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Abstract—This paper proposes a Bayesian association rule
mining algorithm (BAR) which combines the Apriori association
rule mining algorithm with Bayesian networks. Two interesting-
ness measures of association rules: Bayesian confidence (BC) and
Bayesian lift (BL) which measure conditional dependence and
independence relationships between items are defined based on
the joint probabilities represented by the Bayesian networks of
association rules. BAR outputs best rules according to BC and
BL. BAR is evaluated for its performance using two anonymized
clinical phenotype datasets from the UCI Repository: Thyroid
disease and Diabetes. The results show that BAR is capable of
finding the best rules which have the highest BC, BL and very
high support, confidence and lift.

Index Terms—Bayesian association rules, Bayesian networks,
joint probability distribution, Bayesian confidence, Bayesian lift

I. INTRODUCTION

Linked2Safety (L2S) [10] is an EU-funded research
project which aims to build a next-generation, semantically-
interlinked, secure medical and clinical information space. This
information space should facilitate healthcare professionals and
pharmaceutical experts etc. at pan-European level to dynam-
ically discover, combine and easily access medical resources
and information contained in spatially distributed Electronic
Health Records (EHRs). At the same time, this information
space must respect patient anonymity, data ownership, privacy
and European and national legislation. A primiary application
of the L2S project is adverse drug events (ADE) detection.

An adverse drug event (ADE) is any unfavorable and un-
intended sign (including, for example, an abnormal laboratory
finding), symptom e.g. high blood pressure, or disease e.g.
heart attack temporally associated with the use of a medicinal
product, whether or not considered related to the medicinal
product [5]. ADE detection is concerned with early detection of
adverse events for patients who have been taking some drugs.
The main objective of pharmacovigilance is early detection
of novel ADEs with minimal patient exposure. The impact
of ADE results in significant social costs estimated in several

billion dollars annually, and inflicts unnecessary, sometimes
fatal, harm to patients. Hence, their identification is paramount
to health care. There are two types of associations: binary
(bivariate) associations appear in pairs, including only one drug
and one ADE, such as Vioxx relates to heart attack; multi-item
associations are associations between two drugs and one or
more ADEs, such as Aspirin and Warfarin cause Bleeding [5].
Association rule mining algorithms have been used to mine
new ADE associations [5].

The United States Food and Drug Administrations (FDA)
Adverse Event Reporting System (AERS) is a database which
contains over 4M ADE reports, from 1969 to the present. Re-
cently, the Apriori association rule mining algorithm has been
extended to more efficiently mine multi-item ADE associations
from the FDA AERS [5]. Constraints were added to Apriori
and drugs/ADEs-based indexing techniques were implemented
to reduce significantly the search space of possible multi-item
ADE associations present in the FDA AERS and to reduce the
number of reports to be examined for each rule. Based on a
set of 162,744 reports of suspected ADEs reported to AERS
and published in the year 2008, the extended Apriori algorithm
identified 1167 multi-item ADE associations of which 33% are
novel associations.

Multi-objective evolutionary algorithms [6], [7] have been
proposed to find interesting rules which Apriori cannot nor-
mally find. These algorithms find Pareto optimal solutions
which maximize multiple interestingness measures of rules
in a single run, whereas Apriori finds rules that maximize
one interestingness measure in a single run. Fuzzy association
rules algorithms [8], [9] have been proposed to classify gene
expression data and predict stock market indices. This work
introduces a Bayesian association rule mining algorithm (BAR)
which combines Apriori with Bayesian networks and applies
BAR to two anonymized public-available clinical phenotype
datasets Thyroid disease and diabetes because at the time of
doing this work, the L2S ADE datasets were not available.
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The rest of the paper is structured as follows: Section II
presents the basic concepts of association rules and Bayesian
networks; Section III presents BAR; Section IV presents data
anonymization of clinical data; Section V evaluates results
of BAR applied to the example datasets; Section VI presents
conclusions and future work.

II. BASIC CONCEPTS

A. Association Rules

An association rule is an implication expression of the
form A⇒B, where A and B are disjoint itemsets. The sup-
port denoted 𝑆(𝐴 ∪ 𝐵) of an association rule A⇒B is the
percentage of instances that contain all the items included in
the association rule:

𝑆(𝐴 ∪𝐵) =
𝑘

𝑛
(1)

where k is the number of instances containing all the items of
A and B; n is the total number of instances of the dataset.

