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THE WEIGHTED FUSION CATEGORY ALGEBRA AND THE
q-SCHUR ALGEBRA FOR GL2(q)

SEJONG PARK

Abstract. We show that the weighted fusion category algebra of the principal

2-block of GL2(q) is the quotient of the q-Schur algebra S2(q) by its socle, for

q an odd prime power. As a consequence, we get a canonical bijection between
the set of isomorphism classes of simple kGL2(q)b0-modules and the set of

conjugacy classes of b0-weights in this case.

1. Introduction

Let k be an algebraically closed field of characteristic l > 0. Let q be a prime
power which is coprime to l. Consider two k-algebras associated with GLn(q),
namely the weighted fusion category algebra F(b0) of the principal l-block b0 of
GLn(q) defined by Linckelmann [7] and the q-Schur algebra Sn(q) introduced by
Dipper and James [4]. Since both are quasi-hereditary and carry informations of
representations of GLn(q)(Theorems 3 and 5), one may conjecture that there is a
certain relation between them.

We give definitions and some properties of these algebras in Sections 2 and 3.
In Section 4, we compute the Morita types of these algebras in a special case and
find a relation between them:

Theorem 1. Let k be an algebraically closed field of characteristic 2 and let q be
an odd prime power. Then the weighted fusion category algebra F(b0) over k of the
principal 2-block b0 of GL2(q) is Morita equivalent to the quotient of the q-Schur
algebra S2(q) over k by its socle.

Theorem 1 implies a canonical bijection between the set of isomorphism classes
of simple kGL2(q)b0-modules and the set of isomorphism classes of simple F(b0)-
modules, which in turn is in a bijective correspondence with the set of conjugacy
classes of b0-weights. We discuss this canonical bijection in more detail in Section 5.

2. The weighted fusion category algebra

We summarize the construction of the weighted fusion category algebra and
its basic properties, following Linckelmann [7]. We restrict our attention to the
principal block case and avoid discussing the “twisting and gluing” procedure.(See
[7, 4.1–4.4, 5.1])

Let k be an algebraically closed field of characteristic l > 0 and let G be a finite
group. Let b0 be the principal l-block of G, i.e. the unique primitive idempotent in
the center Z(kG) of the group algebra kG which is not contained in the augmenta-
tion ideal of kG. Fix a defect group P of b0, namely a Sylow l-subgroup of G. The
fusion system of the block b0 (on P ) is the same as the fusion system of the group
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2 SEJONG PARK

G (on P ): it is the category F = FP (G) whose objects are the subgroups of P
and such that for each pair Q,R of subgroups of P the morphism set HomF (Q,R)
consists of the group homomorphisms from Q to R induced by conjugations in G.
It is independent of the choice of a defect group P , up to equivalence of categories.

The orbit category of F is the category F whose objects are again the sub-
groups of P and such that for each pair Q,R of subgroups of P the morphism set
HomF (Q,R) consists of the orbits of the group of inner automorphisms Inn(R) of
R in HomF (Q,R).

A subgroup Q of P is called F-centric if every subgroup R of P which is F-
isomorphic to Q is centric in P , i.e. CP (R) = Z(R). We denote by Fc

the full
subcategory of the orbit category F consisting of F-centric subgroups of P .

Let kFc
be the category algebra of Fc

over k, that is, the k-algebra whose k-basis
consists of morphisms of Fc

and such that multiplication is induced by composition
of morphisms.

Definition 2. With the above notations, let e =
∑

Q eQ where Q runs over all F-
centric subgroups of P and eQ denotes the sum of all defect zero blocks of kAutF (Q).
Then the weighted fusion category algebra of the block b0 is the truncated algebra

F(b0) = ekFc
e.

The significance of the weighted fusion category algebra is summarized in the
following theorem:

Theorem 3 ([7, 4.5, 5.1]). Let k be an algebraically closed field of characteristic
l > 0 and let b0 be the principal l-block of a finite group G. Then the weighted fusion
category algebra F(b0) over k of the block b0 is quasi-hereditary and Alperin’s weight
conjecture for the block b0 is equivalent to the equality

l(kGb0) = l(F(b0))

where l(A) denotes the number of isomorphism classes of simple A-modules for a
finite dimensional k-algebra A.

