(OLLSCOILNAGAILLIMHE

[JNIVERSITY oF GALWAY

Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the
published version when available.

XSPARQL-Viz: A Mashup-Based Visual Query Editor for

Title X SPAROL

Gillani, Syed Zeeshan Haider; Ali, Muhammad Intizar; Mileo,

Author(s) Alessandra

Publication
Date 2013

Syed Zeeshan Haider Gillani, Muhammad Intizar Ali,
Publication | AlessandraMileo (2013) XSPARQL-Viz: A Mashup-Based
Information | Visua Query Editor for XSPARQL ESWC 2013 Montpellier,
France,

Publisher | Springer

Link to
publisher's | http://dx.doi.org/10.1007/978-3-642-41242-4 28
version

Item record | http://hdl.handle.net/10379/4126

Downloaded 2024-03-20T09:42:18Z

Some rights reserved. For more information, please see the item record link above.

@locio

2 HC MWD

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/

XSPARQL-Viz: A Mashup-based Visual Query
Editor for XSPARQL *

Syed Zeeshan Haider Gillani, Muhammad Intizar Ali, and Alessandra Mileo

DERI, National University of Ireland, Galway, Ireland
{syed.gillani,ali.intizar,alessandra.mileo}@deri.org

Abstract. XSPARQL is a query language which facilitates query, inte-
gration and transformation between XML and RDF data formats. Al-
though XSPARQL supports semantic data integration by providing uni-
form access over XML and RDF, it requires users to be familiar with
both of its underlying query languages (e.g XQuery and SPARQL). In
this system demo, we show how mashup-based techniques can be used
for auto generation and execution of XSPARQL queries. XSPARQL-Viz
provides an easy to use drag and drop visual query editor, which supports
novice users in designing complex mappings between XML and RDF and
based on these mappings auto generates and executes XSPARQL queries.
Results can also be visualised as a graph, table or list.

1 Introduction

XSPARQL! is a query language that combines XQuery and SPARQL for map-
ping, querying and exchanging XML and RDF on the Web [1]. Despite both
XQuery and SPARQL are widely adopted for XML and RDF data respectively,
many modern data integration applications require interoperability and simul-
taneous access over both data formats. XSPARQL bridges this gap by providing
uniform access over XML and RDF data, enabling query and transformation
from one data format to the other using a single query. Figure 1 depicts a sim-
plified version of the XSPARQL architecture.

Different approaches for the integration of XML and RDF data have been
proposed in the literature [6,3]. However all proposed solutions, including XS-
PARQL, require the user to be familiar with both XQuery and SPARQL. Com-
plex query language syntax is the main hindrance in the wide adoption of XS-
PARQL, because the majority of users are domain experts of their respective field
but lack expert knowledge of both query languages. Query-by-example, query-
by-form, graphical user interface and assisted query editors have been proposed
and used for auto query generation of SQL, XQuery and SPARQL. Similarly,
mashup are web based ad hoc applications that consume the available data from
third parties and combine them to build a new application. However mashup

* This work has been funded by Science Foundation Ireland, Grant No.
SF1/08/CE/11380 (Lion2).
! http://www.w3.org/Submission /xsparqgl-implementation/

2 Gillani et al.

XSPARQL XML =
Query
I’ ------------- 1
A4 . XQuery Engine .
Query XQuery | 1 1| XML
(Rewriter) Query > t :_>
1
1

1
: SPARQL Engine

’

Fig. 1. XSPARQL Architecture[1]

mostly consume only web feeds or API’s , hence, lacking the query language ca-
pabilities. Concept of data mashup has been utilised for auto query generation of
SPARQL and for integration of XML and RDF [7,4]. Following the same prin-
ciples, we design XSPARQL-Viz (a mashup-based visual query editor) for auto
generation of XSPARQL queries. We believe that potential impact, adoption
and usability of XSPARQL can be highly increased by providing such support
for novice users to write XSPARQL queries, and our proposed Mashup-based
XSPARQL visual query editor represents a step forward in this direction.

In this paper, we demonstrate a system demo which provides (i) auto gener-
ation of the XSD schema for XML data sets and RDFS schema for RDF data
sets, (ii)a visual query editor for facilitating mapping between XML and RDF
data sets (iii) mashup-based approach for auto generation of XSPARQL queries,
and (iv) tranformation of query results into any desired output format or as
input for another query.

2 System Overview

Our system is written in Java using the Spring Framework. A request based
Model-View-Controller (MVC) Framework is built over Spring Inversion of Con-
trol (IoC) Framework, which provides layered architecture for a stricter separa-
tion between model, view and controller. The underlying layered services can be
categorised into three classes (i) XML Schema Generation Services, (i) RDF
Schema Generation Services, (iil) Query Generation Services, and(iv) Result
Generation Services.