The confidence of an association rule is a fraction that shows
how frequently B occurs among all the instances containing A:

confidence =
𝑆(𝐴 ∪𝐵)

𝑆(𝐴)
, (2)

where S(A∪B) is support of the rule; S(A) is support of A. The
confidence value indicates how reliable the rule is. Confidence
provides an estimate of 𝑃 (𝐵∣𝐴) the conditional probability of
B given A assuming B statistically depends on A, and is used
to measure the reliability or interestingness of the rule.

The lift value of an association rule is the ratio of the
confidence of the rule to the support of B:

lift =
confidence

𝑆(𝐵)
(3)

where S(A) is the support of A; S(B) is the support of B. Lift
is a measure of the deviation of the rule from the statistical
independency of A and B. The lift is a value between 0 and
infinity [4]: a value greater than 1 indicates that A and B appear
together more often than expected; a value less than 1 indicates
that A and B appear together less often than expected; a value
close to 1 indicates that A and B appear together almost as
often as expected.

Apriori mines association rules as follows:

1) Generate itemsets and select those itemsets whose sup-
ports ≥ the minimum support threshold.

2) Generate rules from selected itemsets. To generate a rule
𝐴 ⇒ 𝐵 from an itemset, a subset of the itemset forms
B and the remaining items forms A.

3) Output the rules with the highest confidence and lift.

B. Bayesian Networks

Let X and Y be two disjoint subsets of random variables
such that the probability of Y is P(Y)>0. Then, the conditional
probability distribution (CPD) of X given Y is defined as:

𝑃 (𝑋∣𝑌 ) =
𝑃 (𝑋,𝑌 )

𝑃 (𝑌 )
. (4)

The joint probability over variables 𝑋1, ..., 𝑋𝑛 is defined as:

𝑃 (𝑋1, . . . , 𝑋𝑛) =

𝑛∏
𝑖=1

𝑃 (𝑋𝑖∣𝑋1, . . . , 𝑋𝑖−1). (5)

A set of variables 𝑋1, . . . , 𝑋𝑛 are independent to one another
if and only if:

𝑃 (𝑋1, . . . , 𝑋𝑛) =

𝑛∏
𝑖=1

𝑃 (𝑋𝑖). (6)

Bayesian networks [11], [12], [13] are graphical representation
of probabilistic relationships among a set of variables. Given
a finite set 𝑋 = {𝑋1, ..., 𝑋𝑛} of variables, a Bayesian
network G is an annotated directed acyclic graph (DAG) which
represents a joint probability distribution over 𝑋 . The nodes of
the graph correspond to the variables 𝑋1, ..., 𝑋𝑛. The links of
the graph correspond to the direct influence from one variable
to the other. If there is a directed link from variable 𝑋𝑖 to
variable 𝑋𝑗 , 𝑋𝑖 is a parent of 𝑋𝑗 . Each node is annotated with
a conditional probability distribution (CPD) that represents
𝑃 (𝑋𝑖∣𝑃𝑎(𝑋𝑖)), where 𝑃𝑎(𝑋𝑖) denotes the parents of 𝑋𝑖 in G.
A Bayesian network G represents an unique joint probability
distribution 𝑃 (𝑋1, . . . , 𝑋𝑛) over 𝑋:

𝑃 (𝑋1, . . . , 𝑋𝑛) =
∏
𝑖

𝑃 (𝑋𝑖∣𝑃𝑎(𝑋𝑖)). (7)

Figure 1 [12] shows an example of a Bayesian Network and
some of its conditional probabilities.

Fig. 1. A Bayesian network for detecting breast cancer. An arc represents
a causal relationship between two variables. Conditional probabilities of each
variable are attached.

III. BAYESIAN ASSOCIATION RULES MINING ALGORITHM

The BAR algorithm is presented in figure 2. Bayesian
confidence and Bayesian lift are defined in Sections III-A and
III-B.



Algorithm: Bayesian Association Rule Mining
Input: a dataset consisting of instances and attributes
Output: association rules
1. Discretize any continuous variables of the input dataset.
2. Generate association rules using Apriori.
3. For each rule, construct a Bayesian network.
4. Compute the Bayesian confidence (BC)

and Bayesian lift (BL) of each rule.
5. Output those rules with the highest BC and BL.

