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ABSTRACT
The dynamicity of sensor data sources and publishing real-
time sensor data over a generalised infrastructure like the
Web pose a new set of integration challenges. Semantic
Sensor Networks demand excessive expressivity for efficient
formal analysis of sensor data. This article specifically ad-
dresses the problem of adapting data model specific or context-
specific properties in automatic generation of multidimen-
sional data cubes. The idea is to generate data cubes on-
the-fly from syntactic sensor data to sustain decision mak-
ing, event processing and to publish this data as Linked
Open Data.

Keywords
Multi-dimensional Data Cubes, Web of Things (WoT), Linked
Sensor Data, Linked Open Data (LOD).

1. INTRODUCTION
Event Processing is a method that works on combining

event-data originating from different sources to identify or
infer patterns that are meaningful, critical and require an
immediate response [14,15]. An event represents a record of
an activity in the system or a result of a particular function
or business process, it is logged as soon as it happens, does
not necessarily have a fixed data type, and is chronologi-
cally ordered [15]. It is often hard to keep track of multiple
events generating from different enterprise-wide applications
as these events can be correlated or captured independently.
In order to address this problem, complex event processing
has taken its place in research and industry [21]. We observe
a huge emergence of complex events based data within a
smart environment like Smart Building, Smart Enterprises

and Smart Cities. The backbone of these smart environ-
ments are sensors that produce huge amounts of data.

Smart environments are thus complex systems demanding
an approach to manage and visualize data of their opera-
tions. Additionally, complex systems need to support real-
time and effective decision-making [2]. The recent initiative
of “Web of Things” is proposed to use Web standards for
publishing and consuming data from the embedded devices
(e.g., sensors) built into everyday smart devices. The appli-
cation of traditional Online Analytical Processing (OLAP)
data cubes over the “Web of Things” is a new line of re-
search that could bring sensor data together from disparate
sources and put its related information into a format that is
conducive to analysis and decision making.

In this paper, we propose a solution that generates multi-
dimensional data cubes from incoming event (sensor) data.
These cubes are then stored in a database and are published
to the linked data cloud, therefore, supporting decision mak-
ing and event processing on huge amounts of multidimen-
sional event data. The approach is validated within a real
world smart building. We use event-data that is generated
from sensors deployed in the building to record parameters
like (light, temperature, heat, power, etc.). This event-data
is then enriched with necessary metadata using the W3C
Semantic Sensor Network Ontology [7]. All necessary meta-
data for enriching the events is stored in a triple store and is
retrieved via a SPARQL [17] end-point. We defined an on-
tology using general and basic concepts of W3C RDF Data
Cube Vocabulary [5] for generating multidimensional data
cubes. Therefore, the main motivation behind our work is
to generate multidimensional data cubes on-the-fly for WoT
or Semantic Sensor Networks to support decision making in
smart environments.

The remainder of the paper is structured as follows: Sec-
tion 2 describes our motivations while describing our use
case scenario and introduces some of the required concepts
used in this paper. Section 3 describes how event-data is
captured, enriched, transformed into Resource Description
Framework (RDF) [16] and published. Section 4 details how
do we generate the multidimensional data cubes. Section 5
reports on the evaluations that we conducted over our de-
veloped system. Before concluding in Section 7, we oppose
our contribution to other related works in Section 6.



2. MOTIVATION AND BACKGROUND
Today enterprises are producing more and more data mak-

ing its exchange, management and decision making complex.
Smart Environments rely on sensor data to provide neces-
sary business intelligence to support decision making. A
possible use case in this case can be a smart building within
a energy management application to control supply and de-
mand of energy. In this context we propose an approach
that supports energy related decision making on a real world
use case realized in the Digital Enterprise Research Institute
(DERI).

The building has been retrofitted with energy sensors to
monitor the consumption of power within the building. In
total there are over 50 fixed energy consumption sensors cov-
ering office space, café, data centre, kitchens, conference and
meeting rooms, computing museum along with over 20 mo-
bile sensors for devices, light and heaters energy consump-
tion as well as light, temperature and motion detection sen-
sors. A building-specific aspect of the dataspace has been
presented in [4] with a sensor network-based situation aware-
ness scenario presented in [7].

