(OLLSCOILNAGAILLIMHE

[JNIVERSITY oF GALWAY

Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the
published version when available.

XSPARQL: Traveling between the XML and RDF worlds -

it and avoiding the XSLT pilgrimage

Author(s) | Akhtar, Waseem; Krennwallner, Thomas; Polleres, Axel

Publication 2008

Date
Waseem Akhtar, Jacek Kopecky, Thomas Krennwallner, Axel
Bl iestian Polleres "X SPARQL: Traveling between the XML and RDF
I aEiten worlds - and avoiding the XSLT pilgrimage”, Proceedings of

the 5th European Semantic Web Conference (ESWC2008),
Springer, 2008.

Publisher | Springer

Link to
publisher's | http://dx.doi.org/10.1007/978-3-540-68234-9 33
version

Item record | http://hdl.handle.net/10379/419

Downloaded 2024-03-20T10:44:29Z

Some rights reserved. For more information, please see the item record link above.

Glolcle

2 HC MWD

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/

XSPARQL: Traveling between the XML and RDF
worlds — and avoiding the XSLT pilgrimage*

Waseem Akhtar’, Jacek Kopecky?, Thomas Krennwallner', and Axel Polleres!

! Digital Enterprise Research Institute, National University of Ireland, Galway
{firstname.lastname}@deri.org
2 STI Innsbruck, University of Innsbruck, Austria
jacek.kopeckyQuibk.ac.at

Abstract. With currently available tools and languages, translating between an
existing XML format and RDF is a tedious and error-prone task. The importance
of this problem is acknowledged by the W3C GRDDL working group who faces
the issue of extracting RDF data out of existing HTML or XML files, as well as
by the Web service community around SAWSDL, who need to perform lowering
and lifting between RDF data from a semantic client and XML messages for a
Web service. However, at the moment, both these groups rely solely on XSLT
transformations between RDF/XML and the respective other XML format at
hand. In this paper, we propose a more natural approach for such transformations
based on merging XQuery and SPARQL into the novel language XSPARQL. We
demonstrate that XSPARQL provides concise and intuitive solutions for mapping
between XML and RDF in either direction, addressing both the use cases of
GRDDL and SAWSDL. We also provide and describe an initial implementation
of an XSPARQL engine, available for user evaluation.

1 Introduction

There is a gap within the Web of data: on one side, XML provides a popular format for
data exchange with a rapidly increasing amount of semi-structured data available. On
the other side, the Semantic Web builds on data represented in RDF, which is optimized
for data interlinking and merging; the amount of RDF data published on the Web is also
increasing, but not yet at the same pace. It would clearly be useful to enable reuse of
XML data in the RDF world and vice versa. However, with currently available tools and
languages, translating between XML and RDF is not a simple task.

The importance of this issue is currently being acknowledged within the W3C in
several efforts. The Gleaning Resource Descriptions from Dialects of Languages [9]
(GRDDL) working group faces the issue of extracting RDF data out of existing (X)HTML
Web pages. In the Semantic Web Services community, RDF-based client software needs
to communicate with XML-based Web services, thus it needs to perform transforma-
tions between its RDF data and the XML messages that are exchanged with the Web

* This material is based upon works supported by the European FP6 projects inContext (IST-
034718) and TripCom (IST-4-027324-STP), and by Science Foundation Ireland under Grant
No. SFI/02/CE1/1131.

@prefix alice: <alice/> .
@prefix foaf: <...foaf/0.1/> .

alice:me a foaf:Person.
alice:me foaf:knows _:c.
-:c a foaf:Person.

-:c foaf:name "Charles".

<rdf:RDF xmlns:foaf="...foaf/0.1/"
xmlns:rdf="...rdf-syntax-ns#">
<foaf:Person rdf:about="alice/me">
<foaf:knows>
<foaf:Person foaf:name="Charles"/>
</foaf:knows>
</foaf:Person>

xmlns:rdf="...rdf-syntax-ns#">
<rdf:Description rdf:nodeID="x">
<rdf:type
rdf:resource=".../Person"/>
<foaf:name>Charles</foaf:name>
</rdf:Description>
<rdf:Description
rdf:about="alice/me">
<rdf:type
rdf:resource=".../Person"/>
<foaf:knows rdf:nodeID="x"/>

</rdf :RDF>
(@ (®)
K i Cw " <rdf:RDF xmlns:foaf="...foaf/0.1/"
<rdf:RDF xmlns:foaf="...foaf/0.1/ xmins:rdf="...rdf-syntax-ns$">

<rdf:Description rdf:about="alice/me">
<foaf:knows rdf:nodeID="x"/>
</rdf:Description>

<rdf:Description rdf:about="alice/me">
<rdf:type rdf:resource=".../Person"/>
</rdf:Description>

<rdf:Description rdf:nodeID="x">
<foaf:name>Charles</foaf:name>
</rdf:Description>

<rdf:Description rdf:nodeID="x">

- ; <rdf:type rdf:resource=".../Person"/>
</rdf:Description> </rdf'DZ§cription>
</rdf :RDF> </rdf-§DF>
© @

Fig. 1. Different representations of the same RDF graph

services. The Semantic Annotations for WSDL (SAWSDL) working group calls these
transformations lifting and lowering (see [12,14]). However, both these groups propose
solutions which rely solely on XSL transformations (XSLT) [10] between RDF/XML [2]
and the respective other XML format at hand. Using XSLT for handling RDF data is
greatly complicated by the flexibility of the RDF/XML format. XSLT (and XPath) were
optimized to handle XML data with a simple and known hierarchical structure, whereas
RDF is conceptually different, abstracting away from fixed, tree-like structures. In fact,
RDF/XML provides a lot of flexibility in how RDF graphs can be serialized. Thus,
processors that handle RDF/XML as XML data (not as a set of triples) need to take
different possible representations into account when looking for pieces of data. This is
best illustrated by a concrete example: Fig. 1 shows four versions of the same FOAF (cf.
http://www.foaf-project.org) data.’ The first version uses Turtle [3], a simple
and readable textual format for RDF, inaccessible to pure XML processing tools though;
the other three versions are all RDF/XML, ranging from concise (b) to verbose (d).

