

Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-03-20T12:27:05Z

Some rights reserved. For more information, please see the item record link above.

Title A Logical Framework for Web Service Discovery

Author(s) Polleres, Axel; Keller, Uwe; Fensel, Dieter

Publication
Date 2004

Publication
Information

Michael Kifer, Ruben Lara, Axel Polleres, Chang Zhao, Uwe
Keller, Holger Lausen, Dieter Fensel "A Logical Framework
for Web Service Discovery", Workshop on Semantic Web
Services: Preparing to Meet the World of Business
Applications, in conjunction with IEEE International
Conference on Web Services 2004 (ICWS2004), 119, 2004.

Publisher IEEE

Item record http://hdl.handle.net/10379/462

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/

A Logical Framework for Web Service Discovery?

Michael Kifer2, Rub́en Lara1, Axel Polleres1, Chang Zhao2,
Uwe Keller1, Holger Lausen1, and Dieter Fensel1

1 Digital Enterprise Research Institute (DERI) Galway, Ireland and Innsbruck, Austria
{ruben.lara, axel.polleres, uwe.keller, holger.lausen,

dieter.fensel }@deri.org
2 Department of Computer Science University at Stony Brook Stony Brook, New York, USA

{kifer, changz }@cs.sunysb.edu

Abstract. Current technologies for Web Services are based on syntactical de-
scriptions and, therefore, lend themselves to only limited amount of automation.
Research efforts in Semantic Web Services, such as WSMO, try to overcome this
major deficiency by providing a complete semantic description for Web Services
and their related aspects. In this paper we present a logical framework which ex-
ploits such formal descriptions in order to dynamically discover Web Services
that match requester goals. We consider two kinds of user goals:discoveryand
contracting. Based on the WSMO conceptual model, we define proof obligations
that formalize the concepts of a match in these two cases. We also describe a con-
crete realization of this framework in the F-Logic reasoning engineFLORA-2.
Such a realization requires an extension of F-Logic in order to support rule reifi-
cation. With this extension, F-logic becomes a suitable framework for describing
and reasoning about Semantic Web Services and their capabilities.

1 Introduction

The current Web service technology, based on the emerging standards of SOAP [20],
WSDL [6] and UDDI [1], targets mainly the syntax needed for seamless integration
among distributed applications. This technology simplifiesmanualplumbing among
applications, but still requires significant amount of custom work in each case. This
approach is adequate only if the participating services are selected and hard-wired at
design-time and provided that enough manpower is available to integrate the distributed
applications. This technology does not support dynamic reconfiguration of services,
which can adapt to changes (e.g., when a provider goes off-line or when a cheaper
provider enters the market).

Semantic Web is a promising vision that is based on the idea that adding machine-
understandable semantic information to Web resources will facilitate automation of
many tasks, including integration of distributed applications. Adding semantics can

? This work has been supported by the SFI (Science Funds Ireland) under the DERI-Lion project
and the European Commission under the projects DIP, Knowledge Web, SEKT, SWWS, and
Esperonto. The work of M. Kifer and C. Zhao was supported by the NSF grants CCR-0311512
and IIS-0072927 and by U.S. Army Medical Research Institute under a subcontract through
Brookhaven National Lab.

also enable a host of new applications, such as automatic location of Web Services
that provide a particular functionality, automated contracting for services, and on-the-
fly composition of services aimed to achieve goals that cannot be achieved by individual
services separately [14].

In this paper, we present a framework for automated Web Service discovery that
uses theWeb Service Modeling Ontology(WSMO) [12] as the conceptual model for
describing Web Services, requester goals, and related aspects. The capability, i.e., the
functionality of a given Web Service and the requester goals are formalized using F-
Logic [10] based on the conceptual framework of WSMO. Since WSML, the service
description language of WSMO, is still in development we illustrate the main concepts
of the proposed framework usingFLORA-2 [8] — an F-logic based system whose main
features are very close to and have inspired WSML.

As an ontology for Semantic Web services, WSMO provides the semantic descrip-
tions needed for dynamic location of Web Services that fulfill a given request. The con-
ceptual model of WSMO consists of four major components:Goals, which describe the
objectives of a service requester;Web Services, whose description includes serviceCa-
pabilities (i.e., functionality);Ontologies, which formally define the terminology used
by the other WSMO elements; andMediators, which serve as adaptors that reconcile
the differences among the representations used by the various actors and enable their
inter-operation.3 The problem of automatic service discovery is that of matching the
capabilities of existing Web Services against the goal described by the requester.

All four major components of WSMO are specified by F-Logic expressions—a
frame-based logic that provides higher-oder features, which we found to be very conve-
nient and natural to use. TheFLORA-2 system used in this paper also supports Trans-
action Logic [3, 4], which plays a role in the proposed discovery framework.

Our framework differentiates between two stages in the process of searching for an
appropriate service. The first stage is what we calldiscovery. Here, the requester states
only the things that are desired (e.g., a flight ticket from Munich to Dublin). All the
services that can potentially satisfy this kind of request are matched.

The second stage is what we callcontracting. Here the requester provides complete
input (including, for example, a credit card number) for an already selected service.
The job here is to verify that the input provided will lead to a desired state that satis-
fies the requester goal. No execution takes place at the contracting stage. Instead, the
parties formally verify that the service can fulfill the user request with the given input.
However, adding execution to our framework is straightforward.