An Event processing technique can be applied to process
this real time sensor information to support the energy man-
agement applications [3]. However, it has been observed that
when it comes to event processing, there is a limited sup-
port to decision making, data mining and knowledge discov-
ery [13]. Indeed, the identification of critical and meaningful
patterns highly depends on the amount of data available. A
collection of a huge amount of data that has been generated
by these sensors would increase accuracy of results.

In order to build an efficient energy management systems
in such context, two main challenges need to be handled:
heterogeneous and big data management.

2.1 Heterogeneous data management
Sharing information and data itself is a big challenge in

smart environments. Due to dynamic and heterogeneous
nature of data being generated from different applications in
different domains across different enterprises, there is a need
to transform data in a format that is easily exchangeable and
integrateable.

One possible use case for this can be a smart city envi-
ronment that relies on an application using combined data
from different energy management applications running in
different smart buildings. Therefore an approach on convert-
ing application specific data, sensor data or event data into
RDF and publishing it into linked open data would support
applications relying on combined data.

The approach we provide not only transforms sensor data
into RDF, but also it generates contextual multidimensional
data cubes and publishes them to the linked open data cloud.

Linked data is set of best practices for representing infor-
mation in RDF format and relating or connecting this in-
formation. The basic ingredient of linked data is structured
data and links between structured data. The main philoso-
phy of linked data is to create data that can be shared and
reused. Linked data leverages Web standards and Web pro-
tocols to enable sharing of structured data thus supporting
the creation of a global information space [10].

Linked data has been and is still facilitating publishing
structured data on Web in large volumes thus creating a
huge Linked Open Data (LOD) cloud. The LOD cloud
shown in Figure 1, is used by research and scientific com-

munities in different domains [2].

Figure 1: The Linked open data cloud [2]

2.2 Big data management
Since event processing involves providing an immediate

response over a huge amount of data, a system that provides
fast response to complex data retrieval queries is needed. To
overcome this obstacle, we propose in this paper a system
that uses a data-warehouse for managing multidimensional
data cubes.

Contrary to a general database management system, data-
warehouses are large stores of information containing histor-
ical data; they provide a multidimensional view of the data
they contain. The main purpose behind keeping historical
data is to support decision making, knowledge discovery,
identification of hidden patterns and data mining.

The multidimensional shape of data inside data-warehouse
is also referred to as cubes. A cube structures information
into dimensions and facts. The dimension characterizes and
represents a context for the analysis of facts (e.g. location,
type, time) and a fact contains interesting measures (e.g.
power usage, electricity usage) [5].

The vision that we adopt in our work is similar to the
one proposed by the Web of Things (WoT). The realization
of WoT requires to extend the existing Web such that real-
world objects like electronic appliances, digitally enhanced
everyday objects, sensors and embedded devices can easily
be blended in it. In our use case we are limited to sensor data
deployed within the DERI building. However, our approach
can be easily extended to consider other smart devices.

The power of WoT comes from light-weight HTTP servers
embedded within devices to enable the use of HTTP as an
application protocol rather than a transport protocol [6]. In
our scenario we use CoAP (Constrained Application Proto-
col) which is built on top of HTTP. CoAP is a Web transfer
protocol that provides a request/response model for inter-
action between endpoints [18].

3. PROCESSING META-DATA FOR CUBE
GENERATION

This sections describes the process that we follow to pre-
pare sensor data for the creation of multidimensional cubes.

3.1 Capturing and Publishing Sensor Data
The primary sources for data in our scenario are sensors.

These sensors have been placed, deployed and installed on
multiple locations in the building. The main function of



these sensors is to record values like (heat, temperature,
light, power usage etc.). The whole process on how this
sensor data is collected, transformed, enriched and published
is depicted in Figure 2. Components of this process are
briefly described in the remainder of this sub-section.

Figure 2: Process for Capturing and Publishing Sen-
sor Data

3.1.1 Sensors, Listeners and Clients
S1, S2, S3 ... Sn, depicted as circles in figure 2 repre-

sent the sensors deployed within the building. The sensed
data streams are retrieved by the listeners and clients. In
this paper, we will use the terms “sensed data stream”, and
“event-data” interchangeably. Most of these sensors gener-
ate event-data at a frequency of between 1 − 2 events per
second. In order to capture the information from sensors,
we have developed UDP (Universal Datagram Protocol) lis-
teners and CoAP clients.

