

Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-03-20T12:16:07Z

Some rights reserved. For more information, please see the item record link above.

Title ReConRank: A Scalable Ranking Method for Semantic Web
Data with Context

Author(s) Hogan, Aidan; Harth, Andreas; Decker, Stefan

Publication
Date 2006

Publication
Information

Aidan Hogan, Andreas Harth, Stefan Decker "ReConRank: A
Scalable Ranking Method for Semantic Web Data with
Context", Proceedings of Second International Workshop on
Scalable Semantic Web Knowledge Base Systems (SSWS
2006), in conjunction with International Semantic Web
Conference (ISWC 2006), 2006.

Item record http://hdl.handle.net/10379/492

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/

ReConRank: A Scalable Ranking Method for

Semantic Web Data with Context?

Aidan Hogan, Andreas Harth, and Stefan Decker

National University of Ireland, Galway
Digital Enterprise Research Institute

firstname.lastname@deri.org

Abstract. We present an approach that adapts the well-known PageR-
ank/HITS algorithms to Semantic Web data. Our method combines
ranks from the RDF graph with ranks from the context graph, i.e. data
sources and their linkage. We present performance evaluation results
based on a large RDF data set obtained from the Web.

1 Introduction

Ranking is an important component in most search engines to prioritise search
results and to offer the user an immediate list of the most relevant results to a
query. PageRank [8] has proven to be a useful and scalable algorithm to perform
rankings on very large hypertext datasets.

As more RDF data is emerging online, a scalable, user-friendly search engine
for Semantic Web data is becoming a more pertinent requirement. A Semantic
Web search engine enables querying large RDF datasets, which requires ranking
functionality to present results to the user in a meaningful way i.e. by prioritising
relevant, important results.

Algorithms in the style of PageRank seem to be suitable candidates for rank-
ing RDF knowledge bases, since RDF data forms inherent graphs. However,
there are a number of differences between data coming from the Semantic Web
and documents from the regular Web. This affects the methodology of such a
links analysis ranking scheme.

1. In the HTML web, only the provenance of data is important. Very little
meaningful structure can be derived from the data itself.

2. RDF data has varying types of links as opposed to HTML link structure
which is based solely on hyperlinks. To paraphrase, whilst the HTML link
structure is a directed graph, RDF is a directed labelled graph.

3. RDF resources may span various provenances or contexts. Thus information
relating to a certain resource can be consolidated from multiple sources. The
danger here is that anybody can make statements about anything, which
can seriously affect the quality of the resulting data presented to the user.

? This work has been supported by Science Foundation Ireland (SFI/02/CE1/I131).

A ranking scheme for RDF data therefore has to take into account both the
data graph and the data provenance graph. In this paper, we present ResourceR-
ank, which can be used to perform ranking of RDF resources. We subsequently
present a method to rank data sources or contexts, and finally reconcile the two
methods with ReConRank.

One particular obstacle present to applying links analysis to RDF graphs
collected from the Web is that the resources in the graphs might be not well
connected or interlinked. In contrast, the contexts of RDF graphs are always
linked, otherwise a crawler would not be able to locate the data. Since the
quality of ranking depends heavily on how well the input graph is linked, adding
context information to the graph can improve ranking quality considerably.

The ranking algorithm presented in this paper is tailored towards RDF data
collected from the Web. For evaluation of the algorithm, outlined in Sect. 5, we
use a large RDF data set consisting of 15M triples crawled from the Web from
70K different sources.

The contributions of this work are:

– We present ReConRank, an algorithm rooted in PageRank to rank resources
in RDF files together with contexts to improve the ranking quality.

– We evaluate the performance of the implemented algorithm over a large
dataset obtained from the Web.

The remainder of this paper is organised as follows: Section 2 presents an
approach to select a topical subgraph which is used at a later stage for ranking. In
Sect. 3 we present the basic algorithm including common optimisations to rank
resources in RDF graphs. Section 4 extends the algorithm to include context
information in the process. We describe results of performance tests in Sect. 5.
Section 6 relates our approach with existing work, and Sect. 7 concludes.