This paper is organized as follows. Section 2 presents a formalization of the re-
quester goals, the Web Service capabilities, and of the proof obligations that have to
be checked for different types of discovery. Section 3 provides a concrete realization
of the framework inFLORA-2. Since our framework relies on the ability to reify log-
ical rules, Section 4 extends the semantics of F-logic with support for rule reification.
Finally, Section 5 describes related work and presents conclusions.

3 For a detailed definition of the WSMO core components, we refer the reader to [12] and sub-
sequent versions of this document that may appear at http://www.wsmo.org/

2 Proof Obligations and Formalization

Goals and capabilities. First we briefly review the relevant concepts from WSMO
[12], which will be used in our service discovery framework.

We define the Web Service discovery problem as a problem of matching formally
described user requests with service functionality satisfying these requests. In WSMO,
user requests are calledgoalsand service functionalities are calledcapabilities. Both
goals and capabilities are defined in terms of their respectiveontologies. In addition,
mediators are used as distinct modeling elements that ensure interoperability between
Web Services by bridging heterogeneity among the different WSMO elements.

A goal describes what the requester wants to achieve; it consists of logical condi-
tions that describe the desired state of the world and information space.

Service capabilities are described by preconditions and effects of the service. Pre-
conditions specify what the service expects to be fulfilled prior to its invocation. This
includes constraints on the input of the service and conditions on the world state before
the execution. Effects define what is guaranteed to hold in the state after the service
execution. This guarantee typically depends on the input to the service.

A special kind of mediators, thewgMediators, are used in WSMO to link Web
Service and goals, resolving the possible heterogeneity between them. In this paper,
wgMediators are used to resolve possible differences in terminologies that are used by
requesters to define goals and by providers to define service capabilities.

Formalization and scalability issues.Logic has long been used for precise represen-
tation of statements about real-world objects or abstract artifacts. A suitable logic can
be used to formalize goals, capabilities, mediators, as well as the proof obligations that
must be established in order to determine whether a match exists between a user request
and the functionalities of available services. Unfortunately, experience shows that profi-
cient use of even simple kinds of logic is beyond the capabilities of most programmers.
Most students have great difficulty even with translating simple English statements into
SQL queries when the statements involve implication or universal quantification. Even
greater difficulty exists in translating such statements directly into first-order logic.

Therefore, for a Web service discovery framework to scale in terms of human re-
sources, the underlying architecture must rely on a relatively small number of profes-
sionals who are highly skilled in logic and knowledge representation. With this in mind,
we envision three categories of people who would be in direct contact with the logical
mechanisms of Semantic Web Service discovery:

1. Customerswho have no training in knowledge representation. These users will have
access to pre-selected service discovery queries, which they can choose from a
menu or construct using simple graphical tools. These queries would be the main
components of thegoals introduced earlier. The ontology that defines the terms
used in these queries is called thegoal ontology.

2. Service providers.These users might not necessarily be more skilled logicians than
the rest of the public, but they can hire skilled knowledge engineers. Still the num-
ber of businesses who might want to share in the Semantic Web infrastructure can
be potentially large, and it is unlikely that sufficient number of highly skilled engi-
neers will be available to meet the demand. Therefore, the Semantic Web Service

infrastructure should impose only modest requirements to the degree of sophistica-
tion of the engineers who might turn up in this type of labor market. The upshot of
this is that Web service capabilities should be written to relatively simple ontologies
and use relatively simple types of rules.

3. Mediation providers.The bulk of logical expertise will reside with companies
whose business will be to provide ontology mediation. Mediators will bridge the
gap between the ultimate simplicity of goal ontologies used by the clients of seman-
tic Web services and the relative simplicity of the service descriptions supplied by
service providers. Since mediators link ontologies rather than customers and busi-
nesses, the number of skilled workers required to support such an infrastructure can
be low enough to make the infrastructure scalable in terms of human resources.

The proof obligations for service discovery, which we introduce next, are designed with
the above overall architecture in mind.

Proof obligations. A proof obligation is a logical entailment that needs to be estab-
lished in order for a service to be considered a “match” for a discovery goal. A proof
obligation is defined in terms of a set of imported ontologiesO, a goalG, a service
capabilityC, and a wgMediatorwg. Here,G andC are logical formulas for the goal
and the service capability, respectively. The effects and the precondition parts of the
capabilityC are denoted asCeff andCprec. Ceff is a logical formula that states what
the service guarantees to be true after the execution.Cprec is a formula that must be
true before the service execution; typically it contains predicates on the input provided
by the requester and predicates on the state of the world right before the execution.

A wgMediatorwg performs two main functions:

– It takes a goal,G, and constructs input,Inwg(G), suitable for the services that are
mediated by this particular mediator. This is needed because the goal ontology and
the service ontologies might be very different.

– A mediator also needs to convert the goal into a postcondition expressed in the
service ontology, which is to be tested in the after-state of the service against the
effects of the service. This expression is denoted asPostwg(G).

Translations performed by wgMediators can be quite complex, because goals can be
expressed in a very high-level syntax in order to make them palatable to naive users and
service capabilities can be rather simple in order to make it inexpensive to specify them
by a knowledge engineer.