While UDP listeners listen on different ports where sen-
sors are pushing their data, CoAP clients pull event-data
streams periodically from sensors via HTTP. An example
of an event-data can be seen in listing 1 where 17:13:54.66
or 15/5/2013/17/13/54 represent the ‘Time and Date’, the
sensor identifier code (SIC) is 000D6F0000945C77, and P,
W, C, R and S symbolize ‘Power’, ‘Watt’, ‘Channel’, ‘Read-
ing’ and ‘Sensor’ respectively. This particular type of event
provides information on power consumption.

17:13:54.66 0050C2F4C075:D2:W:15/5/2013/17/13/54; S
:000D6F0000945C77:P=171.872;C=4;R=13;

Listing 1: Raw Event-Data

3.1.2 Filter: Cleaning Event Data
The event-data collected by UDP listeners or CoAP clients

is forwarded to Filter component. Sometimes incoming event-
data contains some irrelevant or unnecessary information in
the form of noise, for example: empty values, repeating char-
acters, unknown characters, etc. The filter component uses
string processing techniques (string or character elimination
or replacement) for cleaning this event-data and filtering ir-
relevant information. For example, filtering the previously
introduced raw event-data of Listing 1 consists of: concate-
nating SIC and ‘Channel’, conversion of Date and Time to
milliseconds, conversion of symbols to their corresponding
representations and discarding other information. A result-
ing example is shown in Listing 2.

000D6F0000945C77:4::READING::power
::1368638238530::171.872::watt

Listing 2: Filtered Event Data

3.1.3 The RDFizer
The RDFizer component is responsible for converting and

representing the event-data into RDF data. The RDF data
model requires data to be structured in the form of triples
where, a triple is a set of Subject, Predicate and Object
{S, P, O}. Furthermore, the RDF data model requires that
each subject and predicate must have a URI. As per these
requirements, the RDFizer component first identifies possi-
ble triples in the event-data, assigns a URI to each identified
subject/predicate and represents event-data in RDF. List-
ing 3 shows the event-data shown in listing 2 converted to
RDF and represented in N3. In this RDF graph, the main
subject is sensorReading, with predicates sensorIdentifier,
sensorType, sensorReadingType, timestamp, unit and value.

@prefix r1: <http://energy.deri.ie/../sensorReading#>.
@prefix rdf: <http://www.w3.org/../22−rdf−syntax−ns#>.
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.

r1:1bc4d668−4ea1 a r1:sensorReading;
r1:identifier ”000D6F0000945C77:4”̂ ˆxsd:string;
r1:sensorReadingType ”READING”̂ ˆxsd:string;
r1:sensorType ”power”̂ ˆxsd:string;
r1:timestamp ”1368638238530”̂ ˆxsd:long;
r1:unit ”watt”̂ ˆxsd:string;
r1:value ”171.872”̂ ˆxsd:string.

Listing 3: Event-Data converted to RDF

3.1.4 Event Enricher and Sensor Meta-Data
Knowledge Base

The meta-data information for each sensor serves as a
knowledge base for enriching the event-data. The Sensor
Meta-Data Knowledge Base represents the store that con-
tains such information. An example of a meta-data infor-
mation for a particular sensor contains information like con-
sumerType (i.2., type of the consumer e.g., database server,
Web server or laptop, etc.), consumer (i.e., name or title
of the consumer e.g., Apache001 or Hadoop009), consumer-
Location (i.e., location of the consumer where sensor is de-
ployed e.g., Building1Floor2Room3).

The event Enricher is the most important and critical
component in the process of making data useful for gener-
ating data cubes. The Enricher is responsible for enriching
event data with necessary meta-data. The enricher uses the
Meta-Data Knowledge base for retrieving meta-data. The
meta-data of a specific sensor is retrieved using its identifier.
This enrichment is done using concepts in W3C Semantic
Sensor Network Ontology.

Some of major types of events that we deal with in our
scenario are ElectricityUsageEvent (i.e., an event recording
values of electricity usage), HeatUsageEvent (i.e., an event
recording values of heat usage), WeatherEvent (i.e., an event
recording values of temperature), PowerConsumptionEvent
(i.e., an event containing information on recorded and sensed
values of power consumption) and DeviceStateChangeEvent
(i.e., an event that provides information on the change in
state of a device, states are on/off). Following the example
of the event-data presented in listing 1, instance of one type
of event after being enriched with meta-data information
about consumer, consumerLocation, consumerDepartment
and consumerType has RDF:Type events: PowerConsump-
tionEvent. Listing 4 shows an instance of such generated
event data, serialized in N3.



