

Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-04-25T20:04:59Z

Some rights reserved. For more information, please see the item record link above.

Title Understanding Contributor to Developer Turnover Patterns in
OSS Projects: A Case Study of Apache Projects

Author(s) Iqbal, Aftab

Publication
Date 2014-01-19

Publication
Information

Aftab Iqbal (2014) 'Understanding Contributor to Developer
Turnover Patterns in OSS Projects: A Case Study of Apache
Projects'. ISRN Software Engineering, 2014 .

Publisher Hindawi Publishing Corporation

Link to
publisher's

version
http://dx.doi.org/10.1155/2014/535724

Item record http://www.hindawi.com/journals/isrn.software.engineering/20
14/535724/; http://hdl.handle.net/10379/4473

DOI http://dx.doi.org/http://dx.doi.org/10.1155/2014/535724

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/

Understanding Contributor to Developer Turnover Patterns in OSS Projects: A Case
Study of Apache Projects

Aftab Iqbal
INSIGHT @ NUI Galway,

Ireland
Email: aftab.iqbal@deri.org

Abstract—OSS projects are dynamic in nature. Developers
contribute to a project for a certain period of time and later
leaves the project or join other projects of high interest. Hence,
the OSS community always welcome members who can attain
the role of a developer in a project. In this paper, we investigate
contributions made by members who have attained the role of
a developer. In particular, we study the contributions made by
the members in terms of bugs reported, comments on bugs,
source-code patch submissions and their social relation with
other members of an OSS community. Further, we study the
significance of non-developers contribution and investigate if
and to what extent they play a role in the long term survival
of an OSS project. Moreover, we investigate the ratio of
contributions made by a member before and after attaining
the role of a developer. We have outlined 4 research questions
in this regard and further discuss our findings based on the
research questions by taking into account data from software
repositories of 4 different Apache projects.

Keywords-oss, mining software repositories, contributor’s
turnover, global software development, case study

I. INTRODUCTION AND MOTIVATION

Open Source Software (OSS) is a good example of global
software development. It has gained a lot of attraction from
the public and the software engineering community over
the past decade. The success of an OSS project is highly
dependent on the infrastructure provided by the community
to the developers and users in order to collaborate with
each other [19]. It is important to understand how the OSS
project and the community surrounding it evolves over time.
During the project and community evolution, the roles of the
members change significantly, depending on how much the
member wants to get involved into the community. Unlike
a project member in a software company whose role is
determined by a project manager and remains unchanged for
a long period of time until the member is promoted or leaves,
the role in an OSS project is not pre-assigned and is assumed
by a member as he/she interacts with other members. An
active and determined member usually becomes a “core
member” through the following the path: a newcomer starts
as a “reader”, reading messages on the mailing lists, going
through the wiki pages and other documentation etc., in
order to understand how the system works. Later, he starts
to discover and report bugs which does not require any

technical knowledge and becomes a “bug reporter”. After
gaining good understanding of the system and community
he may start fixing small and easy bugs which he identify
himself or are reported by other members of the system,
hence playing the role of either a “bug fixer”, “peripheral
developer” or an “active developer”. To this stage, his bug
fixes are usually accepted through patches submitted on the
mailing lists or bug tracking system. Finally, after some
important contributions are accepted by the core developers,
the member may obtain the right of committing source-code
directly to the source control repository, hence becoming the
“core member” of the project. This process is also called
“joining script” [20], also referred to as “immigration pro-
cess” [7]. The general layered structure of OSS communities
as discussed above is further depicted in Fig. 1, in which the
role closer to the center has a larger radius of influence on
the system.

Figure 1. General structure of an OSS community based on the onion
model described in [5].

The figure depicts an ideal model of role change in the
OSS community. However, not all members wants to or
become the “core member”. Some remains “passive user”

and some stops somewhere in the middle. The key point is
that OSS makes it possible for an aspiring and determined
developer to be part of the “core members” group of devel-
opers through continuous contributions. On the other hand,
the sustainability of an OSS project is related to the growth
of the developer community. The community surrounding an
OSS must regenerate itself through the contributions of their
members and continuous emergence of new “core members”
otherwise the project is going to stop or fail. An example
is the GIMP project1 [22], which started as an academic
project. When the creators left the university and decided to
work on something else, the project stopped for more than
a year until someone else decided to take over the control
and resume working on the project. Therefore, attracting or
integrating new members is an important aspect to keep the
system and the community evolve over time.

Given these precedents, the research goal for the study
presented in this paper is to understand the pattern of
contributions made by members who eventually attained
the role of a developer in an OSS project i.e., joined the
“core members” group of developers. We are interested
to investigate the key factors which led members towards
attaining the role of a developer. We follow previous research
studied who have studied the immigration process in OSS
projects but using a quantitative approach based on extensive
data mining. The contribution of this paper are manifolds:
we study the contributions made by the members in terms
of bugs reported, comments on different bugs, attachments
or source-code patch submissions to fix certain bugs and
social relation with other members on the mailing list in a
particular OSS community/project. Further, we analyze the
contributions made by members before and after attaining
the role of a developer. Moreover, we compute the ratio of
average contributions made by a developer (before attaining
the role of a developer) and compare it with the average
contributions made by other members of the project.