We consider two different notions of a match. In one, which we callservice discov-
ery, the user supplies a general goalG and wants to check if a service can execute in a
way such that the requester goal will be achieved. This means that (after the appropri-
ate translations) the goal is guaranteed to be true in the after-state of the service. This is
formally stated as the following proof obligation:

O, Inwg(G), Ceff |= Postwg(G) (1)

Service contractingcomes into play after a potentially suitable service has been
discovered. In contracting, given anactual input to aspecificservice, we want to guar-
antee that this input does indeed lead to the results expected by the requester.

This goes beyond the proof obligation for discovery. First, at this stage concrete in-
put may be required (e.g., a credit card number). Second, this input needs to be checked
against the precondition specified in the service capability. Third, the specification of
the effects of the service and the requester’s goal might be more complex. Therefore,
the following proof obligation has to be checked:

O, Inwg(G′), Ceff ′ |= Cprec ∧ Postwg(G′) (2)

The difference between (2) and (1) is that more complex versions of the goal and ef-
fects might be used for contracting (denotedG′ andCeff ′) and that the precondition is
checked. The proof obligation (2) can also be used for more precise discovery, which
takes precondition into account. This may be appropriate in situations where the user is
willing to provide complete input during the discovery process.

The discovery query. The proof obligations (1) and (2) are not quite what is needed
for service discovery. In both cases it is assumed that we are dealing with aparticular
service and just need to test if it matches the goal. In practice, we need to go over all the
services and test which ones match. The problem with this is that neitherInwg(G) nor
Ceff are part of a global knowledge base, andCeff is different for different services.
Since the effects in (1) and (2) are different for different services being tested, what is a
general discovery query that could yield all the matching services?

The answer is provided by Transaction Logic [4, 3], which supports hypothetical
assertions. This enables us to look at each service separately and hypothetically insert
the effects into the knowledge base. The goal can then be tested in the new hypothet-
ical state. If it is true, the service is declared a match. To be able to refer to different
services in the same proof obligation, we change our notation to make service effects
and goal postconditions relative to a service. Therefore, we will writeCeff (Serv) and
Postwg(G, Serv), whereServis a variable that represents a service. This idea is logi-
cally expressed as follows, where3 is the hypothetical operator in Transaction Logic:

O |= ∃Serv 3(insert{Inwg(G), Ceff (Serv)} ⊗ Postwg(G, Serv)) (3)

A similar query can be constructed for (2). The above query is looking for services
such that3(insert{Inwg(G), Ceff (Serv)}⊗Postwg(G,Serv)) holds in the models
of the imported ontologiesO. The symbol⊗ is a sequence operator, which says that
first the effects and the input must be asserted and then the goal must be tested. Since
the assertion is hypothetical, it is “rolled back” after the test is done. Query (3) is the
basis of our realization of the framework, which we describe in the next section.

3 A Concrete Realization of the Framework for Discovery

This section shows fragments of a larger running example that illustrates theFLORA-2
implementation of the proof obligations defined in the previous section.4 In addition
to showing concrete instances of service representation and of discovery queries, the
example illustrates important architectural aspects of WSMO, such as wgMediators.

4 The complete example is at http://www.wsmo.org/2004/d5/d5.1/floradiscovery/discovery.flr

The chosen example shows typical elements of a travel reservation system. However
it is important to realize that the discovery query iscompletely genericand does not
depend on the concrete problem instance or problem domain. It will work as well for
any domain provided that service descriptions conform to the WSMO ontology.

Why FLORA-2? FLORA-2 is an implementation of a language that is closely related to
WSML,5 the language being developed for WSMO. The main difference is that WSML
uses mnemonic terms whereFLORA-2 uses more concise symbols.

FLORA-2 supports F-logic [10] and HiLog [5], whose frame-based and higher-
order syntax offers a simple and natural representation of the WSMO architectural com-
ponents as well as of the discovery query. It also supports enough of Transaction Logic
[3] to be able to implement the proof obligations of Section 2.

One of the hardest issues in developing a logical framework for Web service discov-
ery is the representation of the capabilities of a service. For instance, the precondition
of a service is a logical formula that acts as a constraint on the service’s input as well as
the initial state of the service execution. Different services can have different precondi-
tions and therefore they need to be represented as values of some attributes of concrete
services that are represented as objects. Preconditions can be quite complex formulas
and, therefore, the language must supportreificationof complex formulas (i.e., a way
to represent such formulas as objects in the language). RDF [11] and OWL [16] support
a rudimentary form of reification, but not nearly enough for even simple preconditions.

Serviceeffects, which is the other major part of a service capability presents even
greater challenge. Typically, service effects specify what would happenif the service
were to execute with a given input. A natural way to represent this kind of relationships
is by using rules, in the style of logic programming and deductive databases, which
are parameterized by theInput variable. When the input variable is instantiated with
concrete input, the body of the rule can be applied to the knowledge base provided by
the ontology. If the body evaluates to true, the facts in the head of the rule are established
to be true as well.6 Since service effects must also be reified in order to make it possible
for a service object to refer to them via an attribute, this means that the underlying logic
language must be able to reify rules. This feature is provided inFLORA-2, but goes
well beyond the abilities of other implemented logical platforms that we are aware of.

