

Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-05-12T06:02:49Z

Some rights reserved. For more information, please see the item record link above.

Title Building a Semantic Web Search Engine: Challenges and
Solutions

Author(s) Harth, Andreas; Hogan, Aidan; Umbrich, Jürgen; Decker,
Stefan

Publication
Date 2008

Publication
Information

Andreas Harth, Aidan Hogan, Jürgen Umbrich, Stefan Decker
"Building a Semantic Web Search Engine: Challenges and
Solutions", Proceedings of the 3rd XTech Conference, 2008,
2008.

Item record http://hdl.handle.net/10379/440

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/

Building a Semantic
Web Search Engine:
Challenges and
Solutions
Andreas Harth, Aidan Hogan, Jürgen Umbrich, Stefan Decker

Digital Enterprise Research Institute (DERI)

National University of Ireland, Galway

Abstract
Current web search engines return links to documents for user-specified
keywords queries. Users have to then manually trawl through lists of links and
glean the required information from documents. In contrast, semantic search
engines allow more expressive queries over information integrated from multiple
sources, and return specific information about entities, for example people,
locations, news items. An entity-centric data model furthermore permits
powerful query and browsing techniques. In this paper, we report on our
experiences in collecting and integrating Web data from millions of sources, and
describe both application-developer query services and end-user navigation
services offered by SWSE, the Semantic Web Search Engine.

Introduction
Traditional Web search engines such as Google, Yahoo, Live Search, and Ask
have been designed and optimised for locating documents online, and they
perform well at returning documents relevant to specified keywords. The
interaction model is simple yet effective: users specify keywords in an input field

and the search engine returns links to the top ten Web documents matching the
keywords.

The document-centric model, however, is ill-suited for more complex
information foraging tasks which require structured information integrated from
a multitude of sources. The entity-centric model presented here allows for
describing entities such as people, locations, or news items, rather than just
documents, and allows application developers to write software programs that
leverage the underlying dataset with unprecedented ease and scale.

The utility of any search engine depends on two parts: the quality of the system,
and content, which in our case is provided by a large number of contributors
(personal and corporate web sites, for example). Importantly, content suppliers
have to agree on a social contract (as anywhere on the Internet) on how to
provide and publish data. One goal of this paper is to report on how RFCs, W3C
recommendations, and the following of best practices facilitate data reuse.

In addition to data provisioning, there are a number of challenges in
implementing a Semantic Web search engine:

• The architecture of a semantic search engine must scale to the Web.

• Dealing with data rather than documents requires a different indexing approach
compared to traditional information retrieval systems.

• Data from the Web is of varying quality, which poses challenges for data
cleansing and entity consolidation.

• The schema of the data is not known a priori, which makes building user
interfaces difficult.

In the following we give an overview of the architecture of SWSE, a search engine
that scales to billions of RDF statements; and discuss the necessary adaptations
to traditional search engine components, mainly targeting the data acquisition
and processing phases. We describe both end-user navigation services and
application-developer query services offered by SWSE.

System Overview and
Architecture
Here we give an overview of the SWSE architecture with particular focus on the
data processing pipeline which involves the following steps:

 The crawler gathers data from the Web by traversing the link graph and

transforms metadata from HTML documents (e.g. RDFa, GRDDL, or
Microformats) and metadata embedded in various file formats (e.g. PDF,
PNG, MS Office) into RDF. The crawler also extracts RDF from RSS 2. 0
and Atom feeds.

 Reasoning is implemented to improve the quality of data, create new

relationships between entities in the data, and perhaps most importantly,
to merge data from multiple sources and schemas into a consolidated
dataset. Reasoning is used by exploiting OWL [SWM04] and RDFS
descriptions of a given domain to infer new knowledge about instances in
that domain.

 SWSE supports SPARQL [PS08], a W3C Recommendation for an RDF

query language. The index structure comprises a complete index on
quadruples [HD05] with keyword search functionality based on a standard
inverted index. The index and query processing components can be
distributed across a number of machines [HUHD07].

The process of collecting and preparing data to allow for the provisioning of
query and navigation services is illustrated in Figure 1.

Crawl ing Reasoni ng Indexing

Query
Processi ng

User
Interface

Index Index Index

swse_arch.png

Figure 1. SWSE architecture and data flow overview.

API and User Interface
The current index of SWSE contains data collected from millions of sources. As a
running example, we use data from the XTech website and the website of Dan
Brickley, the creator of FOAF, to illustrate how SWSE collects and integrates data
and provides access to the dataset for both human users and software agents.

