

Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-03-20T08:34:29Z

Some rights reserved. For more information, please see the item record link above.

Title A Logic Programming approach for Access Control over RDF

Author(s) Lopes, Nuno; Kirrane, Sabrina; Mileo, Alessandra;
Zimmermann, Antoine; Polleres, Axel

Publication
Date 2012

Publication
Information

Lopes, Nuno; Kirrane, Sabrina; Mileo, Alessandra (2012) A
Logic Programming approach for Access Control over RDF
International Conference on Logic Programming (ICLP),
Technical Communications

Publisher International Conference on Logic Programming (ICLP)

Link to
publisher's

version

http://www.deri.ie/sites/default/files/publications/a_logic_progr
amming_approach_for_access_control_over_rdf.pdf

Item record http://hdl.handle.net/10379/4557

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/

Under consideration for publication in Theory and Practice of Logic Programming 1

A Logic Programming approach for Access
Control over RDF

Nuno Lopes

Digital Enterprise Research Institute

email: nuno.lopes@deri.org

Sabrina Kirrane

Digital Enterprise Research Institute and Storm Technology

email: sabrina.kirrane@deri.org

Antoine Zimmermann

École des Mines de Saint-tienne

email: antoine.zimmermann@emse.fr

Axel Polleres

Siemens AG Österreich, Siemensstrasse 90, 1210 Vienna, Austria

email: axel.polleres@siemens.com

Alessandra Mileo

Digital Enterprise Research Institute
email: alessandra.mileo@deri.org

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

The Resource Description Framework (RDF) is an interoperable data representation for-
mat suitable for interchange and integration of data, especially in Open Data contexts.
However, RDF is also becoming increasingly attractive in scenarios involving sensitive
data, where data protection is a major concern. At its core, RDF does not support any
form of access control and current proposals for extending RDF with access control do
not fit well with the RDF representation model. Considering an enterprise scenario, we
present a modelling that caters for access control over the stored RDF data in an intu-
itive and transparent manner. For this paper we rely on Annotated RDF, which intro-
duces concepts from Annotated Logic Programming into RDF. Based on this model of
the access control annotation domain, we propose a mechanism to manage permissions
via application-specific logic rules. Furthermore, we illustrate how our Annotated Query
Language (AnQL) provides a secure way to query this access control annotated RDF data.

KEYWORDS: Logic Programming, Annotation, Access Control, RDF

1 Introduction

Enterprises rely on stand-alone systems, commonly known as Line Of Business

(LOB) applications, to efficiently perform day-to-day activities: interactions with

2 Nuno Lopes et al.

clients in a Customer Relationship Management (CRM) application, employee in-

formation in a Human Resources (HR) application, project documentation in a

Document Management System (DMS), etc. These systems, although independent,

often contain different information regarding the same entities; for example, if an

organisation needs to know the projects commissioned by a customer, the employ-

ees that worked on those projects and the revenue that was generated, they need to

obtain information across these systems. However, such integration is not a simple

task, not only due to the heterogeneity of the systems, but also due to the presence

of access control mechanisms in each system. In fact, since much of the informa-

tion within the enterprise is highly sensitive, this integration step could result in

information leakage to unauthorised individuals.

RDF is a flexible format for representing such integrated data, however it does

not provide any mechanisms to avoid the problem of information leakage. In this

paper we rely on an integration solution that extracts information from the un-

derlying LOB applications into RDF. Based on this integrated data, we define a

mechanism to enforce access control over the resulting RDF graph, implemented via

logic programming. Our approach provides a flexible representation for the access

control policies and also caters for permission propagation via logic inference rules.

The solution we present builds upon an extension of the RDF data model to

supply context information (called Annotated RDF), that provides a backwards

compatible model to attach domain-specific metadata to each RDF triple. Our

contribution in relation to access control over RDF data focuses on: (i) defining an

annotation domain that models access control permissions in RDF; (ii) specifying

the high-level system architecture required to enforce access control by relying on

SPARQL, the standard query language for RDF; and (iii) illustrating how domain

specific rules can be used to manage the access control annotations. Although in

this paper we are considering that the access control annotated data stems from

the integration of the data from the LOB applications, the presented model can

be applied as a general model for access control in RDF, without requiring the

information integration step.

The remainder of the paper is structured as follows: in Section 2 we briefly in-

troduce concepts from the Semantic Web research area and their extension to the

annotated case. Section 3 formalises the access control annotation domain and de-

tails our implementation of the domain in logic programming. Section 4 discusses

how our formalism can be used to extend RDF with access control and provides

a high-level overview of a system that enforces such access control. Finally, we

describe the related work in Section 5 and present conclusions and directions for

future work in Section 6.

2 Preliminaries

In this section we provide the necessary background information regarding the se-

mantics of Annotated RDFS. We start by presenting the data model, giving an

overview of RDF and its extension towards Annotated RDFS which draws inspira-

tion from Annotated Logic Programming (Kifer and Subrahmanian 1992). We then

A Logic Programming approach for Access Control over RDF 3

present the extension of the RDFS inference rules for the annotated case and the

extension of the SPARQL query language for querying Annotated RDFS, AnQL.

Finally, we present the current prototype implementation of Annotated RDFS and

AnQL which is implemented in SWI Prolog.

2.1 Annotated RDFS Data Model

We present an overview of the concepts of RDF and its extension to Annotated

RDFS.

Definition 1 (RDF triple, RDF graph)

Considering the disjoint sets U, B and L, representing respectively URIs, blank

nodes and literals, an RDF triple is a tuple (s, p, o) ∈ UB×U×UBL,1 where s is

called the subject, p the predicate, and o the object. An RDF graph G is a finite set

of RDF triples.