@prefix do: <http://energy.deri.ie/ontology#>
@prefix dr: <http://../deri/deri−rooms#>

:event−1026fd7b−0e5a a events:PowerConsumptionEvent ;
do:consumer do:platform ;
do:consumerType dr:Room01 ;
do:consumerLocation dr:building01 ;
do:powerUsage :usage−9739ccdd−c76d ;
do:consumerDepartment ”facilities”̂ ˆxsd:string;
do:atTime :time−db2c0610−0b33.

:usage−9739ccdd−c76d a dul:Amount ;
do:hasDataValue 171.87 ;
do:isClassifiedBy dr:watt .

:time−db2c0610−0b33 a do:Instant ;
do:inDDateTime ”2013−05−15T18:17:18”̂ ˆxsd:dateTime.

Listing 4: Enriched RDF Event Data

3.1.5 JMS Server and JMS Publisher
Apache ActiveMQ [19] is one of the most powerful and

commonly used open-source message oriented middleware to
support JMS. We use ActiveMQ as a JMS server to publish
RDF event-data. The JMS Publisher component deals with
publishing event data on JMS Server. In our scenario, we
use publish/subscribe protocol to deal with event-data. The
event-data, which has been filtered, converted into RDF and
enriched with meta-data, is published on ActiveMQ JMS
topics. These JMS messages are then broadcasted to com-
ponents that subscribe to those topics.

3.2 EDWH Ontology Overview
Due to lack of vocabularies that bridge W3C Semantic

Sensor Network Ontology and W3C Data Cube Vocabulary
together [12], we define an ontology that uses concepts of
W3C RDF Data cube vocabulary to generate Data Cubes.
Mainly due to the servicing characteristics of this ontology,
we call it EDWH (Event Data Ware-House) Ontology. The
Class hierarchy of the ontology is shown in figure 3.

Figure 3: Class Hierarchy of EDWH Ontology

Configuration is the highest level class in the hierarchy.
This class corresponds to configuration information for an
event when it is registered in the system for cube generation.

Dimension is a sub-class of configuration with an associa-
tion of one-to-many. The Dimension class serves similar pur-
pose of ‘Dimension’ concept in general data-warehousing. A
Dimension identifies the observation or describes its char-
acteristics (e.g., time, consumerLocation, consumer, con-
sumerDepartment) [5]. In our case, an observation sym-
bolises one instance of an event-data value. Examples of
dimensions can be observationTime and consumerLocation.

The Measure class is another sub-class of configuration
class. The main concept of the Measure class is also de-

rived from general data-warehousing concept of ‘Measure’
and serves the same concept of measure in RDF Data cube
vocabulary; a measure represents the phenomenon being ob-
served [5] (e.g., powerUsage).

The third child class of Configuration is Event, which is
responsible to capture information of an event type that
has been registered in the system by a user for creating data
cubes. While registering an event, the user specifies the URI
of the graph which should contain generated data cubes.

NamedCubeGraph is also a sub class of configuration. The
main purpose behind the definition of NamedCubeGraph
class is storage of generated cubes.

The event data can be retrieved from more than one type
of source. Source class is a generalized class that defines and
contains information of source of event data. Source is a sub-
class of configuration and is a super class of JMSSource class.
JMSSource class is actually a specialized class of Source class
to serve specific use of JMS Server.

3.3 Capturing Metadata
As mentioned before, sensors deployed in the DERI build-

ing sense different types of values, e.g., heat, temperature,
power consumption, etc. Each of the sensed data values, also
known as event-data, represents a different type of event. In
the proposed approach, to generate multidimensional data
cubes of any particular event type, an event registration is
required. Specifically, the registration of an event in the
system symbolises capturing the necessary information for
generating cubes. The information specified during the reg-
istration should contain a set of dimensions and measures
which form a multidimensional cube, name of graph in triple
store for storage and source of incoming events.

The Event Registration Process is depicted in figure 4.
The process is supported by a Web User Interface (UI). The
first step of event registration on UI involves specification
of the data source. In our scenario, source is a jms-source,
hence in next step the user specifies the URL of the JMS
server, the topic that is broadcasting events, the username
and the password for accessing the server. Since there can
be different types of events broadcasted on the same topic
on the same server, the next thing is to select the event type
for which data cubes must be generated.

