(OLLSCOILNAGAILLIMHE

[JNIVERSITY oF GALWAY

Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the
published version when available.

Title Towards Optimized Data Fetching for Service Discovery

Author(s) | Zaremba, Macigj; Vitvar, Tomas; Moran, Matthew

Publication
Date 2007

Macigj Zaremba, Tomas Vitvar, Matthew Moran "Towards
Publication | Optimized Data Fetching for Service Discovery”, Proceedings
Information | of the Fifth IEEE European Conference on Web Services
(ECOWS), IEEE Computer Society, 2007.

Publisher |EEE

Item record | http://hdl.handle.net/10379/435

Downloaded 2024-03-20T12:29:447

Some rights reserved. For more information, please see the item record link above.

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/

Towards Optimized Data Fetching for Service Discovery

Maciej Zaremba, Tomas Vitvar, Matthew Moran
Digital Enterprise Research Institute
National University of Ireland, Galway
{firstname.lastname } @deri.org

Abstract

The advent of Service Oriented Architecture makes ser-
vices the most flexible, platform-independent choice for ex-
posing and integrating business functionality across a net-
work. However, the lack of service discovery mechanisms,
that go beyond simple keyword search to enable automated
late-binding of service requesters to providers, remains a
major problem. Realistic late-binding involves matchmak-
ing of client requests with service descriptions, based on
[frequently changing fine-grained client requests, and dy-
namically changing service functionality. The intricacies
of service functionality cannot be specified by generic static
descriptions since the functionality offered by the service
may depend on the client at hand, their specific request and
the service’s current capabilities. In this paper, we pro-
pose a semantic framework supporting dynamic data fetch-
ing from services during the discovery phase on service in-
stance level entailing a communication overhead which we
aim to minimize.

1 Introduction

In business environments, the specifics of functionality
offered by services may change very often. It is not fea-
sible to capture all such details in static descriptions, as is
assumed by many semantic and non-semantic approaches
to service discovery [13, 2, 19]. Static descriptions are suit-
able for the initial phase of the discovery but often an inter-
action with a service is required during discovery to check
dynamic properties defining the service’s functionality and
evaluate its suitability at a given point in time for a given
client. On the other hand, a drawback of interacting with a
service during the discovery phase can be a significant com-
munication overhead.

An example of static-only service discovery is through
the UDDI-based matchmaking process of [2] which takes
into account only the static categorization of the Web ser-
vices and their tModels using keyword-based matching
mechanisms without any support for the possibility that
the service parameters may change dynamically. Such an

approach supports discovery only at a broad level while
more realistic Web service late-binding needs to be based
on client requests at a much finer level of granularity. By
late-binding in SOA we understand all runtime tasks that
lead up to a service requester and provider being brought
together, ready to interact. These tasks include discov-
ery, mediation, selection and others, as explained in [17].
The reasons why late-binding has not become a reality to
date include: (1) insufficient expressivity of underlying ser-
vice descriptions and client search requests supporting only
keyword-based matching and (2) only static service func-
tionality descriptions. Changes to the fine grained parame-
ters of a service search (e.g. service pricing) can result in
differing sets of matching services. These fine grained pa-
rameters are usually missing from the static part of service
descriptions meaning that service discovery often remains a
manual design-time process while in many cases it could be
automated.

For example, a request to ”buy a Harry Potter book™ usu-
ally is abstracted to a search for descriptions of services that
sell books. But once such a service is located, it must be de-
termined if the service sells Harry Potter books and if those
books are in stock. Taking Amazon as an example, it is
clearly unfeasible to include data for its entire catalogue of
books and their availability directly in the service descrip-
tion. Such information has a dynamic character and there-
fore should only be fetched from the service at discovery-
time when needed.

Discovery based on static and non-semantic descriptions
include the following weaknesses:

e A single Web service may provide quite broad func-
tionality and describing all its aspect may produce
large descriptions that quickly become outdated. Fre-
quent re-publishing of descriptions is not practical.

e The intricacies of Web service functionality may de-
pend on the customer at hand and the actual request.
For example, there may be different product prices for
frequent customers compared to first-time buyers. The
service provider may not advertise its pricing policy.

However, providing additional operations which can
be invoked in order to find out information like pricing
before committing to any real-world action (e.g., buy-
ing something) is sound and acceptable from a busi-
ness point of view. For the client, details of the offer
are essential for the service discovery process in decid-
ing which service to use.

e The keyword based approach does not cater for ex-
pressing any complex requirements over the service
functionality.

This paper extends our previous work on service discov-
ery with support for data fetching [18] towards optimizing
the communication required with candidate services. Our
approach to minimization of the communication is based
on the user request analysis, namely only data which is re-
ferred by the user query is fetched from the service. In our
approach both user request and service descriptions use on-
tologies to define their underlying data models. The rich ex-
pressivity provides the means for powerful machine-based
reasoning, required for fine-grained run-time Web service
discovery. This paper shows how a combination of the data-
fetching mechanism with ontology-based representations of
Web services and user requests makes this possible.

The rest of the paper is structured as the following. In
Section 2 we introduce different kinds of semantics rele-
vant for services and our discovery framework. In Sec-
tion 3, a detailed description of the service discovery with
data-fetching support and its algorithm is given. Section 4
describes the implementation and evaluation of our work.
Related work is presented in Section 5. Finally, in section
6, we conclude the paper and provide an insight for future
work.

