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Abstract

The variation of refractive index with wavelength, known as dispersion, was what
redirected Isaac Newton from refractive telescope designs toward a reflective one,
since he found the chromatic effect incurable. Later it was shown that different ma-
terials demonstrate different chromatic characteristics and refractive optical elements
can compensate each other’s chromatic contributions. This promoted the simple dis-
persion effect to the field of formulizing and categorizing chromatic aberrations and
their corrections. In this study an introduction to this process is provided, where the
historical aspects are followed by the mathematical derivation and description of dif-
ferent kinds of chromatic aberrations accompanied with a variety of approaches to
correct the chromatic effects in different levels. The provided mathematical basis is
employed in studying three distinctive topics. In the first one the flexibility of refrac-
tive elements is used to provide a middle-sized catadioptric telescope design with
all-spherical surfaces. Employing a new combination of chromatic lens correctors,
the image quality can be improved so that it becomes comparable to an equivalent
aspheric Ritchey-Chrétien telescope design. As the second topic the atmospheric dis-
persion and its effect in extremely large telescopes are discussed, where a new atmo-
spheric dispersion corrector design is proposed. In the third task the chromatic be-
havior in an inhomogeneous medium is considered. A new gradient refractive index
lens model for the crystalline lens of the eye is established and a different approach
in characterizing its chromatic effects is developed. These three research topics are
underpinning the main goal of the theses, that is the role of chromatic aberration in
image formation in various optical systems.
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Chromatic Aberrations

1.1 Historical aspects

The refractive index of any medium (other than vacuum) varies with wavelength.
This means that all the optical properties of a medium are functions of wavelength.
Traditionally, chromatic variations of paraxial properties such as image position and
magnification have been considered as chromatic aberrations as well as variations
of classical aberrations. These chromatic effects are usually the main problem in re-
fractive systems. A well corrected refractive monochromatic imaging system could
easily lose its acceptable optical performance even in a small range of wavelengths.
Isaac Newton considered this problem intrinsically intractable and turned to reflec-
tive systems. In fact, he thought that the chromatic aberrations of all lenses were
proportional to their powers, with the same constant of proportionality even for dif-
ferent glasses. Newton was the first to discuss chromatic aberrations in detail in his
book, OPTICKS [1], which was released to the public in 1704.

Newton’s conclusion was not the final word on this topic. Before Newton, it was
a common belief that the human eye, because of containing different refractive me-
dia, is optically corrected for chromatic aberration. James Gregory, the designer of the
Gregorian telescope, had the same opinion in the 1660s. In addition to this, Christian
Huygens had shown, in correspondence with Sir Christopher Wren in the 1660s, that
a positive and a negative lens more or less in contact could correct spherical aberra-
tion [2]. In 1729 Chester Moore Hall, a lawyer, followed on these two and could find a
combination of positive and negative lenses made from different glasses, which pro-
vided achromatic correction. He had such objectives made by opticians, and proved
Newton wrong. In 1858 John Dollond, who expanded Hall’s work by experimenting
with prisms, patented an achromatic lens [3].

From a technical point of view, manufacturing an acceptable reflective surface is
much harder than a refractive element. The first practical reflective telescope was
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1. Chromatic Aberrations

built by Newton in 1668, 58 years after manufacturing the Galilean telescope (Al-
though Zucchi made his reflective telescope in 1616, its image quality was not compa-
rable to the refractive ones [4].) As manufactures approached 1 m objective doublets,
in addition to being limited by mechanical difficulties of building large lenses, they
faced another limitation related to difference in dispersion of the glasses used. In fact
by, making larger and larger telescope doublet objectives they found that an achro-
matic doublet was not quite free of chromatic aberration, and a residual error, known
as secondary spectrum appeared. This led to the re-introduction of reflective objectives
which are now universally used for apertures exceeding 1 m.

From an optical designer’s point of view, the natural reaction to this new problem
is adding one more lens to the doublet, thus making it an Apochromatic triplet. Imple-
menting this solution was not simple because of the complexity of physics laws in dis-
persion and the number of constraints which should be satisfied. On the other hand,
the variety of glass combinations which can remove the residual chromatic aberra-
tions is limited and sometimes expensive. Nevertheless this solution is implemented
nowadays, and achromatic and apochromatic elements are used widely in optical sys-
tems (e.g. small size telescope objectives, telescope correctors, photographic lenses,
etc.).

Before finishing this brief historical review, it is worth mentioning that a chromat-
icly aberrated optical system or element is sometimes desired. For instance, when we
need to compensate the chromatic aberration arising from the prior optical elements
or media, for example the Earth’s atmosphere or human eye.

1.2 Axial color and achromats

In the design and analysis of visual systems, it is common to choose F (blue,
λ = 486 nm), d (yellow, λ = 588 nm), and C (red, λ = 656 nm) spectral lines
for the calculations. Fig. 1.1 shows that in a positive singlet, focus for F light is inside
the paraxial focus for d light, while the C one lies on the outside. In fact, primary
axial color is defined as the distance between the foci for F and C. To formulize this as
a function of lens parameters one can start from a thin lens power equation [5],

φ = (n− 1)(C1 − C2), (1.1)

2



1. Chromatic Aberrations

F d C

Primary Axial Color

(Longitudinal axial color)

Transverse

axial color

Figure 1.1: F (blue), d (yellow), and C (red) spectral lines and their different foci.
Primary axial color is the distance between the foci for F and C.

where n is the refractive index of the lens, and C1 and C2 are the curvature of its
surfaces. The change in power could be achieved by taking the derivative of Eq. 1.1,

dφ = (C1 − C2)dn. (1.2)

If we let dn = nF − nC in Eq. 1.2,

dφ = (C1 − C2)(nF − nC), (1.3)

by multiplying Eq. 1.3 by (nd − 1)/(nd − 1) and rearranging it, we get:

dφ = [(C1 − C2)(nd − 1)]
(

nF − nC

nd − 1

)
. (1.4)

In optics the term (nd − 1)/(nF − nC) is defined as Abbe Vd number. Eq. 1.4 means
that the power difference is equal to the power in d-light divided by the Abbe number,

dφ = (φF − φC) =
φd

Vd
. (1.5)

The smaller Abbe number or the focal length ( f = 1/φ), the more axial color we get in
the system. This is the reason why first refractors had such objectives with very long
focal length D/ f = 50...100, where D is a telescope objective diameter.

3



1. Chromatic Aberrations

fd

y

u

Figure 1.2: Ray-tracing of the marginal ray (the focal length fd and the angle u′ of the
ray at the image plane are shown).

1.2.1 Axial chromatic aberration coefficients

One can rewrite Eq. 1.5 in terms of focal length (φd = 1/ fd),

d f = − fd

Vd
. (1.6)

As mentioned above, d f is the primary axial color. In optical design this difference in
focal lengths is known as longitudinal axial chromatic aberration, δAX,

δAX = d f = − fd

Vd
. (1.7)

By multiplying the left side of Eq. 1.6 by fdy2/ fdy2,

d f =

(
f 2
d

y2

)(
− y2

fdVd

)
, (1.8)

where, as Fig. 1.2 shows, y is the height of the marginal ray. On the other hand,
( fd/y) is the angle of the incident ray at the image plane, u′, and

d f =
(

1
u′

)2

CL, (1.9)

where CL, Seidel axial color coefficient, is defined by

CL = −
y2

fdVd
. (1.10)

4



1. Chromatic Aberrations

As Fig. 1.1 indicates, axial chromatic aberration could be described in terms of the
vertical expansion of the spot too. By the help of Fig. 1.1 and Fig. 1.2, and assuming
fd� δAX, transverse axial chromatic aberration, δTAX, could be defined as

δTAX =
y δAX

2 fd
, (1.11)

then by substituting Eq. 1.8 in Eq. 1.11

δTAX =
y

2Vd
. (1.12)

In some cases describing the chromatic aberration as coefficients connected to op-
tical path difference (OPD) and wavefront is useful. The OPD in the sags of two
spherical wavefronts, W, at the exit pupil is a function of the difference in their foci,
δ, and the f -number of the system [6],

W = − δ

8( f /#)2 . (1.13)

Then, since it is shown in Eq. 1.9 that

δAX =

(
1
u′

)2

CL, (1.14)

Equation 1.13 could be written as

WAX = − δAX

8( f /#)2 (1.15)

=
1
8

(
1
u′

)2( 1
f /#

)2

CL. (1.16)

but:
f /# =

−1
2u′

(1.17)

And by using Eq. 1.10 wavefront axial chromatic aberration, WAX, is obtained:

WAX =
1
2

CL = −
y2

2 fdVd
. (1.18)

Now the meaning of CL is clear, it indicates the amount of axial chromatic aberration
in the wavefront.

5



1. Chromatic Aberrations

1.2.2 Achromats

An achromat is a doublet consisting of two different types of glass to correct axial
chromatic aberration by bringing blue and red images to a common focus. In the
following the equations for achromatic doublets (assuming thin lenses) are discussed.
Although these equations do not provide the exact prescriptions for real lenses, they
give a good starting point for an optical design optimization program.

An achromatic doublet should satisfy two constraints:

- the total optical power of the doublet should match the desired value φ, and

- the lens should be free from axial color.

These two conditions could mathematically be described as

φ = φ1 + φ2 (1.19)

and
dφ = dφ1 + dφ2 = 0, (1.20)

or by Eq. 1.5 
φ = φ1 + φ2 ;

φ1

Vd1
+

φ2

Vd2
= 0.

(1.21)

Then by solving Eq. 1.21 
φ1 =

Vd1

Vd1 −Vd2
φ ;

φ2 = −
Vd2

Vd1 −Vd2
φ.

(1.22)

Figure 1.3 (left-hand side) presents a typical example of an achromatic doublet
with optical powers φ1 and φ2 given by Eq. 1.22. The doublet consists of a positive
biconvex BK7 lens and a SF1 negative meniscus. As is expected F and C images
coincide at the same focus (see chromatic focal shift diagram, Fig. 1.3 (right-hand
side)). In comparison to Fig. 1.1, we have removed the primary axial color, but the
lens is still suffering from chromatic aberration arising from the distance between the
focus for d and the common focus for F and C light, which is known as Secondary
Spectrum. The equations related to secondary spectrum and its correction will be
discussed in Section 1.3. Now we consider more examples of achromatic lenses.

6



1. Chromatic Aberrations

Focous for

d

Focous for

F & C

Secondary Spectrum

SF1BK7

Figure 1.3: A cemented achromatic doublet consisting of a positive biconvex BK7
lens and a SF1 negative meniscus (left-hand side). The relevant chromatic focal shift
diagram and the secondary spectrum (right-hand side).

Dialyte

In addition to the cemented achromat, axial chromatic aberration could be also cor-
rected by two widely spaced lenses, a dialyte. The power of such a lens assuming the
thin lens approximation would be obtained by [5],

φ = φ1 + φ2 − tφ1φ2, (1.23)

where t is the distance between the two lenses. For a required power, φ, Eq. 1.23
presents a constraint on the system. Another constraint is to make the total primary
axial color equal to zero. The latter is achieved by Eq. 1.9,

CL1 + CL2 = 0, (1.24)

or by Eq. 1.10,
y2

1φ1

Vd1
+

y2
2φ2

Vd2
= 0. (1.25)

7



1. Chromatic Aberrations

The marginal ray height on the second lens, yb, is given as a function of y1 by paraxial
optics equations [5]:

y2 = (1− tφ1)y1. (1.26)

Then to find the powers of the lenses in a dialyte one should solve the system of two
equations below: 

φ1 + φ2 − tφ1φ2 = φ ;

φ1

Vd1
+

(tφ1 − 1)2φ2

Vd2
= 0.

(1.27)

Equation 1.27 is nonlinear and most optical design books have preferred to present
approximate, but more practical solutions rather than the exact solutions with square
root originating from quadratic equations. We follow this practical method, and
Eq. 1.28 shows the form given in Kingslake’s famous lens design book, [7],

φ1 =


(tφ1 − 1)

Vd1

Vd2

1 + (tφ1 − 1)
Vd1

Vd2

φ ;

φ2 = −


1

(tφ1 − 1)
[

1 + (tφ1 − 1)
Vd1

Vd2

]
φ.