Software developers can write programs or widgets that query the SWSE API and
reuse or simply render the resulting data. For example, the query in Figure 2
returns the name, nickname and homepage (if available) of people that Dan
Brickley knows. The result of the query is shown in Table 1. Please note that
results can be returned in JSON format to facilitate processing in JavaScript
applications.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT DISTINCT ?name ?nick ?homepage

WHERE {

 <http://danbri.org/foaf.rdf#danbri> foaf:knows ?person .

 ?person foaf:name ?name .

 OPTIONAL { ?person foaf:nick ?nick . }

 OPTIONAL { ?person foaf:homepage ?homepage . }

}

Figure 2: SPARQL query for name, nickname, and homepage of acquaintances
of Dan Brickley.

name nick homepage

Tim Berners-Lee http://www.w3.org/People/Berners-Lee/

Jim Ley JibberJim

Edd Dumbill Edd http://heddley.com/edd/

Martin Poulter http://www.weird.co.uk/martin/

Libby Miller

Amy van der Hiel

Joe Brickley

Eric Miller http://purl.org/net/eric/

Jan Grant

Aaron Swartz

Dave Beckett

Art Barstow

Dan Connolly DanCon

Damian Steer damey

Ludovic Hirlimann Softkid http://perso.hirlimann.net/~ludo/

Tatiana de la O acracia http://delcorp.org/abbadingo

Dean Jackson http://www.grorg.org/dean/

Mr Benn http://www.mrbenn.co.uk/
Table 1: Name, nickname, and homepage of acquaintances of Dan Brickley.

A user interface for RDF data has to balance two opposing requirements: being
easy to use and allowing for complex query operations. Additionally, the user
interface should be as schema-independent as possible; on the Web we might
come across thousands of predicates and classes and we are not able to supply
displaying templates for all of them. A domain-independent UI has thus to
operate on a best-effort basis and display data even if the schema is not known a
priori. For a state-of-the-art survey of semantic search interfaces see [HOH07].

The user interface currently supports three types of queries: 1) keyword search, 2)
restriction by type, 3) entity browsing. Keyword search can be done without
knowledge of the schema. Once users have narrowed in on a set of keyword-
matching entities, they can restrict the result set further by specifying the type of
result they require (e.g. Person). In the next step, users can view details about a
selected entity and can navigate along links to associated entities. For an example
of an entity view see Figure 3 which displays the information about Edd Dumbill
available in the system.

edd.png

Figure 3: Entity view of Edd Dumbill, displaying data integrated from four
different sources and augmented with reasoning results.

While conducting user experiments we found that the concept of directionality of
connections between entities is difficult to communicate to users; hence, we use
reasoning (in particular owl:inverseOf and owl:SymmetricProperty) to
materialise links in both directions.

Data Acquisition and Pre-
processing
In this section we explain how SWSE processes and transforms data from
different formats to RDF. We use a modified version of the crawling framework
MultiCrawler [HUD06].

In the first step, the web crawler downloads the content from a seed set of URIs
and extracts links from HTML and RDF documents for the next crawling round.
A link in an RDF document is described using the property rdfs:seeAlso.
Figure 4 shows an example of an RDF link, referring from Dan Brickley's FOAF
URI to his social bookmark RSS feed.

<foaf:Person rdf:about=http://danbri.org/foaf.rdf#danbri>

 <rdfs:seeAlso rdf:resource=”http://del.icio.us/rss/danbri”>

 ….

</foaf:Person>

Figure 4: rdfs:seeAlso link from the foaf:Person entity to his social bookmark
feed

Apart from parsing links from common HTML links (a[@href] and
img[@src]) we also extract URIs from eleven different HTML tags (e.g.
frame[@src], link[@href] or object[@src]).

Autodetection links in the html\head tag give authors the possibility to support
data aggregators in discovering URIs to their data (see Figure 5).

<head>

 <link rel="meta" type="application/rdf+xml" title="FOAF"

 href="http://danbri.org/foaf.rdf" />

 <link rel="alternate" type="application/rss+xml"

 title="RSS1.0"

 href="http://feeds.feedburner.com/danbri_blog?format=xml"/>

Figure 5: Autodection link in the html\head element to the FOAF file and an RSS
feed.

To supply the reasoning process with OWL and RDFS descriptions, the crawler
downloads the data pointed to by namespace URIs. The list of namespace URIs
are extracted from either head[@profile] HTML attributes (e.g. first line in
Figure 8) or from the RDF data.