2 Definitions

We follow the categorization of the discovery process
into two distinct phases as defined in [5], namely:

Web Service discovery operates on the abstract capabil-
ity level where the functionality of the service is general-
ized to a high-level description. An example could be Ama-
zon, described as an online product-selling service, where
product categories are statically defined and referenced in
service descriptions which can be effectively updated as
categories and their properties change. On this abstract
level, a user request of purchasing a Harry Potter book or
a 4GB iPod is generalized to purchase of a book or an mp3
player respectively. Reflecting entire product catalogue in
the static description is not viable and unmaintainable since
products, their availability and their prices change dynami-
cally. It would require continuous updates to the catalogue
in real time which is rarely an option from business perspec-
tive.

Service discovery operates on a concrete instance of a
service and depends on a number of factors including: cur-
rent business circumstances (e.g., product terms and avail-
ability), service requester status (e.g., a customer with a
long-term relationship or first-time user) and given request
(e.g., buy a book and ship it to the certain location). Ser-
vices like Amazon take user preferences and history into
account when generating individual offers. This is fine-
grained user specific information requiring Amazon’s pri-
vate business and is generally only taken into account dur-
ing interaction with the service - not before. In other words
it depends on a communicative exchange between the Ama-
zon service and the service requester.

Taking the Amazon example, the level of granularity for
Web service discovery is not sufficient (buy a book) for au-
tomatically determining if the service matches the request
(buy a Harry Potter book) however as a first phase of the
discovery process it allows to narrow down number of can-
didate Web services using solely their static description. In
the second step, suitability on the candidate services from
the first phase can be further examined on their instance
level with dynamically obtained service description.

For purposes of our work we use definitions from [16]
for semantic description of both parties using the following
types of semantics: information, functional, and behavioral.

Information Semantics is the formal definition of some
domain knowledge used by the service in its input and out-
put messages. We describe the information semantics as an
ontology defining the terminology of the domain together
with a knowledge base as the instantiation of the ontology.
Formally, the information semantics is a structure

O=(C,R,E,I) ey

with a set of classes (unary predicates) C, a set of relations
(binary and higher-arity predicates) R, a set of explicit in-
stances of C' and R called E' (extensional definition), and a
set of axioms called I (intensional definition) that describe
how new instances are inferred.

Functional Semantics is a static description of the service
capability, i.e. what the service can offer to its users. We
define a capability as

F = (,¢", ¢%7),)

where ¥ C ({2} UC U RU E) is the signature of sym-
bols, i.e. variable names {x} or identifiers of elements from
C, R, E of some information semantics O; ¢P™ is a precon-
dition which must hold in a state before the service can be
invoked and ¢eﬁ is the effect, a condition which must hold
in a state after the successful invocation. Preconditions and
effects are defined as statements in logic £(X).

Behavioral Semantics is a description of the public and the
private behavior of a service. For our work we only use the
public behavior (called choreography') as a description of
a protocol which must be followed by a client in order to
invoke the service, fetch data from the service or perform
a negotiation with a service. Thus, a service may contain
different kinds of choreographies intended for different pur-
poses. We describe a choreography as a protocol from the
service point of view, i.e. all the messages are sent in to the
service from the network and all the messages are sent from
the service out to the network. We define the choreography
X (read: chi) of the service using a state machine as

X =(%,1), 3)

where ¥ C ({2} UC U RU E) is the signature of sym-
bols, i.e. variable names {2} or identifiers of elements from
C, R, E of some information semantics O; and L is a set
of rules. Further, we distinguish dynamic symbols denoted
as Xy (input), and X (output) and static symbols denoted
as Y g. While the static symbols cannot be changed by the
service invocation, the dynamic symbols correspond to in-
put and output data of the service which can be changed
by the invocation. Each rule » € L defines a state transi-
tion r : 7% — reff where cond is defined as an expres-
sion in logic £(3; U Xg) which must hold in a state before
the transition is executed; eff is defined as an expression in
logic L(X; U X U Xg) describing how the state changes
when the transition is executed.

Semantic descriptions enhance various descriptive parts
of services. The parts regarding service invocation (such
as how and where the service can be accessed) are reused,
thus so called grounding from semantic level to the under-
lying technology for service invocation must be defined. In
our approach we use grounding to WSDL which is used for
on-the-wire message serialization (WSDL binding), physi-
cal Web service access (WSDL service and endpoint) and
communication (SOAP). Using this grounding ¥; and %o
are linked with the input and output messages respectively
of an underlying WSDL interface operation. When the tran-
sition is executed the input data is transformed to the XML
representing the input message (lowering) and passed to the
underlying operation which responds with an output mes-
sage in XML. The output message is then transformed to
the corresponding output data (lifting).

In addition, we denote the description of the Web ser-
vice and the goal as WV and G respectively. For each such
description, D, we denote the information semantics as Do,
the capability as D, and choreography as Dx.

IPlease note, that our notion of the choreography is different from the
one used by the Web Service Choreography Description Language (WS-
CDL). In WSMO terminology Choreography represents a stateful interface
to the functionality offered by the Web service. http://www.w3.0org/
TR/ws—-cdl-10/

3 Discovery with Data Fetching

Our main focus in this paper is the service discovery
phase where dynamically obtained service instance defini-
tions are matched against the user Goal and required com-
munication with the service should be limited to fetching
the data relevant from the Goal perspective omitting unnec-
essary information provided by the service in order to im-
prove performance of the overall discovery process.