(1.28)

As an example of using these pre-design equations, let tφ1 = 0.3 and φ = 0.002mm−1.
Then using Eq. 1.28 we find for BK7 and SF1 glasses φ1 = 5.83 × 10−3 mm−1, φ2 =

−5.47 × 10−3 mm−1, and t = 51.4mm. Figure 1.4 shows the layout of this lens and the
corresponding chromatic focal shift diagram. In the early 1800s, manufacturing a
large disc of flint glass was so difficult and a dialyte in comparison to an achromatic
cemented doublet had a smaller flint lens. Nowadays manufacturing flint glass is a
well-established process. Nevertheless, dialyte is still a powerful implementation in
some designs.

8



1. Chromatic Aberrations

BK7

SF1

Figure 1.4: A dialyte consisting of a positive biconvex BK7 and a negative biconcave
SF1 lenses (left-hand side). The corresponding chromatic focal shift diagram (right-
hand side).

One-glass achromats

One can let Vd1 = Vd2 (using the same glass for both lenses) in Eq. 1.28, then
φ1 =

[
tφ1 − 1

tφ1

]
φ ;

φ2 = −
[

1
tφ1(tφ1 − 1)

]
φ.

(1.29)

The lens designed by Eqs. 1.29 is called one-glass achromat. Although having an
achromat lens made just from one kind of glass is economic, one-glass achromats
have their own limitations. By solving the first line of Eqs. 1.29 for φ,

φ =
tφ2

1
tφ1 − 1

. (1.30)

In Eq. 1.30, φ is positive if tφ1 > 1. To get a feeling about the numbers, say tφ1 = 1.1
then for tφ = 0.01, t would be 400mm. On the other hand for a typical one-glass
achromat of focal length equal to 100mm the distance between the lenses would be
400mm. The ratio of focal length to the distance between lenses gets worse for greater
amounts of tφ1, which is not practical. Therefore the use of one-glass achromats is lim-
ited to small amounts of tφ1 and negative total powers, which produce virtual images
of far objects. As an example of negative powers, let tφ1 = 0.3 and φ = −0.002mm−1.

9



1. Chromatic Aberrations

BK7
BK7

Figure 1.5: A one-glass achromat consisting of a positive biconvex and a negative
biconcave BK7 lenses (left-hand side). The relevant chromatic focal shift diagram
(right-hand side).

Then by Eq. 1.30, φ1 = 4.67× 10−3 mm−1,φ2 = −9.52× 10−3 mm−1, and t = 64.3mm.
Figure 1.5 represents a lens based on these pre-design data and its relevant focal shift
diagram.

Figure 1.5 indicates that in comparison to other achromats, because of using the
same type of glass for both of the lenses, one-glass achromat shows much less sec-
ondary spectrum. Secondary spectrum is discussed in detail in Section 1.3.

The configuration of the system discussed above is so similar to a Galilean tele-
scope and one can consider a possibility of designing a one-glass achromat Galilean
telescope. Unfortunately, the constraints of afocal systems and one-glass achromats
cannot be satisfied simultaneously, and an afocal one-glass achromat is not possible.
Then the usage of this kind of achromats is limited to taking a part in more compli-
cated systems.

Although a one-glass achromat consisting of an-spaced doublet is not so practical,
Wynne introduced a successful triple one as an paraboloidal mirror main focus cor-
rector [8]. Figure 1.6 represents the layout of this triplet and the relevant chromatic
focal shift diagram. The logic of this design and its equations could be considered
as the same way as a one glass achromat but of course the relations would be more
complicated. In spite of an achromatic one-glass spaced doublet, Wynne’s triplet has
positive power. As can be seen in Fig. 1.5 the Wynne triplet shows much less sec-

10



1. Chromatic Aberrations

BK7

BK7 BK7

Figure 1.6: Achromatic one-glass Wynne triplet consisting of a positive meniscus,
a negative meniscus, and a positive planoconvex BK7 lenses (left-hand side). The
relevant chromatic focal shift diagram (right-hand side).

ondary spectrum (the scale of the diagram is 100 times less). Later, in Section 1.3.2 the
Wynne triplet and its limitations will be discussed more.

1.3 Secondary spectrum and apochromats

In Section 1.2.2, Fig. 1.3 introduced secondary spectrum in achromats qualitatively. In
this section, the relevant mathematical equations are discussed, and apochromats are
presented as the solution of this problem.

1.3.1 Secondary spectrum

In Section 1.2, primary axial color as a function of the distance between the foci for the
two extreme wavelengths has been discussed. Another useful quantity is partial pri-
mary axial color, which is defined as the distance between the foci for two arbitrary
wavelengths in the spectrum range. Obviously, in the case of secondary spectrum
these arbitrary wavelengths are d and C light. By starting again from a singlet parax-
ial power equation, Eq. 1.1,

φ = (n− 1)(C1 − C2), (1.31)

11



1. Chromatic Aberrations

and by taking the derivative,

dφ = (C1 − C2)dn. (1.32)

This prepares an equation which can be used for different intervals of spectrum. Con-
sidering dn = (nd − nC)

dφ = (C1 − C2)(nd − nC). (1.33)

Multiplying the right hand side of Eq. 1.33 by (nF − nC)/(nF − nC) and rearranging
it,

dφ = (C1 − C2)(nF − nC)

[
(nd − nC)

(nF − nC)

]
. (1.34)

We now define another quantity in optical design, partial dispersion Pdc as

pdC =
nd − nC

nF − nC
. (1.35)

On the other hand the Abbe Vd number is defined as

Vd =
nd − 1

nF − nC
, (1.36)

then Eq. 1.34 could be rewritten as

dφ = (C1 − C2)(nd − 1)
(

PdC

Vd

)
, (1.37)

and finally by using Eq. 1.31

dφ =

(
PdC

Vd

)
φ. (1.38)

Equation 1.38 could also be considered in terms of focal length, f ,

d f = −
(

PdC

Vd

)
f , (1.39)

where d f is partial primary axial color. One could notice that by the definition of
Eq. 1.35, PFC = 1. Which in this case Eq. 1.39 reduces to Eq. 1.6.

As we saw in Eq. 1.19 for a thin lens doublet system, power is given by

φ = φ1 + φ2. (1.40)

12



1. Chromatic Aberrations

So the differential partial power is

dφdC = dφdC1 + dφdC2 (1.41)

and by Eq. 1.38:

dφdC =

[
PdC

Vd

]
1

φ1 +

[
PdC

Vd

]
2

φ2. (1.42)

By using Eq. 1.22

dφdC =
PdC1 − PdC2

Vd1 −Vd2
φ, (1.43)

then in terms of focal length, f ,

d fdC = −PdC1 − PdC2

Vd1 −Vd2
f , (1.44)

where d fdC is the secondary spectrum of a doublet.

The procedure used for achromatic doublets could also be implemented for other
kinds of lenses. The difficulty in using this approach for dialytes and one-glass achro-
mats is that φa and φb are functions of φa which makes the differential so complicated
and impractical. Nevertheless as a qualitative assessment by Eq. 1.44 one could con-
clude that taking the lenses made of the same glass would vanish some terms in sec-
ondary spectrum equations. This can explain less secondary spectrum in a one-glass
achromats in comparison to a dialyte or an achromatic doublet.

1.3.2 Apochromats

The aim of an apochromtic lens is bringing the foci for F, d, and C light to the same
point. This implies three constraints; producing the desired total power, making pri-
mary axial color equal to zero, and correcting the secondary spectrum. To achieve
those three conditions a triplet is needed, where

φ1 + φ2 + φ3 = φ ;

φ1

Vd1
+

φ2

Vd2
+

φ2

Vd3
= 0;

[
PdC

Vd

]
1

φ1 +

[
PdC

Vd

]
2

φ2 +

[
PdC

Vd

]
3

φ3 = 0.

(1.45)

13



1. Chromatic Aberrations

FPL53

Focous for

F, d and C

Tertiary Spectrum

BAK1

SSKN5

Figure 1.7: An apochromatic triplet consisting of a positive FPL53 lens, a negative
BAK1 lens, and a positive SSKN5 lens (left-hand side). The relevant chromatic focal
shift diagram and the tertiary spectrum (right-hand side).

By solving Eq. 1.45

φ1 =
Vd1(PdC3 − PdC2)

Vd1(PdC3 − PdC2) + Vd2(PdC1 − PdC3) + Vd3(PdC2 − PdC1)
φ ;

φ2 =
Vd2(PdC1 − PdC3)

Vd1(PdC3 − PdC2) + Vd2(PdC1 − PdC3) + Vd3(PdC2 − PdC1)
φ ;

φ3 =
Vd3(PdC2 − PdC1)

Vd1(PdC3 − PdC2) + Vd2(PdC1 − PdC3) + Vd3(PdC2 − PdC1)
φ.

(1.46)

Figure 1.7 (left-hand side) depicts a typical apochromatic triplet pre-designed by
paraxial Eq. 1.46. The triplet consists of a positive FPL53 lens, a negative BAK1 lens,
and a positive SSKN5 lens. The relevant chromatic focal shift diagram, Fig. 1.7 (right-
hand side), shows the foci for F, d, and C light brought in the same plane. The residual
chromatic aberration in this case is known as tertiary spectrum, which in comparison
to the scale of Fig. 1.3 is 100 times less than the secondary spectrum.

In section 1.2.2 the Wynne triplet as an example of one-glass achromats presented.
As one can see in Fig. 1.6 the secondary spectrum of this lens is so small and practi-
cally can be used as an apochromatic corrector. In comparison to apochromats, the
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Figure 1.8: Wavefronts of a system suffering of lateral color for F and C light. WTLC
indicates transverse wavefront lateral chromatic aberration and δTLC indicates the rel-
evant transverse lateral chromatic aberration.

Wynne lens is not so common. The spaces between the lenses in the Wynne triplet
are necessary which make it longer than equivalent apochromat lens. On the other
hand correcting a lens for chromatic aberrations is just one part of a design. Correc-
tors should have a good flexibility to compensate all kind of aberrations and this will
be so limited in one-glass lenses where the degrees of freedom do not include the
materials.

1.4 Lateral color

Another kind of chromatic aberration arises when the chief rays of different wave-
lengths strike the image plan in different heights. This effect is known as lateral color.
In simple systems, where we have just one element, the stop is usually located at this
element. In this case, the chief ray strikes the lens at the center and assuming a thin
lens, the system does not show lateral color. But when the stop is far from the lens
and the chief ray sees the lens as a prism this chromatic problem will be magnified.
Fig. 1.8 depicts schematic wavefronts of a system suffering from lateral color. Similar
to the formulation of axial color, the extreme wavelengths here are F and C light and
equivalent coefficients are defined as follows [6]:
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Figure 1.9: Cooke triplet corrected for lateral color; All of the lenses are made from
the same kind of glass (here BK7).

Seidel lateral color coefficient, CT,

CT =
yȳ

fdVd
, (1.47)

where ȳ is the height of the chief ray, and y the height of the marginal ray.

Transverse wavefront lateral chromatic aberration, WTLC,

WTLC = CT =
yȳ

fdVd
, (1.48)

and, Transverse lateral chromatic aberration, δTLC,

δTLC = 2( f /#)WTLC =
ȳ

Vd
. (1.49)

Cooke triplet

As Eq. 1.47 shows lateral color would be corrected in symmetric systems, where y,
fd, and Vd have almost the same values at both sides of the stop, but the sign of ȳ
differs. A practical and simple system using these characteristics is the Cooke triplet. It
consists of two positive lenses with a negative lens between them. All the lenses are
made of the same glass, and the stop is located at the negative lens. Fig. 1.9 shows
a typical design of this lens. In this design, lateral color caused by the front positive
lens is canceled by the rear one. Since the stop is located at the negative lens, it does
not add lateral color to the system.The reason for adding the negative element is to
correct field curvature of the system.
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Figure 1.10: Huygens eyepiece corrected for lateral color; All of the lenses are made
from the same kind of glass (here BK7).