Fig. 2. Pseudo-code of the Bayesian Association Rule Mining Algorithm

A. Bayesian Confidence

Let 𝐴 and 𝐵 be itemsets such that 𝐴 consists of items
𝐼1, 𝐼2, . . . , 𝐼𝑚 and B consists of items 𝐼𝑚+1, 𝐼𝑚+2 . . . , 𝐼𝑛.
Then, an association rule 𝐴 ⇒ 𝐵 can be represented as
the Bayesian network in figure 3, where 𝑥1, . . . , 𝑥𝑚 and
𝐵 are Boolean variables corresponding to 𝐼1, 𝐼2, . . . , 𝐼𝑚
and 𝑥𝑚+1, . . . , 𝑥𝑛 are Boolean variables corresponding to
𝐼𝑚+1, 𝐼𝑚+2 . . . , 𝐼𝑛. The joint probability distribution repre-

Fig. 3. The Bayesian network representing the rule A⇒ B.

sented by the network is the following:

𝑃 (𝑥1, . . . , 𝑥𝑚, 𝑥𝑚+1, . . . , 𝑥𝑛) =
𝑛∏

𝑖=1

𝑃 (𝑥𝑖∣𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑥𝑖))

=

𝑚∏
𝑖=1

𝑃 (𝑥𝑖)

𝑛∏
𝑗=𝑚+1

𝑃 (𝑥𝑗 ∣𝑥1, 𝑥2, . . . , 𝑥𝑚)

=

𝑚∏
𝑖=1

𝑆({𝑥𝑖})
𝑛∏

𝑗=𝑚+1

𝑃 ({𝑥𝑗 , 𝑥1, 𝑥2, . . . , 𝑥𝑚})
𝑃 ({𝑥1, 𝑥2, . . . , 𝑥𝑚})

=
𝑚∏
𝑖=1

𝑆({𝑥𝑖})
𝑛∏

𝑗=𝑚+1

𝑆({𝑥𝑗 , 𝑥1, 𝑥2, . . . , 𝑥𝑚})
𝑆({𝑥1, 𝑥2, . . . , 𝑥𝑚}) (8)

where S is the support of an itemset.
Definition 1: Bayesian confidence (BC) of A⇒B is defined

as 𝑃 (𝐵∣𝐴) computed using the Bayesian network representing

A⇒B:

𝐵𝐶(𝐴 ⇒ 𝐵) = 𝑃 (𝐵∣𝐴) = 𝑃 (𝐴,𝐵)

𝑃 (𝐴)

=
𝑃 (𝑥1, . . . , 𝑥𝑚, 𝑥𝑚+1, . . . , 𝑥𝑛)

𝑃 ({𝑥1, 𝑥2, . . . , 𝑥𝑚})
=

𝑃 (𝑥1, . . . , 𝑥𝑚, 𝑥𝑚+1, . . . , 𝑥𝑛)

𝑆({𝑥1, 𝑥2, . . . , 𝑥𝑚}) (9)

Short rules generalize better than long ones because the shorter
rules match more instances than long rules; additionally, short
rules are easier to interpret by humans than long ones. To
penalize long rules, length L of rule is incorporated:

𝐵𝐶 =

(
𝑃 (𝑥1, . . . , 𝑥𝑚, 𝑥𝑚+1, . . . , 𝑥𝑛)

𝑆({𝑥1, 𝑥2, . . . , 𝑥𝑚})
)𝐿

(10)

For example given an association rule:

{male,binge drinking,obese,smoking,age≥50}
⇒ {diabetes,heart disease,hypertension},

its corresponding Boolean variables are Male (M), Smoking
(S), Binge drinking (B), Obese (O), Age>50 (A), Diabetes
(D), Heart Disease (HD) and Hypertension (H) and BC is:(
𝑃 (𝑀 = 𝑡, 𝑆 = 𝑡, 𝐵 = 𝑡, 𝑂 = 𝑡, 𝐴 = 𝑡,𝐷 = 𝑡,𝐻𝐷 = 𝑡,𝐻 = 𝑡)