Remark. We refer to Alperin’s original paper [1] for the definition of weights and
the statement of Alperin’s weight conjecture. Note that, for an F-centric subgroup
Q of P , the defect zero blocks of kAutF (Q) appearing in Definition 2 (if any)
correspond to the b0-weights having Q as their first component. Alperin’s weight
conjecture is positively confirmed for finite general linear groups by Alperin and
Fong [2] in odd characteristics and by An [3] in characteristic 2.

3. The q-Schur algebra

We review the definition and some basic properties of the q-Schur algebra defined
by Dipper and James [4], following the presentation of Mathas [8].

Let k be a field and let q be a nonzero element of k. The Iwahori-Hecke algebra of
the symmetric group Σn on n letters is the k-algebra H = Hk,q(Σn) whose k-basis
is {Tw | w ∈ Σn} and such that multiplication is given by

TwTs =

{
Tws, if l(ws) > l(w),
qTws + (q − 1)Tw, if l(ws) < l(w),

where w ∈ Σn, s = (i, i+ 1) ∈ Σn for some 0 < i < n, and l(w) is the length of w.
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A composition of n is a sequence µ = (µ1, µ2, . . . ) of nonnegative integers µi

whose sum is equal to n. The height of a composition µ is the smallest positive
integer d such that µd+1 = µd+2 = · · · = 0. For a composition µ of n with height
d, let Σµ be the corresponding Young subgroup of Σn isomorphic to Σµ1 × Σµ2 ×
· · · × Σµd

. Set mµ =
∑

w∈Σµ
Tw and let Mµ = mµH, the right H-submodule of H

generated by mµ.

Definition 4. Let Λ(d, n) be the set of all compositions of n with height ≤ d. Then
the q-Schur algebra is the endomorphism algebra

Sd,n(q) = EndH
( ⊕

µ∈Λ(d,n)

Mµ
)
.

We write Sn(q) = Sn,n(q).

The q-Schur algebra has the following properties:

Theorem 5 ([8, 4.16, 6.47]). Let k be a field and let q be a nonzero element of
k. Then the q-Schur algebra Sd,n(q) over k is quasi-hereditary. If char k = l > 0
and q is a prime power which is coprime to l, then the decomposition matrix of
kGLn(q) is completely determined by the decomposition matrices of the qr-Schur
algebras Sm(qr) over k for rm ≤ n.

Gruber and Hiss [6] and Takeuchi [10] give an alternative way of computing the
Morita types of the q-Schur algebras.

Theorem 6 ([6], [10]). Let k be an algebraically closed field of characteristic l > 0
and let q be a prime power which is coprime to l. Let G = GLn(q) and let B be the
set of all upper triangular matrices in G. Then the q-Schur algebra Sn(q) over k is
Morita equivalent to the image of the k-algebra homomorphism

kG→ Endk(k[G/B])

sending a ∈ kG to the k-linear endomorphism of k[G/B] given by left multiplication
by a on k[G/B].

4. The case G = GL2(q), q odd, in characteristic 2

Let k be an algebraically closed field of characteristic 2 and let q be an odd prime
power. In this case, we have

Proposition 7. The weighted fusion category algebra F(b0) over k of the principal
2-block b0 of GL2(q) is Morita equivalent to the path algebra of the quiver

1• •2αoo

Proposition 8 ([5, 3.3(A)]). The q-Schur algebra S2(q) over k is Morita equivalent
to the path algebra of the quiver

1•
β // •2

γ
oo

with relation βγ = 0.