Figure 4: Event Registration Process

Once the event type has been specified, a single jms mes-
sage containing event-data of the specified event type is re-
trieved. The retrieved message is in form of RDF and repre-
sents an instance of event-data. The subject/resource corre-
sponds to an instance of event, and predicates of this subject
characterize the event-data. Therefore, the RDF message is
parsed and a set of predicates is formed. We call this set
“the predicate set” and is denoted by P. The set contains
items that are direct predicates of the main subject and are
possible candidates of being dimensions or measure. In the



next step of the registration process, the user is presented
with the set P. The user first selects set of dimensions from
set P. After selecting dimensions, the user selects a set of
measures. The set of dimension is denoted by D and the
set of measures is denoted by M and selection of dimensions
and measures is done according to following rules:

• P = {Pre1, Pre2, ... Pren}: Set of Predicates

• D 6= ∅ and D ⊂ P: Set of Dimensions

• M 6= ∅ and M ⊂ P: Set of Measures

• D ∩ M = ∅

While selecting the dimensions and measures, the user
also has to specify intendedObjectURI and desiredObjec-
tURI properties of each dimension or measure. An example
selection of dimensions and measures for PowerConsump-
tionEvent can be seen in figures 5 and 6. Both intendedOb-
jectURI and desiredObjectURI are data properties of dimen-
sion and measure classes of the ontology mentioned in sub-
section 3.2. And both of these data properties contain values
of the predicates. In the example shown in figure 5, the user
has selected consumer, consumerType and consumerDepart-
ment as possible set of dimensions for creating data cube.
The intendedObjectURI and desiredObjectURI for each of
the specified dimension is same since there is no nesting. In
case of both consumer and consumerType, the correspond-
ing values are URIs while consumerDepartment has literal
value. In both figures 5 and 6 URIs are represented using
circles and literal values are depicted by rectangles. In figure
6, the user selected powerUsage as measure. Notice that in-
tendedObjectURI and desiredObjectURI are different since
RDF event-data has a nested resource for powerUsage i.e.
“:Amount”. In this case intendedObjectURI is powerUsage
and desiredObjectURI is “hasDataValue”. After selecting
the dimensions and measures, the next step in the event reg-
istration process requires user to specify graph details. This
graph detail is used to store generated data cubes. While
inserting values for graph details, the user specifies name,
detail and comments. The name of the graph is used to
create a named-graph in triple store. After getting all nec-
essary information from the user for registering an event is
completed, the system will generate an instance of EDWH

Figure 5: Example of selected dimensions

Figure 6: Example of selected measures

ontology. A complete instance of the ontology contains the
required information on the selected dimensions, measures,
graph detail and source of incoming events.

Once generated, EDWH ontology instance is stored in
triple store. Triple store containing information of regis-
tered events is called “Registered Events Knowledge Base
(REKB)”. The REKB is used by EDWH to retrieve regis-
tered events and their corresponding configurations. Cre-
ation and storage (in triple store) of multidimensional data
cubes is responsibility of an EDWH (Event Data Ware-
House) agent. An EDWH agent is a software agent that
is introduced in section 4.

4. CUBES GENERATION
The generation of multidimensional cubes is the core el-

ement of our work. Multidimensional data cubes provide
support to decision making tools and applications to run
complex queries on historical data. In our system implemen-
tation, we have defined an agent called the EDWH agent.
The main responsibility of this agent is to aggregate data,
generate data cubes and store them in the triple store. The
basic structure of the EDWH agent is depicted in figure 7.

Figure 7: EDWH Agent structure



In order to generate aggregates on data and create multi-
dimensional cubes, all incoming real-time events need to be
stored in a primary staging area. On starting the EDWH
agent, the“Configuration Manager”component of the EDWH
agent retrieves all registered events from Registered Events
Knowledge Base (REKB) and their corresponding configu-
rations. The configuration of one particular event contains
information on source, dimensions, measures and graph de-
tail. This information is then used by the Event Listener
and Transformer components. The source information in
the configuration is used to subscribe to topics and start
listening on those topics in order to retrieve events. The
dimension and measure information is used to transform
events. In addition to selected dimensions for an event, a
set of time dimensions are also considered. The transforma-
tion of an event is done by adding only selected dimensions
and measures values; the remaining information is discarded.
Continuing with our previous examples of event shown in
listing 4, an example of transformed event can be seen in
listing 5. This event, after transformation is now called an
observation with RDF:Type ‘Observation’ and ‘PowerCon-
sumptionEvent’.