Once the crawler has fetched the data from the Web, we process the content and
extract embedded information, such as RDFa and Microformats, and convert it
into RDF. Figure 6 shows an example of embedded RDFa in Dan Brickley’s
HTML homepage and Figure 7 shows the related RDF output after the extraction
process. An example of the use of Microformats in HTML can be found at the
XTech conference schedule page (Figure 8 shows a code snippet).

http://del.icio.us/rss/danbri
http://danbri.org/foaf.rdf#danbri

 <img src="danbri-txt.jpg" alt="danbri" style="float:
center" property="foaf:sha1"

content="58d174f20c039289544b2364c5c21295df2e4a2b"/>

Figure 6: Embedding RDFa in HTML

<foaf:Document rdf:about=”http://danbri.org/”>

 <foaf:depiction>

 <foaf:Image rdf:about=”http://danbri.org/danbri-
txt.jpg”>

 <foaf:sha1>58d174f20c039289544b2364c5c21295df2e4a2b</fo
af:sha1>

 …

 </foaf:Image>

 </foaf:depiction>

 …

</foaf:document>

Figure 7: RDF output using http://www.w3.org/2007/08/pyRdfa/

<head profile="http://www.w3.org/2002/12/cal/hcal
http://www.w3.org/2006/03/hcard">

...

 <div class="slot topic23" id="slot419"><div
class="slot_detail vevent">

 <abbr class="dtstart" title="20080509T0900"></abbr>

 <abbr class="dtend" title="20080509T0945"></abbr>

 Building a Semantic Web Search Engine: Challenges and
Solutions

 Aidan Hogan (DERI Galway)

 </div>

Figure 8: Use of Microformats in the schedule page of the XTech conference.

The SWSE crawler also supports the transformation of iCal documents into RDF.
For other file formats we use various Python or C libraries to extract and convert
the embedded meta information into RDF. For example WORD, EXCEL or PDF
documents and various audio, video or image formats contain information about
the author, creation time, a keyword/tag list, content type, and encoding. The
crawler is also able to exploit data from databases which has been exported to the
Web via D2R1 and Triplify2, taking into account sitemap extensions3. For a more
comprehensive sitemap specification see [CDSTD08].

In the last pre-processing step we cleanse the RDF output and fix character
encoding issues, check for valid URIs and canonicalise them (e.g. adding trailing
“/”), or remove XML tags and JavaScript code from the textual content of the
data.

Reasoning
We now examine the results of performing reasoning on the data produced by the
above data acquisition and pre-processing.

We currently implement a scalable reasoning system which can operate over
large volumes of data. The reasoning engine is equipped to support a significant
subset of OWL. For the purposes of this paper, we will demonstrate the precise
advantages of reasoning by examining data before and after reasoning; for clarity,
we examine only the most useful and most recognisable reasoning entailments.
Firstly, we examine a possible equality reasoning scenario [HHD07]; secondly,
we detail the benefit of generic reasoning in creating new knowledge and

1 http://www4.wiwiss.fu-berlin.de/bizer/d2rmap/D2Rmap.htm

2 http://triplify.org/

3 http://sitemap.org/

http://sitemap.org/
http://triplify.org/
http://www4.wiwiss.fu-berlin.de/bizer/d2rmap/D2Rmap.htm

materialising new relations between entities.

On the Web, it is quite common for different sources to contribute knowledge
about the same entity but under different identifiers. To illustrate, prior to
reasoning on the running example dataset, there were ten entities with value
“Dan Brickley” for foaf:name: three of these were URIs (see Table 2) and seven

were blank node identifiers . These entities were described in different sources
such as Dan Brickleys FOAF file, LiveJournal, MyOpera etc. Pre-reasoning, each
entity is treated within the SWSE architecture as a separate result although we
know in this case that it is likely the same person is being described.

<http://danbri.org/foaf.rdf#danbri>

<http://danbri.org/foaf#danbri>

<http://my.opera.com/danbri/xml/foaf#me>
Table 2: List of three URIs used to identify Dan Brickley

Reasoning performs matching on properties defined in their ontology as one
which uniquely describes an entity; such properties are said to be a member of
the owl:InverseFunctionalProperty class. Figure 8 lists three equivalent
entities, referring to Dan Brickley, found in different sources, which will be
consolidated through the inverse functional properties foaf:mbox_sha1sum
and foaf:homepage

<foaf:Person rdf:about=“http://danbri.org/foaf.rdf#danbri
“>

<foaf:mbox_sha1sum>6e80d02de4cb3376605a34976e31188bb16180d
0</foaf:mbox:sha1sum>

<foaf:homepage rdf:resource=”http://danbri.org/” />

...

</foaf:Person>

<foaf:Person>

<foaf:mbox_sha1sum>6e80d02de4cb3376605a34976e31188bb16180d
0</foaf:mbox:sha1sum>

...

</foaf:Person>

<foaf:Person>

<foaf:homepage rdf:resource=”http://danbri.org/” />

...

</foaf:Person>

Figure 8: Three equivalent entities describing Dan Brickley, including two
anonymous entities.

