

Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-03-20T11:27:02Z

Some rights reserved. For more information, please see the item record link above.

Title YARS2: A Federated Repository for Querying Graph
Structured Data from the Web

Author(s) Harth, Andreas; Umbrich, Jürgen; Hogan, Aidan; Decker,
Stefan

Publication
Date 2007

Publication
Information

Andreas Harth, Jürgen Umbrich, Aidan Hogan, Stefan Decker
"YARS2: A Federated Repository for Querying Graph
Structured Data from the Web", Proceedings of the 6th
International Semantic Web Conference, 2007.

Item record http://hdl.handle.net/10379/423

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/

YARS2: A Federated Repository for Querying

Graph Structured Data from the Web

Andreas Harth, Jürgen Umbrich, Aidan Hogan, and Stefan Decker

National University of Ireland, Galway
Digital Enterprise Research Institute

Abstract. We present the architecture of an end-to-end semantic search
engine that uses a graph data model to enable interactive query answer-
ing over structured and interlinked data collected from many disparate
sources on the Web. In particular, we study distributed indexing meth-
ods for graph-structured data and parallel query evaluation methods on
a cluster of computers. We evaluate the system on a dataset with 430
million statements collected from the Web, and provide scale-up experi-
ments on 7 billion synthetically generated statements.

1 Introduction

The technological underpinnings of the Web are constantly evolving. With markup
and representation languages, we have witnessed an upgrade from HTML to
XML, mainly in the blogosphere where early adopters embraced the XML-based
RSS (Really Simple Syndication) format to exchange news items. Data encoded
in XML is better structured than HTML due to stricter syntax requirements
and the tagging of data elements as opposed to document elements. Although
the XML web is smaller in size than the HTML web, specialised search engines
make use of the structured document content.

Whilst XML is appropriate in data transmission scenarios where actors agree
on a fixed schema prior to document exchange, ad-hoc combination of data across
seemingly unrelated domains rarely happens. Collecting data from multiple XML
sources requires applications to merge data. The data merge problem is addressed
by RDF, whereby, ideally, identifiers in the form of URIs are agreed-upon across
many sources. In this scenario, RDF data on the Web organises into a large
well-linked directed labelled graph that spans a large number of data sources.

There is an abundance of data on the Web hidden in relational databases,
which represents a rich source of structured information that could automatically
be published to the Web. Some weblog hosting sites have already begun export-
ing RDF user profiles in the Friend of a Friend (FOAF) vocabulary. Community-
driven projects such as Wikipedia and Science Commons, and publicly funded
projects – for example, in the cultural heritage domain – plan to make large
amounts of structured information available under liberal licence models.

Hence, we see the benefit of a system that allows for interactive query answer-
ing and large-scale data analysis over the aggregated Web structured-data graph.

We study such a system as part of the Semantic Web Search Engine (SWSE)
project. The goal of SWSE is to provide an end-to-end entity-centric system
for collecting, indexing, querying, navigating, and mining graph-structured Web
data. The system will provide improved search and browsing functionality over
existing web search systems; returning answers instead of links, indexing and
handling entity descriptions as opposed to documents. The core of SWSE is
YARS2 (Yet Another RDF Store, Version 2), a distributed system for managing
large amounts of graph-structured data.

Our work unifies experience from three related communities: information re-
trieval, databases, and distributed systems. We see our main contribution as
identifying suitable well-understood techniques from traditional computer sys-
tems research, simplifying and combining these techniques to arrive at a scalable
system to manage massive amounts of graph-structured data collected from the
World Wide Web.

The remainder of this paper is organised as follows:

1. We describe the architecture and modus operandi of a distributed Web search
and query engine operating over graph-structured data.

2. We present a general indexing framework for RDF, instantiated by a read-
optimised, compressed index structure with near-constant access times with
respect to index size.

3. We investigate different data placement techniques for distributing the index
structure.

4. We present methods for parallel concurrent query processing over the dis-
tributed index.

5. We provide experimental measurements of scaling up the system to billions
of statements.

2 Motivating Example

In the following we describe a scenario which current search engines fail to ad-
dress: to answer structured queries over a dataset combined from multiple Web
sources. A well interlinked graph-structured dataset furthermore enables new
types of mining applications to detect common patterns and correlations on
Web scale.