The matching is defined by the following set-theoretic
relationships [10]: (1) exact match, (2) subsumption match,
(3) plug-in match, (4) intersection match and (5) disjoint-
ness. If the goal and the Web service match, based on re-
lationships 1-4, then service discovery is performed where
it is checked if the service can satisfy the specifics of the
service request, by consulting the data of the goal and the
service. If all data is not available, it needs to be obtained
from the service by performing so called data fetching. In
this section we further elaborate on the service discovery
phase and define the algorithm. For the service discovery
we define the matching function:

s — matching(G, W, Byw), 4

where G and WV is a goal and a service description respec-
tively and By, is a common knowledge base for the goal
and the service. The knowledge base contains data which
must be directly (through descriptions Go and Wp) or indi-
rectly (through data fetching) available so that the matching
function can be evaluated. The result s of this function can
be: (1) match when the match was found (in this case all
required data in By, is available), (2) nomatch when the
match was not found (in this case all required data in By, is
available), or (3) nodata when some required data in By,
is not available and thus the matching function cannot be
evaluated.

We further assume that all required data for the goal is
directly available in the description Go. The data fetching
step is then performed for the service when the matching
function cannot be evaluated (the result of this function is
nodata). We then define the knowledge base as:

ng :gOUWOU{y15y27“'7y7ﬂ}a (5)

where {y;} is all additional data that needs to be fetched
from the service in order to evaluate the matching function.

Further, we denote Wx as the data-fetch interface of the
service VW with output symbols X and input symbols X ;.
The matching function can be then evaluated if data {y;}
can be fetched from the service through the data fetch in-
terface if input data X; is either initially available in the
knowledge base B, (data directly available from the goal
or web service ontologies) or the input data becomes avail-
able during the processing of the interface.

Goal Effect Service
List of symbols referring to the elements of the KB Data
‘x1, X2, ... x;Q Fetching
T T ~ interface
Is exet#ted ON Refers to l Refers to
| N
Refers to \(~ 1
| J* -->~@
| ~&
A/()
r2
s @
[r3
() (_ STy @
Knowledge Base (Bgy)

Figure 1. Minimization of the Provider Interactions

In addition, as illustrated in Figure 1, we only fetch the
data from the interface if this data can be used for evaluation
of the matching function (in general the data-fetch interface
can provide data not required for the matching — see the
rule r3 in Figure 1). In By, full circles denote available
information while dotted circles denote unavailable infor-
mation which can be obtained through the data-fetch inter-
face. However, since the fetching operation can be costly
in terms of the generated communication, only the parts of
Bgw which are referenced from the Goal effect ¢ should
be fetched.

Let ¢°F be the effect of the goal capability G, L be
the set of rules of the data-fetch interface Wy, and let X
be the set of output symbols of that interface. Then, we
only use the rule r € L iff exists x € 7%,z € X such
that z € ¢, Please note that this rule can be in addition
executed if the input data is available during processing (i.e.
r<°nd holds in the Bgw) (see the algorithm in Section 3.1).

3.1 Algorithm

In algorithm 1, the matching function is integrated with
the data fetching which provides instance data for the con-
cepts referred from the goal effect ¢ . The algorithm oper-
ates on inputs, produces outputs and uses internal structures
as follows:

Input:

e Web service W for which we denote Wy as the web
service ontology with initial instance data and Wx as
data-fetch interface of the Web service with rule base
L. In addition, for each rule r € L we specify the data
of the rule effect 7/ as r.data and the action r.action
with values add, update, delete meaning that if the
rule is executed the action performs the effect of the
rule, i.e. changing the state by adding, updating or
deleting data in the memory (knowledge base).

e Goal description GG for which we denote G as the
goal ontology with initial instance data and G as the
goal capability effect. For W and G it must hold that
they match at abstract level (Web service discovery).

Output:
e Boolean variable s indicating the result of the match-
ing function between W and G, i.e. match or
nomatch.

Uses:
e Processing memory M containing data fetched during
execution of rules of the data fetching interface.

e Knowledge base B, which contains data for process-
ing of the matching function.

e Boolean variable modified indicating whether the
knowledge base has been modified or not during the
processing.

Algorithm 1 Minimized Data Fetching for Discovery
1: By — Go UWp
2 M «— ng
3: repeat
4 modified — false
5. s «— matching(G, W, Bgy)
6: if s = nodata then
7 while get r from L: holds(rc°™ M) and
r.data € G°Y and not modi fied do

8: if r.action = add then
9: add(r.data, M)
10: add(r.data, Bgy,)
11: modi fied < true
12: end if
13: if r.action = remove then
14: remove(r.data, M)
15: end if
16: if r.action = update then
17: update(r.data, M)
18: update(r.data, Bg.)
19: modi fied < true
20: end if
21: end while
22: end if

23: until s # nodata or not modi fied

The algorithm tries to fetch data from the service by
processing the service’s data-fetch interface. For each rule
present, which can be executed, it checks whether its result
will provide any information referenced by G*7. For ex-
ample G may refer to the concept price of a given prod-
uct which is unavailable in the By, however a rule exists

which can result in an instance of the price concept being
obtained. Once the data fetching operations are executed
and new facts are added, updated or removed, a modi fied
flag is set to true and B,, can be matched again. This cycle
ends when no data can be fetched from the interface or the
matching function can be evaluated (the result is match or
nomatch).

The algorithm assumes that the rules of the data-fetch
interface can be executed independently. In particular this
means that if there is a symbol referencing a concept in the
knowledge base and there is a rule which can fetch the data
for that concept, there is no other rule which needs to be
executed prior in order to execute the rule fetching the data.
Although our assumption that more realistic scenarios of
data fetching should have independent rules (see Section
4.2), we acknowledge that this is an open issue of our ap-
proach which we plan to investigate in our future work.