The rest of the paper is structured as follows: the related
work comparable to our approach will be discussed in
section II. Research questions are outlined in section III. In
section IV, the methodology we used to extract information
from different software repositories is described. Section V
presents the results based on the research questions and
finally, in section VI we conclude our work.

II. RELATED WORK

The process of joining an OSS project has been studied
by many researchers in the past. In this line, the best known
model which describes the organizational structure of an
OSS project is the “onion model” [9] (cf. Fig. 1), a visual
analogy which depicts how the members of an OSS project
are positioned within a community. The onion-like structure
represents only a static picture of the project, lacking the

1http://www.gimp.org/

time dimension which is required to study the role transfor-
mation (i.e., promotion) from being a passive user to the core
member of the project. Ye et al. complemented this short-
coming with a more theoretical identification and description
of roles [22]. According to this model, a core member is
supposed to go through all the roles, starting as a passive
user, until he/she attains the role of a core member. In this
regard, Jensen et al. also studied and modeled the process
of role migration in OSS projects [16], focusing on end-
users who eventually become core members. They identified
different paths for the joining process and concluded that the
organizational structure of studied OSS projects are highly
dynamic in nature.

Krogh et al. studied the joining and specialization process
of FreeNet project [20]. Based on the data gathered from
publicly available documents, mailing list archives and the
source control repository, they discovered that offering bug
fixes are much common among newcomers who eventually
become core members of the project. They also found that
a certain period of time, ranging from couple of weeks
to several months were required before a newcomer could
contribute to a technical discussion. There also exists few
research studies which have reported and quantified the
onion-like structure of a community for many OSS projects.
For example, Mockus et al. [17] studied the Apache httpd
server and Mozilla web browser projects and Dinh et al. [10]
studied the FreeBSD project. According to their findings,
the “core members” group is composed of small number of
members. Surrounding the “core members” group is a large
group of contributors (i.e., Active Developers, Peripheral
Developers etc.) who submit bug reports, offer bug fixes
and participate heavily in discussions on the mailing lists.

In an ethnographic study, Ducheneaut studied the Python
project in order to investigate the contribution of the mem-
bers during their role transition from being a newcomer
towards attaining the role of a core member by taking into
account data from mailing lists and source control repos-
itory [11]. He found that prior technical commitment and
good social standing in the community were strong factors in
joining the core members group of developers having write-
access to the source control repository. Bird et al. [7] used
the mailing lists and source control repository to investigate
the time required for members to be invited into the “core
members” group of an OSS project. They applied hazard
rate analysis, or survival analysis [8] to model the time-
dependent phenomena such as employment duration. They
used survival analysis to understand which factors influence
the duration and occurrence of such events and to what
degree. They modeled the duration between activities by
considering the first appearance of a member on the mailing
list to the first commit on the source control repository. One
of their findings was that prior patch submission had a strong
effect on becoming part of the “core members” group of
a project. Herraiz et al. [13] studied the GNOME project

and found two different patterns of joining the project: 1)
volunteers/contributors which follow the “onion model”, and
2) firm/organization sponsored developers which do not.
They found that hired developers gain knowledge quickly
enough to start writing code than the volunteers.

Although, these research studies were carried out in detail
on different OSS projects but they considered data only
from mailing lists and source control repositories. However,
we also take into account bug repositories and quantify the
contributions made by members in terms of: bugs reported,
comments on bugs, social relation with other members based
on comments, social relation with other members based on
email exchanges on the mailing list and patch submissions
on bug repositories. In addition to that, there is no published
work known to us which study the contributions made by a
member before and after attaining the role of a developer in
an OSS project. Therefore, we have quantified and analyzed
the average rate of contributions made by a member before
and after attaining the role of a developer which makes this
work unique in contrast to other related work which have
done so far in this area.

III. RESEARCH QUESTIONS

As mentioned earlier, the success of an OSS project is
in its long term survival which is potentially due to the
existence of a community surrounding the project. We are
particularly interested to identify the role of a community
in the long term survival of an OSS project as well as the
key factors which promotes a non-developer2 to the role of a
developer3. Further, we are interested to know if the potential
developers4 follow the onion model or if there is a sudden
integration of developers into the “core members” group of
an OSS project. In order to address these key points, we
have outlined few research questions in the following which
will be addressed using data from publicly available software
repositories of few selected Apache projects:

1) RQ-1: What is the ratio of contributions made by the
developers and non-developers to the project over the
period of time?
Previous studies [18], [17] on various OSS projects
have shown that most part of the source-code develop-
ment is carried out by the developers of those projects.
We will investigate: what are the contributions of non-
developers if the source-code development is mostly
done by the developers of those projects? In particular,
we will investigate the contributions of non-developers
in terms of reporting bugs, commenting on bugs

2In this paper we will use the term “non-developer” to refer to all those
members who do not have write-access to the source control repository.