The main challenge in building a language that supports reification of complex for-
mulas is the well-known fact that reification (in logic usually known under the name
of self-reference) is capable of producing logical paradoxes. An excellent introduction
into the subject can be found in [17]. In [23] it is shown that reification of queries does
not cause paradoxes in a rule-based language likeFLORA-2 (and therefore WSML).
However, this result only covers the precondition part of Web service capabilities. In
Section 4, we extend this result to reification of rules and thus ensure that WSML’s
semantics is free of paradoxes and is adequate for handling service discovery.

5 http://www.wsmo.org/wsml/
6 This is an informal description of the semantics of a rule. Although it may sound as if the

semantics mandates a bottom-up evaluation, it does not. In fact, the operational semantics of
theFLORA-2 system, which serves as the platform for our implementation, is top-down.

A Walk-through the Example

The concrete realization of the logical framework for discovery developed in this sec-
tion is built around the ideas presented in the Section 2. Our examples show a small
number of simple logical expressions that a typical client can use, a number of relatively
simple service capabilities, and examples of the mediators that can bridge between the
ontologies underlying these two worlds.

It is important to realize that some of the goals in our goal ontology arequite so-
phisticated— it is only the logical expression that represents them that is simple! For
instance, the goal of finding travel services that can book a ticket fromeverywhere
in Germany toeverywherein Austria requires the use of universal quantifiers and is
often beyond the ability of naive users. However, the goal itself looks very simple:
search(germany, austria). Likewise, service capability descriptions are not explic-
itly written to support such queries. All that they can seemingly do is to tell whether
a trip can be booked for a pair ofspecificcities. However, a mediator is capable of
translating the goal into input and the results produced by the services into output that
together ensure that the user goal is answered correctly.

A geographic ontology. We start with a simple ontology that represents geographic
regions and cities. InFLORA-2, the symbols that begin with a lowercase letter are
constants that represent objects, and capitalized symbols (and symbols beginning with
a “ ” are variables. In our taxonomy,europe, germany, usa, america, etc., denote
classes of cities. Thus,europe is a class whose members are all the cities in Europe,
usa is a class whose members are U.S. cities, and so on. The subclass relationship is
denoted using “::”, i.e.,austria :: europe states thataustria is a subclass ofeurope
(which implies that all Austrian cities are also European cities). To specify that an object
is a member of a class, we use the symbol “:”. For instance,paris : france states that
Paris is a city in France. A fragment of such a geographic taxonomy is shown below:

germany :: europe. stonybrook : nystate. frankfurt : germany.
austria :: europe. innsbruck : tyrol. paris : france.
france :: europe. lienz : tyrol. nancy : france.
tyrol :: austria. vienna : austria. usa :: america.
bonn : germany. nystate :: usa

F-logic classes are also viewed as objects and therefore they can be members of other
classes. For instance,europe is a region, and so isamerica. In the above statements
these two symbols played the role of classes, but in the following statements they play
the role of objects that are members of classregion.

europe : region. america : region.

USA, Austria, and Germany are also regions and so is Tyrol. Rather than listing all of
them explicitly as members of classregion, we use a rule to define all regions:

Region : region : − AnotherRegion : region and Region :: AnotherRegion.

Service descriptions. In accordance with the conceptual framework of WSMO, a
service description in our example includes a specification of the service capability
and of the mediators used by the service. In our example, each service uses only one
wgMediator to tell how to convert the goal ontology into the ontology used by the
service. We also assume that there is a single goal ontology and two service ontologies.

The goal ontology and the service ontologies are not specified explicitly for the lack
of space. Instead, we assume that goals have the form

goalId [requestId -> someId , query -> someQuery]

This means that goals are represented as objects with certain properties. In F-logic, a
statement of the above form means thatgoalId is a symbol that represents the object
Id of a goal (it can look, for example, likeg123) and that goal-objects have attributes
requestId andquery. The attributerequestId represents the Id of the request in
case it is desirable to have it separate from the Id of the goal (for instance, if goals are
intended to be reused). The attributequery represents the query that corresponds to
the goal. The symbol-> means that these attributes are functional; the symbol->>
(used in service descriptions below) means that the attribute is set-valued. Our use case
assumes four types of queries:

searchTrip(from, to) tripContract(servId, from, to, date, crCard)
searchCitipass(loc) citipassContract(servId, city, date, crCard)

The first two queries are used to discover services that can sell tickets from one location
to another and citipasses for various cities. The last two queries are used to make a
contract with a specific service for purchase of a ticket or a citipass. This is why the Id
of a concrete service is part of the query.

