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Abstract

We present a new approach to numerical modelling of incompressible flow of
fluid about an elastically mounted rigid structure with large body motions.
The solution is based on the Finite Volume Particle Method (FVPM), a mesh-
less generalisation of the mesh-based finite volume method. The finite volume
particles are allowed to overlap, without explicit connectivity, and can therefore
move arbitrarily to follow the motion of a wall. Here, FVPM is employed with
a pressure projection method for fully incompressible flow coupled with mo-
tion of a rigid body. The developed extension is validated for Vortex-Induced
Vibration (VIV) of a circular cylinder in laminar crossflow. To minimise com-
putational effort, non-uniform particle size and arbitrary Lagrangian-Eulerian
particle motion schemes are employed, with radial basis functions used to de-
fine the particle motion near the cylinder. Close agreement is demonstrated
between the FVPM results and a reference numerical solution. Results confirm
the feasibility of FVPM as a new approach to the modelling of flow with strongly
coupled rigid-body dynamics.
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1. Introduction

Many important problems in fluid dynamics are dominated by moving bound-
aries. Examples include the heart and blood vessels, internal combustion en-
gines, animal flight and vortex-induced vibration of slender elastic structures. In
classical computational fluid dynamics based on boundary-conforming meshes,
special treatments (such as mesh deformation, remeshing, overset meshes and
immersed boundaries) are required for flows of this kind. In meshless methods,
in contrast, the computational nodes or particles are free to move in response to
boundary motions, since their connectivity need never be specified. Therefore,
it appears that meshless methods can avoid the difficulties presented by a mesh
with moving boundaries.

There is now a significant body of work on the meshless method smoothed
particle hydrodynamics (SPH) demonstrating validated applications in a range
of applications, notably in free-surface flow. SPH was first applied to free-surface
flow by Monaghan [1] using a weakly compressible approach. Incompressible
free-surface SPH methods were developed by Cummins and Rudman [2] using a
pressure projection, and by Shao and Lo using a density-invariant formulation
[3]. A comprehensive review is given by Monaghan [4].

The relatively new finite volume particle method (FVPM) is a meshless
generalisation of the classical mesh-based finite volume method which, in prin-
ciple, avoids some limitations of other meshless methods. The central idea of
FVPM, and the main difference between it and the the mesh-based finite volume
method, is the defintion of an interface area between overlapping finite volume
cells (particles), in contrast with the contiguous but strictly non-overlapping
finite volume cells in a mesh. Since finite volume particles may overlap arbitrar-
ily, there is no need to determine or maintain connectivity information. They
can move in any manner, as long as fluxes due to the particles’ motion are ac-
counted for. This makes it straightforward to accomodate moving boundaries.
Where a particle is truncated by a boundary, a particle-boundary interface area

is defined, enabling boundary flux to be computed. FVPM was introduced by



Hietel et al. [5]. It was subsequently analysed by Junk and Struckmeier [6] and
Junk [7], proving consistency of the scheme, and rigorously establishing FVPM
as a generalisation of the finite volume method. Keck et al. [8] implemented
a pressure projection scheme for fully incompressible flow. Improved methods
for the particle interface area calculation were proposed by Hietel and Keck [9]
and Teleaga [10]. Nestor et al. [11] extended FVPM to second-order spatial
accuracy and viscous flows, and Teleaga [10, 12] and Nestor et al. [13] applied
the method to moving-boundary problems.

FVPM embodies some valuable properties of the finite volume method with-
out sacrificing the flexibility of a meshless method for moving boundaries and
interfaces. Boundary conditions are implemented straightforwardly by prescrip-
tion of fluxes from the boundary to the particle. FVPM possesses proven theo-
retical consistency [6], and local conservation is exact, regardless of variation in
particle size. In addition, a wide range of established finite volume techniques
(e.g. Riemann solvers) can be directly incorporated in FVPM. However, there
have been few applications of FVPM to date, and most have been restricted to
simple benchmark problems.

This article is concerned with development and validation of FVPM for a
more challenging problem in which full advantage can be taken of the meshless
formulation. We describe the extension of the FVPM to flow-induced motion
of a rigid structure (henceforth referred to as rigid-body FSI) for incompress-
ible flow. This extension is validated for Vortex-Induced Vibration (VIV) of
a circular cylinder in cross-flow, a problem involving coupling of fluid dynam-
ics with a rigid body undergoing large displacements. The motivation for this
study is to validate FVPM on a well-studied fluid-structure interaction problem,
in advance of applications involving more complex rigid-body dynamics and/or
elastic bodies.

The FVPM formulation is described in Section 2. The rigid-body FSI ex-
tension of FVPM is presented in Section 3 and a novel ALE particle motion
scheme for FVPM is presented in Section 4. Results are presented in Section 5

fomr FVPM simulations for crossflow over a circular cylinder vibrating with pre-



scribed motion and a freely vibrating cylinder. The FVPM results are compared

with reference solutions from the literature throughout.

