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Abstract—The structure of virtual organizations presents a 

significant challenge to the traditional methods of distr ibuted 
data mining that are based on ensemble learning. The 
heterogeneity that arises from different contexts mitigates 
against the chance that preconditions for algorithms’  success 
are satisfied. This paper describes an approach that aims to 
resolve this issue. Focusing on a key business problem – the 
prediction of customer behaviour – it presents a distr ibuted 
multi-agent framework that deals with context heterogeneity via 
hierarchical modeling. The main elements of this work are to (1) 
provide a solution to the contextual heterogeneity problem in 
distr ibuted data mining and (2) design and implement a hybrid 
distr ibuted system for the proposed distr ibuted data mining 
approach. 
 

Index Terms—Multi-Agent Systems, Distr ibuted Data 
Mining, Hierarchical Modelling, Virtual Organizations 
 

I. INTRODUCTION 

The aim of this research is to extend distributed data 
mining techniques so that they can be successfully applied to 
common business problems that arise in a virtual 
organization, which has been described as “a temporary 
network of companies that come together quickly to exploit 
fast changing opportunities… with each partner contributing 
what it’s best at”  [1]. A feature of such “temporary networks 
of companies”  is that they are likely to have significant 
contextual and implementation differences, and that their 
desire to cooperate with each other will be contingent on not 
having to expose their detailed business data. The most recent 
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literature in distributed data mining highlights that many of 
the key algorithms are designed based on ensemble learning. 
As discussed below, while such approaches can yield proven 
results, a problem arises when the contextual heterogeneity 
exists across the data sources. 

 

II. REVIEW OF DISTRIBUTED DATA MINING 

Distributed data mining (DDM) accepts that data may be 
inherently distributed among different loosely coupled sites 
that are connected by a network, and that the sites may have 
heterogeneous data. It offers techniques to discover new 
knowledge through distributed data analysis and modeling 
using minimal communication of data [2]. 

A. Related Work 

Distributed data mining research classifies existing DDM 
approaches according to how the data are distributed [3, 4]. 
Within the context of relational database schemata, data 
distribution is classified into two main kinds: homogeneous 
schemata and heterogeneous schemata. Homogeneous 
schemata means that the same set of attributes can be 
obtained across distributed data sites, while heterogeneous 
schemata refers to different sets of attributes across 
distributed databases, usually being restricted to a simple 
scenario where every participating table shares a common key 
column that links corresponding rows across the tables. Most 
existing DDM work considers homogeneous schemata and 
some deals with heterogeneous schemata. 

In the scenario being considered in this paper, the same set 
of attributes can be obtained from distributed databases, so 
here we review only the approaches for distributed data with 
homogeneous schemata. 

Most DDM algorithms for regression or classification have 
their foundations in ensemble learning [4]. One notable 
successful adoption of ensemble learning in a distributed 
scenario is the meta-learning framework. It offers a way to 
mine classifiers from homogeneously distributed data. In this 
approach, supervised learning techniques are first used to 
build classifiers at local data sites; then meta-level classifiers 
are learned from a data set generated using the locally learned 
concepts. Meta-learning follows three main steps. The first is 
to generate base classifiers at each site using a classifier 
learning algorithms. The second step is to collect the base 
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classifiers at a central site, and produce meta-level data from 
a separate validation set and predictions generated by the base 
classifier on it. The third step is to generate the final classifier 
(meta-classifier) from meta-level data via a combiner or an 
arbiter.  

Other two well-known techniques within the meta-learning 
paradigm are distributed learning with knowledge probing 
and distributed learning in data fusion systems [3]. Both of 
these approaches produce a final meta-level descriptive model 
as its global classifier. In contrast, the final classifier of the 
meta-learning approach includes both a meta-classifier and 
local (base) models. 

Since all the above techniques have their foundations in 
ensemble learning, they inherently adopt its requirements for 
success, which are discussed in the following sub-section. 