A description of the serviceserv1 is shown below. Preconditions and effects are
specified as reified formulas, which is indicated with ${...} in FLORA-2. In addition,
the effects of the service are specified via rules, which tell how the input supplied at
service invocation affects what will be true in the after-state of the service.

serv1[capability->
// Request for a ticket from somewhere in Germany to somewhere
// in Austria OR a request for a citipass for a city in Tyrol
cap1[precondition(Input)-> ${

(Input = contract(, From : germany, To : austria, Date, Card)
or Input = contract(, City : tyrol, Date,))

and validDate(Date) and validCard(Card) }
effects(Input)-> ${

(itinerary(Req)[from-> From, to-> To] : −
Input = search(Req, From : germany, To : austria))

and
(passinfo(Req)[city-> City] : −Input = search(Req, City : tyrol))
and
(ticket(Req)[confirmation-> Num, from-> From, to-> To, date-> Date] : −

Input = contract(Req, From, To, Date, CCard),
generateConfNumber(Num))

and
(pass(Req)[confirmation-> Num, city-> City, date-> Date] : −

Input = contract(Req, City, Date, CCard),
generateConfNumber(Num)) }

],
usedMediators->> med1].

serv3[capability->
// request for a citipass for a French city
cap3[precondition(Input)-> ${

Input = pay(, City : france, Date, Card)
and validDate(Date) and validCard(Card) },

effects(Input)-> ${
(Req[location-> City] : −Input = discover(Req, City : france))
and
(Req[confirmation-> (Num, City, Date)] : −

Input = pay(Req, City, Date, Card) and
generateConfNumber(Num))}

],
usedMediators->> med2].

Notice the differences in the input that the two services expect and in the form of
their output, which is due to the fact that the two services usedifferent ontologies.
For instance,serv1 expectssearch(Req, City : tyrol) as one of the possible inputs,
while serv3 wantsdiscover(Req, City : france). Likewise,serv1 yields objects
of the formpassinfo(Req)[city-> City] in response, whileserv3 yields objects of
the formReq[location-> City]. Due to the differences in the ontologies,serv1 and
serv2 tell the world that different mediators must be used to talk to them. In the first
case, this is mediatormed1 and in the second it ismed2. Mediators are represented as
objects that possess methods for performing the mediation tasks. The first mediator is
shown in some detail later.

Goals. Goals are objects that have two main attributes,requestId and query, as
described earlier. The third attribute,result (not shown), represents the set of items
returned by the discovery/contracting process. Here are examples of some goals:

goal3[requestId-> g123, query-> searchTrip(france, austria)].
goal2[requestId-> g321,

query-> tripContract(serv1, bonn, innsbruck, ’1/1/2007’ , 12345)].

The first goal is quite interesting, because none of the services expects regions as input.
Thus, without mediation,goal3 cannot be answered. Specifying mediators between
this kind of queries and the input expected by the services is quite nontrivial and cannot
be expected of a common user.

Mediators. The job of a mediator in our scenario is to bridge between goals and
services. More specifically, a wgMediator performs two functions:

1. It takes a goal and constructs the input to the service, which is appropriate for that
goal; and

2. It takes the result produced by the service and converts it to the format specified by
the goal ontology.

Part of the mediatormed1 is shown below.

med1[constructInput(Goal)-> Input] : −
Goal[requestId-> ReqId, query-> Query] and
if Query = searchTrip(From, To)
then (generalizeArg(From, From1), generalizeArg(To, To1),

Input = search(ReqId, From1, To1))
else if Query = searchCitipass(City)
then (generalizeArg(City, City1), Input = search(ReqId, City1))
else if
else fail.

med1[reportResult(Goal, Serv, Result)] : −
Goal[query-> searchTrip(From : region, To : region)] and
not med1[doesNotServeCity(From, To)]
and Result = ${Goal[result->> Serv]}.

The above rules define methods to perform the two main tasks mentioned above: con-
structing the input and converting the service results into the format suitable for the goal
ontology. The definition of the methodconstructInput checks the form of the user
goal and yields appropriate input for the service. The predicategeneralizeArg (not
shown here, but defined in the full example) replaces the arguments that are objects
corresponding to geographical regions with universal variables, because the mediator
“knows” that this corresponds to the query with the quantifier “for all cities in the re-
gion.” The methodreportResult is defined by several rules of which we show only
the one that corresponds to region-level requests, i.e., requests for services that sell
tickets from/to every city in a pair of regions. If the user query is a region-level request,
the rule checks if the service serves every city in the specified regions and then con-
structs the result expected by the service ontology. This result is then inserted into the
knowledge base by the discovery query — see next.

Discovery. The discovery query is shown below. It examines each available service
one by one. For each service, it obtains the mediator specified by the service and uses
that mediator to construct the input appropriate for the service. Next we can use the
input to obtain the effects of the service. Then the effects are hypothetically assumed
and the goal is tested in the resulting state. If the goal is true in that state, the result
(which contains the identification for the service) is inserted into the knowledge base.

find service(Goal) : −
Serv[usedMediators->> Mediator[constructInput(Goal)-> Input]],
Serv.capability[effects(Input)-> Effects],
insertrule{Effects}, // hypothetically assume the effects
if Mediator[reportResult(Goal, Serv, Result)] then insert{Result},
deleterule{Effects}. // Remove the hypothetical effects

The query for verifying a service contract is essentially similar except that
it also tests the precondition. Details can be found in the full example at
http://www.wsmo.org/2004/d5/d5.1/floradiscovery/discovery.flr.

4 Semantics of Rule Reification

In [23], Yang and Kifer described an extension of F-logic with support for reification.
However, rule reification, which we rely heavily on in our realization presented in Sec-
tion 3, was not considered. In this section, we define a model theory for F-logic extended
with rule reification.