3In this paper we will use the term “developer” to refer to all those
members who have write-access to the source control repository.

4In this paper we will use the term “potential developer” to refer to all
those members who started as a passive user and later attained the role of
a developer.

and exchanging emails. Further, we are interested to
investigate the role of non-developers in the long term
success and maturity of an OSS project.

2) RQ-2: What is the ratio of contributions made by a
potential developer before and after attaining the role
of a developer?
Attaining a higher role comes with more responsibil-
ities and commitments to the project. We will investi-
gate if a potential developer after attaining the role of
a developer contributes (except source-code modifica-
tion or bug fixing) more in contrast to contributing as a
non-developer. Does the contribution pattern changes
with the change in role of a potential developer? To be
more precise, does his/her contribution to the project
in terms of bugs reporting and interaction with the
community increases or decreases? We hypothesize
that after attaining the role of a developer, he/she will
participate actively in technical discussions on the bug
tracking systems or on the mailing lists and report bugs
effectively.

3) RQ-3: What is the average rate of contributions made
by a potential developer comparing to other members
of the project before attaining the role of a developer?
We will investigate if the average contributions made
by a potential developer are more than the average
contributions made by non-developers who were also
active during his/her time period? It has been ad-
dressed in previous studies [7] that demonstration
of technical commitment and social status with other
members will positively influence in attaining the role
of a developer. We will investigate if a potential
developer was more active (i.e., technically skilled
and higher social status) than non-developers before
attaining the role of a developer.

4) RQ-4: Do a potential developer follow onion model
in order to attain the role of a developer?
We will investigate if a potential developer follows the
onion model in order to attain the role of a developer
i.e., join the “core members” group of the project. Not
every member who is contributing to an OSS project
eventually becomes a developer. It depends on the
level of involvement of a member in an OSS project
and also on the needs to promote a non-developer to
the role of a developer. There is no static or standard
timeline for a member to join the “core members”
group of a project. The time period required to attain
the role of a developer varies from project to project
and also from member to member. Members often start
contributing to a project by participating in the mailing
list conversations to get themselves familiar with the
project before contributing source-code patches to the
project. We will study the appearance of a poten-

tial developer on different software repositories by
comparing the time-stamp value of their first activity
on these software repositories in order to validate if
he/she actually followed the onion model.

IV. DATA EXTRACTION PROCESS

In this section, we describe our data extraction method-
ology and the Apache projects selected for evaluation. We
extracted data from 4 different Apache projects as shown
in Table I. The range of data selected for each project is
different because of the difference in the starting date of
each project. The reason of choosing these Apache projects
is that the repositories of these projects are on the Web
and available to download (i.e., mailing list archives, bugs,
subversion logs etc.).

Apache Projects Date Range
Apache Ant [1] 2000 - 2010
Apache Lucene [2] 2001 - 2010
Apache Maven [3] 2003 - 2010
Apache Solr [4] 2006 - 2010

Table I
APACHE PROJECTS DATA RANGE.

Most Apache projects have at least 3 different mailing
lists: user, dev and commits, but some have more than 3
mailing lists (e.g., announcements, notifications
etc.). For our study, we downloaded only the dev mailing
list archives of each Apache project under consideration.
The reason is, software developers communicate often with
each other on the dev mailing list rather than on any other
mailing list. We developed our own scripts which were used
to extract information from mailing list archives in a similar
manner to previous research [17], [12]. For example, each
email was processed to extract information like sender name,
email address, subject, date, message-id and reference. The
reference field contains message-id(s), if the email is a
reply to previous thread(s). We used the reference field
information to built a social network correspondence and
computed social network measures [21] of all the members
of a project.

We retrieved all the bugs (related to the Apache projects
we considered for our study) which are publicly available
through the Bugzilla and JIRA Web interface5 and extracted
the required information using our custom written scripts.
For further details on the information extracted from each
email and bug, we refer the readers to [14]. We computed
the social relation correspondence among members on the
bug tracking system based on the bug comments exchanged
among themselves. Bird et al. [6] findings indicated the
detection and acceptance of source-code patches through the

5https://issues.apache.org/

mailing list but we discovered that source-code patches were
always attached to the respective bugs on the bug tracking
system rather than sending it on the mailing list. Prior
research has indicated the importance of offering bug fixing
and its acceptance as an influential factor in gaining the
developer status [11], therefore we have also analyzed how
many source-code patches were submitted by the members
on bug repositories.