The use-case scenario is to find mutual acquaintances between two people.
More specifically, the query is as follows: give me a list of people known to both
Tim Berners-Lee and Dave Beckett. The query can be answered using data
combined from a number of different sources.

Having aggregated all data from the sources, a query engine can evaluate the
query over the combined graph. For our example query, Dan Brickley is one
resulting answer to the question of who are mutual acquaintances of Tim and
Dave?, that can only be derived by considering data integrated from a number
of sources.

From the motivating example we can derive a number of requirements:

– Keyword searches. The query functionality has to provide means to de-
termine the identifier of an entity1 which can be found via keyword based
searches (such as tim berners lee).

– Joins. To follow relationships between entities we require the ability to per-
form lookups on the graph structure. We cater for large result sets for high
level queries, which is in contrast to Web searches where typically only the
first few results are relevant.

– Web data. Since we collect data from the open Web environment, we need to
pre-process the data (e.g., fusing identifiers); in addition, the index structures
have to be domain independent to deal with schema-less data from the Web.

– Scale. Anticipating the growth of data on the Web, a centralised reposi-
tory aggregating available structured content has to scale competently. The
system has to exhibit linear scale-up to keep up with fast growth in data
volume. A distributed architecture is imperative to meet scale requirements.
To allow for good price/benefit ratio, we deploy the system on commodity
hardware through use of a shared-nothing paradigm.

– Speed. Answers to interactive queries have to be returned promptly; fast
response times are a major challenge as we potentially have to carry out
numerous expensive joins over data sizes that exceed the storage capacity of
one machine. To achieve adequate response times over large amounts of data,
the indexing has to provide constant lookup times with respect to scale.

3 Preliminaries

Before describing the architecture and implementation of our system, we provide
definitions for concepts used throughout the paper.

Definition 1. (RDF Triple, RDF Node) Given a set of URI references R, a set
of blank nodes B, and a set of literals L, a triple (s, p, o) ∈ (R∪B)×R×(R∪B∪L)
is called an RDF triple.

In a triple (s, p, o), s is called subject, p predicate or property, and o object. To
be able to track the provenance of a triple in the aggregated graph, we introduce
the notion of context.

Definition 2. (Triple in Context) A pair (t, c) with a triple t and c ∈ (R∪ B)
is called a triple in context c.

Please note that we refer to a triple ((s, p, o), c) in context c as a quadruple
or quad (s, p, o, c). The context of a quad denotes the URL of the data-source
from hence the contained triple originated.

1 e.g., http://www.w3.org/People/Berners-Lee/card#i

4 Architecture

We present the distributed architecture of SWSE, combining techniques from
databases and information retrieval systems. A system orientated approach [6]
is required for graph-based data from the Web because of scale. The system
architecture of a Semantic Web Search Engine requires the following components:

– Crawler. To harvest web-documents, we use MultiCrawler [14]: a pipelined
crawling architecture which is able to syntactically transform data from a
variety of sources (e.g., HTML, XML) into RDF for easy integration into a
Semantic Web system.

– Indexer. The Indexer provides a general framework for locally creating and
managing inverted keyword indices and statement indices; we see these two
index types as the fundamental building blocks of a more complex RDF
index. Our framework, with combinations of keyword and statement indices,
can be used to implement specialised systems for indexing RDF.

– Object Consolidator. Within RDF, URIs are used to uniquely identify
entities. However, on the web, URIs may not be provided or may conflict
for the same entities. We can improve the linkage of the data graph by
resolving equivalent entities. For example, we can merge equivalent entities
representing a particular person through having the same values for an email
property; see [17] for more details.

– Index Manager. The Index Manager provides network access to the local
indices, offering atomic lookup functionality over the local indices. Local in-
dices can include keyword indices on text and statement indices such as quad
indices on the graph structure, and join indices on recurring combinations
of data values.