2 ReConRank Environment

The intended deployment of the ReConRank methodology described herein, is as
a ranking component for a Semantic Web Search Engine. Note, the algorithm is
not specific to just this use-case, but easily adaptable to any architecture requir-
ing RDF ranking. The search engine architecture is currently under development
and outside of the scope of this paper. However a brief overview is necessary to
clarify the intended application of the ReConRank algorithm.

The search engine obtains data through publicly available structured datasets
and from the Web. The collected data is then indexed in an RDF store. On top
of the index structure is a user interface component. The user can specify simple
queries which the UI converts to queries for data in the index. The UI recieves and
displays subgraphs which are returned as answers to the queries. Each resource
in the subgraph is displayed as a separate result. Thus results are grouped by
subjects within the RDF dataset.

Ranking is placed between the UI component and the index structure as a
means of providing a more meaningful listing of results to the user. The require-
ments of the ranking component include that it be scalable and fast. The desired
output includes metrics for ordering results (resources) and metrics for assigning
trust values to information from different contexts.

The ranking component is a dynamic ranking system, and thus is invoked
at query-time to rank data returned from the index structure. The algorithm
only analyses results data: data that will ultimately be presented to the user, a
different approach to PageRank’s global application.

The original PageRank method [8] is applied to the entire graph before query-
time. This approach has certain disadvantages. The entire data set might be ex-
cessively large; calculating ranking scores on such a large data set would require
data structures that exceed the amount of memory available. There would be
a large overhead regarding a distributed architecture for calculating PageRank.
Also, upon indexing more data, the analysis would need to be re-computed. Thus
regular computation would be necessary.

Another drawback of calculating a global ranking score is that universally
popular pages (in terms of global PageRank) might not be the most relevant
for a given query. For example, when searching for popular researchers in a
given research area, e.g. Semantic Web, the ranking algorithm should return
not just popular database researchers that have a cursory mention of Semantic
Web somewhere, but researchers that are popular within the Semantic Web
community.

We adopt a different approach similar to what is described by Kleinberg [7]
as focused subgraphs. When the user specifies a query, say a simple keyword
query, the indexing structure returns resources matching the keyword query and
all data about those resources. Surrounding resources in the graph and their data
may also be included. Then, we perform ranking only over the topical subgraph.
The benefit of this approach is that relevancy is preserved. The result is a list of
resources prioritised according to their popularity within the topical subgraph.

Again, a topical subgraph in our approach is selected as follows: given a
literal matching a keyword, we select inlinks and outlinks of the subject node of
the matching literal.

An important aspect affecting results is the size of the selected subgraph.
We use a parameter n to specify how many hops in the vicinity of the matching
literal should be included in the topical subgraph, that is, include nodes in the
graph that are reachable in n steps from the subject node of the matching literal.
Hops can be in either direction, through inlinks or outlinks. Figure 1 illustrates
how to select a topical subgraph with a literal matching the keyword (bold) with
n = 1, 2, 3. The value of n determines how broad or narrow a search result is.

One issue with the topical subgraph approach is that the resulting subgraph
can be quite small. Intuitively links analysis works best on a reasonably well-
linked dataset, and a small graph might be poorly interlinked. We present a
means to overcome this obstacle in Sect. 4.

� � � � � � � � � � �

� � � 	
� � � �

� � � � � � � � � � �

� � �

� � �

� � �

Fig. 1. Topical subgraph for matching keyword (bold) with n = 1, 2, 3. Selecting larger
portions of the graph before ranking yields broader results (recall up, precision down),
while selecting smaller portions yields narrower results (recall down, precision up).

The main challenge with the dynamic ranking approach is to make the rank-
ing component fast enough to allow for ranking during query-time. We present
our algorithm to rank resources in the following section and conclude that the
performance challenge has been sufficiently met in Sect. 5.

3 Ranking Resources

In this section we review the basic PageRank algorithm which we implement,
including common optimisations to speed up performance.

PageRank is an iterative computation which takes as input a graph consisting
of nodes and edges. In each successive iteration, the score of node A is determined
as a summation of the PageRank score in the previous iteration of all the nodes
that link to node A divided by their number of outlinks. Traditionally, all nodes
are initialised with an equal score before the first iteration; we adopt a different
approach which is simply to initialise each node with the ratio of all links that
the node receives as inlinks, which offers an enhanced initial guess with minimal
overhead. In experimental evaluation, we found that this initialisation method
reduced the number of iterations required by about one third.