One notable DDM technique that is outside of the meta-
learning framework is Páircéir’s work [5]. This approach uses 
statistical hierarchical modeling to discover multi-level 
association rules and exceptions over dispersedly hierarchical 
data. It is not based on ensemble learning. We mention this 
approach because our approach will also use statistical 
hierarchical modeling; however, our target is to address 
context heterogeneity. 

B. Condition for Success 

Ensemble learning is a well-established approach [6]. Its 
idea is to integrate multiple models for the same problem. Its 
main goal is to obtain a better composite global model, with 
more accurate and reliable estimates or decisions. 

A learning set of L  consists of data 
},...,1   ),,{ ( Nny nn =x  where the y s are either class labels 

or a numerical response. A learning procedure uses this 
learning set to form a predictor ),( Lxj . If there is a 

sequence of learning sets },...,1   ,{ Kkk =L each consisting 

of 
kN  independent observations from the same underling 

distribution P  as L , the mission of ensemble learning is to 
use the },...,1   ,{ Kkk =L  to get a better predictor than the 

single learning set predictor ),( Lxj . When y  is numerical, 

it is a regression problem. When y  represents a class 

},...,1{ Jj ˛ , it is a classification problem. The simplest 

ensemble combining strategy is the combiner, where the 
ensemble is determined solely from the outputs of all the 
individual learners via (weighted) averaging or majority vote. 
Arbitration is a more complex combining method [6, 7]. 

A necessary and sufficient condition for an ensemble of 
learners to be more accurate than the average performance of 
its individual members is that the learners are accurate and 
diverse [8, 9]. 

Meta-learning based DDM techniques directly extend 
ensemble approach to distributed scenarios [4]. Different 
models are generated at different sites and ultimately 
aggregated using ensemble combining strategies. Thus the 

requirements for success are the same: base learners 
generated at different sites must be accurate and diverse. In 
fact, the requirement of diverse base models is always 
satisfied in distributed scenarios. The reason is that the 
learning sets },...,1   ,{ Kkk =L  locating at different sites 

naturally exist and are different. So base learners produced at 
different sites are always diverse even with the same base 
learning algorithms. The requirement of accurate base 
learners means that each base learner is a representative of 
the unknown and real model based on the whole population. 
This implicitly requires that the learning sets 

},...,1   ,{ Kkk =L  are homogeneously drawn from the 

underling population and the difference between them is only 
random sampling error. From a statistical prospective, data 
are identical and independent distributed (IID) [10, 11] with 
mean q  and variance 2s , i.e. 

 

KkPy
IID

ik ,...,1      ),(~ 2 =sq  (1) 

 
In order to obtain success, existing meta-learning based 

approaches also implicitly assume that the distributed data are 
IID [12]. In the context of virtual organizations, the validity 
of this assumption needs to be further explored. 

C. Limitation of the State of the Art for Our Scenario 

We apply the concept of a virtual organization to a loosely 
coupled business of retailers who may decide to share 
information for their mutual benefit, where within this loosely 
coupled organization, each shop stores detailed consumer and 
transaction data at its own site. We will perform consumer 
behavior analysis on the entire virtual organization by 
learning consumer shopping patterns based on data located at 
various dispersed companies. The business situation is that 
there is a business with multiple shops each mailing different 
catalogs to a unified consumer base. The shops sell sets of 
products with some overlap. After 36 months business, the 
organization would like to build consumer behavior models 
(for example, how much money a consumer spends on 
average) over data located at different shops, and then use the 
model to predict its consumers’  future behavior. 

Is it appropriate for data distributed in a virtual 
organization such as our scenario to be assumed IID? Or can 
existing meta-learning based DDM techniques be successfully 
used in our scenario? We discuss this question from four 
aspects. 

