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Abstract

Survival trees are a non-parametric modeling strategy that can be included in the
area of statistical modeling. These type of models can be used as an alternative
to Cox proportional hazards models for the analysis of survival data. Current
methods for growing survival trees use estimates of the survival function in the
terminal nodes of the tree. In this thesis, a new approach is proposed that incor-
porates estimates of the mean residual life function as the output of the model.
The mean residual life function has been used traditionally in engineering and
reliability but can also be used in the analysis of medical data. This function is
easier to interpret (values are given in units of time) and summarizes the survival
experience of the individuals under investigation in a very simple manner. In
addition, this proposal is accompanied by two new methods for growing survival
trees and for the estimation of the mean residual life function. The first method is
based on a new algorithm called “node re-sampling” which uses bootstrapping to
incorporate the sampling variability in the process of finding the optimal split in
the nodes that are part of the tree. The second method is based on extreme value
theory and aims to provide adequate estimates of the mean residual life function
when the right tail of the underlying distribution is missing due to incomplete
survival information due to termination of the study. Throughout the thesis, two
datasets will be used to illustrate how the proposed methods can be used for the
analysis of survival data. One of them consists of patients with cardiovascular
disease and the other one consists of women diagnosed with breast cancer, both
from the West of Ireland.
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Chapter 1

Introduction

Survival trees is a generic term to refer to tree based methods applied to the
analysis of survival data. These type of data arise when the outcome is the
time until an event of interest occurs. Tree based methods are a non-parametric
modeling strategy that can be included in the area of statistical modeling, and
can be used as an alternative to generalized linear models or Cox proportional
hazards models. A tree is basically a collection of binary partitions (nodes) that
are defined (in a recursive manner) by the covariates included in the model. To
illustrate some basic ideas related to these type of models, Figure 1.1 shows an
example of a tree applied to survival data where a sample of women with breast
cancer was used to build a survival tree (this dataset is described in more detail
below).

In this example, the event of interest was the recurrence of the disease and the
outcome was the time until the recurrence occurs (in months). A set of biomarkers
(covariates) was considered for the construction of the model and the aim was to
determine which one of the biomarkers (alone or in combination) had an effect
on the time until recurrence. The three covariates presented in Figure 1.1 are
HER2 (Human Epidermal Growth Factor Receptor 2), PR (Progesterone recep-
tor) and ER (Estrogen Receptor). These are all proteins inside cells that, when
over-expressed, have been associated with breast cancer. Each node in the tree
represents a binary partition of the sample space. For instance, the split gener-
ated by HER2 divides the dataset into two groups, those who were HER2 positive
and those who were HER2 negative. Among those who were HER2 positive, an
additional partition was generated by ER, dividing the sample space into those
who were ER positive and those who were ER negative. Moreover, women who
were HER2 negative were further divided into two groups, PR positive and PR
negative. Overall, this tree has partitioned the sample space into 4 parts which
correspond to the four terminal nodes at the bottom of the tree. The information
given in the terminal nodes (the output of the model) is related to the outcome
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Figure 1.1: Example of a survival tree applied to a sample of women with breast
cancer.

of interest and, generally, numerical or graphical summaries are provided. In this
example, graphical summaries in the terminal nodes corresponds to the estimates
of the survival functions of the time until recurrence. Without going into much
detail, it seems that women who over-expressed HER2 (HER2 positive) and did
not over-expressed ER (ER negative) have the worst prognosis. The best survival
outcome seems to be for HER2 negative women and, among those, perhaps PR
positive women have a better outcome than PR negative women.

It seems, however, that the interpretation of these plots is somehow compli-
cated. In order to compare the survival outcome between the groups defined in
the terminal nodes two strategies can be followed. One approach is to compare
the medians, that can be approximated by identifying the values in the X-axis
for which the survival function is 0.5. The other approach is to fix a time in
the X-axis and to compare the probability that the survival outcome is greater
than the selected time point. This approach is not very natural in the sense that
the outcome being compared is given in terms of probability and not in units of
time (the units in which the outcome of interest is measured). In this regard, the
comparison of the medians is more natural but, in that case, a simple numerical
summary would have sufficed as the outcome of the terminal nodes.

One of the main goals of this thesis is to incorporate a different and more
interpretable function for the graphical summary in the terminal nodes of survival
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trees. The aim is to use estimates of the mean residual life function as the output
of the model. The mean residual life (MRL) function (Guess & Proschan, 1988)
has been used traditionally in engineering and reliability (Watson & Wells, 1961;
Kuo, 1984), although it can also be used in the analysis of survival data from
the biomedical sciences (Gross & Clark, 1975). The MRL function at time t
can be interpreted as the expected remaining lifetime of a patient given that
the patient has survived up to time t (if the event of interest is the death of
the patient). It also has a very nice interpretation in terms of summarizing the
whole survival experience of the individuals under investigation. For instance,
patients recovering from an operation or a transplant will display an increasing
MRL function, whereas terminal patients with an incurable disease will display a
decreasing MRL function. In this sense, the MRL function is very similar to the
hazard function but with the advantage that the MRL function returns values in
units of time rather than in units of risk.

It is the opinion of the author that this new approach will extend the capa-
bilities of survival trees as a modeling tool and provide results that are easier to
interpret. By using the MRL function as a graphical summary, the user will be
able to obtain a model that describes the relationship between the predictors and
the response in a very straightforward manner (as in the example above) and, at
the same time, to obtain a model that returns values in units of time.

There are several challenges associated with the process of generating MRL
trees. The first challenge is the generation of the survival tree itself. Although
many different methods have been proposed in the literature, there are still some
problems associated with the constructions of this type of model. One of these
problems is related to the variable selection bias that has been identified by differ-
ent authors such as White & Liu (1994), Shih (2004) and Kim & yin Loh (2001).
This is an inherent problem of the algorithm used to build this type of models
which favors splits related to predictors with many different cutpoints, even if
the corresponding predictor is not associated with the response. Other alterna-
tive methods, such as unbiased recursive partitioning proposed by Hothorn et al.
(2006), are not affected by this problem, but are unable to identify interaction ef-
fects. Although little research has been done on this, it is a major drawback since
the identification of interaction effects is one of the features that make tree based
methods attractive. In this thesis, a novel method for growing survival trees will
be explored that incorporates the sampling variability in the process of selecting
the optimal split at any particular node. The proposed method aims not to be
affected by any of the problems described above. The method involves the use of
resampling procedures to generate the splits and it will be referred to as the node
re-sampling algorithm.

The second challenge has to do with the estimation of the MRL function. It
turns out that the MRL function is very dependent of the tail behavior of the un-
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derlying distribution of the survival times. This fact makes the estimation of this
function very complicated, especially with right censored data when the censoring
is due to the study termination. In such a case, the right tail of the distribution
is missing and some assumptions have to be made about this missing part of the
distribution. The majority of methods for estimating the MRL function seem not
to take this problem into account and fail to give adequate estimates when the
right tail is missing. A novel method is proposed for the estimation of the MRL
function that is based on some results from extreme value theory. This is based
on the assumption that the conditional distribution of the exceedencess from a
chosen threshold u can be approximated by the generalized Pareto distribution.
This new semi-parametric approach uses non-parametric methods for the estima-
tion of the bulk of the distribution and this parametric assumption for the right
tail of the distribution.

A third challenge is related to the development of software that is able to
generate the survival trees applying these new methods. The methods developed
here are aimed to be used by applied statisticians and clinicians. It would be of
no practical use if this proposal were not be accompanied by the corresponding
software able to fit the new models.

To summarize, the main goals of this thesis are:

• To incorporate the MRL function as a graphical summary in the terminal
nodes of survival trees;

• To create a new and more robust algorithm for growing survival trees that is
not affected by the variable selection bias and is able to identify interaction
terms in the model.

• To develop a method for the estimation of the MRL function when the right
tail of the underlying distribution is missing because of right censoring due
to the end of the study.

• To design a statistical package in R that contains the necessary software to
implement all the new methods proposed in this thesis.

1.1 Datasets

Two datasets will be used throughout the thesis to illustrate some of the methods
and applications proposed in this work.
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1.1.1 Coronary Dataset

This sample consisted of a cohort of 1609 patients with cardiovascular disease
from the West of Ireland (Glynn et al., 2008). These patients were identified from
a stratified random sample of 35 general practices. To generate this sample, prac-
tices were randomly selected, after stratification by practice type (single-handed
or group) and location (rural or urban), from the Health Services Executive, West-
ern Area and asked to participate in the study. Patients were defined as having
cardiovascular disease if they had a history of myocardial infarction, angina, or
revascularisation by percutaneous coronary intervention, or coronary artery by-
pass grafting. Data at baseline were collected between 2000 and 2001 and, after
a period of 5 years, patients who had not died or experienced a cardiovascular
event were censored at that point. Individuals for whom follow-up data ceased to
be available were also censored.

Outcome

The primary endpoint was death from any cause. The secondary endpoint was a
composite endpoint that included death from a cardiovascular cause or any of the
following cardiovascular events: myocardial infarction, heart failure, peripheral
vascular disease, and stroke. In this thesis only the primary endpoint will be used
for the examples.

Covariates

A set of predictors will be used for the generation of a prognostic model for the
death of the patient from any cause. Predictors include age, gender, body mass in-
dex, smoking status, previous cardiovascular events, previous co-morbidity, base-
line clinical status, co-morbidity and medication. Table 1.1 shows some descriptive
statistics of each predictor at baseline.

Aims

The goal of the analysis of this dataset was to determine the prognostic factors that
have a significant effect on the primary endpoint of interest, which is death from
any cause. To answer this question, proportional hazards models and survival
trees will be used to determine which of the predictors have an effect on the
survival outcome, and to evaluate the nature and extent of such effects.

1.1.2 Breast cancer dataset

This sample consisted of a cohort of women with invasive breast cancer from
Galway University Hospitals. A total of 666 invasive breast tumors had sufficient
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Covariates Names Summaries

Age, mean (SD) Age 70.9 (9.2)
Body mass index, mean (SD) Bmi 27.2 (4.5)
Gender, % Gender

Male 65.2
Smoking status, % Smoking

Current smoker 30.6
Previous CVD1 event, %
MI1 PreviousMI (yes) 46.1
Angina PreviousAngina (yes) 85.3
HF1 PreviousHF (yes) 6.1
Previous Comorbidity, %
PVD1 PreviousPVD (yes) 5.5
Stroke PreviousStoke (yes) 4.6
Previous thrombo embolic events PreviousTE (yes) 10.9
Baseline clinical status, mean (SD)
Systolic blood preasure, mmHg Systolic 138.9 (19.5)
Diastolic blood preasure, mmHg Diastolic 80.9 (9.5)
Total cholesterol, mmol/L Chol 5.4 (1.0)
Comorbidity, %
Diabetes Diabetes (yes) 11.3
Medication, %
Aspirin Aspirin (yes) 75.0
Beta blockers BBlocker (yes) 46.4
Lipid-lowering agent Lipids (yes) 47.4
ACE1 ACE (yes) 24.9

Table 1.1: Descriptive statistics for the coronary data covariates.

1CVD = Cardiovascular Disease; MI = Myocardial Infarction; HF = Heart Failure; PVD =
Peripherical Vascular Disease; ACE = Angiotensin Converting Enzyme Inhibitors
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tissue available and were therefore eligible for inclusion in a West of Ireland breast
cancer series. A database containing clinicopathological information was initially
obtained from the Department of Surgery, National University of Ireland, Galway.
This database contained over 140 columns of data and the relevant information
was extracted and recorded. The collection of the data started in 1999 and patients
were followed up for a period of 6 years. After that period, patients who did not
experience the event of interest were censored at that point. Data on participants
were also censored where follow-up data ceased to be available.

Outcomes

There were two different outcomes considered for the analysis of this dataset,
disease-free survival (DFS) and overall survival (OS). Both outcomes were mea-
sured in months. For DFS the event of interest was the recurrence of the disease.
Patients who were alive with locoregional disease or distant metastasis, or were
dead with evidence of disease progression, were considered as having the event.
Patients who were alive and well, or were dead with no evidence of disease pro-
gression, were censored. For overall survival (OS) the event of interest was death
due to disease progression.

Covariates

Here two groups of predictors will be considered, pathologic variables and biomark-
ers. The evaluation of the biomarkers was carried out by immunohistochemistry
(IHC) on the tissue microarray (TMA) cores available from formalin-fixed paraffin-
embedded (FFPE) “donor” biopsies. Patients were considered to be positive for
a particular biomarker if the score for percentage of positive cells, as per Allred
scoring system, was greater than 10%. There were three novel biomarkers, Cdc7,
tMcm2 and pMcm2 for which the values were analyzed in terms of the percentage
of positive cells. Table 1.2 shows the descriptive statistics of each predictor at
baseline.

Aims

For the purpose of this thesis the goal of the analysis of this dataset is to identify
the set of biomarkers that can help to predict the two survival outcomes, DFS
and OS. The traditional way of doing this was based on the use of pathological
variables, such as lymph node status (LN−0−1 in the dataset, yes/no), lympho-
vascular invasion (LVI−0−1 in the dataset, yes/no), tumor size and tumor grade.
The use of biomarkers can help to refine prognostication in breast cancer survival
outcomes. The aim is to identify the biomarkers that have a significant effect on
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Covariates Names Summaries

Tumor size (mm), median(IQR) Size 24 (20)
Has the patient nodes positive, % LN−0−1 (yes) 50.7
Vascular invasion, % LVI−0−1 (yes) 53.8
Invasive tumor grade, % Grade−MERGE (1,2,3)

1 = grade 1 11.3
2 = grade 2 57.6
3 = grade 3 31.1

Biomarkers %
ER ER−TMA−0−1 (+) 65.9
PR PR−TMA−0−1 (+) 55.6
HER2 HER2−TMA−0−1 (+) 14.1
Ki67 Ki67−TMA−0−1 (+) 30.2
Bcl2 Bcl2−TMA−0−1 (+) 54.3
EGFR EGFR−TMA−0−1 (+) 14.6
p53 p53−TMA−0−1 (+) 21.1
CK5/6 CK56−TMA−0−1 (+) 9.1
CK14 CK14−TMA−0−1 (+) 21.2
tMcm2 score for % positive cells tMcm2−TMA−P (0,1,2,3,4,5)

0 = negative 20.8
1 = < 1 % 1.9
2 = 1 - 10 % 18.3
3 = 10 - 33 % 28.0
4 = 33 - 66 % 15.4
5 = > 66 % 15.6

pMcm2 % + cells, median(IQR) pMcm2−TMA−P 1.2 (9.2)
Cdc7 % + cells, median(IQR) CDC7−TMA 0.5 (2.5)

Table 1.2: Descriptive statistics for the breast cancer data predictors.
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both outcomes, the time to recurrence and the death of the patient. Cox propor-
tional hazard models will be used along with survival trees for the construction
of prediction models.

1.2 Structure of the thesis

This thesis consists of four main Chapters (along with this introduction and the
conclusions and discussion in Chapter 6). In Chapter 2 an overview of survival
analysis applied to the biomedical sciences is presented. Chapter 3 includes an
extensive review of tree based methods with particular emphasis on survival trees.
In Chapter 4 a new approach for generating survival trees is explored and some
of its properties are examined. Finally, in Chapter 5 a novel method for estimat-
ing the mean residual life function is introduced and a simulation study is also
presented. The following paragraphs contain a brief introduction and summary
of each of these main Chapters.

Chapter 2: Survival analysis

Survival analysis is a set of statistical techniques to analyze data in which the
outcome of interest is the time until an event occurs. Although the outcome is
usually measured on a continuous scale, the usual methods for analyzing contin-
uous responses cannot be applied for different reasons. One of the reasons is that
time data are positive and standard normal methods generally do not apply. An-
other reason is the presence of censoring. This defining feature of survival data
arises when some of the observations are incomplete due to causes that are not
under the control of the investigator.

The Chapter begins with the definitions and interpretations of some of the
functions that can be used to define the distribution of survival times, these in-
clude the survival, the hazard and the mean residual life functions. The different
mechanisms and types of censoring will also be explained in detail in this part.
The construction of the likelihood function, which incorporates all the information
obtained from both censored and uncensored observations will also be described.
The importance of this part will become clear in the context of the estimation of
the mean residual life function in Chapter 5.

In the second part of this Chapter, the Kaplan-Meier estimate of the survival
function (Kaplan & Meier, 1958) will be presented along with some examples given
by the coronary and the breast cancer datasets. The Kaplan-Meier estimate of
the survivor function is generally used to represent the survival distribution in the
terminal nodes of survival trees.

In the third part of the Chapter, the topic of comparing two survival distri-
butions will be examined in detail. The logrank test (Mantel, 1966) and many
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of its variants (Harrington & Fleming, 1982) can be used to determine whether
the differences between the survival experience of two cohorts of individuals are
statistically significant or not.

Finally, the Cox proportional hazards model (Cox, 1972) will be described and
fitted to the two datasets already introduced.

Chapter 3: Tree based methods

Chapter 3 is devoted to the explanation of tree based methods, in particular
tree based methods applied to survival data commonly known as survival trees.
Two methods will be explained in detail for their particular relevance: the CART
algorithm (Classification and Regression Trees) by Breiman et al. (1984), and the
unbiased recursive partitioning algorithm by Hothorn et al. (2006). For the sake
of completeness a section of this Chapter is also devoted to the random forest
approach by Breiman (2001).

In the first part of the Chapter, the recursive partitioning algorithm, along
with the CART idea of pruning, is explained in detail for continuous responses.
An example will be used to explain how CART obtains the optimal size of the
tree. The extension of the same ideas to categorical and Poisson responses is also
presented.

The second part of the Chapter is devoted to the description of tree based
methods applied to survival data. A few methods have been proposed which are
versions of the CART algorithm adapted to survival analysis (Gordon & Olshen,
1985; Davis & Anderson, 1989; LeBlanc & Crowley, 1992). These methods aim
to use the same algorithm for pruning the tree as that used for categorical and
continuous responses. Other methods developed their own algorithms for growing
and pruning the tree. This is the case of Segal (1988) and LeBlanc & Crowley
(1993) that use the logrank statistic as a measure of “between node separation”.

In the third part of the Chapter the unbiased recursive partitioning by Hothorn
et al. (2006) is presented. This is a modified version of the recursive partitioning
algorithm and it was developed to overcome the problem of variable selection bias
that had been identified by different authors, including White & Liu (1994), Kim
& yin Loh (2001) and Shih (2004). The unbiased recursive partitioning algorithm
is based on a general theory of permutation tests developed by Strasser & Weber
(1999) and can deal with a wide range of different outcomes, including continuous,
categorical and survival responses. One of the defining features of this method
is the fact that no pruning is necessary, since the tree stops growing whenever
the test performed at each split is not significant. This feature simplifies the
selection of the optimal tree, but has some negative implications in relation to the
identification of interaction effects, as will be demonstrated in Chapter 4.

Finally, the random forest approach by Breiman (2001) is introduced. This
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method was extended by Ishwaran et al. (2004) to the case of survival responses
(random survival forest) and this will also be examined. Although it is not the
main topic of this thesis, some of the ideas of random survival forests are used for
the development of the node re-sampling algorithm.

Throughout this Chapter the coronary and breast cancer datasets will be used
to illustrate some of the methods.

Chapter 4: Trees Based On Node Re-Sampling

Chapter 4 presents a deeper study into tree based methods. The current meth-
ods for growing survival trees seem not to be completely satisfactory and some
methods still have different problems, such as the variable selection bias or the
incapacity to detect interaction effects. In this Chapter a new algorithm for grow-
ing survival trees is proposed and some of its properties are analyzed. This new
method aims to incorporate the sampling variability in the process of finding the
optimal split at any particular node giving some degree of robustness to the split-
ting procedure of the algorithm. This approach is based on an algorithm called the
node re-sampling algorithm and it uses bootstrapping at a node level to generate
the different splits of the tree.

The Chapter begins with an example which demonstrates that the structure of
a tree is not unique and that many different representations are possible. This ex-
ample, along with the fact that the structure of the tree is also subject to sampling
variability aims to motivate the novel approach based on node re-sampling.

In the second part of the Chapter, a preliminary version of the node re-
sampling algorithm is presented and applied to continuous responses. This new
methodology incorporates the sampling variability at each split by bootstrapping
the observations available at each node. The selection of the primary and surro-
gate splits is made using the so-called relative importance plot which is based on
the out-of-bag values of the logrank statistic (the set of out-of-bag observations
corresponds with the observations that are not included in each bootstrap repli-
cate of the data). The use of the out-of-bag values of the logrank statistic is the
key aspect to avoid the variable selection bias in node re-sampling.

In the third part of the Chapter the survival data version of the node re-
sampling algorithm is introduced and the pruning mechanism is explained in de-
tail. One of the novel features of this new method is the possibility of pruning a
saturated tree interactively. To enable this feature, a new graphical user interface
has also been developed and some of its functions are also presented in this sec-
tion. The pruning of the tree is based on the idea of “irrelevant” nodes, which is
also related to the out-of-bag values of the logrank statistics.

In the fourth part of the Chapter, an example is given which aims to illustrate
how the method works in the presence of interactions. It is also demonstrated
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that unbiased recursive partitioning is not able to detect such interactions. In
fact, only methods that grow a saturated tree first and then prune back the tree
are able to find interaction effects.

Finally, in the last section, the new method is applied to the coronary and
breast cancer datasets.

Chapter 5: Estimating the mean residual life function

In this Chapter the problem of estimating the MRL function is studied. Under
non-informative right censoring various methods have been proposed in the lit-
erature for the estimation of this function (Gill, 1983), (Chaubey & Sen, 2008)
or (Zhou & Jeong, 2011). However, in many practical situations there is no in-
formation about the right tail of the underlying survival distribution because of
censoring at the end of the study. In such cases, many of the existing methods
seem to fail to give appropriate estimates of the MRL function. The new method
proposed aims to address this problem and is based on results from extreme value
theory.

In the first part of the Chapter a general overview of the MRL function is
given, along with the description of some methods for the estimation of such a
function when no censoring is present in the data. In addition, the choice of
theoretical settings to accommodate different types of censoring is examined.

The second part is devoted to the problem of estimating the MRL function
under non-informative right censoring. In particular, it will be shown how many
of the current methods fail to give sensible estimates when no data are available
for the right tail of the underlying survival distribution. Some novel solutions
will be explored based on the extrapolation of the available data using smoothing
techniques and a parametric approach. These solutions, however, are not entirely
satisfactory, as will be demonstrated in this section.

In the third part of this Chapter a novel semi-parametric approach is intro-
duced which is a combination of parametric and non-parametric estimation of the
area under the survival function of the underlying distribution. The basic idea
is to assume that the conditional distribution of the exceedences from a chosen
threshold follows a generalized Pareto distribution. This result is based on ex-
treme value theory and its adequacy depends upon the chosen threshold being
sufficiently large. The method will be described in detail and the results of a
simulation study will also be presented.

Finally, in the last part the MRL function will be incorporated as a graphical
summary for the node re-sampling survival trees. The breast cancer dataset will
be used to illustrate how the novel approach proposed in this thesis can be used
to analyze survival data from the biomedical sciences.
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Chapter 2

Survival analysis

In this Chapter an overview of survival analysis is presented and the most relevant
aspects concerning the study of survival data are examined. This subject has been
discussed by many authors and many excellent books have been written in the
last few decades (see for instance Lawless, 2002; Kalbfleisch & Prentice, 2002;
Kleinbaum & Klein, 2011). The Chapter begins with an introduction to the topic
and a description of the most common functions used in survival analysis. In this
part the definitions of the different types of censoring that can be encountered with
survival data are also given along with the description of the likelihood function
under different types of censoring. The second part explores the estimation of
the distribution of the survival times and the problem of comparing two survival
distributions. These two aspects of survival analysis are especially relevant in the
context of this thesis, in particular the use of the logrank test to determine if there
are significant differences between two groups. In the third part, the problem of
modeling survival data is explored and an introduction to the Cox proportional
hazards model is given. Finally, in the last part, the datasets described in Chapter
1 will be used to fit Cox proportional hazards models.

2.1 Introduction

Survival analysis is a set of statistical techniques concerning the analysis of data
where the outcome of interest is the time until an event occurs. Survival data
are found in many different disciplines such as medicine, biology, epidemiology,
engineering, public health, economics, demography, etc. In general, the time
until the event occurs is referred to as the survival time, time to event, event
time, lifetime or failure time, whereas the event of interest is usually related to
the death, recurrence or failure of the individual/unit under investigation. For
instance, in medicine, the outcome of interest could be the time until a patient
dies after diagnosis, the time to relapse from remission, or the time to recovery
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after an operation or a transplant. In epidemiology one may be interested in the
incubation times of different diseases such as AIDS, hepatitis B, SARS etc. In
engineering the time of interest might be the time until a particular machine fails.
Other examples are the life times of the elderly in particular social programmes,
felons time to parole (criminology), duration of first marriage (sociology), or length
of magazine subscription (marketing). Most of the examples and terminology
presented in this work are related to the study of biomedical data and, therefore,
the event of interest will be, mostly, the death of a patient and the time to event
the survival time.

One of the characteristics that makes the analysis of survival data different
from the analysis of other response variables is the presence of censoring. An
observation is said to be censored if the time recorded does not correspond to the
time at which the event of interest occurs (incomplete observation). This might
happen, for instance, if a patient dies from a different cause than that under study
or if a patient withdraws from the study and is lost to follow up. In both cases,
the observed time is the time in which the patient was last seen. The key feature
of censoring is that the event of interest occurs at some point in the future (right
censoring) but the investigator does not know when. Due to this special feature,
the observed outcome is comprised of a continuous measurement (the incomplete
observed times) and a binary indicator that specifies if an observation has been
censored or not. It is also possible to have left censoring (the event of interest
occurs at some unknown time in the past) or interval censoring (the event occurs
at an unknown time on an interval) although here only right censoring will be
considered.

To accommodate censoring in the analysis of survival data, specific methods
have been developed through the years which differ from those used with other
type of responses. The notion of “individuals at risk at time t” is a key feature
in survival analysis and it is used by most of the methods for analyzing survival
data. The reason is that the group of individuals at risk includes both, censored
and uncensored observations and therefore it is not affected by the fact that the
observed times are incomplete. Furthermore, it allows the estimation of the prob-
ability of survival beyond time t given the survival up to time t. This conditional
argument is also used to determine the distribution of the survival times through
the hazard and mean residual life functions as will be defined in this Chapter.
Both of these functions, especially the hazard function, play an important role in
the process of modeling survival data.

Throughout this thesis T will represent the random variable of the survival times
of an individual under investigation. More specifically, T will be the time from a
well defined starting point to the moment in which the event of interest occurs.
Therefore, the distribution of T will be assumed to be continuous with support
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on [0,∞). Furthermore, the probability density function (pdf) will be denoted by
f and the cumulative distribution function (cdf) by F . At time t,

F (t) = P (T ≤ t) =

∫ t

0

f(t)dt.

In survival analysis, however, it is often more interesting to study the probability
that an individual survived beyond time t which is given by the survival function

S(t) = P (T > t) =

∫ ∞
t

f(u)du = 1− P (T ≤ t).

2.1.1 The hazard function

The density function, the cumulative distribution function and the survival func-
tion characterize the distribution of T . Another way of representing the distribu-
tion of the survival times is by means of the hazard function

λ(t) = lim
∆t→0

P (t ≤ T < t+ ∆t|T ≥ t)

∆t
. (2.1)

Although the hazard function plays a very important role in the analysis and mod-
eling of survival data its interpretation is not simple. There is a lot of confusion
among non-statisticians about the meaning of the hazard function (see Spruance
et al. 2004). A helpful analogy is based on the concept of instant velocity. To
explain this analogy, the hazard function can be written as

λ(t) =
1

nP (T ≥ t)
lim

∆t→0

nP (t ≤ T < t+ ∆t)

∆t

where n is the number of individuals in the sample. Here, nP (T ≥ t) is the
expected number of individuals at risk at time t and nP (t ≤ T < t + ∆t) is
the expected number of deaths between t and t + ∆t. If there was a functional
continuous relationship N(t) between time and the number of deaths up to time
t then the hazard function could be written as

λ(t) =
1

n−N(t)
lim

∆t→0

N(t+ ∆t)−N(t)

∆t
=

N ′(t)

n−N(t)

Under this interpretation, N ′(t) represents the instantaneous rate of death. There-
fore, the hazard function is the instantaneous rate of deaths at time t relative to
the number of people at risk at time t. Given this interpretation, the hazard func-
tion is sometimes called mortality rate, conditional failure rate or instantaneous
potential for death (Kleinbaum & Klein, 2011, pg. 10).
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There is an easier way to write the hazard function in (2.1):

λ(t) = lim
∆t→0

P (t ≤ T < t+ ∆t|T ≥ t)

∆t

=
1

S(t)
lim

∆t→0

F (t+ ∆t)− F (t)

∆t
=

=
F ′(t)

S(t)
=
f(t)

S(t)
.

(2.2)

Yet another way of expressing the hazard function, using (2.2), is:

λ(t) =
f(t)

S(t)
=

F ′(t)

1− F (t)
=⇒ F ′(t) + λ(t)F (t)− λ(t) = 0

and one can obtain F (t) as a solution of the differential equation with initial
condition F (0) = 1. So it is clear that λ(t) also completely characterizes the
distribution of T .