The three RDF/XML variants look very different to XML tools, yet exactly the same
to RDF tools. For any variant we could create simple XPath expressions that extract for
instance the names of the persons known to Alice, but a single expression that would
correctly work in all the possible variants would become more involved. Here is a list
of particular features of the RDF data model and RDF/XML syntax that complicate
XPath+XSLT processing:

Elements denoting properties can directly contain value(s) as nested XML, or
reference other descriptions via the rdf: resource or rdf : nodeID attributes.
References to resources can be relative or absolute URIs.

Container membership may be expressed as rdf:1i or rdf:_1, rdf:_2, etc.
Statements about the same subject do not need to be grouped in a single element.

3 In listings and figures we often abbreviate well-known namespace URISs (nttp://www.w3.org/
1999/02/22-rdf-syntax-ns#, http://xmlns.com/foaf/0.1/, etc.) with “...”.

relations.rdf

. fi foaf: <h : 1ns. foaf/0.1/> .
Lowerlng @E.);;i ix oa. tt}f:u //xmlns.com/foaf/0.1/
relations.xml r o a foaf:Person;
foaf:name "Alice";

<person name="Alice"> an?inows 722'

<knows>Bob</knows> cal:knows _:b3.

:b2 a foaf:Person; foaf:name "Bob";
<knows>Charles</knows> -
foaf:knows :b3.

</person> - " "
<person name="Bob"> _:b3 a foaf:Person; foaf:name "Charles".

<knows>Charles</knows>
</person> _J
_—— Llftlng

<person name="Charles"/>
</relations>

<relations>

Fig. 2. From XML to RDF and back: “lifting” and “lowering”

— String-valued property values such as foaf : name in our example (and also values
of rdf : type) may be represented by XML element content or as attribute values.

— The type of a resource can be represented directly as an XML element name, with
an explicit rdf : type XML element, or even with an rdf: type attribute.

This is not even a complete list of the issues that complicate the formulation of adequate
XPath expressions that cater for every possible alternative in how one and the same RDF
data might be structured in its concrete RDF/XML representation.

Apart from that, simple reasoning (e.g., RDFS materialization) improves data queries
when accessing RDF data. For instance, in FOAF, every Person (and Group and Organi-
zation etc.) is also an Agent, therefore we should be able to select all the instances of
foaf:Agent. If we wanted to write such a query in XPath+XSLT, we literally would
need to implement an RDFS inference engine within XSLT. Given the availability of
RDF tools and engines, this seems to be a dispensable exercise.

Recently, two new languages have entered the stage for processing XML and RDF
data: XQuery [5] is a W3C Recommendation since early last year and SPARQL [20] has
finally received W3C’s Recommendation stamp in January 2008. While both languages
operate in their own worlds — SPARQL in the RDF- and XQuery in the XML-world —
we show in this paper that the merge of both in the novel language XSPARQL has the
potential to finally bring XML and RDF closer together. XSPARQL provides concise and
intuitive solutions for mapping between XML and RDF in either direction, addressing
both the use cases of GRDDL and SAWSDL. As a side effect, XSPARQL may also be
used for RDF to RDF transformations beyond the capabilities of “pure” SPARQL. We
also describe an implementation of XSPARQL, available for user evaluation.

In the following, we elaborate a bit more in depth on the use cases of lifting and
lowering in the contexts of both GRDDL and SAWSDL in Section 2 and discuss how
they can be addressed by XSLT alone. Next, in Section 3 we describe the two starting
points for an improved lifting and lowering language — XQuery and SPARQL — before
we announce their happy marriage to XSPARQL in Section 4. Particularly, we extend
XQuery’s FLWOR expressions with a way of iterating over SPARQL results. We sketch
the semantics of XSPARQL and describe a rewriting algorithm that translates XSPARQL
to XQuery. By this we can show that XSPARQL is a conservative extension of both
XQuery and SPARQL. A formal treatment of XSPARQL showing this correspondence

<xsl:stylesheet <rdf:RDF xmlns:rdf="...rdf-syntax-ns#"

xmlns:xsl="...XSL/Transform" xmlns: foaf="...foaf/0.1/">
xmlns:foaf="...foaf/0.1/" <foaf:Person>
xmlns:rdf="...rdf-syntax-ns#" <foaf:name>Alice</foaf:name>

<foaf:knows><foaf:Person>

version="2.0">
<foaf:name>Bob</foaf:name>

<xsl:template match="/relations"> </foaf:Person></foaf:knows>
<rdf :RDF> <foaf:knows><foaf:Person>
<xsl:apply-templates /> <foaf:name>Charles</foaf:name>
</rdf:RDF> </foaf:Person></foaf:knows>
</xsl:template> </foaf:Person>
<foaf:Person>
<xsl:template match="person"> <foaf:name>Bob</foaf :name>
<foaf:Person> <foaf:knows><foaf:Person>
<foaf:name> <foaf:name>Charles</foaf :name>
<xsl:value-of </foaf:Person></foaf:knows>
select="./@name"/> </foaf:Person>
</foaf:name> <foaf:Person>
<xsl:apply-templates/> <foaf:name>Charles</foaf:name>
</foaf:Person> </foaf:Person>
</xsl:template> </rdf :RDF>
<xsl:template match="knows"> @prefix foaf: <http://xmlns.com/foaf/0.1/>.
<foaf:knows><foaf:Person> _:bl a foaf:Person; foaf:name "Alice";
<foaf:name> foaf:knows _:b2; foaf:knows _:b3.
<xsl:apply-templates/> _:b2 a foaf:Person; foaf:name "Bob".

</foaf:name>
</foaf:Person></foaf:knows>

_:b3 a foaf:Person; foaf:name "Charles".
_:b4 a foaf:Person; foaf:name "Bob";

</xsl:template> foaf:knows _:b5
-:b5 a foaf:Person; foaf:name "Charles" .
</xsl:stylesheet> _:b6 a foaf:Person; foaf:name "Charles".
(a) mygrddl.xslI (b) Result of the GRDDL transform

in RDF/XML (up) and Turtle (down)
Fig. 3. Lifting attempt by XSLT

is given in an extended version of this paper [1]. We wrap up the paper with an outlook
to related and future works and conclusions to be drawn in Section 5 and 6.

