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Abstract

The main aim of my PhD is to create a prognostic model for invasive breast

cancer patients for disease recurrence and death. The data were collected retro-

spectively and are comprised of 647 invasive breast cancer patients with patient

characteristics and genetic markers measured. An additional complexity exists

due to the presence of missing data. A complete case analysis with both clinical

and pathological biomarkers reduces the number of cases to 103 patients. A

major challenge is how best to build a prognostic model for breast cancer in the

presence of missing data.

The Kaplan Meier estimate of the survival function is the most commonly

used method for the representation of the distribution of survival times. Exten-

sions to graphical comparisons of these survival estimates were developed.

Classical approaches to modelling survival data using complete case analysis

are examined and then an empirical simulation study is used to examine the

effect of missing data on variable selection and to compare the performance of

variable selection techniques in imputed data.

The final model identified Bilateral, Lymph Node status, Mitotic Count,

Metastasis and UICC staging as being good predictors of Disease Free Sur-

vival and a subset of these for Overall Survival (Mitotic Count, Metastasis and

UICC staging). These models have good concordance and were calibrated both

internally and externally.

Classification and Regression Trees (CART) are a non-parametric approach

to regression modelling. The main feature of CART is the data are recursively

partitioned into groups and a simple prediction model fitted to each partition. A

novel approach using surrogate splits to create alternative competing trees with

comparable prediction power are introduced. This helps identify underlying

structure in the data.

xvii
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Chapter 1

Introduction

The primary aim of my research is to create a reliable and precise prognostic

model for breast cancer survival and time to recurrence using data collected for

invasive breast cancer patients in the National Breast Cancer Research Institute

(NBCRI), National University of Ireland, Galway. The data are comprised of

647 patients with patient characteristics and genetic markers for breast cancer

(details given in Section 1.2.1). An additional complexity exists due to the

presence of missing data as highlighted in Section 1.2.1. A complete case

analysis would reduce the number of cases to 103 patients. An additional chal-

lenge therefore is how best to build a prognostic model for breast cancer in the

presence of such missing data.

The second aim is to identify potentially useful predictors of the Oncotype

DX classification, a genetic based test for prediction of breast cancer recur-

rence in 10 years used to guide therapy choices. Oncotype DX is an expensive

patented test (it costs $3, 800 per patient) that analyses 16 genes in patients

with Oestrogen Receptor positive and Lymph Node negative breast cancer. It

assigns each patient with a Oncotype DX Recurrence Score (RS), which is an

estimate of their likelihood of developing a breast cancer recurrence in 10 years.

The higher the RS means a higher likelihood of disease recurrence. The RS were

divided into three categories low risk RS < 18; intermediate risk 18 − 30; and

high risk > 30.

Treatment after surgery is related to the Oncotype DX classification. If a pa-

1



Chapter 1. Introduction

tient is categorized as low risk of disease recurrence only Tamoxifen (a hormone

therapy which blocks the effects of Oestrogen on the cancer cells) is required,

however if a patient is classified as intermediate or high risk, Tamoxifen and

chemotherapy are required. Low risk patients can therefore avoid the harmful

side effects of chemotherapy.

Published research suggests that the results of Oncotype DX can be predicted

just as well by routinely (and more cheaply) assessed pathological variables and

biomarkers. For example, previous published studies in this area have used tree

based models, however each of the papers have identified different sets of risk

factors, namely

• Grade, progesterone receptor status and Ki67 level [Allison et al., 2011],

• Mitotic score (M) greater than one combined with a negative progesterone

receptor result [Flanagan et al., 2008],

• Tubule formation (T), nuclear grade (N), mitotic count (M), oestrogen

receptor score, progesterone receptor score and Her2/neu score [Auerbach

et al., 2010],

• Oestrogen receptor score, progesterone receptor score, Her2 score and the

three components of grade (T, N and M) [Geradts et al., 2010].

This has lead to considerable debate. Comparable data are available from a

Galway cohort and one aim is to use these data to try to consolidate conflicting

evidence.

1.1 Breast Cancer

Breast cancer is a type of cancer originating in breast tissue, most commonly

from the inner lining of milk ducts or the lobules. It is caused by the uncontrolled

growth of cells.

Breast cancer has the second highest mortality rate of all cancers and is

the leading cause of cancer-related death in women in Ireland. Figure 1.1

contains a scatterplot of the number of breast cancer diagnoses per 100,000

women verses breast cancer deaths per 100,000 women by country in 2002. The

2
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 Figure 1.1: Breast cancer diagnosis per 100,000 women verses breast cancer
deaths per 100,000 from www.gapminder.com. Over 1,800 new cases of Breast
Cancer were diagnosed in Ireland in 2002.

countries are colour coded by continents and for those countries which did not

have the data available, these missing values were interpolated. Ireland had one

of the highest number of breast cancer cases diagnosed per 100,000 women in

2002. There were over 1,800 new cases of breast cancer diagnosed that year

and this has now increased to nearly 3,000 new cases diagnosed annually in

Ireland. This steady increase can be explained in part by the more stringent

screening of Irish women through the Breast Check clinics. Breast Check is a

Government-funded programme providing breast screening and invites women

aged between 50 and 64 for a free mammogram on an area-by-area basis every

two years. Despite recent reductions in mortality rates due to earlier diagnosis

and improved therapies, on average over 600 Irish women die from the disease

annually.
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In addition to taking a patient’s history with regard to risk factors of breast

cancer and an examination, the doctor may use a number of tests to help diag-

nose breast cancer including:

• Mammogram: an X-ray of the breast.

• Ultrasound: may be performed in addition to or instead of a mammogram,

especially in younger women.

• Biopsy: if a lump is found on the breast on examination or in a mammo-

gram, a biopsy is performed using a needle to remove a part of the tissue

which is then examined under the microscope.

The size, stage, rate of growth, whether the cancer is sensitive to hormones

and other characteristics of a breast cancer determine treatment options. Treat-

ments include surgery, which is the most common, and a combination of radio-

therapy, hormone therapies and chemotherapies.

1.1.1 National Breast Cancer Research Institute

The National Breast Cancer Research Institute (NBCRI) is a voluntary based

charity founded in 1991. Their research aims are to determine the cause of

breast cancer, to improve diagnosis and treatment for patients. Many of their

recent research projects involve identifying micro-RNA in the blood and tissue

that can distinguish between breast cancer patients and controls [Waters, Wall,

et al., 2012, McDermott, Wall, et al., 2013, Khan, Wall, et al., 2013].

1.2 Datasets

The two datasets used throughout the thesis will now be introduced.
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1.2.1 Galway Breast Cancer Patient Cohort

The data were collected retrospectively from the records from University Hospi-

tal, Galway (single centre retrospective study). The data set is comprised of 647

invasive breast cancer patients diagnosed between 1999 and 2006. Breast can-

cer can be classified using several different things such as Stage, Histopathology,

Grade and Receptor Status. These data will be used to demonstrate the differ-

ent survival analysis techniques. Summary statistics for the data are given in

Table 1.1 & 1.2 and a graphical representation of the data is given in Figure

1.2. Red indicates missing values for patients for predictors. This plot is useful

to show how much missing data is scattered across the dataset.
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Figure 1.2: Matrix plot for the breast cancer data. Red indicates missing values

and grey, black and white indicate the different levels in a predictor.The index

on the y-axis are individual patients.
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There are two main outcomes of interest, Disease Free Survival (DFS) and

Overall Survival (OS). DFS was defined as the time from diagnosis until any

recurrence of breast cancer or diagnosis of metastatic disease. OS was the time

from diagnosis until death. At the time of gathering clinical information, 83% of

patients were alive and 49% were alive and had no evidence of disease recurrence.

The mean length follow-up time was 50 months, range < 1 to 113 months.

Tumours were graded using the TNM Classification of Malignant Tumours

[Sobin et al., 2009] and their size in millimeters was measured. The average

size of a tumour was 23.8mm, ranging from 0mm− 140mm. Grading is based

on assessments of tubule/gland formation, nuclear pleomorphism and mitotic

counts [Elston and Ellis, 2002]; 51% of BC cases are grade 2, with only 14%

being grade 1 and 35% grade 3, with grade 1 having the best prognosis and

grade 3 the worst prognosis. The cancer had spread to other organs in 20% of

patients (distant metastasis).

The total number of positive lymph nodes was recorded for each patient and

lymph node status was grouped as positive or negative, with any patient with at

least one lymph node positive classed as positive. 49% of patients had at least

one lymph node positive. Lymphovascular Invasion (LVI) was also recorded.

Fifty three percent of patients were identified as having LVI, with a further 2%

with probable LVI.

Biomarker development is one of the main focuses in cancer research at the

moment. Biomarkers can be used for risk assessment, screening, diagnosis and

prognosis. Biomarkers can be measured using the Whole Tissue Sample (WTS)

or Tissue Micro Arrays (TMAs). TMAs are a powerful tool for molecular clas-

sification of breast tumours as they facilitate large-scale analysis of biomarker

expression on hundreds to thousands of cases, permitting large-scale testing

and validation of potential prognostic and predictive markers. They consist of

paraffin blocks with up to 1000 tissue samples in an array. This allows many his-

tological analysis of multiple biomarkers. Generally biomarkers can be assessed

through both WTS and TMAs, however for the less routinely assessed biomark-

ers in this data only the TMA measurement is available. To be consistent across

all biomarkers the results for only TMAs are used for the analysis.

Information on 13 different biomarkers was collected. Table 1.2 classi-

6
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Clinical Variables
mean (sd)

Age 57.8 (13.0)
Tumour Size (mm) 27.6 (19.8)
LN Positive 2.5 (4.5)

n(%)
Grade
1 80(14)
2 297(51)
3 210(35)
Lymph Node Positive
Yes 287(49)
No 297(51)
Lymphovascular Invasion
Yes 200(53)
No 170(45)
Probable 9(2)
Tubule Formation
> 75% 31(5)
10-75% 73(13)
< 10% 467(82)
Nuclear Pleomorphism
Mild 7(1)
Moderate 282(49)
Marked 282(49)
Mitotic count
Low 360(63)
Moderate 100(18)
High 111(19)
Metastasis
Yes 127(20)
No 513(80)
Events
Alive, no disease 292(45)
Alive, locoregional disease 198(30)
Alive, distant metastasis 56(9)
Dead with evidence of disease progression 84(12)
Dead with no evidenence of disease progression 26(4)

Table 1.1: Summaries for clinical and pathological predictors for the invasive
breast cancer patient sample.
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fies each patient into positive and negative using varying cut-off values in the

literature. Oestrogen receptor status, progesterone receptor status and human

epidermal growth factor receptor 2 status (Her2) are routinely assessed in breast

cancer patients. Roughly two out of every three breast cancers test positive for

at least one of these hormone receptors.

Oestrogen (ER) is a female sex hormone. It stimulates some breast cancers

to grow by triggering particular proteins (receptors) in the cancer cells. If breast

cancer cells have oestrogen receptors, the cancer is said to be oestrogen positive.

Hormone therapies can stop oestrogen from stimulating the cells to divide and

grow. These therapies work best for oestrogen positive breast cancers. The

majority of patients in the sample are oestrogen positive (66%).

The cancer is progesterone receptor (PR) positive if it has progesterone

receptors. Fifty six percent of patients in the sample are PR positive. Again,

this means that the cancer cells may receive signals from progesterone that could

promote their growth.

The Her2 gene makes Her2 proteins. Her2 proteins are receptors on breast

cells. Normally, Her2 receptors help control how a healthy breast cell grows,

divides and repairs itself. However in about 25% of all breast cancers, the Her2

gene does not work correctly and makes too many copies of itself (known as Her2

gene amplification). All these extra Her2 genes instruct breast cells to make too

many Her2 receptors (Her2 protein over expression). This makes breast cells

grow and divide in an uncontrolled way. Her2 positive breast cancers tend to

grow faster and are more likely to spread and return compared to Her2 negative

breast cancers. Eighty-six percent of patients in the sample are Her2 negative.

Patients who are ER or PR positive can receive hormonal treatments such as

Tamoxofin and patients who are Her2 positive can receive Herceptin treatment.

The other biomarkers are not as routinely assessed - Bcl-2, Ki67, CK5/6,

CK14, EGFR, p53, E-cad - but have been identified in the literature of having

links to breast cancer. Bcl-2 has important roles in apoptosis, cell prolifera-

tion and cell differentiation in breast cancer. Cytoplasmic staining was assessed

for Bcl-2. The value of Bcl-2 protein as predictive/prognostic factor for adju-

vant chemotherapy treatment in breast cancer has been investigated. Fifty-five

percent of patients are Bcl-2 positive.

8
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Biomarkers
n(%)

Oestrogen Receptor Status
Positive 340(66)
Negative 172(34)
Progestrogen Receptor Status
Positive 294(56)
Negative 230(44)
Her2 Status
Positive 83(14)
Negative 505(86)
BcI2
Positive 288(55)
Negative 237(45)
CK14
Positive 94(22)
Negative 341(78)
CK5/6
Positive 66(15)
Negative 386(85)
EGFR
Positive 74(14)
Negative 444(86)
Ki67
Positive 161(30)
Negative 369(70)
p53
Positive 103(20)
Negative 411(80)
E-cad
Positive 455(88)
Negative 62(12)
tMcm2
<1 8(2)
1-10 89(24)
11-33 133(35)
34-66 74(20)
>66 73(19)

mean (range)
CDC7 Expression 2.59 (0.0-34.2)
pMcm2 Expression 6.19 (0.0-90.0)

Table 1.2: Summaries for pathological biomarker predictors for the invasive
breast cancer patient sample.
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The expression of the human Ki-67 protein is strictly associated with cell

proliferation. The Ki-67, a cell proliferation associated nuclear antigen, is found

in cells in nearly all stages of the cell cycle and is therefore a direct indicator

of the growth fraction. Thirty percent of patients are Ki67 positive. The Ki-

67 growth fraction is significantly related to the grade of most tumors, being

highest in grade III invasive carcinomas. Oestrogen and progesterone receptor

negative tumors tend to be Ki-67 positive and this index could be used to add

adjuvant chemotherapy in both receptor negative and positive patients.

Cytokeratins are proteins of keratin-containing intermediate filaments found

in the cytoskeleton of epithelial tissue. The cytokeratins can be divided into low

versus high molecular weight solely based on their molecular weight. Expression

of these cytokeratins is frequently organ or tissue specific. Cytokeratin (CK) 14

is an acidic cytokeratin. Twenty-two percent of patients in the sample are CK14

positive. Fifteen percent of patients are CK5-6 positive. CK5-6 are antibodies

to basal cytokeratins that stain myoepithelial cells (found in the cell membrane).

Fourteen percent of patients are EGRF (Epidermal Growth Factor Receptor)

positive. Mutations affecting EGFR expression or activity could result in cancer.

p53 (protein 53) is crucial in multicellular organisms, where it regulates the cell

cycle and thus, functions as a tumor suppressor that is involved in preventing

cancer. Twenty percent of patients are p53 positive. Eighty-eight percent of

patients are E-cadherin positive. E-cadherin is a calcium-dependent cell-cell

adhesion molecule with pivotal roles in epithelial cell behavior, tissue formation,

and suppression of cancer. CDC7 (Cell Division Cycle 7) and pMcm2 were also

measured as continuous variables. CDC7 is a gene which codes the protein cdc7

kinase. This protein regulates the cell cycle. tMcm2 and pMcm2 are mini-

chromosome maintenance proteins which are involved in genome replication.

The tMcm2 protein was measured as a categorical variable using cut offs for

percentage staining.

Various techniques will be investigated to identify the ‘best’ model for the

data. The dataset has a large number of variables and the aim is to identify

a subset of these to create a prognostic model for DFS and OS while retain-

ing prediction performance. During the last two decades, several clinical and

pathological indicators such as histological grade, tumour size and lymph node

10
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involvement have been used for prediction of survival of breast cancer patients

independently of treatment, as known as prognostication [Haibe-Kains et al.,

2008]. For some markers there have been several published studies with con-

flicting results [Altman and Lyman, 1998].

As can be seen in Figure 1.2 there is a high proportion of missingness

present. The most common way to deal with missing data is casewise deletion.

This can reduce the sample size significantly even if there is as little as 10%

missing per predictor. The sample size of 647 patients is reduced to 103 patients

using casewise deletion. This may result in bias from restricting the analysis to

complete data.

Prognostic Models

The development of a successful model depends on the following features [Alt-

man and Royston, 2000]:

• the potential for accurate prognosis, which is presumably unknown;

• the intrinsic prognostic information in the available factors, which depends

on many things, including the physiology of the disease in question;

• the measurement process, which converts the intrinsic information into

numbers, some measurements being more reliable than others;

• and the accuracy with which the model converts the measurements into

predictions.

The idea of a transparent, simple model is not necessarily a virtue; perfor-

mance of the model is more important, and simplicity over complexity should

not be the primary consideration in the model building process [Taylor et al.,

2012]. The model needs to be as simple as possible but as complex as necessary.

The advantages of retrospective studies are its simplicity and feasibility. The

disadvantages include identifying patients, missing data and incorrect informa-

tion on the patients’ records.

11
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1.2.2 Oncotype DX Classification Data

The second dataset, the Oncotype DX data, is now introduced and a description

of the variables collected given.

The Galway (West of Ireland) dataset contains 52 patients with their Onco-

type DX score and categorization and 32 useful clinical and pathological vari-

ables. Table 1.3 contains a summary of the predictors from the Oncotype DX

data.
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Figure 1.3: Matrix plot for the Oncotype DX data. Red indicates missing values

and grey, black and white indicate the different levels in a predictor.

The aim of this study is to identify a set of useful clinical and pathologi-

cal variables which can predict the risk of recurrence and consolidate previous

conflicting results in the literature. However due to the small sample and the

large number of useful predictors (some with missing data), the results from

classical approaches such as logistic regression are unstable. A matrix plot

is given in Figure 1.3, which highlights the high proportion of missing data

present. From this plot, it is obvious there is missing values for majority of
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Chapter 1. Introduction

Clinical/Pathological Variables
mean (sd)

Age 57.8 (9.7)
Tumour Size (mm) 22.4 (9.8)
Ki67 Staining 9.4 (14.5)
CD68 Staining 18.5 (15.2)
Cyclin B1 Staining 0.9 (1.0)
AAK Staining 2.5 (3.7)
Survivin TN Staining 10.5 (19.2)

n(%)
Grade
1 7(13)
2 33(63)
3 12(24)
Tumour Stage
1 2(4)
2 17(33)
3 33(63)
Lymph Node Stage
1 0(0)
2 18(35)
3 34(65)
Metastasis Stage
1 35(67)
2 12(23)
3 5(10)
Lymphovascular Invasion
Yes 11(21)
No 41(79)
Oestrogen Receptor Status
Positive 48(96)
Negative 2(4)
Progestrogen Receptor Status
Positive 31(60)
Negative 20(40)
Bag1 Staining
0 8(17)
1 15(32)
2 19(40)
3 5(11)

Table 1.3: Summaries for clinical and pathological predictors for the patient
sample for the Oncotype DX data.
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Chapter 1. Introduction

the patients. An alternative to the classical approaches, the non-parametric

approach of Classification and Regression Trees can be used to identify useful

predictors. A novel application of using surrogate splits in the tree building

process to identify underlying structure in the data will be explored.

The results of this study have been published in The Breast [Ingoldsby,

Webber, Wall, Scarrott, Newell, and Callagy, 2013].

1.3 Structure of Thesis

The thesis contains six chapters; summaries of Chapters 2 to 6 now follow.

Chapter 2: Survival Analysis

Chapter 2 starts with an introduction to survival data and examines graphical

and numerical summaries of survival estimates. The Kaplan Meier estimate of

the survival function is the most common method used for the representation of

the distribution of survival times. It is generally used for graphical comparisons

of survival for two or more groups of patients.

The Log-rank test performs a hypothesis test to compare the survival es-

timates of two groups. Graphical representation of survival estimates across

two or more groups can be a useful tool to help interpret the Log-rank tests.

Extensions to classical approaches will be presented in this chapter.

Chapter 3: Non-parametric Tree based Methods

Tree based methods were first introduced by Breiman et al. [1984] and will be

introduced using examples based on both the Oncotype DX classification and

score. Also examples of survival trees will be shown using the Breast Cancer

data from UCH Galway.

Trees were used to identify useful predictors for the Oncotype DX classifi-

cation and score. However, these trees were created using a small sample. A

novel use of surrogate splits is introduced where the primary surrogates are used

to create competing or comparable trees which may have the same predictive

power as the original tree. To create these extra trees an interactive surrogate

plot developed in R will be demonstrated.
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Chapter 1. Introduction

Chapter 4: Classical Approaches to Modelling

This chapter focuses on classical approaches to modelling survival data. As

the response of interest is survival, one choice is the Cox proportional hazards

model. An introduction to the theory underpinning the model is given and

then various modelling approaches examined. Firstly, a model containing all

predictors was created. Next various variable selection techniques are applied,

including backward selection, ridge regression and the LASSO (Least Absolute

Shrinkage and Selection Operator). Splines were applied to relax the linearity

assumptions and the need for interaction terms.

Chapter 5: Variable Selection Techniques in Imputed Data

The Cox model typically deals with missing data by casewise deletion. Case-

wise deletion can result in over half the cases being deleted even if there is as

little as 10% missing per variable. This results in a smaller dataset to perform

the analysis with loss of power as a consequence. Chapter 5 discusses an alter-

native approach by performing variable selection on imputed data. Obviously

complete data would be the best scenario, however since this is a retrospective

study, it is not possible to retrieve the data that are missing. The lost informa-

tion, caused by casewise deletion, can be “reclaimed” somewhat by performing

variable selection techniques on imputed data.

The results of an empirical simulation study used to assess the performance

of these techniques are given.

Chapter 6: Validation

In the end of chapter 5 a summary of all the models assessed in the previous

chapters and their performances is given. Final models for disease free survival

and overall survival are reported. The next step in the process is to validate the

models to see how well they perform.

Interval validation will be performed using bootstrap resamples of the data

examining the discrimination and calibration of the models. External validation

will be performed for the OS model using a dataset from 10 European based

breast cancer clinics. Finally some visualization tools for the models will be

presented in the chapter.
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Chapter 1. Introduction

Conclusions, an overall summary and suggested future work is given to con-

clude the thesis in Chapter 7.
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Chapter 2

Survival Analysis

2.1 Introduction

This chapter will introduce survival analysis and examine the graphical and

numerical summaries of survival estimates. Survival data measures time from

some origin point to some event. There is one major difference between survival

data and other types of continuous responses: the time to the event occurring

is not necessarily observed in all subjects [Machin et al., 2006].

Survival analysis is the name given in statistics to the analysis of such lifetime

data. Survival analysis can be applied in many different areas of research. In

medicine, for example a study may follow disease free patients until they develop

heart disease. Another study may follow a patient from diagnosis of cancer to

death or the recurrence of the disease. An example in criminology would be

parolees, following people who are released from prison for weeks to see if they

are rearrested. An example in engineering, is the lifetime of components for

machines; testing the components to see how long they will last until they fail.

There are three special principles central to survival analysis [Van Houwelin-

gen and Putter, 2011]

1. It takes time to observe time; studies tend to have fixed termination time.

2. The event might never happen; subjects may experience the event after

the study terminates or not at all.
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Chapter 2. Survival Analysis

3. You only die once; once a subject experiences the event the survival time

is not measured any longer.

The basic goals of survival analysis are to [Kleinbaum and Klein, 2005]:

• estimate and interpret survival and/or hazard functions from survival

data;

• compare survival and/or hazard functions;

• assess the relationship of explanatory variables to survival time.

The typical graphical summaries in survival analysis are plots of the para-

metric or non-parametric estimated survival function. Generally comparisons of

survival estimates are preformed using the Log-rank test or variations thereof.

Modelling the effects of covariates and factors can be typically be performed

using a Cox Proportional hazards model [Cox, 1972].

The Kaplan Meier survival estimator [Kaplan and Meier, 1958] and the Cox

regression model for survival [Cox, 1972] are standard elements in the training

of medical doctors, and the papers describing these statistical techniques are

among the most frequently cited scientific papers. In Web of Science, for exam-

ple, a search on May 12, 2011 for the papers by Kaplan & Meier and by Cox

resulted in 34,946 and 25,149 hits [Van Houwelingen and Putter, 2011].

2.1.1 Censoring

As survival analysis concerns time to a particular event, the response contains

both continuous (survival time) and discrete values (events). Survival times

are positive and continuous. The event is a binary outcome, either the event

occurs or not, typically coded as 1 and 0 respectively. Those patients who do

not experience the event are referred to as censored.

There are 4 reasons why censoring may occur:

• a patient does not experience the event before the study ends;

• a patient is lost to follow up during the study period;

• a patient withdraws from the study (dropout);

18



Chapter 2. Survival Analysis

• a patient may have experienced another event (competing risk) and can

no longer be observed (e.g. death by accident).

The most common type of censoring is right censoring. This is when a

patient is enrolled at the beginning of the study however they are lost to follow-

up or withdrawn before the study ends. Left censoring occurs when a patient’s

true survival time is less than the patient’s observed survival time. For example,

if a study is following patients until they are diagnosed with HIV, an event is

recorded when the patient first tests positive for the disease. However, the exact

time of exposure to the disease is unknown. Another form of censoring is interval

censoring. Interval censoring occurs when the patient experiences the event in

an interval of time. For example, a patient experiences the event between two

hospital appointments. Censoring may also occur due to the termination of the

study, such censoring is termed administrative censoring.

Survival data uses information from the whole follow-up period and all pa-

tients can contribute information during their time under surveillance [Bull and

Spiegelhalter, 1997]. The patients who have been censored have been observed

but have not experienced the event before the end of the observation time. Ba-

sically, a censored observation is an incomplete observation; it contains only

partial information about event time [Wienke, 2010].

The challenge in analyzing survival data is that the survival time for a patient

that is censored must be incorporated in the analysis until censorship.

If subjects with censored survival times are removed from the analysis, it

could lead to unbiased estimates of the survival time. An important assumption

is that time to censoring and survival times are independent (non-informative

censoring).

2.2 The Survival and Hazard Function

Throughout this thesis T will represent the random variable ‘survival time’

of an individual under investigation, which is the time from diagnosis to the

event occurence (i.e. death for OS and recurrence for DFS). The cumulative

19
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distribution function F is given by:

F (t) = P (T ≤ t) =

∫ t

0

f(t)dt (2.1)

where f is the probability density function. Once the probability density func-

tion is specified for survival time, the corresponding survival and hazard func-

tions can be determined, as the probability density function can be expressed

in terms of the product of the survival and hazard function.