Sometimes it is useful to work with the cumulative hazard function

Λ(t) =

∫ t

0

λ(u)du

which can be interpreted as the expected number of events of N(t) at time t,
where N(t) is the counting process defined by the distribution of T (Fleming &
Harrington, 1991). It is immediate that λ(t) = Λ′(t) and using (2.2) one can write
the cumulative hazard as

Λ(t) =

∫ t

0

λ(u)du =

∫ t

0

f(u)

S(u)
=

∫ t

0

−S ′(u)

S(u)
= [− logS(u)]t0 = − logS(t). (2.3)

Conversely, the survival function S(t) can be expressed in terms of the cumulative
hazard function Λ(t) as

S(t) = e−Λ(t). (2.4)

Based on these relationships the cumulative hazard function also characterizes the
distribution of T .

2.1.2 Mean residual life function

The mean residual life (MRL) function at time t ≥ 0 is defined as:

MRL(t) = E(T − t|T > t).

This can be interpreted as follows: given that an individual survived up to time
t the MRL function is the expected value of the conditional distribution that
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represents all the individuals who survived up to time t. Whereas the hazard
function focuses on what happens in the very short term and gives an idea of the
risk of instant death given the survival up to time t, the MRL function focuses
on the long term survival experience of the individual and gives the mean value
of the conditional distribution.

It is possible to write the MRL function in terms of the survival function by
considering the conditional distribution of T − t|T > t. The cumulative distribu-
tion function of this conditional distribution is:

FT−t|T>t(u) = P (T − t ≤ u|T > t) =
P (t < T ≤ u+ t)

P (T > t)
=
F (u+ t)− F (t)

S(t)

where u > 0 (FT−t|T>t(u) = 0 if u ≤ 0). Thus, the survival function of the
conditional distribution is:

ST−t|T>t(u) = 1− FT−t|T>t(u) = 1− F (u+ t)− F (t)

S(t)
=
S(u+ t)

S(t)

This conditional distribution has support on (0,∞) and therefore, the expected
value1 is:

MRL(t) = E(T − t|T > t) =

∫ ∞
0

S(u+ t)

S(t)
du =

∫∞
t
S(u)du

S(t)
(2.5)

The mean residual life function can then be related to the hazard function by
simply taking the derivative of expression (2.5), i.e.

MRL′(t) =
−S(t)2 +

(∫∞
t
S(u)du

)
f(t)

S(t)2
= −1 + λ(t)MRL(t).

Therefore,

λ(t) =
1 + MRL′(t)

MRL(t)
, (2.6)

so it is now apparent that the mean residual life function characterizes the distri-
bution of T using the latter expression. For a review of all the properties of the
MRL see Guess & Proschan (1988).

One of the reasons that makes the use of the hazard and mean residual life func-
tions interesting in survival analysis is that they describe very nicely the survival

1In general, if a random variable X is positive (X > 0), E(X) =
∫∞
0
S(x)dx where S(x) is

the survival function of X. This is easy to prove by:∫ ∞

0

S(x)dx =

∫ ∞

0

∫ ∞

x

f(u)dudx =

∫ ∞

0

f(u)

∫ u

0

dxdu =

∫ ∞

0

uf(u)du = E(X)

where f(x) is the density function of X.
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Figure 2.1: Examples of density, survival, hazard and MRL functions for different
survival experiences.

experience of the individuals under investigation (see Figure 2.1). For instance,
patients who have a stable condition in relation to a particular disease will dis-
play a constant MRL and hazard functions for a limited period of time. For this
type of patients the exponential distribution adequately describes their survival
experience since the risk of experiencing the event of interest (it could be death
or recurrence of the disease) does not change over time. This is referred to as
“Stable” patients in Figure 2.1. Patients who have undergone a surgical interven-
tion (a serious operation or transplant) will have higher risk of death in the few
hours following the operation and, if no major complications take place, the risk
will decrease over time (decreasing hazard/increasing MRL). Terminal patients
with a serious illness such as cancer will display increasing hazard (decreasing
MRL) over time as the condition of the patient deteriorates due to the disease.
Finally, patients with infectious diseases such as TB have a period of increasing
hazard (decreasing MRL) until they receive treatment and, after that, the hazard
decreases (MRL increases) over time.
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2.1.3 Types of censoring

As stated in the introduction, survival data are very often incomplete due to
censoring. An observation is said to be censored if the time recorded does not
correspond with the time at which the event of interest occurs. This could happen
in one of the following three situations: when the event occurs at an unknown
time before the observed time (left censoring); when the event occurs at an
unknown time after the observed time (right censoring); or when the event
occurs at an unknown time between two observed times (interval censoring).
By far the most common form of censoring assumption is right censoring, and all
the methods described in this thesis are based on this assumption. In general, the
different types of right censoring can be broadly classified as:

Type I The length of an experiment is set up in advance. Observations for which
the event of interest did not occur before the end of the experiment are
considered right censored and the censored times correspond to the length
of the experiment.

Type II The number of observations is set up in advance. After a predetermined
number of events occurs, the experiment stops, and observations for which
the event did not occur are treated as right censored.

Random Each observation has associated a censoring time that is independent
of the failure time (the time when the event of interest occurs). If the
censoring time occurs before the failure time the observation is censored
(right censored), if not the true event time is observed.

The first two types of censoring occur more generally in engineering, whereas
the random censoring arises typically in the biomedical sciences. Note that the
difference between type I and type II censoring is that, in the latter case, the
number of events are fixed in advance, whereas in type I censoring the number of
events is a random quantity. For instance, imagine that the lifetime of a set of
n machines is going to be tested. In type I censoring, the machines are followed
up for a predetermined period of time, and after that period, the machines that
are still working are right censored (random number of failures and fixed length
of the experiment). Now imagine that the machines are going to be followed up
until k < n machines fail. In that case, after the kth machine fails the experiment
stops and the remaining n − k machines are right censored (fixed number of
failures and random length of the experiment). In both of these situations, only
observations that exceed certain event time are censored. In random censoring,
however, censored observations might be found at any time point. In this work
only random right censoring will be considered because this type of censoring is
the most common one in real data applications related to medicine. Some of the
reasons for which data are collected with this type of censoring are:
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- Loss to follow up. The individual under investigation disappears without
any explanation. The clinicians never see him/her again.

- Drop out. The study has to finish prematurely for a particular individual
due to some adverse effects of the treatment. Another cause is that the
patient refuses to continue the treatment for some reason.

- Competing risks. The event could not be observed due to the occurrence
of a competing event (for instance, the death of the patient due to other
causes).

- Termination of the study. The individual did not experience the event of
interest before the study ends.

The methods developed for analyzing survival data under the assumption of
random right censoring generally adopt the following theoretical setting. Let T
and C be the failure and censoring times respectively and assume that they are
independent. Although interested in the distribution of T , we can only observe
X = min(T,C) and

δ = 1{T≤C} =

{
1 if T ≤ C,

0 if T > C

which is called the censoring indicator that tells us whether the observed X is
censored or not. Both X and δ are random variables, therefore, for a particu-
lar individual i the information that can be observed is the pair (Xi, δi). Un-
der this theoretical setting, a typical random sample of n individuals looks like
{(x1, δ1), (x2, δ2), . . . , (xn, δn)}, where δi is 1 if the event of interest was observed
at time xi for individual i and it is 0 if xi is the time in which individual i was
last seen. The main problem in survival analysis is how to extract relevant infor-
mation about the distribution of T using only the information obtained in (X, δ).
To analyze this problem it is convenient to write down the distribution function
of X

FX(t) = P (X ≤ t) = P (min(T,C) ≤ t)

= 1− P (min(T,C) > t)

= 1− P (T > t ∩ C > t)

= 1− P (T > t)P (C > t)

= 1− [(1− FT (t))(1− FC(t))] .

Here FT and FC are the cumulative distribution functions of T and C respectively.
One could be tempted to discard all the observations that are censored and to
analyze only the true event times, even with the evident loss of statistical power.
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However, this is not appropriate because the distribution function of the observed
true events does not correspond with the distribution function of T . The reason
is that

P (X ≤ t ∩ δ = 1) = P (T ≤ t ∩ T ≤ C)

=

∫ t

0

∫ ∞
u

fC(c)fT (u)dcdu

=

∫ t

0

fT (u)SC(u)du

(2.7)

is equal to FT (t) only if SC(u) = 1 for all u ∈ (0, t), i.e. if there is no censoring
(fT and fC are the pdfs of T and C respectively and due to the independence of
T and C, the joint density function fT,C(t, c) = fT (t)fC(c)).

2.1.4 The likelihood of observed survival data

The likelihood function of the observed pair (X, δ) under this theoretical setting
is

L(x, δ;θ) =
n∏
i=1

fX,δ(xi, δi; θ)

where fX,δ is the joint density function of (X, δ) and θ is the vector of the param-
eters. If δ = 1 the cumulative distribution function of (X, 1) is

FX,1(t) = P (X ≤ t ∩ δ = 1) =

∫ t

0

fT (u)SC(u)du

as shown in 2.7. On the other hand, if δ = 0 the cumulative distribution function
of (X, 0) is

FX,0(t) = P (X ≤ t ∩ δ = 0)

= P (C ≤ t ∩ T > C)

=

∫ t

0

∫ ∞
c

fC(c)fT (u)dudc

=

∫ t

0

fC(c)ST (c)dc.

(2.8)

Thus, the density function of (X, 1) is fX,1(t) = F ′X,1(t) = fT (t)SC(t) and the
density function of (X, 0) is fX,0(t) = F ′X,0(t, 0) = fC(t)ST (t). Therefore,

fX,δ(t) = δfT (t)SC(t) + (1− δ)fC(t)ST (t) (linear form)

= (fT (t)SC(t))δ (fC(t)ST (t))1−δ (multiplicative form)

= fT (t)δST (t)1−δfC(t)1−δSC(t)δ.

(2.9)
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Considering all these results, the likelihood can be written now as

L(x, δ;θ) =
n∏
i=1

fT (xi)
δiST (xi)

1−δifC(xi)
1−δiSC(xi)

δi . (2.10)

As it has been shown, to get the latter expression the assumption that T and C are
independent is fundamental. A further simplification can be made by assuming
that the distribution of C does not include any of the parameters of the distribu-
tion of T . If this is the case, then the censoring is said to be non-informative. The
reason why this simplifies the likelihood function is that the likelihood is defined
up to a multiplicative constant, and if one is only interested in the estimation of
the parameters of T (as in most cases) the terms fC(xi)

1−δiSC(xi)
δi in (2.10) are

absorbed into the constant of proportionality. Therefore, under non-informative
right censoring, using (2.2) and (2.4), the likelihood function is

L(x, δ;θ) =
n∏
i=1

fT (xi)
δiST (xi)

1−δi =
n∏
i=1

λT (xi)
δie−ΛT (xi) (2.11)

where θ is now the vector of parameters of the distribution of T .
Both parametric and non-parametric methods can be used for the estimation

of the survival function. The parametric approach assumes that the data have
been generated from a parametric family of distributions and uses (2.11) in order
to generate maximum likelihood estimates of the parameters of the underlying dis-
tribution. Based on the estimates of the parameters, survival and hazard functions
can be easily obtained. On the other hand, non-parametric methods do not make
any assumptions about the distribution of the survival times. Because of that, in
general, they need more data to get reasonable estimates of the survival function
although they are more robust to the selection of the wrong model. However,
parametric and non-parametric methods might fail to give adequate estimates of
the MRL function as will be shown in Chapter 5.

2.2 The Kaplan-Meier estimator of the survival

function

The most common non-parametric method for the estimation of the survival func-
tion was developed by Kaplan & Meier (1958) and is based on the product limit
formula. To explain this concept, suppose that {t1, t2, . . . , ts} is a set of s ordered
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times smaller than t and that T is a positive random variable. Then

P (T > t) = P (T > t1, T > t2, . . . , T > ts, T > t)) =

=
s+1∏
i=1

[
P (T > ti|T > ti−1)

]
=

=
s+1∏
i=1

[
1− P (T ≤ ti|T > ti−1)

] (2.12)

where t0 = 0 and ts+1 = t. To apply this formula to the problem of estimating
the survival function suppose {(x1, δ1), . . . , (xn, δn)} is a random sample of T , C
and {(x(1), δ(1)), . . . , (x(n), δ(n))} the corresponding time ordered observations (the
order is established for the values of (x1, . . . , xn) so δ(i) = δj iff x(i) = xj). If no
ties are present (all the xis are different), then the Kaplan-Meier estimate of the
survival function is

SKM(t) =
∏

i: x(i)<t

[
1−

δ(i)∑
j: xj≥x(i) 1

]
. (2.13)

If some observations are tied, let (x(1), . . . , x(r)) the ordered distinct observed times
corresponding only to uncensored observations, then, the Kaplan-Meier estimate
is

SKM(t) =
∏

i: x(i)<t

[
1−

∑
j: x(i)≤xj<x(i+1)

δj∑
j: xj≥x(i) 1

]
=

∏
i: x(i)<t

[
1− di

ni

]
(2.14)

where di is the number of deaths between x(i) and x(i+1), and ni the number of in-
dividuals at risk at time x(i). Therefore, the Kaplan-Meier estimate of the survival
function is a non-increasing stepwise function changing only in the uncensored ob-
served times (true failures). If the largest observed time x(max) is censored then
SKM(t) 6= 0 for all t > x(max) and in this situation it is not possible to estimate
the mean E[T ] (as will be shown in Chapter 5).

Breslow & Crowley (1974) established the asymptotic normality of the Kaplan-
Meier estimate of the survival function while Peterson (1977) proved the strong
consistency. Confidence intervals can be obtained using Greenwood’s formula
(Greenwood 1926) which gives an estimate of the variance of SKM(t),

V̂ar(SKM(t)) = SKM(t)2
∑

i: x(i)<t

[
di

ni(ni − di)

]
.

Figure 2.2 shows an example of the Kaplan-Meier estimate of the survival
function with the corresponding 95% pointwise confidence intervals for the breast
cancer dataset. In (a) the event of interest is death and the outcome is the time
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Figure 2.2: Two different examples of the Kaplan-Meier estimate of the survival
function. In (a) the probabilities of survival for women with breast cancer. In (b)
the probability of disease free survival.

from diagnosis until the event occurs. In (b) the event of interest is the recurrence
of the disease and the outcome is the time until recurrence. The median time to
recurrence is 63 months meaning that an estimated 50% of the women will have
recurrence after 63 months. Also, there is a high probability that more than 70%
of the women will get recurrence after 100 months. This plot suggests that there
is a high probability of recurrence of the disease for the women from which this
sample was taken. However, this fact does not translate into a higher incidence
of mortality as Figure 2.2 (a) shows. In fact, more than 70% of the women were
alive at the end of the study.

Another example is presented in Figure 2.3 where the coronary dataset was
used to obtain Kaplan-Meier estimates of the survival function. As one can see
in the plot the survival outcome (death from any cause) of the patients in this
sample is positive in the sense that more than 70% of the patients were still alive
after 1500 days (approximately 4 years) and more than 60% were alive after the
5 year period.

2.3 The Logrank test

Different methods have been developed in the literature to compare the distribu-
tion of the survival times in two or more different groups. In the context of this
thesis, the comparison of two different survival functions is very relevant since in
a survival tree, one of the ways of choosing the split at a node is by selecting
the cutpoint that makes the survival distribution of the left and right nodes as
different as possible. To measure these differences the values of the logrank test
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Figure 2.3: Kaplan-Meier estimate of the survival function applied to the coronary
dataset.

statistic can be used. Thus, in this section an overview of some of the methods
to compare the survival experience in two groups is given. The Coronary and the
breast cancer datasets will be used to illustrate some of the results.

Because of the special characteristics of survival data, tests based on ranks are
particularly appropriate. Gehan (1965) proposed an extension of the Wilcoxon
statistic (Wilcoxon, 1945) to the case of censored data. To illustrate the method,
let {(x1, δ1), . . . , (xn, δn)} and {(y1, ε1), . . . , (yn, εn)} be two random samples from
two different populations A and B. Let FA(t) and FB(t) the corresponding dis-
tribution functions of the true survival times. Let x′i = xi if δi = 0 and y′j = yj if
εj = 0. For a given pair (xi, yj) he defined the following score function

U(i,j) =


1 if xi < yj or xi ≤ y′j,

0 if xi = yj or x′i = y′j or x′i < yj or y′j < xi,

−1 if xi > yj or x′i ≥ yj.

Based on these values he defined the test statistic W =
∑

(i,j) U(i,j) summing

over all possible pairs (i, j). He showed how this test is related to the Wilcoxon
(1945) test statistic and proved that under the null hypothesis of no difference
H0 : FA(t) = FB(t), the test statistic is asymptotically normal.

Efron (1967) considered a modified version of the Gehan statistic in which the
score function (which he called Q(xi, yj)) instead of giving a value 0 when xi = yj
or δi = 0 or εj = 0 gives values that depend on the Kaplan-Meier estimates of the
survival functions of A and B (SAKM and SBKM). The actual values are shown in

Table 2.1. The test statistic is defined as Ŵ = 1
nm

∑
i,j Q(xi, yj). For instance, if
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(δi, εj) xi ≥ yj xi < yj

(1,1) 1 0

(0,1) 1
SAKM (yj)

SAKM (xi)

(1,0) 1− SBKM (xi)

SBKM (yj)
0

(0,0) 1− SBKM (xi)

SBKM (yj)
−
∫∞
xi

SAKM (s)dSBKM (s)

SAKM (xi)SBKM (yj)
−
∫∞
xi

SAKM (s)dSBKM (s)

SAKM (xi)SBKM (yj)

Table 2.1: Values of Q(xi, yj) for the modified version of the Gehan statistic
proposed by Efron (1967).

yj ≤ xi and ε = 0 instead of scoring 0 as in the Gehan score function, Q(xi, yj)
will depend on how different the probabilities of survival are for xi and yj under
the survival function defined by B.

Almost in parallel to the development of this family of statistics Mantel (1966)
proposed the use of the Mantel-Haenszel procedure (Mantel & Haenszel, 1959),
which combines the results of a series of 2 × 2 tables, to the particular case
of comparing two different survival distributions. Let {x(1), x(2), . . . , x(n)} the
combined ordered observed survival times of two groups A and B. For each
observed time x(i) the following 2× 2 table can be considered

x(i) Deaths At risk
A M0i N0i - M0i N0i

B M1i N1i -M1i N1i

Mi Ri - Mi Ri

where, at time x(i), M0i is the number of observed deaths in group A and N0i is
the number of individual at risk in group A. M1i and N1i are the corresponding
numbers in group B and Mi and Ri are the total number of deaths and the total
individuals at risk at time x(i) respectively. If one considers the marginals of the
table fixed, the range of possible values of M0i varies from max(0,Mi +N0i −Ri)
to min(N0i ,Mi) (notice that once the value of M0i is chosen the rest of the table
can be completed). The probability of getting such a value, i.e. M0i , is given by
the hypergeometric distribution

P (Yi = M0i) =

(
N0i
M0i

)(
N1i
M1i

)(
Ri
Mi

)
where Yi is the random variable that describes the number of deaths in group A
at time x(i) and has support in {max(0,Mi + N0i − Ri), . . . ,min(N0i ,Mi)}. The
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expected value is

E(Yi) =
N0i

Ri

Mi

which is the expected number of deaths in the 2 × 2 table under the hypothesis
that there is no relationship between the number of deaths and the group. The
variance of Yi is

V ar(Yi) = Mi
N0i

Ri

Ri −N0i

Ri

Ri −Mi

Ri − 1
.

The proposed test statistic by Mantel (1966)2 was

χ2
1 =

[
∑

i(Yi − E(Yi))]
2∑

i Var(Yi)
(2.15)

which it was shown by Crowley (1973) to converge in distribution to a chi-square
distribution with 1 degree of freedom. This method would later be known as the
logrank test. The observed value of the test statistic is

χ2
1obs

=

[∑
i(M0i −

N0i

Ri

Mi)

]2

∑
iMi

N0i

Ri

Ri −N0i

Ri

Ri −Mi

Ri − 1

Cox (1972) showed that the results of the logrank test can be derived from a
proportional hazard model in which the grouping factor is the only predictor
in the model (see next section). Tarone & Ware (1977) studied the connections
between the logrank test and the Gehan (1965) modified Wilcoxon test and proved
that they only differ in the choice of weights, which are functions of the number of
individuals at risk at any uncensored time. They showed that the Gehan modified
Wilcoxon test is equivalent to the test

χ2
1 =

[
∑

iwi(Oi − Ei)]2∑
iw

2
iVar(Oi)

(2.16)

where wi = Ri. Under the null hypothesis of no differences between the two
survival functions, (2.16) follows an asymptotic chi-squared distribution with 1
degree of freedom. The logrank test statistic described in (2.15) is just the test
statistic in (2.16) with weights wi = 1 for all of the observed uncensored times.
They proposed a new test statistic based on a different selection of the weights

wi =
√
Ri.

2Note that the results shown here can be extended to a more general setting with more than
2 groups.
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They concluded that the logrank test works extremely well under the proportional
hazard assumption, but it loses power under deviations from this assumption in
which case, the Gehan (1965) modified Wilcoxon test is more appropriate. In a
separate study, Prentice & Marek (1979) found a large discrepancy between the
p-values obtained by the logrank test and the Gehan modified Wilcoxon test when
applied to the same data set. They argued that the reason is that the weights
of the Gehan test, which are functions of the individuals at risk, included both,
censored and uncensored observations. They proved that other generalizations of
the Wilcoxon test by Peto & Peto (1972) and Prentice (1978) were also special
cases of a weighted logrank test with weights

wi =
∏

j: x(j)<x(i)

Nj

Nj + 1
(2.17)

which are very similar to the Kaplan-Meier estimate of the survival function at
any uncensored time i. They pointed out that because the weights of the Gehan’s
statistic depend on the censored and uncensored observations, the use of this test
can lead to anomalous situations. For that reason they concluded that the Peto-
Prentice generalized Wilcoxon statistic should always be used with censored data.
Harrington & Fleming (1982) proposed a more general class of weights

wi =
[
SKM(x(i))

]p
.

where p ≥ 0 and SKM is the Kaplan-Meier estimate of the survival function. If
p = 0 the test corresponds to the logrank test and if p = 1 the test is essentially
equivalent to the Peto-Prentice generalized Wilcoxon statistic with weights given
by (2.17).

An example of the use of the logrank test is illustrated in Figure 2.4. In (a)
the two estimates of the survival function correspond to the group of patients
with cardiovascular disease who had a previous myocardial infarction (red line)
and the group of patients who did not have previous myocardial infarction (blue
line). To test the hypothesis that the two groups have the the same distribution
the logrank test can be used. Table 2.2 shows the values for the logrank test when
different weights are considered. As one can see, although the three tests were
significant, the Gehan modified Wilcoxon test gives the lowest values of the test
statistic with the corresponding loss of power.

In Figure 2.4 (b) another example is given from the breast cancer dataset.
The red line corresponds to the estimated survival function of women who tested
positive for HER2 whereas the blue line corresponds to the estimated survival
function of women who tested negative. The results of the different logrank tests
are given in Table 2.3. Again, all three tests were significant with the Gehan
modified Wilcoxon test giving the lowest values of the test statistic.
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Figure 2.4: Two examples of the Kaplan-Meier estimate of the survival function
used to compare two different groups. In both cases the event of interest is the
death of the patient. In (a) patients with cardiovascular disease with and without
a previous myocardial infarction. In (b) women with breast cancer who tested
positive and negative for HER2.

Weights χ2
1 p-value

Gehan wi = Ri 9.820557 0.001726
Logrank wi = 1 12.267544 0.000461

Peto-Prentice wi = SKM(x(i)) 12.090948 0.000507

Table 2.2: Coronary dataset. Logrank tests comparing the survival outcome of
patients with and without previous history of myocardial infarction.

Weights χ2
1 p-value

Gehan wi = Ri 17.119425 3.5e-05
Logrank wi = 1 22.184265 2e-06

Peto-Prentice wi = SKM(x(i)) 21.50661 4e-06

Table 2.3: Breast cancer dataset. Logrank tests comparing the survival outcome
of women who were HER2 positive versus women who were HER2 negative.
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2.4 The Cox proportional hazards model

In most of the practical situations in which one has to analyze survival data,
the survival time is not the only information that is gathered about the patients.
Although the outcome of interest is the time to event, one hopes that by knowing
the values of other variables such as age, gender, weight, smoking status, etc, one
can obtain a better understanding of the survival experience of the individuals
under investigation. These other variables are usually referred to as covariates.
Sometimes, the investigator is interested in the effect of one or more covariates
on the survival times, treating other variables as confounders. For instance, one
might want to know the effect of age in the survival times of individuals with
cardiovascular disease while adjusting for gender, cholesterol level, blood pressure
etc. Other times, the researcher might be interested in knowing which covariates
have a significant effect on the survival times treating all the variables as variables
of interest. All of the above can be handled in the framework of regression models.

The Cox proportional hazards model (Cox, 1972) is a regression model that
allows the inclusion of the information provided by the covariates to analyze the
survival times of the individuals. The need for a specific model to analyze survival
data, different from those used with other responses, is due to the presence of
censoring in the data. To introduce the model, let Z = (Z1, . . . Zp) be the vector
of covariates for any individual in the population. A random sample will be now
of the form {(x1, δ1, z1), . . . , (xn, δn, zn)} where zi = (zi1, . . . , zip) is the vector of
covariates of individual i = 1, . . . , n. The proportional hazards assumption states
that

λ(t|zi) = λ0(t)eβ
′zi

where β = (β1, . . . , βp) is the vector of the parameters of interest and λ0(t) is
the baseline hazard. The key aspect of this assumption is the separation of the
shape of the hazard function and the multiplicative covariate effects. Cox (1972)
proposed a semi-parametric model that does not make any assumption about the
nature of the hazard function and it is based on the use of the partial likelihood.
To illustrate the method, recall the expression of the likelihood function for non-
informative right censoring in (2.11). Under the proportional hazards assumption,
the likelihood can be written in terms of the baseline hazard function as

n∏
i=1

[λ0(xi) exp (β′zi)]
δi e−Λ0(xi)exp(β

′zi). (2.18)

Here the baseline hazard is still unknown at all the points xi. If the cumulative
baseline hazard function is estimated by (for simplicity it is assumed that there
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are no ties and the times are ordered)

Λ0(xi) =
i∑

k=1

λ0(xk)

and this estimate is plugged in (2.18) one obtains

n∏
i=1

[λ0(xi) expβ′zi]
δi exp

(
−

i∑
k=1

λ0(xk) exp (β′zi)

)
. (2.19)

The term
∏n

i=1 exp
(
−
∑i

k=1 λ0(xk) exp (β′zi)
)

in (2.19) can be written as

e

[
−λ0(x1)e(β

′z1)
]
·

·e
[
−λ0(x1)e(β

′z2)
]
· e
[
−λ0(x2)e(β

′z2)
]
·

...
...

·e
[
−λ0(x1)e(β

′zn)
]
· e
[
−λ0(x2)e(β

′zn)
]
· · · e

[
−λ0(xn)e(β

′zn)
]

=

=
n∏
i=1

e

(
−λ0(xi)

∑n
k=i e

(β′zk)
)

=
n∏
i=1

exp

(
−λ0(xi)

n∑
k=i

exp (β′zk)

)
and, therefore, equation (2.19) is now

n∏
i=1

[λ0(xi) exp (β′zi)]
δi exp

(
−λ0(xi)

n∑
k=i

exp (β′zk)

)
. (2.20)

This function can be considered as a modified likelihood function that can be
used to estimate β. Essentially the modified likelihood can be profiled over the
unknown values λ0(xi) to be able to estimate β. The maximum likelihood estimate
of λ0(xi) as a function of β is

λ̂0(xi) =
δi∑n

k=i exp (β′zk)
(2.21)

for all i = 1, . . . , n. Again these estimates can be plugged in (2.20) resulting in
the expression

n∏
i=1

[
exp (β′zi)∑n
k=1 β

′zk

]δi
δδii e

−δi ∝
n∏
i=1

[
exp (β′zi)∑n
k=1 β

′zk

]δi
(2.22)

which is known as the partial likelihood for the estimation of the parameters
(β1, . . . , βn). This semi-parametric model is the most often applied one in survival
analysis.
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β̂i exp(β̂i) (95%CI)
Age 0.06 1.06 (1.04,1.08)
PreviousMI (yes) 0.57 1.77 (1.28,2.46)
Chol 0.09 1.10 (0.95,1.27)
ACE (yes) 0.64 1.89 (1.36,2.63)

Table 2.4: Coronary data: Cox proportional hazard model with Age, PreviousMI,
Chol and ACE as covariates. Event of interest: death from any cause.

β̂i exp(β̂i) (95%CI)
Age 0.05 1.06 (1.04,1.08)
PreviousMI (yes) 0.63 1.88 (1.42,2.48)
ACE (yes) 0.50 1.66 (1.25,2.20)

Table 2.5: Coronary data: Cox proportional hazard model with Age, PreviousMI
and ACE as covariates. Event of interest: death from any cause.