2. The Finite Volume Particle Method

2.1. FVPM formulation

The semi-discrete form of the FVPM for a conservation law is [5, 12]

p N
p (ViU;) = —Zﬁzj (F(U;,Uy)) - BIF, (1)
=1

where t is time, V; is the volume of particle ¢, and U is the vector of conserved
variables. The numerical flux F(U;, U;) is an approximation to F;; — U;;%;,
where I_Jl-j and )Tcij are averages of the conserved variables and particle transport
velocity, respectively, of particle ¢ and its neighbour j. The superscript b denotes
boundary terms. The element of FVPM which differentiates it from the classical
finite volume method is the particle interaction vector, defined by

W;VW; — ijWid
Q (X k Wk)2

where W; = W (x — x; (t) , h) is a compactly supported kernel function for par-

Bij =

X, (2)

ticle 4, centred at x;. The compact support radius is 2h, where h is called the
smoothing length, in keeping with the SPH convention. The quantity 3;; is pre-
cisely analogous to the cell face normal area vector which weights intercell fluxes
in the classical finite volume method [7]. The particle interaction vectors are
evaluated by numerical integration and corrected by the procedure of Teleaga
[10] to ensure the condition ), B;; = 0 (analogous to the condition that a cell
surface is closed in traditional finite volume methods) is exactly satisfied.
Interparticle fluxes are computed using a MUSCL reconstruction from parti-
cle barycentres to particle-particle interfaces, as described by Nestor et al. [11].
The reconstruction is based on a consistency-corrected SPH estimate of gradi-
ents [14] at the particle barycentre. The HLL Riemann solver [15] is then used

to approximate the interparticle inviscid momentum fluxes.



One valuable property of FVPM, exploited in the present work, is that par-
ticle size may be spatially non-uniform. That is, neighbours ¢ and j can have
different support radius 2h. In the form used here, h; is constant in time, al-
though the case h = h(t) may also be treated with an additional term involving
dh/dt [5]. A second-order explicit Runge-Kutta scheme is used for temporal
discretisation of Eq. (1).

For full details of FVPM, the reader is referred to Hietel et al. [5]. The
implementation in the present work follows the details given by Nestor et al.

[11, 13], except where stated otherwise.

2.2. Fully incompressible solution methodology

FVPM has previously been applied to fully incompressible flow problems
by several authors [8, 13, 16]. The pressure projection algorithm of Chorin
[17], adapted for SPH by Cummins and Rudman [2], is used to achieve the
fully-incompressible flow solution. The algorithm can be summarised (using a

first-order explicit temporal discretisation for brevity) by the following sequence

of steps:
av;"
Virtt = Vit At— 3
z A (3)
1 d(v;u;) ="

Uy = —— (V"UM+ At———= 4
7 V;nJrl ( 7 7 + dt > ( )
X = XD AY (5)

2 n+1 14 *
. = B — . . 6
“z‘H = u - 7VP¢H (7)

where d(V;U;)*"/dt is computed from Eq. (1) without the pressure term in
the flux function F. The algorithm consists of a preliminary time advance
of the momentum equation (disregarding the pressure terms) which yields the
momentum U* in Eq. (4) that is not guaranteed to satisfy the divergence-free
velocity condition. The pressure solution at time n + 1 is computed in Eq. (6).
The velocity is corrected in Eq. (7) so that the divergence-free velocity condition

is satisfied.



Care must be taken when developing the discrete form of the pressure Poisson
equation (Eq. 6) to ensure that the discrete scheme does not admit spurious
checkerboard solutions for the pressure. An appropriate choice for the discrete
Laplacian and divergence operators is described by Nestor and Quinlan [13].

In the present work, the solution to the discretised pressure Poisson equa-
tion in Eq. (6) is obtained with the LASPACK implementation of the GMRES
algorithm [18].

2.8. Boundary conditions

A significant advantage of FVPM over other mesh-free methods is that
boundary fluxes can be prescribed straightforwardly wherever a particle is trun-
cated by a boundary. The discretisation of these terms allows for a straight-
forward enforcement of boundary conditions in terms of a boundary flux and a
geometric interaction vector. Following Keck [16] and Keck and Hietel [8], the

boundary coefficient B¢ in Eq. (1) may be computed from

N
Bl ==Y By (®)
j=1

Specific boundary conditions are then applied by prescribing the appropriate
flux .7-'? where a particle is truncated by a boundary. For inlet, no-slip wall and
free-slip wall boundaries, the normal component of velocity is specified. The
inviscid flux at the boundary is then computed on the basis of the imposed
boundary velocities and a zero-order extrapolation of the particle pressure to
the boundary. At no-slip wall boundaries, the viscous fluxes are computed on
the basis of a consistency-corrected SPH gradient approximation [14], centred
at the midpoint of the boundary segment that overlaps the particle support.
For free-slip walls, the viscous flux is set to zero.

For the pressure Poisson equation, a Neumann condition Vpi? = uV2u? is
specified at inlet and no-slip wall boundaries. At free-slip wall boundaries, a
homogeneous Neumann condition is specified.

For outlet boundary conditions, following the approach of Ferziger and Peric

[19], the velocity gradient normal to the boundary is set to zero, and the resulting



outlet mass fluxes are corrected so maintain global mass conservation. For the

pressure Poisson equation, the pressure is specified at the outlet.

3. Rigid-body FSI in the FVPM

3.1. Equation of motion for the rigid structure

In the VIV simulations presented in Section 5.3, a rigid structure of mass m
and length scale d is mounted on springs with stiffness k in each Cartesian coor-
dinate direction, without damping, and is immersed in a flow. The structure is
subjected to a total fluid force Fy comprising viscous and pressure components.
The equation of motion for the structure is written as

Fy
M*pd2 ?