Before giving the model theory, let us briefly define the new F-logic syntax which
extends the syntax defined in [10]. For simplicity, we will focus on F-logic atoms in
the form of o[m->> v], which correspond to multi-valued attributes. For a complete
definition of F-logic atom syntax, see [10].

An F-logic languageL consists of a set ofconstants, C; a set ofvariables, V; the
connectives¬, ∨, ∧, and ← ; thequantifiers∃ and∀; andauxiliary symbols, such as
comma, parentheses, and brackets. We will assume that the languageL is fixed.

Definition 1 (Terms and Generalized Terms).Given an F-logic languageL, the
terms andgeneralized termsare defined inductively as follows:

– Any constantc ∈ C is a term.
– Any variableX ∈ V is a term.
– If t is a term andt1,. . .,tn are terms, thent(t1,. . .,tn) is a term.
– Any term in any of the above forms is called a HiLog term.
– If o, m, andv are terms, theno[m->> v] is a term, also called an F-logic term.
– If A1 andA2 are terms, thenA1 ∧ A2, is a term.

– Any termt is also ageneralized term.
– If A1 andA2 are generalized terms, thenA1 ∨ A2, is a generalized term.
– If A is a generalized term, then¬A is also a generalized term.
– If A1 is a term andA2 is a generalized term, then(A1 ← A2) is a term (not just a

generalized term!).
– If A is a generalized term, then∃X(A) and∀X(A) are generalized terms, whereX
∈ V is a variable.

Note that according to the definition,p ← q is a term (and thus also a generalized
term), whilep ∨¬q is a generalized term, but not a term. In particular,p ← q is not
considered to be equivalent top ∨ ¬q (as usual in logic programming). The rationale
behind the distinction between terms and generalized terms is that we need to distin-
guish which terms can occur as literals in the rule heads and which in the rule bodies.
In our extension to F-logic, only terms can occur in the head of a rule, while the rule
body can also contain generalized terms. This allows us to prevent explicit negation
from appearing in the rule heads and, as will be seen shortly, to avoid logical paradoxes
related to the use of reification. Note that wedo allow terms in the form of a rule to
appear in the rule heads.

Definition 2 (Formula). Any generalized term is aformula . In particular, any HiLog
term or F-logic term is an atomic (HiLog or F-logic) formula. Terms of the formφ← ψ
are calledrule formulas.

By Definitions 1 and 2, atomic formulas, rules, and conjunctions of such formulas
are terms. Since terms are first-class objects in the language and variables can range over
them, we have a higher-order syntax that supports reification, including rule reification.

Definition 3 (Augmented Herbrand Universe).LetL be an F-logic language andC
be the set of constants inL. Theaugmented Herbrand universeof L, denotedHU ,
is the set of all terms (according to Definition 1) constructed using the constants inC.
Such variable-free terms are calledground. Clearly,HU is countably infinite.7

An F-logic program is a finite collection of rules where all variables are universally
quantified. The program amounts to the conjunction of all its rules. A rule has the
following form:

∀(A1 ∧ . . .∧ Am ← B1 ∧ . . .∧ Bn) (4)

wherem≥ 1, n≥ 0, Ai (1≤i≤m) andBj (1≤j≤n) are atomic formulas or rule formulas
in the form of (4).

Note that, for simplicity, we do not allow negation in the rule body. However, our
model theory can be readily extended to F-logic programs with negation in rule bodies
as well as inheritance by combining it with the semantics described in [21] and [22].

When defining the semantics of a program, we are actually considering itsHerbrand
instantiationwhich is the set of rules obtained by substituting terms in the augmented
Herbrand universeHU for variables in every possible way.

Definition 4 (Interpretations). Given an F-logic languageL, an interpretationI is a
subset ofHU , which contains only atomic formulas and rule formulas. Intuitively,I
represents true statements about some possible world.

Definition 5 (Models).LetI be an interpretation andφ be a formula. We say thatI is
a model ofφ, denotedI |= φ, if the following holds. Note that the definition is similar
to the classical one, except for the case of rule formulas.

– If φ is an atomic formula, thenI |= φ iff φ ∈ I.
– If φ = ψ← ξ, thenI |= φ iff ψ← ξ ∈ I andI |= ψ ∨ ¬ξ.
– If φ = ¬ψ, thenI |= φ iff it is not the case thatI |= ψ.
– If φ = ψ ∧ ξ, thenI |= φ iff I |= ψ andI |= ξ.
– If φ = ψ ∨ ξ, thenI |= φ iff eitherI |= ψ or I |= ξ.
– If φ = ∃Xψ, thenI |= φ iff there ist ∈ HU such thatI |= ψ[X/t], whereψ[X/t]

denotes the formula obtained fromψ by substitutingt for all free occurrence of the
variableX.

– If φ = ∀Xψ, thenI |= φ iff for all t ∈ HU , I |= ψ[X/t].

7 Note that since atomic formulas are reified, Herbrand bases used in classical logic program-
ming are the same as Herbrand universes in our setting.

Note that the termp ← q and the generalized termp ∨¬q are different: the for-
mer belongs to the augmented Herbrand universe while the latter does not. The above
definition also says that these terms have different semantics when they are viewed as
formulas. More specifically, if an interpretationI is a model ofp ← q, then it is also
a model ofp ∨¬q, but not the other way around. For example, the empty set is a model
of p ∨¬p but not a model of p← p, since any model of a rule must contain that rule.