Optional weightings functionality are provided within the algorithm, which
acts as a parameter which can be manipulated to ’tweak’ the algorithm using var-
ious techniques. Weightings is implemented in a matrix with identical structure
and indexing to the connectivity matrix. Essentially, each entry in the matrix
acts as a weight for the link in the corresponding index in the connectivity ma-
trix. This functionality has not yet been used. For the most part we foresee the
weightings as a means of allowing users leverage over the type of results that
are prioritised by specifying various parameters, thus altering the weightings.
When the ranking is incorporated into the larger search engine architecture,

ranking parameters can be passed from the UI to bias the ranking towards a
user preference.

For example, one possible application is to use TF-IDF [10] measures passed
to the ranking engine to provide weightings. The TF-IDF measure is widely used
to quantify relevancy through analysis of the prose of a document against a key-
word query. Understanding the random surfer model as applied to PageRank[8],
weightings can be derived from TF-IDF scores for resources with the justifica-
tion that the surfer will follow a path through the graph attempting to stay on
topic and is more likely to visit pages with high text relevancy. This approach is
very similar to the ‘’intelligent surfer model’ [9]. The exact nature of the effect
of TF-IDF measures on the weightings could be specified by the user; perhaps
as a slider bar adjusting priority to importance vs. relevance. This would have a
significant effect in topical subgraphs where n > 1, keeping more relevant results
near the top.

For some applications weightings may also apply to the graph. For instance,
in some scenarios, it may be worth while to count the number of links present
from one node in a graph to another and apply weightings to match. To justify
with an example, author A co-authors four papers with author B and twelve
papers with author C. Thereby, this is reflected in the ranking scheme where the
link from author A to author C propagates three times the authority that the
link to author B propagates.

One final application we foresee for weightings is outlined in Sect. 4. Ulti-
mately, the weightings could be used to combine various preferences for ranking
to improve the quality of the ranking, and provide the user with some leverage
over the prioritisation of results.

Within the framework of the original PageRank algorithm is the damping
factor, usually signified by d. It has a numeric value usually agreed upon as
0.85[8]. A node’s voting power is in fact only 0.85 of its PageRank score. The
other 0.15 is split evenly amongst all other nodes. There are now two types of
links in the graph, strong and weak. Strong links are the links derived from
the dataset. Weak links are artificially created by the damping factor and link
all nodes to all other nodes (and itself). This is an important aspect in the
calculations which are described herein as it helps convergence of the iterative
calculations to a fixpoint.

We avoid needless repetitive calculations by pre-calculating the minimum
rank value, which is the value equally distributed to nodes from universal links.
Universal links are those resulting from the dampening factor d of the PageRank
algorithm. They are 1−d of every outlinking (live) nodes score from the previous
iteration. Universal links also include even distribution of authority from non-
linking (dead) nodes. In some versions of the algorithm these are removed from
the graph, but for brevity we leave them in. It is quite common for such nodes
to appear in quantity in smaller topical subgraphs.

To summarise the algorithm and give a higher level synopsis (using terms
outlined in Table 1), the following steps are conducted in the ranking vector
calculation process:

Table 1. Notation used

Constant Description

d Dampening factor of PageRank calculation: d = 0.85

Variable Description

G Graph to be analysed, represented by a connectivity matrix

λ1 First eigenvector of G

n Number of nodes in G

m Number of links in G

Rk Ranking score vector for iteration k, approximation of λ1

ij Number of inlinks to node j

oj Number of outlinks from node j

inj Set of nodes linking node j

outj Set of nodes node j links

deadG Set of dead nodes in G, nodes with no outlinks

liveG Set of live nodes in G, nodes with outlinks

W (i, j) The weightings entryfor link from node i to node j

mink The minimum or base rank of a node in iteration k due to universal links

1. Initialise. Create an initial eigenvector estimation R0 with each node i
initialised to ii/m.

2. Before first iteration and during iterations The summation of the
ranking value of all the dead-link nodes,

∑
j∈deadG

Rk(j), and separately, the

summation of all the outlinking nodes,
∑

j∈liveG

Rk(j), are calculated before

the first, and during each iteration k. These values are then combined in the
following way before iteration k to create a base rank value for each node,
mink.