The survival function captures the probability that a patient will survive

beyond time t. The survival function is given by

S(t) = Prob(T > t) = 1− F (t) for any t > 0 (2.2)

where F (t) is the cumulative distribution function for time T.

Here are some properties of the survival function:

• S(0) = 1, i.e. no one experiences the event at time 0

• limt→∞S(t) =0 , i.e. everyone eventually experiences the event (death)

• S(ta) ≥ S(tb) where ta ≤ tb i.e. S(t) declines monotonically

• S(t) = 1− F (t) =
∫∞
t
f(t)dt

• typically, the population survivor function is smooth, however estimates

of it are not.

The survival function focuses on the probability the event will not happen

where as the hazard function is the opposite, it focuses on the event occurring.

The hazard function h(t) gives the instantaneous potential per unit time for

the event to occur, given the individual has survived up to time t. The hazard

function is sometimes called the conditional failure rate or instantaneous rate as

it is the probability an observation will have the event in the next unit of time

given they have not experienced the event up until time t. The hazard function

is defined by the following equation

h(t) = limdt→0
P (t ≤ T < t+ dt|T > t)

dt
=
f(t)

S(t)
(2.3)
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The cumulative hazard function describes the accumulated risk up until time t.

The hazard function is non-decreasing so this means it is either increasing or

stable as t increases. The cumulative hazard function is given by

H(t) =

∫ t

0

h(u)du (2.4)

The cumulative hazard function can also be written as

H(t) =

∫ t

0

f(u)

S(u)
du =

∫ t

0

−S′(u)

S(u)
du = [−logS(u)]t0 = −logS(t) (2.5)

Alternatively, the survival function can be written in terms of the cumulative

hazard function

S(t) = exp (−H(t)) (2.6)

2.2.1 The Likelihood Function for Survival Data

The likelihood function for survival data is

L(x, δ; θ) =

n∏
i=1

f(xi; θ)
δiS(xi; θ)

1−δi (2.7)

This section explains how this is derived.

It is important to assume independence between censoring and survival times

for two reasons. Firstly, the probability of being censored for any subject at

time t does not depend on that subject’s prognosis for event time at time t.

Secondly, it simplifies the likelihood function for survival. Consider a sample of

n identically independent distributed (iid) subjects. Each subject has an event

time Ti, a censored time Ci, a survival time Xi, where Xi = min(Ti, Ci), and a

censoring indicator ∆i, where ∆i = I(Ti ≤ Ci). ∆i is defined to be:

∆i =

 1 if Ti ≤ Ci, i.e. Xi is event time

0 if Ti > Ci, i.e. Xi is censored time

For T , we have the density function f(t), the distribution function F (t), the

survival function S(t) and the hazard function h(t). For C which is also an

event time, we have the density function g(t), the distribution function G(t),
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the survival function K(t) and the hazard function µ(t).

By assuming independent censoring the density function of (X,∆) is as

follows:

f(x, δ) = limh→0
P (x ≤ X < x+ h,∆ = δ)

h
, x ≥ 0, δ = 0, 1 (2.8)

Consider Case 1 where δ = 1, i.e. T ≤ C and X = min(T,C) = T ,

P [x ≤ X < x+ h,∆ = 1]

= P [x ≤ X < x+ h,C ≥ T ]

≈ P [x ≤ X < x+ h,C ≥ x]

= P [x ≤ X < x+ h]P [C ≥ x]

= f(ξ)h×K(x),where ξ ∈ [x, x+ h)

Therefore

f(x, δ = 1) = lim
h→0

P [x ≤ X < x+ h,∆ = 1]

h

= lim
h→0

f(ξ)h×K(x)

h

= f(x)×K(x)

Similarly, consider the case where the observation is censored:

Case 2: δ = 0 then f(x, δ = 0) = S(x)× g(x)

Combining Case 1 and Case 2, the probability density function becomes:

f(x, δ) = f(x)δS(x)1−δ ×K(x)δg(x)1−δ (2.9)

f(x) depends on an unknown parameter θ, i.e. f(x, θ) and g(x) depends on

an unknown parameter φ, i.e. g(x, φ)

The likelihood function is defined as

L(x, δ; θ, φ) =

n∏
i=1

f(xi, δi; θ, φ)
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=

n∏
i=1

f(xi; θ)
δiS(xi; θ)

1−δi ×K(xi;φ)δig(xi;φ)1−δi (2.10)

As has been stated previously, the assumption that T the survival times and

C the censoring are independent is extremely important. Here the main aim

is to make inference on the parameter θ characterizing the distribution of T .

Since T and C are independent, θ and φ have no common parameters. When

maximising the log likelihood to derive the maximum likelihood estimate, φ will

be considered a constant. The likelihood function simplifies to

L(x, δ; θ) =

n∏
i=1

f(xi; θ)
δiS(xi; θ)

1−δi (2.11)

Or equivalently to

L(x, δ; θ) =

n∏
i=1

h(xi; θ)
δiS(xi; θ) (2.12)

since the density function is a product of the survival and hazard functions. The

maximum likelihood is used to find estimates for the model parameters.

2.3 Non-parametric Survival Estimates

A graphical representation of a survival function provides the most understand-

able summary of the time related data. The most commonly used estimator for

S(t) was derived by Kaplan and Meier [1958]. The Kaplan Meier (KM) sur-

vival estimator is a non-parametric procedure for estimating a survival function

that does not make any assumptions about the shape of the underlying survival

function.

Edward Kaplan died in 2006. Kaplan worked for Bell Labs where his main

focus was on finding a better way to measure the survival of vacuum tubes.

Paul Meier died 2 years ago aged 87. He was a well renowned statistician, who

was described as the “statistician who revolutionized medical trials”. Firstly,

Meier was an advocate for randomization and in his obituary in the New York

Times it was said “that strategic decision half a century ago has already saved

millions of lives and those millions should be attributed to Paul”. The other

major contribution Meier made was in estimating the survival function. Indeed
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the KM estimator is now synonymous with plots of the survival function.

The general formula for the KM survival estimator, given in Equation 2.13,

is the probability of surviving past the previous failure time tj−1, multiplied by

the conditional probability of surviving past time tj , given survival to least time

tj [Kleinbaum and Klein, 2005].

S(tj) = S(tj−1)× Pr(T > tj |T ≥ tj) (2.13)

where tj is a specified failure time j and tj−1 is the previous failure time.

In other words, the KM estimator is the product of the estimated survival

probabilities at each distinct event time, i.e.

SKM (t) =

t∏
j=1

(1− ej
rj

) (2.14)

where ej is the number of patients who experience the event at time tj and rj is

the number of individuals still ‘at risk’ at time tj . The Kaplan Meier estimate

is also called the “product limit estimate”; as to calculate the probability that

a patient will survive beyond time t, the patient must not have experienced the

event previous to time t. It involves multiplying all the probabilities that the

patient had not experienced the event for all the previous time points to obtain

the final estimate at time t.

Figure 2.1 contains the KM estimates for Overall Survival (OS, event is

death) by Lymph Node Status for the UCH Galway patients with months after

presentation given on the horizontal axis. At each event time the KM survival

probability is calculated using Equation 2.14.

Confidence intervals are constructed using the Greenwood variance estimator

given by the following formula [Greenwood, 1926]

V̂ ar(Ŝ(tj)) = (Ŝ(tj))
2
∑
tj<T

ej
rj(rj − ej)

(2.15)

Figure 2.2 contains the KM estimates by Her2 Status for OS and DFS

without and with 95% confidence intervals, where the Greenwood variance esti-

mator is again used to calculate the confidence intervals. For DFS, there Her2

negative patients seem to have a better prognosis than Her2 positive patients.
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Figure 2.1: Kaplan Meier Survival Estimates for Overall Survival for Lymph
Node Status.

For OS, there does not seem to be much of a difference in survival for the first

5 years, however, after 5 years Her2 negative patients seem to have a better

prognosis than Her2 positive patients.

The median survival time is easily read off a plot of the KM estimates by

looking at the time where the probability of survival of 0.5 meets the KM es-

timate. For example, for patients with Her2 positive BC the median disease

free survival is approximately 43 months where as Her2 negative patients have

a median survival time of 67 months Figure 2.2. Examining overall survival,

Her2 positive patients have a median survival time of 91 months, however since

the KM estimates for Her2 negative patients does not fall below 0.5, it is not

possible to give a median survival time for this cohort.

Generally, the main reason KM estimates are plotted for 2 or more groups is

to graphically examine if there appears to be a difference between the groups.

The Mantel-Haenszel Log-rank test performs a hypothesis test to compare the

survival estimates of two groups. It is a large-sample chi-square test with the
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Figure 2.2: Survival Curves for Her2 status. Top row contains the survival
curves for Her2 status for OS with and without confidence intervals (Log-rank
p-value < 0.001). Bottom row contains the survival curves for Her2 status for
DFS with and without 95% confidence intervals (Log-rank p-value < 0.001).
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test statistic calculated as

N∑
i=1

(Obsi − Expi)2

Expi
∼ χ2

N−1 (2.16)

where N is the number of groups of the variable, Obsi is the number of observed

failures for group i, Expi is the expected number of failures for group i and the

null hypothesis is that the survival curves of the different groups are identical.

The expected number of failures for group 1 is calculated by

Exp1 =

t∑
j=1

(
r1j

r1j + r2j

)
× (e1j + e2j) (2.17)

where, at time tj , r1j is the number of patients at risk in group 1, r2j is the

number of patients at risk in group 2, e1j is the number of failures in group 1, e2j

is the number of failures in group 2. The Log-rank test statistic is calculated to

be 27.5 using Equation 2.16 on 1 degree of freedom (N equals 2 here as there

are 2 groups) for the Kaplan Meier survival estimates in Figure 2.1. This

corresponds to a p-value of < 0.001 which means there is a significant difference

in overall survival between lymph node negative and positive patients, with

lymph node negative patients having a better probability of survival.

Alternatives to the Log-rank test include the Wilcoxon, Tarone-Ware, Peto

and Flemington-Harrington tests. These apply different weights at the jth fail-

ure time to the Log-rank test statistic. The general form of the test statistic for

a two group comparison is given by:

(∑
j w(tj)(Obsij − Expij)

)2
var

(∑
j w(tj)(Obsij − Expij)

) (2.18)

where i equals 1 or 2, j is the jth failure time, w(tj) is the weight at the jth

failure time. The weights for each of the tests are given in Table 2.1.

While typically, the KM survival estimates are plotted as in Figures 2.1

and 2.2. However another way of examining the estimates is using the cumu-

lative hazard function which is given by Ĥ(t) = −log(Ŝ(t)). An example for OS

for Her2 status is given in Figure 2.3.
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Test Statistics w(tj)

Log-rank 1
Wilcoxon nj

Tarone-Ware
√
nj

Peto s̃(tj)
Flemington-Harrington s̃(tj−1)p[1− s̃(tj−1)]q

Table 2.1: Weights used for various test statistics.
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Figure 2.3: The cumulative hazard function for Overall Survival for Her2 status.

Kaplan Meier analysis provides a nonparametric method, but requires cate-

gorization of all continuous predictors. It is equivalent of cross-tabulated data

for categorical outcomes for a survival context [Steyerberg, 2009].

Section A.3 contains all the KM survival estimates and Log-rank p-values

for each of the predictors in the breast cancer dataset from UCH Galway for

overall survival and disease free survival. The majority of the comparisons

are significant for both DFS and OS except the biomarker E-cad and Nuclear

Pleomorphism. However, these tests were all performed marginally and multiple

testing was not taken into account.
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Variables DFS OS
Grade < 0.001 < 0.001
Bilateral < 0.001 < 0.001
Tubule Formation 0.029 0.028
Mitotic Count < 0.001 < 0.001
Nuclear Pleomorphism 0.087 0.066
LN Status < 0.001 < 0.001
ER Status 0.014 < 0.001
PR Status < 0.001 < 0.001
Her2 Status < 0.001 0.001
Metastasis < 0.001 < 0.001
UICC < 0.001 < 0.001
Tumour Staging < 0.001 < 0.001
LN Staging < 0.001 < 0.001
Metastasis Staging < 0.001 < 0.001
NPI < 0.001 < 0.001
Bcl2 Status 0.002 < 0.001
CK14 Status 0.033 0.571
CK5/6 Status 0.004 0.099
Ki67 Status 0.003 < 0.001
EGFR Status 0.077 0.024
E-cad Status 0.191 0.528
p53 Status 0.009 0.005

Table 2.2: Log-rank tests were performed on each of the categorical predictors.
The p-values for each of these tests are given above. The Kaplan Meier estimates
for each of the predictors is given in the Appendix A.3.
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Figure 2.4: Kaplan Meier estimates for OS for Her2 Status. The number of
patients at risk at each time point is given under the graph.

2.3.1 Graphical comparisons of two survival functions: Al-

pha Blending, Ratio and Difference of Survival Es-

timates for Two Groups

Visualization aims to turn data into understanding through graphical represen-

tations [Karvanen and Harrell Jr, 2009].

Obviously, as time progresses the number of patients at risk to calculate the

survival estimates is decreasing as patients either experience the event or are

censored. Apparent “differences” at later follow up times may be due to vari-

ability caused by smaller samples being observed rather than ‘real’ differences.

The number of patients at risk at each time point can be added to the graphs of

the KM estimates. An example is given in Figure 2.4. An alternative way to

incorporate the number of patients at risk, is to use alpha blending from the

ggplot2 library in R for plotting. This shades the lines relative to the number

of patients at risk at each time point, the lighter the colour represents a lower

number of patients at risk. Hence as time increases the colour gets lighter since

patients either experience the event or are censored. An example is given in

Figure 2.5 for Her2 status.

One statistical test for comparing two or more survival functions has been

discussed. A graphical comparison of two survival curves has been identified as

a useful tool for interpreting the results of the test. When the number of groups
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Figure 2.5: Kaplan Meier estimates for OS for Her2 Status. The number of
patients at risk at each time point is given under the graph and alpha blending

on the lines to show how many patients are at risk at the time.

increases, the plot can get cluttered once confidence intervals are included. One

way of looking at the difference in the survival estimates of two curves is to

examine the ratio of survival estimates for one group to the survival estimates

for the other group at each failure time. This was first introduced by Newell

et al. [2006]. The pointwise ratio of survival estimates is given by

R(t) =
S1(t)

S2(t)
(2.19)

where Sk(t) are estimated using the Kaplan Meier estimator for the kth treat-

ment at time t.

Confidence intervals for the pointwise difference and ratio can be created

using bootstrap resamples of the data. The interval between the 2.5% and

97.5% percentiles of the bootstrap distribution of a statistic is a 95% bootstrap

percentile confidence interval for the corresponding parameter [Hesterberg et al.,

2007]. Under the null hypothesis, H0 : S1(t) = S2(t) for all t, the ratio R would

be equal to one if H0 were true. If the confidence interval for R does not contain

one, it can be said there is a significant difference in the pointwise estimates for

some values (or at least one) of t. Alternatively, an acceptance region can be

created under the null hypothesis, and if the ratio is not within this acceptance

region, it can be said there is a difference between the two survival curves.

An alternative to the ratio is to consider the pointwise difference in survival
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i.e. S1(t)− S2(t). Bootstrap resamples of the data can again be used to create

confidence intervals. If the null hypothesis is true, H0 : S1(t) = S2(t), the confi-

dence interval for the difference will contain zero. Harrell has already created a

survdiffplot function in the rms library in r [Harrell Jr, 2001]. An example of

Harrell’s survdiffplot comparing Her2 status is given in Figure 2.6. Harrell

uses exact asymptotic formulas to calculate the standard errors for approximate

confidence bands.
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Figure 2.6: Graphical comparison of pointwise differences created by Harrell’s

survdiffplot for Her2 Status.

An extension to these plots proposed in this thesis is to incorporate alpha

blending in the ratio and difference plot and to highlight areas where a dif-

ference may be present. An example for comparing Her2 negative and positive

patients is given for OS and DFS in Figure 2.7. The top row contains OS

and the bottom row contains DFS. The left plots contain the observed differ-

ence (black line - which is shaded using alpha blending, the more patients

at risk the darker the line) and the confidence interval for the difference (red
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lines). If the confidence interval for the difference does not contain zero (if the

null hypothesis was true, the difference between the groups would be zero), it

looks as if there is significant difference between groups for some values of t.

The grey bar at the bottom of the plot shows the times where the confidence

interval does not contain zero. The plots on the right contain the acceptance

region for the hypothesis (S1(t) = S2(t)) and the observed difference (black

line). If the observed difference is not contained within the acceptance region,

there is a significant difference between the groups. An example for comparing

Her2 Negative and Positive patients using the ratio is given for OS and DFS

in Figure 2.8. The top row contains OS and the bottom row contains DFS.

The left plots contain the observed ratio (black line) and the confidence interval

around the ratio. If the null hypothesis was true S1(t) = S2(t), the ratio of

survival estimates would be equal to one. If the confidence interval for the ratio

does not contain one for at least one t, there is a significant difference between

groups. The plots on the right contain the acceptance region for the hypothesis

(about one) and the observed ratio (black line). If the ratio is not contained

within the acceptance region, there is a difference between the groups.

The confidence intervals created here are only pointwise intervals and are not

a replacement for the Log-rank test. However the graphs give more information

and are a complementary graphical tool. The alpha blending highlight the

sample size diminishing over time and the bars at the bottom of the plot give

an indication of regions of time where a difference may occur.

2.4 Conclusions

This chapter has introduced survival analysis. Examples of graphical and nu-

merical summaries using the breast cancer dataset from UCH Galway have been

examined.

The Kaplan Meier estimate of the survival function is the most common

method used for the representation of the distribution of survival times. It is

generally used for graphical comparisons of survival experience of two or more

groups of patients. The Log-rank test is a hypothesis test for the equality of

survival functions.
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Figure 2.7: Graphical comparison of pointwise differences for Her2 positive and
negative patients. Black line observed difference. The red lines in the plots on
the left hand side are estimated confidence intervals for the difference. The area
between the red lines in the plots on the right hand side are acceptance regions
for the null hypothesis.
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Figure 2.8: Graphical comparison of pointwise ratios for Her2 positive and
negative patients. Black line observed ratio. The red lines in the plots on the
left hand side are estimated confidence intervals for the ratio. The area between
the red lines in the plots on the right hand side are acceptance regions for the
null hypothesis.

35



Chapter 2. Survival Analysis

Graphical comparisons of two groups can be a useful tool to help interpret

and complement the Log-rank test results. An obvious way is to look at the

pointwise difference between the groups but an alternative is to examine the

pointwise ratio. In this chapter, examples of these graphical tools and new

extensions are shown using the bootstrap to create pointwise confidence intervals

and acceptance regions. These also include highlighting the number of patients

at risk at each time point using alpha blending shading.

In the univariate case, testing each of the predictors using the Log-rank test

suggests that the majority of the predictors look like they may be useful for

predicting DFS and OS.

In the next chapter, a non-parametric approach using tree based models are

examined to help identify useful predictors of the Oncotype DX test, OS and

DFS. Classification and Regression Trees (CART) can handle many different

types of data and responses including categorical, continuous and survival out-

comes. Chapter 3 gives an introduction to tree based approaches and uses the

Oncotype DX data and the breast cancer data from UCH Galway to demon-

strate their usefulness.
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Chapter 3

Tree based Models and

Surrogate Splits

3.1 Introduction

Classification and Regression Trees (CART) were first introduced by Breiman

et al. [1984] and are a simple non-parametric regression approach used for iden-

tifying useful predictors and “structure” in a given dataset. CART is an al-

ternative to classical modelling approaches such as multiple regression, logistic

regression or the Cox proportional hazards model.

In this chapter, classical tree based methods (CART - splitting based on

dissimilarity), a more recent development based on conditional inference (split-

ting based on p-values), and extensions to tree based methods, namely forests

will be examined. A novel approach using surrogate splits will be presented to

help identify alternative trees with comparable prediction power as the ‘best’

tree. These methods will be applied to the Oncotype DX data to consolidate

results of conflicting papers and to the BC data to identify potentially useful

predictors.

CART models consist of a hierarchy of univariate binary decisions. These de-

cision trees depict rules for dividing data into groups [Neville, 1999]. Recursive

partitioning methods are amongst the most popular and widely used statisti-

cal learning tools for non-parametric regression and classification [Strobl et al.,
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2009]. The main feature of CART is that data are recursively partitioned into

groups. The partition is created such that observations with similar response

values are grouped. At each node a constant value of the response variable is

then predicted within each group, generally the mean for a continuous response

and the level with majority vote for a categorical response (mode), i.e. CART

uses a decision tree to represent how the data may be classified or predicted.

CART constructs models which are obtained by recursively partitioning the

data by fitting a simple prediction model to each partition [Loh, 2011]. The

algorithm creates binary splits on nominal or interval predictors for a nominal,

ordinal or interval response. An exhaustive search is made for the split that

maximizes the splitting measure.

The key steps for a CART analysis are as follows:

1. splitting each node in the tree;

2. deciding when a tree is ‘complete’ and

3. assigning each node to a class outcome for a classification tree or a pre-

dicted value for regression trees.

The appeal of CART is evident: the results are concise and easy to under-

stand, and are geared towards decision making [Systems, 2001].

Such methods have been used when analysing data relating to Oncotype DX

classification [Allison et al., 2011] and the same approach will be used for the

Galway Oncotype DX data.

3.1.1 Oncotype DX data

Recall from Chapter 1, the Galway Oncotype DX data has 52 patients. From

Figure 3.1(a), it can be seen that there is a high proportion of missing values

present in the Oncotype DX. Some of the variables have up to 50% missing.

Examining the patterns in the missing data in Figure 3.1(b), if a patient is

missing in one of the Survivin variables it is very likely it will be missing in

the other Survivin variables. Classical approaches such as logistic regression

do not work well due to the high proportions of missing data (see results in

Section A.1.1). Using casewise deletion reduces the sample size from 52 down
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to 7. Variable selection cannot be performed on the data if cases with missing

values are deleted and this is why tree based models have been used.

3.1.2 Advantages of CART

There are numerous advantages to the predictive models created by CART such

as:

1. CART makes no distributional assumptions.

2. The explanatory variables used in CART can be of any form, continuous,

interval or categorical.

3. CART uses surrogates splits (these are the next best splits to the best

split) to deal with missing data. This means all cases can be included as

it uses the surrogate splits to pass the cases down the tree if missing on a

particular predictor.

4. CART is not effected by outliers, collinearities, heteroscedasticity, or dis-

tributional error structures that affect parametric procedures.

5. CART can detect interactions in a data set and uncover hidden structure

in a highly complex data set.

6. Transformations of the data, such as a natural logarithm, does not change

the structure of the tree.

7. CART can use the same variable at different branches in the tree where as

most analyses only use a variable once unless specified as an interaction.

One limitation of CART is that one cannot force variables into the model.

This is a problem when there is a need to control for certain risk factors. Another

disadvantage is that some trees may be unstable.

3.1.3 Types of Trees

There are many different trees to deal with different types of responses, for

example regression trees, classification trees and survival trees. Regression

trees involve response variables that take continuous or ordered discrete val-

ues, with prediction error typically measured by the squared difference between
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the observed and predicted values. Classification trees are designed for response

variables that take a finite number of unordered values, with prediction error

measured in terms of misclassification costs. Survival trees have a response

with both the survival time and censoring information. The prediction error is

measured by a concordance index.

3.2 Classification and Regression trees

Recursive partitioning builds trees by finding the variable that bests splits the

data into two groups, this is achieved by searching iteratively over all possible

splits and the data in the subgroups are partitioned into two subgroups using

this criteria. Next the best split for these two subgroups are found and these

subgroups are partitioned. This continues until no improvement can be made in

the impurity or a minimum number of individuals is achieved in each terminal

node. The impurity of a node is a measure of the misclassification in a node.

3.2.1 Splitting Criterion

A tree is formed by iteratively splitting nodes to minimize an impurity measure,

I(T ) [Breiman et al., 1984]. The best split s∗ of node t is the split in S, where

S is the set of all possible splits, which most decreases I(T ), where I(T ) is the

node impurity. More precisely, for any split s of t into tL and tR, left and right

nodes respectively, let

∆I(s, t) = I(t)− I(tL)− I(tR) (3.1)

Take the best split s∗ to be a split such that

∆I(s∗, t) = maxs∈S∆I(s, t) (3.2)

Node impurity is largest when all classes of the response variable are equally

mixed together in a node and is smallest when the node contains only one class.

The best split is always chosen such that the variable produces the highest

reduction in impurity.

The split, i.e. the variable and threshold, that leads to the split that is the
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most “pure”, that is the most homogeneous groups with respect to the response

variable is selected.

After a split is selected, the observations are then divided into each node us-

ing the splitting variable and threshold and the splitting of each node continues

until some stopping criteria is achieved. Stopping criteria include a minimum

number of observations in a terminal node or a given threshold for the minimum

change in impurity is not achieved by any variable.

An example of an overfitted survival tree for DFS is given in Figure 3.2.

The splitting criteria for survival trees is based on the distance between Kaplan

Meier survival estimates. Kaplan Meier estimates were introduced in the previ-

ous chapter and these give an estimated survival probability for the patients in

each terminal node.
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Figure 3.2: Unpruned (over-fitted) recursive partitioning survival tree for DFS

for the Galway cohort.

Typically trees may not be grown to the correct size, the results are over
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optimistic and the final tree needs to be pruned back as some of the extra splits

may only marginally reduce the prediction error. From Figure 3.2, terminal

nodes 10 and 11 seem very similar and pruning might be required here as the

extra split may not reduce the prediction error by much.

3.3 Pruning Procedure

Starting with a large tree Tmax and selectively pruning the tree to the right

size can reduce over-fitting. The branches that do not contribute to the pre-

diction accuracy in the cross-validation are removed. Cross-validation involves

partitioning the data into a test and training set. The tree is created using

the training set and validated using the test set. This is performed multiple

times and the results are averaged to find the ‘best’ sized tree. The best size

of a recursive partitioning tree can be found using information on the optimal

pruning based on a complexity parameter calculated using cross validation. The

complexity parameter is the complexity cost per terminal node and each value

corresponds to a different sized tree. The size of the tree is the number of splits

in the tree.