Huygens eyepiece

Another simple system potentially corrected for lateral color is the Huygens eyepiece.
This eyepiece consists of two planoconvex lenses made of the same kind of glass. As
Fig. 1.10 depicts the Huygens design needs a virtual object and the stop is located at
the eye pupil. The distance between the two lenses is the main characteristic of this
design [9]. By starting from Eq. 1.23 for a spaced doublet and taking the derivative

dφ = dφ1 + dφ2 − t(dφ1φ2 + φ1dφ2). (1.50)

Huygens assumed that the height of the rays at the lenses are almost the same. In this
case according to Eq. 1.5, dφ = φd/Vd. Since the lenses have the same kind of glass, Vd

is identical for whole of the equation. Then by equating Eq. 1.50 to zero:

φ1 + φ2 − 2t(φ1φ2) = 0, (1.51)

and by rearranging Eq. 1.51:

2t =
1
φ1

+
1
φ1

. (1.52)

But 1/φ = f , so:

t =
f1 + f2

2
, (1.53)

which means the distance between lenses should equates the average of the focal
lengths.

Although the Huygens approximation is not acceptable here, the system is sur-
prisingly close to the optimum point where lateral color is zero. By Eq. 1.48 lateral
color in this system is corrected if CT1 =−CT2. Qualitatively, Fig. 1.10 shows that this
condition is established here. The term yȳ is negative for the first lens and positive
for the second one while both of them have positive powers.
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Figure 1.11: The schematic ray-tracing of the marginal and chief rays for a single
surface.

1.5 Chromatic aberrations of a single surface

In Section 1.2.1 and 1.4 the contribution of a thin lens to the chromatic aberrations
and the corresponding coefficients are discussed. Practically, these coefficients are
very useful to pre-design an optical system. In addition to this, sometimes for special
designs a closer look at the chromatic aberrations of lens surfaces is needed. In the
following, imaging by a refractive surface and its effect on the chromatic aberrations
are studied. Figure 1.11 depicts the schematic ray-tracing of the marginal and chief
rays at the spherical interface of two different materials with refractive indices n and
n′. Starting from paraxial ray-tracing, [7],

n′

l′
− n

l
=

n′ − n
r

, (1.54)

where l and l′ are, respectively, the distances of the object and its image from the
interface, and r is the surface radius. Writing Eq. 1.54 in F and C light and subtracting
F from C gives

n′C
l′C
− n′F

l′F
− nC

lC
+

nF

lF
=

(n′C − n′F)− (nC − nF)

r
. (1.55)
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By replacing Vd = (nd − 1)/(nF − nC) and approximating l2
C ' l2

F ' l2
d for the first

order changes of chromatic effect we obtain

n′d
l′2d

(l′F − l′C) =
nd − 1

Vd

(
1
r
− 1

ld

)
−

n′d − 1
V ′d

(
1
r
− 1

l′d

)
. (1.56)

In Eq. 1.56, (l′F − l′C) is representing longitudinal axial chromatic aberration, δAX.
According to Fig. 1.11 for paraxial rays ld = −(y/u) and (1/r − 1/l) = i/y, where i
is the angle of incidence with respect to the surface normal and y is the ray height at
the surface. Then

n′du′2

y2 δAX =
1
y

(
i

nd − 1
Vd

− i
nd

n′d

n′d − 1
V ′d

)
, (1.57)

or after rearrangement

δAX =
ndyi
n′du′2

(
nd − 1
ndVd

−
n′d − 1
n′dV ′d

)
. (1.58)

And finally, Eq. 1.58 could be rewritten as

δAX =

(
1

n′du′2

)
CL , (1.59)

where the Seidel axial color coefficient, CL, is defined as

CL = ndy
(y

r
+ u

)(nd − 1
ndVd

−
n′d − 1
n′dV ′d

)
. (1.60)

Transverse lateral chromatic aberration, δTLC, for a single surface is achievable by
a similar ray-tracing for the chief ray [10, 11],

δTLC =

(
1

n′du′

)
CT. (1.61)

CT is Seidel lateral color coefficient,

CT = ndy
(

ȳ
r
+ ū

)(
nd − 1
ndVd

−
n′d − 1
n′dV ′d

)
, (1.62)

where ū is the angle of the chief ray and ȳ the ray height at the surface.
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Figure 1.12: The schematic ray-tracing of the marginal and chief rays for a splane
parallel plate.

1.6 Chromatic aberrations of a plane parallel plate

A plane parallel plate is the simplest element in optical design but still shows both
primary chromatic aberrations. Glass plates are widely used as windows in front of
the main part of the design. Also, in symmetric prismatic systems (e.g. atmospheric
dispersion correctors) the design acts like a plate. These all make it worthwhile to
derive the particular chromatic coefficients of such an element.

Studying Eq. 1.62 indicates that for a flat surface (where r→∞)

CL = ndyu
(

nd − 1
ndVd

−
n′d − 1
n′dV ′d

)
. (1.63)

Figure 1.12 depicts a plane parallel plate with the thickness of t and the ray-tracing
of the incident marginal and chief rays. It is obvious that for the first surface nd1 = 1,

20



1. Chromatic Aberrations

n′d1 = n, u1 = u, y1 = y and for the second surface nd2 = n, n′d2 = 1, Vd2 = V, u2 = u/n,
y2 = y + ∆y, where ∆y = tu/n. By using these data in Eq. 1.63 for the two surfaces of
the plate in Fig. 1.12

CL = CL1 + CL2 = yu
(
−n− 1

nV

)
+ n

(
y +

tu
n

)(u
n

)(n− 1
nV

)
,

then
CL = tu2

(
n− 1
n2V

)
, (1.64)

where CL1, CL2, and CL are, respectively, Seidel axial color coefficients of the surface 1,
the surface 2, and the plate. And finally, according to Eq. 1.59 and by noticing that
here n′d = 1 and u′ = u, a plate applies

δAX =
t(n− 1)

n2V
, (1.65)

which is independent form the object position and characteristics.

With a similar approach, by starting from Eq. 1.62 we can derive the relations for
lateral color likewise.

CT = CT1 + CT2 = yū
(
−n− 1

nV

)
+ n

(
y +

tu
n

)(
ū
n

)(
n− 1
nV

)
,

then
CT = tuū

(
n− 1
n2V

)
, (1.66)

where ū is the angle of the chief ray and CT1, CT2, and CT are, respectively, Seidel
lateral color coefficients of the surface 1, the surface 2, and the plate. By using Eq.
1.67 the transverse lateral chromatic aberration of a plate is achieved as

δTLC =
tū(n− 1)

n2V
. (1.67)

1.7 Chromatic variations of Seidel aberrations

Because of the dependence of Seidel aberrations on the refractive index of the materi-
als they will show a variation in their wavefront for different wavelengths. Spherical
aberration, coma, and astigmatism are the most important Seidel aberrations in this
case. Very similar to what we did in Section 1.5, the chromatic variations of these
three could be achieved by Eqs. 1.68 to 1.70, [12];
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SF1BK7

Figure 1.13: Spaced achromatic doublet corrected for sherochromatism (left-hand
side). The relevant transverse ray fan plot (right-hand side).

Wavefront variations of chromatic Spherical aberration, W040C,

W040C = −
yn2

d
8

(
y
r
+ u)2

[
u′(n′d − 1)

n′2d Vd
− u(nd − 1)

n2
dVd

]
, (1.68)

Wavefront variations of chromatic coma aberration, W131C,

W131C = −
yn2

d
2

(
y
r
+ u)(

ȳ
r
+ ū)

[
u′(n′d − 1)

n′2d Vd
− u(nd − 1)

n2
dVd

]
, (1.69)

Wavefront variations of chromatic astigmatism aberration, W222C,

W222C = −
yn2

d
2

(
ȳ
r
+ ū)2

[
u′(n′d − 1)

n′2d Vd
− u(nd − 1)

n2
dVd

]
. (1.70)

As a reminder, u is the incident angle of the marginal ray at the surface, y the height of
that ray and r the radius of the surface. The coefficients of the chief ray are indicated
by ū and ȳ, and the factors for the refracted ray are distinguished by a prime sign.

Chromatic spherical aberration is the most important type amongst these aberra-
tions. As Fig. 1.13 shows, a spaced achromatic doublet which has enough degrees of
freedom to correct this aberration.
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In this research three different problems regarding chromatic effects have been stud-
ied. The first research topic is investigating the role of chromatic lens correctors to
improve imaging characteristics (e.g. resolution and the size of the field) in catop-
tric designs featuring spherical surfaces. This has been achieved by designing a new
catadioptric middle-sized telescope. In the second research topic a different source
of chromatic effects is taken into account: the Earth’s atmosphere. The effect of at-
mospheric dispersion in extremely large telescopes (ELTs) can become problematic.
In this part, studying the existing atmospheric dispersion corrector (ADC) designs
and analyzing their drawbacks resulted in a new self-correcting ADC design. The
third topic covered in this research is the chromatic effects originating from inhomo-
geneous refractive media. The subject of interest here is, the gradient refractive index
(GRIN) lens of the eye. A new monochromatic model of the GRIN lens has been de-
veloped, which is used as the basis for a novel model of dispersive crystalline lens.
These three studies and the significance of the results are discussed in depths in four
separate papers published in Applied Optics, Optics Express, Journal of Biomedical
Optics, and Biomedical Optics Express.

2.1 Paper I

Mehdi Bahrami and Alexander V. Goncharov:

All-spherical catadioptric telescope design for wide-field imaging

Applied Optics, 49(30), 5705-5712 (2010)

Contributions

Before I started my Ph.D. my supervisor, Dr. Alexander Goncharov, had originally
designed an f /4.5 Ritchey-Chrétien (RC) telescope with a 0.8m hyperbolic primary
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mirror and a planoid secondary mirror. An achromatic two-lens field corrector was
used to increase the field of view to 1.5 ◦. To avoid the asphericity of the hyperbolic
primary mirror and plano-aspheric secondary mirror, my supervisor suggested that I
should start my research on finding an equivalent all-spherical catadioptric telescope
design with a comparable image quality.

I designed two all-spherical catadioptric telescopes with a better image quality
than the RC telescope. There was a problem in comparing my designs to the original
RC design. The RC design had a two-lens field corrector, but the all-spherical systems
had three-lens focus correctors. To make the comparison fair, I redesign the RC tele-
scope with a similar three-lens corrector. This improved the performance of the RC
design, but the image quality of the all-spherical designs was still comparable with
the new RC design. With my supervisor’s help on the structure of the manuscript I
wrote Paper I, in which I had made direct comparison of the new RC telescope with
the catadioptric systems. My supervisor assisted me with polishing the technical En-
glish in the manuscript, which helped me to improve my writing skills.

Catadioptric telescopes

Employing aspheric mirrors in the design of telescopes is one of the most common
approaches to improve the image quality and to widen the field of view since the
first reflective telescopes have been introduced. The classical RC system with a con-
cave hyperbolic primary mirror and a convex hyperbolic mirror can provide aplantic
aberration correction and is widely used in astronomical telescope design. The un-
corrected astigmatism in the RC system as well as its curved image surface limits the
field of view of this telescope. Employing multi-lens field correctors near the focal
surface of the telescope is a practical way to achieve a wider field [13–16].

Due to manufacturing difficulties and cost concerns, historically there have been
continuous effort to reduce the number of aspheric elements in optical designs. For
instance, the aspheric primary mirror of telescopes can be replaced by a spherical mir-
ror followed by catadioptric [17, 18] and catoptric [19–22] correctors. In two-mirror
telescopes, a spherical primary may be followed by a spherical secondary mirror and
a meniscus lens next to the secondary. The meniscus can can be made with negligi-
ble optical power, which decreases the chromatic aberrations of the lens. Any resid-
ual chromatic and monochromatic aberration can be compensated by a focus correc-
tor. This design is known as Popov telescope. In a similar approach introduced by
Klevtsov the secondary mirror can be replaced by a Mangin mirror. Although adding
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a lens to a mirror increases the degrees of freedom for aberration correction, the sec-
ondary mirror here is an optically powerful component and the attached refractive
surface adds a large amount of chromatic aberration to the image. Based on the de-
sign of achromatic doublets explained in Sec. 1.2.2 a well-matched meniscus lens next
to the Mangin mirror can correct the chromatic aberrations and improve the image
. Again, a focus corrector may be used to improve the telescope performance even
further.