– Query Processor. The Query Processor creates and optimises the log-
ical plan for answering both interactive browsing and structured queries.
The Query Processor then executes the plans over the network in a parallel
multi-threaded fashion, accessing the interfaces provided by the local Index
Managers resident on the network.

– Ranker. To score importance and relevance of results during interactive ex-
ploration, we use ReConRank [16]. ReConRank is a links analysis technique
which is used to simultaneously derive ranks of entities and data-sources.
Ranking is an important addition to search and query interfaces and is used
to prioritise presentation of more pertinent results.

– User Interface. To provide user-friendly search, query and browsing over
the data indexed, we provide a user interface which is the human access point
to the Semantic Web Search Engine. Users incrementally build queries to
browse the data-graph – through paths of entity relationships – and retrieve
information about entities.

The focus of the paper is on describing YARS2, the indexing and query
processing functionality as illustrated in Figure 1. In the remainder of the paper,
we first describe the Index Manager, next discuss the Indexer and data placement
strategies, and then present the Query Processor.

Fig. 1. Parallel index construction and query processing data flow.

5 Anatomy of the Index Manager

We require index support to provide acceptable performance for evaluating
queries. The indices include

– a keyword index to enable keyword lookups.
– quad indices to perform atomic lookup operations on the graph structure
– join indices to speed up queries containing certain combinations of values,

or paths in the graph.

For the keyword index, we deploy Apache Lucene2, an inverted text index
[20]. The keyword index maps terms occurring in an RDF object of a triple to
the subject. We implement the quad index using a generic indexing framework
using (key, value) pairs distributed over a set of machines. Similarly, join in-
dices can be deployed using the generic indexing architecture. In the following,
we illustrate the indexing framework using the quad index; join indices can be
deployed analogously.

5.1 Complete Index on Quadruples

The atomic lookup construct posed to our index is a quadruple pattern.

Definition 3. (Variable, Quadruple Pattern) Let V be the set of variables. A
quadruple (s, p, o, c) ∈ (R∪ B ∪ V)× (R∪V)× (R∪ B ∪L∪ V)× (R∪ B ∪ V)
is called a quadruple pattern.

A näıve index structure for RDF graph data with context would require four
indices: on subject, predicate, object, and context. For a single quad pattern
lookup containing more than one constant, such a näıve index structure needs

2 http://lucene.apache.org/java/docs/fileformats.html

to execute a join over up to four indices to derive the answer. Performing joins
on the quad pattern level would severely hamper performance.

Instead, we implement a complete index on quads [13] which allows for direct
lookups on multiple dimensions without requiring joins. If we abstract each of
the four elements of a quad pattern as being either a variable V or a constant C =
R∪B∪L, we can determine that there are 24 = 16 different quad lookup patterns
for quadruples. Näıvely, we can state that 16 complete quad indices are required
to service all possible quad patterns; however, assuming that prefix lookups are
supported by the index, all 16 patterns can be covered by six alternately ordered
indices. Prefix lookups allow the execution of a lookup with a partial key; in our
case an incomplete quad.

We continue by examining three candidate data structures for providing com-
plete coverage of the quad patterns. In examining possible implementations, we
must also take into account the unique data distribution inherent in RDF. The
most noteworthy example of skewed distribution of RDF data elements is that
of rdf:type predicate; almost all entities described in RDF are typed. Also,
specific schema properties can appear regularly in the data. Without special
consideration for such data skew, performance of the index would be impacted.

5.2 Index Structure Candidates

For implementing a complete index on quadruples, we consider three index struc-
tures: B-tree, hash table, and sparse index[11].

– A B-tree index structure provides prefix lookups which would allow us to
implement a complete index on quads with only six indices as justified in
Section 5.1; one index can cover multiple access patterns. However, assuming
a relatively large number of entries (106 − 109), the logarithmic search com-
plexity requires prohibitively many disk I/O operations (20 - 30) given that
we are limited as to the portion of the B-tree we can fit into main memory.

– Hash-tables enable search operations in constant time; however, a hash-
table implementation does not allow for prefix lookups. A complete index
on quads implemented using hash tables would thus require maintaining
all 16 indices. The distribution of RDF data elements is inherently skewed;
elements such as rdf:type would result in over-sized hash buckets. If the
hash value of a key collides with such an oversized bucket, a linear scan over
all entries in the hash bucket is prohibitively expensive.

