or table. Algorithm 2 outlines the process of adding two
equivalents to the equivalence list.

Algorithm 2 store equivs(A,B)

rA = find eq.list row A is in
rB = find eq.list row B is in
if !rA and !rB then

new row rAB

else if rA and rB then
merge rA and rB

else if rA then
add B to rA

else if rB then
add A to rB

end if
return

The equivalence list is filled as the sequential scan is per-
formed on the POCS index and equivalences are detected.
The worst case memory requirements for the equivalence list
would occur for an index where each instance is equivalent
to at least one other instance. In this scenario, for an index
with N instances, the equivalence list would have to store a
list of lists with N entries and a hashtable with N buckets.

4.4 Merging Instances
Having filled the equivalence list by scanning the POCS

index, we must now begin the task of merging instances to
one consolidated instance. We begin by defining the process
of merging instances.



Definition 4.3. (Merging Instances) To merge an instance
I0 with identifier i0 and an instance I1 with identifier i1,
we replace identifier i1 with i0. Thus, I0 = I0 ∪ I1 and
J0 = J0 ∪ J1.

We wish to merge instances under a consolidated iden-
tifier. We call this consolidated or canonical identifier the
pivot identifier or pivot element. There must exist a pivot
element for each row in the equivalence list; we see the iden-
tifiers in the row as candidates. There are no formal guide-
lines for such selection of pivot elements for RDF data and
there are multiple alternatives to selecting a pivot identifier
from an equivalence chain or row.

Decisively, we can choose URIs over blank node identifiers
as URIs can be recycled for future extensions of the resource
description. However, if all of the candidates are blank node
IDs, we must decide whether or not to create and assign a
URI for the consolidated instance. Currently, we do not
create a URI and instead pick a blank node pivot ID from
the candidates.

We are faced with numerous choices if there are multiple
URI candidates. The choice of URI makes no difference to
a machine interpretation of the consolidated instance. How-
ever, humans may desire the instance URI to be somehow
informative; being perhaps a web resource with information
linked to the instance or being human interpretable with
some keywords contained within the string, etc. Also, it
would be courteous to choose URIs which people assign to
themselves or their property. Choosing suitable URIs in this
respect encourages better future URI agreement.

Thus, in choosing between URIs, there are multiple pos-
sible approaches (or combination of approaches).

1. Random or lexical ordering: a URI is chosen from
the candidates at random or alphabetically. This is
the simplest method to implement.

2. Most agreed upon across data sources: a URI is
chosen which appears in the most distinct data sources
and so is the most agreed upon.

3. Count of occurrence: the URI with the highest de-
gree is chosen (i.e., the URI appearing in the largest
number of statements).

4. Links analysis: a URI is chosen according to a links
analysis technique. ReConRank[8] could be used as
it is suited to RDF ranking and incorporates context;
thus it would also take into account the agreement
across data sources. However, links analysis would be
quite expensive to implement for large datasets.

We currently choose method 3 to pick pivot identifiers.
If the occurrence count still yields multiple candidates (i.e.,
multiple identifiers occur the same number of times), we
pick one arbitrarily by alphabetical order. We perform the
occurrence count of all the identifiers in the equivalence list
together by means of another sequential scan of the index.
Once we have acquired the count, we can pick the pivot
elements. The restriction of selecting URIs over blank node
identifiers supersedes the restriction of selecting those with
more occurrences. Algorithm 3 outlines the process.

In the example data depicted in Figure 1, http://sw.

deri.org/~aidanh/foaf/foaf.rdf#Aidan_Hogan is picked
as the pivot element before :genidE which is a blank node

Algorithm 3 pick pivots(count, eq.list)

for row r ∈ eq.list do
temp = null
for entry e ∈ r do

if temp is null then
temp = e

else if temp ∈ R & e ∈ B then
continue

else if temp ∈ B & e ∈ R then
temp = e

else if counte > counttemp then
temp = e

end if
end for
pivotr = temp

end for
return pivot

ID, and picked before http://sw.deri.org/~aharth/foaf.

rdf#ahog which occurs in less statements (2 vs. 3).
We now can merge the instances in each row under the

row’s pivot element. For each quad q in the POCS index,
if s(q) is found to appear in row a of the equivalence list,
s(q) is rewritten as the pivot element of row a – unless of
course, the pivot element happens to be s(q) itself. The
same applies for o(q). We also store the equivalences we
found through object consolidation as owl:sameAs triples,
so that references to the old identifiers are maintained in
the index.