The XSPARQL engine is used as a core engine for query and transformation
between XML and RDF data, while XSPARQL query engine utilises Saxon?
query engine for XQuery and ARQ? query engine for SPARQL queries execution.
The visual query editor is a web application accessible using any web browser,
which is designed using a combination of Jsplumb and Jquery.

2 http://www.saxonica.com
3 http://jena.apache.org/documentation/query/index.html

XSPARQL-Viz 3

r Y
= Variable Value XSD Tiee
SPARQL RDF Schema Tree &
templ || [t opartists artisy
For For 4
[[ActiveYearsStartyear it
associatedBand a
Where [[associatedMusicalArtist —
background Tog Vay
birthDate: . # (1 Attributes
Let birthPlace —
Return
hometown
recordLabel ;
Filter origin Py
= XML Schema Tree
a [Variable Value
Construct a [Variable || Vawe | H arsitname | [[stempisname
[__sublet || Predicate || Object [[orgin [= J
Return [1ve dopesia.anl [= llorign
For Sparql A ;
Where Spargl y 1
1
= dbpedia-
b QUER Y <t <name> [[[arisimame [<imame T ive-openllnksw.com/iBsourcs|
Let Sparql

r—
ﬂ XSPARQL Functions'
Retum Spargl
4

Result Box
@ &——— File Upload/URI {

Result Visualization Query View Export Result

A

</artist><artist><name>Pink Floyd</name> <origin>London, England, United Kingdom </origin>
</artist> <artist><name>Led Zeppelin</name> <origin>London, England</origin> </artist>
<artist><name>Deep Purple</name> <origin>London, England</origin></artist> <artist>
<name>The Beatles</name> <origin>Liverpool, England</origin></artist> <artist>
<name>Coldplay </name> <origin>United_Kingdom </origin> </artist> <artist>
<name>Radiohead</name> <origin>Abingdon, Oxfordshire</origin></artist> <artists>

Fig. 2. XSPARQL Graphical User Interface

3 Demonstration Scenario

Inspired by [9], we consider the usecase of integrating Last.fm* music data with
DBpedia®. Consider the scenario of a user wanting to know about the hometown
of her top artists. Last.fm contains music information about a particular user e.g
type of music or list of top artists listened by the user, while DBpedia extracts
structured data from Wikipedia and stores them in RDF format. Last.fm pro-
vides access to its data using public api’s or web services and returns the results
in XML format, while DBpedia is accessible through SPARQL endpoint. Hence,
in order to answer the question above, we need to deal with data heterogeneity
and here is where XSPARQL comes handy, enabling us to retrieve, integrate and
transform XML and RDF data within a single query.

prefix dbprop: <http://dbpedia.org/property/>

let $doc :="http://ws.audioscrobbler.com/2.0/7?method=user.gettopartists”
for $artist in doc($doc)//artist
return

let $artistName := fn:data($artist//name)

let $uri := fn:concat(”http://dbpedia.org/resource/”, $artistName)

for $origin from $uri
where { [] dbprop:origin $origin }
return
<artists>
<artist>
<name>{$artistname}</name>
<origin >{$origin}</origin>
</artist>
<artists>

Listing 1. A Sample XSPARQL Query

4 http://last.fm
® http://dbpedia.org

4 Gillani et al.

Listing 1 provides an XSPARQL query to get the desired answers. However,
in order to write such XSPARQL query one needs to know both its underlying
query languages. We will use this use case scenario to depict several compo-
nents of XSPARQL-Viz and generate mashup for the execution of the XSPARQL
query. Figure 2 demonstrates the mashup for the generation and execution of
XSPARQL query shown in Listing 1.

Uploading Data Sets: XSPARQL-Viz requires access to the data where the
answer to our query lies. Lower left corner of the XSPARQL-Viz Editor as shown
in Figure 2, allows user to register the data sources by either uploading an XML
or RDF data set from local directory, or by providing a URI of a remotely
available data set. Users can upload multiple data sets in one session which are
temporarily stored for each user’s session.

Schema Generations: Once data sets are uploaded or their URI’s are pro-
vided, Schema Builder will execute multiple queries to automatically generate
XML Schema for XML data sets and RDF Schema for RDF data sets. The gener-
ated schema will be displayed in tree format at the top center of the XSPARQL-
Viz Editor, as shown in Figure 2. The generated tree structure component pro-
vides also an option to change the view into different visual structures, including
lists, grids and graphs.