2 Motivation — Lifting and Lowering

As a running example throughout this paper we use a mapping between FOAF data and
a customized XML format as shown in Fig. 2. The task here in either direction is to
extract for all persons the names of people they know. In order to keep things simple, we
use element and attribute names corresponding to the respective classes and properties
in the FOAF vocabulary (i.e., Person, knows, and name). We assume that names in
our XML file uniquely identify a person which actually complicates the transformation
from XML to RDF, since we need to create a unique, distinct blank node per name. The
example data is a slight variant of the data from Fig. 1, where Alice knows both Bob and
Charles, Bob knows Charles, and all parties are identified by blank nodes.

Because semantic data in RDF is on a higher level of abstraction than semi-structured
XML data, the translation from XML to RDF is often called “lifting” while the opposite
direction is called “lowering,” as also shown in Fig. 2.

Lifting in GRDDL. The W3C Gleaning Resource Descriptions from Dialects of Lan-
guages (GRDDL) working group has the goal to complement the concrete RDF/XML
syntax with a mechanism to relate to other XML dialects (especially XHTML or “mi-
croformats”) [9]. GRDDL focuses on the lifting task, i.e., extracting RDF from XML.
To this end, the working group recently published a finished Recommendation which

Client RDF data XML messages Web service
O
(id lowering > ——
N, E—_—
/i\ x e SOAP communication
dio P lifting
=

A

Fig. 4. RDF data lifting and lowering for WS communication

specifies how XML files or XML Schema namespace documents can reference transfor-
mations that are then processed by a GRDDL-aware application to extract RDF from the
respective source file. Typically — due to its wide support — XSLT [10] is the language of
choice to describe such transformations. However, writing XSLT can be cumbersome,
since it is a general-purpose language for producing XML without special support for
creating RDF. For our running example, the XSLT in Fig. 3(a) could be used to generate
RDF/XML from the relations.xml file in Fig. 2 in an attempt to solve the lifting step.
Using GRDDL, we can link this XSLT file mygrddl.xsl from relations.xml by changing
the root element of the latter to:

<relations xmlns:grddl="http://www.w3.0rg/2003/g/data-view#"
grddl:transformation="mygrddl.xsl"> ...

The RDF/XML result of the GRDDL transformation is shown in the upper part of
Fig. 3(b). However, if we take a look at the Turtle version of this result in the lower part
of Fig. 3(b) we see that this transformation creates too many blank nodes, since this
simple XSLT does not merge equal names into the same blank nodes.

XSLT is a Turing-complete language, and theoretically any conceivable transforma-
tion can be programmed in XSLT; so, we could come up with a more involved stylesheet
that creates unique blank node identifiers per name to solve the lifting task as intended.
However, instead of attempting to repair the stylesheet from Fig. 3(a) let us rather ask
ourselves whether XSLT is the right tool for such transformations. The claim we make is
that specially tailored languages for RDF-XML transformations like XSPARQL which
we present in this paper might be a more suitable alternative to alleviate the drawbacks
of XSLT for the task that GRDDL addresses.

Lifting/Lowering in SAWSDL. While GRDDL is mainly concerned with lifting, in
SAWSDL (Semantic Annotations for WSDL and XML Schema) there is a strong need
for translations in the other direction as well, i.e., from RDF to arbitrary XML.

SAWSDL is the first standardized specification for semantic description of Web
services. Semantic Web Services (SWS) research aims to automate tasks involved
in the use of Web services, such as service discovery, composition and invocation.
However, SAWSDL is only a first step, offering hooks for attaching semantics to WSDL
components such as operations, inputs and outputs, etc. Eventually, SWS shall enable
client software agents or services to automatically communicate with other services
by means of semantic mediation on the RDF level. The communication requires both
lowering and lifting transformations, as illustrated in Fig. 4. Lowering is used to create
the request XML messages from the RDF data available to the client, and lifting extracts
RDF from the incoming response messages.

<xsl:stylesheet version="1.0" xmlns:rdf="...rdf-syntax-ns#"
xmlns:foaf="...foaf/0.1/" xmlns:xsl="...XSL/Transform">
<xsl:template match="/rdf:RDF">
<relations><xsl:apply-templates select=".//foaf:Person"/></relations>
</xsl:template>
<xsl:template match="foaf:Person"><person name="./Q@foaf:name">
<xsl:apply-templates select="./foaf:knows"/>
</person></xsl:template>
<xsl:template match="foaf:knows[@rdf:nodeID]"><knows>
<xsl:value—-of select="//foaf:Person[@rdf:nodelID=./QRrdf:nodeID]/QRfoaf:name"/>
</knows></xsl:template>
<xsl:template match="foaf:knows[foaf:Person]">
<knows><xsl:value-of select="./foaf:Person/@foaf:name"/></knows>
</xsl:template>
</xsl:stylesheet>

Fig. 5. Lowering attempt by XSLT (mylowering.xsl)

As opposed to GRDDL, which provides hooks to link XSLT transformations on
the level of whole XML or namespace documents, SAWSDL provides a more fine-
grained mechanism for “semantic adornments” of XML Schemas. In WSDL, schemata
are used to describe the input and output messages of Web service operations, and
SAWSDL can annotate messages or parts of them with pointers to relevant semantic
concepts plus links to lifting and lowering transformations. These links are created us-
ing the sawsdl:1iftingSchemaMapping and sawsdl:loweringSchemaMapping
attributes which reference the transformations within XSL elements (xs1:element,
xsl:attribute, etc.) describing the respective message parts.

SAWSDL’s schema annotations for lifting and lowering are not only useful for
communication with web services from an RDF-aware client, but for service mediation
in general. This means that the output of a service .S; uses a different message format than
service S expects as input, but it could still be used if service S7 and S, provide lifting
and lowering schema mappings, respectively, which map from/to the same ontology, or,
respectively, ontologies that can be aligned via ontology mediation techniques (see [11]).

Lifting is analogous to the GRDDL situation — the client or an intermediate mediation
service receives XML and needs to extract RDF from it —, but let us focus on RDF data
lowering now. To stay within the boundaries of our running example, we assume a social
network site with a Web service for querying and updating the list of a user’s friends.
The service accepts an XML format a la relations.xml (Fig. 2) as the message format for
updating a user’s (client) list of friends.