2.5 Applications of the Cox regression model

To analyze the Coronary dataset, variable selection procedures3 (based on the
Cox proportional hazard model) were applied for the selection of the relevant pre-
dictors of the survival outcome (death from any cause). The algorithm identified
Age, PreviousMI, Chol and ACE as the relevant covariates to be included in the
final model. Table 2.4 shows the estimated coefficients and the corresponding
confidence intervals when the Cox proportional hazard model was fitted. ACE
and PreviousMI were found to have a significant effect (CI does not contain 1)
on the survival outcome with estimated adjusted hazard ratios of 1.89 and 1.77
respectively. The model also identified age as having a significant effect with an
increase in risk as age increases. However, cholesterol level was found not to be
significant given the presence of the other variables. This covariate was not sig-
nificant in the univariate analysis either. Table 2.5 shows the model with Age,
PreviousMI and ACE as the only covariates. As one can see all the three predic-
tors are significant. The covariate with the largest effect is PreviousMI with an
estimated adjusted hazard ratio of 1.88. Patients who had a previous myocardial
infarction have 1.88 times more risk (hazard) of dying than patients who had no
previous myocardial infarction, while adjusting for the other covariates. Patients
who are under ACE medication have an increased hazard of 66% compared to
patients who are not under this type of medication for any combination of levels
of the other predictors. Age has also a significant effect while keeping the other
covariates constant with an increase of 6% in the hazard of death for each unit

3Backwards elimination variable selection in SPSS.
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β̂i exp(β̂i) (95%CI)
Bcl2 (positive) -0.37 0.69 (0.55,0.88)

Table 2.6: Breast cancer dataset : Cox proportional hazard model with Bcl2 as
the only covariate. Event of interest: recurrence of the disease.

β̂i exp(β̂i) (95%CI)
HER2 (positive) 0.58 1.78 (1.34,2.36)

Table 2.7: Breast cancer dataset : Cox proportional hazard model with HER2 as
the only covariate. Event of interest: recurrence of the disease.

increase in Age. Two-way interaction effects between the predictors in the Cox
regression model were also examined and it was found that PreviousMI and Age
had a significant effect when combined together in a multiplicative term in the
equation. The adequacy of the proportional hazard assumption was investigated
using the test based on weighted residuals proposed by Grambsch & Therneau
(1994). It was found that the assumption was valid for all the covariates in the
model.

Another example of a Cox proportional hazard model is given in Table 2.6 where
the breast cancer dataset was used to established the set of biomarkers that had
a significant effect on the survival outcome (recurrence of the disease). Variable
selection procedures were run for this dataset and it was found that the final
model only included Bcl2 as a significant covariate. The model suggests that
Bcl2 positive patients have an approximately 31% reduction in the hazard of
death when compared to Bcl2 positive patients. When assessing the adequacy
of the proportional hazard assumption it was found that Bcl2 did not satisfy
this assumption. Other biomarkers that did not satisfy the proportional hazard
assumption (when doing univariate analyses) were ER and PR. From those that
satisfied the proportional hazards assumption, only HER2, ki67, p53, CK14 and
tMcm2 were found to be significant in univariate analysis with HER2 having the
highest value of the likelihood ratio test. Table 2.7 shows the model with HER2.
This model shows that women who test positive for HER2 have an estimating
hazard ratio of 1.78 suggesting an increase of 78% in the hazard of death when
compared to women who test negative.

Variable selection procedures were also run for this dataset when the event of
interest was the death of the patient (overall survival). In this case, ER, Bcl2
and Cdc7 were the selected predictors for the final model. The estimates of the
coefficients and the corresponding confidence intervals are given in Table 2.8.
Both biomarkers, Bcl2 and ER, have a very similar effect and both were found
to be significant. However, Cdc7 was not significant at a significance level of
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β̂i exp(β̂i) (95%CI)
Bcl2 (positive) -1.05 0.35 (0.16,0.78)
Cdc7 0.03 1.03 (0.99,1.07)
ER (positive) -1.02 0.36 (0.17,0.77)

Table 2.8: Breast cancer dataset : Cox proportional hazard model with Bcl2, Cdc7
and ER as covariates. Event of interest: death of the patient (overall survival).

β̂i exp(β̂i) (95%CI)
Bcl2 (positive) -0.67 0.51 (0.29,0.90)
ER (positive) -1.22 0.30 (0.16,0.53)

Table 2.9: Breast cancer dataset : Cox proportional hazard model with Bcl2 and
ER as covariates. Event of interest: death of the patient (overall survival).

0.05. In Table 2.9 the model obtained after considering Bcl2 and ER as the
only predictors is given. In this final model, ER seems to have a higher effect
when compared to Bcl2. Individuals who test ER positive have a better survival
outcome with a reduction in the hazard of death of approximately 70% when
compared to patients who tested negative while adjusting for Bcl2. On the other
hand, women who test Bcl2 positive have a reduction of approximately 50% in
the hazard of death compared to women who test negative while adjusting for
ER. Two way interactions between the predictors included in the model were not
significant and the proportional hazard assumption was found to be valid for both
predictors.

2.6 Chapter conclusion

Different topics related to the analysis of survival data have been presented in
this Chapter. The MRL function, the non-parametric estimate of the survival
function based on the product-limit formula proposed by Kaplan & Meier (1958)
and the use of the logrank statistic to compare the survival experience of two
groups of individuals, are important topics in the context of this thesis. The
MRL function will be used and studied again in Chapter 5 where the problem of
estimating such a function will be examined in depth. The Kaplan-Meier estimate
of the survival function is the most common method used for the representation of
the distribution of survival times and it will be used many times in the following
Chapters. An overview of different approaches to compare the distribution of
survival times between two different groups was also given in this Chapter. Some
of these methods will be applied in Chapters 3 and 4. In the last part of this
Chapter, an introduction to the Cox proportional hazard model was given which
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is the standard approach when modeling survival data. Based on this type of
modeling it was found that Age, PreviousMI and ACE were significant predictors
of the death from any cause of patients with cardiovascular disease included in
the coronary dataset. Moreover, biomarker HER2 was found to have a significant
effect in the time to recurrence for women with breast cancer included in the
breast cancer dataset. When studying the overall survival of the same cohort of
women, ER, Bcl2 and CDC7 had a significant effect in the survival outcome.

In the next Chapter, different types of models that can be used as an alter-
native to the Cox proportional hazard model are examined. These methods are
known as tree based methods and can be used to model many different types of
outcomes including continuous, categorical and survival responses. The advan-
tages of this type of models are numerous, and to mention just a few of them,
one could say that they do not rely in any assumptions (such as the proportional
hazard assumption), there is no need to specify a functional form for the distribu-
tion of the response (like in parametric models) and these models are very robust
to the presence of outliers. In addition to this, the models generated by these
methods are very easy to interpret even for people with no statistical background.
Although there are some drawbacks, some of which will be discussed in subsequent
Chapters, the next Chapter will start with an extensive review of these type of
models with special emphasis on the modeling of lifetime data. The coronary and
the breast cancer datasets will be used for the application of these alternative
models and the results will be compared to those obtained in this Chapter.
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Chapter 3

Tree based methods

In this Chapter tree based methods are presented for modeling the relationship
between a set of explanatory variables and a continuous, categorical, count or
survival response. The Chapter begins with an introduction to the topic and
some historical remarks about the evolution of this type of model. The second
part of the chapter presents an overview of the general ideas surrounding recursive
partitioning that is the algorithm generally used to build trees. The main focus will
be on classification and regression trees (CART) and extensions of CART to count
responses. In the third part an overview of the most relevant methods for growing
survival trees is presented. Maybe due to the specific nature of survival data
this particular field seems to have been a more active area of research and many
different algorithms have been proposed. In the fourth part, unbiased recursive
partitioning is introduced and some examples of survival trees constructed using
this method are presented. Finally, a summary of the main ideas of ensemble
methods in general, and random survival forests in particular, are presented in
the final part of the Chapter.

3.1 Introduction

The representation of the results of a statistical analysis as a tree has been adopted
by many different statistical techniques such as hierarchical cluster analysis, deci-
sion trees, phylogenetic trees, etc. The focus of this work is on what one broadly
can call tree based models. They are used as an alternative to generalized lin-
ear models (including continuous, categorical, and count responses) and the Cox
model in the case of survival responses. The history of tree based models goes
back to the seminal work of Morgan & Sonquist (1963) and the development of the
AID algorithm (Automatic Interaction Detection). In the context of social science
they pointed out how, in the presence of many interaction effects, classical regres-
sion analysis was unable to account for such interactions. Algorithms for variable
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selection such as forward selection, backwards elimination and stepwise variable
selection do not take into account the presence of interactions. Morgan and Son-
quist claimed that only after the dimension of the problem has been reduced can
one handle interaction effects. They proposed an algorithm that searched over all
the possible partitions of the sample space generated by each one of the predictors
and selected the partition that lead to the highest reduction of the variance of the
response. In their own words: ”Considering all feasible divisions of the group of
observations on the basis of each explanatory factor to be included (but not combi-
nations of factors) find the division of the classes of any characteristic such that
the partitioning of this group into two subgroups on this basis provides the largest
reduction in the unexplained sum of squares”. Such an algorithm can be repeated
for each one of the subgroups generated and the process can be iterated many
times. This method is commonly known as recursive partitioning. One of the
early problems that this method had was the determination of the optimal size of
the tree, which was usually generated based on some previously specified stopping
criterion. One solution was given by Breiman et al. (1984) and the introduction of
CART (Classification and Regression Trees) which introduced the idea of pruning
a large tree based on a cross validated measure of the cost-complexity of a tree (i.e.
a measure that evaluates the error of the tree taking into account the complexity
of the model).

Another problem of recursive partitioning methods that has been identified by
many authors (Doyle, 1973; White & Liu, 1994; Shih & Tsai, 2004; Kim & yin Loh,
2001) is the problem of variable selection bias. Predictors with many possible splits
are more likely to be selected, even if they are not strongly associated with the
response. Recently, Hothorn et al. (2006) proposed the use of unbiased recursive
partitioning to grow the tree, based on a general theory of permutation tests
developed by Strasser & Weber (1999). By using the results of an hypotheses
test as stopping criteria they claim to avoid the problem of variable selection bias
and to get the right size tree. This approach departs from the idea of pruning
that dominated the use of recursive partitioning for many years. However, using
the results of an hypothesis test as stopping criteria is not a new idea. The
Chi-squared automated interaction detection algorithm (CHAID) (Kass, 1980)
used the results of a chi-squared test to select the relevant predictors and to stop
the growth of a binary partition tree, although this could only be implemented
for nominal responses. In this regard, the work of Hothorn et al. comes as a
generalization of the ideas proposed in the CHAID algorithm to any other type
of response in a unified framework.

In addition to the research on recursive partitioning, in the last few years the
use of ensemble methods applied to tree based methods has gained a good deal
of popularity. At the core of this popularity is the random forest approach by
Breiman (2001). Ensemble methods are mainly focused on prediction and the
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basic idea is to use a set of models, that aim to give accurate predictions of the
outcome of interest, to improve the prediction accuracy when new observations are
considered. In general, the predictive value of the ensemble is the average of all the
predictions over all the models. Random forests use bootstrap samples to generate
a set of models which are each built using recursive partitioning. Although in
terms of prediction random forests perform very well, they are sometimes criticized
for the absence of an individual model that helps to understand the relationships
between predictors and response. Therefore, ensemble methods are often referred
to as “black boxes” for prediction.

In the following sections some of the topics described in the introduction will
be explained in detail.

3.2 Classification and regression trees

One of the most popular algorithms for growing trees using recursive partitioning
is CART (Classification and regression trees) by Breiman et al. (1984). This
algorithm is able to model responses that are either continuous or categorical.
The main feature of CART is the idea of pruning to avoid overfiting, after a large
tree has been grown. The result is a model that can be represented as a tree
and can be seen as a non-parametric alternative to the corresponding generalized
linear model. The process of generating such a model has two key components,
the

• splitting criterion and

• pruning procedure.

To illustrate some of the ideas related to the construction of a tree consider the
following example.

Example Let Y be a continuous response and X a continuous predictor. Fig-
ure 3.1 (b) shows the relationship between Y and X and the fitted regression
line (blue points and black line respectively). Let τ be the set of all the ob-
servations in the random sample τ = {(xi, yi) : i = 1, . . . , n}. Any individual
value xi generates a binary partition of τ given by τ = τLi ∪ τRi where τLi =
{(xj, yj) : xj ≤ xi} is the set of observations for which xj ≤ xi (left node) and
τRi = {(xj, yj) : xj > xi} is the set of observations for which xj > xi (right node).
The sum of squares of the left and right nodes are SSLi =

∑
(xj ,yj)∈τLi

(yj − ȳLi)2

and SSRi =
∑

(xj ,yj)∈τRi
(yj− ȳRi)2 respectively where ȳLi is the average of the val-

ues {yj : (xj, yj) ∈ τLi} and ȳRi is the average of the values {yj : (xj, yj) ∈ τRi}.
Figure 3.1 (a) shows the values of SSLi + SSRi as a function of xi. One can see
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Figure 3.1: In (a) the cutpoint that minimizes the sum of squares of the left
and right nodes. In (b) the sample (blue), regression line (black) and predicted
outcomes generated by that cutpoint (red).

that this function attains its minimum at x = −0.199. At that point the right and
the left nodes have the maximum level of homogeneity (minimum error of the left
and right nodes). Figure 3.1 (b) shows the split x = −0.199 and the predicted val-
ues (node summaries) of the left and right nodes (-1.82 and 1.54 respectively).
Notice that the selection of a constant (i.e. the mean) as the summary of the
node is the simplest thing to do. One could think of more complex settings in
which, for instance, a separate model could be fitted for the left and right nodes,
although these will not be considered here. Another way of representing the split
is displayed in Figure 3.2 where a parent node τ is partitioned into two offspring
τL and τR. If x ≤ −0.199, one descends to the left and the predicted outcome
for the response is −1.82 and if x > −0.199, one descends to the right and the
predicted outcome is 1.54.

The process just described can be repeated by simply considering the two
daughter nodes as parents and repeating the same algorithm (recursive parti-
tioning). At each stage, the set of splits of the corresponding parent node are
considered, and the best split is appropriately selected. Figure 3.3 shows an ex-
ample with 7 splits and the corresponding predicted values. As one can see, the
structure of the data is better captured when more splits are considered. In ad-
dition, the within-node variability is also reduced with more terminal nodes. The
resulting regression tree is presented in Figure 3.4.

One of the main questions regarding the use of recursive partitioning is when
to stop growing the tree. One can keep generating splits until the tree is over-
fitted. An example is shown in Figure 3.5 where 30 splits were generated. As one
can see, some of the predicted values are very local and clearly biased. Therefore,
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Figure 3.2: Graphical representation of the split generated in Figure 3.1.

Figure 3.3: Example of 7 splits using recursive partitioning.
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Figure 3.4: Example of a regression tree with 8 terminal nodes and only one
continuous predictor.
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Figure 3.5: An example of overfiting.

if the number of nodes is too small, high variance dominates the predicted values.
On the other hand, if the number of nodes is too high, high bias dominates the
predicted values. In order to get the right size of the tree the usual bias-variance
trade-off have to be considered (Hastie et al., 2001).

Before going into more detail and a more formal description of the CART algo-
rithm some remarks need to be made. The first one is that the example presented
above has only one continuous predictor. However, if more predictors are present
in the data the same algorithm can be used for each predictor. Each time a split
has to be generated, the predictor is chosen such that the combined sum of squares
of the two offspring for the optimal split is minimum compared to the combined
sum of squares obtained by the other predictors. Another interesting remark is
that the search for the optimal split given a particular predictor X depends on
the type of data of the predictor. Although there are different ways in which this
search can be performed, for the sake of simplicity only the following scheme will
be considered:

• If the predictor is continuous, the search is done over all the observed values
xi (except the maximum and the minimum). Each one of those values
generates the two offspring, i.e. the set of observations for which X ≤ xi
and the set of values for which X > xi. The total number of possible splits
is n− 2 where n is the number of observations in the node.

43



• If the predictor is categorical with only two levels there is only one possible
split. If there are more than two levels the search is done over all the possible
combinations of the levels. The number of splits is, in this case, 2k−1 − 1
where k is the number of categories.

• If the predictor is measured on an ordinal scale, the search can be done in
the same fashion as a continuous predictor by simply labeling the levels with
the number corresponding to the ordered level of the factor. The number of
splits here is k where k is the number of ordered categories.

3.2.1 Continuous responses (regression tree)

If the response is continuous the splitting criterion is based on the sum of squares
as a measure of the homogeneity of the node. Let {(yi,xi) : i = 1, . . . , n} be
a random sample where yi is the value of the continuous response for individual
i and xi = (xi1, . . . xip) is the vector of the corresponding values of p different
predictors. For a given node τ , the impurity of the node can be defined as

I(τ) =
∑

i: (yi,xi)∈τ

(yi − ȳτ )2

where ȳτ is the average of yi for all the individuals in node τ . The split will be
chosen such that the change of impurity

∆I(τ) = I(τ)− (I(τL) + I(τR))

is maximized. Therefore, the optimal split will produce two offspring that are
as homogeneous as possible. This process can be repeated until a large tree is
generated.

Once a large (or saturated) tree Tmax has been produced a measure of the
relative error of the tree can be obtained by

R(Tmax) =
∑
τ∈T̃

R(τ) (3.1)

where R(τ) = I(τ)/I(τ0) and T̃ is the set of terminal nodes (note that τ0 represents
the parent node). This measure of relative error can be calculated for any tree.
The process of pruning Tmax is based on the notion of the cost-complexity
measure of a tree given by

Rα(T ) = R(T ) + α|T | (3.2)

where T is any tree, α is the complexity parameter (tuning parameter) that reg-
ulates the bias-variance trade-off and |T | is the size of the tree quantified by the
number of terminal nodes. Based on these definitions, the algorithm to grow the
optimal tree can be summarized in the following steps:
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1. Using recursive partitioning grow a large (saturated) tree Tmax.

2. Prune the tree by snipping back splits of the saturated tree into smaller
trees using the cost-complexity measure given by (3.2).

3. Obtain the optimal value of the complexity parameter α using cross valida-
tion and select the tree yielding the lowest cross-validated error rate.

To explain in more detail the last 2 steps of the algorithm, let Tmax be the saturated
tree with |T̃ | terminal nodes. For a particular value of α one can calculate the
relative error of any subtree1 given by equation (3.1) and pick the subtree with
the smallest error (optimal subtree). Thus, there is function between the value
of the complexity parameter and the relative error of the optimal subtree. If the
value of α is very small the cost of incorporating new splits is very small and
larger subtrees would be chosen as optimal. On the other hand, if α is very large,
each additional split would increase the value of the error very rapidly and small
subtrees would be selected as optimal.

In order to obtain the optimal value of α CART uses cross validation (usually
10-fold cross validation). Basically, the procedure consists of dividing the full
sample into s = 10 groups. Each of the groups is removed one at a time and a
tree is grown without those observations. For each corresponding value of α the
optimal subtree with the minimum error is considered and the individuals of the
group that were left out are used to estimate the relative error. The process is
repeated s times removing each group in turn. At the end, a sample of s relative
errors is obtained for each value of α and their standard error can be calculated. In
order to choose the best value of α the one standard error (1 SE) method outlined
in Breiman et al (1984) is used. The tree with the minimum cross-validated error
is considered and any other tree with cross-validated error within one standard
error of the achieved minimum is marked as being equivalent to the minimum.
The simplest tree is then chosen.

To illustrate this idea Figure 3.6 shows a plot of the relative error as a function
of the complexity parameter for the example described in Figure 3.5. On the top
axis of the plot there is the size of the optimal tree for each particular value of
α. The minimum is attained at α = 0.0062 which corresponds to the tree with 6
terminal nodes. However, trees with 3,4 and 5 terminal nodes could be considered
equivalent as they are within the one standard error of the minimum. Figure 3.7
(left) shows the optimal tree with 3 terminal nodes.

Note that one of the advantages of using recursive partitioning is that the algo-
rithm can deal very naturally with missing values. If one wants to obtain the
predicted value of any observation for a particular tree it is enough to drop the

4A subtree is any tree created by snipping back splits of the saturated tree.
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Figure 3.6: Cross validated error as a function of the complexity parameter.

Figure 3.7: Optimal tree after pruning. On the left the structure of the tree. On
the right the predicted values and the cut-points.
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observation down the tree until a terminal node is reached (based on the values of
the predictors). However, if the information is missing for some of the predictors
it is possible to use surrogate splits which are the optimal splits based on the other
predictors ordered in a decreasing order. The first surrogate is the second best
predictor, the second surrogate is the third best predictor and so on. Therefore,
unless the observation has missing values for all the predictors, one can always
obtain the predicted value.

3.2.2 Categorical responses (classification tree)

If the response is categorical the splitting criterion is based on some value of the
entropy of the distribution of the response as a measure of the homogeneity of
the node. The most common measures used are the Gini diversity index (Gini,
1912), IGini(τ) =

∑C
i=1 pi|τ (1− pi|τ ) = 1−

∑C
i=1 p

2
i|τ and the information diversity

index IInfo(τ) =
∑C

i=1−pi|τ log(pi|τ ) where τ is any given node and pi|τ is the
estimated probability, or proportion, of the ith level of the categorical response
in node τ (it is assumed that there are C categories). These two functions attain
their maximum when the distribution is uniform (maximum level of uncertainty)
and play the same role as the sum of squares when the response is continuous. If
the Gini diversity index is used, the impurity of a node τ can be measured by

I(τ) = pτIGini(τ)

where pτ is the proportion of individuals in node τ (in reality there is very little
difference between IGini and IInfo). The split will be chosen such that the change
of impurity

∆I(τ) = I(τ)− (I(τL) + I(τR))

is maximized. Thus, the optimal split will produce two offspring that are as pure
as possible.

Once a large tree Tmax has been grown a measure of the error of the tree can
be obtained by

R(Tmax) =
∑
τ∈T̃

pτR(τ)

where R(τ) is the proportion of misclassified2 individuals in node τ and pτ is the
proportion of individuals in node τ relative to the total number of individuals.
The process of pruning Tmax is analogous to the continuous case based on the
cost-complexity measure given by (3.2).

2The predicted outcome for a categorical response in a particular node τ is the mode of the
predicted probability mass function. Therefore the proportion of misclassified, or risk of the
node, corresponds to the proportion of observations that fall in any of the remaining levels.
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3.2.3 Extension of CART to Poisson regression

Although originally developed to undertake statistical analysis for continuous and
categorical responses, the CART algorithm can be extended easily to deal with
responses based on counts. Let {(ci, ti) : i = 1, . . . , n} be a random sample where,
for individual i, ci is the number of times some event of interest occurs and ti is
the period of time in which the ci events occurred. These data can be analyzed
using a Poisson model where for individual i, the density function is

e−λti
(λti)

ci

ci!

where λ is the parameter of interest. The likelihood function for the entire dataset
is

L(λ) =
n∏
i=1

e−λti
(λti)

ci

ci!

and the maximum likelihood estimate of λ is

λ̂mle =

∑n
i=1 ci∑n
i=1 ti

.

To analyze these type of data from the tree based method perspective (Chambers
& Hastie, 1992), the splitting criterion can be based on the deviance of the data
as a measure of the homogeneity of the node. Given a node τ , the deviance is
defined as

2[logLτ (saturated)− logLτ (λ̂τ )] (3.3)

where Lτ refers to the likelihood function of the individuals in τ , λ̂τ is the corre-
sponding maximum likelihood estimate in τ and Lτ (saturated) is the value of the
likelihood function of the saturated model in which every individual i will have a
different value of λi. Using the likelihood function, (3.3) can be written as

2
∑

(ci,ti)∈τ

[
ci log

ci

tiλ̂τ
− (ci − λ̂τ ti)

]
.

The impurity of the node can be defined as

I(τ) =
1

N

∑
(ci,ti)∈τ

[
ci log

ci

tiλ̂τ
− (ci − λ̂τ ti)

]

and the split is chosen such that the change in impurity

∆I(τ) = I(τ)− (I(τL) + I(τR))
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is maximized. Furthermore, given a tree T the error of the tree is

R(T ) =
∑
τ∈T̃

I(τ)

where T̃ is the set of terminal nodes of tree T . The prediction error of a new obser-
vation is the deviance contribution of such an observation using the λ̂ correspond-
ing to the terminal node in which the new observation falls. Using this prediction
error it is possible to obtain cross validated estimates of the cost-complexity mea-
sure of the error of the tree given by (3.2).

There is a problem with this method though. If none of the individuals in a
terminal node τ experience an event, then λ̂τ = 0, and therefore, the deviance
contribution of other individual with at least one event will be ∞. This could
happen in the cross validation process where some of the observations are left
out. Although some solutions have been suggested, such as the use of

λ̂ = max

(
λ̂mle,

0.5∑
ti

)
as an estimate of λ, or the use of shrinkage estimates of λ (Therneau 1997), the
cross-validation procedure tends to give very conservative results and very often
chooses the tree with no splits as being the optimal tree.

3.3 Survival trees

Tree based methods for analyzing survival data have to be able to accommodate
the presence of censoring. Unlike the methods presented above, where there is
only one splitting criterion for continuous responses and one splitting criterion for
categorical responses, in survival analysis there are many criteria to split the nodes
and therefore to grow the tree. This section contains a review of such methods.

One of the first attempts to extend the use of recursive partitioning to the
analysis of survival data was made by Gordon & Olshen (1985). They based their
method on the idea of the impurity of a node similar to that given for categorical
responses. A node would be “pure” if all the individuals in the node had the
event of interest at the same time. This is illustrated in Figure 3.8 (a) where an
example is given of the survival function3 of a distribution in which all the events
occur at time 4.

Now let SKM(t) be the Kaplan-Meier estimate of the survival function of indi-
viduals belonging to a particular node τ in a tree T (black line in Figure 3.8 (b)).

3To simplify it will be assumed that there are no censored observations beyond the maximum
observed time.
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(a) (b)

Figure 3.8: An example of a “pure” node (a) and the distance between the Kaplan-
Meier estimate of the survival function (in a hypothetical node τ) and the survival
function of the “pure” node (blue area in (b)).

The distance between SKM and the survival function of the pure node at time 4,
SP4 , is represented as the blue area. This is the L1 Wasserstein distance between
the two survival functions. In general, the Lp Wasserstein distance between two
distributions functions F1 and F2 is (full details are given in Zhang & Singer,
2010) [∫ 1

0

|F−1
1 (u)− F−1

2 (u)|pdu
] 1
p

.

In order to measure the impurity of a node τ ∈ T , Gordon & Olshen (1985)
considered the following value

I(τ) = pτd2(SKM , SPs)

where pτ is the proportion of individuals at node τ (relative to number of indi-
viduals in the sample), d2 is the L2 Wasserstein distance and SPs is the“pure”
survival function that is closest to SKM . Therefore, d2(SKM , SPs) is the mini-
mum L2 Wasserstein distance between the Kaplan-Meier estimate of the survival
function and the pure survival function SPs .

Based on this measure of impurity, the split will be chosen such that the change
in impurity is maximized. Therefore the optimal split at node τ will generate the
right (τR) and left (τL) nodes for which

∆I(τ) = I(τ)− (I(τL) + I(τR))
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is maximum. Once the splitting rule has been defined, the rest of the process
of growing the optimal tree is very similar to that of the classification trees seen
above.

All of the splitting methods described so far, the one described in this section and
the ones for continuous and categorical responses discussed in the previous section,
are examples of splitting criteria based on within node homogeneity. In this
type of methods, the optimal split is chosen such that the change in impurity is
maximized. Therefore, once the impurity of a node has been defined the process
of growing the optimal tree is very similar no matter what type of response is
being analyzed. Segal (1988) proposed a different splitting criterion based on
measurements of between node separation in the context of survival analysis.
For regression problems with a continuous response, splitting criteria based on
between node separation give analogous results to those based on within node
homogeneity4. However, when analyzing survival data, because of the censoring,
the homogeneity of a node cannot be evaluated using the sum of squares. Segal
argued that the use of the logrank statistic (or one of its variants) as a measure
of dissimilarity between nodes is particularly appropriate for survival trees. Some
of the reasons for this are:

• due to the fact that the logrank statistic is part of the family of rank statis-
tics, the results are invariant to monotone transformations of the response;

• therefore, the splits are insensitive to the presence of outliers in the response
and not just to the presence of outliers in the predictors;

• the calculation of the logrank statistics is computationally feasible;

• censoring is easily accommodated.

The optimal splits based on measurements of between node separation are chosen
such that the separation between the two offspring of a node is maximal. Segal
(1988) proposed the use of any of the weighted logrank statistics seen in the
previous Chapter and pointed out that the resulting trees are very similar for
most of the weights, except for those that lead to the Gehan (1965) statistic.

Segal proposed a different method for pruning the tree since the minimal cost-
complexity algorithm used by CART does not work here, due to the fact that the
logrank statistic does not provide a measure of within node homogeneity. This
new bottom-up approach is referred to as the subtree maximal statistic pruning
procedure by Segal and can be summarized in the following steps:

1. initially grow a very large tree;

4This is due to the decomposition of the sum of squares as the sum of squares within plus
the sum of squares between.
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2. assign to each internal node the maximum logrank statistic contained in the
subtree of which the node under consideration is the root;

3. locate the highest node in the subtree with the smallest maximum and re-
move all its descendants. The remaining tree is a maximal subtree;

4. repeat 2) and 3) until all that remains is the root node. This generates a
sequence of maximal subtrees;

5. plot the maximal subtree split statistics against tree size and pick the tree
corresponding to the characteristic “kink” in the curve.