Firstly, background of data generation: in original 
applications of ensemble learning, the size of the learning 
data set L  is limited. In order to get more accurate results, 
the sequence of learning sets },...,1   ,{ Kkk =L  is generated 

by random sampling over L . Thus each element of 
},...,1   ,{ Kkk =L  can be regarded as homogeneously drawn 

from the underlying distribution P  as L  because the 
difference between them is only the random sampling error. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

3

So it is reasonable to assume the data are IID. But in 
distributed scenarios, different sites store their private data 
locally, that is, if we have K  sites, then the sequence of 
learning sets },...,1   ,{ Kkk =L  naturally exist. The overall 

learning set is assumed obtained by 
kLL

�

= . In this case, if 

and only if all the sites are completely identical, }{ kL  can be 

viewed homogeneously drawn from the underlying 
distribution P . Existing DDM approaches assume that all the 
sites are homogeneous and context heterogeneity is 
negligible. But unfortunately, it is difficult for us to assume 
that various companies within a virtual organization are 
homogeneous. In fact, heterogeneity of different sites is often 
the rule rather than the exception, and frequently the 
available predictor variables do not “explain”  this 
heterogeneity sufficiently [12]. In our application scenario, 
different shops adopt different business policies, sell different 
products and have different price standards. All these context 
heterogeneities definitely influence consumers’  purchase 
behavior. Consumers within a shop behave more similarly to 
each other than those belonging to different shops. So in our 
scenario the distribution is a part of semantics [12]. It is not 
appropriate for us to neglect the inherent context 
heterogeneity and assume that distributed data are IID. 

Secondly, accuracy of base learners: since there is inherent 
context heterogeneity, it is also difficult for us to make sure 
that each base learner is a representative of the real behavior 
model of all consumers from various shops, even though the 
base learner is accurate at the site where it is created. The 
more variance the context has, the less accuracy can be 
obtained by using a base learner to represent the real model. 
If base learners are not accurate, the accuracy of the final 
ensemble of them is surely doubtful. 

Thirdly, consideration of the goal of a virtual organization: 
in our scenario, the main target of each member of the virtual 
organization is to achieve benefit by sharing its information. 
Every shop expects that it can get more accurate results if it 
uses a model based on overall data rather than one based only 
on its own data. Each shop also understands that there is 
context heterogeneity. The difficulty is that the shops do not 
know whether the heterogeneity is big enough to decrease the 
accuracy of the final model. If it is, then they cannot get the 
benefit of sharing information. 

Fourthly, features of context heterogeneity: in practice, 
most of the sources of context heterogeneity are immeasurable 
or unobservable, and available data sets usually do not record 
them. As in our scenario, there is no one attribute to indicate 
the source or measure the difference. What we know is that 
different shops have different catalogs, sell different products 
and adopt different policies. The context heterogeneity is 
caused by the combined effect of all these known and any 
other possible unknown issues. It is also difficult for us to 
measure the known issues together or separately. 

Based on the above discussion, it is our view that existing 
meta-learning based DDM techniques are not suitable for our 

scenario. We need a new technique that can deal with 
unobservable and immeasurable context heterogeneity 
explicitly in distributed environment. We term this context-
based distributed data mining. 

 

III. OUR APPROACH 

To solve our problem, we need an approach that can 
explicitly address context heterogeneity. 

A. Towards Context-based Distributed Data Mining 

In statistical meta-analysis, a popular way to model 
unobservable or immeasurable context heterogeneity is to 
assume that the heterogeneity across different sites is random. 
In other words, context heterogeneity derives from essentially 
random differences among sites whose sources cannot be 
identified or are unobservable [11]. Distributed data across 
various sites having randomly distributed context 
heterogeneity is often regarded as conditional IID [13]. 

The above analysis leads to a hierarchical model which 
describes context heterogeneity with mixture models and 
employs latent variables in a hierarchical structure [13, 14]. 

Assuming that the distribution of context heterogeneity is 

1P  with mean q  and variance 2t , data kiy   at k th site has 

distribution 
2P with mean 

kq  and variance 2s , then the 

hierarchical model of distributed data is: 
 

KkPy

P

k

IID

kik

IID

k

,...,1   ),(~)|(  :levelcontext Within 

),(~  :level contextsBetween 

2
2

2
1

=sqq

tqq
(2) 

 
When 02 =t , (2) will be the same as (1). So a distributed 

problem with negligible context heterogeneity is a special 
case of the generic situation. 