We are now ready to develop a fixpoint semantics for F-logic programs with rule
reification. Analogous to classical theory of logic programming, we define a program
consequence operator.

Definition 6 (Program Consequence Operator).Let P be an F-logic program. The
program consequence operatorTP maps an interpretationI to another interpretation
J , denotedTP(I) = J , whereJ is a set of termsA such that there is an instantiated
rule H ← B1, ∧ . . .∧ Bn in P, where

– A is one of the conjuncts inH; and
– Bj ∈ I for all Bj, 1≤j≤ n.

Theorem 1. Let P be an F-logic program. Then the least fixpoint ofTP, denoted
lfp(TP), is the least model for P.

The following example illustrates the computation of the least model of a program.
Here the lowercase lettersa, b, etc., denote ground atoms. Let the program be:

a ← . c ← (a ← b). d ← . (e ← d) ← a. f ← (e ← d).

we obtain:

I1 = {a, d, c ← (a ← b), (e ← d) ← a, f ← (e ← d) }
I2 = TP(I1) = {a, d, c ← (a ← b), (e ← d) ← a, f ← (e ← d), e ← d }
I3 = TP(I2) = {a, d, c ← (a ← b), (e ← d) ← a, f ← (e ← d), e ← d, e, f }
I4 = TP(I3) = {a, d, c ← (a ← b), (e ← d) ← a, f ← (e ← d), e ← d, e, f }

I3 is a fixpoint. Note thatc is not included inI3 while it would have been if we treated
a ← b as a shortcut fora ∨¬b.

Reification and Logical ParadoxesThe well-known inconsistency of Frege’s compre-
hension axioms is a result of the ability to reify logical sentences and make statements
about these sentences. Now that F-logic is extended with reification, is it free of para-
doxes? Consider the followingcomprehension axiom schema:

∃P∀X(P(X) ↔ φ(X))

While one might think that the comprehension axiom is too general to be useful (and
thus unlikely to occur in user specifications), the following simpler truth axiom is less
esoteric:

∀X(true(X) ↔ X) (5)

Unfortunately, it turns out to be an instance of the comprehension axiom and is almost
as bad. The following example is adapted from [23]. Consider

true(¬p) ← p. p ← ¬p.

Together with the truth axiom, this program impliesp ↔ ¬ p.
In [23], it is proved that Horn programs in reified F-logic are consistent with the

truth axiom. However, that version of F-logic did not reify rules. Can rule reification
cause paradoxes? The answer is, fortunately,no.

Theorem 2. Horn programs in reified F-logic augmented with the truth axiom (5) are
consistent.

Reified F-logic avoids paradoxes through the following restrictions:

– No negation is allowed in the rule head, and
– Reification of negation of any fact or any rule is not permitted.

TheFLORA-2 system prohibits reification of negative rules, but allows reification
of negative facts. So the second condition above does not hold.FLORA-2 closes the
loophole with the following restriction:The head of a rule cannot be a variable.

This excludes rules of the formX ← body, but still allows rules likeX(Y) ←
body or X[Y->> Z] ← body. This restriction eliminates the truth axiom. Since nega-
tion of facts or rules cannot occur in the rule heads, it becomes impossible to derive
negative information byFLORA-2 programs (except through the closed world assump-
tion).

5 Related Work

Several existing approaches to dynamic Web Service discovery rely on OWL-S. For in-
stance, [15] and [13] propose an OWL-S-based approach to matching service advertise-
ments and requests. Both approaches rely on OWL-style subsumption reasoning [16] to
determine if a match exists between the information defined in the service profile and
the information given in the request. Other approaches such as [9], [19] or [18] do
not use OWL-S service descriptions but still rely on subsumption reasoning. The work
reported in [2] also uses OWL-S. However, the service discovery problem is not for-
mulated as a subsumption reasoning problem but rather as a rewriting problem where
requests are attempted to be rewritten in terms of available services.

All these approaches are limited by the lack of rules in the OWL language. This pre-
vents the provider from describing exactly and explicitly how the effects of the service
relate to the inputs provided.8 Therefore, the type of inputs and outputs (or effects) can
be semantically annotated but the relation between them cannot be captured. Therefore,
no formal guarantee can be given that the service will actually fulfill the requester’s
goal. For this reason, in the terminology of Section 2, these approaches can only do
discoverybut notcontracting.

In [24], an F-Logic-based approach for the description of Web Services is presented.
However, this work uses simple query answering and, therefore, the description of the
services is limited to ground facts, which considerably reduces the expressivity allowed
for describing the service functionality.

8 Recently OWL-S tried to partially rectify the problem by introducing the notion ofconditional
effects.

6 Conclusions

We presented a logical framework and a concrete realization for dynamic discovery
of Web services and for verification of their contractual statements. By exploiting the
WSMO conceptual model and, in particular,wgMediators, we shield the requesters and
providers from the complexity of the logical formalization of goals and capabilities and
thus ensure the scalability of the framework in terms of human resources. To properly
formalize our framework, we introduced the notion of rule reification and used it for
reasoning about the formal descriptions of goals, capabilities, andwgMediators.