This new method for pruning a tree does not need to use cross validation to obtain
the optimal size of the tree.

LeBlanc & Crowley (1993) extended the use of survival trees based on logranks
as splitting criterion by introducing the notion of the split-complexity measure of
a tree, analogous to the cost-complexity measure used by CART. This measure
can be used to prune a tree that has been grown using the logrank statistic as a
measure of between node dissimilarity. For a given tree T the split-complexity is
defined as

Gα(T ) = G(T )− α|S|

where |S| is the number of internal nodes of tree T , α ≥ 0 is the complexity
parameter and G(T ) is the sum over the internal nodes of the standardized logrank
statistics (for more details of how to pick the optimal tree see LeBlanc & Crowley
(1993)).

Davis & Anderson (1989) proposed a completely different splitting criterion based
on the likelihood function where an exponential model is assumed for the underly-
ing distribution of the survival times. Under this model the log-likelihood function
of a random sample of survival times {(x1, δ1), . . . , (xn, δn)} is

logL(λ;x, δ) =
n∑
i=1

δi log λ−
n∑
i=1

λxi

where λ is the parameter of interest. Thus, the maximum likelihood estimate of
λ is

λ̂ =

∑n
i=1 δi∑n
i=1 xi

=
total deaths

total time on test
.

The proposed splitting criterion was based on the value of

− logL(λ̂) = (1− log λ̂)
n∑
i=1

δi
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which can be seen as a measure of the within node homogeneity. For a given
node τ in a tree T the impurity is defined as I(τ) = − logL(λ̂τ ) where λ̂τ is the
maximum likelihood estimate of λ based on the observations belonging to node
τ . Therefore the optimal split at node τ is obtained by maximizing ∆I(τ) =
I(τ)− (I(τL) + I(τR)) over all the predictors and all the possible cutpoints. The
optimal size of the tree can be determined following the usual pruning procedure
of the CART algorithm.

An extension of this approach was proposed by LeBlanc & Crowley (1992) which
is based on the less restrictive assumption of the proportional hazard model. Let
τ be a node in a tree T . Suppose that

λτ (t) = λ0(t)θτ

for all τ ∈ T where λτ (t) is the hazard function of individuals in node τ and λ0(t)
is the baseline hazard. The full likelihood function of the tree T can be written
as

L(θ) =
∏
τ∈T̃

Lτ (θτ )

=
∏
τ∈T̃

∏
(xi,δi)∈τ

λτ (xi)
δie−Λτ (xi) =

=
∏
τ∈T̃

∏
(xi,δi)∈τ

[λ0(xi)θτ ]
δie−Λ0(xi)θτ

where T̃ is the set of terminal nodes of tree T and θ = {θτ : τ ∈ T̃}. The

maximum likelihood estimate of θτ for any τ ∈ T̃ is

θ̂τ =

∑
(xi,δi)∈τ δi∑

(xi,δi)∈τ Λ0(xi)
. (3.4)

LeBlanc & Crowley (1992) proposed the use of the Nelson (1972) estimator of the
cumulative baseline hazard function in (3.4) given by

Λ̂0(t) =
∑
i: xi≤t

di
ni

(3.5)

where di is the number of deaths at time xi and ni is the number of individuals
at risk at time xi. The value in (3.4) can be used as a meaningful summary of a
terminal node that can be interpreted as the observed number of deaths divided
by the expected number of deaths in node τ under the assumption of no structure
in survival times.
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The splitting criterion of this method is based on the deviance of any node τ
and can be interpreted as a measure of within node homogeneity. The formula
for the deviance is

2[logLτ (saturated)− logLτ (θ̂τ )] (3.6)

where Lτ (saturated) is the likelihood function that assumes a separate parameter
for each observation. The maximum likelihood estimate of θτ is (3.4) and the
maximum likelihood estimates of each θτi of the saturated model is

θ̂τi =
δi

Λ0(xi)

where i = 1, . . . , nτ (note that the set of those indexes is equivalent to {i : (xi, δi) ∈
τ}). Plugging these estimates into (3.6) one obtains

2

[
nτ∑
i=1

δi log
δi

Λ0(xi)θ̂λ
− (δi − Λ0(xi)θ̂λ)

]

and therefore the deviance of a node τ can be written as
∑nτ

i=1 di where

di = 2

[
δi log

δi

Λ0(xi)θ̂λ
− (δi − Λ0(xi)θ̂λ)

]
(3.7)

is the deviance residual for an observation i in node τ . These deviance residuals
are equivalent to the deviance residuals one would obtain from a Poisson model
with response δi and the mean parameter given by Λ0(xi)θτ (see previous section
3.2.3).

The impurity of a node τ is define as

I(τ) =
1

N

[
δi log

δi

Λ̂0(xi)θ̂λ
− (δi − Λ̂0(xi)θ̂λ)

]
where N is the number of observations used to grow the tree. Thus, the optimal
split is chosen such that the change in impurity

∆I(τ) = I(τ)− (I(τL) + I(τR))

is maximized. The process of pruning the tree after a large or saturated tree has
been grown is analogous to the one used in CART. The cost-complexity of a tree
T is defined as

Rα(T ) =
∑
τ∈T̃

R(τ) + α|T̃ |

where R(τ) refers to the impurity the node τ .
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Figure 3.9: The cost-complexity plot applied to the coronary data using the
method proposed by LeBlanc & Crowley (1992).

As mentioned in the previous section the problem with this method is where
nodes have all observations censored, θ̂τ = 0, from (3.4). In that case, an un-
censored observation that has been ‘left out’ when calculating the cross validated
deviance residual will produce an infinite value in (3.7). An ad hoc solution pro-
posed by LeBlanc & Crowley (1992) is to estimate θτ by

θ̂τ =
1

2
∑

(xi,δi)∈τ Λ0(xi)

where again Λ0(xi) can be estimated using (3.5). In this way, the estimate of θτ
is never 0.

In Figure 3.9 the method just presented has been applied to the coronary data
and the resulting cross-validated cost-complexity errors are displayed in the plot.
As one can see, the minimum is attained for the tree with 3 terminal nodes but,
following the 1 standard deviation rule proposed by Breiman et al. (1984), trees
with 1 and 2 terminal nodes can be considered as equivalent. This would lead us
to pick the tree with no splits as the optimal tree, although this might be the effect
of the boundary problem mentioned previously. The tree with 3 terminal nodes
is shown in Figure 3.10. The terminal nodes display the estimates of the hazard
ratios (θ̂) and the number of uncensored events vs the total number of events.
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Figure 3.10: Tree obtained after applying the method proposed by Leblanc and
Crowley (1992) to the coronary data.

For example, patients younger than 77.5 years old with no previous myocardial
infarction have an estimated hazard ratio of 0.44 where the baseline hazard is the
hazard of the whole data set. This means that this group of patients do better
compared to the sample as a whole. On the other hand, the worse prognosis is
for patients older than 77.5 years with an estimated hazard ratio of 1.76.

In Figure 3.11 the same method was applied to the breast cancer dataset and
the corresponding cross validated cost-complexity errors are depicted in the plot.
Once again, the boundary problem seems to have an effect in the cross-validated
error rate based on the deviance residual.

An alternative approach was introduced by Zhang (1995) who suggested a different
splitting criterion to grow survival trees. He based the notion of impurity on the
idea that an homogeneous node should contain uncensored observations that are
homogeneous (small variability) and observations should be mostly censored or
mostly uncensored. To quantify the amount of homogeneity in any node τ the
following value for the impurity is given

I(τ) = w1Ix(τ) + w2Iδ(τ)

where w1 and w2 are weights that have to be predefined, Ix(τ) is the impurity of
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Figure 3.11: Cost-complexity plot applied to the breast cancer dataset using the
method proposed by Leblanc and Crowley (1992).

the observed times given by

Ix(τ) =
∑

(xi,δi)∈τ

[xi − xτ ]2∑
x2
i

where xτ is the average of the observed times in node τ , and Iδ(τ) is the impurity
of the censoring given by

Iδ(τ) = −pτ log(pτ )− (1− pτ ) log(1− pτ ).

where pτ is the proportion of censoring in node τ . Notice that, in order to nor-
malize the impurity of the observed times Ix(τ) and make it comparable with the
other component of the impurity, the term

∑
x2
i in the denominator is needed. If

the summation is over the observations in τ Zhang called the criterion adaptive
normalization, whereas if the summation is over the whole sample he called it
global normalization. He showed in a simulation study that adaptive normaliza-
tion seems to work better with a weight ratio of 1:2.

Although not discussed in Zhang (1995) he later suggested the use of the same
bottom up pruning procedure suggested by Segal (1988) to simplify the tree.
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3.4 Conditional inference trees

In this section a different algorithm for growing trees for continuous, categorical
and time to event responses is presented. All the methods described above use re-
cursive partitioning to generate a large or saturated tree, and these methods differ
in the splitting criterion and the pruning procedure. However, one of the main
drawbacks of the recursive partitioning algorithm (sometimes called the greedy
search algorithm) is the problem of variable selection bias. This problem has been
identified by many authors, including Breiman himself, and consists of that pre-
dictors with many possible splits are more likely to being chosen as a splitting
variable. White & Liu (1994) showed in simulations that measures of information
gain and gain ratio proposed by Quinlan (1986) for the classification problem (as
an alternative to the Gini and information diversity indexes by Breiman) were
affected by the variable selection bias. Shih (2004) produced some theoretical
results to understand the selection bias of the greedy method when the response
is two level categorical and the predictors are numerical with possibly missing
values. Kim & yin Loh (2001) showed that the variable selection bias can be due
also to the number of missing values of the predictor (predictors with many miss-
ing values have higher chance of being selected). Different solutions have been
proposed by these and other authors for specific types of data. The most recent
approach has been developed by Hothorn et al. (2006) who proposed the use of
conditional inference procedures, based on a general theory of permutation tests
developed by Strasser & Weber (1999), to grow the tree. In their own words, ”the
separation of variable selection and splitting procedure into steps 1 and 2 of the
algorithm is the key for the construction of interpretable tree structures not suf-
fering a systematic tendency towards covariates with many possible splits or many
missing values ”. They called the algorithm unbiased recursive partitioning.
The main strength of unbiased recursive partitioning is its flexibility, as it can
handle any type of data within the same unified framework. Furthermore, due to
the fact that the stopping criterion is based on the result of a statistical hypothesis
test (i.e. a p-value), there is no need for pruning. The rest of the section explains
the algorithm in detail.

The unbiased recursive partitioning algorithm

Let Y be a response (continuous, categorical or ordinal) and X1, . . . , Xm the
predictors, where any of the Xj can be continuous, categorical or ordinal. The
algorithm to grow the tree can be summarized in the following steps:

1. At any node (starting with the parent node), test the global null hypothesis
of independence between Y and any of the predictors Xj using the data
belonging to that node. If the global test is not significant, the data is not
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split any further. If the global test is significant, choose the predictor with
the strongest association (smaller p-value).

2. Using the predictor selected in step 1, find the cut-point that maximizes the
separation between the two children nodes. This can be done by searching
over all the possible cut-points and obtaining the p-values of the test of
independence between the left and the right part. The cut-point leading to
the smallest p-value is selected for the split.

3. Repeat steps 1 and 2 until no further splits are possible.

To test the global null hypothesis of independence in step 1, multiple test pro-
cedures can be performed. The simplest way of doing this is to use a Bonfer-
roni correction to achieve the desired global level of significance. More advance
methods for multiple testing include re-sampling-based adjustments such as the
min-P-value re-sampling approach (Westfall & Young, 1993). There are other al-
ternatives but multiple testing procedures are preferred when missing values are
present in the data (for full details see Hothorn et al., 2006). Therefore, the global
test:

H0 : D(Y |X1 . . . Xm) = D(Y )

can be seen as a composite of the following individual tests:

Hj
0 : D(Y |Xj) = D(Y )

where j = 1, . . . ,m.

Test of independence between Y and Xj

Let A be a node and P = {(yi, x1i, . . . , xmi) : i = 1, . . . , nA} the set of all the
observations in node A. Although different tests could be used to test the null
hypothesis of independence Hj

0 : D(Y |Xj) = D(Y ) (depending on the nature of
the response and the predictor), a general class of tests based on the theory of
permutation tests by Strasser and Weber (1999) is used in the unbiased recur-
sive partitioning algorithm. To measure the association between Y and Xj the
following linear statistic is considered:

Tj = vec

(
nA∑
i=1

gj(xji)h(yi, (y1, . . . , ynA))T

)
(3.8)

where gj(xji) ∈ Rpj and h(yi, (y1, . . . , ynA)) ∈ Rq. The function h is called the
influence function and it depends on the vector (y1, . . . , ynA) but not on the order
in which the values of (y1, . . . , ynA) are arranged. Furthermore, the term “vec”
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in (3.8) implies that if pj > 1 and q > 1 the linear statistic Tj will be considered
a vector in Rpjq and not a matrix.

One of the reasons why the linear statistic Tj is particularly appropriate is that
by simply changing g and h the resulting test statistic can handle any combination
of continuous, categorical and ordinal variables. In other words, the choice of the
function g and the influence function h depends on the type of data of Xj and
Y . For instance, if Xj is continuous g is the identity and therefore gj(xji) = xji
for all i = 1, . . . , nA. If Xj is categorical with, lets say, 3 levels a, b and c, then
gj(xji) = (1, 0, 0) if xij = ”a”, gj(xji) = (0, 1, 0) if xij = ”b” and gj(xji) =
(0, 0, 1) if xij = ”c”. The same can be extended to any number of categories.
If Xj is ordinal gj(xji) = rank(xji). For the response, if Y is continuous, the
influence function is the identity h(yi) = yi. In some situations, if there are a
few extreme values of the response one might considering using the ranks, i.e.
h(yi) = rank(yi). If the response is categorical, the same transformation as for
the categorical predictor can be used.

In order to perform a test based on the linear statistic Tj, the values of Xj are
considered fixed and the order in which the values of Y are arranged are random.
Thus, the vector (y1, . . . , ynA) is considered a random realization of the sample
space of all the possible permutations of the values {y1, . . . , ynA}. Therefore,
for each permutation of {y1, . . . , ynA} the value of Tj is different under the null
hypothesis Hj

0 . Strasser & Weber (1999) gave a closed form of the expected value
µ and covariance Σ of the distribution of Tj over the sample space of all the
possible permutations of {y1, . . . , ynA}:

µ = vec

((
nA∑
i=1

g(xji)

)
E(h)T

)

Σ =
n

n− 1
V(h)⊗

(
nA∑
i=1

g(xji)⊗ g(xji)
T

)
−

− 1

n− 1
V(h)⊗

(
nA∑
i=1

g(xji)

)
⊗

(
nA∑
i=1

g(xji)

)T

where E(h) = 1
n

∑nA
i=1 h(yi), V(h) =

1

n

∑nA
i=1(h(yi) − E(h))(h(yi) − E(h))T and ⊗

is the Kronecker product. Notice that the dimensions of µ and Σ depend on the
dimension of g and the influence function h. In the continuous and ordinal cases
the dimension is 1. When, either Y or Xj are categorical, the dimension is going
to change according to the number of categories. In the general case E(h) ∈ Rq,
V(h) ∈ Rq×q, µ ∈ Rpjq and Σ ∈ Rpjq×pjq where pj is the number of categories of
Xj and q is the number of categories of Y .
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Strasser & Weber (1999) studied the asymptotic properties of the linear statis-
tic Tj and concluded that, under Hj

0 , as n→∞, Tj tends to a multivariate normal
distribution with mean µ and covariance Σ. The asymptotic properties of Tj can
be used to construct a test statistic for the test of independence. For instance,
the quadratic form

cquad = (Tj − µ)TΣ+(Tj − µ)

where Σ+ is the Moore-Penrose inverse of Σ, follows approximately a χ2 distribu-
tion with degrees of freedom given by the rank of Σ. Notice that both Tj and µ are
vectors in Rpjq, and Σ+ is a matrix in Rpjq×pjq, thus cquad is a number obtained
from the sample that can be compared to the critical value. Another example
refers to the test statistic

cmax = max

∣∣∣∣ Tj − µ
diag(Σ)1/2

∣∣∣∣
which follows a standard normal distribution in the univariate case (pj = q = 1)
and, in the multivariate case, its distribution can be computed by numerical algo-
rithms. Notice that (Tj − µ)/diag(Σ)1/2 is a vector in Rpjq and the maximization
is obtained over all the values in the vector.

The p-values of the test can be approximated by either, using the asymptotic
distribution of cquad or cmax, or approximating the exact distribution of cquad or
cmax using re-sampling methods (getting a random sample of permutations of
(y1, . . . , ynA)).

3.4.1 Survival trees based on unbiased recursive partition-
ing

The method just described can easily be extended to survival data by choosing the
appropriate influence function h. In the case of survival data with right censoring
h is chosen to be the logrank scores as in Hothorn & Lausen (2003). Let τ be
any node in a tree T and let {(xi, δi) : i = 1, . . . , nτ} be the survival response
belonging to node τ . The logrank score for observation i is defined as

δi −
∑

(xj ,δj): xj≤xi

δj
nτ − θj + 1

where θj is the number of observations xl ≤ xj.
Figure 3.12 shows the survival tree obtained using unbiased recursive partition-

ing when applied to the coronary data. This tree was grown using the contributed
package in R party (Hothorn et al., 2006). This model identified Age, PreviousMI
and ACE as significant factors, which are three of the four predictors that the
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Figure 3.12: Unbiased recursive partitioning applied to the coronary data.
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Figure 3.13: Unbiased recursive partitioning applied to the breast cancer dataset.
The event of interest is the recurrence of the disease.

Cox proportional hazard model also identified as significant. The survival tree
also found Diabetes, Lipids and PreviousHF as having an effect on the survival
outcome. The worst prognostic groups correspond to the far left and far right
terminal nodes: these are patients younger than 77 years old, with previous my-
ocardial infarction and diabetes, and patients older than 77 years old respectively.
The best prognostic cohort of patients are individuals younger than 77 years old
with no previous myocardial infarction or heart failure and who are not on ACE
medication (second terminal node from the right).

Another example of a survival tree using unbiased recursive partitioning is
given in Figure 3.13 where the method was applied to the breast cancer dataset.
The event of interest was the recurrence of the disease. The tree identified 2 of
the 11 biomarkers used to generate the model as having a significant effect, i.e.
HER2 and PR. These differ from those obtained in the previous Chapter, where
variable selection identified Bcl2 as the only relevant predictor to be included
in a proportional hazard model. The plot suggests that women who are HER2
positive have the worst prognosis (left terminal node) followed by women who
are HER2 negative and PR negative (middle terminal node) and women who are
HER2 negative and PR positive.
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Figure 3.14: Unbiased recursive partitioning applied to the breast cancer dataset.
The event of interest is the death of the patient.

Figure 3.14 depicts the corresponding survival tree when the event of interest
is death. The tree only identified ER as having an effect in the survival outcome.
This covariate was also identified when proportional hazard models were fitted.
The tree shows that women who are ER negative have poorer prognosis than
women who are ER positive. This apparent contradiction (one might expect that
ER negative patients should have a better survival outcome) can be explained by
the fact that women who test positive for ER are more likely to benefit from the
established treatments and usually have a greater five-year overall survival than
those who test negative.

3.5 Random forest

Although the main focus of this work is on individual trees, for the sake of com-
pleteness a brief description of ensemble methods based on trees is presented in
this section. One of the motivations for the use of these types of methods is the
fact that classification and regression trees, along with other model selection pro-
cedures such as subset selection in linear regression are unstable (as pointed out
by Breiman, 1996b). This means that small changes in the learning set can result
in large changes in the model used to predict the outcome of interest.
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Breiman (1996a) proposed a method to improve the prediction error called
bagging (bootstrap aggregating). The method is based on the use of bootstrap-
ping to generate a set of prediction models. Let L = {(yi,xi) : i = 1, . . . , n}
be a random sample or training set where y is the outcome of interest and
x = (x1, . . . , xm) is the set of covariates. Furthermore, let ϕ(x,L) be a pre-
dictor of x based on the learning sample L. In bagging, instead of using only one
learning set L for prediction, a set of learning sets {L(B), B = 1, . . . , k} is gener-
ated by taking repeated bootstrap samples from L. The predicted outcome ϕB(x)
is the average of ϕ(x,L(B)) over all the replicates B if the response is continuous
and it is the mode over all the replicates B if the response is categorical.

Breiman applied this method to regression trees and found a reduction in the
test set mean square error on datasets ranging from 21% to 46%. The same method
was tested for classification trees and gave a reduction in test set misclassification
rates ranging from 6% to 77%.

A slightly different version of bagging was proposed by Breiman (2001) and was
called a random forest. The algorithm can be summarized in the following steps:

1. draw a bootstrap sample of the original dataset;

2. using recursive partitioning grow a large or saturated tree. At each node,
consider only a random selection of predictors for the split;

3. repeat steps 1) and 2) until a forest of trees have been generated;

4. use this ensemble of trees for prediction in the same way as the bagging
approach.

Breiman showed that the accuracy of a random forest depends on two key factors:
the prediction strength of the individual trees and the correlation of the trees. He
also proved that random forests do not over-fit the data even though the trees
in the ensemble are not pruned. Note that the only difference between random
forests and bagging is step 3) where only a subset of randomly selected predictors
is consider for the splits. Therefore randomization is introduced in two forms, by
selecting bootstrap replicates of the original data and by selecting at random a
smaller set of covariates at each node.

3.5.1 Random survival forest

Extensions of the random forest approach to the study of survival data are prob-
lematic due to the fact that the predicted outcome in survival analysis is not as
well defined as in regression and classification problems. One way of approach-
ing this problem is by reformulating the survival tree in terms of a classification
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problem by exploiting the equivalence between the likelihood of a tree for Poisson
responses and the likelihood of a tree based on the proportional hazard assump-
tion (Ishwaran et al., 2004). The predicted outcome in that case is the estimated
hazard ratio. Hothorn et al. (2006) proposed a different approach where log trans-
formed survival times are used as the outcome in a weighted random forest re-
gression analysis. The observations are weighted by, what they call, the inverse
probability of censoring.

More recently, Ishwaran et al. (2008) has proposed a random survival forest
specifically designed for survival data without the need of any transformation of
the survival times. This approach is based on a new type of predicted outcome for
survival data called ensemble mortality. In order to assess the prediction error,
the concordance index (C-index) proposed by Harrell et al. (1982) is considered.
The algorithm can be summarized in the following steps:

1. draw a bootstrap sample of the original data. Call out-of-Bag (OOB)
the set of observations that are not included in the bootstrap replicate (on
average 37% of the data will not be included in each replicate);

2. grow a saturated tree by choosing at each node only a random selection
of predictors. The splitting criterion is based on some measure of between
node separation (such as the logrank statistic);

3. repeat 1) and 2) until a forest of trees have been generated.

4. calculate the cumulative hazard function ΛT for each tree T and average that
over all the replicates to obtain the ensemble cumulative hazard function ΛB

T ;

5. Calculate the prediction error for ΛB
T using the OOB data;

To explain in more detail the elements of the algorithm, let τ be a node in any
tree T . The cumulative hazard function at node τ is given by the Nelson-Aalen
estimate (Nelson, 1972; Aalen, 1978)

Λ̂τ (t) =
∑
i: xi≤t

di
ni

where di is the number of deaths at time xi, ni is the number of individuals at
risk and xi represents the observed times. Let {T (B) : B = 1, . . . , k} be the forest
of trees created in the ensemble. For any observation i, the cumulative hazard
function of tree T (B) at any time t is

Λ(B)(t|i) = Λ̂
τ
(B)
i

(t)
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where τ
(B)
i is the terminal node in which observation i falls in tree B. The boot-

strap cumulative hazard function for individual i at time t is defined as

Λ∗(t|i) =
k∑

B=1

Λ̂
τ
(B)
i

(t).

Alternatively, the OOB cumulative hazard function Λ∗∗(t|i) is similar to Λ∗(t|i)
but in the former case the sum is only over the trees in the forest for which
individual i is an OOB observation.

The predicted outcome for individual i is the ensemble mortality which is
defined as

M∗
i =

n∑
j=1

Λ∗(xj|i)

where {xj : j = 1, . . . , n} is the set of observed times in the random sample.
Similarly, the OOB ensemble mortality is defined as

M∗∗
i =

n∑
j=1

Λ∗∗(xj|i). (3.9)

To estimate the prediction error, the C-index proposed by Harrell et al. (1982)
is considered. Let {(xi, δi) : i = 1, . . . , n} be the observed data where x is
the observed time and δ is the censoring indicator. The concordance index is
calculated as follows:

1. define the set of permissible pairs as the set of pairs (i, j) for which the
shorter observed time is uncensored. If xi = xj then (i, j) is a permissible
pair only if, at least, one of them is uncensored;

2. For each permissible pair,

• If (xi 6= xj) count 1 if the shorter survival time has worse predicted
outcome and count 0.5 if both have the same predicted outcome.

• If xi = xj and both are events count 1 if both have the same predicted
outcome and count 0.5 otherwise.

• if xi = xj but not both are uncensored, count 1 if the uncensored
observation has worse predicted outcome and 0.5 otherwise.

• Let Concordance denote the sum over all the permissible pairs.

3. Calculate the concordance index as

C =
Concordance

Permissible
.
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The predicted outcome is given by the OOB ensemble mortality defined in (3.9)
and, therefore, an OOB estimate of the C-index C∗∗ can be obtained. The OOB
prediction error is calculated as 1− C∗∗.
It is important to stress that random forests, in particular random survival forests,
do not produce an individual tree as an outcome. One way of summarizing the
combined information obtained by the forest of trees is to use a value called
variable importance for each one of the predictors. To calculate the variable
importance for a particular predictor x, the OOB ensemble mortality for an in-
dividual i is calculated in the exact same way described before, with the only
difference that each time observation i encounters a split based on x the daugh-
ter node is assigned at random instead following the path described by the split.
The variable importance is then calculated as the difference between the original
prediction error and the prediction error calculated in this manner.

This method was applied to the coronary data and the results are shown in
Figure 3.15 (a). On the left the OOB error rate as a function of the number of
trees in the forest. On the right the ‘variable importance’ of each predictor. As one
can see 4 out 5 of the covariates ranked as having the highest values of ‘variable
importance’ are identical to those obtained in the Cox proportional hazard model,
i.e. Chol, PreviousMI, Age and ACE. When comparing the results of the random
forest with the tree obtained using unbiased recursive partitioning, again one can
see how most of the predictors identified by the tree have high values of ‘variable
importance’ (Age, PreviousMI, ACE, Diabetes and Lipids) with the exception of
PreviousHF which was ranked last.

Another example is given in Figure 3.15 (b) where the random survival forest
algorithm was applied to the breast cancer data when the event of interest is the
recurrence of the disease. Bcl2, which was the only predictor identified by the Cox
proportional hazard model, has the highest ‘variable importance’ value followed
by tMcm2 and HER2. Recall that HER2 was one the covariates identified by the
tree based on unbiased recursive partitioning.

3.6 Chapter conclusion

In this chapter an extensive review of tree based methods has been presented.
These methods can be used as an alternative to the generalized linear models
for continuous, categorical, count and survival responses. The CART algorithm
has been explained in detail and extensions to Poisson responses have also been
presented. A whole section was dedicated to tree based methods applied survival
responses. Some of these methods adopt the pruning procedure of the CART algo-
rithm whereas others developed their own pruning strategies. However, trees that
use recursive partitioning are affected by the variable selection bias. A possible
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(a)

(b)

Figure 3.15: (a) Random survival forest applied to the coronary data. (b) Random
survival forest applied to the breast cancer dataset (with recurrence as event).
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solution for this problem is based on trees that use unbiased recursive partitioning.
A section was dedicated to the explanation of these types of trees. Throughout
the Chapter, the breast cancer dataset and the coronary dataset were used to
illustrate some of the methods and to compare the results with those obtained in
the previous Chapter. In the last part of this Chapter an overview of ensemble
methods, in particular those applied to survival analysis, was presented.

The next Chapter includes a novel approach for growing survival trees that
can be used as an alternative to trees based on unbiased recursive partitioning.
The method is based on a novel algorithm called ‘node re-sampling’ which uses
re-sampling procedures each time a split has to be performed. This new method
addresses the problem of variable selection bias, it can identify interaction effects,
and it takes into account the sampling variability in the process of generating
the model. The aim of this new method is to provide a more robust and a more
versatile tool to build survival trees.
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Chapter 4

Trees based on node re-sampling

In this Chapter a novel algorithm for growing trees is introduced which uses re-
sampling procedures at node level to obtain the optimal split at each node. The
Chapter begins with an introduction that motivates the search for an alternative
method to generate classification and regression trees and, particularly survival
trees. In the second part of the Chapter, a brief section is presented which high-
lights the fact that the representation of a model in a tree fashion is not unique
and, in reality, many different representations are valid. Taking this into account,
the notion that the importance of a predictor is related to the position on the tree
can be dismissed. In the third part a brief introduction to the node re-sampling
algorithm is given. Initially, only continuous responses are considered and a pre-
liminary version of the algorithm is studied in detail. The fourth part explains the
final version of the algorithm and presents a graphical user interface for survival
responses. In this section the whole process of growing the survival tree based on
the node re-sampling algorithm is presented. One of the most interesting features
of this new approach is the fact that interactions are easily detected. This will be
demonstrated with a theoretical example and the results will be compared with
unbiased recursive partitioning which fail to detect interaction effects. Finally,
in the last part of the Chapter, the new method will be applied to the datasets
presented in the introduction and the results will be discussed and compared to
those obtained by other methods.