In our scenario, we use the most common and simplest 
format of (2) to model how much money a consumer spends 
on average at every purchase: 

 

KkNy

N

k

IID

kik

IID

k

,...,1   ),(~)|(  :level shopWithin 

),(~  :level shopsBetween 

2

2

=sqq

tqq
 (3) 

 
In (3) (.)N  means normal distribution. If 

kt  is the random 

sample error of context level and 
ike  is the random sample 

error within k th site, (3) can be rewritten as: 
 

),0(~

),0(~
2

2

s

t

q

Ne

Nt

etety

ik

k

ikkikikkik ++=++= �x
 (4) 
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B. DISTRIBUTED HIERARCHICAL MODELLING 

Once the hierarchical model is formulated as (4), the main 
task of data mining is model fitting, i.e. calculating the 
parameters ),,( 22 st

�

. 

The traditional and most popular hierarchical model fitting 
is based on maximum likelihood via iterative generalized 
least squares (IGLS) [15, 16]. IGLS is a sequential refinement 
procedure based on GLS estimation. For models such as (4), 
assume residual matrix }{21 kik te +=+= EEE  then its 

variance matrix is )()( 221121
TT EE EEEEVVV +=+= . If 

V  were known, and X  is matrix of 
ikx , Y  is matrix of 

iky , then � could be estimated by GLS: 

 
)()( 111 YVXXVX

� ---= TT  (5) 

 
 If �  were known, the estimation of random effects matrix 

*�

 could be obtained by GLS: 

 

)()( *1**1*1**

2

2
* YVZZVZ

� ---=
��

	


��

= TT

s
t  (6) 

 
In (6), *Z  is the design matrix for random effects 

parameters, vec(.) is the vector operator of matrix, and 
1** , -VY can be obtained from: 

 

111*

* ]))({ ()
~~

(
--- ˜=

--==

VVV

X 
Yx 
YYYY TT vecvec  (7) 

 
Staring with an initial estimate of the fixed effects �  from 

ordinary least squares, IGLS iterates between (5) and (6) to 
convergence, which is judged to occur when two successive 
sets of estimates differ by no more than a given tolerance (on 
a component-by-component basis). 

According to the block diagonal feature of the variance 
matrix structure [16, 17], we have: 

 

�

�

=

--

=

--

---

=

=

=

K

k
kk

T
k

T

K

k
k

T
k

T

TT

1

11

1

11

111 )()(

YVXYVX

XVXXVX

YVXXVX
�

 (8) 

 

�

�

=

--

=

--

---

=

=

=

K

k
kk

T
k

T

K

k
kk

T
k

T

TT

1

*1***1**

1

*1***1**

*1**1*1*** )()(

YVZYVZ

ZVZZVZ

YVZZVZ
�

 (9) 

 

In (8) and (9), K  is the total number of sites (shops), 
kX  

is the matrix of )|( kikx  , and so on for the other variables. 

Thus each site contributes its component to the total matrix. 
In this case, no detailed YX,  needed to be transferred. Only 

the values of the format 
kk

T
k CBA 1-  are required to be shared. 

This coincides with the constraint that detailed data are not 
allowed to be exposed.  

Thus the whole algorithm can be divided into a central 
subtask: 

 

2
1

1

1

LLM

LL

-

=

=

= �

K

k
k  (10) 

 

and local subtask: 

 

kk
T
kk CBAL 1-=  (11) 

 

Fig. 1 shows the flowchart of our distributed IGLS. 

Fig. 1.  Flowchart of distributed IGLS 

 
Therefore, our approach has the following three key 

attributes which are required for a successful DDM algorithm 
[4]: 

•  It can be applied in a parallel manner over a group of 
distributed data sets. 

•  It provides an architecture to combine local model 
components. 

•  It minimizes data transfer. 
 

IV. SYSTEM ARCHITECTURE & IMPLEMENTATION 

In order to prove that our approach is feasible in distributed 
environment such as virtual organizations, a hybrid DDM 
system has been designed and implemented, which combines 
both client/server (CS) and agent-based architectural models. 