One pass of the object consolidation process is now com-
plete. The process of rewriting the index with the consoli-
dated identifiers is summarised in Algorithm 4.

Algorithm 4 rewrite index(POCS, pivot, eq.list)

rerun = false
for quads q ∈ POCS do

if o(q) ∈ eq.list then
o(q) = pivoto(q)

if p(q) ∈ IFP then
rerun = true

end if
end if
if s(q) ∈ eq.list then

s(q) = pivots(q)

end if
write quad q to newPOCS

end for
for row r ∈ eq. list do

for entry e ∈ r do
write pivotr owl:sameAs e to newPOCS

write e owl:sameAs pivotr to newPOCS

end for
end for
return rerun

4.5 Multiple Iterations
It is quite possible that multiple iterations of the object

consolidation process are required to be run. Specifically, if
o(q) gets rewritten and p(q) ∈ IFP , another iteration may
be required. Algorithm 4 returns true if another iteration is
required.



To illustrate, in Figure 1, the data requires two itera-
tions of object consolidation for completeness. In the first
iteration, instances :genidB and :genidC are consolidated
through value ahogan07objcon for inverse functional prop-
erty pub:key. In the rewrite stage, :genidC is replaced with
genidB. Now that instances http://sw.deri.org/~aidanh/
foaf/foaf.rdf#Aidan_Hogan and :genidE share value :genidB

for IFP pub:primaryAuthorOf, they are consolidated on the
second pass.

A summary of the entire object consolidation process is
given by Algorithm 5

Algorithm 5 objcon(POCS)

scan POCS for namespaces
crawl namespace URLs
retrieve IFP from data
done = false
while !done do

eq.list = find equivs(POCS,IFP)
for entry e in eq.list do

get count(POCS)
end for
pivots = pick pivots(counts,eq.list)
done = rewrite index(POCS,pivot,eq.list)

end while

5. EVALUATION AND DISCUSSION
The following section evaluates the object consolidation

algorithm described in Section 4. We begin by discussing our
process of acquiring the evaluation dataset and then discuss
various properties of the dataset. We highlight various issues
we uncovered whilst performing object consolidation on our
dataset. Finally, we give insights into the results achieved by
performing object consolidation on the evaluation dataset.

5.1 Data Acquisition
For the purpose of evaluation, we retrieve the entire web

of RDF data. To do so, we employ MultiCrawler [7] which
follows rdfs:seeAlso links from data source to data source.
MultiCrawler is a distributed architecture for crawling Web
data and converting such data to RDF. For the purpose of
this work, we only retrieve data which is natively RDF.

5.2 Dataset Characteristics
We now present analysis on the data we have acquired and

converted to N-Quads for various properties relevant to data
integration across sources and identification of resources.

The data consists of 472,602,998 unique quads describing
72,274,051 instances (unique subjects) equating to an av-
erage of 6.539 statements per instance. Of these instances
60,772,168 (84%) are not assigned a URI (anonymous node)
whilst 11,501,883 (16%) are provided a URI.

In our measurement of the degree of linkage in the graph,
we are only interested in links between instances. Thus, we
discard any links with edge rdf:type which links instances
to their class. We found that there are 107,448,668 inlinks
in the graph; this translates to an average in-degree of 1.48.

The data is taken from 3,119,953 contexts. Table 2 is
a list of the top 10 hosts which provide data giving their
total contribution in quads. They are all social network-
ing sites which export their user profile data to FOAF.
This is reflected in the fact that of the 72,274,051 instances,
56,594,815 (78%) are directly of type foaf:Person and in

Host Statements %

livejournal.com 438,198,473 92.7%
tribe.net 15,037,190 3.1%
deadjournal.com 7,743,418 1.6%
greatestjournal.com 4,983,473 1.1%
vox.com 3,274,714 0.7%
affymetrix.com 723,028 0.2%
opera.com 408,166 0.09%
rossia.org 307,874 0.07%
klab.lv 258,128 0.05%
typepad.com 232,578 0.05%

Table 2: List of top 10 RDF data providing hosts
and the number of quads they contribute.

second place, 2,918,312 (4%) are of type foaf:Document.
Of the foaf:Person instances, 56,581,590 (99.9%) had no
URI identifier whereas for foaf:Document, all but 14 of
the 2,918,312 were provided URIs. foaf:Person instances
are real-world entities which can create difficultly in getting
agreement on a URI, whereas with foaf:Document which
mainly describes web pages, no such problem exists.