After reasoning, the running example contains three entities with foaf:name
“Dan Brickley”. Two of the entities are in fact the same person, but no match was
found on values for inverse-functional properties. The other entity is a different
“Dan Brickley”, described by his namesake (the protagonist of this running
example) in his FOAF file.

Thus far, we have only examined a subset of reasoning useful for consolidating
entity descriptions derived from multiple sources. Reasoning can also be used to
enrich a knowledge-base with inferred statements which would otherwise not be
available for servicing queries. We will now motivate reasoning by illustrating
some inferencing results based on the entailment of property definitions.

In OWL ontologies, properties are often described in terms of other properties.
For example, properties may extend other properties, be defined as symmetric or
have an inverse property defined. Statements which use such properties to
describe an entity can then be used to infer more statements.

For example, the SWSE user interface ideally requires an rdfs:label value for
each entity, the value of which is a human readable name or summary of the
entity. However, many ontologies describe their own specific properties with
similar semantics as the rdfs:label, examples include foaf:name,
rss:title, dc:title, etc. Most ontologies define such properties as extending
rdfs:label using the owl:subPropertyOf construct. Thus for example,
using reasoning, we can say that an entity which has foaf:name “Dan Brickley”
also has rdfs:label “Dan Brickley”. Also, materialising a property hierarchy
can be useful to allow users be as specific or as general as they require in
searching or navigating between entities.

Inverse properties and symmetric properties specifically increase the linkage of
the dataset and offer new navigation paths between entities in the data. For
example, the foaf:made property is used to link people to documents they
authored. In the FOAF specification, another property, foaf:maker, is specified

as being the inverse of foaf:made and linking documents to their authors.
Reasoning is used to materialise all possible relations computable from
owl:inverseOf relations. Symmetric properties are those which are the inverse
of themselves: also known as bi-directional or directionless relations. Reasoning
is used to ensure that the relation is asserted in both directions. Materialising
relations allows for servicing more queries given the same data, the benefits of
which are propagated to human users and agents.

Conclusion
In this paper we have presented the architecture and implementation of SWSE, a
semantic web search engine. We have illustrated the data gathering and
integration process of SWSE over open web data. The current demo featuring a
dataset collected from millions of sources is online at http://swse.deri.org/.
Access to the SPARQL endpoint is provided at http://swse.deri.org/yars2/.

References
[CDSTD08] Richard Cyganiak, Renaud Delbru, Holger Stenzhorn, Giovanni

Tummarello and Stefan Decker. “Semantic Sitemaps: Efficient and Flexible
Access to Datasets on the Semantic Web”. 5th European Semantic Web
Conference, Tenerife, Spain, June 1 to 5, 2008.

[HD05] Andreas Harth, Stefan Decker. "Optimized Index Structures for
Querying RDF from the Web". 3rd Latin American Web Congress, Buenos
Aires, Argentina, October 31 to November 2, 2005, pp. 71-80.

[HHD07] Aidan Hogan, Andreas Harth, Stefan Decker. "Performing Object
Consolidation on the Semantic Web Data Graph". Proceedings of I3: Identity,
Identifiers, Identification. Workshop at 16th International World Wide Web
Conference (WWW2007), Banff, Alberta, Canada, 2007.

[HOH07] Michiel Hildebrand, Jacco van Ossebruggen, Lynda Hardman, “An
Analysis of Search-based User Interaction on the Semantic Web”, CWI
Technical Report, 2007.

[HUD06] Andreas Harth, Jürgen Umbrich, Stefan Decker. "MultiCrawler: A

http://swse.deri.org/yars2/
http://swse.deri.org/

Pipelined Architecture for Crawling and Indexing Semantic Web Data". 5th
International Semantic Web Conference, Athens, GA, USA. November 5-9,
2006.

[HUHD07] Andreas Harth, Juergen Umbrich, Aidan Hogan, Stefan Decker.
"YARS2: A Federated Repository for Querying Graph Structured Data from the
Web". 6th International Semantic Web Conference, Busan, Korea, November
11-15, 2007.

 [PS08] Eric Prud'hommeaux, Andy Seaborne. “SPARQL Query Language for
RDF”, W3C Recommendation, January 15, 2008. http://www.w3.org/TR/rdf-
sparql-query/

[SWM04] Michael K. Smith, Chris Welty, Deborah McGuiness, “OWL Web
Ontology Language Guide”, W3C Recommendation, February 10, 2004.
http://www.w3.org/TR/owl-guide/

http://www.w3.org/TR/owl-guide/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/

	Abstract
	Introduction
	System Overview and Architecture
	API and User Interface
	Data Acquisition and Pre-processing
	Reasoning
	Conclusion
	References