𝑆({𝑀 = 𝑡, 𝑆 = 𝑡, 𝐵 = 𝑡, 𝑂 = 𝑡, 𝐴 = 𝑡})
)8

B. Bayesian Lift

Definition 2: Given a rule A⇒ B, the Bayesian lift (BL)
is defined as 𝐵𝐶

𝑃 (𝐵) computed using the Bayesian network
representing A⇒B:

𝐵𝐿 = 𝐵𝐶
𝑃 (𝐵) =

𝑃 (𝐵∣𝐴)
𝑃 (𝐵) = 𝑃 (𝐴,𝐵)

𝑃 (𝐴)𝑃 (𝐵)

= 𝑃 (𝑋1,...,𝑋𝑚,𝑋𝑚+1,...,𝑋𝑛)
𝑃 (𝑋1,...,𝑋𝑚)𝑃 (𝑋𝑚+1,...,𝑋𝑛)

(11)

= 𝑃 (𝑋1,...,𝑋𝑚,𝑋𝑚+1,...,𝑋𝑛)∏𝑚
𝑖=1 𝑋𝑖

∏𝑛
𝑗=𝑚+1 𝑋𝑗

(12)

BL is a value between 0 and infinity. BL=1 ⇔ 𝑃 (𝐵∣𝐴)
𝑃 (𝐵) = 1

⇔ 𝑃 (𝐴,𝐵)
𝑃 (𝐴)𝑃 (𝐵) = 1 ⇔ 𝑃 (𝐴,𝐵) = 𝑃 (𝐴)𝑃 (𝐵) ⇔ A and

B are independent [5]. 𝐵𝐿 > 1 ⇔ 𝑃 (𝐵∣𝐴)
𝑃 (𝐵) > 1 ⇔

𝑃 (𝐴,𝐵) > 𝑃 (𝐴)𝑃 (𝐵) ⇔ B positively depends on A i.e.
A and B are positively correlated [5]. 𝐵𝐿 < 1 ⇔ 𝑃 (𝐵∣𝐴)

𝑃 (𝐵) < 1

⇔ 𝑃 (𝐴,𝐵) < 𝑃 (𝐴)𝑃 (𝐵) ⇔ B negatively depends on A i.e.
A and B are negatively correlated [5].

IV. DATA ANONYMIZATION

BAR has been applied to the Thyroid disease and Diabetes
datasets from the UCI Repository. These datasets have been
anonymized using the L2S data cube approach [14] before
input to BAR. In the L2S approach, a subject can be identified
if it has unique properties. On the other hand, if a number of
subjects have identical properties, they cannot be distinguished
from each other; they are un-identifiable and anonymised sub-
jects. Identification of subjects from datasets violates privacy
laws. As subjects can be identified from the raw clinical data,
only allowed users are granted access to the raw data while
third parties can only access the anonymised data.



Fig. 5. The data matrix obtained by transforming the example anonymized
data cube in Figure 4(b)

Sex, BMI>10, Dyslipidemia
Male, Yes, No
Male, Yes, No
Male, Yes, No
Male, Yes, No
Male, Yes, No
Male, Yes, No

Female, Yes, No
Female, Yes, No
Female, Yes, No
Female, Yes, No
Female, Yes, No
Female, Yes, No
Female, Yes, No
Female, Yes, No
Female, Yes, No
Female, Yes, No
Female, No, No
Female, No, No
Female, No, No
Female, No, No
Female, No, No

A. The L2S Data Annonymisation: Data Cubes Generation

The steps to anonymize data are as follows:

1) Data Discretization: The continuous variables are dis-
cretized. Discrete values are represented using integers
starting from 0.

2) Data Cube Creation: a data cube is created with with
columns corresponding to dimensions (attributes) and
rows representing the combinations of values on the di-
mensions. An example data cube is shown in Figure 4(a).

3) Count Perturbation: The counts of values combinations
are perturbed by adding noise (integers) in a predefined
set of integers e.g. {-1,1}.

4) Cell Suppression (Data Anonymization): A count thresh-
old is set by the user so that the cells with counts lower
than the threshold are excluded from further analyses -
this is done by replacing the counts with 0 (Figure 4(b)).

V. EVALUATION

An anonymized data cube is transformed into a data matrix
before input to BAR. The anonymized data cube in figure 4(b)
is transformed into the data matrix shown in figure 5.