In Paper I, the Klevtsov and Popov systems inspired the two all-spherical cata-
dioptric telescope designs. Despite the design of Klevtsov and Popov systems, these
new all-spherical designs replace the secondary mirror of the telescope by optically
powerless catadioptric groups, while an optically powerful three-lens corrector com-
pensates the residual aberrations and provides a well-corrected image.

2.2 Paper II

Mehdi Bahrami and Alexander V. Goncharov:

The achromatic design of an atmospheric dispersion corrector for

extremely large telescopes

Optics Express, 19(18), 17099-17113 (2011)

Contributions

After publishing the first paper, my supervisor introduced me to another interest-
ing chromatic problem, investigating the atmospheric dispersion corrector designs.
Because of his previous studies on linear ADCs (LADCs), my supervisor knew that
despite a common trend in using this type of ADC in ELTs, the aberrations added by
the LADC wedges to the system are not negligible in fast foci. He asked me to find
the problematic factors in LADCs and try to modify or redesign these ADCs in a way
that they can be used in the intermediate focus of an ELT similar to the European
ELT (E-ELT). In such an intermediate focus, not only the very large aperture and fast,
aberrated focus may affect the performance of the ADC, but also an optically pow-
erful mirror introduced after the intermediate focus will magnify intermediate image
defects. In other words, we were looking for an ADC design, which could provide the
best performance in the most restricted situation (when the original telescope design
cannot be modified).
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Since I did not have any background on the atmospheric dispersion effect then, my
supervisor helped me to get familiar with the topic and directed me to the key papers
about ADC designs. I started my work by placing an LADC in the E-ELT design.
I found out that the main problem with the LADC is its axial chromatic aberration.
Only the monochromatic defocus of this type of ADC can be corrected in the adaptive
optics (AO) system of the telescope, but even this correction is an extra burden for the
AO system. After studying other available ADC designs and examining their imaging
quality in the E-ELT design I was convenced that the rotating ADCs (RADCs) have the
potential to help us in this problem. The successful three-lens focus corrector in Paper
I encouraged me to design a complicated three-lens RADC. Yet, finding the right glass
combination for the wedges was the main challenge. Eventually, I found an optimal
glass pair, completed the optimization of the design and wrote a manuscript on this
study. My supervisor gave me several helpful suggestions on word selection to be
more accurate in my technical writing. After submitting the manuscript, on of the
reviewers asked for more analysis regarding the field dependence of the ADC optical
transmittance. My supervisor helped me throughout the calculations and after the
revision process, Paper II was published.

Atmospheric dispersion correction

The atmosphere can be seen as a GRIN structure with higher refractive index near
the Earth’s surface and a gradual decrease toward higher altitudes. In comparison
to typical optical materials, the air has negligible dispersive characterstics due to its
small Abbe number. Yet, for off Zenith angles, the path of the rays traveling a long
distance in the atmosphere become different for different colors. This effect, known
as atmospheric dispersion, adds different vertical displacements to the image of a star
at different wavelengths [23], thus elongating the star image into a vertical spectrum.

The atmospheric dispersion effect is noticeable in ELTs, when the large diame-
ter of the telescope reduces the Airy disk size and adaptive optics system provides
diffraction-limited monochromatic correction [24–26]. One elegant solution to this
problem is an ADC design introducing exactly the same amount of chromatic dis-
persion as the atmosphere but with the opposite sign. Near Zenith, astronomical ob-
servations on the ELTs do not require any atmospheric dispersion correction and the
ADCs will be removed from the telescope ray-path. This means that the ADC should
not change the aberration balance in the telescope design or its ray-path geometry,
which imposes additional constraints on the ADC design.

26



2. Publications overview

A linear ADC (LADC) consisting of two simple wedges has been a practical solu-
tion to this problem [27, 28]. The two wedges can move toward each other along the
optical axis to tune their accumulative dispersion to the required atmospheric dis-
persion correction. Although the LADC has only flat surfaces, this does not mean
that this type of ADC is aberration-free. Even this simple and optically powerless
design can introduce monochromatic [29] and chromatic (Sec. 1.6) aberrations when
operating in converging beam. The monochromatic aberrations of an LADC can be
corrected by the AO system of the telescope [30–32]. If the LADC is located close to
a slow focus (e.g. f /15), the amount of chromatic aberration might be acceptable, but
for LADCs located close to a fast focus (e.g. f /5) the chromatic effects can be the dom-
inant aberration. This gets more problematic if the fast focus is followed by optically
powerful mirrors, where any small aberration at the intermediate focus may be mag-
nified by the successive optical elements of the system. In Sec. 1.2.2 it is indicated that
the optical power of the surfaces is an important factor in designing achromatic opti-
cal systems. Adding optical power to the LADC surfaces will change the telescope’s
ray-path significantly. On the other hand, an LADC with optically powered elements
acts similar to a zoom lens. One might think of adding a separate lens corrector to
an LADC to compensate its chromatic aberration. It can be shown that such a lens
corrector should have the optical power, which would affect the telescopes ray-path
geometry.

One other type of ADCs is RADC with two identical counter-rotating Amici prisms
[33], which show different vertical dispersion in their different configurations [34].
Since the distance between two Amici prisms does not change, the RADC has the po-
tential to become achromatic by adjusting the optical power of its surfaces, where the
prisms are made of suitable glasses. As mentioned before, providing an achromatic
ADC is not an enough solution for this problem. There are very demanding con-
straint, which should be met. Spending days on finding the right glass combination
for the ADC, I have eventually designed a new three-lens RADC, which can satisfy
the constraints imposed at the intermediate focus of the E-ELT. This study is covered
in detail in Paper II.
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2.3 Paper III

Mehdi Bahrami and Alexander V. Goncharov:

Geometry-invariant gradient refractive index lens:

analytical ray tracing

Journal of Biomedical Optics, 17(5), 55001-55009 (2012)

Contributions

People have been trying to introduce different monochromatic and chromatic models
of the GRIN lens of the eye. As the third topic of research in my Ph.D., my supervisor
advised me to review current monochromatic models of the eye GRIN lens and de-
velop one of them to a chromatic model. In this process I have identified a monochro-
matic GRIN lens, which is based on a new approach, ideal as an starting point. I have
reviewed relevant literature, in particular the materials on this innovative monochro-
matic model, which used a remarkable idea. This inspired me to think more about
this model, and I felt that the output could be more powerful. I discussed this with
my supervisor and showed my interest in developing a new monochromatic model of
the eye GRIN lens. Although my supervisor found this too ambitious, he encouraged
me to spend some time on the idea.

The first step was deriving a simple yet flexible mathematical expression for the
surface of the lens. My supervisor introduced me to a very different expression for
the shape of optical surfaces. We both agreed that this expression is a great help to this
problem, but we had some discussions about the number of the terms required for a
realistic lens geometry and the way that the anterior and posterior surface expressions
should be connected. Although I could not completely convince my supervisor that
my approach is the best way of modeling the surface of the lens, he let me continue
my work as one of the acceptable approaches.

The next step was defining the interior structure of the lens. I chose a straight
forward change for the lens interior shells, so that the interior structure is a scaled
geometry of the outer lens surface. This optically well-defined structure encouraged
me to attempt deriving paraxial ray-tracing within the lens. I derived a second-order
deferential equation, which to my surprise had an analytical solution. This was a
great achievement and I used it to derive analytical expressions for the optical power
and other optical characteristics of the lens. To use the analytical ray-tracing in finding
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the third-order aberrations of the lens, my supervisor helped me with a very useful
expression for the aberrations originating from a singe surface. I derived differential
equations for the third-order aberrations, which led to closed-form expressions for
the total aberrations in the lens, again this is a very important result.

The main theme of my Ph.D thesis is chromatic aberration, and I wanted to focus
on the chromatic effects in the crystalline lens, but since I have developed success-
fully the new monochromatic model for the GRIN lens, it has been decided to write
a separate research article on the work. I wrote a manuscript and my supervisor
checked the technical language and grammar. Paper III was published after a long
reviewing process, which did not change much the material presented in the original
manuscript.

Modeling the GRIN lens of the eye

The eye is a compact optical zoom system with a great performance. The optical
elements in this optical system are limited to the surfaces of the cornea, the iris, and
the lens of the eye. In fact, the image quality of the eye is due to the complexity of
its optical elements, especially the lens structure. The crystalline lens of the eye is not
homogeneous and its refractive index changes gradually from a higher index at the
center to a lower index at the cortex of the lens. This GRIN structure has an important
role in the eye aberration correction.

During the last century there have been many studies on the structure of the hu-
man eye GRIN lens and modeling its optical characteristics [35–39]. For years direct
measurement has been the main tool in the GRIN lens experimental studies, but using
recent advances in ocular aberration measurements [40], magnetic resonance imag-
ing [41,42], optical tomography [43], optical coherence tomography imaging [44], and
X-ray Talbot interferometry [45] improved our understanding of the GRIN lens struc-
ture and performance. This supported new attempts on modeling the GRIN lens.

Describing the GRIN profile by a polynomial has been the accepted approach in
modeling the crystalline lens for a long time. To improve this approach, Díaz et al. [46]
combined polynomials and trigonometric functions to achieve a more accurate repre-
sentation for the crystalline lens refractive index profile. The refractive index profile of
this model is parabolic, which is applicable only for very young eyes. Measurements
show that the refractive index profile of the GRIN lens becomes flatter by aging [41].
The model also provides a simple paraxial ray tracing. Goncharov and Dainty [47]
developed another eye model with two polynomials indicating the refractive index
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profiles of the lens at the anterior and posterior hemispheres. The model supports an
approximate third-order aberration calculation based on a parabolic ray-path approx-
imation [48] and an aberration description derived for inhomogeneous media [49].
Although this model only supports fourth-order GRIN profiles, the refractive index
profile of this lens model and its standard conic surfaces can be directly imported to
ZEMAX optical design software, which is a great advantage.

In a very different approach, Navarro et al. [50] used an empirical refractive index
description for the age-dependent changes at the paraxial regions of the lens, known
as power law [51]. They defined the distribution of the GRIN lens iso-indicial contours
based on this paraxial empirical formula and then derived the equivalent refractive
index expression throughout the lens from this structure. The iso-indicial contours
here are standard conic surfaces intersecting at steep angles resulting in sharp tips.
These iso-indicial conic surfaces are concentric to the external surface of the lens. Con-
sidering the measurements on the eye, this might not be a realistic assumption [41].

Using Navarro’s approach, we decided to develop a new GRIN lens model by in-
troducing a different geometry for the iso-indicial contours and a new assumption for
their spatial change. The external geometry of this new lens model can replicate the
geometry of the crystalline lens with a practically simple mathematical description.
The connection of the anterior and posterior surfaces is smooth and does not show
any sharp tip effect. The internal structure of this GRIN lens model is a scaled repre-
sentation of its external shape, where the model can be seen as a geometry-invariant
GRIN lens (GIGL) model. This symmetry leads to an analytical paraxial ray tracing
equation throughout the lens as well as closed-form expressions for the lens third-
order aberrations. To show that the derived expressions are practically useful in the
eye calculations and studies, a computational code including all optical characteristics
and aberrations of the lens is developed [52]. The model can be also used in studying
animal eyes and designing bio-inspired GRIN lenses. Our research is explained in
detail in Paper III.
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2.4 Paper IV

Mehdi Bahrami and Alexander V. Goncharov:

Geometry-invariant GRIN lens: iso-dispersive contours

Biomedical Optics Express, 3(7), 1684-1700 (2012)

Contributions

Continuing our study on modeling the eye GRIN lens explained in Paper III, I started
working on developing the GIGL model to a dispersive model. The idea was to mod-
ify the current model in a way that all the calculations and expressions stay valid for
a main wavelength. I based the model on two experimental measurements of the
dispersion of the center and the surface of the lens and predicted the total dispersion
profile throughout the lens using the power law. In other words, I assumed that all
chromatic refractive index profiles behave the same as the main wavelength profile
but with modified coefficients characterizing the GRIN profile.