An RDF triple has the intuitive meaning that the subject is connected to the object

by the predicate relation. In this work, we avoid introducing details about the

concrete syntaxes of RDF, and we omit minutiae. Please refer to Manola and Miller

(2004) and Hayes (2004) for specifics.

Several extensions were presented to introduce meta-information into the RDF

data model. For example, Gutierrez et al. (2007) define temporal RDF, which allows

for the allocation of a validity interval to an RDF triple; Straccia (2009) presents

fuzzy RDF in order to attach a confidence or membership value to a triple. These

and other approaches can be represented within a common framework, called An-

notated RDF (Udrea et al. 2010) and further extended to include RDFS inference

rules by Straccia et al. (2010). Annotated RDFS introduces the notion of an anno-

tation domain into the RDF model and defines an extension of the RDFS inference

rules that, by relying on the ⊗ and ⊕ (cf Definition 2) operations defined by the an-

notation domain, can be specified in a domain independent fashion. Next we present

the definition of an annotation domain while the Annotated RDFS inference rules

are detailed in Section 2.2.

Definition 2 (Annotation Domain)

Let L be a non-empty set, whose elements are considered the annotation values. We

say that an annotation domain for RDFS is an idempotent, commutative semi-ring

D = 〈L,⊕,⊗,⊥,>〉 , where ⊕ is >-annihilating. That is, for λ, λ1, λ2 ∈ L:

1. ⊕ is idempotent, commutative, associative;

2. ⊗ is commutative and associative;

3. ⊥⊕ λ = λ, >⊗ λ = λ, ⊥⊗ λ = ⊥, and >⊕ λ = >;

4. ⊗ is distributive over ⊕, i.e. λ1 ⊗ (λ2 ⊕ λ3) = (λ1 ⊗ λ2)⊕ (λ1 ⊗ λ3);

An annotation domain D = 〈L,⊕,⊗,⊥,>〉 induces a partial order � over L defined

as: λ1 � λ2 iff λ1 ⊕ λ2 = λ2 .

1 For conciseness, we represent the union of sets simply by concatenating their names.

4 Nuno Lopes et al.

Example 1 (Annotation Domain)

The Fuzzy Annotation Domain is defined as D[0,1] = 〈[0, 1],max,min, 0, 1〉. We can

specify that :joeBloggs is a part-time employee of :westportCars as follows:

(:joeBloggs, :worksFor, :westportCars) : 0.5

For the definitions of other domains, such as the temporal domain, the reader is

referred to Straccia et al. (2010). In Section 3.1 we present the definition of an

annotation domain to model access control.

Further to the above annotation domain definition, we extend RDF towards

annotated RDFS:

Definition 3 (Annotated triple, graph)

An annotated triple is an expression τ : λ, where τ is an RDF triple and λ is an

annotation value. An annotated RDFS graph is a finite set of annotated triples.

The entailment between two Annotated RDFS graphs, G |= H is defined by a

model-theoretic semantics presented in Straccia et al. (2010).

2.2 Inference Rules

RDF Schema (RDFS) (Brickley and Guha 2004) consists of a predefined vocabulary

that assigns specific meaning to certain URIs, allowing a reasoner to infer new

triples from existing ones. A set of inference rules can be used to provide a sound

and complete reasoner for RDFS (ter Horst 2005). These rules can be extended to

support Annotated RDFS reasoning, in a domain-independent fashion, simply by

relying on the ⊗ and ⊕ operations (presented in Definition 2). Such rules can be

represented by the folowing meta-rule:

τ1 : λ1, . . . , τn : λn, {τ1, . . . τn} `RDFS τ

τ :
⊗

i λi
. (1)

This rule reads that if a classical RDFS triple τ can be inferred by applying an

RDFS inference rule to triples τ1, . . . τn (denoted {τ1, . . . , τn} `RDFS τ), the same

triple can be inferred in the annotated case with annotation term
⊗

i λi, where λi is

the annotation of triple τi. The ⊕ operation is used to combine information about

the same statement: if the same triple is inferred from different rules or steps in the

inference, the following rule is applied:

τ : λ1, τ : λ2
τ : λ1 ⊕ λ2

. (2)

It is also possible to specify a custom set of rules in order to provide application

specific inferencing. One of the contributions of this paper, the definition of cus-

tom rules for managing permissions in the access control domain, is presented in

Section 4.1.

2.3 AnQL: Annotated Query Language

The proposed query language for Annotated RDFS is AnQL (Lopes et al. 2010),

which consists of an extension to the W3C recommended query language for RDF,

A Logic Programming approach for Access Control over RDF 5

SPARQL (Seaborne and Prud’hommeaux 2008), while also taking into considera-

tion features from the upcoming SPARQL 1.1 language revision. Consider V a set

of variables disjoint from UBL. In SPARQL, a triple pattern consists of an RDF

triple with optionally a variable v ∈ V as the subject, predicate and/or object. Sets

of triple patterns are called basic graph patterns (BGP) and BGPs can be com-

bined to create generic graph patterns. The semantics of SPARQL is based on the

notion of basic graph pattern matching, where a substitution is a partial function

µ : V→ UBL.

For the extension of SPARQL towards the AnQL query language, we propose a

specific annotation domain instance of D of the form 〈L,⊕,⊗,⊥,>〉. Let A denote

the set annotation variables, disjoint from UBLV and λ be an annotation value

from L or an annotation variable from A, called an annotation label. For a SPARQL

triple pattern τ , we call τ : λ an annotated triple pattern and sets of annotated triple

patterns are called basic annotated patterns (BAP). Similar to SPARQL, BAPs can

be combined to create an annotated graph pattern and for further details we refer

the reader to (Lopes et al. 2010).