A proof of Proposition 7 is given in Sections 4.1 and 4.2. Proposition 8 is a con-
sequence of more general results of Erdmann and Nakano [5]. For the convenience
of the reader, we sketch a proof of Proposition 8 in Section 4.3. Theorem 1 follows
immediately from Propositions 7 and 8.
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4.1. Proof of Proposition 7 when q ≡ 3 mod 4. Let G = GL2(q) where q is
a prime power such that q ≡ 3 mod 4. Let 2m−2 be the highest 2-power dividing
q+ 1 and let ξ be a primitive 2m−1th root of unity in Fq2 . Note that m ≥ 4. Then
the subgroup P of G generated by

x =
(

0 1
1 a

)
, t =

(
1 a
0 −1

)
(a = ξ + ξq)

is a Sylow 2-subgroup of G. One immediately checks that x and t are of order 2m−1

and 2, respectively, and
txt = x2m−2−1.

In other words, P is the semidiheral group SD2m of order 2m.
Let F = FP (G). Then the F-centric subgroups of P are as follows:

(1) C2 × C2
∼= 〈x2m−2

, tx2i〉
(2) D2k

∼= 〈x2m−k

, tx2i〉 where 3 ≤ k ≤ m− 1
(3) Q2k

∼= 〈x2m−k

, tx2i+1〉 where 3 ≤ k ≤ m− 1
(4) C2m−1 ∼= 〈x〉
(5) P

Recall that the automorphism groups of cyclic, dihedral, semidihedral, and (gener-
alized) quaternion 2-groups of order ≥ 4 are all nontrivial 2-groups except for

Aut(C2 × C2) ∼= Σ3, Aut(Q8) ∼= Σ4.

So the F-automorphism group of an F-centric subgroup R of P of type (2), (3)
with k > 3, (4), or (5) is a (possibly trivial) 2-group. If R = P , then since AutF (P )
is also a 2′-group, we have AutF (P ) = {idP } and hence eP = 1. Let e1 = eP .
If R < P , then we have Inn(R) < AutF (R) and hence AutF (R) is a nontrivial
2-group. Therefore eR = 0.

Also, since x2m−2
=

(−1 0
0 −1

)
∈ Z(G) and tx2i, −tx2i are G-conjugate, the F-

automorphism group of a Klein four subgroup R of P is isomorphic to C2, yielding
eR = 0. Thus it remains to consider the quaternion subgroups of order 8. Set

Qi = 〈x2m−3
, tx2i+1〉, i = 0, 1, . . . , 2m−4 − 1.

First observe that all Qi are P -conjugate. Indeed, for each pair of indices i, j, let
k = (2m−3 − 1)(j − i). Then

xktx2i+1x−k = tx(2m−2−1)kx2i+1−k = tx2j+1.

So it suffices to consider only Q := Q0 = 〈x2m−3
, tx〉. We have AutP (Q) ∼= D8 and

Aut(Q) ∼= Σ4. Thus AutF (Q) is either AutP (Q) or Aut(Q). Since x2m−3
and tx

are G-conjugate but automorphisms in AutP (Q) do not send x2m−3
to tx, one finds

that
AutF (Q) = Aut(Q) ∼= Σ4.

(Note that this also follows from the Frobenius normal p-complement theorem.)
Now AutF (Q) = AutF (Q)/AutQ(Q) and AutQ(Q) ∼= C2 × C2. Thus we have

AutF (Q) ∼= Σ3.

Since kΣ3
∼= kC2 ×M2(k) as k-algebras, one finds that eQkAutF (Q)eQ

∼= M2(k).
Let e2 be the element of eQkAutF (Q)eQ which corresponds to ( 1 0

0 0 ) via this iso-
morphism.
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Set A := ekFc
e where e = eP + eQ. Then A is Morita equivalent to F(b0). We

have a decomposition as k-vector spaces

A = A1 ⊕A2 ⊕ J

where

A1 = eP kAutF (P )eP
∼= k,

A2 = eQkAutF (Q)eQ
∼= M2(k),

J = eP kHomF (Q,P )eQ.

Since J2 = 0 and A/J ∼= k ×M2(k), J is the Jacobson radical of A and there are
exactly two nonisomorphic simple A-modules S1, S2 with corresponding projective
indecomposable A-modules P1 = Ae1, P2 = Ae2. Note that P1 = S1

∼= k and
JP2/J

2P2 = kHomF (Q,P )e2 ∼= S1. Therefore we get the desired result.