Assuming the client stores his FOAF data (relations.rdf in Fig. 2) in RDF/XML in
the style of Fig. 1(b), the simple XSLT stylesheet mylowering.xsl in Fig. 5 would perform
the lowering task. The service could advertise this transformation in its SAWSDL
by linking mylowering.xsl in the sawsdl: loweringSchemaMapping attribute of the
XML Schema definition of the relations element that conveys the message payload.
However, this XSLT will break if the input RDF is in any other variant shown in Fig. 1.
We could create a specific stylesheet for each of the presented variants, but creating one
that handles all the possible RDF/XML forms would be much more complicated.

In recognition of this problem, SAWSDL contains a non-normative example which
performs a lowering transformation as a sequence of a SPARQL query followed by an
XSLT transformation on SPARQL’s query results XML format [6]. Unlike XSLT or
XPath, SPARQL treats all the RDF input data from Fig. 1 as equal. This approach makes
a step in the right direction, combining SPARQL with XML technologies. The detour

Prolog: [P |declare namespace
prefix="namespace-URI" Prolog: [P |declare namespace prefix="namespace-URI"

Body: [F [£or var in XPath-expression or prefix prefix: <namespace-URI>

L |let var := XPath-expression Body: |F [for var in XPath-expression

W |where XPath-expression L |1et var := XPath-expression

O |order by XPath-expression W |where XPath-expression
Head: [R [return XML+ nested XQuery | O |order by expression or

.. F’|for varlist

(a) Schematic view on XQuery D |from /from named <dataset-URI>
Prolog: [P [prefix prefix: <namespace-URI> | W|where { pattern }
Head: [C [construct { remplate } | M order by expression .

limit integer > 0 offset integer > 0

Body: (D [from /from named <dataset-URI>)

W|where { pattern } Head: | C [construct]

M |ozrder by expression { template (with nested XSPARQL) } or

limit integer > 0 offset integer > 0 R [return XML+ nested XSPARQL

(b) Schematic view on SPARQL (c) Schematic view on XSPARQL
Fig. 6. An overview of XQuery, SPARQL, and XSPARQL

through SPARQL’s XML query results format however seems to be an unnecessary
burden. The XSPARQL language proposed in this paper solves this problem: it uses
SPARQL pattern matching for selecting data as necessary, while allowing the construc-
tion of arbitrary XML (by using XQuery) for forming the resulting XML structures.

As more RDF data is becoming available on the Web which we want to integrate
with existing XML-aware applications, SAWSDL will obviously not remain the only
use case for lowering.

3 Starting Points: XQuery and SPARQL

In order to end up with a better suited language for specifying translations between XML
and RDF addressing both the lifting and lowering use cases outlined above, we can build
up on two main starting points: XQuery and SPARQL. Whereas the former allows a
more convenient and often more concise syntax than XSLT for XML query processing
and XML transformation in general, the latter is the standard for RDF querying and
construction. Queries in each of the two languages can roughly be divided in two parts:
(1) the retrieval part (body) and (ii) the result construction part (head). Our goal is to
combine these components for both languages in a unified language, XSPARQL, where
XQuery’s and SPARQL’s heads and bodies may be used interchangeably. Before we go
into the details of this merge, let us elaborate a bit on the two constituent languages.

XQuery. As shown in Fig. 6(a) an XQuery starts with a (possibly empty) prolog (P) for
namespace, library, function, and variable declarations, followed by so called FLWOR -
or “flower” — expressions, denoting body (FLWO) and head (R) of the query. We only
show namespace declarations in Fig. 6 for brevity.

As for the body, for clauses (F) can be used to declare variables looping over the
XML nodeset returned by an XPath expression. Alternatively, to bind the entire result
of an XPath query to a variable, 1let assignments can be used. The where part (W)
defines an XPath condition over the current variable bindings. Processing order of results
of a for can be specified via a condition in the order by clause (O).

In the head (R) arbitrary well-formed XML is allowed following the return
keyword, where variables scoped in an enclosing £or or let as well as nested XQuery
FLWOR expressions are allowed.

1|declare namespace foaf="...foaf/0.1/"; |declare namespace foaf="...foaf/0.1/";
2|declare namespace rdf="...-syntax-ns#";|declare namespace rdf="...-syntax-ns#";
3|let $persons := //*[@name or ../knows] |let $persons := //*[@name or ../knows]
4|return return

5|<rdf :RDF>

6| {

7| for $p in Spersons for $p in $persons

8| let $n := if(S$p[@name]) let $n := if($p[@name])

9 then $p/@name else $p then $p/@name else $p

10| let $id :=count ($p/preceding: :*) let $id :=count ($p/preceding::*)

11 +count ($p/ancestor: :*) +count ($p/ancestor: :x)

12| where where

13| not (exists ($p/following::«[not (exists ($p/following:: x|

14 @name=$n or data(.)=5n])) @name=$n or data(.)=S$n]))

15| return construct {

16| <foaf:Person rdf:nodeId="b{$id}"> _:b{$id} a foaf:Person;

17| <foaf:name>{data ($n)}</foaf:name> foaf:name {data($n)}.

18

19| for $k in $persons for $k in $persons

20 let $kn := if(S$k[@name]) let $kn := if(S$k[@name])

21 then $k/@name else Sk then $k/@name else Sk

22| let $kid :=count ($k/preceding::«) let $kid :=count ($k/preceding::«)

23 +count ($Sk/ancestor: :*) +count (Sk/ancestor::x)

24 where where

25 Skn = data(//*[@name=3$n]/knows) and Skn = data(//+[@name=$n]/knows) and
26 not (exists (Skn/../following::«[not (exists ($kn/../following: :*[

27 @name=$kn or data(.)=$kn])) @name=$kn or data(.)=$kn]))

28| return construct {

29 <foaf:knows>) . R) .

30 <foaf:Person rdf:nodeID:"b{Skid}"/> ’:g%:i?c}i}f:aiézz?;zr’s'cﬁjskld}'

31 </foaf :knows> - . .