The algorithm uses independent memory (memory M)
from the knowledge base (By,,) for processing the data-
fetch interface. This allows that already-obtained data can-
not be removed from the knowledge base while, at the same
time, correct processing of the interface is ensured. The
memory M is used not only for data but also for control of
interface processing (in general, the content of the memory
does not need to always reflect the content of the knowledge
base). According to the particular interface definition, the
data can be fetched step-wise allowing minimization of the
interactions with the service during discovery. This main-
tains decoupling between elements as services are described
semantically and independently from user requests. For ex-
ample, during the service-creation phase a service provider
(creator) does not know which particular data will be re-
quired for a particular data-fetch (in general, matching with
a goal could require some or all defined data which depends
on the definition of the request). The interface defined us-
ing rules allows to get only the data which is needed for the
matching (for example in some cases only price is needed,
in other cases a price and location of the selling company
could be needed, if offered by the service depending on
what is referred in the user request).

4 Implementation and Evaluation

In this section we describe our implementation for ser-
vice discovery with data-fetching using Web Service Mod-
eling Ontology (WSMO) [14] as a conceptual framework
and we use Web Service Execution Environment (WSMX)
[7] for implementation and execution of service discovery
with data-fetch support. We detail the required modeling
steps and explain the overall WSMX-based discovery pro-
cess. Our service discovery model introduced in this paper
has been implemented and evaluated through the Semantic
Web Services Challenge ?) discovery scenarios. There were

Zhttp://www.sws-challenge.org

two scenarios introduced. The first was related to pack-
age shipment where five different shippers offer various
purchasing and shipment options. They provide different
availability and pricing for their services with constraints on
package destination, weight, dimension and shipment date
where not all information can be statically provided. The
second SWS-Challenge discovery use-case tackles product
provisioning where different vendors provide PC hardware
where their stock and prices change very often. It also in-
volves simple composition since sometimes only a com-
bination of the devices from different vendors can satisfy
user requests and constraints. We have comprehensively ad-
dressed both scenarios and provided Web services proven to
be a suitable testbed for evaluating our model since not all
information could be provided in service descriptions mean-
ing they had to be dynamically obtained at discovery-time.

4.1 WSMO, WSML, WSMX

WSMO provides a conceptual model and a language for
semantic markup describing all relevant aspects of general
services which are accessible through a Web service inter-
face. The ultimate goal of such markup is to enable the
(total or partial) automation of tasks (e.g. discovery, selec-
tion, composition, mediation, execution, monitoring, etc.)
involved in both intra- and inter-enterprise integration set-
tings. WSMO defines the underlying model for the WSMX
Semantic Web services architecture and execution environ-
ment and provides the conceptual model formalised by the
Web Service Modeling Language (WSML)[1] family of on-
tology languages, used to formally describe WSMO ele-
ments. Thus, WSMO, WSML and WSMX form a coherent
framework covering all aspects of the Semantic Web ser-
vices.

Both the descriptions of WSMO Goals and Web Services
include elements for describing capabilities. We use the fol-
lowing parts of WSMO Capabilities in our service discov-
ery:

e Preconditions describe conditions which must hold in
a state required before the service can be executed.
WSMO Preconditions map to ¢P"¢ of the capability
descriptions as defined in Section 2.

e Postconditions describe conditions in a state which
must hold after the service is executed. WSMO Post-
conditions map to ¢*7 of the capability descriptions as
defined in Section 2.

From the perspective of a goal description, the capability
describes the functionality that the owner of the goal wishes
to achieve from a Web service. Correspondingly, the capa-
bility of a Web service describes the functionality offered
by that service. To a large extent, the responsibility of a
discovery mechanism, in the context of WSMO, is to find
services whose capability matches that of the provided goal.

In addition, the Web service interface defines choreog-
raphy and orchestration allowing the modeling of external
and internal behavior of the service respectively. We define
the interface for data-fetch using a specific choreography
namespace® allowing to distinguish a specific meaning for
its usage from the meaning of the interface defining execu-
tion choreography used for consuming the service function-
ality within the same WSMO service.

4.2 WSDL to Choreography Mapping

The modeling of Semantic Web service behavioral de-
scriptions is, to a significant extent, based on existing Web
service standards. We map existing WSDL service descrip-
tions to the WSMO Semantic Web services where addi-
tional descriptions can be provided. Mapping from exist-
ing, syntactic service descriptions to the semantic layer is
the first step of the modeling process after which resulting
descriptions can be aligned by the domain expert.

Domain Ontology

WSDL 2.0 4 Semantic Web

Service

<description . .
p Behavioral View

xmins:wsdix= "http://www.w3.org/ns/
wsdl-extensions”

<operation [
wsdlx:safe = "true">/ & *
<input messageLabel="In" | & . | ouT 0
X" [> i
<output messageLabel="Out" ,:
y" > .}

Data Fetch
Interface

<l/operation>

| ———Mapsto—— |

<loperation> Execution

Interface

<description/>

Figure 2. WSDL 2.0 to WSMO Web service Map-
ping

XML Schema defined in the WSDL can be mapped
to the given domain ontology using Semantic Annotations
of Web Service Description Language and XML Schema
(SAWSDL [4]) which provides a generic and agnostic
mechanism for semantically annotating Web services. As
described in [16], the SAWSDL allows to annotate WSDL
schema elements with elements from the information se-
mantics and WSDL interfaces with behavioral semantics of
the service. In addition, the extension of WSDL 2.0 comes
with the very relevant notion of so called safe methods, rel-
evant from the dynamic discovery point of view. When the
safe attribute of an operation is set to true, the operation
indicates that it is informative, independent on other opera-
tions and will not cause any real world effect when invoked
(e.g. like agreeing to buy something). For the purpose of

3we specify the URI for the

”http://wsmx.org/datafetch#”

namespace as

our work, safe operations may be mapped to the data-fetch
interface allowing a user to find out more about the func-
tionality of the service. Figure 2 presents this mapping.
WSDL operations without the safe attribute are mapped to
the service execution interface.