)n(c + 47T2f'r2LXc =

(9)

where x. is the structure displacement vector relative to the no-flow equilibrium
position, f, = \/k/m/(2n) is the undamped natural frequency of the system
and M* = m/(pd?) is the non-dimensionalised mass.
The components of surface force on the cylinder are approximated in FVPM
by
F, ~ Z 82| (ping — nyt?), (10)
i

where n, is the z-component of the outward (away from the fluid domain)
normal at the cylinder surface, and the sum includes all particles ¢ interacting
with the cylinder. The boundary pressure is extrapolated to the boundary i.e.
p? = p;, and the boundary viscous stress Tib is computed using the SPH gradient

approximations.

3.2. Algorithm for fluid-structure coupling

The structure position at time level n+1 is approximated using the equation
of motion for the structure and the fluid forces acting on the structure at time
level n. A staggered approach [20-22] is chosen for fluid-structure coupling. In
the following, the method is described for a first-order explicit temporal scheme

for simplicity, although a second-order Runge-Kutta scheme is employed in our



implementation. The position and velocity of the structure are firstly updated
to time level n 4+ 1. The computational mesh (particle distribution, in the case
of FVPM) is then updated to account for the displaced structure. Finally, the
flow field is updated to time level n + 1. The details of the implementation
follow the work of Placzek et al. [22], and is detailed in Algorithm 1.
Throughout this article, to appropriately move the particles in the vicinity of
a moving boundary, the motion of these particles is computed on the basis of an
interpolation of the boundary motion velocities using the procedure described
in Section 4. Using this approach, the particle velocity at timestep n + 1 (i.e.
)'(;””1 in step 6 of Algorithm 1), is based on the boundary velocity at the same
timestep (i.e. x7T! in step 3 of Algorithm 1). Therefore, the boundary and
particle positions are updated using the same temporal scheme. This differs
from the approach of Placzek et al. [22] in which the updated structure position
is based on an average of both the previous and current structure velocities,
je. xPHL = x4+ (At/2) (x7 + x7+1). However, the current approach has been

found to perform well for the test cases presented in Section 5.3.

4. Particle Motion

In FVPM, particles are transported with an arbitrary Lagrangian-Eulerian
(ALE) velocity field. For application to VIV simulation, a fully Eulerian scheme
cannot be used, because of the cylinder wall motion. A fully Lagrangian scheme
would be computationally expensive because of the need to recompute particle
neighbourhoods and interactions at every timestep. Therefore, a hybrid ALE
approach is used, in which particles far from the vibrating cylinder remain
stationary (Eulerian), and particles near the moving walls are transported at a
velocity based on interpolation of the wall velocity. Radial basis functions (RBF)
are used for interpolation, following de Boer et al. [23], but with interpolation for
particle velocities rather than displacements, since particle velocity is required
in FVPM for the computation of the interparticle fluxes.

Given a set of n discrete data points x;, j = 1...n at which the scalar



function s(x) is known, a RBF interpolation §(x) for s(x) may be written as
5(x) =Y ;@ (x —x;]) +p(x), (11)
j=1

where @ is a radial basis function centred at x;, p is a polynomial, and o is
a vector of coefficients with a single o; for each data point x;. For FVPM,
the known data points x; are points on the boundaries which move with known
velocity. @ is a radially symmetric function, certain choices for which have
compact support. According to Buhmann [24], the purpose of the polynomial p
in Eq. (11) is to ensure that the interpolation problem is non-singular for certain
choices of ®. The coefficients «; and the coefficients of the polynomial p can
be obtained by requiring that two conditions on the interpolation are satisfied.
The first condition is that the known data are recovered by the interpolation

Eq. (11) at the discrete data points,

8 (x5) = s(x;). (12)

The second condition is

Zajp (x;) =0, (13)

which, according to Buhmann [24], is required to ensure that the interpolant is
unique.

In the present work, we follow de Boer et al. [23] in that a first-order
polynomial is used for p. The present choice for ® is the compactly supported
polynomial

4
<4X—Xj|+1> (1_|X—Xj|) k.
(I)(|X7Xj|aQ) = q q q s

0 otherwise
(14)

where ¢ is the compact support radius of ®. The compact support radius ¢ is
typically of the order of the maximum dimension of the domain. The choice
for @ given in Eq. (14) was shown by de Boer et al. [23] to require the least

computational effort of several choices for ®.



Denoting as © the vector of coefficients of the polynomial p, the solution for

a and O can obtained by solving the linear system

M P o s
= ; (15)

PT 0 (] 0
where the submatrix M has dimensions n x n with M;; = ® (|x; — x;), P is
an x (D + 1) submatrix, with row j of P given by P; = [ 1 x; | and s is
a vector of dimension n with s; = s(x;). The solution to Eq. (15) is obtained

using the LASPACK implementation [18] of the Generalised Minimal Residual
Method (GMRES) [25].

5. Numerical results

Example computations of the developed methods are presented in this sec-
tion. Vortex-induced vibration (VIV) of circular cylinders in crossflow is overviewed
in 5.1. Simulations of flow around a cylinder undergoing prescribed vibrations
are then presented in Section 5.2. The purpose of these simulations is to verify
that the forces acting on the structure predicted by the FVPM are in agree-
ment with similar computations in the literature. The extension of the FVPM
for rigid-body FSI is then validated in Section 5.3 for VIV of a circular cylinder

in crossflow.