320 1} }

33| </foaf:Person> 1

34| ¥ }

35|</rdf : RDF>

(a) XQuery (b) XSPARQL
Fig. 7. Lifting using XQuery and XSPARQL

Any XPath expression in FLWOR expressions can again possibly involve variables
defined in an enclosing for or let, or even nested XQuery FLWOR expressions.
Together with a large catalogue of built-in functions [15], XQuery thus offers a flexible
instrument for arbitrary transformations. For more details, we refer the reader to [5,7].

The lifting task of Fig. 2 can be solved with XQuery as shown in Fig. 7(a). The
resulting query is quite involved, but completely addresses the lifting task, including
unique blank node generation for each person: We first select all nodes containing person
names from the original file for which a blank node needs to be created in variable $p
(line 3). Looping over these nodes, we extract the actual names from either the value of
the name attribute or from the knows element in variable $n. Finally, we compute the
position in the original XML tree as blank node identifier in variable $id. The where
clause (lines 12—14) filters out only the last name for duplicate occurrences of the same
name. The nested for (lines 19-31) to create nested foaf : knows elements again loops
over persons, with the only differences that only those nodes are filtered out (line 25),
which are known by the person with the name from the outer £or loop.

While this is a valid solution for lifting, we still observe the following drawbacks:
(1) We still have to build RDF/XML “manually” and cannot make use of the more
readable and concise Turtle syntax; and (2) if we had to apply XQuery for the lowering
task, we still would need to cater for all kinds of different RDF/XML representations. As
we will see, both these drawbacks are alleviated by adding some SPARQL to XQuery.

prefix vc: <...vcard-rdf/3.0#>
prefix foaf: <...foaf/0.1/>
construct {_:b foaf:name
{fn:concat (nu"u'$N, " ",$F, nnwny }}
from <vc.rdf>
where { $P vc:Given $N. $P vc:Family S$F.}

(@) (b)
Fig. 8. RDF-to-RDF mapping in SPARQL (a) and an enhanced mapping in XSPARQL (b)

prefix vc: <...vcard-rdf/3.0#>
prefix foaf: <...foaf/0.1/>
construct {$X foaf:name $FN.}
from <vc.rdf>

where { $X vc:FN SFN .}

<relations>{ for S$Person $Name from <relations.rdf> where {S$Person foaf:name S$Name}
order by $Name return <person name="{$Name} ">{
for SFName from <relations.rdf> where
{SPerson foaf:knows S$Friend. S$Person foaf:name S$Name. S$Friend foaf:name SFname}
return <knows>{$FName}</knows> }</person> }</relations>

Fig. 9. Lowering using XSPARQL

SPARQL. Fig. 6(b) shows a schematic overview of the building blocks that SPARQL
queries consist of. Again, we do not go into details of SPARQL here (see [20,17,18] for
formal details), since we do not aim at modifying the language, but concentrate on the
overall semantics of the parts we want to reuse. Like in XQuery, namespace prefixes can
be specified in the Prolog (P). In analogy to FLWOR in XQuery, let us define so-called
DWMC expressions for SPARQL.

The body (DWM) offers the following features. A dataset (D), i.e., the set of source
RDF graphs, is specified in £rom or from named clauses. The where part (W) —
unlike XQuery — allows to match parts of the dataset by specifying a graph pattern
possibly involving variables, which we denote vars(pattern). This pattern is given in
a Turtle-based syntax, in the simplest case by a set of triple patterns, i.e., triples with
variables. More involved patterns allow unions of graph patterns, optional matching of
parts of a graph, matching of named graphs, etc. Matching patterns on the conceptual
level of RDF graphs rather than on a concrete XML syntax alleviates the pain of having
to deal with different RDF/XML representations; SPARQL is agnostic to the actual XML
representation of the underlying source graphs. Also the RDF merge of several source
graphs specified in consecutive £rom clauses, which would involve renaming of blank
nodes at the pure XML level, comes for free in SPARQL. Finally, variable bindings
matching the where pattern in the source graphs can again be ordered, but also other
solution modifiers (M) such as 1imit and off£set are allowed to restrict the number
of solutions considered in the result.

In the head, SPARQL’s construct clause (C) offers convenient and XML-inde-
pendent means to create an output RDF graph. Since we focus here on RDF construc-
tion, we omit the ask and select SPARQL query forms in Fig. 6(b) for brevity. A
construct template consists of a list of triple patterns in Turtle syntax possibly in-
volving variables, denoted by vars(template), that carry over bindings from the where
part. SPARQL can be used as transformation language between different RDF formats,
just like XSLT and XQuery for transforming between XML formats. A simple example
for mapping full names from vCard/RDF (http://www.w3.0org/TR/vcard—-rdf) to
foaf:name is given by the SPARQL query in Fig. 8(a).

Let us remark that SPARQL does not offer the generation of new values in the
head which on the contrary comes for free in XQuery by offering the full range of

XPath/XQuery built-in functions. For instance, the simple query in Fig. 8(b) which
attempts to merge family names and given names into a single foaf : name is beyond
SPARQL’s capabilities. As we will see, XSPARQL will not only make reuse of SPARQL
for transformations from and to RDF, but also aims at enhancing SPARQL itself for
RDF-to-RDF transformations enabling queries like the one in Fig. 8(b).

4 XSPARQL

Conceptually, XSPARQL is a simple merge of SPARQL components into XQuery.
In order to benefit from the more intuitive facilities of SPARQL in terms of RDF
graph matching for retrieval of RDF data and the use of Turtle-like syntax for result
construction, we syntactically add these facilities to XQuery. Fig. 6(c) shows the result
of this “marriage.” First of all, every native XQuery query is also an XSPARQL query.
However we also allow the following modifications, extending XQuery’s FLWOR
expressions to what we call (slightly abusing nomenclature) FLWOR?’ expressions: (i)
In the body we allow SPARQL-style F’DWM blocks alternatively to XQuery’s FLWO
blocks. The new F’ for clause is very similar to XQuery’s native for clause, but
instead of assigning a single variable to the results of an XPath expression it allows
the assignment of a whitespace separated list of variables (varlist) to the bindings for
these variables obtained by evaluating the graph pattern of a SPARQL query of the form:
select varlist DWM. (ii) In the head we allow to create RDF/Turtle directly using
construct statements (C) alternatively to XQuery’s native return (R).