A. Overall Architecture 

Fig. 2 shows the architecture of our hybrid system which is 

 
start 

Converge 

Set V  

Central task of �  

Local task of �  

Local task of *�

 

Central task of *�

end 

N 

Y 

Central Site Local Site 
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built with the ZEUS Toolkit [18]. The whole system consists 
of one central site (organization site) and several local sites 
(sites of individual shops). Detailed consumer and transaction 
data are stored in DBMS (MS Access) of local sites. Each 
local site has at least one agent that is a member of the 
organization. The connection between a local agent and its 
local DBMS is through Java ODBC. There are three agents at 
the central site: the agent name server (ANS), the Manger 
and the Miner. 

Fig. 2. Architecture of hybrid distributed data mining system 

 
The basic model of our system is a multi-agent system. 

Routine communication, registration and task planning are 
done by local agents, the ANS and the Manager. DDM tasks 
are done through the CS model by the Miner (mining server) 
and local agents (mining clients). 

Our hybrid structure adopts the advantages of both the CS 
model and agent-based model [3]. There is a dedicated data 
mining server in our system, which has the ability to handle 
resource intensive data mining tasks. With agent technology, 
our system is being able to address the specific concern of 
increasing scalability and enhancing performance by moving 
code such as loading algorithms objects instead of data and 
thereby reducing the communication overhead. 

B. Agents 

There are three kinds of agents in our system: utility 
agents, a central task agent and local task agents. 

1) Utility Agent 
The ANS and the Manager are utility agents. The ANS 

serves as the name server of the whole multi-agent system. It 
provides a directory service (Address Books), in which each 
directory entry contains the Address information (agent 
name, host IP address, socket port number for receiving 
communication) about each agent in the system. The 
Manager plays the role of a facilitator. It provides a directory 
service in which each directory entry contains the abilities of 
each agent in the system. It coordinates cooperation and task 
planning of the system. A DDM task must be first planned by 
the Manager before it is started. All utility agents are just 
used by the agent-based model. They do not play any roles in 
the CS model. 

2) Central Task Agent 
The Miner is a central task agent. In the agent-based 

model, it is a generic task agent located at the central site. 
Once a DDM task is planned, the Miner will start the task 
after being informed by the Manager. In the CS model, it is a 
dedicated data mining server. It hosts computing resources 
such as various kinds of data mining algorithms and 
strategies. 

3) Local Task Agent 
All local agents are local task agents. In the agent-based 

model, a local agent is a generic task agent located at a local 
site. It can submit its data mining request to the Manager. It 
can also response to data mining requests of other local 
agents through the Manager. In the CS model, each local 
agent serves as a data mining client. According to the data 
mining sub-task issued by the Miner, a local agent retrieves 
its local database, performs calculations and returns its results 
to the Miner. 

C. Ontology 

The ontology in our system, shown in Fig. 3, is domain 
specific and consists of registry, mining task and model 
vocabularies. Concepts in the registry vocabulary are used for 
system configuration. “Agents”  means an agent logs into the 
system, while “Exit”  means an agent logs out. The mining 
task vocabulary is used to set up data mining tasks in the 
system. One task is related with one “Process” . One data 
mining “Request”  and at least one “Reply”  for that request 
are preconditions of setting up one DDM task. In the model 
vocabulary, “Model”  means the final result of one DDM task. 
It consists of two kinds of “Attribute” : independent and 
dependent attributes. “Hierarchy”  refers to the levels of the 
model. All the concepts and their attributes are list in Table I. 

Fig. 3. System ontology 

 
TABLE I 

CONCEPTS AND ATTRIBUTES OF ONTOLOGY 

Vocabulary Concept Attribute 
Registry Agents Name, host, port, description 
 Exit name 
 Request Agentname, model, candidateno 
Mining Task Reply Requestid, participant, hierarchy 
 

Process 
Originator, participant, model, 
hierarchy,status,result,id 

 Hierarchy Unit, unitnumber, level 
Model Attribute Name, level 
 Model Type, xattribute, yattribute 

 

 