A. Thyroid Disease Dataset

1) Data Preparation: The thyroid dataset contains 30 at-
tributes (Table I) and consists of a number of smaller datasets
(Table II). Each smaller dataset consists of numerous thyroid
disease categories such as ’increased binding protein’, ’de-
creased binding protein’ etc and a negative category. To mine
rules from the whole Thyroid disease dataset, all the smaller
datasets were merged into one dataset as follows. All thyroid
disease categories of the smaller datasets were merged into a
single positive category. In data mining, models obtained from
balanced datasets output unbiased predictions and vice versa
[1]. In order to obtain class association rules with unbiased
classification, a balanced dataset was obtained as follows; the
same number of negative instances as the positive instances

were extracted from the smaller datasets and the positive and
negative categories were merged together to give a balanced
dataset consisting of 6792 instances [1].

TABLE I
THYROID DISEASE DATASET

Attributes Values
age continuous
sex M, F

on thyroxine f, t
query on thyroxine f, t

on antithyroid medication f, t
sick f, t

pregnant f, t
thyroid surgery f, t
I131 treatment f, t

query hypothyroid f, t
query hyperthyroid f, t

lithium f, t
goitre f, t
tumor f, t

hypopituitary f, t
psych f, t

TSH measured f, t
TSH continuous

T3 measured f, t
T3 continuous

TT4 measured f, t
TT4 continuous

T4U measured f, t
T4U continuous

FTI measured f, t
FTI continuous

TBG measured f, t
TBG continuous

referral source WEST, STMW, SVHC, SVI, SVHD, other
class positive, negative

TABLE II
CLASS DISTRIBUTIONS OF THE SMALLER THYROID DISEASE DATASETS

datasets class distributions (positive : negative)
allbp.data 133 : 2666
allbp.test 30 : 941

allhypo.data 220 : 2579
allhypo.test 71 : 900
allrep.data 29 : 1038
allrep.test 37 : 934
dis.data 45 : 2754
dis.test 13 : 958

hypothyroid.data 150 : 3012
sick.data 171 : 2628
sick.test 60 : 911

sick-euthyroid.data 292 : 2870
thyroid0387 2401 : 6770

2) Data Cleaning: Inconsistent values of the attributes
were detected and treated as missing values. Outliers of the
attributes were detected using box-and-whisker plots (Figure 6)
and were treated as missing values. TBG has the most missing
values (99%), hence, it was removed. Then, missing values
were replaced with the mean or mode of the attribute. After
data cleaning, a data cube was created and association rules
were mined from the data cube using BAR.

3) Two-items Associations: Table III illustrates the top 10
mined rules ranked by BC. Each rule consists of two items.



(a) Example data cube: Dimensions are attributes; values
on each dimension are the values of a attribute; each
cell contains the count of a combination of values of the
dimensions.

(b) The anonymized example data cube obtained after
count perturbation and cell suppression using 5 as thresh-
old

Fig. 4. Data Cubes
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Fig. 6. Boxplots of attributes of Thyroid Disease: each box shows the
distribution of values where the bottom line of the box is the 1st quartile,
the middle line is the median and the top line of the box is the 3rd quartile;
outliers are the points outside the whiskers extending from the box.

For each rule, the values of support, confidence, Bayesian
confidence and lift are the maximum i.e. 1. BL of these rules is
also the highest (1.116) amongst all mined rules. This indicates
that rules with the highest confidence have the highest BC and
BL. The BLs of the rules have the same value.

4) Multi-items Associations: Multi-items association rules
are also output by BAR. Table IV illustrates the top 10 multi-
items association rules ranked by BC. For each rule, the values
of support, confidence, BC and lift are 1. This indicates that
multi-items rules with the highest confidence also have the
highest BC and BL. BLs of the rules are the same value.

5) Class Association Rules: Rough set feature selec-
tion [15], [16] was used to reduce the dimensionality of
the input data cube from 29 dimensions (attributes) to 21.