These modifications allows us to reformulate the lifting query of Fig. 7(a) into its
slightly more concise XSPARQL version of Fig. 7(b). The real power of XSPARQL in
our example becomes apparent on the lowering part, where all of the other languages
struggle. Fig. 9 shows the lowering query for our running example.

As a shortcut notation, we allow also to write “for *” in place of “for [list of all
variables appearing in the where clause]”; this is also the default value for the F’ clause
whenever a SPARQL-style where clause is found and a for clause is missing. By
this treatment, XSPARQL is also a syntactic superset of native SPARQL construct
queries, since we additionally allow the following: (1) XQuery and SPARQL namespace
declarations (P) may be used interchangeably; and (2) SPARQL-style construct
result forms (R) may appear before the retrieval part; note that we allow this syntac-
tic sugar only for queries consisting of a single FLWOR’ expression, with a single
construct appearing right after the query prolog, as otherwise, syntactic ambiguities
may arise. This feature is mainly added in order to encompass SPARQL style queries,
but in principle, we expect the (R) part to appear in the end of a FLWOR’ expression.
This way, the queries of Fig. 8 are also syntactically valid for XSPARQL.

Semantics and Implementation. As we have seen above, XSPARQL syntactically
subsumes both XQuery and SPARQL. Concerning semantics, XSPARQL equally builds
on top of its constituent languages. In an earlier version of this paper [1], we have
extended the formal semantics of XQuery [7] by additional rules which reduce each
XSPARQL query to XQuery expressions; the resulting FLWORs operate on the answers
of SPARQL queries in the SPARQL XML result format [6]. Since we add only new

SPARQL
or RDF Engine
= Query XQuery xme
Rewriter Engine or RDF

Fig. 10. XSPARQL architecture

reduction rules for SPARQL-like heads and bodies, it is easy to see that each native
XQuery is treated in a semantically equivalent way in XSPARQL.

In order to convince the reader that the same holds for native SPARQL queries, we
will illustrate our reduction in the following. We restrict ourselves here to a more abstract
presentation of our rewriting algorithm, as we implemented it in a prototype.*

The main idea behind our implementation is translating XSPARQL queries to corre-
sponding XQueries which possibly use interleaved calls to a SPARQL endpoint. The
architecture of our prototype shown in Fig. 10 consists of three main components: (1) a
query rewriter, which turns an XSPARQL query into an XQuery; (2) a SPARQL end-
point, for querying RDF from within the rewritten XQuery; and (3) an XQuery engine
for computing the result document.

The rewriter (Alg. 1) takes as input a full XSPARQL QueryBody [7] q (i.e., a
sequence of FLWOR?’ expressions), a set of bound variables b and a set of position
variables p, which we explain below. For a FL (or F’, resp.) clause s, we denote by
vars(s) the list of all newly declared variables (or the varlist, resp.) of s. For the sake of
brevity, we only sketch the core rewriting function rewrite() here; additional machinery
handling the prolog including function, variable, module, and namespace declarations is
needed in the full implementation. The rewriting is initiated by invoking rewrite(q, 0, D)
with empty bound and position variables, whose result is an XQuery. Fig. 11 shows the
output of our translation for the construct query in Fig. 8(b) which illustrates both
the lowering and lifting parts. Let us explain the algorithm using this sample output.

After generating the prolog (lines 1-9 of the output), the rewriting of the QueryBody
is performed recursively following the syntax of XSPARQL. During the traversal of
the nested FLWOR’ expressions, SPARQL-like heads or bodies will be replaced by
XQuery expressions, which handle our two tasks. The lowering part is processed first:

Lowering The lowering part of XSPARQL, i.e., SPARQL-like F’DWM blocks, is “en-
coded” in XQuery with interleaved calls to an external SPARQL endpoint. To this
end, we translate F’DWM blocks into equivalent XQuery FLWO expressions which
retrieve SPARQL result XML documents [6] from a SPARQL engine; i.e., we “push”
each F’DWM body to the SPARQL side, by translating it to a native select query
string. The auxiliary function sparql() in line 6 of our rewriter provides this functionality,
transforming the where {pattern} part of F’DWM clauses to XQuery expressions
which have all bound variables in vars(pattern) replaced by the values of the variables;
“free” XSPARQL variables serve as binding variables for the SPARQL query result.
The outcome of the sparqgl() function is a list of expressions, which is concatenated
and URI-encoded using XQuery’s XPath functions, and wrapped into a URI with http
scheme pointing to the SPARQL query service (lines 10—12 of the output), cf. [6]. Then
we create a new XQuery for loop over variable $aux_result to iterate over the query

“http://www.polleres.net/xsparql/

O 00U W —

declare vc = "http://www.w3.0rg/2001/vcard-rdf/3.0#";

declare foaf = "http://xmlns.com/foaf/0.1/";
declare sparqgl_result = "http://www.w3.0rg/2005/sparqgl-results#";
declare function local:rdf_term($SNT as xs:string, $V as xs:string) as xs:string {
let S$rdf_term := if ($NT="literal”") then fn:concat ("""",6 Sy, "mnrrm)
else if (SNT="bnode") then fn:concat("_:",$V) else if (SNT="uri")
then fn:concat ("<",$V, ">") else "" return S$rdf_term };

declare variable $NS_1 "prefix vc: <...vcard-rdf/3.0#> ";
declare variable S$SNS_2 "prefix foaf: <...foaf/0.1/> ";
fn:concat ("@",$NS_1,".", "@",SNS_2,"."), let Saux_query := fn:concat (
"http://localhost:2020/sparql?query=", fn:encode-for-uri (fn:concat ($NS_1, $NS_2,
"select SP SN SF from <vc.rdf> where {S$P vc:Given SN. SP vc:Family SF.}")))
for Saux_result at $aux_result_pos in doc ($aux_query)//spargl_result:result
let $P_Node := $Saux_result/sparqgl_result:binding[@name="P"]
let $P := data($P_Node/*) let $P_NodeType := name ($SP_Node/*)
let $P_RDFTerm := local:rdf_term($P_NodeType, $P)
let $N_Node := $aux_result/sparqgl_result:binding[@name="N"]
let $N := data ($N_Node/*) let $N_NodeType := name ($N_Node/x*)
let S$N_RDFTerm := local:rdf_term($SN_NodeType, $N)
let $F_Node := $aux_result/spargl_result:binding[@name="F"]
let $F := data($F_Node/*) let $F_NodeType := name ($F_Node/x*)
let $F_RDFTerm := local:rdf_term($F_NodeType, $F)
return (fn:concat("_:b",$aux_result_pos, " foaf:name "),
(fn:concat ("""",SN_RDFTerm, " ",S$F_RDFTerm, """")), ".")