mink =

∑
j∈deadG

Rk−1(j)

n
+

∑

j∈liveG

Rk−1(j) ∗
1 − d

n

Also, the old eigenvector is saved for the next iteration’s calculations.
3. During iterations For each node i, its rank is calculated as follows:

Rk(i) =
∑

j∈ini

(
d

oj

∗ Rk−1(j)) + mink

If weightings are employed, for each node i, its rank is calculated as follows:

Rk(i) =
∑

j∈ini

(
d∑

m∈outj

W (j, m)
∗ W (j, i) ∗ Rk−1(j)) + mink

4. Between every fifth iteration The algorithm uses quadratic extrapolation
[6] between every fifth iteration to speed up convergence.

5. End of iterations After each iteration, the l1 norm of the residual is cal-
culated, which is the summation of the absolute change of each value over
the iteration. When the L1 residual falls below a certain tolerance, speci-
fied as 0.001, the calculations end, and it is considered that a satisfactory
estimation R of the dominant eigenvector λ1 has been found.

The algorithm presented in this section can be used to rank resources in
an RDF graph. Consider RDF resources (subject and object in triple notation)
as nodes, and RDF properties (predicates) as edges. By applying the presented
algorithm and thus examining the link structure of an RDF graph, we achieve
rankings for the resources. Please note that only the relevant resources (those
which appear as subject at least once in the data set) enter the ranking sys-
tem, which effectively reduces memory overhead and calculation overhead, and
allows output of concise, relevant ranking information. We call this approach Re-
sourceRank. We extend this model by introducing ContextRank and ultimately
ReConRank in the next sections. Each use essentially the same algorithm but
apply the analysis to different graphs.

4 Extending ResourceRank with Context

In the following, we first show how to apply the ranking algorithm to a context
graph, which we call ContextRank. We further describe how we reconcile Re-
sourceRank and ContextRank to ReConRank, a ranking approach which takes
into account both the RDF graph itself and the context graph. Context is quite
an ambiguous term so to avoid further ambiguity, we define context as the prove-
nance or source of data. This is in-line with the role of context with regards the
concept of quads as defined in [4]. Figure 2 shows an example RDF graph of
resources, their edges and contexts, outlining an example topical subgraph for
the keyword search ‘ReConRank’ with n = 1.

Multiple sources can contribute data about the same consolidated resource
(by using the same URI). Essentially, this means that anybody can publish data
on the web about any resource they like. Whilst this facilitates a strong com-
munity driven knowledge base, data from certain contexts may be unreliable or
unsuitable for describing a resource. Thus ranking metrics which quantify trust
and importance of contexts by exploiting link structures are essential to ranking
RDF data. Such metrics can be used for negotiating data from different sources:
by the UI component, for example. In this section, we provide a methodology for
providing such ranking scores. For now, we must examine in detail the nature of
RDF graphs including contexts and resources, and taking an example.

Again, multiple sources or contexts can contribute data about the same re-
source. This is an interesting aspect of the RDF graph whereby contexts, re-
sources and linkages are represented. When one considers that contexts may
also be resources (whereby metadata is provided about the context), and that
resources link contexts the exact nature of a graph of contexts and resources can
become complex.

� � �� �� ��
� � �� 	
 � � � �
 � �

� � �
 � � � �� �

 � � �� � � �
� � � � �� � � � �� �
 ���
 � �

� �� � � �
� � � � � �
 � � �

� � � � � �

� � � � � � � � � � �� � � � �� � �
 � � �

� � � � � � �

 � � �� � � �

� � � � � � �

� � �� � � � �
 � � �
�
 � � � � �
 ���
 �

� � � � � � � �

� �� �
� � � �

� � ! "
! � � � � ��
� � " $ % "
 � & � � � � � & � � � � � �

! � � � �� � � � � �
� �� �
 �� � � � �
 � � �� � � � � � � � �

� � � �� '