An AnQL query is defined as a triple Q = (P,G, V) where: (1) P is an annotated

graph pattern; (2) G is an annotated RDF graph; and (3) V ⊆ VA is the set

of variables to be returned by the query. Given an annotated graph pattern P , we

further denote by var(P) ⊆ V and avar(P) ⊆ A the set of variables and annotation

variables respectively present in a graph pattern P . As presented in Example 2, the

annotated graph pattern P is specified following the WHERE keyword where the

variables are specified after the SELECT keyword.

Example 2 (AnQL query)

Considering the fuzzy domain presented in Example 1, we can pose the following

query:

SELECT ?v ?av WHERE { ?v a :Company ?av }

where ?v is a variable from V and ?av is an annotation variable from A.

The semantics of AnQL BAP matching is defined by extending the notion of

SPARQL basic graph pattern matching to cater for annotation variables and their

mapping to annotation values. For any substitution µ and variable v, µ(v) corre-

sponds to the value assigned to v by µ. For a BAP P , µ(P) represents the annotated

triples that correspond to P except that any variable v ∈ vars(P) ∪ avars(P) is

replaced with µ(v).

Definition 4 (BAP matching, extends (Pérez et al. 2009, Definition 2))

Let P be a BAP and G an Annotated RDFS graph. We define the evaluation

of P over G, denoted [[P]]G, as the list of substitutions that are solutions of P , i.e.

[[P]]G = {µ | G |= µ(P)}, according to the model-theoretic definition of entailment

presented by Straccia et al. (2010).

The semantics of arbitrary annotated graph patterns is defined by an algebra that is

built on top of this BAP matching. For further details we refer the reader to (Lopes

et al. 2010) and a combined overview of Annotated RDFS and AnQL is provided

by Zimmermann et al. (2012).

6 Nuno Lopes et al.

Reasoner / AnQL
Query Engine

Annotation Domain

Temporal FuzzyAccess control

Inference Rules

RDFS Custom Rules
Annotated

RDF
Graph

Fig. 1. Annotated RDFS implementation schema

2.4 Implementation

The system architecture of our prototype implementation, based on SWI-Prolog’s

Semantic Web library (Wielemaker et al. 2008), is sketched in Figure 1. The main

component of the system consists of the Reasoner / AnQL Query Engine, which

is composed of a forward-chaining reasoner engine with a fix-point semantics that

calculates the closure of a given Annotated RDF Graph (Straccia et al. 2010)

and an implementation of the AnQL query language. This main component can

be tailored to a specific Annotation Domain and to include different Inference

Rules describing how triples and their annotation values are propagated. Such

inference rules can be specified, in domain independent fashion, by using a high-

level language that abstracts the specific details of each domain. An example of an

Annotated RDFS rule is presented in Example 3.

Example 3 (Annotated RDFS Inference Rule)

The following rule provides subclass inference in the RDFS ruleset:

rdf(O, rdf:type , C2 , V) <== rdf(O, rdf:type , C1 , V1),

rdf(C1 , rdfs:subClassOf , C2 , V2),

infimum(V1 , V2 , V).

where the rdf/4 predicate is used to represent the annotated triples and the

infimum/3 predicate corresponds to the implementation of the ⊗ domain oper-

ation (as presented in Definition 2).

More information and downloads of the prototype implementation can be found at

http://anql.deri.org/.

3 Access Control Annotation Domain

In this section we formalise our access control annotation domain, following the

definitions presented in Section 2.1, starting by defining the entities and annotation

values and then presenting the ⊗ and ⊕ domain operations. Finally, we briefly

describe the implementation of the presented annotation domain.

3.1 Entities and Annotations

For the modelling of the Access Control Domain (ACD) consider, in addition to

the previously presented sets of URIs U, blank nodes B, and literals L, a set of

credential elements C. The elements of C are used to represent usernames, roles,

http://anql.deri.org/

A Logic Programming approach for Access Control over RDF 7

and groups. To represent attributes, we propose a set T of pairs of form (k, v),

represented as key–value pairs where k ∈ U and v ∈ L. For example “(:age, 30)”

or “(:institute,DERI)” are elements of T.2 We allow shortcuts to represent in-

tervals of integers, for example “(:age, [25, 30])” to indicate that all entities with

attribute “:age” between 25 and 30 are allowed access to the triple.

Considering an element e ∈ CT, e and ¬e are access control elements, where e

is called a positive element and ¬e is called a negative element.3 An access con-

trol statement S consists of a set of access control elements and an Access Control

List (ACL) consists of a set of access control statements. An access control state-

ment S is consistent if and only if, for any element e ∈ CT, only one of e and ¬e
may appear in S. This restriction avoids conflicts, where a statement is attempting

to both grant and deny access to a triple. Furthermore, we can define a partial

order between access control statements S1 and S2, as S1 ≤ S2 iff S1 ⊆ S2. This

partial order can be used to eliminate redundant access statements within an ACL:

if a user is granted access by statement S2, he will also be granted access by state-

ment S1 (and thus S2 can be removed). Finally, an ACL is consistent if and only

if all statements therein are consistent and not redundant. In our domain repre-

sentation, only consistent ACLs are considered as annotation values. Intuitively, an

annotation value specifies which entities have read permission to the triple, or are

denied access when the annotation is preceded by ¬.

Example 4 (Access Control List)

Assume a set of entities C = {jb, js, hr, it}, where jb and js are employee usernames

and hr and it are shorthand for humanResources and informationTechnology , re-

spectively. The following annotated triple:

τ : [[it], [hr,¬js]]
states that the entities identified with it or hr (except if the js credential is also

present) have read access to the triple τ .