4.3 Modeling Ontologies, Goals and Ser-
vices

We base examples on a simple composition service for
computer hardware, where PC hardware stock and price
information is not available in the service description and
needs to be fetched during the service discovery. We also
emphasize how this communication is minimized by look-
ing at the concepts referred to in the goal capability. In
section 4.4 we further describe the evaluation of our im-
plementation in the broader context of the SWS Challenge
requirements. In order to implement the scenario, we first
need to create semantic models for ontologies, goals and
services. We describe these models in the following sub-
sections. We present examples of ontologies, services and
goals definitions in WSML using the following prefixes to
denote their respective namespaces: do — domain ontology,
df — data fetch interface, gl — goal ontology.

4.3.1 Ontologies

Ontologies provide rich data models used for the definition
of goals and services. In our scenario we use a common
domain ontology with additional ontologies to define spe-
cific axioms or concepts used by the descriptions of services
and/or goals.

The common ontology defines shared concepts used in
the description of the goal and services, such as Location,
Notebook, DockingStation, etc. In addition, we use the
common ontology to specify named relations for services
and goals. Specific ontologies for goals and services de-
clare axioms that define the relations to represent their con-
ditions. An analogy for this approach are interfaces in pro-
gramming languages like Java. The interface declares some
functionality but does not say how this should be imple-
mented. Using this approach, we define a set of relations
in the common ontology which represent the axioms that
a service may need to define. Listing 1 shows the simple
definition for the isCompatible relation from the common
ontology and its implementation in the service ontology.

1 /x isCompatible relation in the domain ontology =/
2 relation do#isCompatible (ofType do#Notebook, of Type do#
DockingStation)

/+ implementation of the isCompatible relation in the service ontology */
axiom isCompatibleDef definedBy
(?notebook[do#GTIN hasValue ?gtinX] memberOf do#Notebook and
?dockingstation[do#supportsGTIN hasValue ?gtinY]
memberOf do#DockingStation and
?gtinX = ?gtinY implies
do#isCompatible(?notebook, ?dockingstation).

S o ®u o wm e W

Listing 1. isCompatible relation

The relation isCompatible is true if the notebook sold by
the service provider can be used with one of the available
(DockingStation). This axiom can be used in the goal
query to check compatibility of the two components.

4.3.2 Services

We focus on the description of the data-fetch interface of
one of the vendors service showing how and which data can
be fetched during discovery.

[1 stateSignature WSVendorStatesignature

2

3 in do#NotebookListReq withGrounding { _"http://sws—challenge.org
/vendor.wsdl#(VendorPort/listNotebooks/in0)"}

4 in do#WebCamlListReq withGrounding { _"http://sws—challenge.org
/Ivendor.wsdl#(VendorPort/listWebCams/in0)”}

5 out do#NotebookList

6 out do#WebCamlList

;

s interface df#WSVendorDataFetchinterface

9 choreography WSVendorDataFetchChoreography

10

1 transitionRules WSVendorDataFetchTransitionRules

12 /% Rule 1: Request for the list of notebooks */

13 forall {?notebookListReq} with (

14 ?notebookListReg[mo#location hasValue ?clientlocation]

15 memberOf do#NotebookListReq and

16 ?clientLocation memberOf mo#Location and

17 mot#isAvailable(?clientLocation)

18) do

19 add(-# memberOf do#NotebookList)

20 endForall

21

2 /% Rule 2: Request for the list of Web cameras=/

23 forall {?webcamsListReq} with (

24 ?WebCamsListReq memberOf do#WebCamListReq

25) do

26 add(-# memberOf do#WebCamlList)

27 endForall

Listing 2. Vendor data fetching interface

In listing 2, the first rule (line 14) describes how to get the
list of notebook prices depending on the user location. A
user-location (location variable) is taken from the notebook
quote request. For the listing of notebooks the location mat-
ters and first the location of the client has to be checked. If
notebooks are not shipped to the client location, no data will
be fetched, since the client will not be able to buy from this
vendor due to the address constraints. For example, note-
books may be sold only in US for tax and shipment reasons
while other, lightweight items (e.g. Web cameras) may be
shipped all over the world. In the definition of the second
rule there are no constraints over the client’s location and
available Web cameras may be sold to any location in the
world. Concepts NotebookList Req, WebCamsListReq
and Notebook List, WebCam List are defined as input and
output vocabularies respectively. The relation is Available
is described in the common ontology and its axiom is pro-
vided in the Web service ontology.

4.3.3 Goals

The example goal for the scenario describes the user’s aim
to buy a laptop and docking station and to ship them to a
specific location. In addition, the goal specifies a preference

that price be used for selection of the best service where
multiple matching services are discovered.

1 Goal GoalPurchaseHardware

2 nfp

3 _preference” hasValue "?price”

4

5 endnfp

6

7 capability GoalPurchaseHardwareCapability

8 postcondition

9 definedBy

10 (?x[do#price hasValue ?priceX, do#hddGB hasValue ?hddGBX
, do#tmemoryMB hasValue ?memMBX]

1 memberOf do#MacNotebook and ?memMBX >= 512 and

?hddGBX > 40 and

12 ?y[do#price hasValue ?priceY] memberOf do#DockingStation

13 and isCompatible(?x,?y)

14 and ?price = (?priceX + ?priceY)

15 and ?price < 2000).