In order to get information from source control repository,
we wrote our script (see [15] for details) and extracted neces-
sary information (i.e., log number, date of commit, author id,
files committed). We only considered those subversion logs
where a particular source-code file (i.e., “*.java” because
Apache projects under consideration are Java-based) was
committed. These subversion log files were further analyzed
by our script in order to identify if it fixes any bug by looking
for patterns such as, “PR:xxx”, “MNG-xxx”, “SOLR-xxx”,
“LUCENE-xxx”, and patch acceptance acknowledgements
such as, “patch provided by xxx”, “patch submitted by
xxx”. On the identification of such patterns, the bugs were
queried to retrieve source-code patches associated with those
bugs. This would help to identify source-code patches that
are accepted by the “core members” group of the project.
Further, it allows to identify members who possess strong
technical skills required for attaining the role of a developer
in the project. Table II gives an overview on the raw data
sources we extracted from different software repositories
of the selected Apache projects based on the methodology
described.

Attachments Bugs Commits Emails
Apache Ant 1,345 5,480 6,025 84,737
Apache Lucene 2,865 3,116 5,790 59,616
Apache Maven 1,169 3,902 8,815 87,611
Apache Solr 2,146 2,528 4,288 25,173

Table II
DATASET OVERVIEW.

The values for Apache Ant shows that there were 1,345
source-code patches found for a total of 5,480 bugs re-
ported on the bug tracking system. 6,025 subversion logs
were extracted from the source control repository where
source-code files (i.e., *.java) were committed and 84,737
emails were extracted from the Apache Ant mailing list
archives between year 2000 - 2010.

V. EMPIRICAL ANALYSIS

Before we address each of the research questions in detail,
we present a high level overview on the development activity
of each Apache project under consideration over the period
of time in Fig. 2. This would give an insight into how
much contributions were made each year to a project and
the peak development years of a project. For each Apache
project under consideration, we computed the number of

contributions with respect to the number of people who made
those contributions. For example, we computed the number
of distinct bugs reported each year along with the number
of distinct reporters who submitted those bug reports (cf.
Fig. 2). This would make it easier to answer simple questions
like: how many bugs were reported and how many members
were involved in the bug reporting process during the 2nd
year of a project?

 10

 100

 1000

 10000

 100000

1st Year

2nd Year

3rd Year

4th Year

5th Year

6th Year

7th Year

8th Year

9th Year

10th Year

C
ou

nt
s

Year

Apache ANT

Bugs
Reporters

Comments
Commentors
Attachments

Attachers
Emails
People

 10

 100

 1000

 10000

 100000

1st Year

2nd Year

3rd Year

4th Year

5th Year

6th Year

7th Year

8th Year

9th Year

C
ou

nt
s

Year

Apache LUCENE

Bugs
Reporters

Comments
Commentors
Attachments

Attachers
Emails
People

 1

 10

 100

 1000

 10000

 100000

1st Year

2nd Year

3rd Year

4th Year

5th Year

6th Year

7th Year

8th Year

C
ou

nt
s

Year

Apache MAVEN

Bugs
Reporters

Comments
Commentors
Attachments

Attachers
Emails
People

 10

 100

 1000

 10000

 100000

1st Year

2nd Year

3rd Year

4th Year

5th Year

C
ou

nt
s

Year

Apache SOLR

Bugs
Reporters

Comments
Commentors
Attachments

Attachers
Emails
People

Figure 2. Development activity of Apache projects over the period of
time.

Preliminaries: Let C be the total number of members
(i.e., developers, non-developers etc.) who worked on the
project:

C = {c1, c2, · · · , cn}

Let Y be the total number of years of a project under
consideration:

Y = {y1, y2, · · · , yn}

where y1 is considered to be the first year of the project,
y2 is considered to be the second year of the project and
so on. Let C̀ be the set of members (i.e., developers, non-
developers etc.) who were active in a time period y:

C̀ = {c1, c2, · · · , cn}, C̀ ⊆ C

and Immig be the immigrants (i.e., potential developers)
who started as contributors and later becomes the developers
of the project. We classified only those members as immi-
grants/potential developers who had an activity in the project
(i.e., #bugs reported, #bugs commented, #patches submitted
or #emails sent) at-least 4 months prior to their first commit
on the source control repository.