4.1 Introduction

There are many reasons why tree based methods have enjoyed enormous pop-
ularity since they first appeared. One of these reasons is the simplicity of the
generated model and the possibility of representing the results of the statistical
analysis in a tree fashion. This feature is particularly appealing for people with
no statistical background. For instance, a researcher who has collected data and
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has no experience in statistical modeling can easily run the recursive partitioning
algorithm without the need of specifying a model for the response or transforming
the scale of any of the variables involved in the study. Furthermore, the represen-
tation of the model in a tree fashion offers a very intuitive tool to interpret the
results of the statistical analysis. Another reason for the popularity of tree based
methods, which has more to do with statistical modeling, is that they can easily
deal with interactions. This point is particularly true for tree based methods that
use some form of pruning after a saturated tree has been grown (as will be demon-
strated in this chapter). In this regard, interactions should naturally arise in the
model without the need of specifying additional terms as in the case of regression
models. Other reasons that make tree based methods interesting include the ease
in which the model deals with missing values, through the use of surrogate splits,
and the robustness of the method to the presence of outliers. In any case, tree
based methods are accessible to a broader group of users and no particular exper-
tise is necessary to understand and manage the statistical concepts involving the
creation and interpretation of a tree.

Although all these appealing properties might appear to be an excellent reason
to use this type of models, the recursive partitioning algorithm has some draw-
backs. The most common criticism arising among statisticians has to do with the
lack of any statistical inference of tree based methods. Apart from trees based on
conditional inference procedures (described in the previous chapter) or any other
trees that use a statistical test for the selection of predictors at each node, there
is no information about how the sampling variability will affect the results of the
obtained model. In this sense, tree based methods are seen as an exploratory
tool which complements other algorithms for variable selection such as, backward
elimination, forward selection or best subsets. It turns out that individual trees
are very sensitive to sample variability as will be demonstrated in this chapter.
The structure of the whole model depends dramatically on the data used to gen-
erate the tree and small changes in the data could lead to trees with a completely
different appearance. This can be confusing for the inexperienced user and the
current algorithms for growing and displaying trees might be playing a role by
giving misleading information about the real nature of the model presented.

On the other hand, ensemble methods, in particular the random forest ap-
proach by Breiman (2001), have a stronger theoretical statistical basis but are
criticized for the lack of an individual tree as an output that somehow diminishes
the attractiveness of the method. The content of this chapter intends to fill this
gap between the absence of the measurement of the sampling variability of indi-
vidual trees and the lack of an individual tree as an outcome of ensemble methods.
In order to do so, a novel method for growing trees is proposed which is based
on re-sampling procedures performed at a node level. This new approach will
allow the user to assess how small changes in the data could affect the structure
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of the observed tree. This new method has been developed in parallel with the
development of a new graphical user interface for growing survival trees. The
new tool allows the user to generate the optimal tree by interactively eliminating
nodes that are irrelevant for the model. The method presented here addresses
some of the issues that are known to be problematic with the current algorithms
for growing survival trees.

4.2 Different trees, same structure

One of the main misunderstandings when interpreting a tree is the notion that
variables that are on top of the tree are somehow more important than variables
that are at lower levels. To explain this point, suppose that the response is
continuous and that there are 3 predictors: X1 is continuous, X2 is categorical
with two levels ‘yes’, ‘no’ and X3 is ordinal with levels ‘Low’, ‘Medium’ and
‘High’. Figure 4.1 shows 4 different representations of the same structure. The
values of the terminal nodes corresponds to the predicted value of the response.
All the trees displayed give the exact same information and any observation with
particular values of X1, X2 and X3 will obtain the same predicted value no matter
which one of the trees is chosen. As one can see, the root node in 3 of the 4 trees
represented is different. The top left tree has X1 in the root whereas the bottom
right tree has X3 in the root. The other two trees have X2 in the root. Suppose
that the top right tree is the tree obtained after running the recursive partitioning
algorithm. That means that predictor X2 produces the optimal split on top of the
tree. However, other suboptimal splits could also be valid and, in fact, generate
trees that give the same information. Moreover, some of these alternative trees
might be simpler as in the case of the top right tree which has fewer terminal
nodes. Because of the recursive nature of the algorithm, once a split has been
generated, it cannot be modified and the split is only based on the information
obtained in the splits generated before. Furthermore, there is no information
about any future splits. As a result, the recursive partitioning algorithm will
only create one of the many possible representations of the tree, without being
necessarily the optimal one in terms of complexity. It is important to remark that
these considerations are not related to the pruning procedure of CART (Breiman
et al., 1984) and they are valid for any procedure that uses recursive partitioning
(as in the case of trees generated using unbiased recursive partitioning Hothorn
et al., 2006). The pruning of the tree is based on the existence of a saturated
model which does not change apart from the elimination of some of the branches.

The important message is that the position of a variable in the tree cannot be
a measurement of variable importance. The same applies to the use of p-values
with the same objective. This point is easily illustrated when one considers an
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Figure 4.1: An example in which 4 different structures generate virtually the same
information. This highlights the point that there is no unique way of representing
a tree.
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Figure 4.2: Two representations of an interaction effect.

interaction effect in the data. Figure 4.2 shows the two possible representations
of an interaction between two predictors X1 and X2. The terminal nodes contain
the predictive value of a continuous response. In the left tree, the split in X1 is
not going to be significant since the two siblings will have the same distribution
(with mean 30, assuming equal numbers in each node). However, X2 will be
significant conditioning to the split generated by X1. The tree on the right, which
is equivalent to the tree on the left, will produce the exact opposite result. In
that case, X2 is not significant whereas the splits generated by X1 are significant.
Therefore, the use of p-values as a measurement of the importance of the predictor
is relative and depends on the position occupied by that predictor in the tree.
Since there are many different valid representations of the same tree, the use of
p-values for such a purpose is ‘risky’ to say the least.

In summary, for a given dataset, the representation of the tree generated ap-
plying any of the methods that use recursive partition is not unique and many
alternative representations are also valid. Before going into more detail about
the node re-sampling algorithm an example is presented where simulated data are
used to describe how the available methods perform when data are simulated from
a given model.

4.2.1 Synthetic example 1

Suppose that the tree represented in Figure 4.3 defines the underlying model from
which data can be simulated. In the terminal nodes, the ns are the estimated
number of observations included in the terminal nodes for a sample size of 200.
Below n there are the mean and the standard deviation of the the distribution of
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Figure 4.3: An example of a model represented in a tree fashion. In the terminal
nodes the distribution of the response is assumed to be normal with means 60,
50, 70 and 30 and standard deviations of 20.

the response which is assumed to be normally distributed. In this example, data
will be generated as follows. There will be 12 predictors in total with distributions
given in Table 4.1. The first two predictors X1 and X2 will be related to the
response in the way represented in Figure 4.3. The third predictor X3 is related
to X1 with correlation coefficient ρ = 0.7 and, therefore, it will be related to the
response indirectly. The rest of the predictors are pure noise with no relation
whatsoever to the response.

The process of generating a random sample consists in, first obtaining the
values of the predictors by drawing data from the distribution corresponding to
each one of the predictors (as specified in Table 4.1). Once this is done, the rows
corresponding to each one of the terminal nodes can be identified by dropping
each observation down the tree in Figure 4.3. Finally, the values of the response
are generated using the distribution specified in each one of the terminal nodes.

Once a random sample has been generated, the algorithms to grow the tree
can be run and the results can be compared to the underlying model to see to
what extent the estimated model reflects the underlying model. For instance,
Figure 4.4 shows the results of running the unbiased recursive partitioning algo-
rithm (Hothorn et al. 2006) after a random sample of size 200 was drawn from
the model. As one can see, the optimal tree has no splits at all. Based on the
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Predictor Distribution Type

X1 Normal ( µ = 65, σ = 4.5 ) Continuous
X2 Bernoulli (p = 0.45 ) Categorical
X3 Normal ( µ = 70, σ = 4.5 ) Continuous

noise1 Normal ( µ = 30, σ = 10 ) Continuous
noise2 {1, 2, 3, 4} Categorical

p1 = 0.20, p2 = 0.40, p3 = 0.10, p4 = 0.30
noise3 Normal ( µ = 70, σ = 10 ) Continuous
noise4 Normal ( µ = −2, σ = 10 ) Continuous
noise5 Bernoulli (p = 0.45 ) Categorical
noise6 Bernoulli (p = 0.45 ) Categorical
noise7 {1, 2, 3} Categorical

p1 = 0.20, p2 = 0.40, p3 = 0.40
noise8 Bernoulli (p = 0.45 ) Categorical
noise9 Bernoulli (p = 0.45 ) Categorical

Table 4.1: Distributions of the predictors involved in Example 1. Although it is
not mentioned in the table, predictors X1 and X3 are correlated with correlation
coefficient of 0.7.

Figure 4.4: Output obtained using unbiased recursive partitioning after a random
sample of 200 was drawn from the model presented in Figure 4.3 (α = 0.05).
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Splits y s n 95%CI dif p-value
X1 ≤ 65 58.1 18.2 100 (-13.3,5.8) 0.216
X1 > 65 54.3 24.4 100
X2 = 1 58.4 26.0 85 (-14.1,6.4) 0.239
X2 = 0 54.6 17.5 115
X1 ≤ 69 58.5 20.4 172 (-32.4,-0.9) 0.001
X1 > 69 41.9 23.5 28

Table 4.2: Summary statistics of all 3 splits defined in Figure 4.3 after a random
sample of size 200 was drawn from the underlying model.

algorithm, there is no relationship between the predictors and the response. The
global null hypothesis of independence is not significant and, therefore, the tree
stops growing before generating any splits. In this regard, the method fails to
provide a good representation of the underlying model. This could be due to the
fact that the variability of the data does not allow us to detect any relationship.
To find out if this is the reason, a simple t-test for each one of the possible splits,
along with the corresponding summary statistics and p-values, are presented in
Table 4.2. The Table shows that the only significant split corresponds to X1 ≤ 69.
However, the global null hypothesis of independence was not significant when un-
biased recursive partitioning was used. Another possible explanation is that there
are too many predictors. Because the global test of independence is based on
individual tests, some kind of correction must be introduced to the level of sig-
nificance to achieve the desired global significance. As a result of this, the more
predictors there are in the model the more conservative the test will be, and the
harder will be for the test to detect any relationship.

To investigate if this is the case, the level of significance was increased to
allow the method to obtain a larger tree. If the model was generated with all the
predictors in the model, i.e. X1, X2, X3 and the 9 covariates that are pure noise,
the method was still unable to identify any splits for an α of 0.10. However, at
the same level of significance, the model with only X1, X2 and X3 produced the
output depicted in Figure 4.5. As one can see, the method returns the adequate
model when less variables were used to grow the tree and, therefore, one can
conclude that the number of covariates had an effect on the size of the tree.

To compare the results obtained with other methods, the recursive partitioning
algorithm using CART (Breiman et al., 1984) was run with the exact same random
sample. Figure 4.6 shows part of the large tree generated. By looking at the
complexity parameter plot (Figure 4.7) one can see that, again, the tree with no
splits is the optimal tree. Therefore, based on the CART algorithm, there is no
relationship between any of the predictors and the response.
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Figure 4.5: Output obtained using unbiased recursive partitioning after a random
sample of 200 was drawn from the model presented in Figure 4.3 without noisy
covariates (α = 0.10).
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Figure 4.6: Saturated tree based on CART. The data used to grow the tree was
exactly the same than the data used to grow the tree in Figure 4.4.

Figure 4.7: Complexity parameter plot. The minimum is attained for the tree of
size 7 but any other tree is within the 1SE of the achieved minimum and, therefore,
the optimal tree is the tree with no splits.
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To summarize the results obtained with these simulated data, both methods,
the unbiased recursive partitioning and the CART algorithm, seem to be conser-
vative in this example and the models obtained are smaller than the model used
to simulate the data. In both cases, the observed tree is based on a particular
random sample of an underlying joint distribution. Different samples, however,
might generate different trees (due to the sampling variability) which in turn will
have many different representations. The next section aims to address the issue of
how small changes of the training data will affect each one of the splits generated
in each node.

4.3 Node re-sampling: Continuous responses

One of the most confusing features of tree based methods, especially for the non-
experienced user, is the fact that small changes in the training data could result in
major changes in the structure of the tree. These changes are generated at each
node and each node represents a split that has been generated using the data
from the random sample. The current methods for growing trees do not give any
information about how the sampling variability might affect the selection of that
particular split. The content of this section aims to provide a novel method to
address this particular issue. Instead of making the decision of choosing a split
based only on one dataset, the method will use the information obtained after
many bootstrap replicates have been generated from the available data. By doing
this, the selected split will inherently be more robust and information will be
gained in terms of the variability of the cutpoints and the selection of meaningful
surrogate splits.

To introduce the idea of node re-sampling, consider the same underlying model
described in the example given in the previous section. To obtain the first node (on
top of the tree) the recursive partitioning algorithm runs through all the predictors
and all the possible cutpoints and chooses the predictor and the cutpoint that
maximizes the change in impurity. Figure 4.8 shows the results in terms of the
optimal change in impurity for all the predictors involved in the example. This
plot is interesting for different reasons. First of all, it shows clearly that X1 is
the best predictor in terms of the change in impurity. Recall that the impurity
is measured in regression problems using the sum of squares. It is interesting to
see that the second best predictor (which will be considered the first surrogate)
is noise4 which has no relationship with the response. The same applies to the
second surrogate noise1. The next surrogates are noise7, X3 and noise3 which are
very close to each other. Another interesting comment that can be drawn from
the plot is that one can see the results of variable selection bias. Predictors with
many cutpoints are more likely to be selected for the split. This is very clear if
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Figure 4.8: An example of how recursive partitioning works at one particular
node. For each predictor the algorithm records the maximum change in impurity
(Y axis).

one analyzes the set of variables representing pure noise. Those variables that
are continuous produce higher values in terms of the change of impurity whereas
factors with only two levels produce the lowest values.

From the point of view of making a decision about which split should be
placed in the root node, the information derived from Figure 4.8 might not suffice,
especially in relation to the surrogate splits. What would happen if some changes
are introduced to the training set? What would happen if another random sample
was drawn from the underlying model? Would one get the same predictors for
the primary and surrogate splits? The obvious answer is that it is very likely that
the results would vary. The idea of node re-sampling is to inject some variability
in the training data and to base the decision about which split should be chosen
for a particular node on the information obtained when this process is repeated
many times. In the process of doing this one can also gather information about
the variability of the splitting points and the candidates for surrogate splits.

The next step is to define the way in which the results obtained after boot-
strapping the original data are going to be used to select the split in any particular
node. One possible approach is to apply the following algorithm:

1. Draw N bootstrap replicates of the original data.
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Figure 4.9: Bar-chart produced by the node re-sampling algorithm.

2. For each replicate, select the predictor for which the change in impurity is
maximized and retain the information about the splitting points for all the
predictors.

3. After all the replicates have been obtained, use the frequencies of the optimal
predictors obtained in step 2) to determine the predictors for the primary
and surrogate splits.

4. Select the typical value of the bootstrap distribution of the cutpoints of the
primary split as the selected splitting point.

To illustrate the way this algorithm works suppose that the data used to generate
Figure 4.8 is re-sampled with replacement 200 times. Figure 4.9 shows the bar-
chart corresponding to the distribution of the predictors that were selected as the
best candidates in each one of the replicates. As one can see, X1 is the clear
winner corroborating the impression that this predictor is related to the response
and the best candidate for the primary split. However, in approximately 35% of
the replicates other predictors were chosen. Using the information provided in
the graph, one could consider noise4 as the first surrogate, noise1 as the second
surrogate and noise3 as the third surrogate. Surprisingly enough, these conclusions
are identical to the ones obtained by simply looking at the change in impurity of
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Figure 4.10: An example of the change in impurity plot for two continuous pre-
dictors. The plot on the left shows a meaningful split whereas the plot of the right
shows a spurious split since the maximum values are attained in the boundaries
of the possible splitting points.

the original dataset (Figure 4.8). Rather than being a coincidence, this seems
to be the case when other data were simulated. After running all the replicates,
the distribution of primary splits seems to provide a similar set of primary and
surrogate splits than that one would obtain by looking simply at the change of
impurity of each one of the predictors without doing any re-sampling.

Moreover, the fact that noise4 (a predictor that has no relationship with the
response) appears to be the second best split is somehow inadequate. To investi-
gate in more detail why this is the case, Figure 4.10 shows the change in impurity
versus the cutpoints for both X1 and noise4. As one can see, the maximum change
in impurity obtained for X1 makes more sense that the maximum change in im-
purity obtained for noise4. In the latter case, the maximum is attained for the
smallest value of the predictor. The reason is that the value of the response for
that particular observation is an extreme value and this results in the change in
impurity observed in the plot. Thus, the observed maximum could be considered
as an outlier. To understand how this outlier will propagate when bootstrap repli-
cates are generated Figure 4.11 shows the plot of noise4 versus change in impurity
for 9 such replicates. As one can seen, the same pattern is observed for some
of the replicates. The conclusion is that this outlier will, therefore, provide mis-
leading information about the real nature of the split generated by this particular
predictor. In fact, values of the predictor that are not close to the outlier give
values for the change in impurity that are much smaller, as one could expect from
a predictor that is not related to the response.

One way of addressing this problem is by considering not just the cutpoint

84



Figure 4.11: Plot of the change in impurity of noise4 for 9 different bootstrap
replicates.

for which the maximum change in impurity is attained but a few more of these
points. Figure 4.12 shows the result of doing this when the 6 cutpoints with the
highest reduction in the sum of squares were considered and averaged. If the split
is meaningful, as in the case of X1, the result of applying this new procedure will
not change significantly the selection of the cutpoint and the corresponding value
of the change in impurity. However, if the split is spurious as in the case of noise4,
the cutpoints associated with the highest values of the change in impurity will
be scattered over different values of the predictor. By choosing the average of
those values as the cutpoint, the corresponding change in impurity will be more
meaningful since it will be a reflection of the change in impurity of, not just one
point, but the range of the cutpoints for which the change in impurity is the
highest.

Before implementing this new strategy for dealing with spurious splits, a re-
mark about the algorithm presented previously is worth mentioning. At each
replicate, the predictor with the maximum change in impurity is selected but the
information about the other predictors and their respective change in impurity is
lost. To explain in more detail this point, suppose that the change in impurity
for one particular replicate is as follows:

X1 X2 X3 N1 N2 N3 N4 N5 N6 N7 N8 N9

718 72 213 274 155 204 327 108 9 214 42 88

85



Figure 4.12: In this example the 6 cutpoints leading to the maximum changes in
impurity are considered. By doing this, splits that are spurious (like noise4 in this
example) will produce a more meaningful value for the cutpoint.

The maximum is attained for X1 but that does not tell one how important the
change in impurity is when you compare it to the change in impurity of the other
predictors. For instance, N7 has a greater reduction than X3 but both are very
similar with values of 214 and 213. To assess the relative importance of each
predictor one can divide each value of the change in impurity by the sum of all
the values of the change in impurity for all the predictors. In the example being
examined, the relative importance would be

X1 X2 X3 N1 N2 N3 N4 N5 N6 N7 N8 N9

.30 .03 .09 .11 .06 .08 .13 .04 .00 .09 .02 .04

By doing this the information registered is not just about the best predictor but
about how much better is the best predictor when compared to the others. To
avoid making this value depend on the number of predictors one can multiply
by the number of predictors. In this way, if all the predictors were very similar
the relative importance would approximately be 1 for all the predictors. These
values can be stored for all the bootstrap replicates and can be averaged in order
to choose the variables for the primary split and the surrogate splits.

All of these considerations lead to a slightly more sophisticated version of the
algorithm presented previously. In this version, the relative importance of each
predictor and the optimal cutpoint is retained in each replicate. If the predictor
is continuous, the optimal cutpoint is obtained by considering a small set of cut-
points leading to the highest values in the change in impurity (as explained in
Figure 4.12). Typically the number of values can be 6 and the optimal cutpoint
is just the average of those values. If the predictor is categorical, the cutpoint is
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obtained in the usual way (by considering all possible combinations of the levels
of the factor and choosing the one leading to highest change in impurity). Once
the splitting point has been chosen, the change in impurity for each predictor is
calculated using the data that were not used to obtain the cutpoint (this is called
the Out of Bag data OOB). The reason for doing this is to obtain a more realistic
estimate of the change in impurity and to avoid the variable selection bias. Al-
though this might seem a little artificial, it is not when one thinks of the change
of impurity from a different perspective. As defined in Chapter 3 the change in
impurity for a continuous response in a given node τ is

∆I(τ) = I(τ)− (I(τL) + I(τR))

where I(τ) =
∑

yi∈τ (yi − yτ )
2 and τL and τR are the corresponding left and right

nodes generated by a particular split. It is easy to prove that

I(τ) = I(τL) + I(τR) + nL(yτL − yτ )
2 + nR(yτR − yτ )

2

where nL and nR are the number of observations in the left and the right nodes
respectively. To see this let

I(τ) =
∑
yi∈τ

(yi − ȳτ )2 =
∑
yi∈τL

(yi − ȳτ )2 +
∑
yj∈τR

(yj − ȳτ )2

=
∑
yi∈τL

(yi − ȳτL + ȳτL − ȳτ )2 +
∑
yj∈τR

(yj − ȳτR + ȳτR − ȳτ )2 =

=
∑
yi∈τL

(yi − ȳτL)2 + nτL(ȳτL − ȳτ )2 + 2(ȳτL − ȳτ )
∑
yi∈τL

(yi − ȳτL)+

+
∑
yj∈τR

(yj − ȳτR)2 + nτR(ȳτR − ȳτ )2 + 2(ȳτR − ȳτ )
∑
yj∈τR

(yj − ȳτR).

Given that
∑

yi∈τL(yi − ȳτL) = 0 and
∑

yi∈τR(yi − ȳτR) = 0 it follows that

I(τ) = I(τL) + I(τR) + nτL(ȳτL − ȳτ )2 + nτR(ȳτR − ȳτ )2.

Therefore,
∆I(τ) = nL(yτL − yτ )

2 + nR(yτR − yτ )
2.

Thus, the change in impurity is also measuring the effect that a particular split
has on the response. The use of the OOB data to estimate the change in impurity
indirectly provides an estimate of a measure of the effect of a particular predictor
using the data that were not used to calculate the cutpoint. Furthermore, by
using the OOB data to measure the change in impurity, the problem of variable
selection bias is also eliminated as it will be shown in the example below.
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Figure 4.13: An example of the relative importance plot produced by the node
re-sampling algorithm. The value 1 represents equality for all the variables. In
this example X1 is clearly selected for the primary split.

This last point is important as there are some similarities with the unbiased
recursive partitioning by Hothorn et al. (2006). While the key feature to avoid
variable selection bias in unbiased recursive partitioning is the separation of vari-
able selection in one step followed by the selection of the splitting point in a second
step, in the proposed algorithm, for each bootstrap replicate, the selection of the
splitting point is made first and the selection of the covariate is made afterwards
(using the OOB data).

Once the change in impurity is calculated for every predictor the final step
is to calculate the relative importance of each predictor by dividing by the total
amount of change in impurity. After repeating these steps for all the bootstrap
replicates, the primary and surrogate splits can be identified as the predictors with
the highest median relative importance. As for the splitting points, the typical
values obtained from the bootstrap distribution of cutpoints can be considered.
The pseudo-code of the algorithm is given in Algorithm 1. The input of the
algorithm consists of the available data (in one particular node), the response
variable, and the set of predictors.

An example is given in Figure 4.13 where the node re-sampling algorithm is
applied to the data used to generate Figure 4.8. As one can see, the predictor
chosen for the primary split is again X1, but the plot gives a more realistic picture
of the nature of the split. The importance of the different predictors seem to
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Algorithm 1 Node resampling pseudocode

BS ← number of bootstrap replicates
for j = 1 to BS do

BSdata← boostrap replicate of the data
BSdataOOB ← Out of Bag data (OOB)
Y ← values of the response in BSdata
Y oob← values of the response in OOB
SS =

∑
(Y oob− Y oob)2 sum of squares of Y oob

V AR← set of predictors
for i ∈ V AR do

X[i]← values of predictor i in BSdata
splits← set of all possible splitting points
SS ← change in impurity for each splitting point
if i is continuous then

topSplits← set of splits with the highest change in impurity
. Usually 6 values

spl[i][j]← average of topSplits
end if
if i is categorical then

spl[i][j]← split with highest change in impurity
end if
Y left← values of Y oob to the left of spl[i][j]
Y right← values of Y oob to the right of spl[i][j]
SSleft =

∑
(Y left− Y left)2

SSright =
∑

(Y right− Y right)2

Delta[i][j] = SS − (SSleft+ SSright)
end for
sumDelta← sum of all the values of Delta for all predictors
for i ∈ V AR do

RDelta[i][j]← Delta[i][j]/sumDelta ∗ |V AR| . relative importance
end for

end for
for i ∈ V AR do

aveRDelta[i]← median of RDelta[i][·]
if i is continuous then

aveSpl[i]← median of spl[i][·]
end if
if i is categorical then

aveSpl[i]← mode of spl[i][·]
end if

end for
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Figure 4.14: Histogram of the bootstrap distribution of the cutpoints for X1. The
red point is the median value. The two bumps observed in the histogram represent
the two splitting points of this predictor in the underlying model.

have changed when compared to the picture described in Figures 4.8 or 4.9. Now,
noise7, noise5 and X2 are the surrogate predictors (all of them categorical). It
seems, therefore, that the variable selection bias has been eliminated. The hori-
zontal dashed line in the plot represents the threshold corresponding to equality
of importance 1. The cutpoint for the primary split can be obtained from the
bootstrap distribution of the cutpoints represented in Figure 4.14. The red point
is the value of the median which is 68.9. It can also be seen in the histogram that
there is another small bump around 65 which corresponds with the other split-
ting point for predictor X1. Based on the information obtained in Figures 4.13
and 4.14 the primary split suggested at node 1 (the root node) is X1 ≤ 68.9. To
assess the validity of this split one can check if there are any significant differences
between the two siblings. The results of the t test are:

data: Y by X1 <= 68.9

t = -3.5473, df = 33.952, p-value = 0.001161

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-26.205647 -7.115266

sample estimates:

mean in group X1 > 68.9 mean in group X1 <= 68.9

41.87430 58.53475

The conclusion is that the differences based on that split are significant and,
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therefore, it is worthwhile to include the split in the tree.

The algorithm presented here can be used every time a split has to be created. At
each node, the information obtained consists of a summary of how the different
predictors are related to the response through the use of the relative importance
plot and an estimate of the distribution of the cutpoints. Of course, the question
remains about how large the tree should be, or when to stop growing the tree. The
node re-sampling algorithm does not answer that question. One possible approach
is to use the result of the test to decide if the tree should grow any further at any
particular node. This is the same approach that trees based on unbiased recursive
partitioning use. However, as it will be shown in the next section, this is very
problematic if interactions are present in the data. The other alternative is to
grow a large tree and then to use some kind of pruning procedure to reduce the
size of the tree. All these issues will be addressed in the next section where the
node re-sampling algorithm is used in the survival context.

Before going to the next section, we comment briefly on how the algorithm
deals with outliers in the response.

4.3.1 Outliers in the response

The recursive partitioning algorithm is immune to the presence of outliers in the
continuous predictors since the role played by them is just to split the dataset in
two groups. However, outliers in the response might have an effect in the creation
of the split. To test if this is the case, 2 artificial outliers were introduced in
the data used in the previous example. Two observations were chosen at random
from the data and the values of the response were set to 240 and 250 respectively.
Figure 4.15 (a) shows the optimal change in impurity of each one of the predictors.
The change in impurity for each splitting point of the best predictor (in this case
noise1) is depicted in Figure 4.16 (b). Therefore, by simply incorporating two
outliers, the split is modified notably. The node re-sampling algorithm was run
for the exact same data resulting in Figure 4.16. The variable chosen for the
optimal split is X2 followed by X1 although all the variables look very similar,
as one can see in Figure 4.16 (a). The splitting points of X1 are represented in
Figure 4.16 (b). Although the distribution has varied, there is a peak remaining
at around 69.

In summary, the presence of outliers in the response, when the response is
continuous, might affect the selection of the splits dramatically. The node re-
sampling algorithm was able to identify two of the predictors that are related
to the response for the primary and secondary (first surrogate) splits, although
the differences were very small when compared to the other predictors. The best
approach for identifying outliers in the response is to plot the response first and
to identify those observations that could create problems.
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(a) (b)

Figure 4.15: The plot of the change of impurity for all the predictors after two
outliers were introduced in the random sample (a). In (b), the plot of the change
in impurity versus the cutpoints for the primary split noise1.