Query Editor: XSPARQL-Viz Editor provides a richer graphical front-end on
top of the XSPARQL engine. This front-end enables users not only to execute
custom queries but also to have drag-and-drop support from schema tree for
efficiently designing the complex mapping between XML and RDF data sets.
The left panel of the XSPARQL-Viz Editor in Figure 2 allows users to choose
any of the XSPARQL clauses/statements to be applied over the data sets. In
order to set variable values in the query, users can either drag and drop any
data value from a generated schema tree or provide direct input. The flow of the
query is maintained by combining various components of XSPARQL clauses.
XSPARQL-Viz editor separates tabs for SPARQL and XQuery clause, and also
provides separate tabs for aggregate and other functions available in XSPARQL.

Output Data Format: XSPARQL serves as a bridge for transformation of
XML and RDF data in both directions, which allows users to pick any of the
RETURN or CONSTRUCT clause for the output data format. This feature
enables to perform transformations either by lowering (from RDF to XML) or
by lifting (from XML to RDF). Depending on users’ choice, the output of an
XSPARQL query will be in XML if the RETURN clause is used, or in RDF if
the CONSTRUCT clause is used.

Visualisation of Results: XSPARQL-Viz Editor provides visualisation capa-
bilities for the results of the mashup to be displayed as graphs, tables or lists.

XSPARQL-Viz 5

User can also export the results as an external file or data sets. A very impor-
tant additional benefit of using mashup-based approach is that it allows to save
the mashup as a component within XSPARQL-Viz Editor, and to use it later
for similar query execution over different data set or use it as input for another

query.

4 Potential Impact and Future Directions

In this demo, we showcase the XSPARQL visual query editor for auto-generation
of XSPARQL queries. XSPARQL-Viz assists for mapping and transformation be-
tween XML and RDF data without having extensive knowledge of XQuery and
SPARQL. XSPARQL-Viz is built upon and compliant with the strong theoret-
ical foundations of XSPARQL defined in [1,5]. We believe that initiatives like
XSPARQL-Viz can play a pivotal role for the wide adaption and usability of
XSPARQL in various domains and real-world applications.

As next steps we plan to perform extensive evaluation of XSPARQL-Viz us-
ability, and extend it to incorporate two recent extensions of XSPARQL, namely
(i) XSPARQL over relational data [8], and (ii) XSPARQL Update Facility [2].
We are also considering to use XSPARQL-Viz as a platform for adaptive gener-
ation of data set statistics which can be later used for query analysis, planning
and optimisation.

References

1. W. Akhtar, J. Kopecky, T. Krennwallner, and A. Polleres. XSPARQL: Traveling
between the XML and RDF Worlds - and Avoiding the XSLT Pilgrimage. In Proc.
of ESWC 2008, pages 432—447, 2008.

2. M. I. Ali; N. Lopes, O. Friel, and A. Mileo. Update Semantics for Interoperability
Among XML, RDF and RDB. In Proc. of APWeb, 2013.

3. M. I. Ali, R. Pichler, H. L. Truong, and S. Dustdar. DeXIN: An Extensible Frame-
work for Distributed XQuery over Heterogeneous Data Sources. In Proc. of ICEIS
2009, LNBIP, pages 172-183. Springer, 2009.

4. M. I. Ali, R. Pichler, H. L. Truong, and S. Dustdar. On integrating data services
using data mashups. In Proc. of BNCOD, volume 7051 of Lecture Notes in Computer
Science, pages 132-135. Springer, 2011.

5. S. Bischof, S. Decker, T. Krennwallner, N. Lopes, and A. Polleres. Mapping between
RDF and XML with XSPARQL. Journal on Data Semantics, 1:147-185, 2012.

6. S. Groppe, J. Groppe, V. Linnemann, D. Kukulenz, N. Hoeller, and C. Reinke.
Embedding SPARQL into XQuery/XSLT. In Proc. of SAC, 2008.

7. M. Jarrar and M. D. Dikaiakos. A data mashup language for the data web. In Proc.
of LDOW, volume 538 of CEUR Workshop Proceedings. CEUR-WS.org, 2009.

8. N. Lopes, S. Bischof, S. Decker, and A. Polleres. On the Semantics of Heterogeneous
Querying of Relational, XML and RDF Data with XSPARQL. In Proc. of EPIA,
2011.

9. A. Polleres and S. Sakr. Querying and Exchanging XML and RDF on the Web.
WWW 2012 Tutorial-http://www2012.wwwconference.org/program/tutorials/.