Similar to the approach used in GIGL model monochromatic aberrations deriva-
tion I derived the chromatic coefficient of the lens. These coefficients were in agree-
ment with the experimental measurements on the chromatic aberrations of the lens
and the model was successful. I wrote a manuscript on this study and my supervi-
sor helped me with some valuable comments. Paper IV was published after a short
revision process.

Iso-dispersive contours

Although there are many studies on the total chromatic aberrations of the eye, only
two dispersive eye GRIN lens models have been introduced, [39] and [46]. The main
problem with these two models is that they are not in agreement with the experimen-
tal data considering the dispersive structure of the lens. There are two studies with
direct measurements of the dispersion of the center and the surface of the human eye
lens [53, 54]. These studies depict different dispersion curves for the center and the
surface of the lens, which is not taken into account in the current dispersive GRIN
lens models.

Despite the limited experimental chromatic measurements currently available, the
monochromatic behavior of the refractive index profile of the lens is discussed in
various studies and the power law is an accepted expression for the GRIN lens pro-
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file [41, 42, 50, 51, 55, 56]. Since the monochromatic wavelengths used in these mea-
surements are not biologically special, we think it is a reasonable assumption that all
other chromatic refractive index profiles adhere to this behavior. This is the basis for
our new dispersive GRIN lens model.

In a GRIN lens structure iso-indicial contours are defined as infinitely thin lay-
ers showing the same refractive index. This concept is very useful for ray-tracing
through the lens, since the refraction happens where the iso-indicial contours change.
In our model we define the dispersion of the lens for its different parts and derive
a coordinate dependent Abbe number for the GRIN structure. Here, the lens GRIN
structure can be seen as layers with constant Abbe numbers. The chromatic effects
inside the lens happen when the Abbe number is changed. Because of the analytical
ray-tracing ability of this model, the contribution of each layer in chromatic aberra-
tions can be calculated and accumulating the coefficients from each layer gives us the
total chromatic aberration coefficients for the lens. It is worth mentioning that since
the refractive profiles of different colors show different rates of change for their vari-
ation across the lens, the change in iso-indicial and iso-dispersive contours does not
coincide.

This is the first model of a dispersive GRIN lens that is based on the expression of
power law, which takes into account age-related variations. The chromatic aberration
predicted by the model is in the range of reported experimental data in the literature
[57] and it can explain different age-related chromatic behaviors observed in different
studies [58–62]. This modeling and its results are the subject of Paper IV.
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Although chromatic aberration has been a subject of study for a long time, this re-
search shows that there is much potential in this field to improve dispersive optical
systems. Three different examples of optical design chromatic problems including
chromatic correction in catadioptric designs, atmospheric dispersion correction in ex-
tremely large telescopes, and modeling the dispersive gradient refractive index lens of
the eye are studied. These studies and our solutions to the problems are published as
four separate research articles in Applied Optics, Optics Express, Journal of Biomed-
ical Optics, and Biomedical Optics Express. The achieved designs and approaches
explained in this thesis can be applied to many different problems.

This thesis covers various contributions of refractive elements in chromatic effects,
but it is worth mentioning that the world of chromatic aberration is not limited to re-
fractive elements and their dispersion. There is a growing trend in employing diffrac-
tive elements in chromatic lens correctors. Due to high Abbe number and high optical
power of these diffractive elements, they can reduce the weight and the number of el-
ements used in a refractive designs. Studying the advantages and the draw backs of
such hybrid designs and exploring their possible contribution in improving different
optical systems can be an attractive subject of research for future work.

Chromatic correction in catadioptric designs

The work on the middle-sized telescopes in Paper I explores undiscovered combi-
nation of lens correctors for all-spherical telescope designs. The main purpose of
designing these well-matched lens correctors is improving imaging quality of an all-
spherical telescope compared to an RC telescope for seeing-limited observations. Our
all-spherical catadioptric telescope designs can be widely used in sky survey and
wide-field imaging. The telescopes are designed for f /4.5 speed and 0.8 m aper-
ture diameter, but they can be scaled to larger apertures (up to 1− 2 m), where the
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limiting factor is the size of the refractive elements.

Our designs can be modified and probably improved in some aspects. It is shown
in this paper that a meniscus next to the secondary mirror of a telescope can com-
pensate the positive spherical aberration originated in the spherical primary mir-
ror, whilst the chromatic aberration in the meniscus is balanced by a three-lens fo-
cus corrector. To modify our design, one can turn the spherical primary mirror to a
paraboloidal mirror, which in terms of manufacturing is still cost effective. In this
case, the primary mirror will not show any spherical aberration and the meniscus
aberration correction potential can be used in correcting other aberrations. Reopti-
mizing such a system may provide a better image quality for short exposure imaging,
where the blurring effects due to seeing can be avoided and the image quality would
be limited by diffraction.

Atmospheric dispersion correction in ELTs

The study of atmospheric dispersion correction presented in Paper II aims at the com-
plex problem of uncorrected chromatic aberration in LADCs, and as an alternative,
an achromatic ADC system is designed. This ADC is a three-lens corrector, so that the
first two lenses act like an RADCs design, and the third lens compensates the resid-
ual aberrations. RADCs consist of two counter-rotating Amici prisms, which their
proportional rotation angle changes their total vertical dispersion.

The ADC design is examined in the intermediate focus of the E-ELT. This ADC
does not change the chief ray path of the telescope at different wavelengths, and it
does not add any noticeable monochromatic or chromatic aberrations to the image or
the adaptive optics (AO) system, while delivering an acceptable laser guide star spot
to the AO system, providing practical transmittance through the lens materials, and
working close to an aberrated intermediate focus. Each of these characteristics can be
employed in different problems.

The glasses coupled in this design are practically manufacturable in large blocks
and because of their well-tuned dispersion can be used in a vast variety of optical
designs. This can be very useful in ELT instrumentation. The presented ADC is de-
signed to operate at R, I, and J bands, but the same approach used for this design can
be employed in designing a similar ADC operating at farther infrared wavelengths
like H and K bands. The design of ADCs performing near the intermediate focus of
a telescope can be also extended to symmetric designs. In this case the opposite sign
of the chief ray height before and after the focus can be used in compensating field

34



3. Conclusions, future work

aberrations and leaves more degrees of freedom for improving image quality.

Modeling the dispersive GRIN lens of the eye

The monochromatic GIGL model introduced in Paper III, by itself, is a breakthrough.
The model supports analytical ray tracing and provides analytical equations for the
optical characteristics of the lens as well as closed-form expressions for its third-order
aberrations. These analytical expressions are a great merit in the lens reconstruction
algorithms. This model, for the first time, introduces a practically simple mathemat-
ical description for the external surface of the eye GRIN lens. This makes analyzing
the accommodation of the eye more achievable.

The refractive index profile of the GIGL model is based on the well-accepted power
law distribution. Future measurements may show small deviations from this profile,
but the GIGL geometrical description can be connected to any new distribution of the
refractive index profile. In addition to this, by redefining the mathematical connection
between the lens internal geometry and the refractive index profile, fluctuations in the
refractive index can be modeled as well as discontinuities in the lens.

The GIGL internal GRIN structure is in agreement with aged eyes more than young
ones. This model can be seen as a powerful basis for some other models aiming at
young eyes. In this case, we have to break the symmetry in the internal lens geome-
try leading to difficulties in analytical ray tracing, yet all optical characteristics of the
lens model can be derived numerically using the innovative approach introduced in
our third paper.

Modeling the dispersive GRIN lens of the eye in Paper IV is valuable for under-
standing the lens structure as well as studying its chromatic compensation. Our new
dispersive GRIN lens model introduces age-related calculations for the chromatic
aberrations of the lens for the first time.

Retinal imaging is a growing field nowadays and the wavelengths difference in
AO laser spot and the imaging light requires a chromatic eye model to calibrate the
measurements. The chromatic GIGL model explains clearly chromatic behavior for
the GRIN lens of the eye. Thanks to the flexibility of the model, it can be also used in
modeling the future accurate measurements of the dispersive lens. Both monochro-
matic and chromatic GIGL models can be also employed in animal eyes studies as
well as designing bio-inspired GRIN lenses.
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After the submission of Paper IV we have been continuing our work on the GIGL
model. We have derived a coordinate dependent expression for the refractive index
of the lens, which can be used for numerical ray tracing. Using this algorithm, we
can import the lens to optical design software to widen the capability of the model in
optimization processes and complete eye modeling. I have been writing a manuscript
on this study for our future publication.
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Appendix

In Fig. 7 of Paper I, the spot diagrams for an f /4.5 RC system and f /4.5 all-spherical
catadioptric system are compared. One other way of diagnosing image defects in an
optical system is studying the ray fan plots. Figure A.1 depicts the ray fan plots of
the RC system and the all-spherical catadioptric system. The horizontal axis indicates
the normalized pupil coordinate and the vertical axis shows the coordinate (sagittal
or tangential) of the ray intercept with the image surface. The maximum height of
the curves in Figure A.1 indicates the geometrical height of the spots in sagittal and
tangential directions, which can be also seen in the equivalent spot diagrams in Fig.
7 of Paper I. In general, because of preserving the information about the pupil coor-
dinate of the rays, the ray fan curves are more representative than spot diagrams in
distinguishing the aberrations of the system.
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Figure A.1: Sagittal and tangential ray fan diagrams for (a) f /4.5 RC system and
(b) f /4.5 all-spherical catadioptric system. The blue, green, and red lines are indicat-
ing the wavelengths of 486 nm, 588 nm, and 656 nm, respectively.
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The current trend in building medium-size telescopes for wide-field imaging is to use a Ritchey–Chrétien
(RC) design with a multilens corrector near the focus. Our goal is to find a cost-effective alternative de-
sign to the RC system for seeing-limited observations. We present an f =4:5 all-spherical catadioptric
systemwith a 1:5° field of view. The system consists of a 0:8 mspherical primary and 0:4 m flat secondary
mirror combined with a meniscus lens and followed by a three-lens field corrector. The optical perfor-
mance is comparable to an equivalent f =4:5 RC system. We conclude that, for telescopes with apertures
up to 2 m, the catadioptric design is a good alternative to the RC system. © 2010 Optical Society of
America
OCIS codes: 110.6770, 350.1260, 110.0110.

1. Introduction

The classical Ritchey–Chrétien (RC) system employs
two hyperboloidal mirrors providing full correction of
spherical aberration and coma. Because of aplanatic
correction and two-mirror simplicity, the RC design
has been an attractive solution for many observa-
tories. However, the RC focal surface is curved—
mimicking the shape of the secondary mirror—and
astigmatism limits the field of view. These draw-
backs become critical for imaging over fields wider
than 15–20 arcmin.

Telescopes dedicated for wide-field imaging, such
as sky survey systems, usually require fields extend-
ing over a few degrees. In addition, field curvature
must be corrected to match the flat surface of modern
detectors. Both conditions can be fulfilled in the RC
system by introducing a multilens corrector near the
Cassegrain focus [1–4]. In most designs described in
the literature, the field corrector is not part of the ori-
ginal telescope design and is added to the telescope
system for a wider field. In contrast to this ad hoc
strategy, the lens corrector can be incorporated into
telescope design from the very beginning. An exam-

ple of an RC telescope with a three-lens field correc-
tor designed this way is presented and compared to
an all-spherical catadioptric system in Section 3.