Figure 3 depicts a graph of the distribution of the number
of contexts instance URIs appear in. For example, approxi-
mately 10 million URIs are only used in one source of data,
around 0.5 million URIs are agreed upon over two sources,
etc. We disregard the context distribution for any resources
which are of type rdf:Property, rdfs:Class or owl:Class

as these are schema concepts. The highest agreement over
sources on a URI is that of http://www.livejournal.com/
directory.bml?opt_sort=ut&s_loc=1&loc_cn=US used by
LiveJournal6 – a weblog hosting site which exports user pro-
files as FOAF files – to denote US as the country of residence
of a user; the URI is used in 1.5M contexts. Generally, URIs
used by LiveJournal to denote countries and general inter-
ests such as music or arts are well agreed upon; although
they are only agreed upon within LiveJournal data, this data
constitutes the bulk of the Semantic Web graph.
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Figure 3: Number of URIs against the number of
contexts they appear in (log/log scale)

We now present evaluation for performing our object con-
solidation algorithm on this dataset.

5.3 Results
The following section presents some insights into the op-

6http://www.livejournal.com



eration of object consolidation algorithm over the data de-
scribed in the previous subsection. Firstly we discuss various
issues we uncovered whilst performing object consolidation
on our dataset. We then present some statistics compiled
while running the algorithm.

One major issue we discovered involved foaf:weblog, which
is defined as being an owl:IFP in the FOAF ontology. Thus
its semantics mandates that the property uniquely defines
the foaf:Person instance for which it is described. However,
this is not the case for sites such as LiveJournal which use the
property to define communal weblogs which multiple people
share. By interpreting foaf:weblog as an inverse functional
property, we incorrectly consolidate members of the same
communal weblogs together. Thus we omit foaf:weblog

from the list of inverse functional properties we utilise.
Another obstacle we encountered involved invalid values

being defined for properties relating to instant messaging
usernames. For example, many users of Livejournal had en-
tered common invalid values such as ”ask”, ”none” or simply
”?” for various instant messaging usernames which they ei-
ther did not have, or wished not to reveal. This issue led
to erroneous consolidation of 85,803 entities (0.12% of total,
2.9% of those consolidated) to one consolidated entity; the
85,803 entities were linked through a web of shared invalid
values. A possible solution to this problem would involve
the creation of a manual black-list of values which the al-
gorithm ignores or possibly the provision of a more strict
definition of the datatypes of values of datatype properties
which can be cross-checked against values observed. Thus,
literals with spaces, invalid characters or literals not meeting
length requirements for various properties would be ignored
during object consolidation.

Overall, object consolidation saw 2,443,939 instances merged
to 401,385 pivot elements. Of the pivot identifiers, 400,892
were blank nodes IDs which were merging 2,425,175 in-
stances (6.05:1), 493 were URIs merging 18,764 instances
(38.06:1). Besides the invalid 85,803 length equivalence chain,
the longest chain found was of length 32,390 and contained
equivalent instances referring to a user of Vox7 (a weblog
hosting site) named ”Team Vox”, which had foaf:knows

inlinks from all other users on the site. Figure 4 shows the
distribution of equivalence row lengths.
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Figure 4: Equivalence row distribution (log/log
scale)

Table 3 shows the list of IFPs and the amount of atomic
equivalences found through them (where non-zero).

7http://vox.com

Inverse Functional Property Equivalences

http://xmlns.com/foaf/0.1/mbox sha1sum 1927168
http://xmlns.com/foaf/0.1/homepage 1397528
http://xmlns.com/foaf/0.1/aimChatID 54868
http://xmlns.com/foaf/0.1/msnChatID 18154
http://xmlns.com/foaf/0.1/jabberID 9634
http://xmlns.com/foaf/0.1/icqChatID 9530
http://xmlns.com/foaf/0.1/yahooChatID 6392
http://xmlns.com/foaf/0.1/mbox 2856
http://usefulinc.com/ns/doap#homepage 5

Table 3: List of IFPs which result in successful con-
solidation and the number of atomic equivalences
they find.

The consolidated dataset contains 70,231,472 instances,
a reduction of the number present in the dataset before
object consolidation (since object consolidation has merged
many instances). Overall, the average degree in the data-
graph improves slightly to 1.53 (+0.05). 54,552,267 of the
instances in the data are of type foaf:Person, a decrease of
2.04M; almost all of the object consolidation was performed
on foaf:Person instances.