If trees are too small they will not make accurate predictions however if

trees are too big, the terminal nodes will not have enough data in them to make

any reliable predictions about the contents of the terminal node when the tree is

applied to a new data set. If the splitting was carried out until only one case was

in each terminal node, then each node is classified by the case it contains, the

resubstitution estimate gives a zero misclassification rate. The resubstitution

estimate is the probability of misclassification using the training data as the test

data. On the other hand, too small a tree will not use some of the classification

information available in the data set, resulting in a higher misclassification rate

than the right sized tree [Breiman et al., 1984].

The complexity parameter associated with minimum error should be se-

lected. For example, in Figure 3.3 for DFS, the error is minimised for a tree

with 4 splits. However a tree with 3 splits seems adequate since the trade off

between the error an the extra split is very little. So the extra splits in this

unpruned survival tree are removed to give the pruned survival tree in Figure
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Figure 3.3: Cross validation error for the complexity parameter for the unpruned
survival tree for DFS.

3.4(a). This identifies Lymph Node status and Metastasis as useful predictors

and may have identified an interaction effect. If a patient has no lymph nodes

positive and no metastatic cancer they have the best survival. If a patient has

lymph nodes positives and metastatic cancer they have the worse prognosis.

The same procedure was applied for OS and the pruned tree Figure 3.4(b)

has just one split on Metastasis. Patients diagnosed with metastatic cancer have

worse prognosis than those without metastatic disease which is as expected.

The same tree growing and pruning procedure was applied to the Oncotype

DX classification (Figure 3.5). Examining the terminal node on the right hand

side of the tree, if a patient has a high progesterone score (PR 0 8 > 1) and high

lymph node grade (N = 3) they are classed as high risk. This is what would be

expected, as the more positive lymph nodes (i.e. higher lymph node stage), the

higher at risk a patient would be. Some of the variables identified previously

in the literature as good predictors of Oncotype DX also appear in this tree,

such as Progesterone Status and N Stage (lymph node stage). However this tree

is a fixed tree and was modeled using a small sample size and there are small

numbers in the terminal nodes so it would not be recommended to use this as

a predictive model.
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Figure 3.4: Pruned recursive partitioning survival trees for the BC data.
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Figure 3.5: Recursive partitioning classification tree for the Galway Oncotype

DX patients into low, medium and high risk.

One concern when using tree based methods is when the number of variables

is large compared to the number of cases in the variable selection problem. The

term variable selection bias refers to the fact that in standard tree algorithms

variable selection is biased in favour of predictors offering many potential cut-

points so that predictors with many categories and continuous predictors are

artificially preferred [Strobl et al., 2009].

3.4 Conditional Inference Trees

An alternative approach for tree building which corrects for the variable selection

problem is called conditional inference trees. Such trees are split based on

a p-value from a suitable hypothesis tests depending on the context. Since

conditional inference trees use statistical stopping rules, pruning is automatic.

The significance level can be adjusted for the multiple testing of the splits,

which controls the probability of falsely identifying one of the predictors as

significant. One such stopping criterion is a simple Bonferroni correction with

α = .05 is used in Hothorn et al. [2006]. The party library in R provides
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code for regression trees for nominal, ordinal, numeric, censored (survival), and

multivariate responses, applying a stopping criterion based on hypothesis tests.

These statistically motivated stopping criteria implemented by hypothesis tests

lead to trees whose predictive performance is equivalent to the performance of

optimally pruned trees [Hothorn et al., 2006].

Here is a summary of the algorithm:

1. Test the overall null hypothesis that the response variable is independent

of the predictors; stop growing the tree if the null hypothesis cannot be

rejected. Alternatively, choose the predictor with the strongest association

to the response variable (i.e. the smallest p-value).

2. Split the data into the two subgroups using this split criteria for the se-

lected predictor.

3. Repeat steps 1 and 2 until the overall null hypothesis of the predictors

being independent of the response variable cannot be rejected.

The significant tests are used for selecting the best split at a node but also

as stopping criteria. Once a p-value for a split exceeds the significance level the

tree is not grown any further.

One important improvement with the introduction of conditional inference

trees was that they overcame the variable selection problem of classical ap-

proaches. An advantage of conditional inference is the tree is automatically

pruned. However, the tree may miss interactions. For example, the tree may

not split the data because there is no significant split overall however if an in-

teraction was present, a split on a certain predictor further down the tree may

be significant.

The conditional inference tree procedures were applied to the Onoctype DX

classification (Figure 3.6). It has a higher misclassification rate than that of

the pruned classification tree (Figure 3.5) and has identified other potentially

useful predictors. It contains predictors similar to that of the paper published

by Allison et al. [2011].

Examples of survival trees via conditional inference for the BC data are

given in Figure 3.7. For DFS, Metastasis and Lymph Node Status are selected

which are also in the recursive partitioning tree (Figure 3.4). However, the
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Figure 3.6: Conditional inference classification tree for the Oncotype DX risk.

conditional inference tree also identified extra splits. For OS, the first split in

the conditional inference tree is Metastasis which is the same as the recursive

partitioning tree, however the conditional inference tree identified extra splits,

Oestrogen status and UICC staging.

3.5 Random Forests

Random Forests, an extension to CART, are an ensemble method involving

bootstrap resampling of the data [Breiman, 2001]. Random Forests work by

growing a large number of trees from resampled data and prediction is obtained

by averaging over all the predicted responses for each tree. In addition to

constructing each tree using a different bootstrap resample of the data, each

node is split using the best split from a subset of predictors randomly chosen

at that node, instead of using the best split from all the predictors. If there

is a particularly good predictor which is always chosen as the split, choosing a

subset of predictors at each node, may help in identify other potentially useful

splits hidden when using the ‘best’ split. The trees grown are not pruned.

Random forests can handle problems with a small sample size and large num-

ber of variables very well since it examines a subset of predictors at each node.

The higher the number of trees in the forest the more reliable the prediction
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Figure 3.7: Conditional Inference survival tree for DFS for the Galway cohort.
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and interpretability of the variable importance.

The major advantage of random forests is the reduction in prediction error.

However, the one disadvantage is there is no tree structure. The variable impor-

tance measure from random forests can be used to identify important predictors

for the model. Large importance values indicate variables with predictive ability,

whereas zero or negative values identify non-predictive variables to be filtered

[Ishwaran et al., 2008].
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Figure 3.8: Variable importance measure for the Oncotype DX data using

cforest in the party package.

The variable importance measure for the Oncotype DX data (Figure 3.8)

identified Ki67, Lymph Node stage, Survivin and Progesterone status as being

potentially useful predictors.

The randomForest library and the cforest in the party library in R do not

have the capability to create a random forest or the variable importance measure

for censored survival data. However, a special library, called randomForestSRC,

is available to handle right censored survival data [Ishwaran et al., 2008]. The

variable importance measure for DFS (Figure 3.10(a)) identified many of the

lymph node predictors as useful, such as number of positive nodes, nodal ratio,
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Figure 3.9: Variable importance measure for OS using the Random Forest pack-
age for survival tree. 51
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status and stage. It also identified UICC staging as useful. For OS (Figure

3.10(b)) the variable importance measure identified again a few of the lymph

node predictors such as number of positive nodes, nodal ratio and stage. Also

some of the hormones such a Her2 and oestrogen status and the tumour, metas-

tasis and UICC stages.

The next section, will introduce a novel way of identifying structure in the

data using competing trees built using surrogate splits.

3.6 Surrogate Splits

At any given node in a tree, the best split s∗ is chosen (i.e. the split which

decreases the impurity most). A surrogate split is a split which most accu-

rately predicts the action of s∗. There are two types of surrogates, primary

and secondary. Primary surrogates are the splits with a similar performance in

impurity (predictive performance) to the best split. Secondary surrogate splits

resemble the best split in terms of the number of cases they send the “same

way” (similar partition of units/cases) and are typically used to handle missing

data.

A surrogate split is a splitting rule that closely mimics the action of the

primary split. Not only must a good surrogate split the parent node into de-

scendant nodes similar in size and composition to the primary descendant nodes,

but, to the extent possible, the surrogate must also match the primary split on

the specific cases that go to the left child and right child nodes. A surrogate is

thus evaluated on its ability to match the primary split on a case-by-case basis.

If no variable can mimic the primary splitting criterion, there will not be any

surrogates listed [Systems, 2001]. The CART decision tree algorithm can use

surrogate features to rank individual features by their importance [Springer and

Kegelmeyer, 2008].

In Breiman’s Classification and Regression Trees [Breiman et al., 1984], a

surrogate is defined as follows. Let Sm be the set of all splits on xm, any

variable, and S̄m the set of all splits in the complement to Sm. For any split

sm ∈ Sm ∩ S̄m of the node t into t′L and t′R, let Nj(LL) be the number of cases

in t that both s∗ and sm send left, that is, that go into tL ∩ t′L. By the usual
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procedure, the probability that a case falls into tL ∩ t′L is estimated as

p(tL ∩ t′L) =
∑
j

π(j)Nj(LL)/Nj (3.3)

where j is the predicted class and π(j) are defined as the prior class probabilities.

The estimated probability is defined as pLL(s∗, sm) that both s∗ and sm

send a case in t left as

pLL(s∗, sm) = p(tL ∩ t′L)/p(t). (3.4)

Similarly, define pRR(s∗, sm). The probability that sm predicts s∗ correctly is

estimated by

p(s∗, sm) = pLL(s∗, sm) + pRR(s∗, sm). (3.5)

The best surrogate split is defined to be

p(s∗, s̃m) = max
sm

p(s∗, sm). (3.6)

3.6.1 Traditional uses of surrogates

Missing Data

Missing values are usually handled by using casewise deletion in prediction mod-

elling. If values are missing for the response variable, the only viable strategy is

case-wise deletion [Berk, 2008]. If values are missing from the predictors there

are several options to deal with the missing values. First is casewise deletion,

where if a patient is missing on any predictor they are removed, however this

results in a reduction in sample size and power. Secondly the data could be im-

puted using some regression equation such as MICE (Multivariate Imputation

by Chained Equations). Finally, using tree based models, surrogate splits can

be used to pass cases with missing values down a tree.

Secondary surrogate splits are used to assign missing values to the correct

node. It works as follows: suppose that the best split s∗ has been found for

a node. The cases are split using this best split if they have a value for the

variable. However, if there are missing values present in the variable, these

cases are split using the next best secondary surrogate split to s∗.
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Variable Ranking

The critical issue is how to rank those predictors that, while not giving the best

split of a node, may give the second or third best [Breiman et al., 1984]. For

example, a variable may not appear in the tree but if the first split variable

is removed from the model, the variable may appear and have a similar tree

structure or performance.

Another use for surrogate splits is in identifying variable importance. For

example, if x1 and x2 are predictors, x1 may not appear anywhere in a tree,

but if variable x2 is removed and another tree is grown, x1 may occur often in

this second tree. This could be as accurate as the first tree and in this situation

variable ranking would be required to identify x1 as important.

3.6.2 Novel use of Surrogates

Surrogates could be used to create other trees that have comparable predictive

performance as the ‘best’ tree. Obviously when a tree is created, it uses the best

split as the splitting criteria. However, the surrogates could be used to create

alternative trees, by selecting a surrogate and growing a tree using this as the

first split.

This results in several trees, which is similar to Best Subsets in regression

modelling. Best Subsets involves examining all of the models created from all

possible combination of the predictors, so there are many possible models and

the best one is chosen based on it’s predictive ability. The trees created using

the surrogate splits may have competing predictive ability of that of the original

tree.

Here we propose a novel approach of using surrogate splits to identify un-

derlying structure in the data (i.e. a set of potentially useful predictors).

3.7 Surrogate Plot

As the Oncotype DX data has a small sample size and large number of predic-

tors, it would not be recommended to use the tree (Figure 3.10) as a predic-

tion model. There may be more underlying structure if we look at the surrogate

splits. Surrogates are useful for identifying variables, which may not appear
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in the original tree structure, but if the first split is removed from the model,

the variable that had not previously been included may now appear and have

a similar tree structure. The idea of an interactive surrogate plot is to help

identify underlying structure using surrogate splits. Figure 3.10 contains the

classification tree for the Oncotype DX Galway data, however we have also

identified some primary surrogate splits at the first few nodes. To represent

the information about the primary and secondary surrogate splits, I developed

an interactive surrogate plot package in R. Instructions how to implement this

code is given in the Appendix A.1.3.
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Figure 3.10: Recursive partitioning classification tree for the Galway Oncotype

DX patients into low, medium and high risk. Some primary surrogates are

identified as each of the nodes.

An example of a surrogate plot applied to the Oncotype DX data is given

in Figure 3.11. This interactive plot was created using the tcl-tk library in

R [Grosjean, 2012]. The x-axis is divided into three parts, nodes (the number

of times the variable appears as a split in the original tree), primary surrogates

and secondary surrogates for the different nodes in the original tree. All the

variables in the dataset are given along the y-axis and have been ordered in

terms of importance, with the most important risk factors close to the top and
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Figure 3.11: Surrogate Plot for the Classification tree of the Galway Oncotype
DX classification.
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the risk factors which do not seem to be as important closer to the bottom. Five

primary surrogates were identified for each of the nodes in the tree. A heat-map

is used to compare the predictive power of each surrogate to the best split.
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Figure 3.12: Tree for Surrogate N for Oncotype DX classification.

For example, for the first split in the Galway Oncotype DX tree in Figure

3.10 is Progesterone Score (0−8), however the surrogates for this split include

Survivin, Ki67, BcI2, CD68 and N (Lymph node staging). If one of these

surrogates is selected, lets say N (lymph node staging), a tree can be created

using this surrogate as the first split. The resultant tree for this surrogate is

given in Figure 3.12. The first split is on the surrogate selected, N, then a tree

is grown using all the predictors for each partition of the parent node. This tree

has a misclassification rate of 15%, the same as the original tree, and contains

some of the predictors identified as useful predictors of Oncotype DX in the

paper by Geradts et al. [2010]. If a tree is created for surrogate CD68, similar

risk factors identified by Auerbach et al. [2010] appear in the tree. These trees

have identified more potentially useful variables and biomarkers but they have

comparable predictive power to that of the original tree.

This analysis identified risk factors using surrogate splits which consolidated
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results from previous studies of Oncotype DX classification. Using the tree in

Figure 3.5 as a prediction model on an individual level is not very sensible

(due to small sample size). However, these risk factors can now be used on a

much larger sample to build a better prediction rule.

Similarly, the surrogates can be used to identify other structure in the Breast

Cancer data. In the pruned DFS survival tree, Figure 3.13(a), other lymph

node predictors were identified as alternatives to the best first split of the tree,

lymph node status. The surrogate tree using Nodal Ratio as the first split is

given in Figure 3.14. It identified Metastasis as the split again on the left hand

side and Bilateral on the right hand side. For OS, Figure 3.13(b), metastasis

was identified as the only useful split, however, if this predictor was removed,

nodal ratio, number of positive lymph nodes or UICC staging would be useful

to create other comparable trees.

3.8 Conclusions

Tree based methods are useful alternatives to classical approaches of modelling.

Both CART and conditional inference trees have identified useful predictors in

both the Oncotype DX and BC data. CART grows a large tree and then prunes

back but this overfitting identifies more structure in the data. Conditional

inference has automatic pruning however it may miss interactions. Extensions

to trees include bootstrapping in random forests, which is good for prediction

however no structure is identified. Random Forests use a variable importance

measure for identifying potentially useful predictors.

The novel way of examining the surrogate splits may be the equivalent to

Best Subsets in regression modeling, as it results in many different trees with

comparable predictive power. An analysis of the surrogates can be useful to

identify underlying structure in the data. This novel approach for identify-

ing structure has been presented at the International Workshop for Statistical

Modelling [Wall et al., 2012].

Examining the different techniques for the Oncotype DX data, the recursive

partitioning tree identified Progesterone, Survivin, N (Lymph Node Stage),

Size and Bag1 as good predictors for classification into low, medium and high
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node. 59
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Node 6 (n=342)

Nodal Ratio
1

<0.019 >0.019

Metastasis
2

No Yes

Node 4 (n=31)

Bilateral
5

No Yes

Node 7 (n= 21)Node 3 (n=253)

Figure 3.14: Tree for Surrogate Nodal Ratio for DFS in the BC data.
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risk. However, surrogate splits can be used to create other trees with comparable

prediction power. The surrogate plot identifies other comparable and competing

trees which in turn identifies other potentially useful variables and underlying

structure but with comparable predictive power. These surrogates were used to

create competing trees which consolidated the results from the previous research

of Oncotype DX classification.

Many different predictors have been identified as good predictors of both OS

and DFS (summarized in Tables 3.1-3.4). The predictive ability of the models

are measured using the concordance index (also known as the c-index). This is

a measure of the probability of agreement between the predicted and observed

survival. The concordance is 0.5 for random predictions and 1 for perfectly

discriminating model. This will be discussed in more detail in Chapter 6.

Pruned recursive partitioning trees identified Lymph Node status and Metas-

tasis as good predictors of DFS and just Metastasis as a good predictor of OS.

The conditional inference trees identified LN status, Metastasis, Oestrogen sta-

tus and Age as good predictors of DFS and it identified Metastasis, Oestrogen

status and UICC staging as good predictors of OS. The random survival forests

identified several of the lymph node variables such as Nodal Ratio, Lymph

Node status, number of positive lymph nodes and N (Lymph Node staging) as

good predictors of DFS as well as Her2 status and UICC staging. The random

survival forests again identified several of the Lymph Node variables as good

predictors of OS as well as the size of the tumour, Lymphovascular invasion,

P (Nuclear Pleomorphism), Oestrogen status, Her2 status, T, N & M stag-

ing (Tumour, Lymph Node and Metastasis Staging) and UICC staging. Even

though there are different combinations of predictors identified by the CART

techniques, there are a few predictors that appear across all CART techniques,

such as Metastasis and LN status for DFS and Metastasis and ER status for

OS.

In the following chapter, a classical approach, the Cox proportional haz-

ards model, for modelling survival data will be introduced. Variable selection

techniques will be investigated to find a set of potentially useful predictors.
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Conditional Random
Predictors CART Inference Forests
Age X
Bilateral X
Grade
Tubular Formation
Nuclear Pleomorphism
Mitotic Count
Tumour Size
Lymphovascular Invasion
No of Lymph Nodes positive X
Lymph Node status X X X
Nodal Ratio
Metastasis X X
Tumour Staging
Metastasis Staging
Lymph Node Staging
UICC X
NPI
Oestrogen Status X
Progesterone Status
Her2 Status X
Concordance Index 0.826 0.762 0.777

Table 3.1: Summary of clinical predictors selected through various tree tech-
niques for DFS. X means the predictor is included in the model.
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Conditional Random
Predictors CART Inference Forests
Age X
Bilateral X
Grade
Tubular Formation
Nuclear Pleomorphism
Mitotic Count
Tumour Size X
Lymphovascular Invasion
No of Lymph Nodes positive X
Lymph Node status X X X
Nodal Ratio X
Metastasis X X
Tumour Staging
Metastasis Staging
Lymph Node Staging X
UICC
NPI
Oestrogen Status X
Progesterone Status
Her2 Status
Bcl2 Status
CK14 Status
CK5/6 Status
EGFR Status
Ki67 Status
p53 Status
E-cad Status
tMcm2 Status
CDC7
pMcm2
Concordance Index 0.762 0.777 0.765

Table 3.2: Summary of clinical and pathological predictors selected through
various tree techniques for DFS. X means the predictor is included in the model.
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Conditional Random
Predictors CART Inference Forests
Age
Bilateral
Grade
Tubular Formation
Nuclear Pleomorphism X
Mitotic Count
Tumour Size X
Lymphovascular Invasion
No of Lymph Nodes positive X
Lymph Node status X X
Nodal Ratio X
Metastasis X X
Tumour Staging X
Metastasis Staging X
Lymph Node Staging X
UICC X X
NPI
Oestrogen Status X X
Progesterone Status
Her2 Status X
Concordance Index 0.909 0.922 0.911

Table 3.3: Summary of clinical predictors selected through various tree tech-
niques for OS. X means the predictor is included in the model.
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Conditional Random
Predictors CART Inference Forests
Age
Bilateral X
Grade
Tubular Formation X
Nuclear Pleomorphism X
Mitotic Count
Tumour Size X
Lymphovascular Invasion X
No of Lymph Nodes positive X
Lymph Node status X X
Nodal Ratio X
Metastasis X X X
Tumour Staging
Metastasis Staging X
Lymph Node Staging X
UICC X X
NPI X
Oestrogen Status X X
Progesterone Status X
Her2 Status X
Bcl2 Status X
CK14 Status X
CK5/6 Status X
EGFR Status
Ki67 Status
p53 Status X
E-cad Status X
tMcm2 Status X
CDC7
pMcm2
Concordance Index 0.909 0.922 0.790

Table 3.4: Summary of clinical predictors selected through various tree tech-
niques for OS. X means the predictor is included in the model.
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Chapter 4

Classical Approaches to

Modelling Survival Data

4.1 Introduction

In previous chapters, some non parametric approaches have been examined for

variable selection. To develop models for survival data in a population, a simple

way of describing the variation in survival among individuals is needed. A

popular model is to consider the individual specific hazard function hi(t) and

to make a proportional hazards assumption such as

hi(t) = cih0(t) (4.1)

where ci is a constant and h0(t) is the baseline hazard left unspecified. The

effects of covariates on the hazard can be modelled by letting ci = exp(β′X),

this is the Cox proportional hazards model.

Classical approaches for modelling survival data typically assume some un-

derlying parametric distribution or alternatively a flexible semi-parametric ap-

proach such as the Cox proportional hazards could be used.

It is important for any prediction model that the model is as simple as

possible but as complex as necessary.

An alternative to creating a model with all predictors is to use a smaller
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subset of predictors that perform just as well as the full model. This is more

cost and time effective as less predictors need to be measured and recorded.

Variable selection techniques will be applied to the BC data to find the most

parsimonious set of predictors. Classical approaches such as backward variable

selection and new shrinkage methods such as Ridge Regression and the LASSO

will also be applied.

Non-linear effects in the model may add more complexity so interactions and

the use of splines to relax the linearity assumption will be investigated.

4.2 Parametric Models for Survival Data

A parametric model is one in which survival time follows a known distribution

and its functional form is completely specified, except for the values of the

unknown parameters [Kleinbaum and Klein, 2005]. Parametric survival models

may be useful for predictive purposes because of their parsimony and robustness,

for example at the end of follow up, or even beyond the observed follow up

[Steyerberg, 2009].

The more complex parametric models have more free parameters which can

be used to incorporate different survival patterns for early and late mortality.

These tend to produce more precise estimates than non-parametric or semi-

parametric analysis if the ‘correct’ distribution is specified.

Two of the most common distributions used to model survival data are

described in the next few sections.

4.2.1 Exponential

The exponential model is the simplest parametric survival model with only one

parameter. As shown previously, there is a relationship between the survival

and the hazard function. For the exponential distribution they are given as

exp(−λt) and λ, respectively (Table 4.1).

The exponential distribution is a special case of the Weibull distribution

which is discussed in the next section.
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Distribution S(t) h(t)
Exponential exp(−λt) λ

Weibull exp(−λtp) λptp−1

Table 4.1: Parameters for Parametric Models.

4.2.2 Weibull

The Weibull distribution is the most commonly used parametric model. The

hazard is given by λptp−1. λ is the scale parameter and p is the shape parameter

(where p and λ are greater than zero). When p is equal to one the Weibull

distribution simplifies to the exponential distribution. If p is greater than one

the hazard increases as the time increases and if p is less than one the hazard

decreases over time.

The confidence limits for a parametric survival function are narrower than for

the corresponding non-parametric function; greater precision has been obtained

at a cost of having to make assumptions which may be unattainable and may

lead to additional bias [Bull and Spiegelhalter, 1997].

4.3 Cox Proportional Hazards Model

The most popular regression model for time to event data is the semi-parametric

Cox proportional hazards model.

The Cox Proportional Hazards (CPH) regression model is a semi-parametric

procedure; a parametric model for the hazard is combined with a non-parametric

estimate of the underlying hazard. The Cox model is a model that provides si-

multaneous estimates of hazard ratios while adjusting for multiple explanatory

variables and is used extensively in the analysis of survival data. The Cox regres-

sion model provides a default framework for prediction of long-term prognostic

outcomes [Steyerberg, 2009].

The use of the model includes assessing treatment effects in studies and

in particular adjusting these comparisons for baseline characteristics [Machin

et al., 2006]. The Cox model is given by the following formula:

h(t,X) = h0(t)× exp

(
p∑
i=1

βiXi

)
(4.2)
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where h0(t) is the baseline hazard function that determines the shape of the

survival function, X are the predictor variables and the β′s are the regression

coefficients. Note: there is no constant term in the model, it is ‘absorbed’ into

the baseline hazard. The model can also be written as

S(t|X) = S0(t)exp(β
′X) (4.3)

where exp(β′X) is called the prognostic index. It is common practice not to

define a parametric model for the baseline hazard in a similar manner with the

practice of displaying the time estimate of the survival function.

An important feature of this formula, which concerns the proportional haz-

ards (PH) assumption, is that the baseline hazard is a function of t, but does

not involve the X’s. An appealing property of the Cox model is that, even

though the baseline hazard part of the model is unspecified, it is still possible to

estimate the β′s in the exponential part of the model. The Cox model is widely

used since it can approximate the results for the correct parametric model. The

Cox model does not assume anything about the shape of the survival function

S(t) across t for an individual, but it does consider how survival estimates for

different subjects are related. Specifically, it assumes that log[−log(S(t))] for

different subjects are equidistant over time, or equivalently that hazard func-

tions for any two subjects are proportional over time. This proportional hazards

assumption can be checked using smoothed plots of a special type of residual

from the model called the Schoenfeld residual [Harrell Jr, 1996].

The hazard at time t is related to the probability that the event will occur

in a small interval around t, given the event hasn’t occurred before time t. The

h(t) part of h(t|X) is sometimes called an underlying hazard function or hazard

function for a standard subject, which is a subject with Xβ = 0.

Some assumptions of the Cox PH model include:

• The true form of the underlying functions (h(t), H(t) and S(t)) should

be specified correctly;

• The relationship between the predictors and log hazard or cumulative

hazard should be linear in its simplest form;

• The way in which the predictors influence the distribution of the response
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will be by multiplying the hazard by exp(Xβ) or equivalently by adding

Xβ to the log hazard or log cumulative hazard at each t. The effect of the

predictors is assumed to be the same at all values of t since log h(t) can

be separated from Xβ. In other words, the PH assumption implies no t

by predictor interaction [Harrell Jr, 2001].