An ACLA can be considered as a non-recursive Datalog with negation (nr-datalog¬)

program, where each of the access control statements S ∈ A corresponds to the

body of a rule in the Datalog program. The head of each Datalog rule is a reserved

element access 6∈ CT and the evaluation of the Datalog program determines the

access permission to a triple given a specific set of credentials. The set of user

credentials is assumed to be provided by an external authentication service and

consists of elements of CT which equates to a non-empty ACL representing the

entities associated with the user. As expected, we assume that this ACL consists

of only one positive statement, i.e. the ACL will contain one statement with all the

entities associated with the user and does not contain any negative elements.

2 In these examples, the default URI prefix is http://urq.deri.org/enterprise#.
3 Here we are using ¬e to represent strong negation. In our access control domain representation,
¬e indicates that e will be specifically denied access.

http://urq.deri.org/enterprise#

8 Nuno Lopes et al.

Example 5 (Datalog Representation of an ACL)

Taking into account the annotation example presented in Example 4. The nr-

datalog¬ program corresponding to the ACL [[it], [hr,¬js]] is:

access← it.

access← hr,¬js.
The set of credentials of the user session, provided by the external authentication

system eg. [[js, it]], are facts in the nr-datalog¬ program.

Further domain specific information, for example the encoding of hierarchies be-

tween the credential elements, can be encoded as extra rules within the nr-datalog¬

program. These extra rules can be used to provide implicit credentials to a user,

allowing the access control to be specified based on credentials that the authenti-

cation system does not necessarily assign to a user.

Example 6 (Credential Hierarchies)

If the entity emp represents all the employees within a specific company, and that jb

and js correspond to employee usernames (as presented in Example 4), the following

rules can be added to the nr-datalog¬ program from Example 5:

emp← js.

emp← jb.

These rules ensure that both jb and js are given access when the credential emp is

required in an annotation value.

These rules can be used not only to express hierarchies between entities but any

form of nr-datalog¬ rules are allowed.

3.2 Annotation Domain

We now turn to the annotation domain operations ⊗ and ⊕ that, as presented

in Section 2.2, allow for the combination of annotation values catering for RDFS

inferences. A naive implementation of these domain operations may produce ACLs

which are not consistent (and would not be considered valid annotation values). To

avoid such invalid ACLs, we rely on a normalisation step that ensures the result

is a valid annotation value by checking for redundant statements and applying a

conflict resolution policy if necessary. If an annotation statement contains a positive

and negative access control element for the same entity, e.g [jb,¬jb], there is a con-

flict. There are two different ways to resolve conflicts in the annotation statements:

(i) apply a brave conflict resolution (allow access); or (ii) safe conflict resolution

(deny access). This is achieved during the normalisation step, through the resolve

function, by removing the appropriate element: ¬jb for brave or jb for safe conflict

resolution. In our current modelling, we are assuming safe conflict resolution. The

normalisation process is defined as follows:

Definition 5 (Normalise)
Let A be an ACL. We define the reduction of A into its consistent form, de-

noted norm(A), as:

normalise(A) = {resolve(Si) | Si ∈ A and 6 ∃Sj ∈ A, i 6= j such that Si ≤ Sj} .

A Logic Programming approach for Access Control over RDF 9

The ⊕ operation is used to combine annotations when the same triple is deduced

from different inference steps (cf. Rule (2)). For the access control domain, the ⊕ac

operation involves the union of the annotations and the subsequent normalisation

operation. The result of this operation intuitively creates a new nr-datalog¬ pro-

gram consisting of the union of all the rules from the original nr-datalog¬ programs.

Formally,

A1 ⊕ac A2 = normalise (A1 ∪A2) .

The following example presents an application of the ⊕ac operation:

Example 7 (⊕ac operation)

Consider the annotated triples τ1 = (:johnSmith, :salary, 40000) : [[js]] and τ2 =

(:johnSmith, :salary, 40000) : [[hr]]. Combining these triples with the ⊕ac operation

(by applying Rule (2)) should result in providing access to all the entities which

are allowed to access the premises:

(:johnSmith, :salary, 40000) : [[js], [hr]] .

In turn, the ⊗ operation is used when inferring new triples, with the application

of Rule (1), and for the access control domain, this operation (⊗ac) consists of

merging the rules belonging to both annotation programs and then performing the

normalisation and conflict resolution. This equates to restricting access to inferred

statements to only those entities that have access to the both the original state-

ments. Formally, the ⊗ operations corresponds to:

A1 ⊗ac A2 = normalise ({S1 ∪ S2 | S1 ∈ A1 and S2 ∈ A2}) ,

where S1∪S2 represents the set theoretical union. Unlike the ⊕ac operation, the ⊗ac

may produce conflicts in the annotation statements. For example, the application

of the ⊗ac operation with the Annotated RDFS dom rule is as follows:

Example 8 (⊗ac operation)

Consider the triples τ1 = (:westportCars, :netIncome, 1000000) : [[hr,¬jb]] and τ2 =

(:netIncome, dom, :Company) : [[it, jb]]. The annotation resulting from applying

the ⊗ac operation should provide access to the resulting triple only to entities

which are allowed to access all the premisses. Thus we can infer, not only that

:westportCars is of type :Company, but also the appropriate annotation value:

(:westportCars, type, :Company) : [[hr, it,¬jb]] .
Please note that the aforementioned conflict resolution mechanism has simpli-

fied [¬jb, jb] into [¬jb].