– A third alternative, and the one we implement, is that of a sparse index,
which is an in-memory data structure that refers to an on-disk sorted and
blocked data file. The sparse index holds the first entry of each block of the
data file with a pointer to the on-disk location of the respective block. To
perform a lookup, we perform binary search on the sparse index in memory
to determine the position of the block in the data file where the entry is
located, if present. With the sparse index structure, we are guaranteed to
use a minimum number of on-disk block accesses, and thus achieve constant
lookup times similar to hash tables. Since the sparse index allows for prefix

lookups, we can use concatenated keys for implementing the complete index
structure on quads.

5.3 Implementing a Complete Index on Quads

The overall index we implement comprises of an inverted text index and six
individual blocked and sorted data files containing quads in six different com-
binations. For the sparse indices over the data files, we only store the first two
elements of the first quad of each block to save memory at the expense of more
data transfers for lookups keys with more than two dimensions.

More generally, the sparse index represents a trade-off decision: by using a
smaller block size and thus more sparse index entries, we can speed up the lookup
performance. By using a larger block size and thus less sparse index entries, we
can store more entries in the data file relative to main memory at the expense
of performance. The performance cost of larger block sizes is attributable to the
increase of disk I/O for reading the larger blocks.

To save disk space for the on-disk indices, we compress the individual blocks
using Huffman coding. Depending on the data values and the sorting order of
the index, we achieve a compression rate of ≈ 90 %. Although compression has a
marginal impact on performance, we deem that the benefits of saved disk space
for large index files outweighs the slight performance dip.

Figure 2 shows the correspondence between block size and cumulated lookup
time for 100k random lookups, and also shows the impact of Huffman coding on
the lookup performance; block sizes are measured pre-compression. The average
lookup time for a data file with 100k entries using a 64k block size is approx-
imately 1.1 ms for the uncompressed and 1.4 ms for the compressed data file.
For 90k random lookups over a 7 GB data file with 420 million synthetically
generated triples, we achieve an average seek time of 8.5 ms.

6 Indexer and Data Placement

The Indexer component handles the local creation of the keyword and sparse
indices for the given data. For our specific complete quad index, we require
building six distinctly ordered, sorted and compressed files from the raw data.
The following outlines the process for local index creation orchastrated by the
Indexer component:

1. Block and compress the raw data into a data file ordered in subject, predi-
cate, object, context order (SPOC).

2. Sort the SPOC data file using a multi-way merge-sort algorithm.
3. Reorder SPOC to POCS and sort the POCS data file.
4. Complete step 3 for the other four index files.
5. Create the inverted text index from the sorted SPOC index file.

We performed an initial evaluation of the multi-way merge-sort of a file con-
taining over 490M quads. We sorted segments of the file in memory, wrote the

 1000

 10000

 100000

 1e+06

 512 256 128 64 32 16 8 4 2 1

ac
ce

ss
 ti

m
e

in
 m

s

block size in kBytes

compressed
uncompressed

approximated(uncompressed)
approximated(uncompressed)

Fig. 2. Effect of block size on lookup performance using uncompressed and compressed
blocks. We performed random lookups on all keys in a file containing 100k entries with
varying block sizes. Results plotted on log/log scale.

sorted quads to batch files, and then merge-sorted the resulting batch files. De-
pending on the size of the in-memory segments, the process took between 19
hours 40 minutes (80k statements in-memory) and 9 hours 26 minutes (320k
statements in-memory).

Thus far, we have covered local index management. Since our index needs
to implement a distributed architecture for scalability and we require multiple
machines running local Index Managers, we need to examine appropriate data
placement strategies.

We consider three partitioning methods to decide which machine(s) a given
quad will be indexed on:

1. random placement with flooding of queries to all machines

2. placement based on a hash function with directed lookup to machines where
quads are located

3. range-based placement with directed lookups via a global data structure

We focus on the hash-based placement, which requires only a globally known
hash function to decide where to locate the entry. The hash placement method
can utilise established distributed hash table substrates to add replication and
fail safety. For more on how to distribute triples in such a network see [8].