A multivariable survival model for time until the event would be more bene-

ficial than just looking at one predictor (as in Chapter 2) with the comparison of

survival estimates marginally for each explanatory variable. Examining a model

with all the routinely assessed clinical predictors the sample size of 647 patients

is reduced to 221 due to the missing data present, see Table 4.2. The estimates

are given in terms of the coefficients. Typically these are expressed as exp(β̂)

which are the hazard ratios. For categorical predictors, this is a comparison to

the baseline level. For continuous predictors this is a multiple effect per unit

increase. For example, for the model for DFS in Table 4.2, the coefficient for

Bilateral category Yes is 1.071. The hazard ratio is the exponential of this value

which is 2.918, this means those patients with Bilateral breast cancer have a

worse prognosis than those without Bilateral breast cancer. Similarly with the

size of the tumour, as the size of the tumour increases the patient has a worse

prognosis. These models are presented with point and interval estimates in a

hazard ratio chart in Figures 4.1(a) and 4.1(b).

For DFS, adjusting for all other clinical predictors, Nodal Ratio, Bilateral,

LN Status, Metastasis and N stage (labelled as TNM N in Figure 4.1) seem

to be good predictors adjusting for all other clinical predictors. For OS, adjust-

ing for all other clinical predictors, Metastasis, T stage and N stage are good

predictors adjusting for all other clinical predictors. However, the OS model

has large standard errors for some of the coefficients in the model. This results

in wide confidence intervals in the hazard ratio plot.

Models for DFS and OS including both the clinical and pathological biomark-

ers were also fitted Table 4.3. However, when these extra predictors were in-

cluded, the sample size was reduced to 103 patients. Resulting in regression

coefficients with large estimated standard errors.
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Table 4.2: Cox Proportional Hazards model for clinical predictors for DFS and
OS for the BC data.

Dependent variable:

DFS OS

β̂(ESE) β̂(ESE)

Age 0.003 (0.010) −0.009 (0.036)
Nodal Ratio −1.937∗∗∗ (0.585) −1.238 (1.627)
Bilateral (Yes) 1.071∗∗ (0.534) −7.781 (43.556)
Grade (grade 2) −0.545 (0.427) −1.062 (2.463)
Grade (grade 3) −0.676 (0.496) −2.711 (2.373)
Tubule Formation (> 75%) −0.131 (0.643) −15.593 (69.758)
Tubule Formation (10%− 75%) −0.734∗ (0.378) −3.469 (2.331)
Mitotic Count (Low) −0.419 (0.308) −0.507 (0.978)
Mitotic Count (Moderate) 0.181 (0.317) 1.932 (1.274)
Nuclear Pleomorphism (Moderate) 0.145 (0.251) 0.345 (0.946)
Nuclear Pleomorphism (Uniform Cells) 0.771 (1.235) −6.305 (935.901)
No. LN Positive 0.003 (0.026) −0.306 (0.227)
LN Status (Positive) 3.947∗∗∗ (0.911) 18.913 (61.179)
Size (mm) 0.017 (0.013) −0.004 (0.029)
Lymphovascular Invasion (probable) −0.699 (0.841) −7.316 (217.782)
Lymphovascular Invasion (yes) 0.206 (0.270) −0.702 (0.912)
ER Status (Positive) −0.127 (0.271) −0.762 (1.438)
PR Status (Positive) −0.320 (0.253) −2.528∗∗ (1.038)
HER2 Status (Positive) −0.054 (0.310) 0.169 (0.798)
Metastasis (Yes) 1.504∗∗∗ (0.334) 4.790∗∗∗ (1.245)
Tumour Staging (≥ 50) −0.620 (0.718) 2.924 (2.004)
Tumour Staging (20-50mm) 0.171 (0.378) 3.587∗∗ (1.800)
Tumour Staging (No Tumour) 0.268 (1.198) −1.636 (133.947)
LN Staging (metastasis in ≥ 10 LN) 1.674∗∗ (0.672) 8.637∗∗ (3.934)
LN Staging (metastasis in 4− 9 LN) 1.287∗∗ (0.539) 3.184 (2.416)
LN Staging (No metastatic deposits) 2.100∗∗ (0.929) 17.416 (61.162)
Metastasis Staging (no metastases) −0.714∗ (0.384) −1.225 (1.068)
UICC=2 0.585 (0.577) −1.206 (2.513)
UICC=3 0.276 (0.792) −1.363 (3.238)
UICC=4 1.264∗ (0.753) 1.508 (2.795)

Observations 221 221
R2 0.527 0.652
χ2 (df = 32) 163.937∗∗∗ 127.970∗∗∗

Concordance Index 0.826 0.969

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Hazard Ratio
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Figure 4.1: Hazard ratios and multilevel confidence bars for the effects of pre-
dictors in the full model for DFS and OS. The large estimated standard errors
leads to wide confidence intervals. 72
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Table 4.3: Cox Proportional Hazards model for clinical and pathological
biomarkers predictors for DFS and OS for the BC data.

Dependent variable:

DFS OS

β̂(ESE) β̂(ESE)

Age 0.022 (0.020) 0.182 (0.667)
Nodal Ratio −5.925∗∗∗ (1.956) 3.730 (52.396)
Bilateral (Yes) −1.616 (2.385) 16.183 (591.096)
Grade (grade 2) −1.216 (0.750) −2.623 (29.538)
Grade (grade 3) −0.657 (0.886) 5.784 (28.852)
Tubule Formation (> 75%) 2.162 (1.601) 25.913 (93.243)
Tubule Formation (10%-75%) 0.715 (0.674) 12.498 (31.324)
Mitotic Count (Low) 1.305 (0.861) 5.275 (30.830)
Mitotic Count (Moderate) 0.097 (0.584) 15.099 (18.485)
Nuclear Pleomorphism (Moderate) −0.270 (0.441) 1.191 (19.136)
Nuclear Pleomorphism (Uniform Cells) 0.000 (0.000) 0.000 (0.000)
No LN Positive −0.071 (0.051) −0.856 (1.389)
LN Status (Positive) −6.233 (140.931) −4.010 (585.793)
Size (mm) −0.048∗ (0.027) 0.047 (0.847)
Lymphovascular Invasion (probable) −1.000 (1.467) −1.879 (268.702)
Lymphovascular Invasion (yes) 0.360 (0.597) −3.244 (18.421)
ER Status (Positive) 0.405 (0.488) −8.568 (13.002)
PR Status (Positive) −0.771 (0.597) −10.137 (12.901)
HER2 Status (Positive) −0.742 (0.789) −8.044 (22.701)
Metastasis (Yes) 2.271∗∗∗ (0.706) 27.175 (21.486)
Tumour Staging (≥ 50) 4.094∗∗∗ (1.266) 7.403 (21.901)
Tumour Staging (20-50mm) 2.744∗∗∗ (0.904) 7.649 (27.809)
Tumour Staging (No Tumour) 0.256 (2.631) 34.501 (92.571)
LN Staging (metastatis in 1-3 LN) −9.812∗∗∗ (2.497) −32.785 (54.541)
LN Staging (metastatis in 4-9 LN) −2.896∗∗ (1.362) −21.026 (30.035)
LN Staging (No metastatic deposits) −20.042 (140.961) −40.618 (587.978)
Metastasis Staging (no metastatases) −1.388 (0.854) 10.601 (21.326)
UICC=2 −0.286 (1.383) −8.885 (28.653)
UICC=3 −3.599∗ (1.916) −14.841 (33.221)
UICC=4 1.090 (1.917) −14.751 (48.334)
Bcl2 Status (Positive) 0.549 (0.532) 18.023 (20.156)
CK14 Status (Positive) −1.149 (0.700) −2.876 (28.242)
CK5/6 Status (Positive) −3.179∗∗ (1.290) −10.669 (37.729)
Ki67 Status (Positive) −0.530 (0.801) 14.214 (24.442)
EGFR Status (Positive) −0.391 (0.738) 5.284 (18.539)
E-cad Status (Positive) −0.321 (0.763) 9.069 (17.638)
p53 Status (Positive) 0.260 (0.651) −0.105 (20.154)
CDC7 Expression 0.054 (0.048) 0.344 (1.328)
tMcm2 Expression 0.013 (0.013) −0.133 (0.439)
pMcm2 Expression −0.003 (0.029) −0.024 (1.098)

Observations 103 103
R2 0.719 0.458
Concordance Index 0.884 0.969

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.0173
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4.4 Variable Selection

One benefit of simpler models is a logistical one, there may be reduced expense

in omitting difficult to measure predictors. In the breast cancer dataset, where

there are so many biological predictors, the cost and time benefit from only

measuring a subset of the predictors is huge. The fact that a marker is signifi-

cantly associated with outcome does not necessarily mean that it is important.

Importance depends on the degree to which the marker influences patient out-

come. Statistical significance is merely an indicator of whether the hypothesis

of no prognostic effect can be ruled out [Simon and Altman, 1994]. We have

already examined variable importance measures using random forests and also

examined variable selection from the predictors that appear as splits in CART.

These identified predictors such as Lymph Node status, Metastasis, Oestrogen

status, UICC staging just to name a few as good predictors of DFS. For OS,

predictors such as Lymph Node status, Metastasis and Oestrogen status were

identified.

Here backward elimination was used for variable selection, this involves start-

ing with all predictors included in the model. Each of the predictors is then

tested using some model comparison criteria and any predictor which does not

improve the model will be deleted. This process is continued until no further

improvement in the model can be made. fastbw from the rms library performs a

slightly inefficient but numerically stable version of backward elimination. This

method uses the fitted complete model and computes conditional (restricted)

Maximum Likelihood Estimates assuming multivariate normality of estimates

[Harrell Jr, 2001].

The cost and time benefits have been mentioned previously. However, there

are a few disadvantages of variable selection:

• The R2 values are biased.

• The standard errors of the regression coefficients are biased downwards.

• The p-values often are too low as they are not corrected for the multiple

comparisons of models.

Variable selection using backward elimination was applied to the full models

(excluding the biomarkers) in Table 4.2. Lymph Node status, Nodal Ratio,
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Metastasis and Lymph Node Stage were selected as the most parsimonious set

of predictors for DFS (Table 4.4). When variable selection was applied to the

OS model no predictors were selected due to the small sample size available.

Also no predictors were identified using variable selection techniques on the

CPH models with both clinical and pathological biomarkers.

Table 4.4: The predictors chosen by variable selection techniques on the DFS
model with clinical predictors.

Dependent variable:

DFS

β̂(ESE)

Nodal Ratio −1.251∗∗∗ (0.299)
LN Status (Positive) 3.035∗∗∗ (0.624)
Metastasis (Yes) 1.589∗∗∗ (0.141)
N Stage (metastatis in 1-3 LN) −1.077∗∗∗ (0.257)
N Stage (metastatis in 4-9 LN) −0.570∗∗∗ (0.215)
N Stage (No metastatic deposits) −0.163 (0.589)

Observations 576
R2 0.434
Concordance Index 0.781

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

An alternative technique, LASSO using shrinkage methods, will be examined

next.

4.5 Least Absolute Shrinkage and Selection Op-

erator (LASSO)

The LASSO is a shrinkage and variable selection method for linear regression

models. It minimizes the usual sum of squared errors with a bound on the sum

of the absolute values of coefficients.

Given a set of predictors x1, x2 . . . xp and a response variable y, the lasso fits

a linear model

ŷi = β0 + β1xi1 + β2xi2 + . . .+ βpxip. (4.4)

It uses the criteria that minimizes the
∑

(yi− ŷi)2 subject to sum[|βj |] ≤ s. The
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first sum is taken over cases in the dataset. The bound s is a tuning parameter.

If s is chosen to be larger than s0 =
∑p

1 |β̂j | (where β̂j = β̂lsj the least squares

estimates), then the LASSO estimates are the β̂js. On the other hand, for

s = s0/2 say, then the least squares coefficients are shrunk by about 50% on

average [Hastie et al., 2008]. It shrinks some coefficients and sets others to zero

and hence tries to retain the good features of subset selection [Tibshirani, 1996].

This makes the final model easier to interpret. Choosing s is like choosing the

number of predictors to include in the model and cross validation is a good tool

for estimating the best value for s.

LASSO, on the other hand, is somewhat indifferent to highly correlated

predictors, and will tend to pick one and ignore the rest. The LASSO penalty

corresponds to a Laplace prior, which expects many coefficients to be close to

zero, and a small subset to be larger and nonzero [Friedman et al., 2010].

The method for the linear case is adapted to accommodate the Cox propor-

tional hazards model. The LASSO has identified useful clinical predictors for

both DFS and OS (Table 4.5). For OS, Bilateral, Oestrogen status, Proges-

terone status, Metastasis and Metastasis staging have been identified as useful

and all other coefficients have been shrunk to zero. From the plots of the coef-

ficients verses the L1 norm in Figure 4.2, the non-zero coefficients are moving

away from zero. As the L1 norm increases the coefficients increase towards the

least squares coefficients. Take for example the plot for the clinical OS model

(Figure 4.2(c)), the green line is the coefficient for Metastasis, the pink line

is for Oestrogen status, the blue line is the coefficient for Metastasis stage, the

black line is for Progesterone status and the blue line is for Bilateral status.

These coefficients move away from zero quicker than those who are penalised.

Table 4.6 contains the LASSO results for both the clinical and pathological

predictors.

4.6 Ridge Regression

Ridge Regression is an alternative approach to alleviate multicollinearity amongst

predictor variables in a model. The undesirable symptoms of correlated predic-

tors can be reduced by retaining the size of the parameter estimates or shrinking
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Variables DFS OS

β̂ β̂
Age
Nodal Ratio
Grade
Bilateral 0.309 -0.163
Tubule Formation
Mitotic Count
Nuclear Pleomorphism -0.024
Ln Positive
LN Status 1.685
Size 0.002
LVI
ER Status -0.027 -0.612
PR Status -0.111 -0.311
Her2 Status
Metastasis 0.872 2.817
UICC 0.130
Tumour Staging
LN Staging
Metastasis Staging - 0.535 0.515
Concordance Index 0.802 0.919

Table 4.5: Coefficients for Cox proportional hazards model with clinical predic-
tors using LASSO.
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Figure 4.2: Plots of coefficients for the LASSO.
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Variables DFS OS

β̂ β̂
Age -0.001
Nodal Ratio
Grade
Bilateral 0.349 -0.129
Tubule Formation
Mitotic Count
Nuclear Pleomorphism -0.024
Ln Positive 0.001
LN Status 1.709
Size 0.004 0.003
LVI
ER Status -0.014 -0.554
PR Status -0.097 -0.294
Her2 Status
Metastasis 0.872
UICC 0.087 0.093
Tumour Staging
LN Staging -0.288
Metastasis Staging 0.103 0.332
Bcl2 Status 0.189
CK14 Status 0.004 -0.057
CK5/6 Status -0.002 0.009
Ki67 Status
EGFR Status
E-cad Status 0.964 2.910
p53 Status
CDC7 Expression
tMcm2 Expression -0.475 0.503
pMcm2 Expression 0.092
Concordance Index 0.819 0.895

Table 4.6: Coefficients for Cox proportional hazards model with clinical and
pathological predictors predictors using LASSO.
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parameter estimates. Ridge regression is a linear regression technique which

modifies the residual sum of squares to include a penalty for large parameter

estimates.

The LASSO minimizes the sum of the square errors with a bound on the sum

of the the absolute value of values of the coefficients where as ridge regression

uses a bound on the sum of the square of the values of the coefficients. Ridge

regression scales all the coefficients towards 0, but sets none to exactly zero like

the LASSO. This helps to regularize in problems with p > n, but does not give a

sparse solution. However, ridge regression better handles correlated predictors.

If two predictors are highly correlated, ridge regression will tend to give them

equal weight [Simon et al., 2011].

Variables DFS OS

β̂(ESE) β̂(ESE)
Age 0.005 (0.01) 0.013 (0.01)
Nodal Ratio 0.012 (0.25) 0.164 (0.54)
Grade 0.017 (0.12) -0.120 (0.27)
Bilateral 0.342 (0.34) -0.771 (0.78)
Tubule Formation -0.061 (0.11) -0.091 (0.26)
Mitotic Count 0.057 (0.11) 0.102 (0.25)
Nuclear Pleomorphism -0.032 (0.14) 0.226 (0.33)
Ln Positive 0.003 (0.01) 0.015 (0.03)
LN Status 0.574 (0.17) 0.201 (0.39)
Size 0.004 (0.01) 0.003 (0.01)
LVI 0.042 (0.08) -0.001 (0.19)
ER Status -0.120 (0.16) -0.465 (0.36)
PR Status -0.238 (0.15) -0.825 (0.33)
Her2 Status -0.057 (0.19) -0.039 (0.41)
Metastasis 0.667 (0.19) 1.841 (0.41)
UICC 0.209 (0.10) 0.309 (0.21)
Tumour Staging 0.056 (0.08) 0.127 (0.19)
LN Staging -0.097 (0.08) -0.112 (0.17)
Metastasis Staging -0.617 (0.23) -0.477 (0.42)
Concordance Index 0.788 0.952

Table 4.7: Coefficients for Cox proportional hazards model using Ridge Regres-
sion with clinical predictors.

Ridge regression was applied to the UCH Galway breast cancer data. Firstly

examining the routinely assessed predictors (Table 4.7) and then with both the

routinely assessed and not so routinely assessed predictors (Table 4.8) for both

DFS and OS. Plots of the coefficients for the four models are given in Figure
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4.3. This shows the predictors which contribute most to the model. For the

clinical DFS model, Bilateral, Lymph Node status, Metastasis stage, Metasta-

sis and UICC staging seem to be the predictors strongest predictors. For the

OS model, Bilateral, Oestrogen status, Progesterone status, Metastasis stage,

Metastasis and UICC staging seem to be the strongest predictors. Similarly

the stronger predictors can be identified for the models with all the clinical and

pathological biomarkers.

Variables DFS OS

β̂(ESE) β̂(ESE)
Age 0.008 (0.01) -0.012 (0.03)
Nodal Ratio -0.093 (0.40) 0.243 (1.35)
Grade -0.046 (0.20) 0.095 (0.70)
Bilateral 0.229 (0.67) -0.020 (2.53)
Tubule Formation 0.017 (0.18) -0.381 (0.76)
Mitotic Count 0.033 (0.16) 0.080 (0.57)
Nuclear Pleomorphism -0.037 (0.23) 0.240 (0.78)
Ln Positive -0.009 (0.02) 0.027 (0.07)
LN Status 0.606 (0.29) 0.291 (0.97)
Size 0.006 (0.01) 0.004 (0.02)
LVI 0.131 (0.13) 0.330 (0.47)
ER Status -0.117 (0.25) -1.118 (0.89)
PR Status -0.258 (0.25) -0.863 (0.88)
Her2 Status -0.453 (0.33) -1.484 (1.04)
Metastasis 0.732 (0.29) 3.331 (0.92)
UICC 0.365 (0.17) 0.415 (0.57)
Tumour Staging 0.073 (0.14) 0.274 (0.46)
LN Staging -0.215 (0.13) -0.207 (0.45)
Metastasis Staging -0.752 (0.37) 0.315 (1.00)
Bcl2 Status -0.888 (0.25) -0.304 (0.89)
CK14 Status -0.305 (0.31) -0.716 (1.21)
CK5/6 Status -0.597 (0.37) -1.021 (1.39)
Ki67 Status 0.170 (0.26) 0.559 (0.89)
EGFR Status -0.447 (0.34) 0.249 (0.97)
E-cad Status 0.427 (0.37) 1.480 (1.39)
p53 Status -0.020 (0.30) -0.828 (0.92)
CDC7 Expression -0.001 (0.02) 0.089 (0.06)
tMcm2 Expression -0.002 (0.01) -0.013 (0.02)
pMcm2 Expression -0.003 (0.01) 0.027 (0.04)
Concordance Index 0.841 0.998

Table 4.8: Coefficients for Cox proportional hazards model using Ridge Regres-
sion with clinical and pathological predictors.
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Figure 4.3: Bar charts of coefficients from Ridge Regression for DFS and OS.
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4.7 Non-Linear Effects

4.7.1 CPH with splines

In modeling the functional relationship between a response Y and a predictor X,

often the relationship is non-linear. Regression splines offer a convenient way to

examine the functional relationship. Spline functions are piecewise polynomials

used in curve fitting. That is, they are polynomials within intervals of X that

are connected across different intervals of X [Harrell Jr, 2001].

Table 4.9: Wald Statistics for examining non-linear effects in both DFS and OS.

DFS OS
χ2 d.f. p− value χ2 d.f. p− value

Age 0.15 2 0.9260 1.77 2 0.4136
Nonlinear 0.03 1 0.8693 1.70 1 0.1916

Nodal Ratio 14.37 2 0.0008 6.40 2 0.0408
Nonlinear 2.56 1 0.1095 6.33 1 0.0119

Bilateral 3.56 1 0.0591 0.10 1 0.7528
Grade 2.01 2 0.3666 0.35 2 0.8406
Tubule Formation 5.32 2 0.0701 1.49 2 0.4736
Mitotic Count 2.43 2 0.2967 1.50 2 0.4727
Nuclear Pleomorphism 0.07 2 0.9642 0.52 2 0.7716
LN Positive 3.06 2 0.2167 3.04 2 0.2192

Nonlinear 3.05 1 0.0807 0.81 1 0.3674
LN Status 10.81 1 0.0010 0.23 1 0.6338
Size (mm) 4.44 2 0.1084 1.43 2 0.4882

Nonlinear 1.47 1 0.2251 1.36 1 0.2439
LVI 1.44 2 0.4855 0.64 2 0.7248
ER Status 0.03 1 0.8605 0.54 1 0.4608
PR Status 1.91 1 0.1670 9.65 1 0.0019
HER2 Status 0.00 1 0.9440 0.38 1 0.5379
Metastasis 20.48 1 < 0.0001 7.82 1 0.0052
Tumour Staging 5.08 3 0.1660 8.00 3 0.0459
LN Staging 5.68 3 0.1282 6.38 3 0.0947
Metastasis Staging 2.27 1 0.1323 2.09 1 0.1478
UICC 5.39 3 0.1452 4.41 3 0.2201
TOTAL NONLINEAR 4.88 4 0.2997 7.42 4 0.1153
TOTAL 131.99 34 < 0.0001 34.44 34 0.4468

The simplest spline function is the linear spline function which divides the

x-axis into intervals at different points called knots and fits piecewise linear

functions. A draw back of linear splines is that they generally do not fit curved
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functions well. This obstacle can be overcome using a cubic spline function. A

cubic spline is a spline constructed of piecewise third-order polynomials. Cubic

spline functions however have a drawback that they can behave poorly in the

tails. Restricted cubic splines fit a linear function in the tails and a cubic

function in between the tails.

Non-linear effects for the continuous predictors are examined using cubic

spline functions with 3 knots for both the OS and DFS survival models. These

were tested using Wald Statistics for all the effects in the model. However

none of the continuous predictors were associated with non-linear effects (p-

values > 0.05 for non-linear effects) and the p-values for the TOTAL non-linear

effects are not significant (0.2997 and 0.1153 in Table 4.9 respectively). These

TOTAL non-linear and TOTAL are pooled Wald statistics for the combined

effects for non-linear effects and all effects. As these non-linear effects do not

have a significant impact on the model they will not be included in further

analysis.

4.7.2 Interaction Terms

Similarly to the testing for non-linear terms using cubic splines in the continuous

predictors in the previous section, the effects of interactions are tested using

Wald Statistics. This includes joint tests of all interaction terms in the model

and all non-linear terms in the model performed. The inclusion of interaction

terms in a model can be guided by the clinician (what is biologically plausible)

and the data. The clinicians have specified that there should be no need for

interaction terms. In Chapter 3, examining the survival trees for DFS and OS,

there looks as if there may be an interaction present for DFS between Lymph

Node status and Metastasis (Figure 3.13(a)). The Kaplan Meier estimate for

this interaction is given in Figure 4.4. The interaction seems obvious from this

as if we examine the Lymph Node negative patients (black and green lines), there

seems to be a difference between the patients with and without Metastasis. The

same can be said for lymph node positive patients. The over-all Log-rank test

yielded a p-value < 0.001. Many different interactions were examined however

only the interactions between Lymph Node status and Metastasis, Metastasis

and UICC staging and Bilateral and Lymph Node Status staging were significant
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Figure 4.4: Kaplan Meier estimates for groups for the interaction between
Lymph Node status and Metatasis. (Legend: LN- Lymph Node status and
Mets- Metatasis.)

for DFS (Table 4.10).

For the OS model, no interactions were significant since none of the inter-

action terms are significant and the TOTAL interaction is not significant. No

interaction terms were included in any of the other models fitted.

4.8 Conclusions

An overview of classical approaches to modelling survival data, specifically Cox

proportional hazards, have been examined in this chapter. More candidate mod-

els have been identified (Tables 4.11-4.14) using all predictors and a subset of

predictors. For DFS, Lymph Node Status, Nodal Ratio, Metastasis and Lymph

Node staging were identified as useful predictor using variable selection. For

OS and the models with both the clinical and pathological biomarkers variable

selection could not be applied. The LASSO was also applied which identified a
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Table 4.10: Wald Statistics for the effects of interactions. (*Factor+Higher
Order Factors - tests the combined main effect and interaction effects)

DFS OS
χ2 d.f. p− value χ2 d.f. p− value

Age 0.65 1 0.4198 0.00 1 0.9557
Nodal Ratio 4.17 1 0.0412 4.92 1 0.0265
Bilateral (Factor+Higher Order Factors) 29.85 2 < 0.0001 2.46 2 0.2928

All Interactions 9.09 1 0.0026 0.02 1 0.8820
Grade 1.23 2 0.5404 1.70 2 0.4267
Size (mm) 6.71 1 0.0096 4.76 1 0.0291
ER Status 0.01 1 0.9226 6.41 1 0.0113
PR Status 1.17 1 0.2789 0.64 1 0.4252
HER2 Status 0.01 1 0.9094 2.30 1 0.1295
LN Status (Factor+Higher Order Factors) 40.47 3 < 0.0001 0.16 3 0.9835

All Interactions 21.59 2 < 0.0001 0.03 2 0.9836
Metastasis (Factor+Higher Order Factors) 55.84 5 < 0.0001 20.01 5 0.0012

All Interactions 21.59 4 0.0002 0.84 4 0.9329
Tumour Staging 2.56 3 0.4649 6.64 3 0.0844
LN Staging 6.54 3 0.0881 4.86 3 0.1821
Metastasis Staging 0.55 1 0.4575 0.01 1 0.9399
UICC (Factor+Higher Order Factors) 16.72 6 0.0104 11.28 6 0.0801

All Interactions 7.93 3 0.0476 0.82 3 0.8436
LN × Metastasis (Factor+Higher Order Factors) 9.19 1 0.0024 0.01 1 0.9160
Bilateral × LN (Factor+Higher Order Factors) 9.09 1 0.0026 0.02 1 0.8820
Metastasis × UICC (Factor+Higher Order Factors) 7.93 3 0.0476 0.82 3 0.8436
TOTAL INTERACTION 32.19 5 < 0.0001 0.86 5 0.9729
TOTAL 171.60 26 < 0.0001 43.80 26 0.0159
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subset of predictors for each of the models. Investigations into non-linear effects

using splines and interactions did not improve the models.