@prefix edwh: <http://energy.deri.ie/edwh#>.

:Observation−20c4c408 a dr:Observation;
a events:PowerConsumptionEvent
edwh:consumer dr:platform;
edwh:consumerDepartment ”facilities”̂ ˆxsd:string;
edwh:consumerType dr:Room01;
edwh:day ”15”̂ ˆxsd:long;
edwh:hour ”18”̂ ˆxsd:long;
edwh:minute ”17”̂ ˆxsd:long;
edwh:month ”5”̂ ˆxsd:long;
edwh:second ”18”̂ ˆxsd:long;
edwh:year ”2013”̂ ˆxsd:long;
edwh:powerUsage ”171.872”̂ ˆxsd:long.

Listing 5: Transformed Event Data Observation

Once transformed, the observation is forwarded to the
“Event Storage Manager”. The “Event Storage Manager”
component is responsible for performing operations on the
staging area. These operations are: insert, update and re-
trieve. When this component receives transformed events
from the“Event Listener and Transformer”component, it in-
serts or updates values in the staging area. When it receives
a data request from the “Aggregates Manager”, it performs
data retrieval and sends a response back. The “Aggregates
Manager” is responsible for performing aggregate operations
(Sum, Average, Count, etc.) on the data received from the
“Event Storage Manager” component and creating multidi-
mensional cubes. This manager generates cubes for each
registered event.

The cubes are generated based on information contained
in the configuration of registered events. As of current imple-
mentation of the “Aggregates Manager” component, cubes
are generated based on time dimension and grouped together
by values of the rest of the specified dimensions. The “Ag-
gregate Service”component triggers cube creation routine in
“Aggregates Manager”. The service executes each 15 min-
utes (quarter), hour, day and month. And the cubes it gen-
erates are called Quarter Cube, Hour Cube, Day Cube and
Month Cube respectively. Each quarter cube is generated
from data contained in the staging area. Once quarter cube
is generated, it is stored in Event Data-Warehouse (EDWH).

The triple store is used as EDWH and staging area. The
hour cubes are generated from data of quarter cubes. A day
cube is generated from hour cubes and similarly a month
cube is generated from day cubes. Since, we are generat-
ing cubes on-the-fly, the approach of generating cubes from
cubes has proven to be useful in our scenario. An example
of a generated cube can be seen in figure 8 and its corre-
sponding RDF graph is shown in figure 9.

The example cube that is shown in figure 8 is created
using Time, ConsumerDepartment and ConsumerType di-
mensions. This example cube is generated by applying any
of the aggregate function (SUM, AVG, COUNT) over a pe-
riod of one day. As shown in figure 9, the main subject of the
RDF graph is “Cube” with RDF:Type :Cube and RDF:Type
:PowerUsageEvent. A cube is composed of several observa-
tions, as depicted in figure 9, and an example of one such
observation of a cube is shown in listing 6. The example
represents a cube generated using SUM(powerUsage) func-
tion, grouped by ConsumerDepartment and ConsumerType
and aggregated over a period of day.

Figure 8: An example multidimensional cube

Figure 9: An example RDF graph of cube

:20c4c408 a cube, do:PowerConsumptionEvent;
edwh:consumerDepartment ”facilities”̂ ˆxsd:string;
edwh:consumerType dr:Room01;
edwh:day ”15”̂ ˆxsd:long;
edwh:month ”5”̂ ˆxsd:long;
edwh:year ”2013”̂ ˆxsd:long;
edwh:powerUsage ”34132.6”̂ ˆxsd:long.

Listing 6: Cube Observation



Figure 10: Building energy explorer dashboard [3]

Once cubes are generated, they are stored in EDWH and
are published to the linked building data cloud [4]. The
linked building data cloud for Digital Enterprise Research
Institute (DERI) building has been implemented using the
Linked dataspace for Energy Intelligence (LEI) [3] devel-
oped by the Green and Sustainable IT group at DERI. The
Building Energy Explorer dashboard is a central user inter-
face that makes extensive use of the merged data within the
linked building data cloud.