TABLE III
THE TOP 10 RULES FROM THYROID DISEASE RANKED BY BAYESIAN

CONFIDENCE AND BAYESIAN LIFT

rule S C BC L BL
goitre=0 ⇒ lithium=0 1 1 1 1 1.116
lithium=0 ⇒ goitre=0 1 1 1 1 1.116

hypopituitary=0 ⇒ lithium=0 1 1 1 1 1.116
lithium=0 ⇒ hypopituitary=0 1 1 1 1 1.116

TSH=0 ⇒ lithium=0 1 1 1 1 1.116
lithium=0 ⇒ TSH=0 1 1 1 1 1.116
T3=0 ⇒ lithium=0 1 1 1 1 1.116
lithium=0 ⇒ T3=0 1 1 1 1 1.116

TT4=0 ⇒ lithium=0 1 1 1 1 1.116
lithium=0 ⇒ TT4=0 1 1 1 1 1.116

TABLE IV
THE TOP 10 MULTI-ITEMS RULES FROM THYROID DISEASE RANKED BY

BAYESIAN CONFIDENCE AND BAYESIAN LIFT

rule S C BC L BL
goitre=0 hypopituitary=0 ⇒ lithium=0 1 1 1 1 1.105
lithium=0 hypopituitary=0 ⇒ goitre=0 1 1 1 1 1.105
lithium=0 goitre=0 ⇒ hypopituitary=0 1 1 1 1 1.105
hypopituitary=0 ⇒ lithium=0 goitre=0 1 1 1 1 1.105
goitre=0 ⇒ lithium=0 hypopituitary=0 1 1 1 1 1.105
lithium=0 ⇒ goitre=0 hypopituitary=0 1 1 1 1 1.105

goitre=0 TSH=0 ⇒ lithium=0 1 1 1 1 1.105
lithium=0 TSH=0 ⇒ goitre=0 1 1 1 1 1.105
lithium=0 goitre=0 ⇒ TSH=0 1 1 1 1 1.105
TSH=0 ⇒ lithium=0 goitre=0 1 1 1 1 1.105

Then, the attributes were ranked using information gain and
the top 10 ranked attributes were used to reduce the 21-
dimensional data cube (Table V). Finally, class association
rules are mined from the 10-dimensional data cube using BAR.
The top 10 ranked class association rules are shown in Table VI
- these have very high confidence, where the highest confidence
amongst all the mined rules is 0.62 and corresponds to the
following rule:

T4U=0 sex=1 query hypothyroid=0 ⇒ class=0
0.167 (support) 0.62 (confidence) 1.141 (lift) 0.006 (BC) 0.730
(BL).



TABLE V
TOP 10 RANKED ATTRIBUTES OF THYROID DISEASE BY INFORMATION

GAIN

Features information Gain
T4U 0.0390063

referral source 0.0232155
TBG measured 0.0122331

pregnant 0.0105625
TSH measured 0.0100687

psych 0.0056991
sex 0.0044499

TT4 measured 0.0028364
query hypothyroid 0.0028238

T4U measured 0.0025371

TABLE VI
THE TOP 10 CLASS ASSOCIATION RULES FROM THYROID DISEASE

RANKED USING BAYESIAN CONFIDENCE AND BAYESIAN LIFT

rule S C L BC BL
pregnant=0 sex=1 0.169 0.61 1.123 0.026 0.850

⇒ class=0
TBG measured=0 sex=1 0.169 0.61 1.123 0.026 0.847

⇒ class=0
psych=0 sex=1 0.153 0.6 1.104 0.014 0.813

query hypothyroid=0 ⇒ class=0
TBG measured=0 pregnant=0 0.169 0.61 1.123 0.014 0.803

sex=1 ⇒ class=0
pregnant=0 sex=1 0.167 0.61 1.123 0.014 0.805

query hypothyroid=0 ⇒ class=0
TBG measured=0 sex=1 0.167 0.61 1.123 0.014 0.803

query hypothyroid=0 ⇒ class=0
pregnant=0 sex=1 0.160 0.61 1.123 0.013 0.802

T4U measured=1 ⇒ class=0
TBG measured=0 sex=1 0.160 0.61 1.123 0.013 0.800

T4U measured=1 ⇒ class=0
T4U=0 sex=1 ⇒ class=0 0.169 0.61 1.123 0.013 0.771

pregnant=0 psych=0 0.153 0.6 1.104 0.001 0.794
sex=1 query hypothyroid=0

⇒ class=0

B. Diabetes Dataset

The diabetes dataset contains 8 continuous features and
a class variable (Table VII). The dataset has no inconsistent
values. Outliers were detected using boxplots (Figure 7) and
were treated as missing values. Missing values were replaced
with the mean or mode of the attribute. Table VIII illustrates
the top 10 association rules ranked using BC and BL -
these have very high confidence, where the highest confidence
amongst all the mined rules is 0.99.