Lastly, the smallest and largest annotation values in the access control domain,

⊥ac and >ac respectively, correspond in turn to an empty nr-datalog¬ program and

another that provides access to all entities e ∈ CT: ⊥ac = [] and >ac = [[]]. The ⊥ac

annotation value element indicates that the annotated triple is not accessible to

any entity, since no annotation statements will provide access to the triple, and an

annotation value of>ac states that the triple is public, since any credential contained

in the user session will trivially provide access to the triple. Intuitively, the >ac

annotation is translated into the nr-datalog¬ program containing only the “access”

10 Nuno Lopes et al.

fact, while ⊥ac corresponds to an empty program. However, for practical reasons,

it might be necessary to assume a “super-user” role, for example represented as

the reserved element “su”, which will be allowed access to all triples and therefore

would be used as the ⊥ac annotation. For this paper we are mostly ignoring this

issue, and simply assume these issues can be handled by domain specific rules (as

presented in Section 4.1).

Definition 6 (Access Control Annotation Domain)

Let F be the set of annotation values over CT, i.e. consistent ACLs. The access

control annotation domain is formally defined as:

Dac = 〈F,⊕ac,⊗ac,⊥ac,>ac〉 .

The presented modelling of the access control domain can be easily extended to

handle other permissions, like update, and delete by representing the annotation as

an n-tuple of ACL 〈P,Q, . . .〉, where P specifies the formula for read permission,

Q for update permission, etc. In this extended domain modelling, the domain op-

erations can also be extended to operate over the corresponding elements of the

annotation tuple. A create permission has a different behaviour as it would not be

attached to any specific triple but rather as a graph-wide permission and thus is out

of scope for this modelling. In this paper, we are considering only read permissions

in the description of the domain and thus restrict the modelling to a single access

control list. It is worth noting that the support for create and update of RDF is

only included in the forthcoming W3C SPARQL 1.1 Recommendation (Harris and

Seaborne 2012).

3.3 Prolog Implementation

Considering the prototype described in Section 2.4, the implementation of the access

control annotation domain consists of a Prolog module that is imported by the

reasoner. This module defines the domain operations ⊗ac and ⊕ac, represented as

the predicates infimum/3 and supremum/3 respectively. The annotation values are

represented by using lists (in this case lists of lists), following the notions presented

in the previous section.

The implementation of the ⊕ac operation involves concatenating the list repre-

sentation of both annotations and then performing the normalisation operation. As

for the ⊗ac operation, we follow a similar procedure to the ⊕ac operation, with the

additional step of applying either the brave or the safe conflict resolution method.

The evaluation of the nr-datalog¬ program can be performed based on the repre-

sentation of the annotation values, by checking if the list of credentials of a user is

a superset of any of the positive literals of the statements of our annotation values

and also that it does not contain any of the negative literals of the statement.

An example of RDF data annotated with access control information is presented

in Figure 2, where the salary information is only available to the respective em-

ployee. In this figure we are representing the RDF triples and annotation element

A Logic Programming approach for Access Control over RDF 11

@prefix : <http :// urq.deri.org/enterprise#> .

:westportCars rdf:type :Company "[[jb]]".

:westportCars :netIncome 1000000 .

:joeBloggs :worksFor :westportCars .

:joeBloggs :salary 80000 "[[jb]]".

:johnSmith :worksFor :westportCars .

:johnSmith :salary 40000 "[[js]].

Fig. 2. RDF triples annotated with access control permissions

using the NQuads RDF serialisation.4 Using AnQL, the extension of the SPARQL

query language described in Section 2.3, it is possible to perform queries that take

into consideration the access control annotations. An example of an AnQL query

over this data is presented in the following example:

Example 9 (AnQL Query Example)

This query specifies that we are interested in the salary of employees that someone

with the permissions [[jb, hr, it]] is allowed to access.

SELECT * WHERE { ?p :salary ?s "[[jb, hr, it]]" }

The answers for this query (when matched against the data from Figure 2) under

SPARQL semantics, i.e. if the annotation was omitted, would be:

{{?p→ :joeBloggs, ?s→ 80000} , {?p→ :johnSmith, ?s→ 40000}} .

However, when the domain annotations are present, an AnQL query engine must

also perform the following check: [[jb, hr, it]] satisfies the nr-datalog¬ program λ,

where λ is the program represented by the annotation of each matched triple, thus

yielding only the following answer:

{{?p→ :joeBloggs, ?s→ 80000}} .

4 Access Control Framework

In order to provide a complete framework to handle authorisation in RDF, the

domain modelling presented in the previous section needs to be part of a system

that is capable of enforcing the access control policies. Figure 3 provides a high level

overview of the individual components required for such a system. In our enterprise

data integration use-case, the Integration Service takes care of translating the

underlying data and access control mechanisms from the LOB applications into the

annotated RDF data model. However, our modelling is flexible enough to cater for

scenarios where permissions cannot be extracted from the underlying databases.

The Access Control Layer corresponds to the system architecture presented

in Figure 1, where we fix the annotation domain as the presented access control

domain. The data and the access permissions are stored in the Annotated RDF

4 http://sw.deri.org/2008/07/n-quads/

http://sw.deri.org/2008/07/n-quads/

12 Nuno Lopes et al.

Access Control Layer

Authentication Service

Query Rewriter

RDB RDB RDB

Integration Service

Reasoner / AnQL
Query Engine

Annotation Domain
Access control

Inference Rules

RDFS Custom Rules
Annotated
RDF Graph

Fig. 3. Access Control System Architecture

Graph and we rely on the existing Annotated RDF reasoner and query engine

(described in Section 2.4) for evaluating queries and domain-specific rules.