5.1. Overview of vortex-induced vibration of cylinders in crossflow

VIV [26] is an important consideration for the design of long elastic struc-
tures such as offshore risers [27] and skyscrapers [28]. VIV of an elastically
mounted cylinder in laminar crossflow has been extensively studied both exper-
imentally and numerically. This case is chosen as the subject of the present
work for validation of rigid-body FSI modelling in FVPM. Comprehensive re-
views of VIV are presented by Bearman [26], Williamson and Govardhan [29]
and Sarpkaya [30].

The VIV response of an elastically-mounted circular cylinder of diame-

ter d is illustrated in Figures 1(a) and 1(b) for a range of reduced velocity

10



U, = Uso/(fnd). Within the lock-in range, the cylinder displacement ampli-
tude is higher, and the vortex shedding and cylinder motion synchronise with
the natural frequency of the structure f,. Outside of this range of U,, the
cylinder motion is synchronised with the Strouhal frequency fs and the cylinder
displacement amplitude is small.

The structure of the VIV response is dependent on structural parameters
and flow conditions. The upper branch of amplitude response (illustrated in
Figure 1) does not occur for laminar flow, as demonstrated by the numerical
simulations of Newman and Karniadakis [31] and the experimental observa-
tions of Anagnostopoulos and Bearman [32]. The experiments of Khalak and
Williamson [33] show that the synchronisation of the cylinder vibration fre-
quency f. with the natural frequency f, is not as well defined for small M* as
for large M*, as illustrated in the schematic plot in Figure 1(b). Measurements
by Anagnostopoulos and Bearman [32] show that the long-term amplitude re-
sponse is sensitive to initial conditions. The authors performed two sets of
experiments in which the cylinder response was observed as a function of U,..
Their findings are illustrated schematically in Figure 1(a). If the cylinder is
stationary in the initial condition (referred to as “starting from rest” or the
“stationary initial condition” in this article), lock-in occurs over a smaller range
of U, than if U, is increased over the course of the experiment, allowing periodic
VIV to become established before advancing to the next condition.

Williamson and Roshko [34] have identified several vortex shedding modes
that occur for flow over vibrating circular cylinders, as shown schematically in
Figure 2. In the 2S and 2P modes, respectively, two single vortices and two
pairs of vortices are shed per cylinder motion cycle. In the P+S mode, in which
one single and one pair of vortices are shed per cycle, and in the C(2S) mode,
vortices coalesce in the wake. For laminar flow, the 2P wake mode has not been
observed in the forced vibration experiments of Griffin and Ramberg [35] at
Reg = 190 or the numerical simulations of Singh and Mittal [36] and Prasanth
and Mittal [37] at Req = 100 and 60 < Req < 200 respectively. Instead, the

predominant vortex mode for laminar VIV is the 2S mode. In the computations
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of Singh and Mittal [36] at Req = 100, the C(2S) mode occurs for U, = 5.0
(with increasing U,) and U, = 4.6 (with decreasing U,.).

In numerical simulations of undamped VIV at low Reynolds number, Shiels
et al.[38] found that the effects of structural stiffness and mass can be charac-
terised by a single effective stiffness parameter which is valid even for zero mass
and stiffness. Williamson and Govardhan [29] compiled low Reynolds number
results from the experiments of Anagnostopoulos and Bearman [32] and a range
of numerical models, to showing that amplitude response as a function of oscil-
lation frequency is essentially independent of M* and Rey for 0 < M* < 116
and Rey < 200.

5.2. Forced vibrations of a cylinder in crossflow

Laminar flow over a circular cylinder vibrating with prescribed motion is
simulated as a precursor to VIV simulation. The lock-in phenomenon associated
with VIV also occurs for forced cylinder vibrations — in the forced case, lock-
in is characterised by the synchronisation of the vortex shedding and cylinder
vibration for a certain range of cylinder vibration frequency f.. Outside of this
range, this synchronisation is not observed. Thus, this flow problem tests the
ability of the FVPM to predict some VIV-related flow phenomena without the
need to model the structural response.

The numerical simulations of Placzek et al.[22] are used for comparison with
the FVPM results. Their simulations are based on a mesh-based finite volume
discretisation with a second-order upwind approximation for the inter-volume
fluxes. For their forced vibration simulations, Placzek et al.[22] used a 2D mesh

of 28,800 quadrilateral elements.

5.2.1. Problem definition

The problem domain is illustrated schematically in Figure 3. An inlet bound-
ary condition with specified normal velocity of Uy, is located at * = z/d = 0.
Free-slip horizontal wall boundary conditions are located at y* = y/d = +15.

An outlet boundary condition with prescribed pressure p = 0 is located at

12



x* = 80. The flow is laminar with Reynolds number Re; = 100. The cylinder

moves in the y-direction only with position y.(¢) given by
Ye(t) = Asin(2nfct), (16)

where A is the amplitude of the motion and f. is the cylinder vibration fre-
quency.

The imposed cylinder motion is identical to that of Placzek et al. The
flow is simulated for sinusoidal cylinder oscillations of displacement amplitude
A/d = 0.25 at frequencies f./fs = 0.5, 0.9, 1.1 and 1.5. For the initial condition,
Placzek et al. [22] initiated their computations from a stationary cylinder com-
putation at Regy = 100 in the periodic vortex-shedding flow regime. However,
the instant of the vortex shedding cycle at which the computations are initiated
is not specified by Placzek et al. In the present computations, the initial condi-
tion is periodic vortex shedding from a stationary cylinder at Rey = 100 at the

instant when the lift coefficient C'f, is approximately zero.