Fig. 11. XQuery encoding of Example 8(b)

answers extracted from the SPARQL XML result returned by the SPARQL query proces-
sor (line 13). For each variable $z; € vars(s) (i.e., in the (F”) £or clause of the original
F’DWM body), new auxiliary variables are defined in separate 1et-expressions extract-
ing its node, content, type (i.e., literal, uri, or blank), and RDF-Term ($z; Node, $z;,
$x; NodeType, and $x; RDFTerm, resp.) by appropriate XPath expressions (lines 14-22
of Fig. 11); the auxvars() helper in line 6 of Alg. 1 is responsible for this.

Lifting For the lifting part, i.e., SPARQL-like constructs in the R part, the transfor-
mation process is straightforward. Before we rewrite the QueryBody ¢q, we process the
prolog (P) of the XSPARQL query and output every namespace declaration as Turtle
string literals “@prefix ns: <URI>.” (line 10 of the output). Then, Alg. 1 is called
on ¢ and recursively decorates every for $ Var expression by fresh position variables
(line 13 of our example output); ultimately, construct templates are rewritten to an
assembled string of the pattern’s constituents, filling in variable bindings and evaluated
subexpressions (lines 23-24 of the output).

Blank nodes in constructs need special care, since, according to SPARQL’s
semantics, these must create new blank node identifiers for each solution binding. This
is solved by “adorning” each blank node identifier in the construct part with the
above-mentioned position variables from any enclosing £ox-loops, thus creating a new,
unique blank node identifier in each loop (line 23 in the output). The auxiliary function
rewrite-template() in line 8 of the algorithm provides this functionality by simply adding
the list of all position variable p as expressions to each blank node string; if there are
nested expressions in the supplied construct {template}, it will return a sequence
of nested FLWORs with each having rewrite() applied on these expressions with the
in-scope bound and position variables.

Expressions involving constructs create Turtle output. Generating RDF/ XML
output from this Turtle is optionally done as a simple postprocessing step supported by
using standard RDF processing tools.

Algorithm 1: rewrite(q, b, p) : Rewrite XSPARQL ¢ to an XQuery

Input: XSPARQL query g, set of bounded variables b, set of position variables p

Result: XQuery

if g is of forms1 , ... , s, then

‘ return rewrite(s1,b,p) , ... , rewrite(si, b, p)

else if g is of form for $x1 in XPathExpr,, ..., $xi in XPathEzxpr, s then
return for $z1 at $x1_pos in XPathEzpr,, ..., Sz at $x,_pos in
XPathEzpr,, rewrite(s1,b,p U {$x1_pos, ..., $zk_pos})

else if g is of form for $z1 - - - $z,, £rom D where { pattern } M s; then

6 return let $auz_query :=spargl(D, {$z1,...,8z,}, pattern, M, b) for

$aux_result in doc (Saur_query) //spargl:result

AW o0 —

w

auxvars({$x1, ..., $xn}) rewrite(s1,b U vars(q), p)
7 else if g is of form construct {template} then
8 ‘ return return (rewrite-template(template,b,p))
9 else
10 split g into its subexpressions 1, ..., Sn
1 forj:=1,...,ndo b; =bUlJ,.,.,; , vars(si)
12 if n > 1 then return q [s1/rewrite(s1,b1,D), ..., Sn/rewrite(sn, bn,D)]
13 else return ¢
14 end

5 Related Works

Albeit both XML and RDF are nearly a decade old, there has been no serious effort
on developing a language for convenient transformations between the two data models.
There are, however, a number of apparently abandoned projects that aim at making it
easier to transform RDF data using XSLT. RDF Tivig [21] suggests XSLT extension
functions that provide various useful views on the “sub-trees” of an RDF graph. The main
idea of RDF Twig is that while RDF/XML is hard to navigate using XPath, a subtree
of an RDF graph can be serialized into a more useful form of RDF/XML. TreeHugger’
makes it possible to navigate the graph structure of RDF both in XSLT and XQuery
using XPath-like expressions, abstracting from the actual RDF/XML structure. rdf2r3x°
uses an RDF processor and XSLT to transform RDF data into a predictable form of
RDF/XML also catering for RSS. Carroll and Stickler take the approach of simplifying
RDF/XML one step further, putting RDF into a simple 7riX [4] format, using XSLT as
an extensibility mechanism to provide human-friendly macros for this syntax.

These approaches rely on non-standard extensions or tools, providing implementa-
tions in some particular programming language, tied to specific versions of XPath or
XSLT processors. In contrast, RDFXSLT’ provides an XSLT preprocessing stylesheet
and a set of helper functions, similar to RDF Twig and TreeHugger, yet implemented in
pure XSLT 2.0, readily available for many platforms.

3 http://rdfweb.org/people/damian/treehugger/index.html
6http://wasab.dk/morten/blog/archives/2004/05/30/transformingfrdfxmlfwithfxslt
7http://www.wsmo.org/TR/d24/d24.2/vO.1/20070412/rdfxslt.html

All these proposals focus on XPath or XSLT, by adding RDF-friendly extensions,
or preprocessing the RDF data to ease the access with stock XPath expressions. It
seems that XQuery and SPARQL were disregarded previously because XQuery was not
standardized until 2007 and SPARQL — which we suggest to select relevant parts of RDF
data instead of XPath — has only very recently received W3C’s recommendation stamp.

As for the use of SPARQL, Droop et al. [8] suggest, orthogonal to our approach, to
compile XPath queries into SPARQL. Similarly, encoding SPARQL completely into
XSLT or XQuery [13] seems to be an interesting idea that would enable to compile down
XSPARQL to pure XQuery without the use of a separate SPARQL engine. However,
scalability results in [13] so far do not yet suggest that such an approach would scale
better than the interleaved approach we took in our current implementation.