16

Listing 3. User Goal in WSMO

The goal as in listing 3 is defined for our scenario with re-
spect to the implementation of the matching function from
section 3 (we discuss this implementation in section 4.4).
The goal expression contains references to two concepts,
namely mo#Notebook and mo#DockingStation. Instances
of these two concepts are not available in the static Web ser-
vice description and have to be fetched during the discovery
phase as specified in algorithm 1. The goal defines the ca-
pability postcondition specifying how to get a quote for the
product while at the same time the product must be avail-
able to be shipped to the location specified by the notebook
request. Hard constraints are expressed over the parame-
ters of the laptop. It must have at least 512 MB RAM and
over 40 GB hard drive capacity. Additionally, a compatible
docking station should be ordered. The previously-defined
axiom ¢sCompatible is used for this purpose. The overall
price of both components should not exceed 2000 Euro.

4.4 Implementation

The scenario is implemented as follows: when the goal
is generated out of the request specified by the user, it is
sent to the WSMX system. WSMX starts a new opera-
tional thread (execution semantics) which first invokes the
discovery component which in turn returns a list of services
matching the goal. This list is passed to the selection com-
ponent to select the service that best fits the user request.
Control passes to the choreography engine which uses the
choreography descriptions of the goal and service respec-
tively, to drive the message exchange with the discovered
service. This section describes the implementation of the
algorithm from section 3 within the discovery component
of WSMX. The details about other parts of the execution
process can be found in our previous work in [7].

After the discovery phase, the execution semantics starts
the conversation by processing the execution choreogra-
phies of the goal and selected service resulting in invoking
and consuming of the service capability by the user.

Section 3 describes two steps for discovery. A proto-
type for the Web service discovery is under development in
the WSMO working group. The implementation, described
here, focuses on the steps of Service discovery matching and
data-fetching. A match between the goal and Web services
is determined on the knowledge base created out of their
descriptions, including instance data (both available from
the descriptions and fetched). The goal capability defines a
query (listing 3) which is used to query the knowledge base.

Domain
Ontology

Imports Imports

Imports
|

Service Requestor Service Provider

e Knowledge Base 5 T
emantic Wel
Goal Queries (Baw) service

Provides data

Refers | Execution interface Provides Data Fetching
to data interface

I— Provides data

N Ontology:
Goal KB

Refers
to

Execution interface

i

Ontology
Descriptionand A
constrains over

provided functionality

Figure 3. Knowledge Base B,

According to the algorithm 1 in section 3, the knowledge
base By, is created for every goal and Web service from
the repository as shown in figure 3. Initially, the knowl-
edge base imports all concepts from the domain ontology
and data from both goal and Web service descriptions. If
the data-fetch interface is available then parts of it may be
able to obtain the instance data of some of the concepts re-
ferred to in the goal query. In our case, data fetching will
be executed for Notebook and DockingStation provision-
ing. Once the knowledge base is populated with up-to-date
information on available notebooks and docking stations, a
query such as the one defined in listing 3, can be performed
on the KB. It is worth noting that, thanks to this approach,
only the necessary parts of the data-fetch interface will be
utilized and no unnecessary communication will be gener-
ated. If the result of the evaluation is true, we add the
Web service to the list £/ of Web services to the position
determined by the preference. If the result of the evalu-
ation is false, match of the next service from the list is
attempted. Otherwise, the cycle ends and the next service
from the repository is processed. We briefly discuss this
implementation in the next section 4.5.

4.5 Evaluation

Our implementation has been evaluated according to the
methodology defined by the SWS Challenge. The SWS
Challenge is an initiative led by a Semantic Web Services
community providing a standard set of increasingly difficult

problems, based on industrial specifications and require-
ments. Entrants to the SWS Challenge are peer-evaluated
to determine if semantically-enabled integration approaches
reduce costs of establishing and maintaining the integra-
tion between independent systems. In each SWS challenge
workshop, the entrants first address an initial scenario of a
particular problem (e.g. mediation, discovery) in a testing
environment prepared by the SWS Challenge organizers.
The organizers then introduce some changes to back-end
systems of the testing environment when the adaptivity of
solutions is evaluated — solutions should handle introduced
changes by modification of declarative descriptions rather
than code changes. This evaluation is done by a methodol-
ogy, developed by the SWS Challenge organizers and par-
ticipants, which identifies following so called success lev-
els. Success level 0 indicates a minimal satisfiability level,
where messages between the participant solutions and the
backend systems are properly exchanged in the initial sce-
nario. Success level 1 is assigned when changes introduced
in the scenario require code modifications and recompi-
lation. Success level 2 indicates that introduced changes
did not entail any code modifications but only declarative
parts had to be modified. Success level 3 is assigned when
changes did not require either modifications to code or the
declarative parts, and the system was able to automatically
adapt to the new conditions.

Our implementation was evaluated to successfully ad-
dress the scenario with dynamic PC hardware product data
fetching, where various constraints over the hardware pa-
rameters (like HDD capacity, type and speed of the pro-
cessor, etc.), customer location and overall price had to be
considered, scoring success level 2. The implementation
proved to be generic as only modifications of the WSMO
goals were necessary in order to correctly handle introduced
changes. No changes in WSMX code or in the descriptions
of the services were required — only the goal requests had to
be changed.