Some of these classical approaches did not work well since there are a lot of

missing values present in the data and this reduces the sample size used in the

analysis. This caused particular issues using variable selection techniques.

As there is such a high proportion of missing data present in the data, the

next chapter will examine the effect of such missing data in identifying good

predictors. Variable selection techniques applied to imputed datasets will be

examined using a simulation study based on synthetic data from the BC data

and all the results reported.

CART Conditional Random Variable
Predictors Tree Inference Forest Full Selection Ridge LASSO
Age X X X
Bilateral X X X X
Grade X X
Tubular Formation X X
Nuclear Pleomorphism X X X
Mitotic Count X X
Tumour Size X X X
Lymphovascular Invasion X X
No of Lymph Nodes positive X X X
Lymph Node status X X X X X X X
Nodal Ratio X X X
Metastasis X X X X X X
Tumour Staging X X
Metastasis Staging X X X
Lymph Node Staging X X X X
UICC X X X X
NPI X X
Oestrogen Status X X X X
Progesterone Status X X X
Her2 Status X X X
Concordance Index 0.826 0.762 0.777 0.766 0.781 0.788 0.802

Table 4.11: Summary of clinical predictors selected in techniques explored so
far for DFS. X means the predictor is included in the model.
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CART Conditional Random Variable
Predictors Tree Inference Forest Full Selection Ridge LASSO
Age X X X X
Bilateral X X X X
Grade X X
Tubular Formation X X
Nuclear Pleomorphism X X X
Mitotic Count X X
Tumour Size X X X X
Lymphovascular Invasion X X
No of Lymph Nodes positive X X X X
Lymph Node status X X X X X X
Nodal Ratio X X X
Metastasis X X X X X
Tumour Staging X X
Metastasis Staging X X X
Lymph Node Staging X X X X
UICC X X X
NPI X X
Oestrogen Status X X X X
Progesterone Status X X X
Her2 Status X X
Bcl2 Status X X X
CK14 Status X X X
CK5/6 Status X X X
EGFR Status X X
Ki67 Status X X
p53 Status X X
E-cad Status X X X
tMcm2 Status X X X
CDC7 X X
pMcm2 X X X
Concordance Index 0.762 0.777 0.765 0.884 NA 0.841 0.819

Table 4.12: Summary of clinical and pathological predictors selected in tech-
niques explored so far for DFS. X means the predictor is included in the model.
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CART Conditional Random Variable
Predictors Tree Inference Forest Full Selection Ridge LASSO
Age X X
Bilateral X X X
Grade X X
Tubular Formation X X
Nuclear Pleomorphism X X X
Mitotic Count X X
Tumour Size X X X
Lymphovascular Invasion X X
No of Lymph Nodes positive X X X
Lymph Node status X X X X
Nodal Ratio X X X
Metastasis X X X X X
Tumour Staging X X X
Metastasis Staging X X X X
Lymph Node Staging X X X
UICC X X X X
NPI X X
Oestrogen Status X X X X X
Progesterone Status X X X
Her2 Status X X X
Concordance Index 0.909 0.922 0.911 0.969 NA 0.952 0.919

Table 4.13: Summary of clinical predictors selected in techniques explored so
far for OS. X means the predictor is included in the model.
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CART Conditional Random Variable
Predictors Tree Inference Forest Full Selection Ridge LASSO
Age X X
Bilateral X X X X
Grade X X
Tubular Formation X X X
Nuclear Pleomorphism X X X
Mitotic Count X X
Tumour Size X X X X
Lymphovascular Invasion X X X
No of Lymph Nodes positive X X X
Lymph Node status X X X X
Nodal Ratio X X X
Metastasis X X X X X
Tumour Staging X X
Metastasis Staging X X X X
Lymph Node Staging X X X
UICC X X X X X
NPI X X X
Oestrogen Status X X X X X
Progesterone Status X X X X
Her2 Status X X X
Bcl2 Status X X X
CK14 Status X X X X
CK5/6 Status X X X X
EGFR Status X X
Ki67 Status X X
p53 Status X X X
E-cad Status X X X X
tMcm2 Status X X X X
CDC7 X X
pMcm2 X X
Concordance Index 0.909 0.922 0.790 0.995 NA 0.998 0.895

Table 4.14: Summary of clinical and pathological predictors selected in tech-
niques explored so far for OS. X means the predictor is included in the model.
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Variable Selection

techniques with imputed

data

5.1 Introduction

As we have seen in the previous chapter, missing data can be a serious problem,

particularly in retrospective observational studies where the percentage of sub-

jects with complete data can be of concern. Missing values in the BC dataset

presents such challenges when considering variable selection techniques, as there

are a large number of clinical and pathological variables and there is some pro-

portion of missing data present in the majority of these variables. Figure 5.1

displays the proportions of missingness (recorded as NAs in stored data) in each

of the clinical and pathological predictors. Some of the clinical predictors have

no missing data, such as bilateral and age, while others, such as CK14 and

CK5/6, have more than 30% missing. The genetic predictors generally have the

highest proportion of missing data as some of these are not routinely assessed.

The most common way to deal with missing data is casewise deletion. Case-

wise deletion is applied when a subject is missing in one predictor, the whole

case (subject) is omitted as a consequence. The consequent drop in sample size
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Figure 5.1: Proportion of missingness for each clinical and pathological predic-
tors for the BC data.

will reduce the power of such studies to demonstrate a given effect [Altman and

Lyman, 1998]. Using complete cases could mean the target population has been

changed. Casewise deletion results in regression coefficient estimates that can

be terribly biased, imprecise, or both [Harrell Jr, 2001]. The inefficiency comes

from the reduction in sample size, which causes standard errors to increase,

confidence intervals to widen, and power of tests of association and tests of lack

of fit to decrease [Harrell Jr, 2001]. Deletion of cases with missing predictors

causes bias and increased variance. Even though caution should be taken when

imputing missing values, it is usually better to estimate selected data values

than to delete an entire subject’s record [Janssen et al., 2010].

To “provide” data using multiple imputation is a better alternative than

discarding valuable observed data. The purpose of multiple imputation is not

to make up or gain data but to preserve real, observed data [Janssen et al.,

2010].
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Figure 5.2: Cluster analysis showing which predictors tend to be missing on the

same patients for the BC data.

Figure 5.2 contains a cluster analysis that shows which predictors tend to

be missing on the same patients. If a patient is missing in one of the biomarker

predictors it is quite likely they are missing the rest of the biomarker infor-

mation. If a patient gets one of the biomarker predictors measured, they are

more likely to have all the biomarker variables measured. This is due to reasons

such as patient samples not being available or not sent for analysis of genetic

markers.

As seen in the previous chapter, this high proportion of missing data in the

predictors results in a small complete case sample size, which causes conver-

gence issues when identifying useful predictors for a prognostic index for breast

cancer. In this chapter, the effects of missing data on the predictors selected

into the final model will be examined and an alternative approach for model

selection by identifying the final model based on the imputed datasets will be

examined.Variable selection techniques using imputed data will be presented
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and their performance evaluated using simulated (synthetic) data based on the

BC data. The synthetic data are simulated using a proportional hazards model

based on the BC data. Missing data are then induced under a variety of mecha-

nisms and assumptions. The missing data are then imputed using multivariate

imputation by chained equations (MICE) and random forests. Variable selec-

tion techniques are then applied to the imputed data in a variety of ways in a

similar manner to Wood et al. [2008].

Variable selection techniques can be applied to each imputed dataset. An

appealing attribute of this approach is that power can be retained by avoiding

casewise deletion. However, an extra level of complexity is added in terms of

identifying a consistent set of predictors. There are currently no guidelines

for variable selection in multiply imputed data sets. The usual practice is to

perform variable selection among the complete cases, a simple but inefficient and

potentially biased procedure [Wood et al., 2008]. Methods for variable selection

in multiply imputed data in the literature suggests selecting predictors using

a voting system or by stacking the imputed datasets and performing weighted

regression. Another approach is to impute using random forests, where only

one dataset is imputed.

5.2 Simulation Study Set up

A comparison of variable selection techniques in multiply imputed data was

performed using a simulation study. Here is a summary of the simulation pro-

cedure:

• Started by simulating a complete set of predictors X, with both “good”

and “poor” (noise) predictors of DFS;

• Simulated the response Y which is time to event using a Cox proportional

hazards model based on a predefined model consisting of a subset of X

deemed useful for predicting DFS;

• Induced missing data in X under a variety of missing data patterns and

assumptions;
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• Imputed the missing data in X using Multivariate Imputation by Chained

Equations and Random Forests;

• Performed the model selection procedures;

• Repeated these steps 1000 times for each of the simulated datasets and

compare the results across the simulations.

Preliminary analysis identified a 
few predictors as good 

predictors of DFS. This is classed 
as the “true” model 

Simulated using the 
marginal distribution for 
each X from the BC data 

Poor 
Predictors 

Good  
Predictors 

Figure 5.3: Flow chart showing how the data was simulated.

5.2.1 Simulation of Predictors

Data was simulated using parameter estimates based on the Galway breast can-

cer data. From preliminary analysis, Bilateral (Yes/No), Lymph Nodes Positive

(Yes/No), Metastasis (Yes/No) and size of the tumour were identified as good

predictors of DFS. Data for Bilateral, Lymph Node Positive and Metastasis

were simulated using a binomial distribution with p = 0.07, 0.55 and 0.17 re-

spectively, based on the marginal distribution of the data in the Galway breast

cancer dataset. The size of the tumour was simulated using a normal distri-

bution with µ = 2.6 and σ = 1.36. These four predictors are classed as good
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Table 5.1: ‘True’ model for DFS using Cox proportional hazards model.

Dependent variable:

DFS

β̂(ESE)

Bilateral (Yes) 1.132∗∗∗

(0.233)

LN Status (Yes) 1.616∗∗∗

(0.186)

Metastasis (Yes) 1.123∗∗∗

(0.149)

Size 0.226∗∗

(0.094)

Observations 464
R2 0.419

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

predictors of DFS and are classed as our ‘true’ model (see Table 5.1). Noise

variables, such as Age and Oestrogen Status, were also simulated, which are not

good predictors of DFS.

The sample size of the simulated data was varied to examined the effect with

n = 1000, 700 and 100.

5.2.2 Simulation of time to event data using the Cox PH

model

Recall from Chapter 4 that the survival function of the Cox proportional hazards

model is given by

S(t|x) = exp[−H0(t)× exp(β′x)] (5.1)

where

H0(t) =

∫ t

0

h0(u)du (5.2)
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is the cumulative baseline hazard function. The distribution function of the Cox

model is

F (t|x) = 1− exp[−H0(t)× exp(β′x)] (5.3)

Let Y be a random variable with distribution function F, then U=F(Y) follows

a uniform distribution on the interval from 0 to 1. Let T be the survival time

of the Cox model (5.1), then it follows from (5.3) that

U = exp[−H0(t)× exp(β′x)] ∼ Uni[0, 1] (5.4)

If h0(t) > 0 for all t, then H0 can be inverted and the survival time T of the

Cox Model (5.1) can be expressed as

T = H−10 [−log(U)× exp(β′x)] (5.5)

where U is a random variable with U ∼ Uni[0, 1].

An uncensored survival time was simulated using a Cox proportional hazards

model and the parameters given in the true model (Table 5.1). A censored

time for each subject was simulated using the exponential distribution as an

independent censoring distribution. The survival time was the minimum of each

of these two times and the censoring indicator was coded as 1 if the uncensored

survival time was smaller or 0 if the censored survival time was smaller. This

creates a similar censoring mechanism to that in the BC cohort in Galway. The

simulation study datasets had 17% censored observations on average.

5.2.3 Missing Data

Missing Data were induced in the explanatory variables using a variety of miss-

ing data patterns and assumptions. As the main aim is to examine variable

selection, no missingness was induced in the response. As shown in Figure

5.1, there was no missingness data present in Age, Size or Bilateral, so no miss-

ing data will be induced into these variables. Missing data was induced under

3 different missing data mechanisms as outlined below.
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1. Missing At Random (MAR)

MAR is where the missing values are random conditional on the other available

information in the data [Janssen et al., 2010]. Missingness in a predictor is

MAR if it does not depend on the actual value of the the predictor itself once

the other predictors in the data are available.

The BC data was used to identify which predictors were related to missing-

ness in a particular predictor. These models were used to induce missingness in

the simulated data. Missingness was induced in LN status, Metastatic (Y/N)

and ER status using the logistic models in Table 5.2. Each model can be used

to create event probabilities using the simulated data. Missing values can be

imposed on the predictor for individuals with fitted probabilities falling in the

top 10%, 20% and 30%, the proportion of missingness is varied using this.

2. Missing Completely at Random (MCAR)

Missing data were simulated using the mechanism MCAR, which is a special

case of MAR. With MAR, missingness has a purely random component and

a systematic component that depends on some variables in the dataset, but

not on the actual values of the variable with missingness. With MCAR, the

missingness has a purely random component [Paul et al., 2008]. This means

that the missing values are completed independent of the predictors and the

response, i.e. the patients with missing values in the predictor do not differ

systematically to those with the predictor observed.

This can be easily implemented by randomly selecting values which can be

replaced by missingness.

3. Missing Not At Random (MNAR)

The third missingness mechanism is known as Missing Not At Random (MNAR),

also referred to as “non-ignorable” in much published research. If missingness

on the predictor is MNAR, it depends on the actual level of the predictor and

potentially other variables not available in the data. Note that MNAR does

not mean that missingness lacks a random component, only that its systematic

component is a function of the actual values of the variable with missingness

[Paul et al., 2008]. This was induced by using logistic models with predictors
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Table 5.2: Logistic models used to induce missingness for MAR.

Dependent variable:

Missing LN Status Missing Metastasis Missing ER Status

β̂(ESE) β̂(ESE) β̂(ESE)

DFS Time 0.024∗∗ 0.150∗ 0.002
(0.009) (0.087) (0.005)

DFS Status (1) −0.334 0.850 −1.042∗∗

(0.676) (1.926) (0.427)

Bilateral (Yes) 0.510 6.431∗ 0.777
(0.863) (3.808) (0.497)

Metastasis (Yes) 0.956 0.467
(0.739) (0.420)

LN Positive (Yes) 0.937 0.571
(2.201) (0.387)

Size −0.484∗∗ −0.290 −0.827∗∗∗

(0.230) (1.067) (0.113)

Age 0.087∗∗∗ 0.149 −0.023∗∗

(0.022) (0.116) (0.011)

ER Status (Positive) −1.179∗∗ −1.531
(0.500) (1.964)

Constant −7.460∗∗∗ −25.731∗∗ 2.274∗∗∗

(1.759) (12.854) (0.760)

Observations 376 358 464
Log Likelihood -63.025 -8.437 -207.248
Akaike Inf. Crit. 142.050 32.874 430.496

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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such as Progesterone status, Her2 status and BcI2 status which are not present

in the simulated dataset of predictors X given in Table 5.3. Again the amount

of missingness is imposed depended on a percentage cases in the top fitted prob-

abilities.

Table 5.3: Logistic models used to induce missingness for MNAR.

Dependent variable:

Missing LN Status Missing Metastasis Missing ER Status

β̂(ESE) β̂(ESE) β̂(ESE)

PR Status (Positive) −0.279 −0.067 0.008
(0.474) (1.052) (0.592)

HER2 Status (Positive) −1.696 −17.056 −0.248
(1.062) (2, 330.575) (0.828)

Bcl2 Status (Positive) −0.092 −1.518 −0.214
(0.473) (1.208) (0.584)

Ki67 Status (Positive) 0.421 1.199 0.054
(0.486) (1.020) (0.625)

Constant −2.420∗∗∗ −4.023∗∗∗ −2.992∗∗∗

(0.425) (0.919) (0.533)

Observations 357 357 357
Log Likelihood -83.148 -19.407 -62.125
Akaike Inf. Crit. 176.297 48.813 134.249

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

5.2.4 Multiple Imputation

Multiple Imputation (MI) is a popular technique in missing data problems [Ru-

bin, 1987]. MI uses models based on observed data to replace missing values

with credible values. This process is repeated a number of times to create sev-

eral imputed datasets. To “provide” data using multiple imputation is a better

alternative than discarding valuable observed data. The purpose of multiple

imputation is not to make up or gain data but to preserve real, observed data

[Janssen et al., 2010].
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Multivariate Imputation by Chained Equations (MICE)

The philosophy behind MICE is that multiple imputation is best done as a

sequence of small steps, each of which may require diagnostic checking [van

Buuren and Groothuis-Oudshoorn, 2011]. For each missing variable, a condi-

tional distribution for the missing data given the other data can be specified

[Van Buuren and Oudshoorn, 2000]. Initially, all the missing values are filled at

random. The first variable with at least some missing values are regressed on all

other variables in the dataset. Missing values in the predictor are replaced by

simulated draws from the posterior predictive distribution of the predictor, an

important step known as proper imputation [Royston and White, 2011]. This

is then repeated for all other predictors with missing values.

Random Forest Imputation

Random Forest Imputation is a non-parametric method of imputation where

random forests are used to impute a single dataset, where values are imputed

by averaging over many unpruned classification or regression trees. For each

variable it fits a random forest on the observed part and then predicts the

missing part. Random Forest Imputation can cope with a mixed type data of

both continuous and categorical predictors, interactions and large numbers of

predictors with a small sample size (large p small n). The main advantages

of this technique are it is quicker and there is only one dataset imputed which

means applying variable selection techniques is made easier. The disadvantage

is that there is no measure of variability available across the imputations.

5.2.5 Classical Variable Selection Techniques

This topic has already been discussed in Chapter 4. The classical variable

selection techniques include stepwise, backward, forward and shrinkage methods

such as ridge regression and the LASSO. CART can also be used for variable

selection, where the splits at each node in the tree are deemed useful predictors.

Here, in this study, stepwise, backward and tree based methods are examined.
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5.2.6 Variable Selection in Imputed Data

Typically multiple imputation is used at the end of the analysis where the

final model generated from the original data are fitted to each of the imputed

datasets and the results combined using Rubin’s Rules [Rubin, 1987]. Typically,

several datasets are imputed and Rubin [1987] developed a method to average

the outcomes across each of the imputed datasets. Each imputed data set is

analyzed separately and the parameter estimates are averaged except for the

standard error term (SE). The combined SE is calculated by the within variance

of each dataset as well as the variance between imputed items on each data set.

An alternative use for MI is to identify the final model based on the imputed

datasets. For example variable selection techniques can be applied to each

imputed dataset. An appealing attribute of this approach, is that power can be

retained by avoiding casewise deletion. However, an extra level of complexity is

added in terms of identifying a consistent set of predictors.

Methods for variable selection in multiply imputed data in the literature

[Wood et al., 2008] include selecting predictors using a voting system: variable

selection would be performed on each of the imputed datasets and predictors

are selected based on whether they appear in any, half or all the models.

Another method suggested is to stack the imputed datasets and perform

weighted regression using weights related to the amount of missingness present.

Three different weights are used,

W1 =
1

M

W2 =
1− f
M

W3 =
1− fi
M

where M is the number of imputed datasets, f is the average proportion of

missing data across all variables and fi is the proportion of missingness across

each subject. A regression analysis of a single stacked data set, consisting of

M imputations, produces unbiased estimates of regression coefficients. This is

obviously less computationally extensive than performing variable selection on

each individual imputed dataset.
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With random forest (RF) imputation since a single imputed dataset is ob-

tained, classical variable selection techniques can be applied. These classical

variable selection techniques were also applied to both the full dataset (before

missing data was induced) and to the complete cases.

5.3 Summary of Simulation Study

The different scenarios are summarized in Table 5.4. Results for simulations

with MAR, MCAR and MNAR, with 10%, 20% and 30% missing in the explana-

tory variables and for varying sample size (n=1000, 700 and 100 respectively).

Simulation Scenario Missing Data Sample Size
1 MAR equal fractions of missing data (10%) 1000
2 MAR equal fractions of missing data (20%) 1000
3 MAR equal fractions of missing data (30%) 1000
4 MAR equal fractions of missing data (10%) 700
5 MAR equal fractions of missing data (10%) 100
6 MCAR equal fractions of missing data (10%) 1000
7 MCAR equal fractions of missing data (20%) 1000
8 MCAR equal fractions of missing data (30%) 1000
9 MCAR equal fractions of missing data (10%) 700
10 MCAR equal fractions of missing data (10%) 100
11 MNAR equal fractions of missing data (10%) 1000
12 MNAR equal fractions of missing data (20%) 1000
13 MNAR equal fractions of missing data (30%) 1000
14 MNAR equal fractions of missing data (10%) 700
15 MNAR equal fractions of missing data (10%) 100

Table 5.4: Different scenarios examined in the simulation study.

For each of the scenarios, the model selection approaches were run 1000 times

and the predictors that were selected were recorded for each of the variable selec-

tion techniques. The model selection techniques were assessed by comparing the

number of times the true and noise predictors were selected. The term “power”

is used to indicate the probability that a method will correctly select a given

variable from the true model and “type 1 error” to indicate the probability that

a method will wrongly select a given variable not from the true model.
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5.4 Results of Simulation Study

Since there are many different scenarios, detail here will be provided for just one

scenario with the data MAR, 10% missing per predictor, n=1000. Results for

the other scenarios are given in the Appendix A.2. The full results are given in

Table 5.5, however it is easier to interpret the results from the plot in Figure

5.4. Ideally, it would be expected that the predictors in the true model should

be always selected and the noise variables should not be selected into the final

model, so we would like the techniques to have a high ‘power’ and low ‘type 1

error’. Firstly, examining the performance of trees, it can be seen these generally

have a low type 1 error except for when complete cases are used. However, the

tree based methods do not seem to have a high power, especially in the case of

one of the voting methods.

Examining the stepwise techniques, they all have a high power except when

complete cases are used. However, the type 1 error is quite high for this tech-

nique, especially for one of the voting methods. Finally examining the backward

variable selection technique, this method has high power except when it is ap-

plied to complete cases. Also it seems to have a low type 1 error except for the

voting. Voting does not perform well overall.

Summaries for each of the techniques are given in Table 5.5. Variable se-

lection using fastbw (backward elimination) seems to perform the best with

the average power for the full dataset is 1.00 and has an average type 1 error of

0.021 (range=0.019-0.023). In comparison, the complete cases model selection

has lower power (average=0.958, range=0.834-1) and a slightly higher type 1 er-

ror (average=0.031, range=0.031-0.032) due to the casewise deletion of subjects

with missing data. Using the voting method of variable selection for multiply

imputed data with fastbw, if we choose the variables that appear at least once

in the models, the power is better than that of the complete cases, however the

trade off is a much larger type 1 error. Examining the voting where by choosing

the variables that appear in at least half the models, again the power is better

than that of the complete cases, however the type 1 error is still higher in com-

parison to that of the complete cases. The trade off with choosing the variables

that appear in all models is a small reduction in power however it also decreases

the type 1 error. The variable selection for stacking the imputed datasets and
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using weighted regression has better power than that of the complete cases and

similar type 1 error. Comparing the RF imputation variable selection to that

of the complete cases, the power is higher for RF however the type 1 error is

slightly increased.

Also, the results from the other scenarios are similar to that of Scenario 1. By

increasing the proportion of missing data in each variable, variable selection in

imputed data performs much better than that of complete cases. The power and

type 1 error are nearly as good as data with a lower proportion of missingness.

Similar results are found for the other missing data mechanisms MCAR and

MNAR.
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Method Bilateral LN Status Metastasis Size Age ER Status Noise
Full (No Missing)
Fastbw 100 100 100 100 2.3 2.1 1.9
Backward 100 100 100 100 16.1 15.9 16.0
rpart 90.61 100 100 85.8 0.2 0 0
Complete Cases
Fastbw 83.4 100 100 99.8 3.1 3.1 3.2
Backward 97.0 100 100 100 18.7 17.4 15.2
rpart 93.4 100 97.8 98.1 26.9 0.6 0.8
Imputed (MICE)
Voting
Fastbw
At Least Once 100 100 100 100 16.8 21.1 8.8
At Least Half 100 100 100 100 5.3 5.2 2.5
All 99.5 100 100 100 1.2 0.5 0.3
Backward
At Least Once 100 100 100 100 53.8 62.0 33.9
At Least Half 100 100 100 100 23.3 24.6 18.3
All 100 100 100 100 7.1 6.1 7.3
rpart
At Least Once 99.3 100 100 97.5 6.2 0.6 1.3
At Least Half 90.7 100 100 88.0 0.2 0.0 0.2
All 50.0 100 98.8 62.6 0.0 0.0 0.1
Stacked and Weighted
Fastbw
W1 100 100 100 100 5.1 4.7 2.4
W2 100 100 100 100 3.7 3.3 1.1
W3 100 100 100 100 4.5 4.1 1.6
Backward
W1 100 100 100 100 21.8 22.3 16.9
W2 100 100 100 100 19.2 19.9 14.9
W3 100 100 100 100 21.5 21.8 16.1
rpart
W1 86.4 100 99.8 89.5 0.3 0.0 0.1
W2 86.3 100 99.8 89.5 0.3 0.0 0.1
W3 86.0 100 99.9 89.6 0.3 0.0 0.1
Imputation (RF)
Fastbw 100 100 100 100 4.0 4.5 2.6
Backward 100 100 100 100 19.5 20.3 18.5
rpart 97.7 100 99.8 83.8 0.3 0.0 0.3

Table 5.5: Scenario 1: Number of times a variable was chosen by a simulation
into the Survival Model (MAR and equal fractions of missing data (10% missing
per variable) and sample size 1000). Average complete case sample size is 764.
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Figure 5.4: Power and type 1 error for scenario one, MAR, sample size 1000

and 10% missing in each variable.
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5.5 Random Forest Imputation Results

A small simulation study presented below compares the results of imputing

data using random forests multiple times and imputing the data once using

random forests (Table 5.6 & Figure 5.5). The data are imputed multiple

times using random forest imputation. The same variable selection techniques,

such as voting and stacking and weighting, are performed and then compared.