The Authentication Service returns the user credentials that are composed of

one or more usernames, roles, groups and attributes that may also be extracted from

each of the LOB applications. The Query Rewriter takes a query specified using

the SPARQL query language for RDF and, using the list of credentials provided by

the Authentication Service, expands it into an AnQL query, which ensures that

users only have access to the information they have been granted access to. We also

extract end user credentials from the LOB applications, however as authentication is

outside the scope of this paper, we simply assume a mapping between the enterprise

employee and their usernames, groups and roles.

Next we present some of the challenges that exist in the proposed system archi-

tecture: how to handle permission management and propagation and how to ensure

that users cannot circumvent the access control policies.

4.1 Rules for Permission Management

In many LOB applications, two forms of implicit access control are present: (i) hier-

archies between entities in the access control annotations; and (ii) restrictions over

resources in the data, for example collections of relational tuples or RDF triples.

Hierarchies of form (i) were addressed in Section 3.1 by adding rules to the nr-

datalog¬ program that evaluates the annotations. As for (ii), permissions granted

to a resource should be propagated to all related triples. Such propagation chains

can be broken by explicitly specifying permissions on a particular triple.

Taking into consideration our access control domain modelling and the use-case

of extracting data (and permissions) from their original sources, one option is to

incorporate this business logic into the Extract-Transform-Load (ETL) process.

However, to handle permission management in RDF stores, it is not possible to

rely on the ETL process. Therefore we propose to use domain specific rules which

our reasoner is capable of processing in order to propagate the access permissions

or to enforce any domain specific policies. Such rules can be written similarly to the

A Logic Programming approach for Access Control over RDF 13

Annotated RDF rules, described in Section 2.4, giving us access to the existing data

and annotations and allowing us to create new Annotated RDF triples or update

existing ones.

Example 10 (Domain Specific Rule)

In an enterprise scenario, if an employee is given access to a Company record, as

per the following triple (C, type, :Company), that employee should be given access to

all triples relating to the Company.

(C, type, :Company) : λ1, (C,P,O) : λ2
(C,P,O) : λ1 ⊕ac λ2

,

where C,P,O and λ1, λ2 are variables. Applying this rule to the

sample dataset presented in Figure 2, would cause the access per-

mission of the triple (:westportCars, type, :Company) : [[jb]] to be prop-

agated to the second triple, yielding the following new annotated

triple: (:westportCars, :netIncome, 1000000) : [[jb]].

4.2 Transparent Access Control

This section describes issues that need to be addressed when considering extend-

ing RDF with access control information. The first is regarding SPARQL query

injection, where users should be prevented from specifying any access credentials

manually while the second addresses the problem of interchanging RDF graphs

annotated with access control information.

It is possible to use AnQL directly to query RDF data annotated with access

control information, as presented in Example 9. However, allowing users to perform

AnQL queries is not secure since they could bypass the access control due to the

lack of enforcement of the supplied credentials. Our proposed solution for the en-

forcement of the access control is based on query rewriting. The user is allowed to

write SPARQL queries and the system transparently extends each triple pattern of

the query with the user credentials given as an annotation value, thus generating

an AnQL query. The AnQL query is then executed against the Annotated RDF

graph, which guarantees that the user can only access the triples appropriate for the

provided credentials. This query rewriting step relies on the credentials provided by

the external authentication system, which are represented as an annotation control

element and thus can be easily added into any SPARQL Basic Graph Pattern to ob-

tain an AnQL Basic Annotated Pattern. For this paper we are not considering any

specific implementation of the authentication system but rather assume a secure

implementation that relies, for example, on WebID (Sporny et al. 2011).

Another issue is maintaining the support for the interchangeability of RDF

graphs, where RDF graphs can be serialised using one of the RDF representa-

tions. For the access control domain, we are interested in ensuring that each user

is only allowed access to authorised information. In such scenario, the information

contained in an RDF store should not be dumped as Annotated RDF but rather

as a standard RDF graph containing the data the user is allowed access. The pro-

14 Nuno Lopes et al.

posed modelling should be used as an internal representation for the access control

information in RDF stores and should not be exposed to the end-user.

5 Related Work

The topic of access control has been studied in different research areas, here we

give a small overview of related works in the database community and then present

further comparisons in the RDF realm, that are analogous to our approach.

The topic of access control has been long studied in relational databases and

the approach of enforcing access policies by query rewriting was also considered for

the Quel query language by Stonebraker and Wong (1974). However, the presented

system does not rely on annotating the relational data but rather access control is

specified using constraints over the user credentials which are then included in the

rewritten query. A good overview of common issues, existing models and languages

for access control is provided by di Vimercati et al. (2005), who focus on topics

also discussed in this paper such as user hierarchy, allowing and denying access and

conflict resolution.

For the Semantic Web, well known policy languages such as KAoS (Bradshaw

et al. 1997), Rei (Kagal and Finin 2003) and PROTUNE (Bonatti et al. 2009) are

based on logical formalisms and consequently have well defined semantics. Although

such policy languages enable policy specification using semantic web languages in

their current form, they do not support reasoning based on RDF data relations.

These policy languages are complementary to our work as their policies could be

mapped to our annotations using rules.

In contrast, Javanmardi et al. (2006), Ryutov et al. (2009), and Amini and Jalili

(2010) propose access control models for RDF graphs and like us allow for policy

propagation and inference based on semantic relations. The policy language pro-

posed by Javanmardi et al. (2006) is not based on well defined semantics and no

implementation details are provided. Ryutov et al. (2009) propose a path-based

approach to policy composition. Amini and Jalili (2010) state that they use an

analytical tableaux system, however they do not provide a mechanism for merging

or for inference of permissions based on RDF structure.