As discussed in Section 5, our framework is able to accurately capture the function-
ality that is offered by services and sought by requesters, thus enabling more accurate
discovery than the approaches proposed so far. Moreover, our framework can be easily
extended to include service invocation. Although Section 3 uses a particular use case to
illustrate our framework, the framework itself is domain-independent.

Our future work will focus on aligning the framework with the sublanguages of
WSML that are currently being defined and on revisiting the modeling concepts of
WSMO in light of this work. Testing of industrial use-cases specified by the SDK clus-
ter9 will receive special attention. Extending our approach with (semi)automatic com-
position of Web Services will also be a subject for future research in the context of the
SDK cluster.

References

1. T. Bellwood, L. Clment, D. Ehnebuske, A. Hately, Maryann Hondo, Y.L. Husband,
K. Januszewski, S. Lee, B. McKee, J. Munter, and C. von Riegen. Uddi version 3.0, July
2002. http://uddi.org/pubs/uddi-v3.00-published-20020719.htm

2. B. Benatallah, M-S. Hacid, C. Rey, and F. Toumani. Request rewriting-based web service
discovery. InThe Semantic Web - ISWC 2003, pp. 242–257, Oct. 2003.

3. A.J. Bonner and M. Kifer. A logic for programming database transactions. InLogics for
Databases and Information Systems, chapter 5, pp. 117–166. Kluwer, March 1998.

4. A. J. Bonner, M. Kifer. Transaction logic programming (or, a logic of procedural and declar-
ative knowledge). Tech. report, 1995.

5. W. Chen, M. Kifer, D.S. Warren. HiLog: A foundation for higher-order logic programming.
Journal of Logic Programming, 15(3):187–230, Feb. 1993.

6. E. Christensen, F. Curbera, G. Meredith, S. Weerawarana. Web services description language
(wsdl) 1.1, March 2001. http://www.w3.org/TR/wsdl

7. D. Connolly, F. van Harmelen, I. Horrocks, D.L. McGuinness, P.F. Patel-Schneider,
L.A. Stein. DAML+OIL reference description. W3C note, W3C, Dec. 2001.

8. FLORA-2. TheFLORA-2 web site. http://flora.sourceforge.net
9. J. Gonzlez-Castillo, D. Trastour, C. Bartolini. Description logics for matchmaking of ser-

vices. InKI-2001 Workshop on Applications of Description Logics, Sept. 2001.
10. M. Kifer, G. Lausen, J. Wu. Logical foundations of object-oriented and frame-based lan-

guages.Journal of the ACM, 42(4):741–843, July 1995.
11. O. Lassila, R.R. Swick (eds). Resource description framework (RDF) model and syntax

specification. Rec. W3C, Feb. 1999. www.w3.org/TR/1999/REC-rdf-syntax-19990222/

9 http://www.sdkcluster.org/

12. H. Lausen, D. Roman, U. Keller (eds). Web service modeling ontology - standard (WSMO-
Standard). Working draft, Digital Enterprise Research Institute (DERI), March 2004.
http://www.wsmo.org/2004/d2/v0.2/

13. L. Li, I. Horrocks. A software framework for matchmaking based on semantic web technol-
ogy. 12th Int. Conf. on the World Wide Web, Budapest, Hungary, May 2003.

14. S. McIlraith, T.C. Son, H. Zeng. Semantic web services.IEEE Intelligent Systems, Special
Issue on the Semantic Web, 16(2):46/53, March/April 2001.

15. M. Paolucci, T. Kawamura, T. Payne, K. Sycara. Semantic matching of web services capa-
bilities. 1st Int. Semantic Web Conference (ISWC), pp. 333–347, 2002.

16. P.F. Patel-Schneider, P. Hayes, I. Horrocks. OWL web ontology language semantics and
abstract syntax. W3C recommendation, W3C, February 2004.

17. D. Perlis. Languages with self-reference i: Foundations. 25:301–322, 1985.
18. K. Sivashanmugam, K. Verma, A. Sheth, J. Miller. Adding semantics to web services stan-

dards. In1st Int. Conf. on Web Services (ICWS’03), pp. 395–401, June 2003.
19. K. Verma, K. Sivashanmugam, A. Sheth, A. Patil. Meteor-s wsdi: A scalable p2p infras-

tructure of registries for semantic publication and discovery of web services.Journal of
Information Technology and Management, 2004.

20. W3C. Soap version 1.2 part 0: Primer, June 2003. http://www.w3.org/TR/2003/REC-soap12-
part0-20030624/

21. G. Yang, M. Kifer. Well-founded optimism: Inheritance in frame-based knowledge bases. In
Int. Conf. on Ontologies, Databases, and Applications of Semantics (ODBASE), 2002.

22. G. Yang, M. Kifer. Inheritance and rules in object-oriented semantic web languages. InInt.
Workshop on Rules and Rule Markup Languages for the Semantic Web (RuleML), 2003.

23. G. Yang, M. Kifer. Reasoning about anonymous resources and meta statements on the se-
mantic web.Journal of Data Semantics, 1:69–97, 2003.

24. O.K. Zein, Y. Kermarrec. An approach for describing/discovering services and for adapting
them to the needs of users in distributed systems. 2004.