4.2. Proof of Proposition 7 when q ≡ 1 mod 4. Let G = GL2(q) where q is a
prime power such that q ≡ 1 mod 4. Let 2m be the highest 2-power dividing q− 1
and let η be a primitive 2mth root of unity in Fq. Note that m ≥ 2. Then the
subgroup P of G generated by

x =
(
η 0
0 1

)
, y =

(
1 0
0 η

)
, t =

(
0 1
1 0

)
is a Sylow 2-subgroup of G. Since x, y commute and txt = y, we see that P ∼=
C2(m−1)/2 o Σ2. Note that Z0 := Z(P ) = Z(G) ∩ P = 〈xy〉 ∼= C2m .

Let F = FP (G). Then the F-centric subgroups of P are as follows:
(1) 〈x, y〉
(2) 〈xy, txi〉 where ηi 6= η2j for any integer j
(3) 〈xy, x2i

, txj〉 where 0 ≤ i ≤ m− 1, 0 ≤ j < 2i

Let R be an F-centric subgroup of P . If R = 〈x, y〉, then we have

AutF (R) ∼= NG(R)/RCG(R) = LΣ2/L ∼= Σ2,

where L denotes the diagonal subgroup of G and Σ2 is viewed as the subgroup of
the permutation matrices in G.

Now suppose that R is of type (2) or (3). Since Z0 ⊆ Z(G), elements of Z0 are
fixed by any F-morphism. So every F-automorphism of R induces an automor-
phism of R/Z0, giving rise to a surjective group homomorphism

Φ : AutF (R) � AutG/Z0(R/Z0).

Note that the kernel Ker(Φ) of Φ is isomorphic to a certain subgroup of the group
Hom(R,Z0) whose multiplication is given by pointwise multiplication. In particular
Ker(Φ) is an abelian 2-group.

If R is of type (2), then R/Z0
∼= C2, so Aut(R/Z0) = {idR/Z0}. One can

easily check that Ker(Φ) ∼= C2 in this case. Since R is abelian, it follows that
AutF (R) ∼= C2.

Suppose that R is of type (3). Then R/Z0 is a dihedral 2-group of order ≥ 4; it
is of order 4 (i.e. a Klein four group) if and only if i = m− 1. So if i 6= m− 1, then
R/Z0 is a dihedral 2-group of order ≥ 8, and hence its automorphism group is a
(nontrivial) 2-group. Thus AutF (R) is a 2-group. Now if R < P , then Inn(R) <
AutF (R), so AutF (R) is a nontrivial 2-group; if R = P , then AutF (P ) is also a
2′-group and hence AutF (P ) = {idP }.
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Finally, let R be of type (3) with i = m− 1. There are two P -conjugacy classes
among these F-centric subgroups. Indeed, for any j,

〈xy, x2m−1
, txj〉 ∼= 〈xy, x2m−1

, txj+2〉
because x−1(txj+1y)x = txj+2. Set

R1 = 〈xy, x2m−1
, t〉, R2 = 〈xy, x2m−1

, tx〉.
Since Ri/Z0(i = 1, 2) is a Klein four group, its full automorphism group is iso-
morphic to Σ3, permuting its three nonidentity elements. Those three nonidentity
elements of R1/Z0 are all G-conjugate; in R2/Z0, the elements txZ0 and tx2m−1+1Z0

are G-conjugate but x2m−1
Z0 is not G-conjugate to these two. For both i = 1, 2,

we have Ker(Φ) = Inn(Ri) ∼= C2 × C2. Thus

AutF (R1) ∼= Σ3, AutF (R2) ∼= C2.

Therefore we get the same quiver as in Proposition 7.

4.3. Proof of Proposition 8. Let B be the set of all upper triangular matrices
in G. For u ∈ Fq, set

[u] :=
(

1 u
0 1

)
.