Dietzold and Auer (2006) describe the requirements an RDF store needs from a

Semantic Wiki perspective. Apart from efficiency and scalability, the authors refer

to the need for access control on a triple level and to integrate the structure of the

organisation in the access control methods. The described system relies on a query

engine (SPARQL is mentioned but no details are given) and a rule processor to

decide the access control enforcement at query time. The system we propose in this

paper caters for both of these requirements and also integrates the access control

into the annotation query language.

Hollenbach et al. (2009) present the possibility of maintaing metadata for RDF

to enforce access control and touch upon of the work presented here, such as using

rules for specifying access control, as possible extensions of their model. Providing

access control on a resource level is also left as an open question, one we are tackling

by the specification of rules.

A Logic Programming approach for Access Control over RDF 15

Some work on extending query languages was presented by Abel et al. (2007),

however this work pre-dates the SPARQL query language. In a similar fashion to

the work presented in this paper, their policy enforcement is also done by a query

rewriting step however, their query rewriting does not involve including the user

credentials but rather replicating the access policies within the query. They also

take into account policies which allow or deny access to data.

Similar access control annotations are attached to axioms in an ontology by Kne-

chtel and Stuckenschmidt (2010) and Baader et al. (2009) in order to allow access to

subsets of the ontology to specific users, or applied to the problem of determining the

minimal set of axioms that are necessary to support a certain conclusion. Although

the setting is different to the one presented in this paper, some of the algorithms

for efficient annotation calculation may be ported to our modelling.

6 Conclusions and Future Work

The Resource Description Framework (RDF) can be used for large scale integration

of information from existing LOB applications. In this paper, we propose an access

control model that can be used to protect RDF data and demonstrate how a combi-

nation of Annotated RDF and SPARQL can be used to control access to integrated

enterprise data. Our model is based on the previously proposed Annotated RDF

framework and attaches the access control information on a triple basis i.e. each

RDF triple can contain different annotation values. The proposed solution provides

a flexible representation method for the access control annotations, based on access

control rules that define which entities have access to the triple. However, on very

large datasets, challenges will arise with respect to optimal access control policy

administration. To tackle this issue we propose managing permissions by specifying

domain-specific inference rules for the annotation domain. We also suggest a pos-

sible implementation structure for a framework to enforce the access control based

on rewriting a SPARQL query into an Annotated SPARQL query (AnQL) which

relies on a secure authentication service.

Our initial work touches on how rules can be used to simplify the management of

RDF access control permissions. In future work, we propose to investigate the in-

terdependencies between usernames, groups, roles, and attributes and how we can

further exploit the RDF graph structure to streamline the management of RDF

access control policies. Although the modelling presented in this paper provides

a suitable representation model for the annotation values, its implementation and

evaluation for large RDF graphs remains an open issue. To provide acceptable query

performance when compared to its non-annotated counterpart, different optimisa-

tion strategies for both annotation storage and query evaluation will be necessary.

Acknowledgements This work is supported in part by the Science Foundation

Ireland under Grant No. SFI/08/CE/I1380 (Ĺıon-2), the Irish Research Council

for Science, Engineering and Technology Enterprise Partnership Scheme and Storm

Technology Ltd. We would like to thank Gergely Lukácsy, Aidan Hogan, and Um-

berto Straccia for their comments on this paper.

16 Nuno Lopes et al.

References

Abel, F., Coi, J. L. D., Henze, N., Koesling, A. W., Krause, D., and Olmedilla,
D. 2007. Enabling Advanced and Context-Dependent Access Control in RDF Stores. In
The Semantic Web, 6th International Semantic Web Conference, 2nd Asian Semantic
Web Conference, ISWC 2007 + ASWC 2007, Busan, Korea, November 11-15, 2007,
K. Aberer, K.-S. Choi, N. F. Noy, D. Allemang, K.-I. Lee, L. J. B. Nixon, J. Golbeck,
P. Mika, D. Maynard, R. Mizoguchi, G. Schreiber, and P. Cudré-Mauroux, Eds. Vol.
4825. Springer, 1–14.

Amini, M. and Jalili, R. 2010. Multi-level authorisation model and framework for
distributed semantic-aware environments. IET Information Security 4, 4, 301.

Baader, F., Knechtel, M., and Peñaloza, R. 2009. A Generic Approach for Large-
Scale Ontological Reasoning in the Presence of Access Restrictions to the Ontology’s
Axioms. In The Semantic Web - ISWC 2009, 8th International Semantic Web Confer-
ence, ISWC 2009, Chantilly, VA, USA, October 25-29, 2009. Proceedings, A. Bernstein,
D. R. Karger, T. Heath, L. Feigenbaum, D. Maynard, E. Motta, and K. Thirunarayan,
Eds. Vol. 5823. Springer, 49–64.

Bonatti, P., De Coi, J., Olmedilla, D., and Sauro, L. 2009. Rule-based policy
representations and reasoning. In Semantic techniques for the web. 201–232.

Bradshaw, J., Dutfield, S., Benoit, P., and Woolley, J. 1997. KAoS: Toward an
industrial-strength open agent architecture. In Software Agents. 375–418.

Brickley, D. and Guha, R. 2004. RDF Vocabulary Description Language 1.0: RDF
Schema. W3C Recommendation, W3C. February. Available at http://www.w3.org/

TR/rdf-schema/.

di Vimercati, S. D. C., Samarati, P., and Jajodia, S. 2005. Policies, Models, and
Languages for Access Control. In Databases in Networked Information Systems, 4th In-
ternational Workshop, DNIS 2005, Aizu-Wakamatsu, Japan, March 28-30, 2005, Pro-
ceedings, S. Bhalla, Ed. Vol. 3433. Springer, 225–237.