Manager 

Miner 

ANS 

Agent #1 DB #1 

Local Site #1 

Central Site 

CS model 
Agent-based model 

Agent #2 DB #2 

Local Site #2 

Agent #N DB #N 

Local Site #N 

Ontology 

Registry Vocabularies 

Mining Task Vocabularies 

Model Vocabularies 

Agents Process 
Model Exit 

Request Reply Hierarchy Attribute 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

6

D. Communication Mechanism 

There are two kinds of communication mechanism in our 
system: messages for the agent-based model and RMI for the 
CS model. The message mechanism is the inherent 
communication mechanism of ZEUS agents [18]. With each 
message communicated as a sequence of ASCII characters, 
communication between ZEUS agents is via point-to-point 
TCP/IP sockets. The RMI mechanism is only for the Miner 
and local agents when they are doing DDM tasks. In our CS 
model, the Miner is a dedicated data mining server that hosts 
computing resources. Local agents are data mining clients 
that host distributed data sets. Through dynamic code 
loading, the Miner issues subtasks to local agents by 
transmitting objects that encapsulate data mining algorithms. 
Local agents download the code of that object, run it and 
retrieve the local database if required. When local agents 
finish their data mining subtasks, the results are returned 
back to the Miner. Thus DDM is realized without transferring 
local data sets from clients (local agents) to the server (the 
Miner). 

Fig. 4. RMI Communication between the Miner and one local agent 
 

Fig. 4 shows the RMI communication mechanism between 
the Miner and one local agent. The circled numbers indicate 
time order. The Miner creates one thread for RMI 
communication with each local agent. For an example, if 
there are three local agents to participate in DDM task A, the 
Miner will start three threads for the RMI communication. 
All the three threads will terminate when task A is 
completed. This approach allows the Miner to issue subtasks 
to more than one local agent simultaneously so that the local 
subtasks can be executed in parallel. The waiting time that 
the Miner needs for all local results is 

 

agent localkth by subtask  local excute  to  time:

}max{_

k

kwaitMiner

T

TT =  (12) 

 
If all local agents reside in different hosts, every one of 

them will create a RMI registry on each host. If the agents are 
in the same host, there will be only one RMI registry created. 

E. Dynamic Behavior of System 

To explain how our system works, three main procedures 
need to be introduced: system initialization, DDM task 
planning and distributed data mining. 

 
1) System Initialization 

Consider a small agent society consisting of two local 
agents and the three central agents. The interactions that 
occur between them at start-up are shown in the interaction 
diagram of Fig. 5. It shows how the agents (the vertical 
dashed lines) interact with each other (shown by horizontal 
arrows). All interactions are achieved through the message 
passing mechanism. 

 
Fig. 5. An interaction diagram of a newly created agent society 

 

The ANS is the first agent to start up. Then the Manager 
and the Miner start up and get their address from the ANS. 
After that the Miner logs on to the Manager. So all agents at 
central site are ready. Local agents register to the ANS one by 
one and then log on to the Manager. Thus the whole system is 
started up. 

 
2) DDM Task Planning 

DDM task planning is realized by negotiation between the 
Manager and local agents through the message passing 
mechanism. 

Suppose there are four local agents in the system as in 
Fig.6. According to its own requirement, Agent A sends a 
request to the Manager to inform that it would like to do data 
mining with other agents in the organization. Agent A also 
needs to give information of model definition (dependent and 
independent attributes, attribute type (numeric or categorical), 
model type (linear or nonlinear) with its request. When the 
Manager receives the request from agent A, it multicasts the 
request to all other local agents (Agent B, Agent C and Agent 
D) to ask them if they would like to participate in the DDM 
task. When the local agents receive the request from the 
Manager, each of them checks their local database according 
to the following criterion: is the schema of my database 
compatible with the model to be built (the same attributes of 
the same level, the same type)? 
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Fig. 6. Negotiation diagram of a DDM task planning 

 
If the answer is YES, the local agent replies to the 

Manager and adds its name to the participant list of the 
request (Agent B and Agent C). Otherwise, the agent tells the 
Manager that it will not participate (Agent D). When the 
Manager receives replies from all the agents (Agent B, C and 
D), it sends a message to Agent A to inform it that its request 
has been approved. At the same time the Manager informs 
the Miner that a request for a DDM task is approved. Detailed 
information for the task such as model definition, originator 
(agent who sends the request) and participants (agents who 
agree to attend) is also sent to the Miner. The Miner is then 
responsible for completing the task, while the Manager 
continues to plan future DDM requests. 