2. Historical Overview of Popov and Klevtsov
Telescope Systems

In spite of diffraction-limited image quality achiev-
able within a 1°–2° field, a major concern is the high
cost of manufacturing and testing large aspheric
mirrors. In light of this, there have been various
attempts at using a spherical primary mirror to
achieve a cost-effective solution for astronomical
telescopes with catadioptric [5,6] and catoptric cor-
rectors [7–10]. Two examples of such systems are
shown in Figs. 1(a) and 1(b). They are based on the
two configurations inspired by Klevtsov [Fig. 1(a)]
and Popov [Fig. 1(b)] telescope systems. Both sys-
tems use a 0:8 m spherical primary mirror M1 and
a three-lens field corrector, which provides a typical
f number for Cassegrain telescopes of f =9:5. For such
an f number, the secondary group has a noticeable
optical power; hence, it is easy to show the advantage
of using aMangin mirror in the Klevtsov system. The
secondary group consists of a secondary mirror M2
and a meniscus lens MC. The first design shown
in Fig. 1(a), features a Mangin mirror M2 as origin-
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ally proposed by Klevtsov [11], while the other sys-
tem uses a convex spherical secondary M2; see
Fig. 1(b). The latter configuration has been proposed
by Popov [12]. In its original form, the Popov system
[13] did not feature any field corrector and was pri-
marily designed to achieve aplanatic correction by
optimizing the curvature and central thickness of

the meniscus. The longitudinal chromatic aberration
could be corrected by modifying the secondary into a
Mangin mirror. As a result, we get a “quasi RC”, the
Klevtsov system [11], which is not so well known out-
side Russia. Klevtsov and Popov systems have some
residual field curvature and astigmatism, limiting
the field of view to 15–20 arcmin. For a wider field,

Fig. 1. (Color online) All-spherical catadioptric f =9:5 telescopes with a three-lens corrector, usingmeniscusMC andManginmirrorM2 (a)
or a convex secondary M2 (b) .

Fig. 2. (Color online) Aberration diagrams for an all-spherical catadioptric f =9:5 telescope with a (a) Mangin mirror and (b) secondary
mirror. The vertical axis represents wave aberrations in waves (λ ¼ 588 nm). MC* stands for the second path through the meniscus
corrector.
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one needs a field corrector that is capable of remov-
ing astigmatism and flattening the field.

For both design examples presented here, the field
corrector is a three-lens system optimized as an in-
tegral part of the telescope and not as an ad hoc focal
reducer [14]. The field corrector is mainly required to
keep astigmatism, field curvature, and lateral color
to a minimum. The secondary group corrects most
spherical aberration and a large fraction of field cur-
vature of the primary mirror. Coma correction is
shared between the field corrector and the secondary
group, as can be seen from the diagrams in Fig. 2.
Aberration balancing enables us to obtain near dif-
fraction-limited image quality within a 1 deg field
at visible wavelengths from 486 to 656 nm.

The system with a Mangin mirror provides better
correction of astigmatism and field curvature, which
leads to superior imagequality; seeFigs. 2(a) and2(b).
This is simply because the Mangin mirror offers
additional degrees of freedom (compared to the single
reflective surface), namely, the glass thickness and
shape factor that allow us to adjust intrinsic coma
and field curvature. The Mangin mirror is commonly
used as a powerful element in catadioptic designs
[15,16].

The flat-field condition can be met by a particular
geometry of the three-lens corrector for which its in-
trinsic field curvature is nearly zero. This is because
the secondary group compensates for most field cur-
vature of the primary. The Mangin mirror reduces
the overall field curvature in the telescope, while
the field corrector eliminates lateral color of the
Mangin mirror; see Fig. 2.

In the design featuring only the secondary mirror
and meniscus lens, fine-tuning of coma and field
curvature is much more difficult. This rules out

the flat-field solution, since the field corrector is
not capable of removing field curvature and coma
without the Mangin mirror. However, by leaving
some small amount of residual astigmatism (under-
correcting astigmatism of the primary mirror), one
can flatten the focal surface [17]. As a result, we
achieve near diffraction-limited image quality within
a 1° field, as shown in Fig. 3(b). The choice of a 0:8 m
aperture is consistent with the pixel size available
(8–10 μm) that gives an optimal sampling (2 pixels
per width of the point-spread function containing
80% of encircled energy). Aberration balancing is dis-
cussed in detail in Section 4.

3. All-Spherical Catadioptric Design Versus Ritchey–
Chrétien System

Rapid advances in manufacturing large-size mega-
pixel detectors make it possible to image wider areas
of the sky without compromising the telescope angu-
lar resolution. For sky survey systems with the field
of view over several degrees, one has to use tele-
scopes with a relatively fast focal ratio to keep the
detector size within reasonable limits (up to
100 mm). For a 0:8 m telescope to a fit 1:5° field onto
a 100 mm × 100 mm detector, one needs to use a fo-
cal ratio not greater than 4.5. This is an important
requirement that dictates our choice for the optical
system configurations considered here.

Figure 4(a) shows an example of a modified RC
telescope with a hyperboloidal primary mirror and
a planoid aspheric secondary mirror. The necessity
to operate at f =4:5 speed with reasonable central ob-
scuration leads to the RC system configuration in
which the secondary mirror has no optical power.
A dedicated three-lens field corrector eliminates all

Fig. 3. (Color online) Secondary groups, field correctors, and spot diagrams for all-spherical catadioptric f =9:5 telescope with a (a) Mangin
mirror and (b) convex secondary mirror M2.
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residual aberrations of the two-mirror system, in
particular astigmatism and field curvature.

The field corrector has significant intrinsic field
curvature, which is matched to the field curvature
of the primary mirror. By contrast, the field correc-
tors for f =9:5 catadioptric systems considered in the
introductory section have very little intrinsic field
curvature. A more detailed coverage of aberration
balancing by the three-lens field corrector is given
in Section 4.

Figure 4(b) shows an f =4:5 all-spherical catadiop-
tric design with a flat secondary mirror and an afocal
meniscus lens followed by a three-lens field corrector.
We also present an unfolded optical layout of the sys-
tem in Fig. 5 to emphasize the afocal nature of the
meniscus and point out the main source of filed cur-
vature (the primary mirror). Note that MC* stands
for the second path through the meniscus corrector.
Similar to the RC system, the secondary group has
no optical power, which is a necessary condition for
achieving f =4:5 speed with tolerable central obscura-
tion and an accessible focal plane position.

The lack of optical power negates the benefit of
using a Mangin mirror in the secondary group be-
cause, without optical power, the Mangin mirror is
unable to reduce coma and field curvature of the pri-
mary mirror [15]. However, despite a fewer degrees
of freedom in the secondary group, an afocal menis-
cus is still the key element for compensating spheri-

cal aberration of the primary mirror and the three-
lens corrector. The latter is responsible for removing
overall coma, astigmatism, and field curvature, as
well as reducing axial and lateral color of the menis-
cus lens; see Fig. 6(b).

Figure 7 depicts the spot diagrams for both
designs. The modified RC system gives diffraction-
limited image quality, while the all-spherical cata-
dioptric system shows a tiny amount of lateral color
and coma. In view of the wide field (1:5°) and simpli-
city of the secondary group (no Mangin mirror), we
believe that the presented all-spherical catadioptric
design is an attractive alternative to the RC system.
The catadioptric design provides a cost-effective so-
lution for sky survey telescopes that do not operate
at their diffraction limit due to atmospheric seeing
[18] or atmospheric dispersion [19].

The targeted group here is medium-size telescopes
with apertures up to 1–2 m, which typically operate
without adaptive optics (AO), unless particular at-
tention is given to AO integration into telescope de-
sign [20–23]. Thus, the image quality of a typical
medium-size telescope is limited by atmospheric see-
ing. The atmospheric turbulence reduces the sharp-
ness of the image of a point source and blurs the
image to the size of the seeing disk. For good seeing
conditions, the radius of the seeing disk is about
0:5 arcsec, while the Airy disk radius for an 0:8 m
telescope is only 0:15 arcsec.

Fig. 4. (Color online) f =4:5 RC system with a planoid secondary and three-lens field corrector(a) and an f =4:5 all-spherical catadioptric
system (b).
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4. Balancing Aberrations with Three-Lens Correctors

It is well known that it is possible to correct spherical
aberration, coma, and axial color in an air-spaced
doublet, as well as in a cemented doublet with a spe-
cial choice of a glass pair for positive and negative
elements [24]. Adding a third lens makes it possible
to correct for astigmatism and lateral color if the
position of the aperture stop can be adjusted. A good
example is a Cooke triplet [25]. In our modified f =4:5
RC telescope design with a three-lens corrector, the
position of the aperture stop is given by the primary
mirror, and thus the correction of lateral color by the
symmetrical placement of lenses with respect to the
aperture stop is not feasible [25]. It is necessary to
introduce a third glass type in the corrector for lat-
eral color elimination. As we showed in an earlier
study, a modified RC system with a doublet field cor-
rector suffers from lateral color [26]. Besides axial
and lateral color, we also need to remove four types
of monochromatic aberrations. This task is distribu-
ted between the two mirrors and the lens corrector.

Adjusting the asphericity of the primary and sec-
ondary mirrors, one could always compensate sphe-
rical aberration and coma in the field lens corrector.
This helps to liberate at least two degrees of freedom
in the field corrector for better elimination of other
aberrations. In particular, correction of astigmatism
and field curvature of the two-mirror system be-
comes very effective and, as a result, we get well-
corrected flat field over nearly two degrees.

As an alternative configuration, one could use a
spherical primary mirror followed by a secondary
group combining a meniscus lens with a Mangin mir-
ror. This combination also allows us to tune the over-
all amount of spherical aberration and coma in the
telescope. However, in contrast to the modified RC
system, the field lens corrector has to compensate
a noticeable amount of lateral color originating from
the secondary group; see Fig. 2(a). This condition
slightly upsets the individual correction of astigma-
tism and field curvature in the telescope. As a result,
these two aberrations have to balance one another,

Fig. 5. (Color online) Unfolded optical layout for an f =4:5 all-spherical catadioptric telescope.

Fig. 6. (Color online) Aberration diagrams for an (a) f =4:5 RC system and (b) f =4:5 all-spherical catadioptric system, both featuring a
three-lens field corrector. The vertical axis represents wave aberrations in waves (λ ¼ 588 nm).
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which is illustrated in Fig. 8 by vertical gray bars
representing third- and fifth-order aberration
coefficients [27].

It is worth noting that third-order aberration the-
ory alone is not sufficient for finding the optimal con-
figuration of the lens corrector. Using optimization
based on real ray tracing together with basic under-
standing of aberration balancing in the proposed cat-
adioptric systems proves to be more effective.

For a simplified system in which the Mangin mir-
ror is replaced by the flat secondary, the task of coma
elimination is passed on to the lens corrector. This
puts an additional constraint on the lens corrector
and, therefore, leads to even more pronounced resi-
dual astigmatism than is necessary to flatten the
field; see the black vertical bars in Fig. 8. The choice
of glass type for the meniscus lens becomes critical
because it helps to reduce the lateral color in the
whole system. We have considered N-SF1, N-SF2,
F1, and N-BK7 glass for the meniscus lens. The lat-
ter is selected as the optimal glass for lateral color
correction. The blanks of N-BK7 glass are available

in large diameters so, even for a 2 m telescope, man-
ufacturing a 1 m meniscus lens should be feasible.

It is interesting to note that when going from
an f =9:5 to f =4:5 system, presented in Figs. 1(b)
and 4(b), respectively, the residual lateral color
changes its direction as can be seen at the intermedi-
ate field points in Figs. 3(b) and 7(b). This indicates
that a better choice of glasses might be found.

5. Technical Characteristics of the 0:8 m All-Spherical
Catadioptric Telescope

The main optical parameters of for the 0:8 m f =4:5
catadioptric telescope system are given in Table 1.
One could see the recommended glasses for the
three-lens field corrector used in all systems pre-
sented here.

Because the secondary group is the most distant
component from the primary mirror, it is important
to check the tolerances on its position. Our analysis
shows that the tilt of the secondary group within
�1:6 arcmin will reduce the diffraction encircled en-
ergy by less than 20%. This is comparable with the

Fig. 7. (Color online) Spot diagrams for an (a) f =4:5 RC system and (b) f =4:5 all-spherical catadioptric system.

Fig. 8. Balancing field curvature against astigmatism for flat-field correction (third and fifth orders are shown) for systems presented in
Fig. 1.
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tolerances of the f =4:5 RC system discussed in
Section 3.