Examining the results from the graph in Figure 5.5, the trees and stepwise

variable selection do not perform as well as backward variable selection. The

blue points represent the variable selection on a single random forest imputation.

It seems that, on average, the single random forest imputation performs just as

well as using the random forest multiple times.
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Figure 5.5: Number of times a variable was chosen by a simulation into the Sur-

vival Model using multiple random forest imputation (MAR, sample size 1000

and 10% missing in each variable). Blue points variable selection techniques

using only a single imputation.

Variable selection in imputed data seems to perform better than that of

complete cases. The techniques for variable selection in imputed data will now

be applied to the BC data and the models examined so far will be compared in
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Method Bilateral LN Status Metastasis Size Age ER Status Noise
Full (No Missing)
Fastbw 100 100 100 100 2.0 2.2 1.6
Backward 100 100 100 100 16.6 16.3 13.8
rpart 89.4 100 100 82.5 0 0 0.2
Complete Cases
Fastbw 84.7 100 100 99.6 2.4 2.0 1.2
Backward 97.6 100 100 100 15.1 16.0 13.1
rpart 93.6 100 97.2 96.9 29.7 0.5 0.7
Imputed (MICE)
Voting
Fastbw
At Least Once 100 100 100 100 6.4 7.7 4.1
At Least Half 100 100 100 100 4.1 5.1 2.3
All 100 100 100 100 2.3 3.2 1.0
Backward
At Least Once 100 100 100 100 26.8 31.6 20.9
At Least Half 100 100 100 100 21.0 23.3 17.6
All 100 100 100 100 15.8 15.4 12.3
rpart
At Least Once 91.6 100 99.9 91.5 0.9 1.2 1.0
At Least Half 86.5 100 99.9 86.7 0.4 0.5 0.7
All 79.1 100 99.6 76.0 0.1 0.1 0.1
Stacked and Weighted
Fastbw
W1 100 100 100 100 4.3 5.1 2.0
W2 100 100 100 100 2.5 4.0 1.2
W3 100 100 100 100 3.5 4.6 2.0
Backward
W1 100 100 100 100 20.4 22.6 17.3
W2 100 100 100 100 18.6 21.1 14.0
W3 100 100 100 100 20.2 21.8 15.5
rpart
W1 87.3 100 99.7 90.2 0.3 0.5 0.6
W2 87.0 100 99.7 90.2 0.3 0.5 0.5
W3 87.3 100 99.7 90.2 0.4 0.5 0.7

Table 5.6: Scenario 1: Number of times a variable was chosen by a simulation
into the Survival Model using multiple random forest imputation (MAR and
equal fractions of missing data (10% missing per variable) and sample size 1000).
Average complete case sample size is 764.
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the next section.

5.6 Model Comparisons

A summary of the predictors selected using the various techniques for variable

selection are summarized in Tables 5.7-5.10 at the end of this chapter. The

models can be compared using the concordance index which is a measure of

performance (see Chapter 6). Although the models with all predictors perform

slightly better than models were fewer predictors, the difference in the perfor-

mance is just marginal. The cost of measuring the extra predictors, may also

outweigh the slightly improved performance. The addition of the less routinely

assessed biomarkers does not improve the performance much. Models with rou-

tinely assessed predictors seem more feasible since there is a cost associated with

measuring the extra biomarkers. The final model for DFS will include Bilateral,

Lymph Node status, Mitotic count, Metastasis and UICC staging and the final

model for OS will include Mitotic count, Metastasis and UICC staging which is

a subset of those predictors used for the final DFS model.

5.7 Conclusions

Results of this simulation study have been presented at the conference of the

International Society for Clinical Biostatisticians [Wall et al., 2013].

The results of this simulation study suggest variable selection based on im-

puted data rather than on the complete cases is an attractive option for model

selection. Complete cases fails to detect important predictors due to a lack of

power. By using other methods the trade off is between power and type one

error. By imputing the missing data and using the voting method, the voting

selection is subjective (whether you take predictors that appear in one, half or

all the models). If variables that appear in all models across all the imputations

are chosen, the power is retained however there is a high type 1 error. If only

variables that appear in all models are chosen, the power is reduced however

the type 1 error is improved. Also the voting method is more computationally

expensive, as the variable selection techniques need to be performed on each
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imputed dataset. The voting method appears to be crude and does not perform

well when the vote is being split between correlated predictors. The stacking

method is ‘easier’, as the imputed datasets are stacked and only one analysis

needs to be performed using the weights. The results of the simulation study

has shown stacking and weighting has high power and low type 1 error. How-

ever, the first weight does not incorporate the amount of missing data present

like weights 2 and 3 which provide more information on the proportion of miss-

ingness present. Also stacking means no matter how many imputations are

performed only one analysis is needed for the variable selection.

Obviously nothing compares to complete data, however power can be “re-

claimed” by using the variable selection techniques on multiple imputed data

rather than complete cases and is an attractive alternative to complete cases.

In the previous chapter, classical approaches for variable selection could not

be performed with complete cases since the sample size was reduced. Performing

the variable selection on imputed data identified models with a subset of predic-

tors which have good prediction power. Other predictors have been identified

as potentially useful which were not identified in the previous chapters.

The final model for DFS should include Bilateral (Y/N), M (Mitotic count),

LN status, Metastatic (Y/N) and UICC staging and for OS M, Metastatic, and

UICC staging. The clinical pathological predictors do not seem to add anything

extra to the models. The next stage in the process is to validate these models,

which is examined in the next chapter.
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Chapter 5. Variable Selection techniques with imputed data
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Figure 5.6: Comparison of concordance index for different models.
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Chapter 6

Model Validation and

Calibration

6.1 Introduction

In the previous chapter useful predictors of DFS and OS have been identified

using variable selection techniques on imputed data. Also the final section in

the chapter summarized the predictors selected using all the different techniques

including trees, classical variable selection processes such as backward, Ridge

Regression and the LASSO and variable selection with imputed data. Although

the models with all predictors, penalized as needed, perform slightly better,

the difference in the performance is marginal. The cost of measuring the extra

predictors may outweigh the slightly improved performance. Based on all the

analysis and results to date, a final model with Bilateral, Lymph Node status,

Mitotic count, Metastasis and UICC staging seems to be the best model for

DFS and a final model with Mitotic count, Metastasis and UICC staging seems

to be the best model for OS. The models are summarized in Table 6.1. The

next step in the process is to validate and test these models.

There can be 2 types of validated models according to Altman and Royston

[2000]:

• A statistically validated model is one which passes all appropriate statisti-

cal checks, including goodness-of-fit on the original data set and unbiased
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Table 6.1: Final Cox proportional hazards models for DFS and OS.

Response variables:

DFS OS

β̂(ESE) β̂(ESE)

Bilateral=Yes 1.356∗∗∗

(0.279)

Mitotic Count=Low −0.385∗∗ −0.709∗∗

(0.161) (0.302)

Mitotic Count=Moderate 0.033 0.374
(0.211) (0.411)

LN Status=Yes 1.389∗∗∗

(0.218)

Metastasis=Yes 1.448∗∗∗ 3.765∗∗∗

(0.146) (0.527)

UICC=2 0.503 0.230
(0.320) (0.571)

UICC=3 0.633∗ 1.118∗∗

(0.337) (0.555)

UICC=4 1.044∗∗∗ 1.942∗∗∗

(0.381) (0.584)

Observations 432 444
R2 0.449 0.435
χ2 255.975∗∗∗ (df = 8) 180.939∗∗∗ (df = 6)
Concordance Index 0.810 0.929

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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prediction on a new data set.

• A clinically validated model is one which performs satisfactorily on a new

data set according to context-dependent statistical criteria laid down.

The utility of predictive models depends on their generalizability, which

can be separated into two components: internal validity (reproducibility)

and external validity (transportability - the model is valid in other breast

cancer data). Internal validation is when the model retains accuracy when it

is applied to another set of patients from the same underlying population as

that of the development sample. Internal validity can be completed by splitting

the sample into a development and test set, cross-validation or bootstrapping.

External validation can be checked using a new sample of patients in different

settings. External validation is when the model retains accuracy when applied

to patients from a different population or location. The idea of validating a

prognostic or diagnostic model is generally taken to mean establishing that it

works satisfactorily for patients other than those from whose data the model

was derived [Altman and Royston, 2000].

In general, there are two aspects of predictive accuracy that need to be as-

sessed. Firstly, calibration is the ability of the model to make unbiased estimates

of the outcome and secondly discrimination is the model’s ability to separate

subject’s outcomes [Harrell Jr, 2001].

The simplest form of internal validation is data splitting. The data are

randomly split into a training and test set. Bootstrapping, jackknifing and

their resampling plans can be used to obtain nearly unbiased estimates of model

performance without sacrificing sample size.

6.1.1 Missing data effect

The final models presented in Table 6.1 were fitted using complete cases. By

imputing the data and fitting the same model on the imputed data, the effect

and the sensitivity of the missing data generating mechanism can be examined.

The data have been imputed using Random Forests and MICE.

The model fitted on the random forest imputation is given in Table 6.2.

The estimates have the same direction and similar magnitude to those obtained
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from complete cases. There is a marginal difference in the performance of the

models measured by examining the concordance.

The final model was also fitted on the multiply imputed data by using MICE.

The corresponding estimates were combined using Rubins Rules (Table 6.3).

These estimates again have the same direction and similar magnitude to those

obtained from complete cases. The performance is measured as the average

concordance across all the models. Again there is a marginal difference in the

performance of the models. Figure 6.1 contains parameter estimates and es-

timated standard errors for the final models using complete cases, multiply

imputed data and random forests.

Table 6.2: Final Cox proportional hazards models for DFS and OS fitted on
Random Forest imputed data.

Response variables:

DFS OS

β̂(ESE) β̂(ESE)

Bilateral = Yes 1.116∗∗∗ (0.225)
Mitotic Count = Low −0.289∗∗ (0.133) −0.723∗∗∗ (0.246)
Mitotic Count = Moderate 0.180 (0.178) 0.597∗ (0.333)
LN Status = Yes 1.722∗∗∗ (0.202)
Metastasis = Yes 1.372∗∗∗ (0.127) 3.552∗∗∗ (0.409)
UICC=2 0.610∗∗ (0.299) 0.229 (0.517)
UICC=3 0.645∗∗ (0.316) 1.112∗∗ (0.494)
UICC=4 0.953∗∗∗ (0.341) 1.908∗∗∗ (0.507)

Observations 647 647
R2 0.483 0.339
Concordance Index 0.812 0.933

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

6.2 Internal Validation Techniques

The main internal validation techniques include apparent validation, split-sample

validation, cross-validation and bootstrap validation. These will be discussed in

more detail in the next few sections.
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Figure 6.1: Parameter estimates and corresponding estimated standard errors
for the final models.
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Table 6.3: Combined Estimates using Rubins Rules for the final Cox propor-
tional hazards models for DFS and OS fitted on multiply imputed data.

Response variables:

DFS OS

β̂(ESE) β̂(ESE)

Bilateral = Yes 1.045∗∗∗ (0.237)
Mitotic Count = Low −0.431∗∗∗ (0.147) −0.530∗ (0.279)
Mitotic Count = Moderate 0.070 (0.196) 0.670∗ (0.365)
LN Status = Yes 1.206∗∗∗ (0.170)
Metastasis = Yes 1.568∗∗∗ (0.127) 3.720∗∗∗ (0.407)
UICC=2 0.432∗ (0.252) −0.010 (0.449)
UICC=3 0.424 (0.266) 0.779∗ (0.435)
UICC=4 1.269∗∗∗ (0.285) 1.309∗∗∗ (0.464)

Observations 647 647
Average Concordance 0.790 0.926

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

6.2.1 Apparent Validation

Apparent validation uses the data used to create the model to validate the

model. It is well known that validation to test the performance of the model

using the data that were used to create the model leads to biased assessment of

performance since the model is created and tested on the same data. Naturally

this leads to an optimistic estimate of performance since the model parameters

were optimized for the sample [Steyerberg et al., 2001]. Apparent validation is

attractive because it is easy to perform however the estimates are biased. For

the BC data, this is not a good validation technique, as one aim is to make the

models transferable to other centers.

6.2.2 Split-Sample Validation

In split-sample validation, the data are split into two, a development set and

a test set. The model is created using the development set and the model

performance is evaluated using the test set. Data splitting has the advantage of

allowing hypothesis tests to be confirmed in the test sample [Harrell Jr, 2001].

However, data splitting has the following disadvantages:

122



Chapter 6. Model Validation and Calibration

• Decreases the sample size for both model development and model testing;

• Requires a larger sample to be held out than cross-validation to be able

to obtain the same precision of the estimate of predictive accuracy;

• May yield different predictive accuracy when repeated;

• Does not validate the final model, but rather a model developed on only

a subset of the data. The training and test sets are recombined for fitting

the final model, which is not validated;

• Requires the split before the first analysis of the data. With other meth-

ods, analyses can proceed in the usual way on the complete dataset. Then,

after a “final” model is specified, the modelling process is re-run on mul-

tiple resamples from the original data to mimic the process that produced

the “final” model.

6.2.3 Cross-Validation

Cross-validation is an extension of split-sample validation aiming for more sta-

bility. A prediction model is again tested on a random subset of individuals from

the sample that was left out from the sample. The model is developed on the

remaining part of the sample. However this process is repeated for consecutive

fractions of patients [Steyerberg et al., 2001].

6.2.4 Bootstrap Validation

Bootstrap resamples can be used to estimate the bias due to overfitting or

optimism in the final model. A sample of size n (same size as original dataset)

is drawn at random with replacement. The model is fitted in the bootstrap

resample and applied to the original sample. The accuracy is calculated as

the accuracy index for the bootstrap minus the accuracy index for the original

sample. This is repeated for multiple bootstrap replications to estimate the

optimism. This is then subtracted from estimate of performance of the model to

correct for overfitting. Overfitting causes optimism about a model performance

in new subjects [Steyerberg, 2009]. Bootstrapping seems to work well in large

datasets, even if the number of predictors exceeds the number of samples.
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For our final model we will use bootstrap validation for internal validation.

6.3 External Validation

There are a few different ways of validating the models externally. Tempo-

ral validation uses patients who are more recently diagnosed to validate the

model. This is not possible here, as more recent patients are not diagnosed long

enough to examine five year survival. Alternatively the model is fully validated

by independent investigators. Geographical Validation uses data from another

site/hospital to validate the model. ONCOPOOL is a dataset with patients

from 10 breast cancer units in Europe.

ONCOPOOL

ONCOPOOL is a retrospectively compiled database of primary operable in-

vasive breast cancers treated in the 1990s in 10 European breast cancer units

[Blamey et al., 2010]. There are sixteen thousand, nine hundred and forty four

patients included in the data set. The patients are all women, have tumours less

than 5 cm and are aged 70 or less. The patients were diagnosed between 1990

and 1999. This dataset does not contain the time and censoring information or

all the variables needed for validation of DFS however it does contain enough

information for validation of OS.

6.4 Evaluation of Performance

The evaluation of model performance focused on discrimination and calibration.

Discrimination refers to the ability to distinguish high-risk patients from low risk

patients and is commonly quantified by a measure of concordance, the c index.

Discrimination measures a predictors ability to separate patients with different

responses [Harrell Jr, 1996]. The definition of the concordance probability C

is based on the property that a survival model should predict a lower survival

time for subjects that fail earlier and a higher survival time for subjects that

fail later [Van Oirbeek and Lesaffre, 2010]. The concordance probability C is
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defined as

C = P (T̂i < T̂j |Ti < Tj) = P (S(t|Xi) < S(t|Xj)|Ti < Tj)for any t > 0 (6.1)

where T̂ is the predicted survival time. Calibration refers to whether the pre-

dicted probabilities agree with the observed probabilities. We used one simple

measure to quantify calibration, that is, the slope of the prognostic index, which

was originally proposed by Cox. The slope of the prognostic index (or linear

predictor) is the regression coefficient β in a logistic model with the prognos-

tic index as the only covariate: observed mortality = α + β prognostic index.

Calibration refers to the extent of bias [Harrell Jr, 1996].

The observed mortality is a variable coded as binary (0/1) and the prognos-

tic index is calculated as the linear combination of the regression coefficients as

estimated in the subsample with the values of the predictors for each patient

in the test data. The slope of the prognostic index (referred to as the calibra-

tion slope) should ideally be one, when the predicted risks agree fully with the

observed frequencies. Models providing overoptimistic predictions will show a

slope that is less than one, indicating that low predictions are too low and high

predictions are too high.

6.4.1 Visualising the relation between predictor and sur-

vival

Royston [2001] proposed visualisation by adapting the scatterplot for survival

data where the survival times are plotted against the predicted risk from a Cox

PH model. The adaption is needed because such a plot is not possible due to the

presence of censored data, where the exact survival time is not available. Roys-

ton [2001] suggests fitting a parametric lognormal model to the data and then

imputing censored observations by randomly drawing a value from the condi-

tional distribution. This can lead to some unrealistic imputations (i.e. survival

times that are not biologically plausible). However this can easily be rectified

by putting a limit on the imputation value for the censored observations. The

limit is chosen by examining the longest survival time observed.

The scatterplot of the survival times and the prognostic index score is given

in Figure 6.2. The explained variation (R2) is 0.588 and 0.608 for DFS and
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OS respectively. Although this is not the most appropriate quantification, these

values indicate the models are providing relatively good prediction for DFS and

OS. From the plots it seems that those patients with longer survival times have

lower prognostic scores. This means patients with a higher prognostic score

have a worse prognosis.
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Figure 6.2: Partly imputed survival time verses prognostic index. Imputed

values are represented by open circles, observed times by solid circles.

6.4.2 Internal Validation of Final Models

Bootstrapping was used to identify if there was significant over-fitting during

the development of the model (see section 6.2.4). The accuracy of the model

was assessed with measures of discrimination and calibration. Predictive dis-

crimination (i.e. the ability of a predictive model to separate those who die

early from those who die late) was assessed using the Somers’ Dxy rank correla-

tion coefficient. This measure quantifies the association between predicted and

observed survival time [Teno, 2000]. A model which can predict low and high

risk patients perfectly would have a Somers’ Dxy of one and a weak model a

value close to zero.

The models are validated using Somers’ Dxy rank correlation between the
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Table 6.4: Validation Results for Dxy and slope shrinkage for disease free sur-
vival using 200 bootstrap resamples of the data.

Index Original Training Test Optimism Corrected n
Sample Sample Sample Index

Dxy 0.6029 0.6127 0.5987 0.0140 0.5889 200
R2 0.4488 0.4659 0.4328 0.0331 0.4157 200
Slope 1.0000 1.0000 0.8938 0.1062 0.8938 200
D 0.1057 0.1119 0.1007 0.0112 0.0946 200
U −0.0008 −0.0008 0.0046 −0.0054 0.0046 200
Q 0.1066 0.1127 0.0962 0.0165 0.0900 200
g 1.4054 1.5005 1.3352 0.1654 1.2401 200

predicted log hazard and observed survival time and for slope shrinkage. The

bootstrap is used (with 200 resamples) to penalize for possible overfitting.

Examining Dxy and R2 for the DFS model in Table 6.4, it can be seen that

there is a small amount of overfitting. A shrinkage coefficient can be used to

quantify over-fitting or one can go a step further and use the coefficient to re-

calibrate the model [Harrell Jr, 1996]. The slope has a shrinkage factor of 0.89

which does not cause concern. The apparent Dxy is 0.60, however the corrected

Dxy of 0.59 is an unbiased estimate of future predictive discrimination on similar

patients. The apparent Dxy is only marginally optimistic.

Statistics validated include the Nagelkerke R2, Dxy slope shrinkage, the

discrimination index D = (modelL.R.χ2 − 1)/L (where L is -2 log likelihood

with β = 0), the unreliability index U=(difference in -2 log likelihood between

uncalculated Xβ and Xβ with overall slope calibrated to test sample)/L, the

overall quality index Q = D−U and g is the g-index on the log relative hazard

scale.

For the OS model, see Table 6.5, again there is a small amount of overfitting

but not enough to be concerned about. The slope has a shrinkage factor of 0.90

which does not cause concern. The apparent Dxy is 0.86 while the corrected

Dxy of 0.85 is an unbiased estimate of future predictive discrimination on similar

patients. The Dxy is the difference between the probability of concordance and

the probability of discordance of pairs of predicted survival times and pairs of

observed survival times, accounting for censoring [Harrell Jr, 2001]. If this falls

below 0.85, for example, it may cause some concern. However for both models

this is above 0.85.
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Table 6.5: Validation Results for Dxy and slope shrinkage for overall survival
using 200 bootstrap resamples of the data.

Index Original Training Test Optimism Corrected n
Sample Sample Sample Index

Dxy 0.8582 0.8626 0.8524 0.0102 0.8480 196
R2 0.4350 0.4452 0.4221 0.0231 0.4119 196
Slope 1.0000 1.0000 0.8991 0.1009 0.8991 196
D 0.2762 0.2858 0.2662 0.0196 0.2566 196
U −0.0031 −0.0031 0.0059 −0.0091 0.0060 196
Q 0.2793 0.2889 0.2603 0.0287 0.2506 196
g 1.9698 2.1916 1.9322 0.2594 1.7105 196

Next the final models need to be validated (without the shrinkage coefficient)

for calibration accuracy in predicting the probability of surviving five years. The

bootstrap is used to estimate the optimism in how well predicted five year sur-

vival from the final Cox models tracks Kaplan Meier five year estimates, strat-

ifying by grouping the patients with about 40 patients per interval of predicted

five year survival. The results for calibration are given in Tables 6.6-6.7 and

Figure 6.3. Perfect calibration would be indicated with a 45 degree line [Teno,

2000]. For all ranges of estimates, the model prediction of survival estimates

are adequate (the CI contains the line at 45 degrees). Bootstrap validation per-

forms well except for some of the groups with poorer prognosis - their survival

is slightly better than predicted.

6.4.3 Measuring the Discriminative Ability

A useful summary statistic is the area under the curve (AUC). If the AUC is

equal to 0.5, the model has no discriminative ability. An interesting comparison

is to compare those patients who experience the event and those who do not at

each time point (this is similar to the concordance index). A plot of the AUC(t)

against t (at the event times) for the prognostic indices for DFS and OS are

shown in Figure 6.7. This includes a plot of the lowess smoothing curve. The

AUC for DFS and OS are 0.60 and 0.62 respectively.

The concordance for the DFS and OS final models are 0.801 and 0.929 respec-

tively. Dynamic versions of the concordance index can be obtained by averaging

over all event times within a fixed window of time. This is shown in Figure 6.5

for the window of w=60 (five years). Both figures for DFS (Figure 6.4(a) and
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Figure 6.3: Bootstrap estimate of calibration accuracy for five-year estimates
from the final Cox model for DFS and OS. Dots correspond to apparent predic-
tive accuracy. X marks the bootstrap corrected estimates. (n=444, 60 patients
per group, 200 bootstrap replicates)
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6.5(a)) show that the discriminative ability is slowly decreasing over time. For

OS (Figure 6.4(b) and 6.5(b)), the discriminative ability decreases for the

first three years, however, a strange feature is that it starts to increase slightly

again.
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Figure 6.4: AUC(t) for the final Cox models for DFS and OS.
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Figure 6.5: Dynamic C index with a window of five years for the final Cox

models for DFS and OS.

6.5 DFS Model with Interactions

The models that have been discussed so far in this chapter have only included

main effects. However, in Chapter 4, interactions seem to be important for

the DFS model. Interactions have been added to the main effects DFS model

discussed previously in this chapter (Table 6.8). The concordance index for

this model is 0.816 which is only marginally better performance than the main

effects model.

6.5.1 Validation of DFS Model with Interactions

Bootstrap validation techniques will be applied to assess the performance of the

DFS model with interactions. Examining Dxy and R2 for the DFS model in

Table 6.9, it can be seen that there is a small amount of overfitting. The slope

has a shrinkage factor of 0.86 which does not cause concern since it is above

0.85. The apparent Dxy is 0.62, while the corrected Dxy of 0.61 is an unbiased

estimate of future predictive discrimination on similar patients. The apparent

Dxy is only marginally optimistic. This is marginally more optimistic than the

model with only main effects.
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Table 6.8: Final Cox proportional hazards model for DFS including interactions.

Response variable:

DFS

β̂(ESE)

Bilateral=Yes 3.200∗∗∗ (0.429)
Mitotic Count=Low −0.436∗∗∗ (0.166)
Mitotic Count=Moderate 0.098 (0.212)
LN Status=Yes 2.607∗∗∗ (0.385)
Metastasis=Yes 3.751∗∗∗ (0.577)
UICC=2 0.697 (0.541)
UICC=3 0.713 (0.562)
UICC=4 0.768 (0.671)
LN Status=Yes ∗Metastasis=Yes −1.933∗∗∗ (0.484)
Bilateral=Yes ∗LN Status=Yes −2.661∗∗∗ (0.624)
Metastasis=Yes ∗UICC=2 −1.165∗ (0.700)
Metastasis=Yes ∗UICC=3 −0.605 (0.727)
Metastasis=Yes ∗UICC=4 0.145 (0.841)

Observations 432
R2 0.514
Concordance Index 0.816

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The results for calibration are given in Figure 6.6. Recall from earlier

perfect calibration would be indicated with a 45 degree line. For all ranges

of estimates, the model prediction of survival estimates are adequate (the CI

contains the line at 45 degrees). Bootstrap validation performs well except for

some of the groups with poorer prognosis - their survival is slightly better than

predicted.

The performance is very similar to that of the DFS model with just main

effects.

The AUC for the DFS model with interactions is 0.614 (Figure 6.7(a)).

This is marginally better than that of the main effects model (AUCmain effects =

0.60).

The concordance for the main effects DFS model is 0.801 and this increases to

0.816 when interactions are included. The dynamic version of this concordance

index for the model with interactions is shown in Figure 6.7(b) for the window

of w=60 (five years). The discriminative ability behaves just as in the previous
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Figure 6.6: Bootstrap estimate of calibration accuracy for five-year estimates
from the final Cox model for DFS with interactions. Dots correspond to appar-
ent predictive accuracy. X marks the bootstrap corrected estimates.

model.

The addition of interactions into the DFS model marginally improves the

performance of the DFS model.