We avoid complex algorithms to facilitate speed optimisation. The peer to
which an index entry (e.g. SPOC, POCS) is placed is determined by:

peer(entry) = h(entry[0]) mod m

where m is the number of available Index Managers.

Hashing the first element of an index entry assumes an even distribution of
values for the element which is not true for predicates. The issue of load balancing
based on query forwarding in hash-distributed RDF stores has been investigated
in [2]. However, a simpler solution which does not require query forwarding is
to resort to random distribution where necessary (for POCS), where the index
is split into even sizes, and queries are flooded to all machines in parallel.

To evaluate the indexing component, we created a univ(50000) dataset us-
ing the Lehigh University Benchmark [12], which we adapted to also produce
variable-length text strings from an English dictionary in order to test Lucene.
Table 1 summarises the indices deployed for the scale-up experiments.

Description 1 Machine 16 Machines

Number of statements 425 million 6.8 billion

Index size (complete index) 6*7 GB 672 GB

Index size (lucene) 16 GB 256 GB
Table 1. Index statistics for syntectically generated dataset.

7 Distributed Query Evaluation

We implement a general-purpose query processor operating on multiple remote
Index Managers to enable evaluation of queries in SPARQL format3. In this
section, we

– discuss network lookup optimisations for stream-processing large result sizes
and evaluate our approach with a dataset of 7 billion statements

– devise a query processing method to perform joins over the distributed Index
Managers.

7.1 Atomic Lookups over the Network

Before we can perform join processing in the Query Processor, we must imple-
ment optimised methods for handling the network traffic and memory overhead
involved in sending large amounts of atomic lookup requests and receiving large
amounts of response data over the network, to and from the remote Index Man-
agers.

We implement multi-threaded requests and responses between the Query
Processor and the Index Managers. For example, with our flooding distribu-
tion, each machine in the network receives and processes the lookup requests in
parallel.

To be able to handle large result sets, we have to be careful not to overload
main memory with intermediate results that occur during the query processing

3 http://www.w3.org/TR/rdf-sparql-query/

and therefore we need a streaming results model where the main memory re-
quirements of the machines are finite since results are materialised in-memory
as they are being consumed.

For a quad pattern lookup, multiple remote Index Managers are probed in
parallel using multiple threads. The threaded connections to the Index Managers
output results into a coordinating blocking queue with fixed capacity. The mul-
tiple threads synchronise on the queue and pause output if the queue capacity
is reached.

Iterators that return sets instead of tuples to increase performance have been
described in [18] as row blocking. We measure the impact of row blocking via
an index scan query over 2, 4, 8, and 16 Index Managers. Each index manager
provides access to a over 7 GB data file with 420 million synthetically generated
triples, which amounts to a total capacity of roughly 7 billion statements. To be
able to test keyword performance, we changed the string values in the Lehigh
benchmark to include keywords randomly selected from a dictionary.

Figure 3 shows the impact of varying row blocking buffer size on the network
throughput. As can be seen, throughput remains constant despite increasing the
number of Index Managers servicing the index scan query. From this we can
conclude that a bottleneck exists in the machine consuming results.

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 64 32 16 8 4 2 1

th
ro

ug
pu

t i
n

en
tr

ie
s/

m
s

row blocking limit in k entries

2 machines
4 machines
8 machines

16 machines

Fig. 3. Throughput for index scan with varying row blocking sizes.

7.2 Join Processing

We begin our discussion of join processing by introducing the notions of vari-
able bindings, join conditions, and join evaluation and continue by detailing our
method of servicing queries which contain joins.

Definition 4. (Variable bindings) A variable binding is a function from the set
of variables V to the set of URI references R, blank nodes B, or literals L.

Definition 5. (Join Condition) Given multiple quad patterns in a query, a join
condition exists between two quad patterns Qj and Qk iff there exists one variable
v ∈ V , v ∈ Qj , v ∈ Qk. Joins are commutative. Variable v is termed the join
variable.