The dashboard visualizes relevant linked building data to-
gether with energy consumption sensor data and presents
it in an actionable manner that requires minimal effort for
users to leverage the knowledge within energy-related decision-
making. The objective of the dashboard is to help users
identify energy leaks within the DERI building by linking
actual energy usage data to the entity(ies) responsible for
the energy usage.

The main screen of the dashboard is presented in figure
10, within box (1) data from the rooms, people, and group
vocabulary can be seen; it is used to add context to the
energy consumption readings. In (2) historical usage along
with real-time instant measures from the energy sensors are
shown, along with a breakout for consumption type (lights,
heat, sockets). The interface also displays the output of the
Energy Situation Awareness Service (ESAS) via a widget in
(3). ESAS is a situation awareness service that assists user
to interpret and understand energy data to make decisions.
The widget shown in figure 10 (3), performs energy situa-

tion assessment by comparing the accumulative consump-
tion with historical usage data and usage targets to detect
high usage situations. In the widget, two bars are used to
show the daily accumulated energy usage in comparison with
the monthly average to highlight any deviations in the con-
sumption pattern.

5. EVALUATION
In order to conduct the evaluation of our proposed ap-

proach, we used dedicated server running 64-bit Windows7
OS, with 4GB of Ram and an Intel Core i5 (2.53GHz) CPU.
We use for this evaluation a data collection of events ob-
served over an entire day. We conducted two quantitative
evaluations related to the required storage size and execu-
tion time for storing event data and generating data cubes.

For the first part of the evaluation, we refer to Table
1. This table contains the results that we gathered while
performing the size evaluation for the event data and data
cubes. Each entry in Table 1 represents the size of RDF data
serialized in N3 notation and encoded as UTF-8 with respect
to the different types of cubes generated. It is important to
notice that the size of cubes is dependent on different factors
for example: number of dimensions, size of incoming event,
frequency of events etc.

Taking the example of the PowerConsumptionEvent illus-
trated previously, each event-data that records power con-
sumption, encoded as UTF − 8 has a size of between 0.093
and 0.098 KB. As the power consumption events are gath-



Table 1: Cube Storage Size and Count
Raw Observation Quarter Cube Hour Cube Day Cube

Number of Cubes

Avg — 4/hour & 96/day 24 1
Sum — 4/hour & 96/day 24 1

Count — 4/hour & 96/day 24 1
Sub-Total Per Day — 12/hour & 288/day 72 3

Total Cubes 363 Per Day

Storage Size
Per Cube — 175-180 KB 25-30 KB 60-66 KB
Per Day 45-50 MB 49-51 MB 1.7-2.2 MB 180-200 KB

Total Size 96-104 MB Per Day

ered by listener and client component at a frequency of be-
tween 70 and 90 events/minute we wanted to determine the
impact of the number of dimensions created. To do so, we
registered the same event (PowerConsumptionEvent) with
different number of dimensions. A chart showing the impact
of changing number of dimensions for PowerConsumption-
Event event is shown in figure 11.

Figure 11: Size Chart for different No. of dimen-
sions

For the second part of the evaluation, we observed
the required query execution time (QET) and the perfor-
mance of our system during the generation and storage of
data cubes. Indeed, we defined a set of most commonly used
queries in our scenario and executed them on different types
of cubes stored in the EDWH and raw observations stored
in the staging area. The type of queries that we executed
are shown in table 2. The comparison of the recorded values
for QET are shown in table 3.

Figure 12: Performance Chart

In this evaluation, we use the term performance referring
to the time the system takes to process one particular type

Table 2: Set of Queries
Q1 Give me per minute powerUsage details for

all consumers, consumerTypes and consumerDe-
partments.

Q2 Give me per hour powerUsage details for all con-
sumers, consumerTypes and consumerDepart-
ments.

Q3 Give me per day powerUsage details for all con-
sumers, consumerTypes and consumerDepart-
ments.

Q4 Give me per minute powerUsage details for con-
sumer=Hadoop009 and all consumerTypes and
consumerDepartments.

Q5 Give me per hour powerUsage details for con-
sumerType=Laptop and all consumers and con-
sumerDepartments.

Q6 Give me per day powerUsage details for con-
sumerDepartment=facilities and all consumers
and consumerTypes.