 � � � �
 � (� � �

� � � �� � � �

� � �� �� ��

 � & � � � �
) � � � �

� � �

� � �* + � � �
 � �

� � � � $ � � ' � � � �
 � � �� � � �
� � � � �� � � � �� �
 � ��
 � � , � � - �
� . � � /
 � � � � � � �
� �

� � �
� �
�
 � �

� � � � � � �

! � � � � �� # � � "
 � � � � � "

� � � � � "
 $ % "

 � & � � � �

� � � � � � � �
 � � �
 � � � �� � � � �� �

� � � � �� � �� �� �
 � ��
 � �
� �� � � � � � � � � � � �
 � �

� � � � � ' � � �� � �� � �

� � � � �� � �� �� �
 � ��
 � � � �
 � � � � � � �
 � �

� � � � �� � � � �� �
 ���
 � � � �� � � � � � � � � � � �
 � �

� � � � �� � � � �� �
 ���
 � � , � � - � � . � � /
 � � � � � � �
 � �

� � � �� '

 � � � �
 � (� � �

Fig. 2. Three graphs with overlapping context. Resources may also be con-
texts (which is the case for http://sw.deri.org/~aidanh/foaf/foaf.rdf and
http://sw.deri.org/2005/07/n3rank/doap.rdf).

To be able to perform ResourceRank on the sample graph, we first extract
all resources that occur at least once on the subject position of a triple (in fact
quad including context), and then calculate rankings with the general ranking
algorithm. Figure 3 shows the graph extracted from the graph in Fig. 2 using
the ResourceRank approach. Please observe that the extracted graph is not well
interlinked.

0 1 2 3 4 5 0 6 7 8 5 9 8 :0 1 2 9 8 ; < = 7 9 = 2 : 8 7 > ?

= 7 9 = 2 6 @ 5 5 0 8 A B 5 7 C 0 6 A

0 1 2 9 D; < 7 E

< A A F 2 G G ? > H ; 0 5 D H 7 5 E G I 3 3 J G
3 K G 8 L 5 9 8 : G ; 7 9 F H 5 ; =

= 7 9 = 2 F @ M N D 6 9 A D 7 8 ?

= 7 9 = 2 6 @ 5 5 0 8 A B 5 7 C 0 6 A

Fig. 3. Link structure of graph without involving contexts. The nodes are not well
linked.

To be able to rank the contexts inherent in the RDF graph, we extract
the context graph and use that as input to the ranking algorithm. Figure 4
shows the graph extracted from Fig. 2 with only contexts and their linkage.
The context graph is not well interlinked. The resulting ContextRank be used
to derive prioritisation for references to the source of data and serialisation of
data from different sources. However, we now present a means of bringing these

ResourceRank and ContextRank together for the mutual benefit of the results
of both. We show how a well-linked graph can be derived by implying links in a
certain fashion between contexts and resources, and how analysis of such a graph
can benefit the quality of results. We call the derivation of this unified graph and
its ranking ’ReConRank’; a unified methodology for RDF entity prioritisation.

� � � � � � � � � � � 	
 � � � � � 	

� 	 	 �� � � � � � � � � �� � � � � � � � �
� � � � � � � � � � � � � � � � �

� � � � � � � � � �� � � 	 	 � � � � � � � � � � � � � � �
� � �� � � � � � � � � � � � � � � � � �

� 	 	 � � � � � � � � � � � � � � �
� � � � � 	 � 	
 � � � � � 	

Fig. 4. Link structure of graph without involving resources. Again, the nodes are not
well linked.

The graph in Fig. 2 illustrates the explicit relationships inherent in RDF
data between contexts and resources. However, relationships can also be implied
thus:

1. Link between context and resource(s) it contains An implicit link ex-
ists between a context and the resource(s) described in that context. PageR-
ank should be propagated from the context (e.g. http://sw.deri.org/~ai-
danh/foaf/foaf.rdf) to its resources (e.g. ex:aidhog, ex:06reconrank).

2. Link between resources and containing context(s) An implicit link
also exists between a resource and the context(s) in which it is described.
PageRank should flow from the resources (e.g. ex:aidhog, ex:06reconrank)
to their context (e.g. http://sw.deri.org/~aidanh/foaf/foaf.rdf).