5.2.2. FVPM configuration

The particle distribution in the vicinity of the cylinder is shown in Figure 4.
The initial particle spacing is Azo/d =~ 0.36 in the majority of the domain.
This resolution was found sufficient for agreement with reference results. The
particle spacing nearest the cylinder is Azs = (0.1)Azg and linearly increases
in the radial direction to Az over a distance of (5.5)d from the cylinder centre.
The smoothing length A is set to 0.7 times the local particle spacing. The
particle motion %; is determined using a RBF interpolation of the boundary

velocities as described in Section 4.

5.2.3. Results
As described previously, the forced vibration computations of Placzek et
al. [22] are used for the purposes of comparison with the FVPM results. In

addition, Koopmann [39] presents experimental data for the threshold values of

A/d and f./ fs for which lock-in occurs at Reynolds numbers 100, 200 and 300.
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The data presented by Koopmann for Rey; = 100 show that f./fs = 0.5 and
1.5 correspond to unlocked behaviour, while f./fs = 0.9 and 1.1 correspond
to locked behaviour. These observations are used to assess the ability of the
FVPM to predict locked or unlocked behaviour at appropriate values of f./fs.

The maximum lift coefficients for the four different cylinder vibration fre-
quencies are given in Table 1 for both the FVPM and the results of Placzek et
al. [22]. Good agreement is achieved with the results of Placzek et al. [22] for
all values of f./fs.

According to Nobari and Naredan [40] and Placzek et al. [22], lock-in for
forced vibrations is characterised by a sinusoidal C}, response and a synchro-
nisation of the C and cylinder vibration frequencies. Figure 5 shows the lift
coeflicient histories predicted by the FVPM for the four cylinder vibration fre-
quencies at Req = 100. In Figures 5(b) and 5(c) for f./fs = 0.9 and 1.1 re-
spectively, the lift coefficient response is sinusoidal, indicating locked behaviour.
The prediction of locked behaviour at these values of f./fs and A/d is consistent
with the experimental observations of Koopmann [39].

Figures 5(a) and 5(d) show the lift coefficient histories for f./fs = 0.5 and
1.5 respectively. In these cases, C(t) is no longer sinusoidal, but displays a
periodic beating behaviour. This is consistent with unlocked behaviour, and
at these values of f./fs and A/d, is in agreement with the observations of
Koopmann [39].

For f./fs = 1.5 (Figure 5(d)), FVPM correctly predicts the beating be-
haviour of the transient C}, response of Placzek et al. However, for f./fs = 0.5
(Figure 5(a)) the transient Cf, response predicted by the FVPM differs from the
C', response of Placzek et al. For the time range of C'1, response given in Placzek
et al. at f./fs = 0.5 the response is not fully periodic but is still settling down
from the impulsive start of the cylinder motion. In this non-periodic regime,
the Cf, response depends on the initial condition. However, the initial condi-
tion employed in the simulations of Placzek et al. was not precisely specified
— in particular, the instant of the periodic vortex-shedding cycle (in a station-

ary cylinder simulation) from which the cylinder motion was initiated, was not

14



given. Hence a meaningful comparison between the transient C', response pre-
dicted by the FVPM and Placzek et al. is not possible in this non-periodic flow
regime.

Figure 6 shows the lift coefficient Cr,(t) predicted by FVPM as a function
of cylinder displacement y(t)/d (phase portrait). Figures 6(b) and 6(c) show
the phase portraits for f./fs = 0.9 and 1.1 respectively. Following an initial
asynchronous period due to the impulsive start of the cylinder motion, the lift
coefficient oscillations synchronise with those of the cylinder displacement, and
the phase portrait settles on a unique path. Figures 6(a) and 6(d) show the phase
portraits for f./fs = 0.5 and 1.5 respectively. In these figures, asynchronous be-
haviour between the lift coefficient and cylinder displacement is evident because
a unique path is not present in the phase portrait. Comparison with the phase
portraits of Placzek et al. [22] reveals that the responses predicted by FVPM
are similar for f./fs = 0.9, 1.1 and 1.5. For the phase portrait with f./fs = 0.5,
it appears that the C, values predicted by the FVPM are the negative of those
predicted by Placzek et al. One explanation for this behaviour is that the initial
conditions in the present simulations may not be identical to those of Placzek

et al., as described previously.

5.8. Vortex-induced vibration of a cylinder in crossflow

FVPM simulations for VIV of a circular cylinder in crossflow are presented
in this section. Throughout this section, the results of Singh and Mittal [36] are
used for the purposes of comparison with the FVPM results.

5.3.1. Problem definition

The VIV problem for FVPM validation is defined by Singh and Mittal [36].
The flow domain for the present FVPM simulations is depicted schematically in
Figure 7. A circular cylinder of diameter d is located in a channel of width 20d.
Inlet and outlet boundary conditions are prescribed for the vertical boundaries
located at z* = x/d = 0 and z* = 35 respectively. Free-slip horizontal wall

boundary conditions are located at y* = y/d = £10. The cylinder centre is
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initially located at z* = 10 and y* = 0. The Reynolds number (based on
cylinder diameter d and freestream velocity Uy, ) is 100 for all results presented
in this section. The cylinder is elastically mounted in both the x and y directions
with identical structural parameters for each direction. The reduced velocity
U, = Ux/(fnd) is varied by adjusting the natural frequency f,, of the structural
system while keeping the freestream velocity, and thereby the Reynolds number,

fixed. The non-dimensional mass M* = m/(pd?) is set to 7.854.