(a) (b)

Figure 4.16: The relative importance plot after the node re-sampling algorithm
was run with the two outliers (a). In (b), the histogram of the bootstrap distri-
bution of possible cutpoints for X1.
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4.4 Node re-sampling: survival responses

This section is dedicated to the extension of the ideas presented previously to
the analysis of survival data. Although most of the points made in the previous
section are valid, there are still a few issues that have to be addressed. One of these
issues is how to obtain the optimal tree. This will be explained in this section in
the survival context, although the method can also be applied to continuous and
categorical responses. Another issue has to do with the use of a statistical test in
the split. It was said that in order to assess the validity of the split after running
the node re-sampling algorithm one could simply perform a test and check its
significance in order to decide if the split is worth keeping. It will be shown here
that this is dangerous for two reasons. One reason is that important interactions
can be missed if this is used to stop growing the tree. The other reason is that
some apparent significant splits might be spurious in the sense that the predictor
involved in the split may not be related to the response. To illustrate all these
considerations an example with survival responses is presented below.

4.4.1 Synthetic example 2

Suppose that the tree represented in Figure 4.17 defines the underlying model from
which data can be simulated. The distribution of the response will be assumed to
be gamma with means and variances as described in the terminal nodes. The set
of predictors and their distributions are identical to those described in Table 4.1
and the response is simulated with 20% of the observations being right censored.

The first step will be to grow a large tree as in the CART algorithm. Because
of the different nature of the survival responses, a different splitting criterion has
to be considered. The logrank statistic as a measure of dissimilarity between
the two daughter nodes is the most appropriate (Segal, 1988). The value of the
logrank statistic is calculated as in the unbiased recursive partitioning (Hothorn
et al., 2006). Thus, the node re-sampling algorithm presented in the previous
section can be run by simply changing the measure of the change in impurity to
the value of the logrank statistic. Figure 4.18 shows a snapshot of the graphical
user interface that has been developed to accommodate all the elements of the
node re-sampling algorithm when applied to survival data. At each node, different
pieces of information are visually available. The number on top of the node is the
identification of the node. Below that, there are the size of the node, the name of
the predictor and a p-value. The p-value corresponds with the logrank test once
the predictor and the cutpoint have been selected for the split. To highlight the
p-value the little colored circle on the right of each node will be displayed in green
if the p-value is less than 0.01, in orange if the p-value is between 0.01 and 0.05,
and in red if the p-value is > 0.05.
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Figure 4.17: An example of a survival model represented in a tree fashion. The
distribution of the response in each terminal node is assumed to be gamma with
means and variances as specified in the squared boxes.

The right hand side of Figure 4.18 contains specific information about any
chosen node. For instance, at node 1 (the root node) the relative importance
plot, as described in the previous section1, shows how X2 is the most important
predictor (primary split) followed by X3 and X1. By looking at Figure 4.18 it is
obvious that some of the splits are spurious. For instance, node 25 has noise4 as
the primary split and the split generated seems to be significant with a p-value of
0.0028. Although it is possible to have significant splits below other non significant
splits (this will be considered later on when interactions are present in the data),
noise4 is not related to the response and should not be in the model.

In order to find which splits are relevant for the model and which ones are
not, some additional information has to be analyzed. Figure 4.19 shows the plot
with the node re-sampling OOB logranks in node 25. The plot shows the average
value (red dots) of the logranks for all the bootstrap replicates and for each one
of the predictors. Recall from the previous section that the value of the change of
impurity (the logrank statistic in this case) is calculated using the OOB data in

1The red points are the medians of the relative importance values for each replicate and the
vertical lines go from the 0.05 to the 0.95 quantiles of such values. This way of displaying the
plot was chosen instead of boxplots in order to make it simpler when many predictors are being
analyzed.
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Figure 4.18: A snapshot of the graphical user interface created to accommodate
the node re-sampling algorithm for survival responses.

Figure 4.19: Plot of the node re-sampling out of bag logranks for node 25 in
Figure 4.18.
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Figure 4.20: Survival tree based on the node re-sampling algorithm after all the
irrelevant nodes have been eliminated.

each replicate. If the cutpoint for the split was fixed, and only one random sam-
ple was available, the criterion to determine if there was a significant difference
between the two generated nodes would be to evaluate the logrank statistic and
compare its value with the critical point 3.84 (0.95 quantile of a chi square distri-
bution with 1 degree of freedom). If the split at the fixed cutpoint was significant
(logrank statistic ≥ 3.84), one would expect that other random samples would
also provide high values of the logrank statistic (unless of course there were not
differences and the value obtained in the first place had less than 0.05 probability
of being observed). The node re-sampling algorithm calculates the OOB values
of the logrank statistic at the selected splitting points of each bootstrap replicate
and obtains, at the end of this process, a global mean. The criterion to determine
whether a split is relevant for the model is to compare this global average with the
critical value 3.84. Based on this criterion, ‘irrelevant’ predictors would have an
averaged value of the OOB logrank statistic (red dots in Figure 4.19) below the
threshold 3.84 (horizontal line). As one can see, all the predictors in node 25 have
values below the threshold and, therefore, the split generated at that particular
node can also be considered ‘irrelevant’. This concept of ‘irrelevant’ splits provides
a criterion to prune the large, or saturated, tree. Starting from the bottom of the
tree, nodes that are ‘irrelevant‘ are systematically deleted until a node is reached
that is not ‘irrelevant’.

Figure 4.20 shows an example after all the ‘irrelevant’ splits have been deleted.
The result is the optimal tree generated by the algorithm. This tree captures
the structure of the underlying model with only one split missing in node 6.
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(a) (b)

Figure 4.21: Bootstrap distributions of the cutpoints for nodes 2 (a) and 3 (b) in
Figure 4.20.

Figure 4.21 shows the bootstrap distribution of the cutpoints for node 2 (left)
and node 3 (right). This highlights the fact that all the cutpoints are random
quantities.

To compare the results with other methods for growing survival trees Fig-
ures 4.23 and 4.22 shows the trees obtained using unbiased recursive partitioning
and the version of CART adapted to survival responses, respectively.

The tree based on CART has captured only two of the 4 splits in the model.
This tree has been selected looking at the complexity parameter plot (not shown
here) and pruning a much larger tree. The use of the CART algorithm for survival
responses based on deviance residuals (as proposed by LeBlanc & Crowley, 1992)
can be problematic in the pruning step of the process (see Chapter 3). Another
problem related to the use of CART is the problem of variable selection bias.
Although this does not seem to be an issue in this particular example, there are
no guarantees that predictors with many different cutpoints might be erroneously
selected for the split.

On the other hand, the survival tree based on unbiased recursive partitioning
(Hothorn et al., 2006) has also captured 2 of the 4 splits. This method is not
affected by the variable selection bias, since the selection of the split is divided
into two different steps. However, there are two important problems with this
method. One of them is that the global test of independence at each node is
based on a set of individual tests, one for each one of the predictors. Because of
that, the more predictors in the model, even if they are completely unrelated to
the response, the more difficult will be for the test to find significant differences,
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Figure 4.22: Survival tree using the the adapted version of CART for survival
responses (LeBlanc & Crowley, 1992). The data used to generated the tree is
identical to the one used to generate the tree in Figure 4.20.

Figure 4.23: Survival tree using conditional inference procedures (Hothorn et al.,
2006). The data used to generated the tree is identical to the one used to generate
the tree in Figure 4.20.
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since the significance level has to be penalized by the number of predictors (see
synthetic example 1). The second problem is that by stopping the growth of the
tree one can miss important interactions in the model.

The tree based on node re-sampling is free from most of the problems presented
above. It is not affected by the variable selection bias since the selection of the
split is also divided into two parts. First of all, the cutpoints are identified and
secondly the effect of the split generated by the cutpoint is evaluated using the
OOB data. This procedure is repeated many times using bootstrap replicates of
the original data and the results are averaged over all the replicates producing the,
so-called, relative importance plot. The graphical user interface allows the growth
of a large tree and the study of the information obtained by the algorithm for each
one of the nodes in a very straight forward manner. Moreover, by analyzing the
plot of the bootstrap OOB logranks, splits that are not relevant for the model are
easily identified and eliminated. This provides the user with a standard method
to prune the tree that can be used for any other type of response. Furthermore,
the relative importance plot provides a tool for identifying the primary split and
the subsequent surrogates. Because this is not based on any test, no penalization
is required, and the same results should be obtained irrespective of the number of
predictors involved in the study.

4.4.2 Interactions

Although the content of this section is related to survival responses, most of the
considerations made here are also valid for categorical and continuous responses.
Suppose one has an interaction in the model as represented in Figure 4.24. Data
were simulated based on this model and the node re-sampling algorithm was run
resulting in the tree displayed in Figure 4.25 (the tree has already been pruned
and all the ‘irrelevant’ nodes eliminated). As one can see, the tree adequately
captures the interaction in the model. At node 1 the plot of the bootstrap OOB
logranks (bottom right in the plot) shows that the split should not be included
in the model as all the red dots are below the threshold (‘irrelevant’ node). If
no other splits below node 1 were found to be ‘relevant’ that node should be
eliminated and the tree pruned. However, due to the interaction term, nodes 2
and 3 are ‘relevant’ nodes. This is shown in Figure 4.26 where the plot of the
bootstrap OOB logranks is shown for nodes 2 and 3 respectively. As one can see,
both nodes have mean logranks above the threshold and, as a result, they should
be included in the model. Although not shown here, all the nodes below nodes 2
and 3 had values below the threshold and, therefore, were eliminated.

To see to what extent the other methods for growing survival trees are able to
capture the interaction term, the tree based on unbiased recursive partitioning and
the tree based on CART were generated using the exact same dataset. The results
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Figure 4.24: An example of a model represented in a tree fashion with an inter-
action. The distribution of the response in each terminal node is assumed to be
gamma with means and variances as specified in the squared boxes.

Figure 4.25: Snapshot of the optimal tree after running the node re-sampling
algorithm with the underlying model containing an interaction term.
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Figure 4.26: Plot of the out of bag values of the logrank statistic for each replicate
and predictors in nodes 2 and 3 (left and right respectively).

of unbiased recursive partitioning are shown in Figure 4.27. As one can see, the
algorithm was unable to even generate one node, as the growth of the tree stops
after obtaining non-significant results. Due to the presence of the interaction,
the non-significant results were obtained in the first node. This particular issue,
somehow diminishes enormously the attractiveness of this method. The reason is
that tree based methods using recursive partitioning were designed to deal with
interactions without the need to look for them previous to the application of the
method. In this sense, interactions should naturally arise in the model. The only
way of achieving this goal is by growing a saturated tree first and by pruning the
tree using some adequate pruning procedure. By stopping the growth of the tree,
the algorithm does not allow the tree to find important splits that might be hiding
in subsequent nodes.

The survival tree based on CART was also grown for the same dataset. Fig-
ure 4.28 shows the complexity parameter plot. Based on this plot, one can discard
the whole tree and select as the optimal model the tree with no splits.

In summary, the proposed algorithm based on node re-sampling seems to handle
the presence of interactions more adequately than the other two algorithms. The
method based on unbiased recursive partitioning is inherently faulty in this regard
and cannot perform well when interactions are present. One could increase the
significance level in order to allow the tree to grow further but, in that case, many
other irrelevant splits might be generated. Since no formal method for pruning
the tree has been proposed using this method, this solution will not work either.
This problem also applies for trees based on unbiased recursive partitioning with
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Figure 4.27: Output obtained using unbiased recursive partitioning after a random
sample was drawn from the underlying model with an interaction (Figure 4.24).

Figure 4.28: Plot of the complexity parameter versus the relative error for the
tree based on CART where the underlying model has an interaction.
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Figure 4.29: Survival tree based on node re-sampling for the coronary data.

any other type of responses. The method based on CART does allow for the
incorporation of interactions since a large tree is generated first. However, the
pruning procedure is rather problematic for survival responses, as was explained
in previous Chapters. Moreover, the algorithm can be affected by the variable
selection bias. The node re-sampling algorithm has been shown to be adequate
even in the presence of interactions. It is, in fact, the only method that correctly
identified the underlying model. In the last part of this chapter, the proposed
method is applied to the study of the two datasets used in this thesis.

4.5 Applications of the node re-sampling algo-

rithm

To examine how the novel method for growing survival trees performs when ap-
plied to real data, the two datasets presented in this thesis were used to grow
survival trees based on node re-sampling. The first model is based on the coro-
nary dataset where the event of interest was death from any cause. To analyze
how the different predictors are related to the response, Figure 4.29 shows the
result of applying the node re-sampling algorithm to this dataset. The tree de-
picted is already pruned in the manner described in the previous section. The
two predictors present in the model are the age of the patient and the factor
indicating if the patient had a previous myocardial infarction. In the terminal
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Figure 4.30: Tree based on unbiased recursive partitioning (coronary data).

nodes the Kaplan Meier estimates of the survival functions are displayed. As one
can see older patients have worse prognosis, with 75 years old being the threshold
that separates patients with higher risk. The ‘best’ group is formed by younger
patients with no previous history of myocardial infarction. Patients younger than
75 years old with a previous history of myocardial infarction have an intermediate
risk.

To compare the results obtained when the tree was grown using unbiased recur-
sive partitioning Figure 4.30 shows the tree obtained after applying this method
(this tree was previously shown in Chapter 4). One can see some similarities with
the previous model. For instance, Age and PreviousMI appear in both models.
However, other predictors such as Diabetes, Lipids, ACE or PreviousHF appear
only in the latter model. Recall from Chapter 3 that the three covariates iden-
tified for the inclusion in the final model using Cox proportional hazard models
were Age, PreviousMI and ACE. There is another difference between the node
re-sampling and the unbiased recursive partitioning models which is the cutpoint
for Age. Whereas the cutpoint is 77 years old for the latter model, the cutpoint
is 75.5 years old for the node re-sampling model. To determine which one is more
likely to be adequate, one can look at the distribution of the cutpoints gener-
ated by the node re-sampling algorithm. This is represented in Figure 4.31. The
plot shows that the value of 75.5 is more adequate than the value of 77 based on
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Figure 4.31: Bootstrap distribution of the cutpoints for Age in node 1 for the tree
based on node re-sampling.

the bootstrap distribution of the cutpoints. Finally, the tree generated using the
algorithm based on CART is not presented since the complexity parameter plot
suggested the tree with no splits as the optimal tree.

The node re-sampling algorithm was also used for the breast cancer dataset. When
only pathological predictors were considered for the analysis, Figure 4.32 shows
the node re-sampling tree after pruning the irrelevant splits. The event of interest
in this model is the recurrence of the disease. There are three variables identified
by the model: LN−0−1, LVI−0−1 and Size−rec. The label ‘Size−rec’ refers to the
covariate ‘Size’ categorized as: “0”, “≤ 20 mm”, “> 20 to ≤ 50 mm” and “> 50
mm”. The worse prognosis in terms of disease free survival corresponds to patients
with ‘LN’ positive. It is interesting to see that even though LVI−0−1 does not
generate a significant split (p-value=0.12), the plot of the bootstrap OOB logranks
(bottom right in the picture) indicates that the node generates a ‘relevant’ split.
This allows the split about size to be incorporated in the tree. Another interesting
comment is that patients with positive size of the tumor seem to do better than
patients with size 0 (node 4). The distribution of this covariate at that particular
node is represented in Figure 4.33. The split at node 4 separates patients with
no tumor from patients with a positive size of the tumor. The fact that patients
with positive size of the tumor have lower probabilities of recurrence could be
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Figure 4.32: A snapshot of the graphical user interface after a survival tree has
been grown for the breast cancer dataset (recurrence).

Figure 4.33: Distribution of “Size−rec” at node 4 in figure 4.32.
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Figure 4.34: Survival tree based on unbiased recursive partitioning. Pathological
variables, breast cancer dataset (recurrence).

explained by the fact that patients with no tumor might still have residual cancer
cells that cannot be detected unless the appropriate tests are carried out. As a
result of this, it is likely that patients in this group were not treated correctly,
with the corresponding worsen of the survival outcome.

To compare the results of this analysis with those obtained using unbiased
recursive partitioning, Figure 4.34 shows the survival tree applying this method.
As one can see, only one split was included in the model. This highlights again
the danger of using the results of the statistical test to stop growing the tree.
The split based on LVI−0−1 is not significant and, therefore, the algorithm stops
growing the tree any further. However, as shown in the node re-sampling tree
another ‘relevant’ split is identified below, which is also a significant split. The
tree generated using CART was identical to that depicted in Figure 4.34.

To identify the relevant set of biomarkers, the node re-sampling algorithm was used
to generate a survival tree. Figure 4.35 shows the tree after all the ‘irrelevant’
splits have been eliminated (the outcome of interest was the recurrence of the
disease). As one can see, only HER2 was identified by the model. This is the
same result obtained in Chapter 2 when Cox regression models were fitted to
analyze the same dataset. Recall from Chapter 3 that the tree based on unbiased
recursive partitioning identified two of the biomarkers, HER2 and PR.
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Figure 4.35: Survival tree based on the node re-sampling algorithm. Biomarkers,
breast cancer dataset (recurrence).
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Figure 4.36: Survival tree based on the node re-sampling algorithm. Biomarkers,
breast cancer dataset (recurrence).

Finally, the node re-sampling algorithm was also run for the same dataset
when the outcome of interest was the death of the patient (overall survival).
Figure 4.36 shows the pruned tree. The only covariate identified by this model
was ER, which is exactly the same result obtained when applying the unbiased
recursive partitioning algorithm (see results in Chapter 3). Recall from Chapter 2
that the Cox proportional hazard model also identified Bcl2 as having a significant
effect in the survival outcome.

4.6 Chapter conclusion

A new method has been developed to grow and prune trees. This method uses
re-sampling procedures at a node level and a graphical user interface to generate
the optimal tree. The development of this method arises from the need for im-
provement of tree based methods based on the recursive partitioning algorithm.
In particular, the vast majority of the algorithms to grow individual trees do not
include the sampling variability in the process of generating the tree and are af-
fected by the variable selection bias. On the other hand, methods based on some
kind of hypothesis testing for generating the splits, such as trees based on unbi-
ased recursive partitioning, do take into account the sampling variability but have
two important fundamental problems. If many predictors are considered for the
analysis, many simultaneous test must be performed, and the global significant

109



level must be corrected. As a result of this, the global test of independence tends
to be conservative and some splits may be missed due to the reduction of the
significance level. Another problem is related to the presence of interactions in
the model. As has been demonstrated in this Chapter, these type of algorithms
completely miss such interactions.

The presented method is immune to all these issues. The sampling variability
is taken into account by using the information obtained after many bootstrap
replicates of the original data have been drawn. This information is used to select
the optimal split in each node. The basic idea is to use the recursive partitioning
algorithm for each one of the replicates. The splitting criterion is based on the
use of the logrank statistic as a measure of dissimilarity between the 2 daughter
nodes. The two key components of the node re-sampling algorithm are; the use of
the relative importance plot to select the predictors for the primary and surrogate
splits and the use of the OOB logranks plot to determine if the split generated
at any particular node is ‘relevant’ for the model. In addition, the cutpoints in
each split are obtained using the bootstrap distribution of the splitting points.
As has been demonstrated in this Chapter, this novel method is not affected by
the variable selection bias and it is able to identify interaction effects when these
are present in the theoretical model. The coronary and the breast cancer datasets
were used to illustrate how the proposed method can be used for the analysis
of survival data. When compared with the unbiased recursive partitioning, the
method based on node re-sampling generated similar trees and, in some cases,
more sensible results. That is the case of the breast cancer dataset when the
pathological variables were used to grow the tree (disease free survival). The
unbiased recursive partitioning failed to identify a significant split in “size” since
a previously generated node gave non-significant results. Another example is the
cutpoint of “age” for the coronary dataset. The cutpoint provided by the unbiased
recursive partitioning algorithm was 77 years old, which, based on the bootstrap
distribution of the cutpoints from the node re-sampling algorithm, is not very
likely to be adequate.
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Chapter 5

Estimating the mean residual life
function

In this Chapter a novel approach for the estimation of the MRL function is pre-
sented. The proposed method can be used for the estimation of the MRL function
in the terminal nodes of survival trees, which was one of the main goals of this
thesis. The Chapter begins with an introduction in which the use of the proposed
approach is justified. The second part of the Chapter is devoted to a general
overview of the MRL function, its definition, some properties and a discussion
about the theoretical settings when censoring is present in the data. In the third
part, the problem of estimating the MRL function under non-informative right
censoring is considered. The fourth part includes all the details of the novel ap-
proach which is based on some results from extreme value theory. Also included
here are the results of a simulation study. Finally, in the last part of the Chapter,
the application of this novel method to the estimation of the MRL function in the
terminal nodes of survival trees based on node re-sampling is presented.

5.1 Introduction

One of the advantages of the use of tree based methods as a modeling tool for
analyzing data is their flexibility in the selection of the splitting criterion and
the summary statistics in the terminal nodes. Because tree based methods are
based on an algorithm to obtain the optimal tree, different splitting criteria and
numerical and graphical summaries can be easily incorporated into the model
building process of the algorithm. Although there is no preferred option when
analyzing survival data, the use of the logrank statistic as a splitting criterion has
been adopted by many authors including Segal (1988), Hothorn et al. (2006) and
Ishwaran et al. (2008). Segal (1988) mentions some reasons why the use of log-
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ranks may be appropriate (see Chapter 3). Other authors have proposed splitting
criterion based on likelihood such as Ciampi et al. (1986), Davis & Anderson
(1989) and LeBlanc & Crowley (1992) (see Chapter 3).

Less attention has been paid to the summary statistics of a node, in particular
to the graphical and numerical summaries of the terminal nodes. It seems that
a wider choice of such summaries could enhance tremendously the functionality
of trees as a tool to produce interpretable results. The range of possible choices
depends to some extent on the splitting criterion. For instance, when logranks are
used, median survival times are usually the default choice, as in Segal (1988) and
Hothorn et al. (2006). Splitting criteria based on the likelihood tend to use rela-
tive risks measures as in LeBlanc & Crowley (1992) where proportional hazards
are assumed and estimates of the hazard ratios are given as the node summaries.
In recent years, the implementation of some of these methods in statistical pack-
ages such as R (R Core Team, 2012) has made it possible to display graphical
summaries in the terminal nodes in addition to the corresponding numerical sum-
maries. When analyzing survival data the preferred option almost unanimously
is a plot of the estimated survival function.

Here we propose the use of the mean residual life (MRL) function as a terminal
node graphical summary. This novel approach intends to extend the capabilities
of survival trees as a modeling tool that is able to generate results that are very
easy to interpret. Recall from Chapter 2 that the MRL function at any time t gives
the expected remaining life time of a patient given that the patient survived up to
time t. Furthermore, it completely characterizes the distribution and in that sense
is equivalent to other functions such as the survival or hazard function. The mean
residual life function has been used traditionally in engineering and reliability but
the advantages of using it when analyzing survival data from medicine are clear.
For example:

- The MRL function is the only function that summarizes survival in terms
of time rather than as a probability or a hazard as in the survival or hazard
functions respectively. This characteristic of the MRL function is particu-
larly interesting when one tries to communicate the results of the statistical
analysis to doctors and patients.

- The MRL function describes very nicely the survival experience of the in-
dividual under investigation (see Figure 5.1). For instance, patients with a
stable condition will exhibit a constant MRL function. Increasing MRL cor-
responds to patients recovering from their condition (transplant, operation,
etc) whereas decreasing MRL describes the survival experience of patients
for which the condition is deteriorating. Finally, patients with infectious
disease, such as tuberculosis, have a period of decreasing MRL until they
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Figure 5.1: Examples of different survival experiences.

get treatment and after that, the expected remaining life time increases over
time.

- Numerical summaries can be obtained straight from a plot of the MRL
function. In this regard, the mean life time is just the value of the MRL at
time 0. At any other time t the MRL is the expected remaining life time
given that the patient is still event free at time t.

To illustrate in more detail the justification for this novel approach I will refer
to a paper by Spruance et al. (2004) in which they express their concern about
the misinterpretation of the estimates of the hazard ratios obtained from a Cox
proportional hazard model. They state: “We have observed substantial confusion
among clinicians as to the meaning of hazard ratio. For many clinicians, hazard
ratio is a relative speed. Words found in the literature that describe the effect
of treatments on the resolution of viral diseases when the hazard ratio was sig-
nificantly greater than one have included ’accelerated time [hazard ratio shown]’,
’resolved [hazard ratio shown] times faster’, ’hazard ratios indicate a 1.3 to 1.5-
fold faster time’, ’more than twice as fast [hazard ratio = 2.13]’ and ’healing time
was 15% shorter [hazard ratio = 0.85]’”. They show different examples in which
the ratio obtained by the estimated hazard ratio (ĤR) may not necessarily corre-
spond to the ratio of the typical values. In other words, if ĤR = 2, that does not
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mean that, on average, patients of one group are going to live two times longer
that patients in the other group. Another interesting point is made in the last
part of the paper where questions by patients and recommended responses by the
physicians are discussed. One such question is “Doctor, when will I heal if I use
the new drug? ”; the recommended answer is: “The study showed that about half
the people who used the new drug healed within 4 days, and 95% healed within 8
days. Your experience will vary, like those of the people in the study, because of
the natural variation in severity characteristic of this illness.”. These examples
illustrate the difficulties in communicating the results of the statistical analysis
first from the statistician to the the clinician and secondly from the clinician to
the patients.

The use of survival trees with the MRL function in the terminal nodes can
greatly help to overcome the difficulties described above. The possibility of plot-
ting the model as a survival tree facilitate enormously the task of understanding
the very often complicated relationships between the predictors and the response.
In addition, the MRL function in the terminal nodes would easily answer the
question of how long am I going to live? or when will I heal?

5.2 The mean residual life function

Let T be the random variable that represents the time to event of a particular
individual. The mean residual life (MRL) at time t is defined as:

MRL(t) = E(T − t|T > t)

where t ≥ 0. This can be interpreted as follows: given that an individual survived
up to time t the MRL is the expected value of the conditional distribution that
represents all the individuals who survived up to time t. The concept of using
conditional distributions is used by the hazard function too. Whereas the hazard
function focuses on what happens in the very short term and gives an idea of the
instantaneous risk of death given the survival up to time t, the MRL function
focuses on the long term survival experience of the individual and gives the mean
value of the conditional distribution. Both, hazard and MRL functions completely
characterize the distribution of T . For a review of all the properties of the MRL
function see Guess & Proschan (1988).

The following characterization of the expected value of T is very convenient:

E[T ] =

∫ ∞
0

S(t)dt (5.1)

where S(t) is the survival function of T . This characterization is easily proved by
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(a) (b)

Figure 5.2: Graphic representation of MRL at two different times. In (a) t = 0
and MRL(0) is represented by the blue area. In (b) t = 3 and MRL(3) is the blue
area divided by S(3) = 0.81.

interchanging the order of integration in the following expression:∫ ∞
0

S(t)dt =

∫ ∞
0

(∫ ∞
t

f(x)dx

)
dt =

∫ ∞
0

f(x)

∫ x

0

1dtdx =

∫ ∞
0

xf(x)dx = E[T ]

where f(t) is the density function of T . In graphical terms,
∫∞

0
S(t)dt represents

the area under the survival function as represented in Figure 5.2 (a).
This interpretation of the expected value of T is useful because it allows one

to use the survivor function (or the cumulative distribution function) instead of
the density function in order to calculate the expected value. One can extend
this result to the MRL function by taking into account the fact that the survivor
function of the conditional distribution Y = T − t|T > t is:

SY (x) =
S(t+ x)

S(t)
x ≥ 0

The MRL at time t is, therefore,

MRL(t) =

∫ ∞
0

S(t+ x)

S(t)
dx =

1

S(t)

∫ ∞
t

S(u)du (5.2)

An example is given in Figure 5.2 (b). At time t = 3 the MRL(3) is the blue area
divided by S(3) which is 0.81 in this example.
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Yang (1978) was the first to propose estimating the MRL function using the
empirical survivor function in the complete data case (no censoring present). If
(t1, t2, . . . , tn) is a random sample of T the MRL function can be estimated by

M̂RL(t) =
1

Sn(t)

∫ ∞
t

Sn(u)du 1{t(n)−t} (5.3)

where t(n) is the maximum observed time, Sn(t) = 1/n
∑n

i=1 1{ti>t} is the em-
pirical survivor function and 1{·} is the indicator function. Yang (1978) showed
that (5.3) is asymptotically unbiased, uniformly strongly consistent and converges
in distribution to a Gaussian process. It is easy to see that if t < t(n),

M̂RL(t) =
1∑n

i=1 1{ti>t}

∫ ∞
t

n∑
i=1

1{ti>u}du =

=
1∑n

i=1 1{ti>t}

∑
i: ti>t

∫ t(n)

t

1{ti>u}du =

=
1∑n

i=1 1{ti>t}

∑
i: ti>t

∫ ti

t

1du =

∑
i: ti>t

(ti − t)∑n
i=1 1{ti>t}

which corresponds with the average of the excess times (ti−t) of those individuals
for whom ti > t. Confidence intervals can be calculated for the point estimates

in the usual way by ±tα
2
,nt−1SE(M̂RL(t)) where SE(M̂RL(t)) is the estimated

standard error of the estimate. An example is given in Figure 5.3 where data
were simulated from a gamma distribution with parameters k = 2 and θ = 3 and
sample size n = 1000. The blue curve represents the true MRL function and the
black curve the estimated MRL function with the corresponding 95% point-wise
confidence intervals.