5.4 Functional Properties
It is interesting to note here that owl:FunctionalProperties

may also be used for object consolidation. An instance can
only have one value for a functional property. Therefore,
if an instance is seemingly attributed multiple values for a
functional property, these values may be considered equiv-
alent. An example is foaf:primaryTopic; an instance can
only have one primary topic.

We performed some evaluation on object consolidation
which used an algorithm similar to that described in Sec-
tion 4 using a SPOC ordered index and analysing functional
properties; we found that very few instances were merged.
We observed six equivalences found through foaf:primaryTopic

and one through wot:identity8 . Thus we only mention our
functional property analysis here and omit it from the main
text.

5.5 Schema Mapping
This paper deals specifically with consolidation of data on

the instance level. We make no special efforts to adapt the
algorithm for consolidation of similar concepts for different
schemas. Where inverse functional properties are shared by
the same concept under different URIs, consolidation will
be performed. However, inverse functional properties are
not normally defined for schema concepts. Instead, equiva-
lences are often explicitly defined between concepts through
use of properties such as owl:sameAs, owl:equivalentClass
and owl:equivalentProperty. Thus, schema mapping can
be performed by populating the equivalence list structure
through analysis of these properties, picking the pivot iden-
tifier as described in Section 4.3 and additionally rewriting
the predicate elements in the index as well as the subject
and object elements.

6. RELATED WORK
Record linkage has a long history, starting from seminal

work by Newcombe et al. in 1959 [12]. Chen et al. use

8http://xmlns.com/wot/0.1/



a graph-based data model for representing data, and use
inter-object relationships to detect clusters of similar items.
Michalowski et al. [11] utilise secondary sources to deter-
mine equivalences. A recent survey summarising many of
duplicate record detection methods can be found in [4].

The SemTag effort as described in [3] assigns identifiers
to Web pages. The authors describe a simple algorithm
to disambiguate entities and provide a large-scale effort at
tagging and assigning topic URIs to web pages. In contrast,
we utilise owl:InverseFunctionalProperty information ob-
tained from ontologies to determining equivalences.

The TAP project [6] tries to overcome the problem of
two applications using different names for the same concept
by a process called “Semantic Negotiation”. Applications
can bootstrap from a small agreed vocabulary to a shared
understanding in a larger domain. The identifiers used in
TAP are centrally created, whereas in our approach, URIs
denoting concepts stem from a large number of sources on
the Web. However, it would still be interesting to combine
the Semantic Negotiation approach with our dataset to help
applications and data creators decide on URIs for instances.

Bouquet et al. [1] motivate the problem of (re)using com-
mon identifiers as one of the pillars of the Semantic Web,
and provide a framework and fuzzy matching algorithms to
fuse identifiers. We perform object consolidation on a larger
scale and avoid use of probabilistic methods.

The idea of performing object consolidation on FOAF
data from the Web based on values of inverse functional
properties has been coined “smushing”9. Brickley discusses
in [2] implementation strategies for merging identifiers in
RDF based on RDF reasoning engines. However, the tech-
nique has not yet been applied to large datasets. Our ap-
proach handles data from a large number of sources obtained
from the Web; thus to cater for potentially long equality
chains derived from many sources, efficient data structures
for storing an equality table are required. In addition, we
provide detailed statistics on the current usage of data on
the Semantic Web.

The Florid system [5] is an F-logic inspired reasoning sys-
tem that maintains an equality relation data structure to be
able to deal with ground equalities. In the Hyperion project
[9], the issue of relating identifiers amongst peers is solved
using so-called “mapping tables”.

Finally, Park and Durusau [13] use the notion of subject-
centric merging of ontologies based on a Topic Map approach
to denote a fine-grained approach to subject identity.

7. CONCLUSION
We have presented a method to consolidate identifiers

from Web data to improve accuracy of applications operat-
ing on the dataset. The method includes fetching of ontology
information, incremental build-up of an inverted equality ta-
ble, selecting a canonical identifier, rewriting the dataset and
maintaining the footprint of object consolidation through
use of owl:sameAs statements added to the index.

The experiments we conducted show that the algorithms
scale to large datasets and thus are applicable for Web data.
Furthermore, we provided an account of the current data
situation on the Semantic Web.

9http://lists.w3.org/Archives/Public/
www-rdf-interest/2000Dec/0191.html
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