5.3.2. Initial conditions

For the majority of the simulations presented in this section, the initial con-
ditions consist of uniform flow with z-velocity U, everywhere and zero cylinder
velocity, i.e. X, = 0. This corresponds to the stationary initial condition de-
scribed in Section 5.1. The U, values for the VIV simulations with the stationary
initial condition are given in Table 2. In addition, VIV simulations were per-
formed for the case of increasing U,.. These simulations were initiated by firstly
establishing periodic VIV for U, = 7.00 with the stationary initial condition.
U, was then sequentially increased in steps, to each of the U, values listed in
Table 2. Periodic VIV was achieved before increasing the U, value. These sim-
ulations were performed to assess the ability of the FVPM to predict the effect
of the initial condition on the cylinder response. This also facilitated additional
comparisons with the results of Singh and Mittal [36], all of whose simulations

were performed for increasing U,..

5.83.3. Particle motion

The particle motion schemes and regions for the present VIV simulations
are illustrated schematically in Figure 9. In the FVPM, when the particles
move relative to each other, the interaction vectors B3;; must be updated. To
reduce the computational effort for the present simulations, the particles within
a radius (5.5)d of the cylinder centre move at the same velocity as the cylinder.
Thus it is only necessary to compute the interaction vectors for these particles at

time ¢ = 0. Denoting as x.(0) the initial cylinder position in the z-direction, the
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motion of the particles located a distance greater than (5.5)d from the cylinder
centre and with z-coordinates z.(0) — 7d < & < x.(0) + 7d is determined using
the RBF interpolation described in Section 4. For the interpolation, the known
velocities are those of outer (stationary) boundaries and those of the particles
located (5.5)d from the cylinder centre. All other particles in the domain are

fixed.

5.8.4. Particle distribution

As for the forced vibration study, in the majority of the domain, the particles
are initially arranged in a uniform Cartesian pattern with spacing Azg. The
particle spacing decreases over a distance (5.5)d from the cylinder centre to
Az = Axo/10 at the surface.e. The smoothing length for all particles is 0.7
times the initial local particle spacing.

Solution convergence with particle spacing was investigated by conducting
simulations at surface particle spacings Az,/d = 0.011,0.022,0.044 at the single
physical condition U, = 5.0. Results are summarised in Table. 3. According to a
Richardson extrapolation [41] of the three data points, the order of convergence
is 1.54. The finest resolution, Azs/d = 0.011, yields a result within 2.4% of
the extrapolated converged result, and the result for Axg/d = 0.022 is within
7.0%. Therefore, the majority of simulations were conducted with the medium
resolution, Az,/d = 0.022, resulting in approximately 22,000 particles. This

particle distribution is shown in Figure 8.

5.8.5. Results

Results are compared with the moving-mesh finite-element simulations by
Singh and Mittal [36] of VIV of a circular cylinder at Req = 100 in which the
cylinder was elastically mounted in both x and y directions. Results are given by
Singh and Mittal [36] for the transverse and in-line cylinder displacements and
lift and drag coefficients as a function of U, for constant Rey. Singh and Mittal
simulated VIV using a mesh-based finite element scheme with a deforming 2D

mesh of 7,236 quadrilateral elements. The simulations of Singh and Mittal were
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performed for increasing or decreasing U,., not from rest. However, the initial
condition only has an effect on the cylinder response for the larger values of U,
for which lock-in occurs. Therefore the majority of the FVPM results with the
stationary initial condition should be comparable with the results of Singh and
Mittal. In the following figures, the values from Singh and Mittal are given for
increasing U,. only.

The variation of the maximum non-dimensional amplitude of the transverse
cylinder displacement y./d as a function of U, is shown in Figure 10 for both the
FVPM and reference simulations. Good agreement is achieved with the results
of Singh and Mittal, although there are two outlying points at U, = 7.50 and
7.75 for the FVPM simulations with the stationary initial condition. For the case
of increasing U,., good agreement with the reference is achieved for U, = 7.25
and U, = 7.5. However, for U, = 7.6 and U, = 7.75, FVPM predicts a lower
amplitude than the reference solution. FVPM therefore only partially predicts
the additional branch in the amplitude response predicted by Singh and Mittal
[36] for the case of increasing U,. Reasonable agreement between the FVPM
and reference values for the root-mean-squared lift coefficient is achieved, as
shown in Figure 11.

The non-dimensional cylinder vibration frequency f./f, is shown in Fig-
ure 12 as a function of U,. Synchronisation of the cylinder vibration with the
natural frequency is evident over the range 5.0 < U,. < 7.0. This plot shows the
variation of the non-dimensional cylinder vibration frequency f.d/Us with U,
for both FVPM and reference solutions. Also shown is the non-dimensional nat-
ural frequency f,d/Us. Again, the synchronisation of the cylinder motion and
natural frequencies is clear and good agreement is achieved with the results of
Singh and Mittal. For the FVPM simulations starting from rest, the frequency
response shows a departure from lock-in at lower U, values than predicted by
Singh and Mittal. For the increasing U, case, lock-in is predicted by the FVPM
up to U, = 7.5, but thereafter the cylinder motion frequency deviates from f,,
as shown in Figure 12. For the increasing U, case, the FVPM thus predicts
departure from lock-in at lower U, values than Singh and Mittal [36].