Dietzold, S. and Auer, S. 2006. Access Control on RDF Triple Stores from a Semantic
Wiki Perspective. In Proc. of 2nd Workshop on Scripting for the Semantic Web at
ESWC, Budva, Montenegro., C. Bizer, S. Auer, and L. Miller, Eds. Vol. 183.

Gutierrez, C., Hurtado, C. A., and Vaisman, A. A. 2007. Introducing Time into RDF.
IEEE Transactions on Knowledge and Data Engineering 19, 2 (February), 207–218.

Harris, S. and Seaborne, A. 2012. SPARQL 1.1 Query Language. W3C working draft,
W3C. Jan. Available at http://www.w3.org/TR/2012/WD-sparql11-query-20120105/.

Hayes, P. 2004. RDF Semantics. W3C Recommendation, W3C. February. Available at
http://www.w3.org/TR/rdf-mt/.

Hollenbach, J., Presbrey, J., and Berners-Lee, T. 2009. Using RDF Metadata
To Enable Access Control on the Social Semantic Web. In Proceedings of the Work-
shop on Collaborative Construction, Management and Linking of Structured Knowledge
(CK2009), T. Tudorache, G. Correndo, N. Noy, H. Alani, and M. Greaves, Eds. Vol.
514. CEUR-WS.org.

Javanmardi, S., Amini, M., Jalili, R., and GanjiSaffar, Y. 2006. SBAC: A Se-
mantic Based Access Control Model. In 11th Nordic Workshop on Secure IT-systems
(NordSec’06), Linkping, Sweden.

Kagal, L. and Finin, T. 2003. A policy language for a pervasive computing environ-
ment. In Proceedings POLICY 2003. IEEE 4th International Workshop on Policies for
Distributed Systems and Networks. IEEE Comput. Soc, 63–74.

Kifer, M. and Subrahmanian, V. S. 1992. Theory of Generalized Annotated Logic
Programming and its Applications. J. Log. Program. 12, 3&4, 335–367.

http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/2012/WD-sparql11-query-20120105/
http://www.w3.org/TR/rdf-mt/

A Logic Programming approach for Access Control over RDF 17

Knechtel, M. and Stuckenschmidt, H. 2010. Query-Based Access Control for On-
tologies. In Web Reasoning and Rule Systems - Fourth International Conference, RR
2010, Bressanone/Brixen, Italy, September 22-24, 2010. Proceedings, P. Hitzler and
T. Lukasiewicz, Eds. Vol. 6333. Springer, 73–87.

Lopes, N., Polleres, A., Straccia, U., and Zimmermann, A. 2010. AnQL: SPAR-
QLing Up Annotated RDF. In Proceedings of the International Semantic Web Confer-
ence (ISWC-10). Number 6496 in LNCS. Springer-Verlag, 518–533.

Manola, F. and Miller, E. 2004. RDF Primer. W3C Recommendation, http://www.
w3.org/TR/rdf-primer/, W3C. February.

Pérez, J., Arenas, M., and Gutiérrez, C. 2009. Semantics and complexity of SPARQL.
ACM Transactions on Database Systems 34, 3, 1–45.

Ryutov, T., Kichkaylo, T., and Neches, R. 2009. Access Control Policies for Semantic
Networks. In 2009 IEEE International Symposium on Policies for Distributed Systems
and Networks. IEEE, 150–157.

Seaborne, A. and Prud’hommeaux, E. 2008. SPARQL Query Language for
RDF. W3C Recommendation, W3C. Jan. 15. Available at http://www.w3.org/TR/

rdf-sparql-query/.

Sporny, M., Inkster, T., Story, H., Harbulot, B., and Bachmann-Gmr, R. 2011.
WebID 1.0 - Web Identification and Discovery. W3C working draft, W3C. Nov. Avail-
able at http://www.w3.org/2005/Incubator/webid/spec/.

Stonebraker, M. and Wong, E. 1974. Access control in a relational data base man-
agement system by query modification. In Proceedings of the 1974 annual conference -
Volume 1. ACM ’74. ACM, New York, NY, USA, 180–186.

Straccia, U. 2009. A Minimal Deductive System for General Fuzzy RDF. In RR,
A. Polleres and T. Swift, Eds. Vol. 5837. Springer, 166–181.

Straccia, U., Lopes, N., Lukacsy, G., and Polleres, A. 2010. A General Framework
for Representing and Reasoning with Annotated Semantic Web Data. In Proceedings
of the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010, Atlanta,
Georgia, USA, July 11-15, 2010, M. Fox and D. Poole, Eds. AAAI Press.

ter Horst, H. J. 2005. Completeness, decidability and complexity of entailment for RDF
Schema and a semantic extension involving the OWL vocabulary. J. Web Sem. 3, 2-3,
79–115.

Udrea, O., Recupero, D. R., and Subrahmanian, V. S. 2010. Annotated RDF. ACM
Trans. Comput. Logic 11, 2, 1–41.

Wielemaker, J., Huang, Z., and van der Meij, L. 2008. SWI-Prolog and the Web.
Theory and Practice of Logic Programming 8, 3, 363–392.

Zimmermann, A., Lopes, N., Polleres, A., and Straccia, U. 2012. A general frame-
work for representing, reasoning and querying with annotated Semantic Web data. Web
Semantics: Science, Services and Agents on the World Wide Web 11, 0, 72 – 95.

http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/2005/Incubator/webid/spec/

	Introduction
	Preliminaries
	Annotated RDFS Data Model
	Inference Rules
	AnQL: Annotated Query Language
	Implementation

	Access Control Annotation Domain
	Entities and Annotations
	Annotation Domain
	Prolog Implementation

	Access Control Framework
	Rules for Permission Management
	Transparent Access Control

	Related Work
	Conclusions and Future Work
	References