This approach allows the Manager to concentrate on 
organization management and DDM task planning while the 
Miner focuses on executing tasks. If no other agent 
participates in a certain task, the Manager informs the 
originator that no others will attend its DDM task. The task is 
then done only by its originator and the Miner.  

 
3) Distributed Data Mining 

When the Miner receives the message that the DDM task is 
approved, it begins to execute it. The whole process shown in 
Fig. 7 consists of three steps: prepare, process and end. 

a) Prepare step 

At this step, the Miner makes itself, the originator and all 
participants ready for the DDM task. First the Miner sends 
messages to the originator and all the participants to ask them 
get ready for the task. When the originator and the 
participants receive the Miner’s message, each one will check 
whether any RMI registry exists on its host. If no registry 
exists, it will create a new registry and register its remote 
services to the registry. Otherwise it will register its remote 
services to the existing registry directly. Then each of them 
sends a message to the Miner to inform that it is ready. After 
being informed that the originator and all the participants are 
ready, the Miner starts a thread for the mining task and 

chooses data mining algorithms according to the model 
requirements. For each DDM task, the Miner creates a thread 
for it. The thread terminates when its associated task is 
finished. 

Fig. 7.  Process diagram of a distributed data mining task 

 

b) Process step 

At this step, the Miner and relating local agents are in the 
CS model and all interaction between the agents are through 
the RMI mechanism. After choosing the appropriate DDM 
algorithm, the Miner starts one sub-thread for each related 
local agent. That means if there are four local agents for one 
task, the Miner will creates four sub-threads simultaneously, 
one for each local agent. Each sub-thread looks up its relating 
local agent’s RMI registry and gets the reference of the 
relating remote service, then goes to sleep. Meanwhile the 
main DDM task thread runs the DM algorithm. During the 
execution of the algorithm, the main thread divides its task 
related to distributed data sets into several local subtasks and 
awakes all the sub-threads to let them launch the subtask on 
their related local agents. When all local results are returned 
to the main thread, the sub-thread goes back to sleep, and the 
main thread continues executing its central task. The process 
of subtask executing is done several times until the algorithm 
converges. When the algorithm execution is completed, the 
main thread terminates all its sub-threads. Then the Miner 
proceeds to the end step. 
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c) End step 

In this step, the Miner stops its main thread of the finished 
DDM task and sends the mining results to the originator and 
all the participants of the task. Meanwhile it informs the 
Manager that the task is finished. All these interaction are 
done through the message mechanism. When local agents get 
the mining results, they disable their remote services relating 
to the finished DDM task. 

 

V. RESULTS 

We have applied our context-based DDM approach to data 
sets that consists of detailed information of consumers from a 
group of individual shops [19]. Each data set stores detailed 
data of consumers within one shop. The information includes 
life-to-date orders, money spent and items bought for each 
consumer; recency of the first and latest purchases for each 
consumer; payment methods; very minimal demographics of 
each consumer. The number (Nk) of consumers within each 
individual shop (k) is listed in Table II. 

 
TABLE II 

CONCEPTS AND ATTRIBUTES OF ONTOLOGY 

k 1 2 3 4 5 6 7 8 9 
Nk 767 1503 989 2181 1678 1271 3201 2745 2566 

 
We test our approach and system on a distributed 

regression problem. For each shop, we randomly separate its 
data into two sets: a training set with 2/3 of the original data 
and a test set with 1/3 of the original data. Since the 
distribution of the response variable (average amount of 
money spent by a consumer per purchase) of every shop is 
strongly skewed, we normalize the distribution before data 
mining. 