Table 6.9: Validation Results for Dxy and slope shrinkage for DFS model with

interactions using 200 bootstrap resamples of the data.

Index Original Training Test Optimism Corrected n

Sample Sample Sample Index

Dxy 0.6327 0.6360 0.6158 0.0202 0.6125 192

R2 0.5144 0.5317 0.4928 0.0388 0.4756 192

Slope 1.0000 1.0000 0.8627 0.1373 0.8627 192

6.6 External Validation of Final Models

The ONCOPOOL dataset is used for the external validation of the OS model.

These data cannot be used to validate the DFS model as information on DFS

time, status, Bilateral and Lymph Node status are not available in the dataset.
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Figure 6.7: Final Cox models for DFS with interactions.
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Figure 6.8: Plot of observed and fitted probabilities for the OS model.

Figure 6.8(a) contains a plot of the observed versus the predicted proba-

bilities calculated for five year survival from the OS model on the original BC

data. The observed and predicted probability is very similar as the estimates lie

along the line of equality. Figure 6.8(b) contains a plot of the observed versus

predicted probabilities calculated for five year survival from the OS model for

the ONCOPOOL data. The predicted probabilities for the ONCOPOOL pa-

tients calculated using the OS model are higher than the observed probabilities.

One cause of the difference in probabilities is that Mitotic count may not have

been measured in the same way in the ONCOPOOL data and the Galway data.

Also the ONCOPOOL data did not include any patients with UICC staging 4.

This means their population may be slightly different to our population or the

same staging may not have been applied in both datasets. The model for OS is

over predicting the five year probability in the ONCOPOOL data.

The concordance for the OS model on the ONCOPOOL data is 0.691. This

is lower than the original concordance based on the Galway data (0.929).
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6.7 Visualising the model

For non-statisticians, it may be easier to interpret the models using some visu-

alisation tool. There are a few options available. The visualisations will just

include the main effects models as the prediction performance is only marginally

better including the interactions.

Plots of survival estimates

One option is to plot the Kaplan Meier survival estimates for the models (Figure

6.9). These survival estimates represents patients with baseline predictor mea-

surements. However these are difficult for non-statisticians to interpret.
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Figure 6.9: Survival Estimates the final models for DFS and OS for baseline

patient characteristics.

Plots of hazard ratios

Hazard ratios with multilevel confidence bars for the effects of each of the pre-

dictors is given in Figure 6.10. Each of the plots contain the hazard ratio

with a confidence interval for each of the levels of the predictor compared to the

baseline level. Take for example Bilateral in DFS (Figure 6.9(a)), patients

with Bilateral BC are more likely to get a disease recurrence than those patients

without Bilateral BC (i.e. a worse prognosis).
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Hazard Ratio
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Figure 6.10: Hazard ratios and multilevel confidence bars for the effects of
predictors in the final models for DFS and OS.
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Figure 6.11: Nomogram for predicting survival probabilities for 5 year and 8
year survival for DFS models.

Nomograms

A nomogram is a graphical calculator which allows the user to calculate their

probability of survival using a points scoring system based on their clinical

results. Nomograms to calculate the probability of 5 year and 8 year survival are

given for DFS in Figure 6.11 and for OS in Figure 6.12. Take for example a

patient who does not have bilateral breast cancer, with moderate mitotic count,

has lymph nodes positive, does not have metastatic cancer and has stage 3

UICC staging. This patient has a probability of being disease free of 0.35 and a

survival probability greater than 0.9 for five years. The higher number of Total

Points the worse prognosis for a patient.
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Figure 6.12: Nomogram for predicting survival probabilities for 5 year and 8
year survival for OS models.
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On-line Calculator

Finally a visual front end tool available on-line for clinicians or patients to

use would also be beneficial. This would save a clinical or patient the effort of

calculating the 5 year estimated survival probability using the previous methods.

The shiny package in R is an easy way to turn these prognostic models into

interactive web applications that anyone can use. The patients/clinicians just

have to input the patient clinical and pathological details. The output includes

a 5 year point survival estimate with a confidence interval for both DFS and

OS. Also the output includes the median survival time. Figure 6.13 contains

the on-line calculator for OS I created using the shiny library. This includes

the ridge regression model for all clinical predictors and also the model with

a subset of predictors, namely Mitotic count, Metastasis and UICC staging.

This figure gives the estimates for the baseline predictor level. Figure 6.14

has a few of the clinical predictors changed to show how the estimated 5 year

survival probability changes. This figure shows a patient with metastasis, stage

3 cancer, oestrogen positive and progesterone positive breast cancer has a 5 year

estimated survival probability of 0.72.

6.8 Conclusions

After choosing the final models for DFS and OS using variable selection in

imputed data, results presented in this chapter suggests that these models are

validated and calibrated.

The model was validated internally using bootstrap resamples of the data

and examining the discrimination and calibration. Both models seem to perform

reasonably well.

External validation was performed using a dataset based on breast cancer

patients diagnosed in 10 European breast cancer units. However, the data did

not contain information on Bilateral or Lymph Node status so only the final

model for OS could be validated using this data. The final OS model over-

predicts the 5 year probability of survival for the patients in the ONCOPOOL

data. However we cannot guarantee than Mitotic count and UICC staging may

not have been measured in the same way in both datasets.
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Figure 6.13: On-line calculator for calculating 5 year estimated survival proba-
bilities using ridge regression and variable selection model.
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Figure 6.14: On-line calculator for calculating 5 year estimated survival proba-
bilities using ridge regression and variable selection model.
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The inclusion of interaction terms in the DFS model only marginally im-

proved the prediction performance.

Visualisation tools are useful for making these models easier to interpret

for non-statisticians. Nomograms are easy for either a clinician or patient to

use, however, an on-line calculator makes it easier again as it performs the

calculations to obtain the 5 year estimated survival probability by just filling in

the clinical and pathological details.
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Conclusions and Future

Work

The main aim of my PhD was to create a prognostic model for invasive breast

cancer patients for DFS and OS. The data are comprised of 647 patients with pa-

tient characteristics and genetic markers for breast cancer which were collected

retrospectively. An additional level of complexity existed due to the presence

of missing data. A complete case analysis with both clinical and pathological

biomarkers reduces the number of cases to 103 patients. A major challenge was

how best to build a prognostic model for breast cancer in the presence of missing

data.

Since the first aim of my PhD was to create a prognostic model for breast

cancer, these data are time to event data. Chapter 2 introduced survival analy-

sis and examined graphical and numerical summaries of survival estimates. The

Kaplan Meier estimate is the most commonly used estimate for the representa-

tion of the distribution of survival times. It is generally used for the graphical

comparison of survival estimates for two or more groups; for example, comparing

the survival estimates for patients with and without Lymph Node disease. The

Log-rank test is a hypothesis test to compare the survival estimates of groups.

Graphical representations are a useful tool to complement the results of the

Log-rank test. However, these graphical representations can get cluttered when

confidence intervals are added to each group. An alternative ways of graphi-
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Figure 7.1: Graphical comparison of pointwise ratio/difference for Her2 positive
and negative patients for OS.

cally representing the difference is to plot either the ratio or the difference of

the survival functions. Extensions to these were introduced creating plots of

both the pointwise ratio and difference with confidence intervals (created using

bootstrap resamples of the data). These plots included the number of patients

at risk at the bottom of the plot and also alpha blending which shaded the

ratio/difference line relative to the number of patients at risk at each time point.

This highlights the decrease in the number of patients at risk as time progresses

due to patients experiencing the event or being censored.

A major challenge was how best to build a prognostic model for breast cancer

in the presence of missing data. Some classical approaches were implemented in

Chapter 4, however they did not perform well as the most common way to deal

with missing values, casewise deletion, results in a considerably reduced sample

size and possible bias. Instead of creating a model with all predictors, if a small

subset of these predictors perform just as well as all the predictors, it is more

cost and time effective to just use the subset of predictors. Variable selection

techniques could not be performed on the original data as the missing data

reduced the sample size from 647 patients to just 103. An alternative approach

would be to perform variable selection techniques on imputed data. An empirical
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simulation study was created using synthetic data based on the BC data to

examine the effect of missing data on variable selection and the performance

of variable selection in imputed data. The literature suggest using a voting

system or stacking and weighting for variable selection on multiply imputed

data. Obviously nothing compares with having complete data, however, if there

are missing values, lost information can be “reclaimed” by performing variable

selection techniques on imputed data. The results from the simulation study

suggests that variable selection on imputed data (n = 647) performs better than

that on complete cases (n = 103). However the stacking and weighting performs

much better than the voting system. The weights include information on the

proportion of missingness and the number of imputations. These methods for

variable selection on imputed data identified other potentially useful predictors

not identified previously for the BC data.

A summary of all the models fitted was given in the end of Chapter 5.

Fitting models with both the clinical and pathological biomarkers marginally

improved the performance of the model than using just the clinical predictors,

so a model using just the clinical predictors seems like a logical step to reduce

the cost and time of measuring all the biomarkers. The models identified us-

ing variable selection in imputed data performed better than those models with

subsets of predictors identified earlier. Fitting models with all the predictors

marginally improved the performance. The final model for DFS included Bi-

lateral, Lymph Node status, Mitotic count, Metastasis and UICC staging and

the final model for OS included a subset of these (Mitotic count, Metastasis

and UICC staging). The models are given in Table 7.1. These were validated

internally using bootstrapping and the OS model was validated externally using

a dataset consisting of patients from 10 European breast cancer centers. Both

models perform reasonably well. The addition of interaction terms in the DFS

model only marginally improved the prediction performance.

The second aim of my PhD is to identify potentially useful predictors of the

Oncotype DX risk and also to consolidate conflicting results from the literature.

Many people believe that the results of Oncotype DX can be predicted just

as well by routinely (and more cheaply) assessed pathological variables and

biomarkers. However, there was just a small sample of 52 patients available
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Table 7.1: Final models for DFS and OS.

Response variables:

DFS OS

β̂(ESE) β̂(ESE)

Bilateral = Yes 1.356∗∗∗ (0.279)
Mitotic Count = Low −0.385∗∗ (0.161) −0.709∗∗ (0.302)
Mitotic Count = Moderate 0.033 (0.211) 0.374 (0.411)
LN Status = Yes 1.389∗∗∗ (0.218)
Metastasis = Yes 1.448∗∗∗ (0.146) 3.765∗∗∗ (0.527)
UICC=2 0.503 (0.320) 0.230 (0.571)
UICC=3 0.633∗ (0.337) 1.118∗∗ (0.555)
UICC=4 1.044∗∗∗ (0.381) 1.942∗∗∗ (0.584)

Observations 432 444
Concordance Index 0.810 0.929

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

with the Oncotype DX risk (due to the high price of the test) and there were

a large number of predictors measured. Classical approaches such as logistic

regression are not suitable to use in this situation as the estimated standard

errors were quite high. Alternatively, we examined a non-parametric approach

using classification and regression trees. Trees were created using recursive

partitioning and conditional inference. Both trees identified Progesterone status

as a useful predictor however the other splits were on other predictors. Random

Forests were also examined which improves the prediction error however the

disadvantage is there is no tree structure. A novel approach to using surrogate

splits was implemented where comparable and competing trees are created using

the surrogate splits. An R package was created to produced an interactive

surrogate plot, which allows trees to be grown using the surrogate splits as the

first split in the tree. This technique was applied to the Oncotype DX data

and it produced alternative trees with comparable predictive power to that of

the original tree. Each of these surrogate trees identified predictors which were

previously published in the literature and hence consolidating the conflicting

results.
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7.1 Future Work

The development of the new ideas proposed in this thesis opens up new oppor-

tunities for further analysis and research. Incorporating the number of patients

and alpha blending into Kaplan Meier survival estimates. I will include con-

fidence intervals into my code for ggplot2 and create a package for R. This

would make it accessible for others to use. Although there are already pack-

ages available to plot KM estimates, this new package would include adding the

number of patients at risk to the bottom of the graph and also include alpha

blending which incorporates those numbers of patients at risk into the actual

plot. This package would allow the user to plot the KM estimator and would

include the various options for plotting KM estimates like including confidence

intervals, the numbers at risk and alpha blending. This package would also

include the plots of the difference and ratio which were discussed in Chapter 2.

Also I plan to make the package for the interactive surrogate plot freely

available. Improvements could also be made to the output, including the format

of the plot for the surrogate tree and extending the code to include conditional

inference trees.

In relation to variable selection techniques in imputed data, it would be

interesting to examine how the LASSO and Ridge regression performs with

imputed data. This could easily be added to the empirical simulation study that

I had already created. The weighting system employed for variable selection in

multiply imputed data examined three weights. Another weight could also be

examined. The synthetic data used in the study were simulated using marginal

estimates based on the BC data. Alternatively the data could be simulated by

bootstrapping the original data. This would eliminate implausible biological

patient characteristics simulated using the marginal estimates.

Obviously it is hard for non-statisticians to interpret probabilities with con-

fidence intervals, so it may be useful to examine the mean residual life function

so the output is in terms of time rather than risk in the on-line calculator.
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Appendix

A.1 CART

A.1.1 Classical Approaches to Modelling for the Oncotype

DX data

From Figure 3.1(a) in Chapter 3, it can be seen that there is a lot of missing-

ness present in the Oncotype DX. Some of the variables have up to 50% missing.

If a patient is missing in one of the Survivin variables it is very likely it will be

missing in the other Survivin variables. Using complete cases this reduces the

sample size down to 7. Variable selection using all the predictors could not be

performed and this is why CART were used in the previous chapter.

Using a subset of the predictors and removing the predictors with large

amounts of missing data, it reduces the sample size to 33. A logistic model

was fitted (see Table A.1), however the majority of the predictors have ex-

tremely large standard errors so no accurate interpretation can be made from

the model. Performing variable selection does not identify any of the predictors

as important.

Due to the high proportions of missing data, a non-parametric approach,

CART were implemented.
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Table A.1: Logistic Model for Oncotype DX classification into Low, Medium
and High risk. It is clear from the estimated coefficients and standard errors
that this model cannot be interpreted accurately.

Dependent variable:

Oncotype DX category

β̂(ESE)

y≥ 2 −84.606 (7, 562.539)
y≥ 3 −104.302 (7, 564.078)
Age yrs 1.658 (44.482)
Histological.type=2 69.340 (400.898)
Grade=2 −26.027 (296.386)
Grade=3 −33.620 (472.845)
Tumour Staging=2 −32.739 (802.855)
Tumour Staging=3 −33.263 (1, 543.226)
LN Staging=3 41.697 (724.999)
Metastasis Staging=2 32.286 (320.442)
Metastasis Staging=3 14.180 (968.266)
Size (mm) −1.019 (7.893)
LVI=1 −4.688 (823.635)
ER Score 15.094 (171.489)
ER Status (Positive) 18.721 (3, 734.411)
PR Score 8.882 (127.518)
PR Status (Positive) −93.389 (1, 185.893)
Ki67 3.166 (40.792)
Bcl2=2 62.672 (710.272)
Bcl2=3 45.169 (329.754)
Bcl2 Score −1.442 (9.250)
CD68 Score −0.033 (1.981)
CD68 TIMs 0.538 (5.336)
Cyclin-B1 5.128 (268.145)
AAK −7.770 (56.546)

Observations 33
R2 1.000
χ2 67.643

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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A.1.2 Trees and RF Variable Importance

This section shows the trees and Random Forests for models with all clinical

and pathological predictors included. The pruned recursive partitioning trees

are the same as the trees for the just the clinical predictors. The conditional

inference trees have the same splits, however the p-values are slightly changed

due to the fact more tests are being performed.

A.1.3 Surrogate Plot

RPART Code

Figure A.3 contains the tree which was over-fitted and then pruned back using

rpart.snip and it is obtained using the following R code:

onco.c.RS.rpart <- rpart(Onco DX RS cat ∼ ., data=onco.c.RS,

control=rpart.control(minsplit=9,maxcompete=5,maxsurrogate=5))

onco.c.RS.rpart.snip=snip.rpart(onco.c.RS.rpart,toss=c(8,18,76,77))

draw.tree(onco.c.RS.rpart.snip)

It is possible to choose the number of primary surrogates given in the out-

put by using maxcompete and also the number of secondary surrogates using

maxsurrogate. The default for both of these is five.

Graphs from Surrogate Plots

The original tree given in Figure 3.5 was used in the paper for the Oncotype

DX research, however the output from R since the rpart library is being used,

is in the default format. Figures A.3 and A.4 contain the actual output from

the interactive surrogate plot.

Features of the Surrogate Plot

There are certain program options for the default plot in Figure 3.11, that

can be changed. Table A.2 contains some of these.

If any of the surrogates are clicked, it will ask ”draw tree for surrogate?”.

If yes is clicked, the tree for that surrogate is drawn and outputted in a new

window. If a point on the plot where there is no surrogate is clicked, an error

message will appear: ”No Surrogate at this point”. Also there is a button to
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Figure A.1: Conditional Inference Tree for all clinical and pathological predic-
tors for both DFS and OS using the Random Forest package for survival tree.
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Figure A.2: Variable importance measure for all clinical and pathological pre-
dictors for both DFS and OS using the Random Forest package for survival
tree. 154
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Figure A.3: Original RPART tree from Interactive Surrogate Plot Output.

 

Figure A.4: Tree for surrogate N.
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Table A.2: Program Options.

Argument Explanation Default
main Title of plot Interactive Surrogate Plot
ylab Title of y axis Variables
xlab Title of x axis Tree/Nodes
cex Text size on plot 0.8
cex.axis Text size for Axises 0.5
ordering Orders variables according to importance TRUE
colormap.pri Colors for primary surrogates heat.colors
colormap.sec Colors for secondary surrogates topo.colors

click to output the original rpart tree in a new window. The original tree is also

drawn in a new window if the first split of the original tree is selected Figure

A.3. An error message will also appear if there is no split for that surrogate.

A.2 Simulation Results

More results for other scenarios for the variable selection in multiply imputed

data
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Figure A.5: Power and type 1 error for scenario two, MAR, sample size 1000

and 20% missing in each variable.
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Method Bilateral LN Status Metastasis Size Age ER Status Noise
Full (No Missing)
Fastbw 100 100 100 100 2.2 1.9 1.6
Backward 100 100 100 100 16.0 17.4 16.1
rpart 90.2 100 100 82.7 0.2 0 0.2
Complete Cases
Fastbw 2.4 100 100 89.1 2.4 2.6 1.4
Backward 3.9 100 100 99.4 17.6 16.4 17.8
rpart 74.4 100 72.2 94.2 46.0 0.9 0.9
Imputed (MICE)
Voting
Fastbw
At Least Once 98.9 100 100 100 36.5 49.9 14.0
At Least Half 97.0 100 100 100 10.3 14.8 3.9
All 75.8 100 100 100 1.6 1.1 0.6
Backward
At Least Once 99.8 100 100 100 72.8 88.7 45.1
At Least Half 98.4 100 100 100 35.1 39.6 17.9
All 88.6 100 100 100 9.2 8.6 5.5
rpart
At Least Once 95.8 100 100 97.0 19.4 8.5 2.3
At Least Half 72.7 100 99.7 84.1 0.9 0.4 0.1
All 15.5 100 92.7 49.6 0.0 0.0 0.0
Stacked and Weighted
Fastbw
W1 97.4 100 100 100 9.3 11.6 3.9
W2 96.8 100 100 100 5.4 6.6 2.0
W3 97.1 100 100 100 7.9 10.2 3.5
Backward
W1 98.8 100 100 100 34.7 34.7 17.2
W2 98.6 100 100 100 28.7 30.4 12.7
W3 98.7 100 100 100 32.4 32.4 16.1
rpart
W1 64.5 100 99.0 84.7 1.2 0.2 0.1
W2 64.2 100 98.9 84.6 1.1 0.2 0.1
W3 64.6 100 99.1 84.5 1.0 0.2 0.1
Imputation (RF)
Fastbw 100 100 100 100 5.8 9.4 3.6
Backward 100 100 100 100 23.9 32.1 21.4
rpart 95.2 100 96.6 81.6 1.5 2.9 0.5

Table A.3: Scenario 2: Number of times a variable was chosen by a simulation
into the Survival Model (MAR and equal fractions of missing data (20% missing
per variable) and sample size 1000). Average complete case sample size is 602.
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Method Bilateral LN Status Metastasis Size Age ER Status Noise
Full (No Missing)
Fastbw 100 100 100 100 1.6 1.6 1.7
Backward 100 100 100 100 15.8 13.8 15.7
rpart 89.2 100 100 83.8 0.3 0.0 0.1
Complete Cases
Fastbw 0.0 100 100 59.0 2.8 2.6 1.8
Backward 0.0 100 100 92.0 15.0 16.0 16.2
rpart 59.3 100 44.3 94.0 49.2 0.9 1.0
Imputed (MICE)
Voting
Fastbw
At Least Once 99.5 100 100 100 54.6 79.1 18.2
At Least Half 96.6 100 100 100 20.0 30.3 3.9
All 81.1 100 99.9 100 2.5 3.8 0.6
Backward
At Least Once 100 100 100 100 85.8 97.0 51.8
At Least Half 98.7 100 100 100 48.4 59.3 18.6
All 90.0 100 100 100 13.9 12.6 3.4
rpart
At Least Once 95.8 100 99.9 99.3 30.5 32.6 3.6
At Least Half 72.6 100 99.2 90.2 1.1 2.8 0.0
All 18.3 100 79.2 49.9 0.0 0.2 0.0
Stacked and Weighted
Fastbw
W1 96.9 100 100 100 18.8 27.5 3.5
W2 95.7 100 100 100 8.9 16.4 1.3
W3 96.81 100 100 100 15.7 23.0 2.8
Backward
W1 99.1 100 100 100 45.7 54.3 15.9
W2 98.7 100 100 100 36.2 45.0 9.8
W3 98.9 100 100 100 42.7 51.4 13.8
rpart
W1 63.7 100 98.0 86.9 1.3 1.8 0.0
W2 63.1 100 97.8 86.8 1.2 1.8 0.0
W3 63.0 100 97.9 87.6 1.5 1.8 0.0
Imputation (RF)
Fastbw 100 100 100 100 11.0 15.0 4.9
Backward 100 100 100 100 30.6 36.9 23.7
rpart 93.3 100 87.7 87.6 6.2 6.3 0.2

Table A.4: Scenario 3: Number of times a variable was chosen by a simulation
into the Survival Model (MAR and equal fractions of missing data (30% missing
per variable) and sample size 1000). Average complete case sample size is 459.
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Method Bilateral LN Status Metastasis Size Age ER Status Noise
Full (No Missing)
Fastbw 100 100 100 100 1.5 2.4 3.4
Backward 100 100 100 100 16.1 16.7 19.8
rpart 85.7 100 99.8 85.6 1.4 0.0 2.1
Complete Cases
Fastbw 70.1 100 100 97.2 2.4 2.6 3.6
Backward 87.9 100 100 99.7 16.9 16.4 19.1
rpart 88.9 100 95.5 96.2 37.1 1.6 4.0
Imputed (MICE)
Voting
Fastbw
At Least Once 99.9 100 100 100 16.6 22.0 11.3
At Least Half 99.7 100 100 100 4.0 4.0 4.3
All 93.2 100 100 100 0.8 0.4 1.2
Backward
At Least Once 100 100 100 100 52.6 61.8 41.0
At Least Half 99.9 100 100 100 25.0 22.7 21.0
All 98.3 100 100 100 6.1 4.1 8.6
rpart
At Least Once 99.0 100 99.9 98.4 18.7 4.4 10.2
At Least Half 86.0 100 99.5 89.4 1.7 0.3 1.6
All 37.7 100 95.4 60.6 0.1 0.0 0.1
Stacked and Weighted
Fastbw
W1 99.7 100 100 100 4.1 3.2 3.8
W2 99.6 100 100 100 2.9 2.3 3.0
W3 99.7 100 100 100 3.8 2.8 3.4
Backward
W1 99.9 100 100 100 23.2 20.4 19.8
W2 99.9 100 100 100 20.4 18.9 16.9
W3 99.9 100 100 100 22.1 20.4 18.8
rpart
W1 84.1 100 99.6 91.5 2.3 0.3 2.6
W2 84.1 100 99.6 91.5 2.2 0.3 2.6
W3 84.3 100 99.6 91.5 2.5 0.3 2.5
Imputation (RF)
Fastbw 100 100 100 100 3.3 4.5 4.5
Backward 100 100 100 100 2.9 2.3 3.0
rpart 94.6 100 99.0 85.2 3.7 1.0 2.9

Table A.5: Scenario 4: Number of times a variable was chosen by a simulation
into the Survival Model (MAR and equal fractions of missing data (10% missing
per variable) and sample size 700). Average complete case sample size is 536.
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Method Bilateral LN Status Metastasis Size Age ER Status Noise
Full (No Missing)
Fastbw 68.9 100 88.9 51.9 4.0 3.5 4.6
Backward 90.4 100 98.4 87.5 17.4 18.0 19.6
rpart 6.3 99.6 29.9 34.1 13.0 2.5 13.1
Complete Cases
Fastbw 2.6 99.9 72.1 20.2 3.2 4.4 2.7
Backward 4.0 100 94.3 59.5 20.3 20.9 20.0
rpart 7.5 96.2 19.3 39.9 20.1 2.3 15.6
Imputed (MICE)
Voting
Fastbw
At Least Once 75.1 100 95.6 71.6 14.3 19.1 11.9
At Least Half 51.0 100 85.4 53.9 4.7 5.4 5.0
All 19.0 99.8 57.6 33.9 0.7 0.6 1.8
Backward
At Least Once 91.1 100 99.3 92.8 46.9 53.7 38.0
At Least Half 77.3 100 96.9 86.4 21.1 25.6 21.7
All 42.2 100 83.4 73.7 8.3 8.0 10.2
rpart
At Least Once 17.6 100 72.2 75.9 48.9 17.5 50.6
At Least Half 5.3 99.2 33.2 34.0 10.1 1.8 10.0
All 0.9 92.9 7.5 7.0 091 0.1 0.6
Stacked and Weighted
Fastbw
W1 46.6 100 81.9 54.2 5.0 5.0 4.9
W2 43.4 99.9 48.9 3.7 3.6 3.2 3.7
W3 44.9 100 80.6 52.4 4.7 4.6 4.1
Backward
W1 74.7 100 96.3 86.8 20.9 23.4 21.0
W2 71.7 100 95.5 85.7 17.6 21.3 18.3
W3 74.0 100 96.1 86.5 19.7 22.9 19.7
rpart
W1 55.9 100 80.5 98.9 97.0 29.1 96.4
W2 55.1 100 79.9 98.7 96.0 28.0 96.0
W3 55.5 100 80.6 98.9 96.7 29.8 96.7
Imputation (RF)
Fastbw 69.9 100 81.3 52.4 4.0 6.9 4.6
Backward 90.2 100 95.8 85.0 20.7 24.1 21.0
rpart 6.4 99.0 21.5 35.6 14.1 3.2 11.6