Immig = {Immig1, Immig2, · · · , Immign},
Immig ⊆ Dy ⊆ C

Let Dy be the set of developers who have made commits
before and during time period y such that Dy ⊆ C. Let the
total number of bugs reported, commented and emails sent
by a set of members in a time period y is represented as:

Contributionbugs(C, y)

Contributioncomments(C, y)

Contributionemails(C, y)

whereas the number of bugs reported, commented and
emails sent by the developers in a given period of time y is
represented as:

Contributionbugs(Dy, y)

Contributioncomments(Dy, y)

Contributionemails(Dy, y)

respectively. Let d be a single developer and
commitDate(d) return the first commit date of a
developer. The yearly average contribution of a member
before and after attaining the role of a developer is
represented as:

Contributionbefore(d, commitDate(d))

Contributionafter(d, commitDate(d))

and the total number of bugs reported, commented and
emails sent by an immigrant before becoming a developer
is represented as:

Contributionbugs(Immig, commitDate(Immig))

Contributioncomments(Immig, commitDate(Immig))

Contributionemails(Immig, commitDate(Immig))

RQ-1: What is the ratio of contributions made by the
developers and non-developers to the project over the period
of time?

In order to compute the contributions, we need to dis-
tinguish between the developers and non-developers of the
project. As each subversion log has a time stamp associated
to it, we queried all subversion logs from the start-date
of the project till the last commit date of the year under
consideration. Based on this, we get a list of all developers
IDs who have contributed to the source control repository
till that particular year. For each developer ID, we computed
the contributions (i.e. bugs reported, comments on bugs,
emails etc.) made to the project on yearly basis and add
up the contributions made by all the developers for each
year. Similarly, we computed the contributions made by non-
developers on yearly basis and add up all their contributions
for each year. Later, we plotted the contributions made by
the developers and non-developers for each year in the form
of a chart which is shown in Fig. 3. Fig. 3 shows the
comparison of contributions made by the developers and
non-developers of each Apache project under consideration.
Further, we computed the average rate of contributions made
by the developers and non-developers as well as the average
number of developers and non-developers who made those
contributions per year, which is shown in Table III. For
example, the number of bugs reported by the non-developers
in a given period of time y is computed as:

Contributionbugs(C/Dy, y)

and the average number of bugs reported by the develop-
ers and non-developers is computed as follows:

∑
y∈Y

Contributionbugs(Dy, y)

|y|
,

∑
y∈Y

Contributionbugs(C/Dy, y)

|y|

Lets assume that the non-developers who were active in a
certain period of time is calculated by nonDev(C̀/Dy,y),
the average participation ratio of developers and non-
developers is computed as follows:

∑
y∈Y

Dy

|y|
,

∑
y∈Y

nonDev(C̀/Dy, y)

|y|

The results in Table III show that non-developers are
highly involved (i.e., contributing more than the developers)
in reporting bugs and participating in discussions on the
mailing list. One potential reason for this is the existence of
a huge community surrounding these Apache projects. Given
that discussing/commenting on a bug report requires tech-
nical knowledge about the project which is why developers
appear to be more active in commenting on the bug reports
than non-developers. It is quite obvious from Table III (also
see Fig. 3) that non-developers play a significant role in
the projects under consideration and hence it is one of the

Variable Contributions Participants
Dev Non-Dev Dev Non-Dev

Apache Ant
bugs reported 29.70 509.30 6.30 377.40
bug comments 681.50 416.01 11.30 248.90
emails 4,773.91 5,628.00 14.54 284.91

Apache Lucene
bugs reported 141.11 156.77 8.66 91.33
bug comments 507.11 241.33 10.77 95.33
emails 3,547.00 5,745.66 13.66 173.22

Apache Maven
bugs reported 204.87 268.25 11.00 165.00
bug comments 569.28 334.28 13.85 195.14
emails 4,328.37 9,505.75 13.37 260.87

Apache Solr
bugs reported 201.10 265.60 10.20 116.00
bug comments 819.03 432.80 11.00 166.60
emails 1,808.25 6,047.75 9.00 112.50

Table III
AVERAGE RATE OF CONTRIBUTIONS MADE BY DEVELOPERS AND

NON-DEVELOPERS.

major factor in the long term survival, success and maturity
of these projects over the period of time.

The high ratio of non-developers involvement in the
project (cf. Fig. 3 and Table III) allows the core members
to select or vote for the potential developers to be invited to
the “core members” group of the project.

RQ-2: What is the ratio of contributions made by a
potential developer before and after attaining the role of a
developer?

We are only interested in those developers who did not
start contributing directly to the project but instead follows
the onion model (cf. Fig. 1). In order to select those
developers, we retrieved all developers from subversion logs.
Later for each developer, we compared his first commit date
on the project to his first appearance on any of the project
repositories (i.e., first bug reporting date, bug comment date,
attachment or email date) in order to compute the number
of days or months before he started to contribute as a
developer. Although, there is no fixed or standard timeline
for attaining the role of a developer in the project, we
considered only those developers who had an activity (bug
report, bug comment, attachment or email) on the project
at-least 4 months prior to their first commit on the source
control repository of the project.