3. Link from a context to context The final type of link implied is whereby
a resource in context A links to context B. A link from context A to context
B is implied.

Intuitively, for implied links of type 1 and 2, authority should flow between
resources and contexts in both directions as

– The importance of contexts relies on the data or resources described within.
– Conversely, resources that appear in important contexts should also be more

highly regarded.
– Resources that occur in multiple contexts should also be highly ranked.

The third type of implied link would actually have already been included
under links of type 1. However, they are a distinct case and so are regarded
separately. The intuition behind them is as follows, a link from a resource in
a context can equally be regarded as originating from the context as well as
the resource. Figure 5 illustrates the resulting graph, which includes the implied
links and isolates only the ’rankable entities’ or the contexts and resources which
appear as subjects.

� � � � � � � � � � � 	 �

� � � 	 � � �

 � 	 �
 � � � �

 � 	 � � � � � � � � � � � � � � �
� � � 	 � � � � �

� �
� � � � � � 	 �
 � � � 	 � � � �

� � � � �� � � � � � � � � �� � � �
� 	 �� 	 � � � � 	 � � 	 � � �

� � � �� � � � �� �

 � 	 � � � � �� 	 � �� � �

� � � � � � � � � � � � � � � � � � �
� 	 � 	 � � � � � 	 � � �

 � 	 � � � � � � � � � � � � � � �

Fig. 5. Link structure of graph for ReConRank analysis after implied links (hollow)
are added and rankable resources isolated, as derived from Fig. 2. The nodes are well
inter-linked and so amenable to links analysis.

Referring back to the weightings functionality, implied links could be weighted
differently according to their type and nature. For instance, an implied link from
resource A to context B could be weighted according to the ratio of triples about
resource A found in context B. That is, links from resources to contexts would be
proportional to the amount of data on the resources provided by each context.
Similarly, weightings could be assigned to links from contexts to resources to
reflect the portion of data dedicated to a resource by a context. This is yet to
be implemented, pending quality evaluation.

Table 2. Results from ranking the the graph represented in Fig. 5.

Context ReConRank Score

http://sw.deri.org/2005/07/n3rank/doap.rdf 0.22870030410893372

http://sw.deri.org/˜aidanh/foaf/foaf.rdf 0.227129832473108

http://sw.deri.org/˜aharth/foaf.rdf 0.18385903708487736

Resource ReConRank Score

http://sw.deri.org/2005/07/n3rank/doap.rdf 0.22870030410893372

ex:06reconrank 0.16572774715471314

ex:aidhog 0.12741015855786822

ex:andh 0.06411971604393776

From applying the algorithm described in Sect. 3 to the graph in Fig. 5, we
arrive at two tables of ranks, one of ReConRank metrics for the resources and
one of ReConRank metrics for the contexts. Note that there may be overlap
between the two whereby a context is also a resource, and will appear in both
tables. See Table 2 for results from applying ReConRank to the graph of Fig.
5 (derived from Fig. 2). ResourceRank metrics can then be passed on to a UI

component for serialising a results page displaying ranked resources and their
associated data.

Table 2 provides scores and priorities for the topical subgraph isolated for
the keyword query ’ReConRank’. The top ranked context relating to the topic
’ReConRank’ is deemed as http://sw.deri.org/2005/07/n3rank/doap.rdf,
which is representative in the example of the homepage of the project. Thus,
this would indeed be a valuable and trustworthy source of data about the topic,
and benefits from containing information on a paper in the area and links from
an author.

The second context is http://sw.deri.org/~aidanh/foaf/foaf.rdf, the
FOAF page of an author in the area. The context is ranked reasonably highly as it
provides information related to and/or links to the project homepage, to a paper
on the topic and to an author in the area. As the second most valuable source of
information in the example for ReConRank resources, its rank corresponds with
what would be expected.

Finally, the lowest ranked context is that of http://sw.deri.org/~ahar

th/foaf.rdf, another FOAF page of an author in the area. This is ranked
as the least significant source of information on the topic ’ReConRank’ as it
features only information about two authors in the area, and not any other
’topical nodes’.