In our query processing system, a query may consist either of one quad
pattern (an atomic lookup) or may consist of multiple quad patterns where each
pattern satisfies the join condition with at least one other pattern.

For joins we use a method called index nested loops join [11]. Multiple join
operations can run concurrently in individual threads, with queues as coordina-
tion data structures for data exchange between the operators. Figure 4 illustrates
the parallel execution of joins across remote Index Managers coordinated by the
main thread M . Queues are represented as stack of boxes. Thread S represents
a lookup operations of the first quad pattern in a query. The lookup is flooded
to n Index Managers via threads S1...n. The alternative would be to perform
a directed lookup via the hash function. Intermediate results are passed to the
join thread J , which in turn floods the lookups to n Index Managers via threads
J1...n. Threads J1...n write final join evaluations to a blocking queue, which is
accessed by the main thread M .

Fig. 4. Concurrent query execution with threads for exchanging intermediate results.

A necessary optimisation for joins requires that we carefully select which
quad pattern will be serviced first to find initial valuations for the join variable.
For join reordering, we can utilise a dynamic programming approach.

To evaluate the performance of distributed join processing, we deployed the
7 billion dataset over 16 Index Managers on 16 machines, and put the query
processing component on a 17th machine. We tested 100 queries with a randomly
chosen resource joined with one or two quad patterns. Figure 5 illustrates the
correspondence between performance and result size.

 0

 1

 2

 3

 4

 5

 6

 0 50000 100000 150000 200000 250000 300000

tim
e

in
 s

ec
on

ds

result size in bytes

1 join
2 joins

Fig. 5. Distributed join evaluation performance depending on the result size

8 Related Work

We employ variations of well-understood techniques from the fields of informa-
tion retrieval, databases, and distributed systems. Inverted indices are discussed
in Salton and McGill [20]. Our sparse index implementation for quads and sup-
porting indices can be seen as a BTree index [3] with height 2, where the first
level is entirely kept in memory. We optionally use compression, whose impor-
tance is well motivated by [23]. The idea of using multiple sorting order for keys
to allow multidimensional lookups stems from [19]. Kowari [24] uses a similar
complete quadruple index implemented using a hybrid of AVL trees and B-Trees.
Semijoins, a method for performing joins in distributed databases has been in-
troduced by Bernstein and Goodman [4]. Selinger et al. [21] introduced dynamic
programming as a method for deriving query plans.

The WebBase [15] project describes in detail the architecture of a medium-
sized Web repository, and various choices for implementing such a system. In

contrast to documents, we deal with structured data. Swoogle [9] uses informa-
tion retrieval methods to provide keyword searches over RDF data on a single
machine. In contrast, we provide structured query processing capabilities on a
distributed architecture.

Sesame [7] is one of the early RDF stores operating on one machine. Cai and
Frank [8] propose a method to distributed RDF storage on a distributed hash
table substrate. Stuckenschmidt et al. [22] investigate theoretically the use of
global indices for distributed query processing for RDF. A treatment of RDF
from a graph database perspective can be found in [1]. We have made a step to-
wards unifying query processing with Web search; adding reasoning functionality
to the mix [10] is the next step.

9 Conclusion

We have presented the architecture of a federated graph-structured data reposi-
tory for use in a Semantic Web search engine, described various implementation
alternatives, and provided experimental and theoretical performance evaluation
of the parallel system. To handle the complexity of a system involving a large
number of machines, and to be able to optimise the performance of the individ-
ual operations, our data structures and methods have to exhibit good scale-up
properties. We thus devised local data structures with constant seeks and linear
throughput, optimised network data transfer, and multi-threaded query process-
ing to achieve acceptable query performance on large data sets in a federated
system.

Acknowledgements

This work has been supported by Science Foundation Ireland under project Lion
(SFI/02/CE1/I131) and by the European Commission under project TripCom
(IST-4-0027324-STP).

References

1. R. Angles and C. Gutiérrez. Querying rdf data from a graph database perspective.
In Proceedings of the Second European Semantic Web Conference, pages 346–360,
2005.

2. D. Battré, F. Heine, A. Höing, and O. Kao. Load-balancing in p2p based rdf stores.
In 2nd Workshop on Scalable Semantic Web Knowledge Base System, 2006.