TABLE VII
DIABETES DATASET

Attributes Description
preg Number of times pregnant
plas Plasma glucose concentration
pres Diastolic blood pressure (mm Hg)
skin Triceps skin fold thickness (mm)
insu 2-Hour serum insulin
mass Body mass index
pedi Diabetes pedigree function
age years

class Whether a patient has sign of diabetes(yn)

preg plas pres skin insu mass pedi age
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Fig. 7. Boxplots of attributes of Diabetes: each box shows the distribution
of values where the bottom line of the box is the 1st quartile, the middle line
is the median and the top line of the box is the 3rd quartile; outliers are the
points outside the whiskers extending from the box.

TABLE VIII
THE TOP 10 RULES FROM DIABETES RANKED USING BAYESIAN

CONFIDENCE AND BAYESIAN LIFT

rule S C BC L BL
pedi=0 ⇒ skin=0 0.965 0.99 0.703 1.002 1.087

skin=0 age=0 ⇒ insu=0 0.878 0.98 0.703 1.007 1.082
skin=0 ⇒ pedi=0 0.965 0.98 0.703 1.005 1.083

skin=0 insu=0 ⇒ pedi=0 0.941 0.98 0.692 1.005 1.075
skin=0 pedi=0 age=0 ⇒ insu=0 0.859 0.98 0.688 1.007 1.074

skin=0 age=0 ⇒ pedi=0 0.876 0.98 0.683 1.005 1.079
insu=0 ⇒ skin=0 0.962 0.99 0.679 1.002 1.083
skin=0 ⇒ insu=0 0.962 0.97 0.679 0.996 1.079

pedi=0 age=0 ⇒ skin=0 0.876 0.99 0.676 1.002 1.081
insu=0 pedi=0 ⇒ skin=0 0.941 0.99 0.654 1.002 1.073

1) Class Association Rules: Table VIII illustrates the top
10 class association rules - these have very high confidence.
The highest confidence amongst all the mined rules is 0.98.

VI. CONCLUSION

The best rules output by BAR have both the highest BC and
BL. The best rules also have very high support, confidence and
lift values. Hence, BC and BL appear to be promising measures
of the quality of association rules. BC and BL are defined
based on the joint probability distributions of the association
rules. The joint probability distributions are represented by
the Bayesian networks which model the possible conditional
dependence and independence relationships between the items
of the association rules. Therefore, a high joint probability
value indicates that there are strong conditional dependence
and independence relationships between the items of the
association rule and vice versa. The current work shows
that the statistical conditional dependence and independence
relationships between the items of association rules can be
used as quality measures for association rules. Unknown



TABLE IX
THE TOP 10 CLASS ASSOCIATION RULES FROM DIABETES RANKED USING

BAYESIAN CONFIDENCE AND BAYESIAN LIFT

rule S C L BC BL
preg=0 plas=0 0.145 0.95 1.45 0.588 1.348

pres=1 ⇒ class=0
preg=0 plas=0 0.142 0.95 1.45 0.528 1.291

pres=1 pedi=0 ⇒ class=0
preg=0 plas=0 0.145 0.95 1.449 0.495 1.280

pres=1 skin=0 ⇒ class=0
preg=0 plas=0 pres=1 0.142 0.95 1.449 0.438 1.236

skin=0 pedi=0 ⇒ class=0
preg=0 plas=0 0.145 0.95 1.449 0.432 1.261

pres=1 insu=0 ⇒ class=0
preg=0 plas=0 pres=1 0.142 0.95 1.449 0.376 1.218

insu=0 pedi=0 ⇒ class=0
preg=0 plas=0 pres=1 0.145 0.95 1.449 0.350 1.207

skin=0 insu=0 ⇒ class=0
preg=0 plas=0 0.212 0.96 1.465 0.255 1.200
⇒ class=0

preg=0 plas=0 0.145 0.95 1.449 0.233 1.181
pres=1 age=0 ⇒ class=0

preg=0 plas=0 0.101 0.98 1.495 0.223 1.225
pres=1 mass=0 ⇒ class=0

associations between drugs and adverse events can be mined
so that necessary actions could be taken for those patients who
took the drugs.
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