Finally, related to our discussion in Section 2, the SPARQL Annotations for WSDL
(SPDL) project (http://www.w3.0rg/2005/11/SPDL/) suggests a direct integration
of SPARQL queries into XML Schema, but is still work in progress. We expect SPDL to
be subsumed by SAWSDL, with XSPARQL as the language of choice for lifting and
lowering schema mappings.

6 Conclusion and Future Plans

We have elaborated on use cases for lifting and lowering, i.e., mapping back and forth
between XML and RDF, in the contexts of GRDDL and SAWSDL. As we have seen,
XSLT turned out to provide only partially satisfactory solutions for this task. XQuery
and SPARQL, each in its own world, provide solutions for the problems we encountered,
and we presented XSPARQL as a natural combination of the two as a proper solution
for the lifting and lowering tasks. Moreover, we have seen that XSPARQL offers more
than a handy tool for transformations between XML and RDF. Indeed, by accessing
the full library of XPath/XQuery functions, XSPARQL opens up extensions such as
value-generating built-ins or even aggregates in the construct part, which have been
pointed out missing in SPARQL earlier [19].

As we have seen, XSPARQL is a conservative extension of both of its constituent
languages, SPARQL and XQuery. The semantics of XSPARQL was defined as an
extension of XQuery’s formal semantics adding a few normalization mapping rules. We
provide an implementation of this transformation which is based on reducing XSPARQL
queries to XQuery with interleaved calls to a SPARQL engine via the SPARQL protocol.
There are good reasons to abstract away from RDF/XML and rely on native SPARQL
engines in our implementation. Although one could try to compile SPARQL entirely
into an XQuery that caters for all different RDF/XML representations, that would not
solve the use which we expect most common in the nearer future: many online RDF
sources will most likely not be accessible as RDF/XML files, but rather via RDF stores
that provide a standard SPARQL interface.

Our resulting XSPARQL preprocessor can be used with any available XQuery and
SPARQL implementation, and is available for user evaluation along with all examples
and an extended version [1] of this paper at http://www.polleres.net/xspargl/.

As mentioned briefly in the introduction, simple reasoning — which we have not
yet incorporated — would significantly improve queries involving RDF data. SPARQL
engines that provide (partial) RDFS support could immediately address this point and be

plugged into our implementation. But we plan to go a step further: integrating XSPARQL
with Semantic Web Pipes [16] or other SPARQL extensions such as SPARQLA++ [19]
shall allow more complex intermediate RDF processing than RDFS materialization.
We also plan to apply our results for retrieving metadata from context-aware services
and for Semantic Web service communication, respectively, in the EU projects inContext
(http://www.in-context.eu/) and TripCom (http://www.tripcom.org/).

References

1. W. Akthar, J. Kopecky, T. Krennwallner, A. Polleres. XSPARQL: Traveling between the
XML and RDF worlds — and avoiding the XSLT pilgrimage. Technical Report DERI-TR-
2007-12-14, DERI Galway, Dec. 2007.
. D.Beckett, B. McBride (eds.). RDF/XML syntax specification (revised). Feb 2004. W3C Rec.
. D. Beckett. Turtle - Terse RDF Triple Language, Nov. 2007.
J. Carroll, P. Stickler. TriX: RDF Triples in XML. Tech. Report HPL-2004-56, HP, May 2004.
. D. Chamberlin, J. Robie, S. Boag, M. F. Fernandez, J. Siméon, D. Florescu (eds.). XQuery
1.0: An XML Query Language. Jan. 2007, W3C Rec.
. K. Clark, L. Feigenbaum, E. Torres. SPARQL Protocol for RDF, Nov. 2007. W3C Prop. Rec.
. D. Draper, P. Fankhauser, M. Ferndndez, A. Malhotra, K. Rose, M. Rys, J. Siméon, P. Wadler
(eds.). XQuery 1.0 and XPath 2.0 Formal Semantics, Jan. 2007. W3C Rec.
8. M. Droop, M. Flarer, J. Groppe, S. Groppe, V. Linnemann, J. Pinggera, F. Santner, M. Schier, F.
Schopf, H. Staffler, S. Zugal. Translating XPath Queries into SPARQL Queries. ODBASE2007.
9. D. Connolly (ed.). Gleaning Resource Descriptions from Dialects of Languages (GRDDL).
Sep. 2007, W3C Rec.
10. M. Kay (ed.). XSL Transformations (XSLT) Version 2.0, Jan. 2007. W3C Recommendation.
11. J. Euzenat, P. Shvaiko. Ontology matching. Springer, 2007.
12. J. Farrell, H. Lausen (eds.). Semantic Annotations for WSDL and XML Schema. W3C Rec.,
Aug. 2007.

13. S. Groppe, J. Groppe, V. Linneman, D. Kukulenz, N. Hoeller, and C. Reinke. Embedding
SPARQL into XQuery/XSLT. In SAC2008, Mar. 2008. To appear.

14. J. Kopecky, T. Vitvar, C. Bournez, J. Farrell. SAWSDL: Semantic Annotations for WSDL
and XML Schema. IEEE Internet Computing, 11(6):60-67, 2007.

15. A. Malhotra, J. Melton, N. Walsh (eds.). XQuery 1.0 and XPath 2.0 Functions and Operators,
Jan. 2007. W3C Rec.

16. C. Morbidoni, A. Polleres, G. Tummarello, D. L. Phuoc. Semantic Web Pipes. Technical
Report DERI-TR-2007-11-07, DERI Galway, 11 2007.
17. J. Pérez, M. Arenas, C. Gutierrez. Semantics and Complexity of SPARQL. In ISWC 2006.
18. A. Polleres. From SPARQL to Rules (and back). In Proc. WWW2007, May 2007.
19. A. Polleres, F. Scharffe, R. Schindlauer. SPARQL++ for mapping between RDF vocabularies.
ODBASE 2007, Nov. 2007.

20. E.Prud’hommeaux, A. Seaborne (eds.). SPARQL Query Language for RDF, Jan. 2008. W3C
Rec.

21. N. Walsh. RDF Twig: Accessing RDF Graphs in XSLT. In Extreme Markup Languages 2003.

~N