Table A.6: Scenario 5: Number of times a variable was chosen by a simulation
into the Survival Model (MAR and equal fractions of missing data (10% missing
per variable) and sample size 100). Average complete case sample size is 77.
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Method Bilateral LN Status Metastasis Size Age ER Status Noise
Full (No Missing)
Fastbw 100 100 100 100 1.2 1.8 1.7
Backward 100 100 100 100 16.1 13.8 14.7
rpart 88.7 100 100 82.2 0.3 0 0.3
Complete Cases
Fastbw 100 100 100 100 1.5 2.2 1.5
Backward 100 100 100 100 15.6 14.8 14.2
rpart 78.8 100 87.7 68.4 0.4 0.0 0.1
Imputed (MICE)
Voting
Fastbw
At Least Once 100 100 100 100 7.0 10.7 7.4
At Least Half 100 100 100 100 1.8 2.5 2.1
All 100 100 100 100 0.2 0.1 0.7
Backward
At Least Once 100 100 100 100 34.6 45.5 35.4
At Least Half 100 100 100 100 18.3 17.3 16.0
All 100 100 100 100 6.7 4.2 5.2
rpart
At Least Once 96.7 100 100 95.3 1.6 0.2 1.2
At Least Half 89.4 100 100 85.3 0.2 0.0 0.0
All 70.9 100 98.9 58.1 0.1 0.0 0.0
Stacked and Weighted
Fastbw
W1 100 100 100 100 2.0 1.9 2.0
W2 100 100 100 100 1.2 1.4 1.6
W3 100 100 100 100 1.9 1.7 1.8
Backward
W1 100 100 100 100 17.5 15.5 14.6
W2 100 100 100 100 14.8 13.5 12.4
W3 100 100 100 100 16.3 14.8 13.9
rpart
W1 90.1 100 100 85.3 0.3 0.0 0.1
W2 90.1 100 100 85.2 0.3 0.0 0.1
W3 90.6 100 100 85.6 0.3 0.0 0.1
Imputation (RF)
Fastbw 100 100 100 100 2.8 2.3 2.4
Backward 100 100 100 100 17.8 17.2 17.5
rpart 87.3 100 99.9 81.4 0.1 0.0 0.2

Table A.7: Scenario 6: Number of times a variable was chosen by a simulation
into the Survival Model (MCAR and equal fractions of missing data (10% miss-
ing per variable) and sample size 1000). Average complete case sample size is
729.
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Method Bilateral LN Status Metastasis Size Age ER Status Noise
Full (No Missing)
Fastbw 100 100 100 100 2.3 1.7 1.2
Backward 100 100 100 100 12.7 17.9 14.0
rpart 88.3 100 100 83.7 0.2 0.0 0.1
Complete Cases
Fastbw 100 100 100 100 1.6 2.3 1.5
Backward 100 100 100 100 13.4 17.2 14.8
rpart 35.8 100 26.8 23.5 0.2 0.0 0.0
Imputed (MICE)
Voting
Fastbw
At Least Once 100 100 100 100 10.0 20.7 10.0
At Least Half 100 100 100 100 1.7 4.0 2.2
All 100 100 100 100 0.5 0.4 0.5
Backward
At Least Once 100 100 100 100 44.5 69.3 48.3
At Least Half 100 100 100 100 16.2 21.9 16.6
All 100 100 100 100 4.3 3.4 4.1
rpart
At Least Once 98.2 100 100 97.2 1.8 0.2 2.4
At Least Half 91.0 100 99.7 86.3 0.1 0.0 0.0
All 66.2 100 92.4 51.3 0.0 0.0 0.0
Stacked and Weighted
Fastbw
W1 100 100 100 100 1.4 3.1 2.1
W2 100 100 100 100 0.8 1.3 0.9
W3 100 100 100 100 1.1 2.4 1.7
Backward
W1 100 100 100 100 15.2 18.7 15.0
W2 100 100 100 100 10.9 14.9 10.7
W3 100 100 100 100 13.9 18.2 13.3
rpart
W1 90.3 100 99.3 84.4 0.1 0.0 0.1
W2 90.2 100 99.3 84.4 0.1 0.0 0.1
W3 90.3 100 99.3 84.4 0.1 0.0 0.1
Imputation (RF)
Fastbw 100 100 100 100 2.9 4.3 3.1
Backward 100 100 100 100 16.8 21.9 18.8
rpart 88.8 100 98.4 81.8 0.2 0.0 0.3

Table A.8: Scenario 7: Number of times a variable was chosen by a simulation
into the Survival Model (MCAR and equal fractions of missing data (20% miss-
ing per variable) and sample size 1000). Average complete case sample size is
512.
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Method Bilateral LN Status Metastasis Size Age ER Status Noise
Full (No Missing)
Fastbw 100 100 100 100 2.0 2.2 1.9
Backward 100 100 100 100 15.3 17.0 15.3
rpart 89.1 100 100 85.4 0.0 0.0 0.0
Complete Cases
Fastbw 99.8 100 100 99.1 1.4 1.6 1.9
Backward 100 100 100 99.9 15.1 15.7 15.2
rpart 30.5 99.9 11.0 15.7 0.1 0.0 0.0
Imputed (MICE)
Voting
Fastbw
At Least Once 100 100 100 100 16.7 34.7 17.4
At Least Half 100 100 100 100 3.0 5.7 3.1
All 100 100 100 100 0.2 0.2 0.4
Backward
At Least Once 100 100 100 100 55.0 81.2 55.0
At Least Half 100 100 100 100 19.2 26.7 19.2
All 100 100 100 100 4.1 3.7 3.8
rpart
At Least Once 98.8 100 100 98.7 3.1 1.2 3.4
At Least Half 91.7 100 99.37 88.6 0.0 0.0 0.0
All 57.9 100 78.9 46.7 0.0 0.0 0.0
Stacked and Weighted
Fastbw
W1 100 100 100 100 2.3 4.4 2.8
W2 100 100 100 100 0.4 1.7 0.9
W3 100 100 100 100 1.7 3.1 2.2
Backward
W1 100 100 100 100 17.6 21.1 17.4
W2 100 100 100 100 10.5 14.6 10.6
W3 100 100 100 100 15.4 19.1 15.3
rpart
W1 87.5 100 97.3 83.0 0.0 0.0 0.0
W2 87.3 100 97.3 82.9 0.0 0.0 0.0
W3 87.5 100 97.4 83.2 0.0 0.0 0.0
Imputation (RF)
Fastbw 100 100 100 100 5.5 7.0 5.0
Backward 100 100 100 100 21.6 27.0 21.3
rpart 84.3 100 94.5 83.3 0.3 0.2 0.1

Table A.9: Scenario 8: Number of times a variable was chosen by a simulation
into the Survival Model (MCAR and equal fractions of missing data (30% miss-
ing per variable) and sample size 1000). Average complete case sample size is
343.
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Method Bilateral LN Status Metastasis Size Age ER Status Noise
Full (No Missing)
Fastbw 100 100 100 100 1.9 1.5 2.3
Backward 100 100 100 100 15.8 16.0 18.4
rpart 85.3 100 99.9 87.2 1.4 0.1 1.1
Complete Cases
Fastbw 100 100 100 99.9 1.9 1.3 2.2
Backward 100 100 100 100 16.0 15.6 17.7
rpart 72.4 100 82.2 68.8 2.7 0.2 2.1
Imputed (MICE)
Voting
Fastbw
At Least Once 100 100 100 100 6.9 11.2 7.6
At Least Half 100 100 100 100 2.1 2.2 2.0
All 100 100 100 100 0.6 0.5 0.7
Backward
At Least Once 100 100 100 100 35.7 48.4 36.1
At Least Half 100 100 100 100 17.4 19.2 18.9
All 100 100 100 100 6.4 5.0 7.8
rpart
At Least Once 96.2 100 100 98.6 9.5 1.0 8.1
At Least Half 87.2 100 99.5 89.9 1.0 0.1 0.4
All 64.3 100 93.6 60.2 0.2 0.0 0.0
Stacked and Weighted
Fastbw
W1 100 100 100 100 2.0 2.0 1.9
W2 100 100 100 100 1.3 1.4 1.4
W3 100 100 100 100 1.6 1.7 1.9
Backward
W1 100 100 100 100 16.1 17.5 17.6
W2 100 100 100 100 14.2 15.1 15.6
W3 100 100 100 100 15.6 16.5 16.6
rpart
W1 88.0 100 99.4 94.2 1.6 0.1 1.0
W2 87.9 100 99.4 94.3 1.5 0.1 1.0
W3 88.2 100 99.4 94.2 1.5 0.1 0.9
Imputation (RF)
Fastbw 100 100 100 100 2.5 2.3 2.3
Backward 100 100 100 100 16.4 18.1 18.6
rpart 84.3 100 94.5 83.3 2.2 0.1 1.2

Table A.10: Scenario 9: Number of times a variable was chosen by a simula-
tion into the Survival Model (MCAR and equal fractions of missing data (10%
missing per variable) and sample size 700). Average complete case sample size
is 510.
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Method Bilateral LN Status Metastasis Size Age ER Status Noise
Full (No Missing)
Fastbw 72.2 100 89.6 53.2 3.0 3.0 3.6
Backward 92.8 100 99.0 86.7 16.6 17.9 19.2
rpart 7.1 99.2 30.7 34.0 12.4 2.5 12.2
Complete Cases
Fastbw 50.1 99.7 73.7 37.9 3.8 4.2 3.7
Backward 76.9 100 95.1 74.9 18.8 18.3 18.2
rpart 8.0 94.5 18.6 30.5 12.9 2.2 11.2
Imputed (MICE)
Voting
Fastbw
At Least Once 82.1 100 94.9 67.3 9.6 15.4 11.4
At Least Half 71.6 100 86.2 52.2 3.3 4.3 3.6
All 50.6 100 56.8 32.6 0.5 1.0 1.0
Backward
At Least Once 94.7 100 99.9 92.4 35.7 48.5 35.4
At Least Half 92.2 100 97.6 84.8 19.1 19.6 20.5
All 81.1 100 85.1 72.9 7.7 5.6 7.8
rpart
At Least Once 18.3 99.9 62.4 70.8 48.5 13.7 46.0
At Least Half 7.1 98.9 30.2 35.1 9.6 1.6 8.5
All 2.0 91.9 6.2 6.8 0.8 0.1 0.6
Stacked and Weighted
Fastbw
W1 70.0 100 83.0 51.3 3.3 3.9 3.1
W2 64.2 100 79.4 46.1 2.4 3.4 2.4
W3 68.4 100 82.0 49.4 2.9 3.9 2.9
Backward
W1 92.4 100 96.5 84.1 17.8 19.6 19.6
W2 91.2 100 96.3 82.8 15.7 16.7 17.6
W3 92.2 100 96.5 83.6 17.4 18.6 19.4
rpart
W1 66.2 100 76.9 99.2 96.9 27.1 96.9
W2 65.8 100 76.1 98.8 96.6 25.8 96.4
W3 66.2 100 77.9 99.4 96.7 26.8 96.4
Imputation (RF)
Fastbw 67.9 100 82.5 49.6 3.4 4.7 3.6
Backward 90.7 100 96.4 84.6 19.3 20.0 20.3
rpart 6.8 98.8 23.3 32.5 13.0 3.0 12.1

Table A.11: Scenario 10: Number of times a variable was chosen by a simula-
tion into the Survival Model (MCAR and equal fractions of missing data (10%
missing per variable) and sample size 100). Average complete case sample size
is 72.

165



Appendix A. Appendix

Method Bilateral LN Status Metastasis Size Age ER Status Noise
Full (No Missing)
Fastbw 100 100 100 100 1.3 1.1 2.5
Backward 100 100 100 100 13.8 15.3 16.6
rpart 88.6 100 99.9 82.1 0.1 0.0 0.1
Complete Cases
Fastbw 100 100 100 100 1.3 1.9 2.3
Backward 100 100 100 100 14.2 16.2 16.7
rpart 47.6 100 57.0 43.9 0.2 0.0 0.1
Imputed (MICE)
Voting
Fastbw
At Least Once 100 100 100 100 4.9 7.9 6.2
At Least Half 100 100 100 100 1.3 1.6 3.6
All 100 100 100 100 0.1 0.1 1.2
Backward
At Least Once 100 100 100 100 29.4 42.7 34.0
At Least Half 100 100 100 100 14.9 18.5 17.2
All 100 100 100 100 5.7 5.2 7.9
rpart
At Least Once 97.1 100 100 94.9 0.9 0.1 0.9
At Least Half 90.6 100 99.9 86.0 0.1 0.0 0.1
All 73.0 100 99.1 60.3 0.0 0.0 0.1
Stacked and Weighted
Fastbw
W1 100 100 100 100 1.5 1.3 2.9
W2 100 100 100 100 0.4 0.8 2.2
W3 100 100 100 100 0.9 1.1 2.8
Backward
W1 100 100 100 100 14.0 16.8 16.4
W2 100 100 100 100 11.4 14.6 13.9
W3 100 100 100 100 13.3 16.2 15.6
rpart
W1 90.3 100 99.9 88.4 0.2 0.0 0.1
W2 89.8 100 99.9 88.2 0.2 0.0 0.1
W3 90.1 100 99.9 88.8 0.2 0.0 0.1
Imputation (RF)
Fastbw 100 100 100 100 1.1 2.0 3.0
Backward 100 100 100 100 14.3 17.6 16.5
rpart 89.9 100 99.8 81.5 0.2 0.1 0.1

Table A.12: Scenario 11: Number of times a variable was chosen by a simula-
tion into the Survival Model (MNAR and equal fractions of missing data (10%
missing per variable) and sample size 1000). Average complete case sample size
is 859.

166



Appendix A. Appendix

Method Bilateral LN Status Metastasis Size Age ER Status Noise
Full (No Missing)
Fastbw 100 100 100 100 1.7 2.4 2.4
Backward 100 100 100 100 16.0 14.7 16.5
rpart 89.3 100 99.9 83.7 0.2 0.0 0.2
Complete Cases
Fastbw 100 100 100 100 1.7 2.4 2.4
Backward 100 100 100 100 15.0 17.0 16.0
rpart 11.6 100 13.0 7.0 0.0 0.0 0.0
Imputed (MICE)
Voting
Fastbw
At Least Once 100 100 100 100 8.3 10.9 9.7
At Least Half 100 100 100 100 1.7 2.1 2.5
All 100 100 100 100 0.2 0.2 0.6
Backward
At Least Once 100 100 100 100 38.6 47.7 38.6
At Least Half 100 100 100 100 17.4 19.2 18.5
All 100 100 100 100 4.8 3.6 6.7
rpart
At Least Once 97.1 100 99.9 96.8 2.0 0.0 1.6
At Least Half 90.2 100 99.9 88.1 0.1 0.0 0.1
All 67.9 100 96.4 55.3 0.0 0.0 0.0
Stacked and Weighted
Fastbw
W1 100 100 100 100 1.5 1.9 2.0
W2 100 100 100 100 0.6 0.8 0.8
W3 100 100 100 100 1.3 1.7 1.9
Backward
W1 100 100 100 100 15.8 17.1 16.6
W2 100 100 100 100 11.2 11.9 12.7
W3 100 100 100 100 14.4 16.2 15.5
rpart
W1 85.9 100 99.7 87.8 0.1 0.0 0.0
W2 89.4 100 99.7 87.6 0.1 0.0 0.0
W3 89.6 100 99.7 87.5 0.1 0.0 0.0
Imputation (RF)
Fastbw 100 100 100 100 2.0 3.5 3.0
Backward 100 100 100 100 18.3 19.7 19.2
rpart 88.0 100 99.7 84.0 0.1 0.0 0.1

Table A.13: Scenario 12: Number of times a variable was chosen by a simula-
tion into the Survival Model (MNAR and equal fractions of missing data (20%
missing per variable) and sample size 1000). Average complete case sample size
is 818.
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Method Bilateral LN Status Metastasis Size Age ER Status Noise
Full (No Missing)
Fastbw 100 100 100 100 2.0 1.9 1.7
Backward 100 100 100 100 13.2 17.0 14.3
rpart 89.2 100 100 83.1 0.3 0.0 0.5
Complete Cases
Fastbw 100 100 100 99.6 1.9 2.5 1.5
Backward 100 100 100 100 15.2 15.8 16.0
rpart 16.6 100 11.9 9.1 0.0 0.0 0.0
Imputed (MICE)
Voting
Fastbw
At Least Once 100 100 100 100 13.2 26.4 11.0
At Least Half 100 100 100 100 2.6 3.6 2.4
All 100 100 100 100 0.4 0.0 0.6
Backward
At Least Once 100 100 100 100 47.6 76.6 46.4
At Least Half 100 100 100 100 18.9 23.4 17.8
All 100 100 100 100 4.0 3.3 4.1
rpart
At Least Once 98.1 100 100 96.9 3.3 0.6 1.6
At Least Half 90.4 100 99.7 83.7 0.3 0.0 0.2
All 62.9 100 93.6 47.1 0.0 0.0 0.0
Stacked and Weighted
Fastbw
W1 100 100 100 100 2.0 3.1 1.9
W2 100 100 100 100 0.5 0.9 0.7
W3 100 100 100 100 1.8 2.2 1.6
Backward
W1 100 100 100 100 16.6 19.6 16.3
W2 100 100 100 100 9.4 13.1 9.5
W3 100 100 100 100 14.9 17.6 14.8
rpart
W1 88.2 100 99.7 81.6 0.1 0.0 0.2
W2 87.9 100 99.7 81.5 0.1 0.0 0.2
W3 88.4 100 99.7 81.0 0.1 0.0 0.1
Imputation (RF)
Fastbw 100 100 100 100 3.5 5.2 3.8
Backward 100 100 100 100 19.4 25.0 20.1
rpart 86.5 100 99.0 80.3 0.5 0.0 0.3

Table A.14: Scenario 13: Number of times a variable was chosen by a simula-
tion into the Survival Model (MNAR and equal fractions of missing data (30%
missing per variable) and sample size 1000). Average complete case sample size
is 498.
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Method Bilateral LN Status Metastasis Size Age ER Status Noise
Full (No Missing)
Fastbw 100 100 100 100 1.8 1.7 2.0
Backward 100 100 100 100 16.1 16.9 14.6
rpart 84.1 100 100 82.8 1.3 0.0 1.2
Complete Cases
Fastbw 100 100 100 100 2.0 1.8 1.5
Backward 100 100 100 100 15.8 15.0 15.6
rpart 47.7 100 57.7 43.0 1.0 0.0 1.1
Imputed (MICE)
Voting
Fastbw
At Least Once 100 100 100 100 6.7 8.5 6.4
At Least Half 100 100 100 100 2.2 1.7 1.8
All 100 100 100 100 0.8 0.3 0.6
Backward
At Least Once 100 100 100 100 32.6 41.6 30.7
At Least Half 100 100 100 100 17.0 16.0 17.4
All 100 100 100 100 7.3 4.1 8.1
rpart
At Least Once 95.2 100 100 97.0 7.4 0.6 8.2
At Least Half 85.8 100 100 87.7 0.8 0.2 1.4
All 65.6 100 96.8 57.0 0.0 0.0 0.1
Stacked and Weighted
Fastbw
W1 100 100 100 100 2.1 1.3 2.1
W2 100 100 100 100 1.4 0.7 1.2
W3 100 100 100 100 1.8 1.3 1.6
Backward
W1 100 100 100 100 15.9 14.6 16.2
W2 100 100 100 100 14.3 12.9 14.3
W3 100 100 100 100 15.3 14.4 15.9
rpart
W1 86.8 100 99.9 92.2 1.0 0.2 1.9
W2 86.7 100 99.8 92.1 1.0 0.2 1.7
W3 86.3 100 100 92.3 0.9 0.2 1.9
Imputation (RF)
Fastbw 100 100 100 100 2.2 2.3 1.9
Backward 100 100 100 100 17.6 17.9 17.2
rpart 83.2 100 99.6 84.0 1.1 0.2 2.3

Table A.15: Scenario 14: Number of times a variable was chosen by a simula-
tion into the Survival Model (MNAR and equal fractions of missing data (10%
missing per variable) and sample size 700). Average complete case sample size
is 603.
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Method Bilateral LN Status Metastasis Size Age ER Status Noise
Full (No Missing)
Fastbw 70.4 100 88.4 53.5 4.0 3.8 3.0
Backward 91.8 100 98.3 89.4 19.1 19.1 17.3
rpart 5.8 99.0 31.3 35.5 12.8 3.2 13.0
Complete Cases
Fastbw 64.9 100 82.5 45.6 2.9 3.6 3.7
Backward 86.4 100 97.3 84.6 18.7 18.8 19.7
rpart 6.4 95.2 19.6 30.6 10.3 1.3 9.5
Imputed (MICE)
Voting
Fastbw
At Least Once 80.0 100 93.2 67.0 8.4 11.7 8.7
At Least Half 70.9 100 85.9 53.3 4.1 5.2 4.6
All 55.5 100 65.5 37.1 1.8 1.1 1.5
Backward
At Least Once 93.3 100 99.2 92.3 31.3 41.5 29.4
At Least Half 91.4 100 97.9 88.9 19.8 20.4 17.7
All 84.0 100 88.6 78.2 9.3 8.1 9.7
rpart
At Least Once 17.0 99.9 58.9 70.5 43.0 13.2 43.6
At Least Half 6.5 99.2 32.4 34.5 9.8 1.8 10.1
All 1.6 94.1 8.5 11.1 0.8 0.6 1.6
Stacked and Weighted
Fastbw
W1 69.9 100 83.4 53.2 3.9 5.0 4.1
W2 64.5 100 80.7 47.3 3.5 3.9 3.3
W3 68.8 100 83.0 52.0 3.8 4.7 4.0
Backward
W1 91.8 100 97.7 89.0 19.2 19.2 18.1
W2 91.4 100 97.2 87.2 16.6 17.5 16.0
W3 91.6 100 97.7 88.6 18.6 18.9 17.3
rpart
W1 65.1 99.9 79.9 98.7 96.0 29.8 97.0
W2 64.6 99.9 79.3 98.4 94.9 27.2 96.1
W3 65.2 99.9 80.4 98.8 95.6 29.5 96.8
Imputation (RF)
Fastbw 69.7 100 84.3 52.8 3.8 5.0 3.9
Backward 90.3 100 97.9 88.6 18.6 21.0 18.2
rpart 6.4 99.5 28.0 37.6 13.5 3.4 13.9

Table A.16: Scenario 15: Number of times a variable was chosen by a simula-
tion into the Survival Model (MNAR and equal fractions of missing data (10%
missing per variable) and sample size 100). Average complete case sample size
is 87.
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Figure A.6: Power and type 1 error for scenario three, MCAR, sample size 1000

and 10% missing in each variable.
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Figure A.7: Power and type 1 error for scenario four, MAR, sample size 700

and 10% missing in each variable.
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Figure A.8: Power and type 1 error for scenario five, MAR, sample size 100 and

10% missing in each variable.
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Figure A.9: Power and type 1 error for scenario six, MCAR, sample size 1000

and 10% missing in each variable.
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Figure A.10: Power and type 1 error for scenario seven, MCAR, sample size

1000 and 20% missing in each variable.
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Figure A.11: Power and type 1 error for scenario eight, MCAR, sample size

1000 and 30% missing in each variable.
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Figure A.12: Power and type 1 error for scenario nine, MCAR, sample size 700

and 10% missing in each variable.
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Figure A.13: Power and type 1 error for scenario ten, MCAR, sample size 100

and 10% missing in each variable.
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Figure A.14: Power and type 1 error for scenario eleven, MNAR, sample size

1000 and 10% missing in each variable.
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Figure A.15: Power and type 1 error for scenario twelve, MNAR, sample size

1000 and 20% missing in each variable.
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Figure A.16: Power and type 1 error for scenario thirteen, MNAR, sample size

1000 and 30% missing in each variable.

● ●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Scenario 14

Type 1 Error

P
ow

er

● Full
Complete Case
Voting At Least One
Voting At Least Half
Voting All
W1
W2
W3
RF

Backward
Stepwise
Trees

Figure A.17: Power and type 1 error for scenario fourteen, MNAR, sample size

700 and 10% missing in each variable.
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Figure A.18: Power and type 1 error for scenario fifteen, MNAR, sample size

100 and 10% missing in each variable.
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A.3 Kaplan Meier Estimates for DFS and OS
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A.4 Checking the Proportional Hazards Assump-

tions

To examine the proportional hazards assumptions, the Schoenfeld residuals were

calculated for each of the predictors separately and tested for correlation with

time. Also plots of the smoothed trends in the residuals are given in Figures

A.31 and A.32. The plot function for cox.zph objects uses restricted cubic

splines to smooth the relationship.

For the DFS model, Bilateral, Lymph Node status, Metastasis and UICC

significantly changes over time Table A.17. A graphical examination of the

trends (Figure A.31) doesn’t find anything interesting. We are going to ignore

the possible increase/decrease in effects over time. If the assumption is violated,

a more accurate model could be created including an interaction of each of the

predictors with time. For the OS model, there is no predictor which changes

significantly over time and the global test has a p-value of 0.191.

rho chisq p-value

Bilateral -0.1589 5.752 0.017

Mitotic Count -0.0604 0.894 0.344

Lymph Node Status 0.1854 8.371 0.004

Metastasis -0.1748 7.106 0.008

UICC -0.1557 5.714 0.017

GLOBAL NA 24.099 < 0.001

Table A.17: Checking the PH assumption by testing the correlations of the

Schoenfeld residuals for each predictor with time for the DFS final model.

rho chisq p-value

Mitotic Count 0.0709 0.342 0.559

Metastasis -0.1613 1.654 0.198

UICC -0.1429 1.351 0.245

GLOBAL NA 4.755 0.191

Table A.18: Checking the PH assumption by testing the correlations of the

Schoenfeld residuals for each predictor with time for the OS final model.
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Figure A.31: Raw and spline smoothed scaled Schoenfeld residuals for each of

the individual predictors.
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Figure A.32: Raw and spline smoothed scaled Schoenfeld residuals for each of

the individual predictors.
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