18



In Figure 13, data are plotted alongside results of a highly resolved vortex
method for undamped VIV at Rey = 100 by Shiels et al. [38], and the results
of Singh and Mittal. Amplitude and frequency are presented as functions of the
effective stiffness parameter of Shiels et al.,

_ k—A4r*mf?

=8 M* (f2* — f2?) , (17)
3PU2, ( )

n c

kegr

where f¥ = f.d/Usx and f} = f,d/Usx = 1/U,. This collapses the effects of
structural inertia and stiffness, conventionally characterised by M* and U,., into
a single parameter. However, k7z is unknown ab initio for a given configuration,
since it depends on the oscillation frequency f.. Both the scaling approach and
the numerical results of Shiels et al. [38] are representative of the only available
laminar VIV experiment [32] as well as a range of other numerical results [29].

The present FVPM results agree with computations of Shiels et al. [38] for
amplitude and frequency. The maximum discrepancy in amplitude is consistent
with the 7% error predicted by Richardson extrapolation, and in most cases
it is smaller. Discrepancies between the present work and Singh and Mittal
(most clearly visible in Figure 10) occur at the lowest oscillation frequencies, in
the region —0.36 < kZg < 0.01 and f& < 0.13. In this region, FVPM agrees
well with Shiels et al., whereas the results of Singh and Mittal predict lower
oscillation frequency.

The temporal variation of y./d for various U, values is shown in Figures 14,
15 and 16. The amplitude of the y./d response is greater than 0.3 and the
motion is sinusoidal for U, = 5.25,6.25 and 7.00 as shown in Figures 14(b),
15(a) and 15(b) respectively. Starting from rest with U, = 7.50, the cylinder
motion is characterised by a smaller amplitude and a beating behaviour in
which the motion is periodic over several non-periodic oscillations, as shown
in Figure 16(a). For the increasing U, case at U, = 7.50 (Figure 16(b)), the
transient y./d response is quite different than for the stationary initial condition
case — the motion is sinusoidal and the amplitude of the motion is larger.

The temporal variation of the lift coefficient is shown in Figures 17, 18 and

19 for different U, values. For U, = 4.40 and 5.25 (Figure 17), the lift coefficient
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response is sinusoidal with max(Cp) = 0.6 and 0.9 respectively. The amplitude
of the (' variation for these U, values is much larger than for flow over a
stationary cylinder at Rey; = 100 in the periodic vortex shedding regime, for
which max(Cp) = 0.36. In Figure 18 the transient Cp response is shown for
U, = 6.25 and 7.00. In both of these cases, transient C}, response is periodic
with several non-periodic oscillations within each period and is characterised by
sudden sharp variations. For U, = 7.50 with the stationary initial condition
(Figure 19(a)), the response is again periodic over several oscillations, but the
sharp variations are no longer apparent. For the increasing U, case, shown in
Figure 19(b), the Cf, response is purely sinusoidal but with a slightly smaller
amplitude than for the stationary initial condition.

The z-component of the vorticity is given by

ov  Ou
= — =, 18
=50 By (18)
which may be computed using the FVPM approximation
N
_1 @ VitV ) Wi T U
gz - V Z (/67,] 2 - ﬂij 2 ) (19>

i
where ,Bg) and ﬁ%’) denote the z and y components of the particle interaction
vector, respectively. Figure 20 shows the instantaneous non-dimensional vortic-
ity field ¢,d/Us, computed using Eq. (19), for U, = 4.40, 5.00 and 6.25. For
U, = 4.40 and 6.25, two vortices are shed from the cylinder per cycle. This
mode of vortex shedding is denoted by Williamson and Roshko [34] as the 2S
mode and is the predominant mode that exists for laminar flow over vibrating
circular cylinders. For U, = 5.00, two vortices are also shed per cycle, but the
shed vortices coalesce with downstream vortices of the same rotational direc-
tion. This prediction of the C(2S) vortex shedding mode is consistent with the
results of Singh and Mittal [36].

6. Discussion and conclusions

FVPM has been extended to rigid-body FSI modelling, using a staggered al-

gorithm for the fluid-structure coupling, with arbitrary Lagrange-FEuler particle
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motion. FVPM for flow about a body with prescribed motion was first validated
for forced vibrations of a circular cylinder in crossflow. This test was performed
to assess the ability of the FVPM to predict the lock-in phenomenon associated
with flow over vibrating cylinders. The developed extension was then validated
for VIV of a rigid circular cylinder in a crossflow at Rey = 100. The validation
was performed on the basis of the structure displacements and lift coefficients.
For these parameters, good agreement was achieved between the FVPM results
and reference numerical solutions. Furthermore, the FVPM correctly predicted
the different wake patterns associated with different structural parameters.

Four aspects of both the basic FVPM and the extensions described in this
article are critical for the accurate simulation of the chosen validation problems.
Firstly, the scheme can predict the pressure field accurately. Secondly, due to
the precise definition of boundary terms in the discrete FVPM scheme, it is
straightforward to compute the total fluid force on the structure by integrating
the pressure field over the boundary. Thirdly, the motion of the structure and
flow field are coupled by an appropriate temporal algorithm as described in
this article. Finally, the present choice of particle motion scheme allows a high
spatial resolution to be maintained near the structure boundary for the duration
of the simulation. The results presented in this article demonstrate the accuracy
of the developed FSI extension of the FVPM and show that the method is a
robust tool for meshless simulation of FSI problems. More generally, this study
confirms that meshless methods may be used for accurate prediction of large
body motions in flow.