Also set

t :=
(
ε 0
0 1

)
, w :=

(
0 1
1 0

)
where ε is a generator of the multiplicative group F×q . Then we have

G/B = {B,wB, [εi]wB }1≤i≤q−1.

Let
kG→ Endk(k[G/B])

be the k-algebra homomorphism of Theorem 6 and denote its image by S. This
map is the k-linear extension of the group homomorphism

ψ : G→ ΣG/B ↪→ GLk(k[G/B])

where the first homomorphism sends g ∈ G to the permutation of G/B induced
by left multiplication by g and the second inclusion sends permutations of G/B to
corresponding permutation matrices. Observe that the following correspondence

B wB [ε]wB [ε2]wB · · · [εq−1]wB
l l l l · · · l[
1
0

] [
0
1

] [
ε
1

] [
ε2

1

]
· · ·

[
εq−1

1

]
respects the G-action on G/B by left multiplication and the natural G-action on the

projective line over Fq, where
[
u
v

]
denotes the image of

(
u
v

)
in the projective line.

Denote above elements by v1, v2, . . . ,vq+1, respectively, and write V = k[G/B] =
kv1 ⊕ kv2 ⊕ · · · ⊕ kvq+1. Then ψ factors through

PGL2(q) ∼= G/Z(G) ↪→ GLk(V ),

and hence
S = Im(kPGL2(q) → Endk(V )).
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V is a (q+ 1)-dimensional S-module with the natural S-action. Now we find its
composition series. First of all, V has an obvious 1-dimensional simple S-submodule

V1 = k(v1 + v2 + · · ·+ vq+1).

Let us denote the elements of the quotient module V/V1 as

[λ1, λ2, . . . , λq+1] := λ1v1 + λ2v2 + . . .+ λq+1vq+1 + V1

with λi ∈ k. Then the (q − 1)-dimensional S-submodule V2 of V/V1 given by

V2 = { [λ1, λ2, . . . , λq+1] | λ1 + λ2 + . . .+ λq+1 = 0 }

is also simple because PGL2(q) acts 3-transitively on { v1, v2, . . . , vq+1 }.(See [9,
Table 1]) Let W be the inverse image in V of V2. Observe that V , W are uniserial
S-modules with composition series (V1, V2, V1), (V2, V1), respectively. In particular,
both V and W are indecomposable.

It is well known that V = k[G/B] is a projective S-module and that there are
exactly two simple S-modules up to isomorphism. Then, since S is quasi-hereditary,
it follows from the composition seris of V that the standard modules for V1 and V2

are V1 and W , respectively, and W is also projective. Therefore we conclude that
S, and hence the q-Schur algebra S2(q), is Morita equivalent to the path algebra of
the quiver given in Proposition 8.

5. A remark on a canonical bijection of simple modules

Let k be an algebraically closed field of characteristic 2 and let q be an odd prime
power. Let b0 be the principal 2-block of G = GLn(q). The algebra homomorphism
in Theorem 6 restricts to the surjective algebra homomorphism

kGb0 � S

where S is a k-algebra which is Morita equivalent to the q-Schur algebra Sn(q). On
the other hand, in Theorem 1 we showed that there is another surjective algebra
homomorphism

S0 � T0

where S0 and T0 are, respectively, the basic algebras of the q-Schur algebra Sn(q)
and the weighted fusion category algebra F(b0) when n = 2. Combining these
two surjective algebra homomorphisms, we see that simple F(b0)-modules can be
viewed as simple kGb0-modules when n = 2. Since we have

l(F(b0)) = number of partitions of n = l(kGb0)

for n = 2 (in fact, for every n by An [3]), we get a canonical bijection between
simple kGb0-modules and simple F(b0)-modules in this case. But, as mentioned
in the remark after Theorem 3, there is a canonical bijection between the set of
isomorphism classes of simple F(b0)-modules and the set of conjugacy classes of b0-
weights. Thus we get a canonical bijection between the set of isomorphism classes
of simple kGb0-modules and the set of conjugacy classes of b0-weights when n = 2.
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