For each of those selected developers, we queried the
contributions made to the project before and after the first
commit date of each developer. As the time period of attain-
ing the role of a developer is different for each developer, we
computed the average yearly rate of contributions made by a
developer before and after attaining the role of a developer.
We do not show each individual’s contribution to the project
due to the privacy issues, hence we have summarized the

 1

 10

 100

 1000

 10000

 100000

1st Year

2nd Year

3rd Year

4th Year

5th Year

6th Year

7th Year

8th Year

9th Year

10th Year

C
ou

nt
s

Year

Apache ANT

Developer(Bugs Reported)
Non-Developer(Bugs Reported)

Developer(Bug Comments)
Non-Developer(Bug Comments)

Developer(Emails)
Non-Developer(Emails)

 1

 10

 100

 1000

 10000

 100000

1st Year

2nd Year

3rd Year

4th Year

5th Year

6th Year

7th Year

8th Year

9th Year

C
ou

nt
s

Year

Apache LUCENE

Developer(Bugs Reported)
Non-Developer(Bugs Reported)

Developer(Bug Comments)
Non-Developer(Bug Comments)

Developer(Emails)
Non-Developer(Emails)

 1

 10

 100

 1000

 10000

 100000

1st Year

2nd Year

3rd Year

4th Year

5th Year

6th Year

7th Year

8th Year

C
ou

nt
s

Year

Apache MAVEN

Developer(Bugs Reported)
Non-Developer(Bugs Reported)

Developer(Bug Comments)
Non-Developer(Bug Comments)

Developer(Emails)
Non-Developer(Emails)

 10

 100

 1000

 10000

1st Year

2nd Year

3rd Year

4th Year

5th Year

C
ou

nt
s

Year

Apache SOLR

Developer(Bugs Reported)
Non-Developer(Bugs Reported)

Developer(Bug Comments)
Non-Developer(Bug Comments)

Developer(Emails)
Non-Developer(Emails)

Figure 3. Contributions made by developers and non-developers over the
period of time.

aggregated results of each project as shown in Table IV.
All the variables (except n) used in our study represents
the contribution of potential developers on yearly basis. For
each Apache project, n represents the number of potential
developers who have attained the role of a developer. The
average yearly rate of contributions by a potential developer
before and after attaining the role of a developer is calculated
as follows:

∑
d∈Immig

Contributionbefore(d, commitDate(d))

|d|
,

∑
d∈Immig

Contributionafter(d, commitDate(d))

|d|

Variable Mean St. Dev
Before After Before After

Apache Ant (n = 13)
bugs reported 17.23 2.35 17.98 3.65
bug comments 41.44 39.02 37.66 34.83
bug social relation 44.65 31.57 51.41 23.34
emails 230.49 280.34 259 224.52
email social relation 30.5 20.31 30.35 13.55

Apache Lucene (n = 22)
bugs reported 14.12 23.73 9.12 32.74
bug comments 24.84 73.21 18.18 91.85
bug social relation 33.57 34.67 23.75 30.02
emails 130 398.71 124.87 508.02
email social relation 19.59 21.69 16.53 15.32

Apache Maven (n = 21)
bugs reported 28.40 27.82 53.27 79.49
bug comments 16.42 27.86 12.07 58.68
bug social relation 27.16 24.08 21.43 30.85
emails 158.41 185.55 218.27 174.89
email social relation 18.33 23.34 18.31 15.73

Apache Solr (n = 13)
bugs reported 24.77 23.75 30.38 17.50
bug comments 44.72 84.77 41.35 86.25
bug social relation 68.04 80.46 52.18 52.39
emails 156.01 313.82 227.57 333.19
email social relation 14.72 38.47 7.85 33.04

Table IV
YEARLY AVERAGE CONTRIBUTION RATIO OF A POTENTIAL DEVELOPER

BEFORE AND AFTER ATTAINING THE ROLE OF A DEVELOPER.

Based on Table IV, we find that the bugs reporting pattern
doesn’t change much before and after attaining the role of
a developer in Apache Maven and Apache Solr projects.
However, in Apache Ant it decreased tremendously after
attaining the role of a developer. As shown in Fig. 3, there
are only few bugs reported by the developers in contrast
to non-developers in the Apache Ant project which is also
reflected by the value of bugs_reported variable for the
Apache Ant project. Members after joining the “core mem-
bers” group participate more often in technical discussions
on the bug tracking system which is reflected by the value
of bug_comments variable. However, an increase in the
participation on technical discussions did not increase the
social relation of the developers on the bug tracking system
(i.e., bug_social_relation) in the case of Apache Ant
and Apache Maven project. One reason could be that after
attaining the role of a developer, they focused only on certain
modules of a project and hence involved in discussions
on bugs relevant to those modules with other developers
of the project. There is also a tremendous increase in the
number of emails sent by the members after attaining the
role of a developer which eventually increases the value of
email_social_relation variable.

Based on the Apache projects under consideration, we
found that members after attaining the role of a developer
tend to participate actively in technical discussions either on
the mailing list or bug tracking system which also increases
their social relation networks except the case of Apache Ant
project. The bugs reporting behavior of these members vary
in our studied Apache projects and hence it is difficult to
say if they report more bugs after attaining the role of a
developer.