In the initial version of our work it was not possible to
distinguish between dynamically fetched data required for
the user request evaluation and data which is irrelevant re-
sulting from fetching from all safe endpoints exposed via
data-fetch interface. The introduction of our optimization
allowed to fetch only the relevant data which significantly
decreased communication with the service especially since
multiple service endpoints were provided for fetching in-
formation on different kinds of products. For example for
the goal of buying a laptop with compatible docking sta-
tion only information on these two products were fetched
leaving out all other unreferenced, though available, infor-
mation.

5 Related Work

Our work can be compared to other solutions of SWS-
Challenge discovery scenario as described in [12]. The
University of Jena and University of Milano solutions pro-
vide an ad-hoc, hard-coded mechanisms for data fetching
whereas our approach aims at generic solution considering
performance factors. Kifer et al. [11] point out the need for
a contracting phase in service discovery and include it in
their proof obligation for service matching. However, they
do not consider an additional interface for fetching miss-
ing information dynamically. There is no directly compara-
ble work in the SOA area which would allow for the fetch-
ing of additional data to aid discovery at run-time. WSDL
2.0 safe methods could be seen as a step in the direction
of enabling Web services for a dynamic discovery process
leading to fully-fledged service late-binding. In his W3C
position paper [3], Dziembowski highlights the need for
instance-based Web servive discovery but with a very lim-
ited proposal on how this should be achieved.

The problem of insufficient static descriptions for fine-
grained discovery requests within dynamic domains has
been addressed using CORBA’s Trading Service in the
eMarketplace domain [15] where dynamic properties of a
offered functionality exposed as a CORBA object can be
calculated within a business’s private space and where re-
sults can be integrated into the Trading Service discovery
process. Trading Service consists of name-value property
pairs which can be either static or dynamic. In the case of
a dynamic property, the external Dynamic Property Eval-
uator entity residing within the business provider private
space is called. Dynamic Property Evaluator returns dif-
ferent results depending on the current state of the business
provider (e.g., its current stock, prices or date and time of
the day) and client’s request. It is worth noting that due
to the code-based representation of CORBA actual evalua-
tion of the Trading Service is carried out in the client’s code
while our semantic-based approach allows to shift the over-
all discovery process to the middleware requiring the client
only to provide a fine-grained request. A similar approach
to dynamic service functionality aspects is currently miss-
ing in SOA and our work attempts to fill this gap.

Research into goal-based discovery for WSMO and
WSMX takes a step-wise approach with both theoreti-
cal and implementation concerns addressed at each stage.
Three strategies have been investigated in this manner. The
first is keyword-based discovery [10], which uses an algo-
rithm that matches keywords, identified from the goal de-
scription, with words occurring in various parts of the Web
service description, namely in, non-functional properties,
concept names and predicate names. The second strategy
is for a lightweight Semantic Web services discovery de-
scribed in [6]. This approach models a service in terms of
the objects it can deliver. The term object, in this sense,

means something of value the service delivers in its do-
main of interest. A third strategy is based around the use
of quality-of-service attributes as described in [8]. Upper
level ontologies describing various domains for quality-of-
service attributes are provided and non-functional proper-
ties are introduced to the service descriptions whose mean-
ings are defined in these QoS ontologies. The approach in
this paper is compatible with each of the matching strategies
as it extends the matching power by requesting data from
the service that is not directly available in its description.

In some extend our work on can be compared to Web ser-
vice Service Level Agreement (SLA) [9] and service con-
tracting. Web Service SLA are also often a subject of the
communication before execution phase between requester
and provider since SLA depend on the request, and states
of both requester and provider. SLA operate on the Web
service technical level where various parameters like Web
service availability, reliability, response time dynamically
change. Our data fetching mechanism during the discovery
phase pertains to the business service view where the actual
offer can be dynamically obtained and used by the discovery
engine to evaluate suitability of the service against specified
request. With respect to service contracting our approach
can be considered as pre-contracting as we concentrate on
the retrieval of additional data from the service provider to
make a more exact match during discovery.

6 Conclusion and Future Work

In this paper we have presented an approach for seman-
tic discovery supporting realistic late-binding performed at
run-time with an emphasis on minimizing required commu-
nication. The fine granularity of both client request and ser-
vice functionality descriptions, expressed semantically, al-
lows the shifting of the final decision on which service to
interact with, from the client side to semantic middleware
where required service functionality details are matched
against client request. We are aware that our approach, due
to the logical reasoning, computational complexity and gen-
erated communication overhead, is scalable only for a lim-
ited number of services, therefore data fetching and detailed
evaluation takes place in the final phase of the discovery
process, which is preceded by category-based matchmak-
ing and static description semantic discovery. Applied opti-
mization to dynamic data-fetching decreases the generated
communication, especially for more complex services of-
fering a broad range of functionality (e.g. a warehouse of-
fering multitude of products with different constraints on
shipment and different pricing options). The combination
of semantics with the dynamic data-fetch mechanism brings
significant benefits to the runtime service late-binding, fa-
cilitating the volatile and frequently-changing nature of ser-
vices in SOA.

For future work, we plan to extend our discovery frame-

work in two directions: (1) support for service contracting,
(2) evaluation of our work with large number of services.
Service functionality details disclosed during the discovery
phase should be propagated downwards to the service ex-
ecution phase once the client (or middleware acting on the
behalf of client) decide to consume the dynamically pro-
posed functionality. It is worth noticing that data fetched
during the discovery can be used for constructing a client-
service contract with a certain time period of validity. How-
ever, an additional protocol would be required for finalizing
such a contract, which may also require negotiation with the
service. Our discovery framework has been successfully
applied to the SWS-Challenge discovery problems where
several Web services have been semantically described and
their safe operations been exposed via data-fetch interfaces.
We plan to evaluate the applicability of our approach to a
greater number of services from different domains, to exam-
ine the scalability of the advantages obtained through using
semantic descriptions with the data-fetch mechanism, over
purely informal and static service descriptions.