Guillamón et al. (1998) proposed the use of a kernel smoothing based estimator
of the MRL function. By noting that

MRL(t) =

∫∞
t
uf(u)du

S(t)
− t

they proposed kernel estimators for both
∫∞
t
uf(u)du and S(t) in order to get a

smooth estimate of the MRL function. They established the asymptotic normal-
ity of such an estimator and compared the results obtained with the empirical
estimator.

Chaubey & Sen (1999) considered a different approach based on the classi-
cal Hille (1948) theorem (on uniform smoothing in real analysis) that can be
used to obtain smooth estimators of S(t) and f(t). For a given random sample
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Figure 5.3: An example of the estimation of the MRL function when no censoring
is present in the data. The blue line corresponds with the true MRL function.

(t1, t2, . . . , tn) a smooth estimator of S(t) can be obtained by

Ŝ(t) =
n∑
k=0

wnk(tλn)Sn

(
k

λn

)
(5.4)

where λn > 0 is chosen so that λn →∞ but n−1λn → 0 as n→∞. The weights
wnk(y) are defined as

wnk(y) =
yk

k!∑n
j=0

yj

j!

where 0 ≤ k ≤ n. They showed that with these weights the integral in the
numerator of (5.2) diverges when S(t) is estimated by Ŝ(t). In order to get
appropriate estimates of the MRL function using this approach they proposed
different weights in (5.4):

wnk(tλn) = e−tλn
(tλn)k

k!

where k = 0, 1, 2, . . . ,∞.

All of the above methods assume that complete information about the failure
time is obtained for all the individuals in the sample. However, in the biomedical
sciences censored data are typical and, therefore, complete information is available
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only for some of the individuals. Recall from Chapter 2 that random censoring is
usually associated with medical studies and some of the reasons for which data of
this type are collected with censoring are:

- Loss to follow up. The individual under investigation disappears without
any explanation. The clinicians never see him/her again.

- Drop out. The study has to finish prematurely for a particular individual
due to some adverse effects of the treatment. Another cause is that the
patient refuses continuing the treatment for whatever the reasons.

- Termination of the study. The individual did not experience the event of
interest before the study ends.

The rest of the Chapter is dedicated to the estimation of the MRL function
under non-informative right censoring. As mentioned in Chapter 2, the theo-
retical setting of this type of censoring assumes that each individual has two
associated times, the true time when the event of interest occurs (failure time)
and the censoring time. More formally, let T and C be the failure and censor-
ing times respectively and let them be independent of each other. The observed
times are X = min(T,C) and the censoring indicator is defined as δ = 1{T<C}.
For a particular individual i the information that can be observed is the tu-
ple (Xi, δi). Under this setting, a typical random sample of size n looks like
{(x1, δ1), (x2, δ2), . . . , (xn, δn)}, where δi is 1 if the event of interest was observed
at time xi and 0 if xi is the time in which individual i was last seen having not
experience the event. This theoretical setting will be referred to as Theoretical
Setting I (TSI). However, this setting does not take into account the fact that
studies are carried out only for a limited period of time. TSI accommodates cen-
soring times due to lost to follow up and drop out, but not censoring times due to
the study termination. To include these, a different theoretical setting has to be
considered. This will be referred to as Theoretical Setting II (TSII). Under
this setting, the observed times are X = min(T,C, Tm) and the censor indicator is
δ = 1{(T<C) ∩ (T<Tm)} where Tm represents the maximum observed time or length
of the study. In this case, δ = 1 if the failure time occurs before the censoring
times and both occur before the end of the study Tm. If the failure time occurs
after Tm the observation is censored and xi = Tm.

5.3 Estimating MRL under non informative right

censoring

The methods described above can be extended to the non informative right censor-
ing case by means of replacing S(t) by an appropriate estimate in equation (5.2).
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Figure 5.4: An example of the estimate of the MRL at time 3 using the Kaplan-
Meier estimate of the survivor function. The estimate is the red area divided by
0.79.

One approach under TSI is to use the Kaplan-Meier estimator of S(t). The esti-
mate of the MRL function following this approach is thus,

MRLKM(t) =

∫∞
t
SKM(u)du

SKM(t)

where KM stands for the Kaplan-Meier estimator. Figure 5.4 shows an example
of such an estimate of the MRL function at time t = 3. The estimate would be
the red area divided by SKM(3) = 0.76. Gill (1983), among others, studied the
asymptotic properties of this estimator.

More recently, Zhou & Jeong (2011) use the same estimator of the MRL func-
tion but derive confidence intervals obtained by an easy application of the general
empirical likelihood ratio test. This approach has the advantage that there is no
need to estimate the variance at all.

Chaubey & Sen (2008) have proposed an extension of their method (Chaubey
& Sen, 1999) to the case of non-informative right censoring. They established
strong uniform consistency and asymptotic normality and claim that such an
estimator does not suffer from boundary bias as in the case of standard kernel
smoothing. The estimator is the following:

ˆMRL(t) =

∫∞
t
Ŝ(u)du

Ŝ(t)
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(a) (b)

Figure 5.5: Estimates of the MRL function based on the Kaplan-Meier estimate
of the survival function with corresponding 95% bootstrap confidence intervals.
In (a) data were simulated using TSI whereas in (b) data were simulated using
TSII (true MRL function in blue).

where

Ŝ(t) =
∞∑
k=0

SKM

(
k

λn

)
pk(λnt)

and

pk(λnt) = e−λnt
(λnt)

k

k!
, k = 0, 1, 2, . . . ,∞

with λn being a constant to be chosen suitably. Under this setting SKM(t) is set
to 0 for t = t(n) where t(n) is the maximum observed time.

All these methods use TSI to incorporate the censoring in the process of estimating
the MRL function. However, under TSII, which assumes that the study has been
carried out for a limited period of time, the estimates obtained using the above
methods fail to give appropriate estimates. An example is given in Figure 5.5
where the Kaplan-Meier estimate of S(t) is used for the estimation of the MRL
function using the two theoretical settings. As one can see in (b) the method fails
to give appropriate estimates.

To understand why the method fails, Figure 5.6 shows an example in which
data are generated under TSI (left) and TSII (right). The problem under TSII is
that the numerator in (5.2) cannot be estimated because, due to the termination
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Figure 5.6: An example of the Kaplan-Meier estimate of S(t) under TSI (left)
and TSII (right). Whereas under TSI it is possible to get good estimates of MRL,
under TSII it is not possible due to the fact that the gray area (right) cannot be
estimated.

of the study, the Kaplan-Meier estimate of S(t) does not give any information
about the missing gray area (Figure 5.6 right).

As Shen et al. (2010) notice only a few papers have focused on the estimation of
the MRL function when this type of censoring due to the termination of the study
is also present in the data. Guess & Park (1991) proposed the use of conservative
non-parametric confidence bounds for the MRL function based on the formula
MRL′(t) = MRL(t)λ(t) − 1 where λ(t) is the hazard function (this formula can
be easily derived from (5.2)). The idea is that if MRL′(t) > 0 then MRL(t) >
1/λ(t) and one can use λ(t) to obtain lower bounds for the MRL function. This
approach based on inverted confidence bounds on the hazard function is valid for
both, increasing and decreasing MRL functions and can be used for right random
censoring data even when the right tail of the survival function is missing. Shen
et al. (2010) proposed a method for the estimation of the decreasing MRL function
based on an initial estimation of µ = MRL(0). The method is based on the formula

MRL(t) =
µ−

∫ t
0
S(u)du

S(t)
(5.5)

which follows from (5.2). If µ is given, estimates of MRL(t) are calculated using
the Kaplan-Meier estimate of S(t). An appropriate value for µ can be obtained by
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comparing the Kaplan-Meier estimate of S(t) and another estimate of S(t) based
on the formula

S(t) =
MRL(0)

MRL(t)
exp

(
−
∫ t

0

1

MRL(x)
dx

)
(5.6)

where MRL(t) is estimated as in (5.5). Formula (5.6) can be obtained solving the

differential equation W ′(t) + 1
MRL(t)

W (t) = MRL(0)
MRL(t)

which follows from (5.2) with

W (t) =
∫ t

0
S(u)du.

Other approaches consist of the extrapolation of the survival function beyond
the maximum observed event time Tm. Moeschberger & Klein (1985) proposed
several methods (including the use of a parametric model) for completing the
Kaplan-Meier estimator of the survivor function. Klein et al. (1990) suggested to
treat non-parametrically uncensored observations and to use a parametric model
for the censored observations. However, as pointed out by Su & Fang (2012)
a potential problem of the use of a parametric approach is that the estimated
function tends to fit poorly in the tail of the distribution (this will be demonstrated
in the next section). They introduced a method that only uses observations that
are near Tm to fit an exponential model. In order to identify the observations that
are going to be used to fit the model, an algorithm was proposed that searches for
a time point where the hazard rate changes significantly. This algorithm is based
on a method proposed by Goodman et al. (2011) to detect multiple change points
in survival functions and to approximating a survival function with piecewise
exponential distributions. Gong & Fang (2012) extended the method proposed by
Su & Fang (2012) studying the asymptotic properties of the estimate of the mean
survival times providing a closed formula for the variance of the estimate.

The rest of the section is dedicated to describing several new attempts for
the solution of the problem of estimating the MRL when the right tail of the
estimated survival function is missing. In particular, three different approaches
were considered. The first one is based on the use of P-splines (Eilers & Marx,
1996) to extrapolate the “trend” of the Kaplan-Meier estimate of the survivor
function beyond time Tm. The second solution is based on the estimation of
a parametric model given the sample data. The data available are used to get
maximum likelihood estimates of the chosen distribution from which an estimate
of the MRL function can be obtained. This approach is similar to that proposed
by Moeschberger & Klein (1985) which only considered the Weibull distribution
for the parametric model. The third solution is based on a new approach using
extreme value theory.

5.3.1 Extrapolation of the survivor function using P-splines

Figure 5.7 depicts an example similar to that presented previously but with a
smaller sample size of n = 50. In order to use (5.2) to estimate the MRL one
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Figure 5.7: An example of the Kaplan-Meier estimate of the survivor function
under TSI. The blue line is the true survior function and the stepwise red line is
the corresponding Kaplan-Meier estimate.

needs to extrapolate the Kaplan-Meier estimate of the survivor function beyond
Tm. One possible way of doing this is by using some kind of smoothing that
allocates basis functions that are situated to the right of Tm where no data are
available. Although there are many ways of doing this, the results of the attempts
using ordinary P-splines with shape constraints are presented. Other attempts
involved the use of polynomials and P-splines with no constraints. Basically, the
problem with all these methods is that in order to get accurate extrapolation of
the survivor function one has to add a fictitious observation to the right of Tm. In
a real life example, if time is measured in years and the event of interest is death,
the fictitious observation could be at time t = 110 since it is very unlikely that
anyone lives more than 110 years. By doing this, however, the extrapolated part of
the survivor function depends very much on this fictitious point. Figure 5.8 shows
three different possibilities where fictitious points are located at times t = 20,
t = 30 and t = 40. In this example, the smoothed curve was constrained to
be monotone non-increasing and positive (Bollaerts et al., 2006). One can see
how the estimated survivor function after Tm is very different depending on the
fictitious point. If one tries to estimate E[T ] using the red curve in Figure 5.8
(b) and (c) an overestimate will arise. Any estimators based on (b) and (c) are
going to be biased. A more sensible approach would be to assume some kind of
parametric shape for the underlying distribution and, using the data available, to

123



(a) (b) (c)

Figure 5.8: An example of extrapolation of the estimated survivor function using
P-splines. Three fictitious points were located at t = 20, t = 30 and t = 40 (parts
(a), (b) and (c) respectively).

estimate the survival function for the whole range of possible values of T .

5.3.2 A Parametric approach for estimating the MRL func-
tion

Assuming a parametric model for the distribution of T brings many advantages
and simplifies many things if the distribution of T is, in fact, similar to the model
one is assuming. Of course, the question is, what model should one choose?
Graphical methods can be used to try to have an educated guess of what model
could be more appropriate. Although all this is correct, it does not provide an
automatic way of attaining the ultimate goal of this section which is to obtain
an unbiased estimate of the MRL function. A solution would be to consider a
set of distributions that are used more often in survival analysis and to pick the
model that best fits the data. The results presented here include the Weibull, the
log-normal and the log-logistic as the set of distributions to be used to estimate
the MRL function. Of course this approach could be extended to a wider set of
distributions without any significant modification of the method.

The proposed method is as follows. Let f(t, θ) be the density function of any of
the three distributions mentioned before where θ is the vector of the corresponding
parameters for each one of the models. Let {(x1, δ1), (x2, δ2), . . . , (xn, δn)} be the
observed times and censoring indicators of the random sample. Given the data,
the likelihood function under non-informative right censoring can be written as:

L(θ|(x, δ)) =
n∏
i=1

f(xi, θ)
δiS(xi, θ)

1−δi .
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as described in Chapter 2. Estimates of the parameters can be obtained by maxi-
mizing the likelihood function for each one of the three models. Let θ̂W , θ̂LN and
θ̂LL be the maximum likelihood estimates of the parameters for the Weibull, log-
normal and log-logistic distributions respectively. Furthermore, let ŜW (t), ŜLN(t)

and ŜLL(t) be the corresponding estimated survival functions. In order to choose
the model that best fit the data one can use ordinary least squares where the
goodness of fit can be calculated as:

gofM =
n∑
i=1

δi(SM(xi)− SKM(xi))
2

Here the subscript M refers to any of the three models, i.e. M ∈ {W,LN,LL},
and SKM is the Kaplan-Meier estimate of the survivor function. Notice that,
for convenience, the sum of squares is only calculated for the values xi that are
uncensored (observations i for which δi = 1). The model that leads to the smaller
value of gofM is selected for the analysis. Once the model has been chosen, one
can get estimates of the MRL function using (5.2). Figure 5.9 illustrates the
method. Data were simulated from a gamma distribution and the maximum
likelihood estimates of the survivor function for the Weibull, log-normal and log-
logistic distributions are represented in black, red and green respectively. By
simulating the data using a different distribution, it is possible to evaluate how
sensitive the method is to the election of the wrong model. The results obtained
are summarized in the following output:

name mean median gof

Weibull 5.75 5.07 0.111

Lognormal 5.98 5.98 0.035

Loglogistic 6.27 4.61 0.031

In this situation, the log-logistic distribution seems to give the smaller value of
gofM (0.031) and, therefore, will be chosen for the estimate of the mean residual
life. Despite the apparent good fit of the three distributions it turns out that
the same does not happen when estimating the MRL function as Figure 5.10
demonstrates. This gives an idea of the complexity of the task in hand. For
instance, at time t = 20 the MRL function of the underlying distribution (gamma)
is 0.0331

0.0098
= 3.3913 where

∫∞
20
SG(t)dt = 0.0331 and SG(20) = 0.0098 (G stands for

gamma). The MRL function of the estimated log-logistic (green line) is 0.4294
0.0292

=
14.6988 which is a considerable over estimate.

To assess how the proposed method works in repeated sampling a small simu-
lation was carried out in which 1000 random samples were obtained from the same
underlying distribution (gamma with parameters k = 2 (shape) and θ = 3 (scale)).
The sample size was fixed at n = 50. The results are shown in Figure 5.11. The
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Figure 5.9: An example of three different estimated survivor functions based on
different choices of parametric shapes. The black stepwise curve is the KM esti-
mator of the true survivor function (blue line). The dashed lines correspond to the
estimated Weibull (black), log-normal (red) and log-logistic (green) distributions.

Figure 5.10: MRL functions corresponding to the estimated survivor functions
in Figure 5.9. The blue curve is the true survivor function. The other curves
correspond to the Weibull (black), log-normal (red) and log-logistic (green) dis-
tributions.
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Figure 5.11: An example of the performance of the parametric approach for the
estimation of the MRL function. The Y axis represents the deviations between
the estimated and the theoretical values.

deviations from the true value of the MRL function and the estimated values using
the method described above (Y axis) were determined at five different time points
(X axis). As one can see, the method seems to give biased results in all five points
and the variability increases as the follow up times increase.

To summarize the results obtained in this section, the two methods proposed for
the estimation of the MRL function seem to fail to give appropriate estimates
of such a function. The method based on P-splines is unable to determine what
the behavior of the missing tail is, since, beyond the maximum observed time,
no information related to the survival probabilities is available in the sample.
As a result of this, the estimates of the MRL function will be affected. The
method based on the parametric approach seems to provide good estimates of
the survival function but fails to give good estimates of the MRL function as has
been demonstrated in the example. In the next section a novel approach based
on extreme value theory is presented.
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ξ = −0.5 ξ = 0 ξ = 0.5

Figure 5.12: Plot of the survival function of the GEV distribution for different
values of the shape parameter.

5.4 A semi-parametric approach based on ex-

treme value theory

Extreme value theory is concerned with estimating the probability of highly un-
usual events. Because they are very unusual they are not likely to be captured
in a particular random sample. A core result in extreme value theory, due to
Leadbetter (1983), is that if there exits sequences of constants an > 0 and bn,
such that Mn−bn

an
converges to G(x) in distribution where G(x) is non-degenerate

and Mn is the sample maximum then G(x) follows a generalized extreme value
distribution (GEV). This distribution has 3 parameters µ (location), σ > 0 (scale)
and ξ (shape) and its distribution function is:

G(x) = e
−[1+ξ(x−µσ )]

−1/ξ

+

where x > 0 and [u]+ = max(u, 0). The value of ξ is what determines the behavior
of the tail of the distribution.

- If ξ > 0 heavy upper tail.

- if ξ = 0 exponential upper tail.

- if ξ < 0 short tail with a finite upper end-point.

Figure 5.12 shows the survival function for different values of the shape parameter
(in this example µ = 2 and σ = 1). These results provide an asymptotically
justified model for the maximum of a random sample. The sampling distribution
of the maxima defines somehow the behavior of the upper tail of the underlying
distribution. In general, given a random sample (x1, x2, . . . , xn) and a threshold
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u, one can think of the observations xi ≥ u as a sample of the maximum and use
those observations that exceed the threshold to estimate the parameters of the
GEV distribution.

In order to apply these ideas to the problem of estimating the MRL function,
suppose one has a random sample of observed times (t1, t2, . . . .tn) (to simplify
the notation for now it is assumed that there is no censoring, although the ideas
explained here will be extended when censoring is present). For a particular
threshold u, consider the conditional distribution Tu = T −u|T > u. The survivor
function of Tu is

STu(t) = P (T − u > t|T > u) = P (T > u+ t|T > u) =
1− FT (u+ t)

1− FT (u)

where t ≥ 0 and FT (t) is the distribution function of T . If the threshold u is
“large”, and there are m observations lager than u, one can approximate FT (t)m

(distribution function of the sample maximum) by the GEV distribution. Fur-
thermore, due to the max-stability property (Leadbetter, 1983) FT (t) is still a
GEV distribution. Thus,

STu(t) ≈ 1−G(u+ t)

1−G(u)
=

1− e−[1+ξ(u+t−µσ )]
−1/ξ

+

1− e−[1+ξ(u−µσ )]
−1/ξ

+

A further approximation can be obtained using the first order power series of the
exponential function (ef(x) = 1 + f(x) + · · · ),

STu(t) ≈
[
1 + ξ

(
u+t−µ
σ

)]−1/ξ

+[
1 + ξ

(
u−µ
σ

)]−1/ξ

+

=

[
1 +

ξt

σ + ξu− ξµ

]−1/ξ

+

Define σu = σ + ξ(u− µ), then

STu(t) ≈
[
1 +

ξt

σu

]−1/ξ

+

which is the survivor function of the generalized Pareto distribution (GPD) with
scale parameter σu (which depends on u) and shape parameter ξ.

Hence, the conditional distribution of T − u|T > u can be approximated by
the generalized Pareto distribution when the threshold u is “large”. The MRL
function at time u can then be estimated by the expected value of the estimated
conditional distribution. The expected value of the GPD as defined above is

σu
1− ξ

.
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In general, the r-th moment of the generalized Pareto distribution is

σu
ξ

r∑
j=0

(−1)j+1

1− ξj

and only exists for ξ < 1/r. Of course the obvious question is: how large does
u have to be for a good approximation? The answer lies in the usual trade-off
between bias and variance. If u is too large, the approximation will be good but
not many observations are available for the estimates of the parameters (high
variance). On the other hand, if u is too small, more data are available but one
might be estimating the wrong model (bias). There are some graphical methods
available for choosing the optimal value of u but there is no automatic way of
choosing u. Some simulations have shown, however, that for the task of estimating
the MRL, a reasonable value for the threshold u might be a value such that
between u and Tm there are 20% of the longest event times in the sample. In
other words, the threshold u would be the 0.8 quantile of the uncensored observed
times (see next section).

5.4.1 Description of the proposed method

Let {(x1, δ1), (x2, δ2), . . . , (xn, δn)} be the observed times and censoring indicators
in the random sample. The estimate of the MRL function at time t can be obtained
following these steps:

1. Choose the threshold u to be the value such that between u and Tm there are
20% of the longest event times in the sample (0.8 quantile of the uncensored
observed times).

2. Calculate the maximum likelihood estimates of the parameters ξ and σu
of the generalized Pareto distribution (GPD) using only the observations
between u and Tm. The survivor function of the GPD is

SGPD(t) =

[
1 +

ξt

σu

]−1/ξ

+

,

and the density function is

fGPD(t) =
1

σu

[
1 +

ξt

σu

]− 1
ξ
−1

+

.

Therefore, the likelihood function is:

L(ξ, σu;xi, δi) =
n∏
i=1

(
1

σu

[
1 +

ξt

σu

]− 1
ξ
−1

+

)δi ([
1 +

ξt

σu

]−1/ξ

+

)1−δi

.
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This function can be maximized using the usual optimization methods.
Some restrictions are important though. For the GPD to have finite first and
second moments, the shape parameter ξ must be < 0.5. Some simulations
have shown that for values of ξ being restricted to be ≤ 0.10 the estimates
of the MRL function produce biased results. Values of ξ restricted to be
≤ 0.5 also produced very pronounced overestimates of the true values of the
MRL function and considerable increase of the estimated standard errors.
Restrictions of the shape parameter around 0.25 gave the best results (see
next section for a detailed explanation of this point).

3. Estimate MRL(t) using the KM estimate of S(t) and setting SKM(Tm) = 0.
This estimate will be called ˆMRLKM(t).

4. Using the threshold stability property, estimate the mean residual life at
time Tm as:

ˆMRL(Tm) =
σ̂u + ξ̂(Tm − u)

1− ξ̂

where ξ̂ and σ̂u are the maximum likelihood estimates from step 2.

The threshold stability property states that if a conditional random variable
T−u|T > u follows a GPD for some threshold u then for any higher threshold
v ≥ u the conditional random variable T − v|T > v follows a GPD with the
same shape parameter ξ and σv = σu + ξ(v − u). Furthermore, the mean
residual life evaluated at time v is:

MRL(v) = E(T − v|T > v) =
σu + ξ(v − u)

1− ξ

5. Estimate the mean residual life at time t as:

ˆMRL(t) = ˆMRLKM(t) +
ˆMRL(Tm)SKM(Tm)

SKM(t)

Figure 5.13 provides a graphical explanation of step 5. Suppose one is interested
in estimating the MRL function at time t = 4. The maximum observed time is in
this example Tm = 11.67 (the border between the red and the blue areas). The
red area in Figure 5.13 can be calculated as ˆMRLKM(4)SKM(4). The estimate of
the MRL at time Tm is ˆMRL(Tm) which can be obtained in step 4. Thus, the
blue area can be calculated by ˆMRL(Tm)SKM(Tm). The estimate of the MRL at
time t = 4 is the area from 4 to ∞ (i.e. the red area plus the blue area) divided
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Figure 5.13: Example of how to estimate the MRL function using the GPD dis-
tribution. The stepwise red line is the Kaplan-Meier estimate of the survival
function. The dashed blue line is the estimated survival function using the GPD
distribution.

by SKM(4). This yields:

ˆMRL(4) =
ˆMRLKM(4)SKM(4) + ˆMRL(Tm)SKM(Tm)

SKM(4)
=

= ˆMRLKM(4) +
ˆMRL(Tm)SKM(Tm)

SKM(4)

which is the formula used in step 5.

Figure 5.14 shows an example of the estimated MRL function using this method.
As one can see, there is more variability than that obtained when the Kaplan-
Meier estimate of the MRL function was used with data that had no censoring
due to the study termination. The extra variability is due to the fact that, in this
case, one has to estimate the missing upper tail of the distribution.

Alternative approach

An alternative method, which is very similar to the one described above, consists
in using the maximum likelihood estimates σ̂ and ξ̂ to estimate the MRL function
at time u rather than at time Tm. In this case there is no need to use the threshold
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Figure 5.14: The estimated MRL function using the GPD. In addition 95% boot-
strap confidence intervals. The blue line is the true MRL function.

stability property in step 4). The alternative proposed method can be summarized
in the following steps:

1. Choose the threshold u in the same way.

2. Calculate the maximum likelihood estimates of the parameters ξ and σu in
the same way.

3. Estimate MRL(t) as the area from t to u of the KM estimate of the survival
function. This estimate will be called ˆMRLKMu(t).

4. Estimate the mean residual life at time u as:

ˆMRL(u) =
σ̂u

1− ξ̂

where ξ̂ and σ̂u are the maximum likelihood estimates from step 2.

5. Estimate the mean residual life at time t as:

ˆMRL(t) = ˆMRLKMu(t) +
ˆMRL(u)SKM(u)

SKM(t)
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Figure 5.15: The estimated MRL function using the alternative approach based
on the GPD. In addition 95% bootstrap confidence intervals.

An example is given in Figure 5.15 in which the alternative proposed method was
applied to the same data used in Figure 5.14. The plot suggests perhaps a slight
improvement in terms of the variability, especially for values of the MRL function
near 10.

To summarize the content of this chapter so far, it has been shown that under TSI
the Kaplan-Meier estimate of the MRL function does not give a good estimate
of the true MRL function. The reason is that the method does not take into
account the missing upper tail of the distribution. Trying to extrapolate that
missing part using some kind of smoothing does not work either. A parametric
approach seems to be a more sensible choice but, even though some distributions
fit the data well, the estimated MRL function differs from that of the underlying
distribution, especially for larger values of t. The novel method presented in this
Chapter based on extreme value theory uses the generalized Pareto distribution
to estimate the missing upper tail of the underlying distribution. Two approaches
have been proposed and it seems that both are an improvement on the other
methods discussed in terms of obtaining adequate results. To investigate whether
this novel method is indeed an improvement, the results of a simulation study will
now be presented.
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5.4.2 Simulation study

In this section results from a simulation study are presented where the proposed
methods are analyzed in terms of their adequacy. Several survival “experiences”
are considered corresponding to the different cases described at the beginning of
this Chapter. The survival distributions used for the simulations are:

- Patients with a stable condition: Exponential λ = 3.

- Recovery patients: Gamma k = 0.7, λ = 3.

- Terminal patients: Gamma k = 2, λ = 3.

- Infectious disease patient: Lognormal µ = 1, σ = 0.5.

Let T be the true failure times and C the censoring times (T and C are assumed to
be independent). In the simulations C is assumed to have a uniform distribution
(0,M). Furthermore, Tm will denote the termination or duration of the study
(also M will be assumed to be greater than Tm). The simulations will be executed
for different percentages of censoring. Two types of censoring will be taken into
consideration; the censoring due to both lost to follow up and drop out, which will
be represented by the region (C < T ) ∩ (C < Tm) (blue area in Figure 5.16); and
censoring due to the termination of the study which will be represented by the
region [(C < T ) ∩ (C > Tm)] ∪ [(T < C) ∩ (T > Tm)] (red area in Figure 5.16)

Simulation scheme

A formula is now derived in order to identify the choice of M (upper limit of
censoring distribution) and Tm (study termination time) for a chosen proportion
of censoring. LetA andB be the proportions in the red and blue areas respectively.
Then

P (C < T ∩ C < Tm) =

∫ Tm

0

∫ ∞
c

fC(c)fT (t)dtdc =

=

∫ Tm

0

fC(c)ST (c)dc

=
1

M

∫ Tm

0

ST (c)dc = B

(5.7)
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Figure 5.16: Areas where censoring occurs. The blue area corresponds to censoring
due to lost to follow up or drop out. The red area corresponds to censoring due
to the termination of the study.

On the other hand, P ((C < T ∩ C > Tm) ∪ (T < C ∩ T > Tm)) (red area in
Figure 5.16) is

P ((C < T ∩ C > Tm) ∪ (T < C ∩ T > Tm)) =

=

∫ M

Tm

∫ ∞
Tm

fC(c)fT (t)dtdc =

=

∫ M

Tm

fC(c)ST (Tm)dc

=
1

M

∫ M

Tm

ST (Tm)dc =

=
1

M
ST (Tm)(M − Tm) = A

(5.8)

From (5.7)

M =
1

B

∫ Tm

0

ST (c)dc

and substituting for M in 5.8, one obtains

ST (Tm)

(
1

B

∫ Tm

0

ST (c)dc− Tm
)

= A
1

B

∫ Tm

0

ST (c)dc.
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The latter expression is an implicit function of Tm and can be expressed as

f(Tm) = ST (Tm)

(
1

B

∫ Tm

0

ST (c)dc− Tm
)
− A 1

B

∫ Tm

0

ST (c)dc = 0

Therefore, the root of this implicit equation can be calculated applying Newton-
Raphson. Starting at a value Tm0 iterate the expression

Tmi+1
= Tmi −

f(Tmi)

f ′(Tmi)

until convergence.
Once Tm has been obtained, M can be calculated using (5.7).