RQ-3: What is the average rate of contributions made
by a potential developer comparing to other members of the
project before attaining the role of a developer?

For each potential developer, we took the first time-stamp
value where he first appears on the project and the second
time-stamp value when he actually made the first commit
to the source control repository of the project. We extracted
the contributions (i.e., bugs reported, comments, emails etc.)
made by a potential developer between those time-stamp
values. Using the same time-stamp values, we computed
the contributions made by other members who were also
active during that specific time period. Later, we divided
the contributions of a potential developer by the average
contributions of all other members in order to determine the
average rate of contributions made by a potential developer
comparing to other members of the project. We do not show
each individual’s contribution rate due to the privacy issues,
hence we have summarized the aggregated results of each
project which is shown in Table V. For example, the average
rate of bugs reported by an immigrant comparing to other
members who were active during the same time-stamp is
calculated as follows:

∑
Immig∈Immig

Contributionbugs(Immig, commitDate(Immig))∑
c∈C

Contributionbugs(c,commitDate(Immig))

|c|

The results in Table V can be understand as follows: the
average rate of reporting bugs by a potential developer of
Apache Lucene project is 4.53 times the average rate of
reporting bugs by all other members who were active during
that time period. Although, the average rate of contributions
made by potential developers varies in all the projects under
consideration but it is quite obvious from each variable value
that the contributions made by potential developers are more
than the average contributions of all other members. Hence,
we can say that they were the most active contributors (i.e.,
technically skilled and higher social status) before attaining
the developer status in the project.

RQ-4: Do a potential developer follow onion model in
order to attain the role of a developer?

For each potential developer, we computed the time-stamp
value between his/her first commit date to his/her first ac-
tivity on the different software repositories in terms of days.

Variable Mean St. Dev
Apache Ant (n = 13)

bugs reported 11.15 13.25
bug comments 10.43 8.35
bug social relation 8.42 6.65
emails 19.89 16.25
email social relation 10.97 8.42

Apache Lucene (n = 22)
bugs reported 4.53 3.09
bug comments 4.08 2.89
bug social relation 3.18 1.73
emails 3.91 3.27
email social relation 6.23 4.42

Apache Maven (n = 21)
bugs reported 4.05 3.68
bug comments 2.36 2.01
bug social relation 2.44 1.98
emails 4.05 5.76
email social relation 4.31 3.34

Apache Solr (n = 13)
bugs reported 4.56 5.77
bug comments 4.4 4.72
bug social relation 2.52 2.15
emails 1.05 1.07
email social relation 2.71 1.95

Table V
AVERAGE CONTRIBUTION RATE OF A POTENTIAL DEVELOPER

COMPARING TO OTHER MEMBERS OF THE PROJECT BEFORE ATTAINING
THE ROLE OF A DEVELOPER.

Table VI presents the appearance of a potential developer
in terms of average number of days on different software
repositories prior to attaining the role of a developer. The
result shows that all the potential developers started from the
mailing list (cf. Table VI) because the email activity is the
oldest for all Apache projects under consideration followed
by the bugs reporting/commenting and the latest activity
before attaining the role of a developer was the source-code
patch submissions (i.e., bugs fixing). The results shown in
Table VI closely match to the onion model (see Fig. 1) where
a member starts as a reader followed by reporting bugs and
later fixing bugs before attaining the role of a developer.

Let ActivityDate(Immig,ml) returns the number
of days between the first commit date of an immigrant (i.e.,
potential developer) on the source control repository to his
first activity date on the mailing list of a project. The average
number of days for an immigrant to appear on a mailing list
prior to his/her first commit date is calculated as:∑

Immig∈Immig

ActivityDate(Immig,ml)

|Immig|

Apache Projects Patch Submission
(#days)

Bugs Reported
(#days)

Emails
(#days)

Apache Ant 544.15 553.84 706.53
Apache Lucene 457.41 526.32 706.22
Apache Maven 385.00 396.31 709.71
Apache Solr 269.30 237.92 452.46

Table VI
APPEARANCE OF A POTENTIAL DEVELOPER ON DIFFERENT SOFTWARE

REPOSITORIES PRIOR TO ATTAINING THE ROLE OF A DEVELOPER.

The results (Table VI) also shows that it took almost
2 years for a potential developer of Apache Ant, Apache
Lucene and Apache Maven projects to attain the role of a
developer. However, we can not say that it is the standard
time as the time varies dramatically from project to project as
it can be seen in the results of Apache Solr project comparing
to other Apache projects under consideration.