Q7 Give me per day powerUsage details for
consumerDepartment=facilities, consumer-
Type=Laptop and all consumers.

Q8 Give me per day powerUsage details for
consumerDepartment=facilities, consumer-
Type=Laptop, and all consumers where
powerUsage is between 1000 and 2000 Watts.

Table 3: Query Execution Time Comparison

Query
Query Execution Time (in milliseconds)
Raw Quarter Hour Day

Q1 5747 1938 — —
Q2 5381 1121 541 —
Q3 4449 1003 535 380
Q4 5939 774 — —
Q5 6316 795 541 —
Q6 6770 754 521 301
Q7 4330 351 256 181
Q8 5121 397 298 237

of cube, i.e. time it takes to retrieve data, generate a cube
and store in EDWH. It is important to note here that the
configuration information of a registered event is critical in
the process of generating any particular type of cube for
such event, because the data retrieval, the generation of a
cube, and the storage in the EDWH is dependent on it.

The performance values were computed for a sample of
20 cubes on each Quarter, Hour and Day types of cubes as
shown in Figure 12. Since we are proposing a solution that
generates data cubes on-the-fly, the time the system takes
to process any particular type of cube has to be reduced



as much as possible for providing an efficient system. As
we can see in figure 12, the time taken to process a quarter
cube is between 12 and 14 seconds, less than 3 seconds for
an hour cube, and between around 7 seconds for a day cube.
The variations in cube generation time is due to variation
in the data size and the frequency of incoming events.

6. RELATED WORK
Focusing on publishing data while respecting Linked Data

principles, [12] propose an approach that produces RDF-
based climate data. Here the authors define a new ontol-
ogy for describing a specefic data set containing temperture
data. In this work, RDF Data Cube vocabulary and Seman-
tic Sensor Network Ontology have been extensively used for
generating and publishing aggregated data. However, con-
trary to our contribution, authors propose a fixed set of
dimensions as they are dealing with a domain specific data.
Recall, in our case we grant the user the right to select any
number of dimensions and measures that suit his need.

It is also worth mentioning that our approach is used
to generate on-the-fly data cubes from heterogenous sen-
sors, but in [12], authors discuss converting a 100 year ho-
mogenised daily temperature dataset into linked sensor data
cube.

The proposed work in [11] introduces an approach to in-
teract with an OLAP system using Microsoft’s Kinect. In
this work, AnduIN’s event processing ability is used to de-
tect gestures. Once gestures are detected, a query is formed
and executed on a multidimensional data cube to define new
and complex gestures using a star schema rather than RDF.

While we propose in our work to process event data, trasform
it into RDF and then generate multi-dimensional cubes,
in [13], the authors discuss a novel E-Cube model which
combines techniques of complex event processing and on-
line analytical processing for multidimensional event pattern
analysis at different levels of abstraction.

In the paper [1], the authors discuss a system that uses
Electronic Health Records (EHR) aggregated from differ-
ent data sources for advancements on medical research and
practice. In this approach, authors generate data cubes and
store them in RDF format to support data analysis from
a single place. In comparison to our work, the approach
given in [1] uses a batch mechanism as opposed to real-time
transformation of events and generation of data cubes.

7. CONCLUSIONS AND PERSPECTIVES
With the approach presented in this paper, we were able

to enrich events with necessary meta-data, and process en-
riched events to generate on-the-fly data cubes.

After looking at performance chart depicted in figure 12,
it is safe to conclude that our approach provides a good
way of generating data cubes on-the-fly in a real-time sen-
sor network. Apart from this, after testing our system with
different types of events, we believe that our approach can
serve as a generic approach towards generation of multidi-
mensional cubes from linked sensor data in real-time sensor
network environment.

During implementation, we observed that even though
triple stores have been favorite for persisting and manag-
ing RDF data [20], there are other NoSQL stores that can
provide a better query performance and storage mechanism
for RDF data. Therefore, we are researching on techniques

that support other types of databases and not just triple
store. Event enrichment is an important activity in our
approach, therefore, we are also investigating native ap-
proaches to event enrichment [9] and approximate seman-
tic event-processing [8] techniques and determining how this
would effect on-the-fly cube generation. We are also working
on improving the ontology, implementation and our method-
ology to generate data cubes on-the-fly in minimum time
possible. Apart from all this, we are also working on mak-
ing our source code and packaged implementation publicly
available to research community.
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