Example: Suppose one desires to simulate data from a lognormal distribution
µ = 3, σ = 2 with a 10% of censoring due to lost to follow up and drop out and
20% of censoring due to the end of the study. In that case B = 0.10 and A = 0.20.
Following the approach above, M = 319.76 and Tm = 73.07.

Methods

All the simulations will be executed as follows:

• Draw a random sample of size n from the theoretical distribution of T . This
will give the vector (t1, t2, . . . , tn).

• Draw a random sample of size n from the uniform (0,M). This will give the
vector (c1, c2, . . . , cn)

• Obtain the observed values as xi = min(ti, ci, Tm) for i = 1, 2, . . . , n.

• Obtain the censored indicators as δi = 1{(ti≤ci)∩(ti≤TM )} for i = 1, 2, . . . , n.

Based on the simulated random sample, estimates of the MRL function will be
obtained using the following three methods.

1. Method 1 (M1): Novel method proposed in this Chapter. The general-
ized Pareto distribution is used to estimate the MRL function at time Tm
(termination of the study).

2. Method 2 (M2): Alternative novel method proposed in this Chapter. The
generalized Pareto distribution is used to estimate the MRL function at time
u (threshold).

3. Method 3 (M3): The MRL function is estimated only based on the Kaplan-
Meier estimate of the survival function.
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Objectives

There are two main goals in this simulation study. The first one is related to
the selection of the threshold u and the restrictions in the maximum likelihood
estimate of the shape parameter ξ of the GPD. The second objective is related to
the assessment of the adequacy of the proposed methods in terms of unbiasedness
and extent of variability of the estimates.

To explore the first goal Figures 5.17 and 5.18 show the results of simulat-
ing data under different values of the threshold and different restrictions of the
shape parameter. Each point in the plots represents a simulation of 500 draws of
sample size n = 50 from the underlying distribution. The amount of censoring
is determined by the rows and the columns of the matrix of plots. The columns
represent the percentage of censoring between 0 and the termination of the study
Tm. The rows represent the percentage of censoring due to the termination of
the study (which is labeled as “Proportion of upper tail missing”). The different
colors represent the different distributions used for the simulations:

- Red Exponential λ = 3 (Stable).

- Blue Gamma k = 0.7, λ = 3 (Recovery).

- Brown Gamma k = 2, λ = 3 (Terminal).

- Green Lognormal µ = 1, σ = 0.5 (Infectious).

Each letter represents a combination of a selected threshold u and a selected
restriction of the shape parameter ξ. The correspondences are the following:

• A: Select u as the 0.9 quantile of the observed event times (uncensored
observed times). ξ < 0.10.

• B: Select u as the 0.8 quantile of the observed event times. ξ < 0.10.

• C: Select u as the 0.6 quantile of the observed event times. ξ < 0.10.

• D: Select u as the 0.9 quantile of the observed event times. ξ < 0.25.

• E: Select u as the 0.8 quantile of the observed event times. ξ < 0.25.

• F: Select u as the 0.6 quantile of the observed event times. ξ < 0.25.

• G: Select u as the 0.9 quantile of the observed event times. ξ < 0.50.

• H: Select u as the 0.8 quantile of the observed event times. ξ < 0.50.

• I: Select u as the 0.6 quantile of the observed event times. ξ < 0.50.
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Figure 5.17: Means of the absolute values of the differences between the estimated
MRL function at time t = 0 and the theoretical value of the MRL function at
time t = 0.
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Figure 5.18: Standard deviations of the differences between the estimated MRL
function at time t = 0 and the theoretical value of the MRL function at time
t = 0.
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For each simulation the differences between the estimated MRL function and
the theoretical MRL function are evaluated. In Figures 5.17 and 5.18 the MRL
function was only calculated at time t = 0. In Figure 5.17 the points are the
means of the absolute value of the differences whereas in Figure 5.18 the points
are the standard deviations of the differences.

As one can see A, B, C, G, H and I produce, in general, larger values of
the mean absolute differences when compared to D, E or F (Figure 5.17). This
means that the restriction of the shape parameter ξ < 0.25 seem to be the most
appropriate. Although not shown here, simulations were also performed for the
restriction ξ < 1 but the results obtained were even worse. The differences between
D, E and F are due to the selection of the threshold u. D’s tend to have more
variability since less data are available for the estimation (Figure 5.18). On the
other hand F’s tend to have less variability but slightly higher absolute mean
values suggesting higher bias compared to the E’s. This is also corroborated by
simulations performed for higher sample sizes.

In summary, the simulations presented here suggest that the best results are
obtained when the threshold u is chosen such that between u and the termination
of the study Tm there are 20% of the longest event times in the sample. The
simulations also suggest that the most adequate results are obtained when the
shape parameter of the GPD is restricted to be < 0.25. The rest of the simulations
are carried out using these restrictions.

The second goal of the simulations was to assess whether or not the proposed meth-
ods produce adequate estimates of the MRL function. Figures 5.19, 5.20 and 5.21
show the results of simulating samples under different sample sizes. Each box-plot
in the matrix of plots represents the distribution of the differences between the
estimated MRL function and the true MRL function both at time t = 0. This
distribution is simulated by drawing 500 observations from the underlying distri-
bution. The different distributions are now coded using the letters A, B, C and
D:

- A: Exponential λ = 3 (Stable).

- B: Gamma k = 0.7, λ = 3 (Recovery).

- C: Gamma k = 2, λ = 3 (Terminal).

- D Log-normal µ = 1, σ = 0.5 (Infectious).

The amount of censoring is determined in the same way explained above. The
different colors represent the three methods used for the estimation of the MRL
function:

- Method 1 (M1): Novel method proposed in this Chapter.
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- Method 2 (M2): Alternative novel method.

- Method 3 (M3): Method based on Kaplan-Meier.

The plots show that the proposed methods, M1 and M2, seem to perform well
when compared to M3. The latter method only gives reasonable results when the
percentage of censoring due to the termination of the study is 0 (first row in all
the plots). Furthermore, methods M1 and M2 seem to provide very similar results
across all the different distributions and all the different sample sizes. Another
interesting feature revealed by the plots is the possible asymptotic normality of
the method. Whereas for a sample size of n = 50 (Figure 5.21) the distribution
of the differences seems to be skewed with very high estimates for some of the
samples, for a sample size of n = 1000 (Figure 5.19) the distribution of the
differences seems to be reasonably symmetric for all the possible combinations
of censoring. Furthermore, both methods, M1 and M2, seem to perform well in
terms of unbiasedness especially for larger sample sizes where the medians and
means are similar since the distributions are more symmetric. The simulations
were also performed at different time points. The time points were chosen to be
1/3 and 2/3 of Tm (termination of the study). The results obtained were similar
to the ones obtained at time 0 with the corresponding increase of variability.

In the last part of the simulation study method M1 was tested for higher propor-
tions of censoring. Figure 5.22 shows the results of simulating data from different
distributions (A, B, C and D as before) with a sample size of n = 1000. As one
can see, the method still performs reasonably well for proportions of censoring due
to the termination of the study of 30% (fourth row), although with a consider-
able increase of variance especially for columns 4 and 5 (30% and 40% proportion
of censored observations respectively). When the proportion of the upper tail
missing is 40% the method starts to show clear signs of bias. These results show
that one should be careful when applying the method in situations in which the
percentage of upper tail missing is higher than 30% especially if the proportion of
censored observations between 0 and Tm is 20% or higher.

5.5 Mean residual life trees based on node re-

sampling

In the last part of this Chapter the estimated MRL function will be incorporated
into a survival tree. As stated in the introduction, this is an attempt to extend
the capabilities of the survival trees as a modeling tool that generate results that
are very easy to interpret. Each terminal node in a survival tree represents a
group of individuals with similar characteristics in relation to the values of the
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Figure 5.19: Distribution of the differences between the estimated MRL function
and the true MRL function both at time t = 0. The sample size is n = 1000.
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Figure 5.20: Distribution of the differences between the estimated MRL function
and the true MRL function both at time t = 0. The sample size is n = 250.
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Figure 5.21: Distribution of the differences between the estimated MRL function
and the true MRL function both at time t = 0. The sample size is n = 50.
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Figure 5.22: Simulations based on method M1 for higher proportions of censoring
(sample size n = 1000).
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Figure 5.23: An example of a survival tree with the estimated survival functions
in the terminal nodes.

predictors used to analyze the data. In Figure 5.23 a survival tree from the breast
cancer dataset is displayed1. The event of interest is the recurrence of the disease
(in months) and, therefore, the analysis concerns disease free survival. The tree
shows the three biomarkers that have historically been used to predict breast
cancer outcomes. By looking at the tree, it is difficult to see at first glance which
of the groups represented in the terminal nodes do better and which ones do
worse. It seems that individuals in the third terminal node (from the left) are
worse followed by those in the fourth terminal node. Individuals in the first and
second terminal nodes seem to do better with better survival outcome perhaps for
patients in the second terminal node.

The MRL plots in Figure 5.24, however, depict a much clear picture. Individuals
in the group of HER2 positive seem to do worse than individuals in the group of
HER2 negative. The average time to recurrence is around 70 months for HER2
negative patients and between 50 and 60 months for HER2 positive patients (MRL
function at time t = 0 in the terminal nodes). Among those who are HER2 nega-

1This tree was presented in the previous Chapter with only HER2 in the model. Although PR
and ER were eliminated since they were found to be ‘irrelevant’, for the purpose of explaining
the use of the MRL function in the terminal nodes, they are maintained in the tree. This is also
the tree presented in the introduction of the thesis.
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Figure 5.24: An example of a survival tree with the estimated MRL functions in
the terminal nodes.

tive, the group corresponding to PR positive have worse prognosis when compared
to the PR negative group. Whereas the latter group has a steady MRL function
(around 60 month average for the recurrence of the disease) suggesting no dete-
rioration of the condition, the former group displays a decreasing MRL function
which indicates bad prognosis. For instance, patients who remain free of disease
for 40 months have an estimated expected time for the recurrence of around 40
months (second terminal node from the left). However, patients who remain dis-
ease free for 80 months have only an estimated expected recurrence time of around
20 months. Among those who are HER2 positive, The group of ER negative have
an estimated mean time to recurrence of 50 months, which is worse than the
group of ER positives who has an estimated mean value of 60 months (third and
fourth terminal nodes from the left). However, the former group displays a steady
MRL function (around 40 months average) which again suggest no deterioration
of the survival outcome. On the other hand, The group of ER positives displays
a decreasing MRL function which suggests a negative survival outcome (fourth
terminal node from the left).

Another interesting feature that can be investigated is the survival experience
of individuals in each node of the survival tree. For instance, Figure 5.25 shows
the disease free survival times of HER2 positives and HER2 negatives (root node
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(a) (b)

Figure 5.25: Disease free survival by HER2. The blue lines correspond to HER2
negative patients whereas the red lines corresponds to HER2 positive patients. In
(a), Kaplan-Meier estimates of the survival function. In (b), smooth estimates of
the MRL functions.

in Figure 5.24). Figure 5.25 (a) shows the Kaplan-Meier estimates of the survival
function for both groups. It is clear that the group of HER2 positives (red line)
have worse survival outcome than the group of HER2 negatives (blue line). The
median time to recurrence is around 40 months for HER2 positive whereas the
median time to recurrence is approximately 60 months for the group of HER2
negatives. Figure 5.25 (b) depicts the estimated MRL function. It is interesting
to see that, although at time 0 the estimated differences of the expected time to
recurrence for the two groups is approximately 20 months, after 80 months, if the
patients remained free of the disease, the estimated time to recurrence is virtually
the same for both groups.

5.6 Chapter conclusion

A new approach has been proposed for estimating the MRL function in survival
problems. The use of the MRL function can help clinicians and nurses to interpret
the results of the statistical analysis. The reason is that the output is given in units
of time rather than in probabilities or hazards, which can be difficult concepts
for individuals with no statistics training. The motivation behind the use of
MRL functions is to convey results of an analysis in a more interpretable manner.
The estimation of the MRL function under non-informative right censoring is
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complicated when studies are carried out only for a limited period of time. The
majority of existing methods do not take into account this fact in their theoretical
settings and the estimates obtained are not adequate when analyzing real data.
A novel semi-parametric approach has been presented which is based on extreme
value theory. The behavior of the missing right tail of the distribution can be
estimated using the generalized Pareto distribution. This method appears to
perform well for simulated data across different distributions, different levels of
censoring and different sample sizes. The new approach can be used in any survival
analysis where the estimation of the survival distribution is required or where the
survival experience of two or more cohorts of patients must be compared. In
the field of statistical modeling the new method can be used to estimate MRL
functions in the terminal nodes of survival trees. An example was presented in
which this approach was used in a survival tree based on node re-sampling which
was obtained using the breast cancer dataset.

The next Chapter contains a summary of all the content of this thesis and
all the findings of this research. The incorporation of the MRL function in the
terminal nodes of survival trees, which was the main goal of this thesis, has led
to the development of two novel methods: one for the generation of survival trees
(based on node re-sampling) and the other one for the estimation of the MRL
function (presented in this Chapter). Two datasets have been used to illustrate
these methods, one with patients with cardiovascular disease and the other one
with breast cancer patients. A summary of these analyses is provided in the next
Chapter. Finally, the Chapter concludes with suggestions for future work.
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Chapter 6

Conclusions and future work

One of the main goals of this PhD thesis was the incorporation of the mean
residual life function into tree based methods applied to survival data. The MRL
function has been used traditionally in engineering and reliability but not so much
in the biomedical sciences where the analysis is usually based on the survival and
hazard functions. The reason for the use of survival and hazard functions is that
survival functions can be easily estimated even in the presence of censoring, and
hazard functions are a key element of the Cox proportional hazard model which
has been used for analyzing survival data for decades. Although it is possible to
use the MRL function in a proportional mean residual life model (Oakes & Dasu,
1990) this approach has not reached the degree of popularity that the proportional
hazard model has enjoyed for many years. Yet, the use of the MRL function seems
to be more natural in the sense that the values obtained by this function are given
in terms of time rather than in terms of risk.

Tree based methods applied to survival analysis (commonly called survival
trees) are a popular non-parametric alternative to the Cox proportional hazard
model. One of the reasons for the popularity of these methods is that the re-
sults of the statistical analysis can be displayed in a tree fashion. This feature
facilitates the interpretation of the model and makes the model particularly at-
tractive for clinicians and physicians. In the current methods for growing survival
trees, different graphical and numerical summaries are provided in the terminal
nodes. These include, the median survival time, the estimated hazard ratio and
the Kaplan-Meier estimate of the survival function.

The novel approach proposed in this work consists of the incorporation of the
MRL function as the graphical summary in the terminal nodes. In the same
way Oakes & Dasu (1990) extended the Cox proportional hazard model to the
proportional mean residual life model, the work done in this thesis intends to
emulate the same natural extension for survival trees. By incorporating the MRL
function in the terminal nodes a non-parametric statistical model is generated that

151



produces as an outcome values in terms of time. This is important for different
practical reasons which I will try to explain by providing some examples. Virtually
any person could understand the model as no difficult statistical concepts are
present in the output. By observing a survival tree with the MRL function in the
terminal nodes, a clinician can easily identify cohorts of individuals with different
survival experiences and the corresponding risk factors. The current methods
mainly identify risk factors in terms of their effect in the hazard function. For
instance, a Cox proportional hazard model might identify smoking as a significant
factor in the survival times of patients with a particular disease. The estimate of
the effect is given as a hazard ratio which will compare the hazard of dying for
smokers and non-smokers over the period of time in which the study is carried out.
The proposed approach will also identify smoking as a risk factor, but, unlike the
Cox proportional hazard model, it will give information about the whole survival
experience of both groups, smokers and non smokers, along with the estimates of
their mean residual lifetimes at any time t. If a clinician says to a patient that
smokers have twice as much risk of dying from the disease than non smokers,
the patient will only get the message that smoking is ‘bad‘. On the contrary,
if the clinician says to the patient that smokers live 2 years on average whereas
non-smokers survive for 8 years on average, the message is much clearer and the
patient might decide to change the habit. Another example could be given in
terms of the worth of some particular treatment or therapy. If a given treatment
is known to have an effect by significantly reducing the risk of death it is worth
asking how much the reduction represents in terms of time. It might be the case
that such a reduction is of only a few months and therefore one could wonder if
the treatment is really worth taking. By using the MRL function one can compare
both survival experiences and estimate the differences in mean. Although the use
of medians is also possible, the median values have a probabilistic origin, i.e. half
of the population will survive longer than the estimated median. These are only
a few examples of how the approach proposed in this thesis can be relevant in
the area of modeling survival data. Of course the proposed method serves as a
complement to the other traditional ways of modeling.

Challenges

Several challenges have been faced during the process of developing the new ap-
proach. These challenges have led to the creation of two new methods for growing
survival trees and for estimating the mean residual life function. The MRL func-
tion has a serious disadvantage for statistical work since it is very dependent of
the tail behavior of the survival function. This feature makes its estimation very
complicated especially with right censoring data when the censoring is due to the
termination of the study. The reason is that, in that case, the right tail of the
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survival function is missing. To overcome this problem a new method has been
developed that uses some results from the extreme value theory to estimate the
behavior of the missing right tail of the survival function. The new approach pro-
duces similar results to the existing methods under the presence of right censoring
and outperforms the results of the current methods in terms of unbiasedness if
the right censoring is due to the end of the study. Although a more extensive
theoretical study is needed, the results obtained in this thesis seem to be promis-
ing in terms of the adequacy of the method. Furthermore, this new approach for
estimating the MRL function can be used not just in the context of survival trees
but in any other context in which the estimation of the MRL function might be
required.

The other challenge was related to the growth of survival trees. It has been
shown in the literature that trees that are generated using the recursive parti-
tioning algorithm are affected by the variable selection bias. Methods for growing
survival trees based on conditional inference procedures (Hothorn et al., 2006)
were developed to eliminate this problem. This method introduced some notion
of statistical significance by using the results of a statistical test in the splitting
procedure. However, as has been demonstrated in this work, such a method is
problematic for different reasons. The main drawback is the inability of detecting
interaction effects in the model. This is a major drawback since the automatic
detection of interactions was one of the main advantages of tree based methods.
In this thesis, a new method for growing survival trees has been developed which
aims to overcome all these difficulties. The method is based on the idea of node
re-sampling. By basing the splitting procedure on the results obtained after boot-
strapping the data available in each split the sampling variability is taken into
account in the construction of the model. The new method is not affected by the
variable selection bias and provides with a novel way of pruning the tree. Due to
the fact that the optimal tree is obtained after a saturated tree has been pruned
this method can also naturally identify interaction effects in the model.

All of these new ideas have been encapsulated in a new graphical user interface
that is ready to be used by the scientific community, particularly by statisticians
and clinicians. The new tool has been developed as a package to be used in the
freely available language for statistical computing R (R Core Team, 2012). It is
the intention of the author to make the package available from the web in the
future. This new tool offers many advantages compared to the current packages
for growing survival trees. One of these advantages is the possibility of scrolling
out of the margins of the screen. This allows the user to visualize virtually any tree
independently of its size. Thanks to this feature it is possible to grow a large tree
and to prune it interactively. The new tool incorporates all the elements of the
node re-sampling algorithm, including the bootstrap distribution of the cut-points,

153



the relative importance plot and the OOB values of the logrank statistic at each
split. The process of pruning the tree is extremely easy and can be performed by
any person, even those with non-statistical background. Moreover, it is possible
to choose the graphical summaries for the terminal nodes including the Kaplan-
Meier estimate of the survival function and the estimated MRL function using the
novel method proposed in this thesis.

Datasets

Two datasets have been used to illustrate the new approaches proposed in this
thesis. The Coronary data have been used to grow a survival tree based on node
re-sampling (Chapter 4). When compared to the survival tree based on unbiased
recursive partitioning, both trees identified ‘Age’ and ‘PreviousMI’ as relevant
predictors. These two predictors were also identified as significant in the Cox
proportional hazard model. The tree based on unbiased recursive partitioning
also identified Diabetes, Lipids, ACE and PreviousHF of which only ACE was
significant in the Cox proportional hazard model. The most relevant aspect of
this example is the different cut-points for Age in both trees. The tree based on
node re-sampling gave a value of 75.5 years whereas the tree based on unbiased
recursive partitioning gave a value of 77 years. The figure of 75.5 years is based
on the bootstrap distribution of the cut-points for Age and, therefore, it is the
value obtained after the sampling variability was taken into account. From this
point of view, 75.5 is a more robust value for the selection of the cut-point.

The breast cancer dataset was used to grow a node re-sampling survival tree.
The tree identified three relevant splits (LN, LVI and Size) when the survival
outcome corresponded to the recurrence of the disease. The split on Size was
found to be significant, but it was not detected by the tree based on unbiased
recursive partitioning, which only identified LN as the relevant predictor. The
best prognosis, based on the node re-sampling tree, was for women with negative
LN and negative LVI. Furthermore, among these patients, those who did not have
the tumor (Size = 0) had worse prognosis than those who had a positive size of
the tumor (probably due to some residual cancer cells that were not detected by
simply measuring the size of the tumor).

In Chapter 5 an example was given of the use of the new approach proposed
in this thesis where a tree based on node re-sampling was obtained with the
MRL function in the terminal nodes. In this example only the biomarkers were
considered to generate a survival tree able to model disease free survival. First
of all, a tree with HER2, ER and PR was generated to illustrate how the novel
approach of incorporating the estimated MRL function as a graphical summary in
the terminal nodes can be used to interpret the tree. However, as shown in Chapter
4, ER and PR were considered as ‘irrelevant’ and only HER2 was identified as an
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Figure 6.1: Plot of the estimated MRL functions for HER2 positive (smooth red
line, right node not shown here) and HER2 negative (smooth blue line, left node
not shown here). The dots are the actual estimates of the MRL function.

important predictor. Women who tested negative had a better prognostic as one
can deduce by looking at the estimated medians of the Kaplan-Meier estimates
of the survival function (approximately 60 months until recurrence for HER2
negative compared to approximately 40 months for HER2 positive. Plot shown
in Chapter 5.). However, when one looks at the MRL function plot for both
groups, the information one obtains is much richer (the plot is presented again
in Figure 6.1). On average there is a difference of approximately 20 months
until recurrence at time 0, meaning that women with HER2 negative have the
recurrence 20 months later compared to the HER2 positive cohort. However, the
most interesting aspect of the plot is the overall survival experience of both groups.
As one can see in the picture, after approximately 80 months (6 and a half years)
both lines merge indicating similar survival outcome for both groups. This feature
is only revealed by the mean residual life function and, in some way, it diminishes
the importance of HER2 as a predictor that identifies different survival outcomes.

6.1 Future work

The development of the new ideas proposed in this thesis opens up new opportu-
nities for further analysis and research. The incorporation of the MRL function in
the terminal nodes, the use of the novel method for growing and pruning survival
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trees and the estimation of the MRL function based on the generalized Pareto
distribution are still work in progress. I will explain the further work that these
three topics might require separately.

The incorporation of the MRL function in the terminal nodes can be useful
from the practical point of view by providing a new non-parametric statistical
model that returns values in terms of time. It would be interesting to set up an
experiment in which information about the survival outcome is given in terms of
risk or probability and in terms of mean remaining time. This information would
be given by a clinician to a patient showing the patient the survival tree with
the Kaplan-Meier estimates of the survival function in the control group and the
survival tree with estimates of the MRL function in the treatment group. The
patients then could be followed up for a period of time and, after that period,
one could determine if there are any differences in terms of the adherence of the
patient to some specific treatment. Another experiment could be carried out by
showing the two trees to different professionals who are involved in some particular
study and to ask them which one do they understand. It is the hope of the author
that the new way of presenting the information in the terminal nodes will become
popular in the future. In the mean time, there are many studies that have already
been carried out using other traditional techniques that constitute an excellent
opportunity to compare the results with the new approach. For instance, if the
effects of particular predictors are given in terms of hazard ratios it would be
interesting to replicate the results in terms of remaining life time and see to what
extent the new approach can be relevant.

The new method from growing and pruning survival trees can already be
applied to any dataset with survival responses. Although more work is probably
necessary to assess the validity of the method, the new approach, and all the
examples in which it has been tested so far, have given excellent results. Even
with the presence of interactions and many predictors adding noise to the model,
the method seems to perform very well. A natural extension of the work in
this thesis is to apply the same algorithm based on node re-sampling to the case
of continuous and categorical responses. Although some work has already been
shown in this thesis, the graphical user interface is a fundamental tool that has
to be adapted for other types of responses.

But perhaps, the most exciting project that could be derived from this work
is the creation of a predictive model based on the results obtained from the node
re-sampling algorithm. This is one of the usual demands that clinicians make
when they want to analyze statistically the data that they have collected. They
want to predict the outcome for new observations. The random forest approach
by Breiman (2001) is one of the standard tools that one can use to make pre-
dictions. But, as it has been said before, there is no model to look at. The
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new predictive tool could be generated using the structure created by the node
re-sampling algorithm. Once the predictors have been identified in the model,
the data can be re-sampled again and the values of the cut-points, which can be
considered the random part of the model, can be obtained by selecting at random
a value from the bootstrap distribution of the cut-points. For each replicate and
cut-points the new observation can be dropped down the tree and the predicted
outcome recorded (if the terminal nodes contain the mean residual life function,
the predicted outcome could be the mean life time at time 0 or the median). In
that way different predicted outcomes would be obtained for each replicate and,
therefore, a bootstrap distribution of predicted outcomes can be generated. This
allows the user to obtain the predicted outcome (the mean of the bootstrap dis-
tribution) and some measure of the variability of such prediction. To assess the
prediction error of the model the same method can be applied but, this time, for
each replicate, the OOB data can be used to assess the error of the model in terms
of the discrepancies between the observed and the predictive values. This error
can be recorded for each replicate and an average can be calculated after all the
replicates have been obtained. This new procedure could be used to provide tree
based methods with an extra new functionality which could transform this type
of methodology into a statistical tool comparable to any other modeling strategy.

Finally, the estimation of the MRL function based on the generalized Pareto
distribution can be applied to any problem in which the estimation of the distri-
bution of the survival times is necessary. The simulations presented in this thesis
have given excellent results, although more theoretical work is probably neces-
sary. Two key aspects of this novel method are the selection of the threshold u
and the restrictions imposed to the shape parameter ξ in the maximum likelihood
estimation. The selection of the threshold u is based on the results obtained from
the simulations. However, it would be interesting to investigate if there is a way
of obtaining the value of the threshold automatically, which would lead to the
optimal value for the bias-variance trade-off. Another aspect related to the ap-
plication of the proposed method is the generation of confidence intervals around
the estimates. One obvious approach is the use of bootstrapping to obtain the
standard errors of the estimates of the MRL function at each time t. In this way
one can obtain piece-wise confidence bands for the MRL function. In any case, it
would be interesting to study the variability of the estimates from the theoretical
point of view rather than rely only on the results using bootstrap. Another ap-
plication that can be derived from the use of the MRL function is the comparison
of two survival distributions. Bootstrap confidence bands can be obtained for the
differences between the two MRL functions at any time t. In this way, it would be
possible to determine at which values of t the confidence bands produce significant
results and to obtain the estimated values for the differences in the mean residual
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life times.
The proposed method generates results that are equivalent to those obtained

with the current methods when the termination of the study is not taken into
account as has been shown in the simulations. However, when the termination
of the study is embedded in the theoretical setting, the method presented in
this thesis seems to work much better even for percentages of censoring due to
the termination of the study up to 30% where the current methods fail to give
sensible results. From that point of view, the proposed approach represents a step
forward in the estimation of the mean residual life function.

To conclude, other extensions of the work done here could include comparisons
between the novel approach presented in this thesis and other alternative methods
such as probabilistic graphical models, particularly Bayesian networks. This type
of models represent conditional dependencies between random variables with a
directed acyclic graph.

Final remarks

To summarize in a few lines the content and results of this thesis, a new ap-
proach has been introduced which, in the opinion of the author, will enhance the
attractiveness of tree based methods for modeling survival data. This approach
consists of the incorporation of the MRL function in the terminal nodes of survival
trees and aims to facilitate the task of communicating the results of the statistical
analysis to any person involved in any particular study (including statisticians,
clinicians and patients). In addition, a novel method has also been developed for
growing survival trees based on the idea of node re-sampling. This new method
addresses some of the problems that current methods have, such as the variable
selection bias and the detection of interaction effects in the model. Furthermore,
a new approach has been proposed for the estimation of the MRL function. This
approach uses the generalized Pareto distribution to estimate the MRL function
at values in which the estimated survival function does not provide any informa-
tion due to censoring due to the termination of the study. Finally, a new graphical
user interface has been developed that is ready to be used for any survival data
with all the new ideas and methods.
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