3. R. Bayer and E. M. McCreight. Organization and maintenance of large ordered
indices. Acta Informatica, 1:173–189, 1972.

4. P. A. Bernstein and N. Goodman. Power of natural semijoins. SIAM Journal on

Computing, 10(4):751–771, 1981.
5. P. A. Boncz, M. Zukowski, and N. Nes. MonetDB/X100: Hyper-Pipelining Query

Execution. In Proceedings of the Biennial Conference on Innovative Data Systems

Research, pages 225–237, 2005.

6. E. A. Brewer. Combining Systems and Databases: A Search Engine Retrospective
. Readings in Database Systems, 4th. Edition, 1998.

7. J. Broekstra, A. Kampman, and F. van Harmelen. Sesame: A Generic Architec-
ture for Storing and Querying RDF and RDF Schema. In Proceedings of the 2nd

International Semantic Web Conference, pages 54–68. Springer, 2002.
8. M. Cai and M. Frank. Rdfpeers: a scalable distributed rdf repository based on a

structured peer-to-peer network. In Proceedings of the 13th International World

Wide Web Conference, pages 650–657. ACM Press, 2004.
9. L. Ding, T. Finin, A. Joshi, R. Pan, R. S. Cost, Y. Peng, P. Reddivari, V. C. Doshi,

and J. Sachs. Swoogle: A Search and Metadata Engine for the Semantic Web. In
Proceedings of the Thirteenth ACM Conference on Information and Knowledge

Management. ACM Press, 2004.
10. D. Fensel and F. van Harmelen. Unifying reasoning and search to web scale. IEEE

Internet Computing, 11(2):96, 94–95, 2007.
11. H. Garcia-Molina, J. Widom, and J. D. Ullman. Database System Implementation.

Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1999.
12. Y. Guo, Z. Pan, and J. Heflin. An Evaluation of Knowledge Base Systems for Large

OWL Datasets. In Proceedings of the 3rd International Semantic Web Conference,
pages 274–288. Springer, 2004.

13. A. Harth and S. Decker. Optimized index structures for querying rdf from the
web. In Proceedings of the 3rd Latin American Web Congress, pages 71–80. IEEE
Press, 2005.

14. A. Harth, J. Umbrich, and S. Decker. Multicrawler: A pipelined architecture for
crawling and indexing semantic web data. In Proceedings of the 5th International

Semantic Web Conference, pages 258–271, 2006.
15. J. Hirai, S. Raghavan, H. Garcia-Molina, and A. Paepcke. WebBase: a repository

of Web pages. Computer Networks, 33(1–6):277–293, 2000.
16. A. Hogan, A. Harth, and S. Decker. ReConRank: A Scalable Ranking Method for

Semantic Web Data with Context. In 2nd Workshop on Scalable Semantic Web

Knowledge Base Systems, 2006.
17. A. Hogan, A. Harth, and S. Decker. Performing object consolidation on the seman-

tic web data graph. In Proceedings of 1st I3: Identity, Identifiers, Identification

Workshop, 2007.
18. D. Kossmann. The state of the art in distributed query processing. ACM Com-

puting Surveys, 32(4):422–469, 2000.
19. V. Y. Lum. Multi-attribute retrieval with combined indexes. Communications of

the ACM, 13(11):660–665, 1970.
20. G. Salton and M. McGill. Introduction to Modern Information Retrieval. McGraw-

Hill Book Company, 1984.
21. P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price.

Access path selection in a relational database management system. In Proceedings

of the 1979 International Conference on Management of Data, pages 23–34, 1979.
22. H. Stuckenschmidt, R. Vdovjak, G.-J. Houben, and J. Broekstra. Index Structures

and Algorithms for Querying Distributed RDF Repositories. In Proceedings of the

13th International World Wide Web Conference, pages 631–639, 2004.
23. I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes: Compressing and

Indexing Documents and Images. Morgan Kaufmann, 1999.
24. D. Wood, P. Gearon, and T. Adams. Kowari: A platform for semantic web storage

and analysis. In XTech 2005 Conference, 2005.