The moving-body problems studied here have been successfully modelled
using mesh-based numerical methods (as the problems were selected to facilitate
comparison with other results.) However, in principle, the meshless FVPM
method can handle arbitrarily large or complex body motions (such as rigid-
body rotations and multiple bodies) which may be beyond the capability of
schemes based on mesh deformation.

It remains to improve the computational efficiency of FVPM, in particular

for 3D simulations. In 2D, the calculation of particle interaction vectors is by
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far the most costly part of the algorithm, and in 3D it is prohibitive. In future

work, faster alternative methods will be investigated.
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Figure 1: Schematic diagram illustrating the VIV response of (a) the cylinder displacement

amplitude A/d and (b) the cylinder vibration frequency f./fn as a function of the reduced

velocity Uy = Uso /(fnd).
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Figure 2: Schematic diagram illustrating the vortex modes in the wake of a forced or freely-

vibrating circular cylinder and associated nomenclature. Solid and dashed lines are contours

of positive and negative vorticity respectively.

27




y/d

By flo oo % o0 id g e e e e T
14 14.5 15 15.5 16 16.5 17 175 18 18.5 19 19.5 20
/i

Figure 4: Initial particle distribution for forced vibrations of a circular cylinder in crossflow.
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Figure 3: Schematic diagram depicting the flow domain and boundary conditions for forced

vibrations of a circular cylinder in crossflow (not to scale).

28



T T T T
os| § os| §
Ity 0; ; g o ;
-0.5; — 0.5 ;
_17‘ P R S SR SR _17‘ P R S S SR
20 40 , 60 80 100 20 40 60 80 100
t=tu /D t=tu /D
(a) fc/fs =05 (b) fc/fs =0.9
T T ] L S S B B
osk n ik i
| | i |
g'o ] g0
05 | 1
_17‘ P R S SR B _27‘ I SRR BRI RN R
20 40 , 60 80 100 20 40 , 60 80 100
t=tu /D t=tu /D
() fe/fs =11 (d) fe/fs =15

Figure 5: Lift coefficient histories predicted by the FVPM for forced cylinder vibrations at
Regq = 100 with amplitude A/d = 0.25. Results are shown for different non-dimensional

cylinder vibration frequencies fc/fs.
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Figure 8: Initial particle distribution for VIV of a circular cylinder in crossflow.
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Figure 10: Variation of maximum non-dimensional transverse cylinder displacement
max(yc)/d with the reduced velocity U, for VIV of a circular cylinder at Req = 100. Com-
parison between FVPM and the results of Singh and Mittal [36].
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Figure 11: Variation of root mean squared lift coefficient C, with reduced velocity U, for VIV
of a circular cylinder at Re; = 100. Comparison between FVPM and the results of Singh and
Mittal [36].
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Figure 16: Transverse cylinder displacement histories predicted by the FVPM for VIV of a
circular cylinder at Req = 100 at U, = 7.50. (a) Cylinder initially at rest, (b) U, increasing
in steps from 7.00 to 7.25 to 7.50.
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Figure 18: Lift coefficient histories predicted by the FVPM for VIV of a circular cylinder at
Reg = 100 and U, = 6.25 and 7.00. The cylinder is initially at rest.
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Figure 19: Lift coefficient histories predicted by the FVPM for VIV of a circular cylinder at
Regq = 100 and U, = 7.50. (a) Cylinder initially at rest, (b) U, increasing in steps from 7.00
to 7.25 to 7.50.
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Figure 20: Instantaneous non-dimensional vorticity fields predicted by the FVPM for VIV
of a circular cylinder at Rey; = 100 and U, = 4.4, 5.00 and 6.25. The arrow indicates the

instantaneous direction of the transverse cylinder motion.
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Table 1: Maximum lift coefficients for forced vibration of a circular cylinder in crossflow at
Reg = 100 with amplitude A/d = 0.25 for both the FVPM and the simulations of Placzek et

al. [22]. Results are shown for four non-dimensional cylinder vibration frequencies f./fs.

max(Cp(t))
fel fs 0.5 0.9 1.1 1.5
Placzek et al. [22] 0.42 0.15 0.52 1.95
FVPM 0.44 0.18 0.51 1.80

Table 2: U, values for which VIV simulations were performed. U, values are given for the

stationary and increasing U, initial conditions.

Ur
Stationary 440 5.00 5.25 575 6.25 6.75 7.00 7.25 7.50 7.75
Increasing U, 7.25 7.50 7.60 7.75

Table 3: Maximum transverse oscillation amplitude, ymaz/d, computed on various spatial

resolution and by Richardson extrapolation.

Al’s/d ymax/d

0.044 0.4495
0.022 0.5260
0.011 0.5522

extrapolated  0.5658

44



Algorithm 1 One timestep in the incompressible FVPM with FSI

1: Compute approximate fluid velocity: u?™"* = u? 4+ At (du/dt)”.

)

2: Update particle positions: X?H =x7 + Atx}.

)

3: Update structure displacement and velocity:

un n 2 n
X, = F}/m—dr”f.x;
XM = X ALRD
X" = x4 ALXT.

4: Set boundary conditions.

5: Search for particle neighbours.

6: Set particle velocity )'(?'H.

n+1

n+1
iJ bz .

7: Compute 3 and
8: Solve for fluid pressure p?“ and update fluid velocity to u?“:

Vit = (p/AHV-ul T

Wt =t (At )V,

3

9: n =n+ 1, repeat.

45