Figure 9 depicts the diffraction encircled energy for
the central, intermediate, and edge point in the field.
It is seen that 80% of encircled energy for the point on
axis falls within a spot 12 μm in diameter, while the
spot at the edge of the field (0:75°) is about 16 μm.
The spot size is well matched to the pixel size of
8 μm commonly used for detectors in the visible re-
gion. The image scale is 0:057 arcsec=μm (one pixel
covers 0:46 arcsec).

The orientation of the meniscus lens is not critical
because it has no optical power; however, the sug-
gested lens shape might help to reduce the length
of the mounting assembly of the secondary group.
The central obscuration due to the secondary group
is less than 29% for all field points. The stray light is
a notorious problem for astronomical telescopes.
Three baffles are needed for our design: extended
telescope tube (1:7 m); a flange at the secondary
group (0:18 m long and 0:43 m in diameter); and a
flange in front of the 3-lens corrector (0:2 m long).
In some cases, one could use a folding flat mirror
to bring the final focus outside the telescope for mini-
mizing stray light and avoiding the unwanted cen-
tral opening in the primary mirror [28].

6. Conclusion

In this paper, we propose a simplified all-spherical
catadioptric system for a sky survey telescope. Its op-
tical performance is analyzed against a modified RC
system. Both designs operate at f =4:5 speed and fea-
ture a three-lens field corrector optimized for 1:5°
field at the visible wavelengths (from 486 to 656 nm).
The basic principles of aberration balancing are dis-
cussed in detail. The primary mirror diameter is
0:8 m; however, the proposed system is intended for
medium-size telescopes with an aperture up to
1–2 m, which typically operate without adaptive op-
tics, thus being limited by atmospheric seeing.
Taking into account the simplicity of the all-spherical
catadioptric design and its near diffraction-limited
image quality comparable to that of the RC system,
we conclude that the catadioptric design provides a
cost-effective solution for ground-based sky survey
telescopes that do not operate at their diffraction
limit due to atmospheric seeing.

This research was supported by Science Founda-
tion Ireland under grant 07/IN.1/1906.
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Abstract: For off-zenith observations with ground-based astronomical
telescopes, the effect of atmospheric dispersion relative to diffraction on
image size increases with telescope diameter. Correction of atmospheric
dispersion in extremely large telescopes (ELTs) might become critical. A
common solution for ELTs is to use linear atmospheric dispersion correctors
(ADCs). In spite of their simplicity, the intrinsic chromatic aberrations of
linear ADCs could render diffraction-limited imaging impossible when
used in a fast focus. The chromatic problems of the linear ADC in ELTs can
be resolved by replacing the linear ADC by the achromatic ADC designs
presented here, which provide diffraction-limited image quality and offer
several opto-mechanical advantages over linear ADCs.
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1. Introduction

For off-zenith astronomical observations with ground-based optical telescopes, the atmospheric
dispersion elongates star images to spectra with the blue end pointed toward the Zenith. This
effect of the atmospheric dispersion on image size relative to the diffraction limit (Airy disk)
increases with telescope diameter. Finding a suitable atmospheric dispersion corrector (ADC)
for extremely large telescopes (ELTs) is a real challenge. One possible solution for atmospheric
dispersion correction is to use a linear ADC (LADC) [1]. Despite the simplicity of LADCs,
their intrinsic aberrations could make it difficult to achieve diffraction-limited imaging. The
monochromatic aberrations are usually compensated by adaptive optics (AO) system [1–3]. In
ELTs the intrinsic chromatic aberrations are not significant in slow beams (e.g. f/15), however
their correction becomes critical in fast beams (faster than f/5). In ELTs, sometimes there is
an intermediate fast focus, which helps to reduce the linear size of an ADC. The drawback
of using a fast focus is that the chromatic aberrations of the ADC are magnified at the final
slow focus. The chromatic aberrations in the final focus could prevent ELT from achieving its
diffraction-limited image quality. We show an example of an ELT with an intermediate fast
focus, which presents an opportunity to revisit traditional approach of atmospheric dispersion
correction with new achromatic ADC design.

There are currently three ELT projects under development: Thirty Meter Telescope (TMT)
[4] , Giant Magellan Telescope (GMT) [5] and the European ELT (E-ELT) [6]. In contrast
to the TMT and GMT designs, which are classical aplanatic two-mirror systems, the baseline
design of the European Extremely Large Telescope (E-ELT) is a 42-m five-mirror telescope
with three powered aspheric mirrors. The ellipsoidal segmented primary mirror (M1) converges
light toward the 6-m convex hyperboloidal secondary mirror (M2). These two mirrors make an
image at the intermediate focus (F1) located 27 m after M2. The light is focused again by a
4-m concave aspheric tertiary mirror (M3) at the final focus (F2). To bring the final focus to a
Nasmyth platform, the beam is folded by two flat mirrors (M4 and M5); the telescope optical
layout is shown in Section 4. M4 is a 2.5-m deformable mirror designed to compensate the
optical effects of atmospheric turbulence. M5 is intended for image stabilization (compensating
for telescope vibrations) [7]. For a more detailed description of AO systems in the current ELT
projects see Ref. [8–11].
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Fig. 1. Spot diagrams for the E-ELT operating at 45 deg off Zenith at different spectral
bands. The black circle represents the Airy disk.

Atmospheric turbulence is not the only factor preventing diffraction-limited imaging in ELTs.
Atmospheric dispersion in telescopes of such large aperture significantly elongates the image
spots vertically. Figure 1 depicts the spot of the central field point of the E-ELT in the R band
(0.59-0.81 µm), I band (0.78-1.02 µm), J band (1.06-1.44 µm), H band (1.5-1.7 µm), and K band
(1.96-2.44 µm) at 45 degrees off Zenith. Although the spot size produced at each individual
wavelength is smaller than the Airy disk (the black circle), the image of a star in the R band
would appear elongated vertically by about 70 times of the Airy disk diameter. In this paper, the
atmospheric dispersion effects are modeled by using ZEMAX optical design software. Various
chromatic effects introduced by the atmosphere are described in more detail in Ref. [12].

To reduce the elongation of polychromatic point sources, it is essential to use an atmospheric
dispersion corrector (ADC) in the telescope system. It is more practical to place an ADC at F1
rather than at the final focus F2. The linear size of the full field at F1 is about 0.6 m, whereas in
the final focus F2 it is 1.95 m. Manufacturing lenses of this size is not possible and segmented
lenses are not desirable in view of segmentation employed already for the primary mirror M1
and deformable mirror M4. In light of this, it has been suggested to use an LADC for the E-
ELT close to F1, where the image scale is 3.5 times smaller than at F2 [7]. In spite of apparent
simplicity of LADC it has some drawbacks, which are discussed in Section 2.

LADCs are not the only possibility for the E-ELT. In Section 3, we consider other types of
ADC and in Section 4 we present our design of a rotating achromatic atmospheric dispersion
corrector (RADC) for the intermediate focus (F1) of the E-ELT .

2. Limitations of LADC in fast focus

The linear ADC was originally proposed by Beckers in 1997 [13]. It contains two identical thin
prisms (wedges) W1 and W2 with opposite orientation. The amount of longitudinal dispersion
produced by the LADC is proportional to their axial separation. One of the wedges can move
along the optical axis to adjust the amount of dispersion needed for different Zenith angles
(Fig. 2). LADCs are commonly employed in large telescopes for compensating atmospheric
dispersion [14]. LADCs work in a converging beam usually near the final focus. Both wedges
are made of the same materials (usually silica because of its high optical transmittance).

The glass wedges in a converging polychromatic light produce monochromatic and chro-
matic aberrations [15, 16]. The amount of aberrations increases in fast foci. Linear ADCs also
introduce a noticeable vertical displacement of the exit pupil and the focal surface. This un-
wanted displacement can be, in principle, compensated by decentering all optical elements that
come after the ADC in the telescope system [1]. To reduce the required dynamic range of the
deformable mirrors M4, it has been suggested to correct image motion by the tip-tilt move-
ment of M5. A linear ADC introduces field aberrations such as coma and astigmatism, which
could be corrected by AO system (using the deformable mirror M4) or by active optics using
the secondary mirror M2. In principle correcting the intrinsic monochromatic aberrations of
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Fig. 2. A typical layout of LADC; W2 can move and tune the intrinsic dispersion of the
system for different Zenith angles.

Fig. 3. The spot diagrams of a designed LADC for the E-ELT operating at 45 deg from
Zenith over 2-arcmin full field.

LADC may be achieved by the combined deformation of M2 and M4, so that the demands on
AO system are reduced. Since the LADCs typically operate in slow foci, chromatic aberrations
are relatively small to be of any concern. However, there are two points, which make the chro-
matic effect of wedges critical for the E-ELT: the intermediate focus F1 is fast (f/4.6), and M3
re-images F1 to the final focus F2 (f/16), which magnifies the chromatic effects [17]. Figure 3
shows the spots of an LADC designed for 45 degrees from Zenith and 2 arcmin full field of
view. The wedge angle is 1.5 deg, central thickness 40 mm, and the maximum axial separation
2 m.

The task of correcting these intrinsic chromatic aberrations of the LADC in the E-ELT is very
challenging. Two wedges put together in contact form a thick glass plate. In term of chromatic
effects, such a glass plate acts like a negative lens and shows positive axial color [15]:

δax =
t(n−1)

n2V
, (1)
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Fig. 4. A simple RADC: (a) maximum dispersion, (b) zero dispersion.

where δax is the axial chromatic aberration of the plate, n the refractive index, t the thickness
of the plate, and V the Abbe number. Correcting the axial color of such a plate requires a
positive compensating lens. Because of the significant thickness of the plate (t = 80mm) the
needed optical power of a single positive lens would make it the most powerful element in the
telescope. This lens will affect the rest of the telescope system after F1 leading to a different
geometry of the light path, pupil mis-conjugations in the AO system, and vignetting. One could
avoid excessive optical power by using a two-lens corrector instead, however due to high level
of aberrations at F1 (see Section 6) the two-lens corrector does not have sufficient number
of degrees of freedom to keep the telescope achromatic. In this case only three-lens corrector
is able to provide achromatic correction. Instead of using F1, one can think of adding a lens
corrector close to the final focus F2, but the size of the usable image is limited by the diameter
of the lens (which can be as large as 1 m at most). Alternative ADC designs are discussed in
the following section.

3. Other types of ADCs

Before introduction of LADCs, rotating ADCs were the common solution for atmospheric dis-
persion. The simplest type of RADC contains two identical counter-rotating plates, so called
Amici prisms [18]. Each plate is made of two cemented prisms. The ADC will show its maxi-
mum (zero) dispersion when the apex angles of the prisms are in the same (opposite) directions,
see Fig. 4 and Ref. [19]. This simple RADC is used in collimated light (typically in the pupil
plane).

An ideal ADC compensates for atmospheric dispersion and also provides zero-deviation for
the chief rays at the reference wavelength to preserve the pupil position in the telescope. In
LADCs there are two identical prisms and the tilt of the pupil plane introduced by the first
prism is corrected by the second one. The rotation of prism pairs in an RADC is the basis for its
function, however the angles between the two interfaces in prism pairs depends on the Zenith
angle. This means that each plate should fulfill the zero-deviation condition individually. This
can be achieved in two ways. The first method is to add appropriate tilts to the outer surfaces
of the plates insuring that the outgoing ray will be parallel to the incoming ray. In this case,
the vertical displacement like the one found in LADCs is applied to outgoing rays. The second
method is to use two different types of glasses for the prisms, which show different dispersions,
but the same refraction index at some prime wavelength. Such an ADC does not present any tilt
or even vertical displacement in the image at this mean wavelength. Finding these two glasses
is the main challenge. In addition to the requirement of having a certain common point in the
dispersion curves, their differential dispersion should match the atmospheric dispersion as close
as possible. In Section 7, we show that it is possible to find such glass pair.