Acknowledgments

This work is supported by the Science Foundation Ireland
Grant No. SFI/02/CE1/1131, and the EU projects Knowledge
Web (FP6-507482), SemanticGov (FP-027517) and SUPER (FP6-
026850).

References

[1] J. de Bruijn, H. Lausen, A. Polleres, and D. Fensel. The web
service modeling language: An overview. In Proc. of the

European Semantic Web Conference, 2006.
A. Dogac, Y. Tambag, P. Pembecioglu, S. Pektas, G. Laleci,

G. Kurt, S. Toprak, and Y. Kabak. An ebXML infrastruc-
ture implementation through UDDI registries and RosettaNet
PIPs. In Proc. of the 2002 ACM SIGMOD International Con-

ference on Management of Data, pages 512-523, 2002.
K. Dziembowski. Dynamic Service Discovery. In A position

paper for the W3C Workshop on Web Services for Enterprise
Computing, available at http://www.w3.0rg/2007/01/wos-

papers/gestalt, 2007.
J. Farrell and H. Lausen. Semantic Annota-

tions for WSDL and XML Schema available at

http://www.w3.org/TR/sawsdl/. Technical report, 2007.
D. Fensel, U. Keller, H. Lausen, A. Polleres, and I. Toma.

What is wrong with Web services Discovery. In W3C Work-
shop on Frameworks for Semantics in Web Services, Inns-

bruck, Austria, June 2005.
A. Friesen and S. Grimm. DIP WP4 Service Us-

age, D4.8 Discovery Specification, available at
http://dip.semanticweb.org/documents/D4.8Final.pdf.

Technical report, 2005.
T. Haselwanter, P. Kotinurmi, M. Moran, T. Vitvar, and

M. Zaremba. WSMX: A Semantic Service Oriented Middle-

ware for B2B Integration. In /CSOC, pages 477—483, 2006.
M. Hauswirth, F. Porto, and L.-H. Vu. P2P and

QoS-enabled Service Discovery Specification, available

(2]

(3]

[4

—

[5

—

(6]

(7]

(8

—_—

10

[91

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

at http:/dip.semanticweb.org/documents/D4.17-Revised.pdf.

Technical report, 2006.
L. jie Jin, V. Machiraju, and A. Sahai. Analysis on Ser-

vice Level Agreement of Web Services. Technical report,

HP Laboratories Palo Alto, 2002.
U. Keller, R. Lara, H. Lausen, A. Polleres, L. Predoiu,

and 1. Toma. WSMO D10.2 Sematic Web Service Discov-
ery available at http://www.wsmo.org/TR/d10/v0.2/d10.pdf.

Technical report, 2005.
M. Kifer, R. Lara, A. Polleres, C. Zhao, U. Keller, H. Lausen,

and D. Fensel. A Logical Framework for Web Service Dis-
covery. In ISWC 2004 Workshop on Semantic Web Ser-
vices: Preparing to Meet the World of Business Appli-
cations, CEUR Workshop Proceedings, volume 119, Hi-

roshima, Japan, 11 2004.
U. Kster, A. Turati, M. Zaremba, B. Knig-Ries, D. Cer-

izza, E. D. Valle, M. Brambilla, S. Ceri, F. Facca, and
C. Tziviskou. Service Discovery with SWE-ET and DIANE -
A Comparative Evaluation By Means of Solutions to a Com-
mon Scenario. In 9th International Conference on Enter-
prise Information Systems (ICEIS2007), Funchal, Madeira-

Portugal, June 2007.
M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Seman-

tic matching of web services capabilities. In /st International

Semantic Web Conference (ISWC), pages 333-347, 2002.
D. Roman, U. Keller, H. Lausen, J. de Bruijn, R. Lara,

M. Stollberg, A. Polleres, C. Feier, C. Bussler, and D. Fensel.
Web Service Modeling Ontology. Applied Ontologies,
1(1):77 - 106, 2005.

A. Schade, C. Facciorusso, S. Field, and Y. Hoffner. Ad-
vanced Dynamic Property Evaluation for CORBA-Based
Electronic Markets. In Second International Workshop on
Advanced issues of E-Commerce and Web-Based Informa-

tion Systems, pages 109116, 2000.
T. Vitvar, J. Kopecky, and D. Fensel. WSMO-Lite:

Lightweight Semantic Descriptions for Services on the Web.
WSMO Working Draft v0.2, DERI, 2007. Available at:

http://www.wsmo.org/TR/d11/v0.2/.
T. Vitvar, A. Mocan, M. Kerrigan, M. Zaremba, M. Zaremba,

M. Moran, E. Cimpian, T. Haselwanter, and D. Fensel.
Semantically-enabled service oriented architecture : con-
cepts, technology and application. Service Oriented Com-
puting and Applications, 2(2):129-154, 2007.

T. Vitvar, M. Zaremba, and M. Moran. Dynamic Service Dis-
covery through Meta-Interactions with Service Providers. In
Proceedings of the 4th European Semantic Web Conference

(ESWC 2006), June 2007.
M. Voskob. UDDI Spec TC V4 Requirement - Taxon-

omy support for semantics. OASIS, 2004. http://www.oasis-
open.org. Technical report.