Aside from examining the context which also appears as a resource in the
ReConRank results (and deservedly so), the top ranked resource is that of a
paper in the area: intuitively relevant. Following the paper are the two au-
thors. Note that neither the context http://sw.deri.org/~aharth/foaf.rdf

nor http://sw.deri.org/~aidanh/foaf.rdf appear in the resource rank table.
This is because neither are a ’rankable resource’ in that in the dataset examined,
these contexts do not appear as the subject of a triple. Thus, a results page dis-
playing resources and their corresponding data would not require a rank for this
context in relation to ordering these displayed resources. It would solely require
the context’s rank for prioritising data from that source.

Such a results set would help towards a meaningful serialisation of the data
for display to a user. The top presented resources would be the project homepage
of the topic queried and the paper on the topic and so on. Information about
these resources could then be prioritised by the importance or trustworthiness of
the contexts, as numerated by the ranking scores. For example, the UI could use
context ranks to serialise individual statements about a resource using varying
colours; for instance to display data from poorly linked contexts in light grey and
data from multiple well-linked contexts in black. This would offer discerning users
a valuable insight into the trustworthiness of the data and matches requirements
laid out in Sect. 2.

To re-iterate again, the real power of ReConRank is the representation in
the derived graphs of the symbiotic relationship between context authority and
resource authority. Applying links based analysis to this unified graph intuitively
derives better results than from ranking resource and context graphs individu-
ally. Although two different ranking tables are derived, they are calculated from

the one graph and so are heavily dependant on one another. The unified Re-
ConRank approach also help solve the issue of analysing poorly linked data.
A quick comparison of Fig. 5 to Fig. 3 and Fig. 4 illustrates the considerable
improvement in the quality of the graph for link analysis with the ReConRank
methodology.

5 Experimental Evaluation

The above algorithms are implemented in Java and accept Notation31 as input
data format (with additional entry for context). Some source code is available
online for download2.

We conducted the experiments on a machine with a single Opteron 2.2 GHz
CPU, 4 GB of main memory and two SATA 160GB disks running Debian Linux
with Sun’s JVM in version 1.5.0 06-b05. Maximum JVM heap size was set to
2GB which proved sufficient for analysing the full dataset.

The dataset was obtained from the Web with a crawler following a href

links in HTML and rdfs:seeAlso links in RDF. HTML and XML documents
were transformed to RDF before inclusion in the dataset. The entire dataset
consists of around 70k files which results in a total of around 15M quads. The
file size of the combined dataset is 2.8GBytes and contains 2.618 million unique
(rankable) resources and contexts.

Figure 6 shows the performance results for partitions of the dataset in varying
sizes. The average number of iterations was 29.6, with a tolerance for the l1 norm
of the residual set at 0.001.

 0

 5

 10

 15

 20

 25

 30

 35

 0 2e+006 4e+006 6e+006 8e+006 1e+007 1.2e+007 1.4e+007 1.6e+007

tim
e

(s
ec

s.
)

quads

Ranking Computation Time vs. Number of Quads

Fig. 6. Performance of the ReConRank algorithm applied to a 15M triple dataset
obtained from the Web. We measured the performance of the algorithm for parts of
the dataset with varying size.

1 http://www.w3.org/DesignIssues/Notation3
2 http://sw.deri.org/2005/07/n3rank/

6 Related Work

Google, as is widely known, have enjoyed much success in the area of web search-
ing through use of PageRank [8], a links based analysis technique and other
ranking techniques. PageRank is applied to the web graph of webpages hyper-
linking to each other. It is a proven scalable algorithm and a mature research
area. Our approach illustrates a means of adapting PageRank for use in RDF
data.

Kleinberg [7] uses the notion of focussed subgraphs which we extend to topical
subgraphs on RDF data.

ObjectRank [5] describes an approach to rank a directed labelled graph using
PageRank. The work includes a concept called authority transfer schema graphs,
which defines weightings for the transfer of propagation through different types
of links. No consideration is given to provenance of data.

Damian et al. [2] assign trust and ranking metrics to peers within a social
network and to desktop resources of the peers. Evaluation was applied to a
use-case of some instances of CiteSeer data distributed on small numbers of
peers. They deal with context information, however they loosely define context
as specific aspects of a situation and not as provenance of data.