VI. CONCLUSION

In this paper, we have investigated in detail the patterns
of contributions made by those members who have attained
the role of a developer in the project. First, we investigated
the significant role played by non-developers in the long
term survival of an OSS project and observed that non-
developers who do not have write-access to the source
control repository participate actively in reporting bugs and
email discussions, thus contributing to the maturity of an
OSS project. Our investigation based on the contribution of
potential developers before and after attaining the role of a
developer showed that after attaining a higher position in the
community, developers tend to contribute more efficiently
than non-developers of the project by actively participating
in technical discussions along with fixing bugs. Moreover,
we observed that the members who attained the role of a
developer had more contributions in contrast to the average
number of contributions made by other members of the
project who were active during his/her time period. This
makes it obvious that one of the important factor in order
to attain the role of a developer is the demonstration of
technical skills and commitment to the project in an efficient
manner.

REFERENCES

[1] http://ant.apache.org/.

[2] http://lucene.apache.org/.

[3] http://maven.apache.org/.

[4] http://lucene.apache.org/solr/.

[5] M. Antikainen, T. Aaltonen, and J. Visnen. The role of trust
in oss communities case linux kernel community. 234:223–
228, 2007.

[6] C. Bird, A. Gourley, and P. Devanbu. Detecting patch
submission and acceptance in oss projects. In Proceedings
of the Fourth International Workshop on Mining Software
Repositories, MSR ’07, pages 26–, Washington, DC, USA,
2007. IEEE Computer Society.

[7] C. Bird, A. Gourley, P. Devanbu, A. Swaminathan, and
G. Hsu. Open borders? immigration in open source projects.
In Proceedings of the Fourth International Workshop on Min-
ing Software Repositories, MSR ’07, pages 6–, Washington,
DC, USA, 2007. IEEE Computer Society.

[8] D. Cox and D. Oakes. Analysis of survival data: Monographs
on Statistics and Applied Probability. Chapman and Hall,
1984.

[9] K. Crowston and J. Howison. The social structure of free
and open source software development. In Proceedings of
the International Conference on Information Systems, Seattle,
WA, USA, 2003.

[10] T. Dinh-Trong and J. M. Bieman. Open source software
development: A case study of freebsd. In Proceedings of the
10th International Symposium on Software Metrics, pages 96–
105, Washington, DC, USA, 2004. IEEE Computer Society.

[11] N. Ducheneaut. Socialization in an open source software
community: A socio-technical analysis. Computer Supported
Cooperated Work, 14:323–368, August 2005.

[12] M. Fischer, M. Pinzger, and H. Gall. Populating a release his-
tory database from version control and bug tracking systems.
In Proceedings of the International Conference on Software
Maintenance, ICSM ’03, pages 23–, Washington, DC, USA,
2003. IEEE Computer Society.

[13] I. Herraiz, G. Robles, J. J. Amor, T. Romera, and J. M. G.
Barahona. The processes of joining in global distributed
software projects. In GSD 06: Proceedings of the 2006
international workshop on Global Software Development for
the practitioner, pages 27–33, 2006.

[14] A. Iqbal and M. Hausenblas. Interlinking developer identities
within and across open source projects: The linked data
approach. ISRN Software Engineering, 2013.

[15] A. Iqbal, O. Ureche, M. Hausenblas, and G. Tummarello.
LD2SD: Linked Data Driven Software Development. In
21st International Conference on Software Engineering and
Knowledge Engineering (SEKE 09), Boston, USA, 2009.

[16] C. Jensen and W. Scacchi. Modelling recruitment and role
migration process in oosd projects. In Proceedings of the 6th
International Workshop on Software Process Simulation and
Modeling, St. Louis, 2005.

[17] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two case
studies of open source software development: Apache and
mozilla. ACM Trans. Softw. Eng. Methodol., 11:309–346,
July 2002.

[18] W. Scacchi, J. Feller, B. Fitzgerald, S. A. Hissam, and
K. Lakhani. Understanding free/open source software de-
velopment processes. Software Process: Improvement and
Practice, 11(2):95–105, 2006.

[19] B. Shibuya and T. Tamai. Understanding the process of par-
ticipating in open source communities. In Proceedings of the
2009 ICSE Workshop on Emerging Trends in Free/Libre/Open
Source Software Research and Development, FLOSS ’09,
pages 1–6, Washington, DC, USA, 2009. IEEE Computer
Society.

[20] G. von Krogh, S. Spaeth, and K. R. Lakhani. Community,
joining, and specialization in open source software innova-
tion: a case study. Research Policy, 32(7):1217–1241, July
2003.

[21] S. Wasserman and K. Faust. Social Network Analysis: Meth-
ods and Applications. Cambridge University Press, 1994.

[22] Y. Ye, K. Nakakoji, Y. Yamamoto, and K. Kishida. The
co-evolution of systems and communities in Free and Open
Source Software Development. In Free/Open Source Software
Development, pages 59–82. Idea Group Publishing, Hershey,
Pennsylvania, USA, 2004.