A. Quantity of Context Heterogeneity 

The task of model learning is done based on the distributed 
training data sets. By distributed hierarchical modeling, we 
obtain a null model, which contains only the response 
variable and no explanatory variables other than an intercept. 
The null model provides an initial estimate for the quantity of 
context heterogeneity as in Table III: 

 
TABLE III 

INITIAL ESTIMATION  

Iteration 2s  2t  22 ts +  
)/( 222 tst +

 

6 0.50 0.16 0.66 24% 

 
From Table III, we have the result that 24% of the 

difference of average money spent is caused by context 
heterogeneity. From the points of view of statistics and 
practice, this level of context heterogeneity is medium [11]; it 
is not low enough for us to neglect. This demonstrates our 
idea that in our domain of virtual organizations, context 

heterogeneity does exist across distributed sites and its 
quantity is not small enough for us to neglect.  

Through manually selecting explanatory variables, we get 
an optimal hierarchical model based on maximum likelihood 
criterion as shown in Table IV: 

 
TABLE IV 

OPTIMAL ESTIMATION  

Iteration 2s  2t  22 ts +  
)/( 222 tst +

 

6 0.24 0.12 0.36 33% 

 
Comparing to the initial estimation, the total variance has 

been reduced 45%, but the proportion of variance caused by 
context heterogeneity becomes higher (from 24% to 33%). 
That highlights the fact that existing variables cannot explain 
the context heterogeneity sufficiently.  

B. Prediction 

The task of prediction is done over the distributed test data 
sets. With the optimal hierarchical model, we obtain the 
predicted context level residual 

kt  of k th shop as shown in 

Fig. 8. 
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Fig. 8. Predicted context-level residuals of all the shops 

 
From Fig. 8 we know that context heterogeneity among 

shops 1, 2, 6, 7, 8 and 9 is relatively small. But shops 3, 4 and 
5 have relatively high context heterogeneity. 

To evaluate the performance of our approach, we compare 
it with a meta-learning based technique on our data: 
neglecting the context heterogeneity, the base learners are 
linear regression models and the ensemble is the simple 
average of all the base learners. The distributed training data 
sets and testing data sets are the same as those used in our 
context-based DDM approach. The comparison is shown in 
Fig. 9. 

From Fig. 9, we can see clearly that our context-based 
approach has an advantage over the meta-learning based 
approaches on prediction accuracy, particularly for those 
shops with higher context-level residuals. This also shows 
that the limitation of existing meta-learning approaches is 
most severe when context-level residual is relatively high. 
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Fig. 9. Accuracy of prediction 

 
Let us consider Shop 6 briefly. Using our context-based 

DDM approach, its context-level residual is not high but its 
prediction error is the highest. That means the variance of 
consumers within this shop is higher than those within any of 
the other shops. So with our approach, we can determine 
what the main source of the model variance is (within context 
heterogeneity or between context heterogeneity). 
 

VI. SUMMARY & FUTURE WORK 

Through analysis of the limitations of existing DDM 
approaches, we have introduced a context-based DDM 
approach in our application scenario. By encoding context 
heterogeneity into a hierarchical structure, our approach can 
address context heterogeneity explicitly when distribution is 
part of the semantics. To show the feasibility of our approach, 
we have implemented a multi-agent system to realize 
hierarchical modeling in distributed environment for 
regression problem. Our multi-agent system combines CS and 
agent-based architectural models and employs RMI based and 
message based communication mechanisms respectively. Our 
experimental results have demonstrated that our approach is 
reasonable and feasible. 

 For future work, we plan to further explore three aspects. 
Firstly, we aim to extend our approach to classification 
problems. Secondly, at present, local sites only produces 
components of the global model, and the iteration is done 
both on local sites and the central site. Thus the 
communication grows as required iterations increase. We will 
try to incorporate a meta-learning framework into our 
approach. That is, local sites build local models, and these are 
transferred to the central site to build hierarchical models – 
we call this proposal context-based meta-learning. In this 
case, iteration will be done only at the central site, which will 
decrease communication traffic. Finally, we intend to 
integrate additional data mining algorithms such as decision 

trees, neural networks and so on into our proposed 
framework. 
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