Halaschek et al. [3] use the term context but refer to topics of RDF graphs,
not the provenance of information as in our model. Their system can find re-
lationships between two entities in a database. Some consideration is given to
trust metrics regarding data from different sources, however the system depends
on user input to specify the trustworthiness of a source.

Bamba et al. [1] have also documented work in a similar area to this paper,
however they employ a HITS type architecture computing two metrics to corre-
spond to hubs and authorities which they call subjectivity and objectivity respec-
tively. They apply such analyses to what they call an ’isAGraph’ of rdf:Class
nodes linked by rdfs:subClassOf. They also analyse ’propertyGraphs’, derived
from resources linking through being the subject and object of a triple. Thus,
they rank both classes and resources, but do not factor in provenance linkage.

7 Conclusion

We have shown how to adapt PageRank to Semantic Web data while taking
into account context. The system performs well for large datasets, although we
expect the typical size of the graph to be ranked relatively small due to the top-
ical subgraph approach. Thus we conclude that ReConRank as outlined herein
can be integrated into a scalable system, with minimal effect on performance
or scalability, to provide meaningful rank metrics to result sets which can be
computed at query-time.

We have yet to conduct an extensive evaluation of the quality of the ranking
results provided under this methodology. The methodology is intended for use
within the Semantic Web Search Engine architecture, which upon being devel-
oped should allow users to evaluate the results ordering. For now, one must be

sated that the intuition outlined behind the methodology holds, and that the
illustrated example of the analysis applied to the ’ReConRank’ topical subgraph
reveals quite accurate results.

Finally, we end by concluding that the methodology outlined herein is a step
towards a unified RDF ranking scheme, whereby contexts are ranked alongside
resources. Thus results from the approach offer not only metrics on the im-
portance of resources within a relevant topic; but also a quantification of the
trustworthiness or importance of a context as a source of data on that topic. By
combining the two under ReConRank, the results of both are enhanced.

References

1. B. Bamba and S. Mukherjea. Utilizing resource importance for ranking semantic
web query results. In Semantic Web and Databases, Second International Work-

shop, SWDB 2004, Toronto, Canada, August 29-30, 2004, Revised Selected Papers,
pages 185–198, 2004.

2. A. Damian, W. Nejdl, and R. Paiu. Peer-sensitive objectrank - valuing contextual
information in social networks. In Web Information Systems Engineering - WISE

2005, 6th International Conference on Web Information Systems Engineering, New

York, NY, USA, November 20-22, 2005, Proceedings, pages 512–519, 2005.
3. C. Halaschek, B. Aleman-Meza, I. Arpinar, and A. Sheth. Discovering and ranking

semantic associations over a large rdf metabase, 2004.
4. A. Harth and S. Decker. Optimized index structures for querying rdf from the

web. In Proceedings of the 3rd Latin American Web Congress, pages 71–80. IEEE
Press, 2005.

5. H. Hwang, V. Hristidis, and Y. Papakonstantinou. Objectrank: a system for
authority-based search on databases. In SIGMOD ’06: Proceedings of the 2006

ACM SIGMOD international conference on Management of data, pages 796–798,
New York, NY, USA, 2006. ACM Press.

6. S. D. Kamvar, T. H. Haveliwala, C. D. Manning, and G. H. Golub. Extrapolation
methods for accelerating pagerank computations. In WWW ’03: Proceedings of

the 12th international conference on World Wide Web, pages 261–270, New York,
NY, USA, 2003. ACM Press.

7. J. M. Kleinberg. Authoritative sources in a hyperlinked environment. Journal of

the ACM, 46(5):604–632, 1999.
8. L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking:

Bringing order to the web. Technical report, Stanford Digital Library Technologies
Project, 1998.

9. M. Richardson and P. Domingos. The intelligent surfer: Probabilistic combination
of link and content information in pagerank. In Advances in Neural Information

Processing Systems 14. MIT Press, 2002.
10. G. Salton and M. McGill. Introduction to Modern Information Retrieval. McGraw-

Hill Book Company, 1984.