The exit pupil of the E-ELT is located close to M4, where the diameter of the beam is even
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larger than the field diameter at the final focus F2. Using an RADC in a convergent beam intro-
duces noticeable amount of aberrations. To avoid this problem, optical designers usually intro-
duce some curvature on the surfaces [20]. Although this can in principle improve monochro-
matic aberrations, chromatic aberrations might get worse. A surface with some optical power
introduces more axial and lateral color than a flat surface. Correcting chromatic aberrations
is related to the curvature of the surfaces as well as the material of the elements. This makes
the design of such an ADC more complicated and the process of finding the suitable glasses
difficult.

Historically optical designers have tried different ideas to improve the performance of
RADCs in a converging beam. Wynne suggested making the surfaces of the wedges concentric
to the focal plane [21]. This eliminates axial color and gives a better aberration correction. Since
concentric lenses are powerful elements and they will drastically change the configuration of
the telescope, this design is not helpful in the E-ELT. What is needed here is an ad hoc de-
sign, which solves the atmospheric dispersion problem and, at the same time, does not change
anything else in the telescope system.

Apart from concentric ADCs, there have been some work on adding more lenses to RADC
operating as a focal corrector [20, 22]. A new kind of an RADC for the E-ELT inspired by this
work is presented in Section 4.

4. The achromatic design of ADC for the E-ELT

Figure 5 presents an optical layout of the E-ELT featuring the new achromatic design of the
RADC. The ADC consists of three lenses and it is located near the intermediate focus F1. The
first two lenses, L1 and L2, are the counter rotating elements, which tune the intrinsic dispersion
of the ADC for different Zenith angles. The third lens L3 preserves the geometry of the beam
at F1. Therefore, L3 makes the ADC an afocal system and it also corrects for the residual
aberrations of L1 and L2. It is worth pointing out that in contrast to linear ADCs, the proposed
ADC does not use any tilt or decentering of M3, M4 and M5. The diameter of the largest lens
covering the 10-arcmin full technical field is less than 780 mm and the total length of the ADC
is less than 850 mm. The range of rotation angles for L1 and L2 (0 deg to 90 deg) provides
the atmospheric compensation up to 55 deg from Zenith. The glasses used are S-PHM52 and
N-F2 for L1 and L2, and F5 for L3. As can be seen from Table 1, these glasses have high
transmittance between 500 nm and 1530 nm. This is the achievable range for the ADC designs
presented here.

Table 1. The Transmittance Coefficients for Silica and the Glasses Used in the ADC
λ (nm) Transmittance for 10 mm thickness

Fused Silica S-PHM52 N-F2 F5
1530 0.999 0.993 0.991 0.995
1060 0.999 0.996 0.998 0.999
700 0.999 0.998 0.997 0.999
660 0.999 0.998 0.996 0.998
620 0.999 0.998 0.996 0.998
580 0.999 0.998 0.997 0.998
546 0.999 0.998 0.997 0.998
500 0.999 0.996 0.994 0.998

To keep the pupil and M4 conjugations unchanged special constraint on the position of the
exit pupil in the optimization merit function is used. The exit pupil of the E-ELT is located
590 mm after M4, whereas deformable mirror M4 is conjugated to an atmospheric layer that
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Fig. 5. The optical layout of the E-ELT featuring the new design of the three-lens rotating
achromatic ADC.

Fig. 6. The three-lens achromatic ADC with the unchanged path of the rays.

is about 200 m above the primary mirror M1. Since the path of the rays is not changed by the
ADC (see Fig. 6), the ADC preserves this conjugation in the telescope.

Another constraint in the E-ELT is the image quality of a turbulent layer on M4. This is
of high importance for successful operation of the adaptive optics (AO) system. Since the at-
mospheric correlation length r0 is smaller in the B (0.391-0.489 µm) and V (0.505-0.595 µm)
bands compared to the R band, the performance of the AO system will not be as effective. For
this reason, we have designed the ADC for the R, I and J bands. As can be seen in Fig. 1, the
atmospheric dispersion correction in the H and K bands is not critical. The main ADC should
be removed from the telescope when operating in those bands. For the R band, the E-ELT gives
nearly diffraction-limited image of a turbulent layer on M4. Adding the ADC near F1 reduces
the quality of the turbulent layer image on M4, but is still acceptable for the AO system. The
image size of the atmospheric correlation length r0 = 300 mm on M4 is about 18 mm. The
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Fig. 7. The image of an LGS situated at 92 km altitude above the E-ELT.

image spot size is smaller than 1.5 mm, which is only 8% of the image size of r0 on M4. Thus,
this gives sufficient resolution for the deformable mirror M4 to correct atmospheric turbulence.

The AO system requires laser guide stars (LGSs) for wavefront sensing at any point in the
sky, especially when there is no sufficiently bright natural star available near the science object.
LGSs are essential for laser tomography of the atmospheric turbulence [23]. The E-ELT is
an LGS-friendly telescope [24, 25], since the LGS spots are comparable to the airy disk (see
Fig. 7). Adding the ADC to the telescope affects the image quality of LGSs. To restore the
original quality of LGSs, a dedicated monochromatic correctors could be applied in front of the
LGS wavefront sensors.

The spot diagrams of the 2-arcmin full field in the R band for three different Zenith angles
are presented in Fig. 8, which also shows the corresponding orientations of the counter-rotating
lenses L1 and L2.

In the R band, the achromatic ADC does not need any aberration correction by AO system.
The RMS of the spots is smaller than the Airy disk at Zenith angles less than 45 deg. Even
at 55 degrees from Zenith, the spots are still near diffraction limited over the 2-acrmin full
field. As can be seen from the spot positions in Fig. 8, contrarily to the LADC, the proposed
ADC design does not introduce any image displacement in the vertical direction. This has been
achieved by a proper choice of the glasses for L1 and L2. As discussed in Section 3, the prime
wavelength here is the point at which the dispersion curves meet (Fig. 9). As mentioned in
Section 3, there are two methods for achieving a zero deviation condition in an ADC. Because
of the fast focus and the giant size of the aperture in the E-ELT, it is better to use the second
method than introducing a tilt at the external surfaces of the prisms. Tilting powered surfaces to
achieve the zero-deviation condition would result in a noticeable amount of residual aberrations
in the E-ELT.

The ADC has also a good performance in the I and J bands (Fig. 10).In this case, a small
compensation for defocus is needed, which is much less than what is required for an LADC in
the original design of the E-ELT.

Figure 11 shows the centroid motion of an NGS (in milli-arcseconds) as a function of wave-
length (from 0.6 to 1.6 microns) after correction of atmospheric dispersion with a linear ADC
and achromatic ADC operating in the R band. The centroid position is given for an NGS that
is located at the edge of the 2 acrmin full field for a representative Zenith angle of 45 deg. It is
clear that the residual chromatic effect in the achromatic ADC design is 5 times smaller than
that of the linear ADC. To compensate this residual effect one could use a dedicated ADC for
the NGS wavefront sensor. This could be achieved with an Amici prism pair placed near the
pupil in the NGS wavefront sensor.
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Fig. 8. The orientations of the counter-rotating lenses of the ADC for three different Zenith
angles and corresponding spot diagrams over the 2-arcmin full field in the R band.
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Fig. 9. The dispersion curves of N-F2 and S-PHM52 crossing at the prime wavelength,
λ = 0.657μm.

Fig. 10. Spot diagrams for the 2-arcmin full field of view of the E-ELT with the three-lens
ADC in the I band (a) and J band (b).
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E-ELT operating in the R band at 45 deg off Zenith.
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5. The optical design of the achromatic ADC

Table 2 presents the main optical parameters of the achromatic three-lens ADC. The flat sur-
faces have different angles of tilt. This ensures that the contribution of L1 and L2 to the atmo-
spheric dispersion compensation is the same. That is why the counter-rotating lenses operate
with identical angles of rotation (see Fig. 8).

Table 2. The Optical Prescription of the Achromatic Three-Lens ADC
Lens Surface Radius (mm) Thickness (mm) Glass Diameter (mm) Tilt X (deg)

1 2936.233 6.000 S-PHM52 776.816 0
L1 2 infinity 40.000 N-F2 771.984 -2.35841

3 -10563.000 251.760 761.624 0
4 -3050.150 40.000 S-PHM52 662.076 0

L2 5 infinity 40.000 N-F2 655.660 -3.78378
6 2455.459 349.361 642.116 0

L3 7 -2301.700 60.000 F5 608.329 0
8 -1467.920 609.804 0

Now we shall analyze the aberration compensation in the original E-ELT system, the E-
ELT with the ADC, and the ADC alone. Figure 12(a) shows that the intermediate focus of the
telescope is highly aberrated. This is due to the fact that M1 and M2 only partly compensate
spherical aberration and coma at F1. The main task of the telescope is to achieve anastigmatic
correction at the final focus F2, which is possible with three powered aspheric mirrors. In a
perfect focus, re-optimized L1 and L2 could do the job without using L3. However in the
aberrated focus F1, the design of the ADC is more complicated and one needs L3 to achieve
diffraction-limited correction.

In Fig. 12(b) the ADC takes part in the aberration balancing of the telescope. The ADC shows
some positive spherical aberration and negative coma, which affect the outgoing beam. Due to
this, M3 produces more negative spherical aberration and less positive coma in comparison to
the original aberration balancing in the telescope. As a result, the overall image quality in the
telescope is not degraded in the presence of the ADC.

Figure 12(c) specifies the main differences between the LADC and the three-lens ADC. Axial
and lateral color introduced by L1 are corrected by L2, and L3 further removes the residual
aberrations. Thus, the three-lens ADC corrects simultaneously atmospheric dispersion and its
own chromatic aberrations.

6. Optical performance of an achromatic two-lens ADC

As mentioned in Section 5, in a perfect intermediate focus, the additional correction by L3 is
not necessary. Figure 12(c) shows that L3 produces significantly less aberrations than L1 and
L2. This motivates us to investigate optical performance of an achromatic two-lens ADC in the
E-ELT.

After removing L3 and re-optimizing L1 and L2, there will be some noticeable amount of
residual monochromatic aberrations in the final focus F2. To reduce the residual aberrations
and achieve the comparable image quality as with the three-lens ADC, one could change the
conic constants of M1 and M2: from -0.992726 to -0.988459 for M1 and from -2.307544 to
-2.244125 for M2. This corresponds to less than 0.3 mm change in the mirror sag at the edge of
the mirrors. In addition, one needs to add a small amount of defocus (less than what is required
for the LADC).

Figure 13 shows that the two-lens ADC preserves the original image scale in spite of the
modified shape of M1 and M2. The two-lens ADC is showing more intrinsic coma (Fig. 14).
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Fig. 12. Aberration diagrams for: (a) the E-ELT without the ADC, (b) E-ELT with the
three-lens ADC, and (c) the three-lens ADC alone (The scales in the diagrams describing
the total aberrations are different and the tilts of the surfaces are not considered.)
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Fig. 13. The two-lens ADC and its effect on the path of the rays at F1. The dashed lines
correspond to rays reflected from the modified M1 and M2 without seeing the ADC.

Fig. 14. The aberration diagrams for the two-lens ADC.

However, this coma is compensated by changing the conic constants on M1 and M2. Obviously,
removing the ADC from the telescope will require reshaping of M1 and M2 to their original
shape using active optics. Table 3 represents the optical prescription of the two-lens ADC; the
optical diameters are given for 10-arcmin technical field.

Table 3. The Optical Prescription for the Achromatic Two-Lens ADC
Lens Surface Radius (mm) Thickness (mm) Glass Diameter (mm) Tilt X (deg)

1 5348.556 40.000 S-PHM52 779.950 0
L1 2 infinity 40.000 N-F2 778.856 -2.35422

3 -44629.100 266.060 768.432 0
4 infinity 40.000 S-PHM52 687.640 0

L2 5 infinity 40.000 N-F2 685.574 -3.61044
6 4665.763 706.472 0

The optical transmittance (OT) of the E-ELT with the achromatic two-lens ADC in the R, I,
and J bands is presented in Table 4 for Zenith angle Z = 0 deg. For comparison we also give the
OT of the E-ELT using a linear ADC in the R band (see Fig. 3). We assumed that each mirror
surface has reflectance of 0.946, and we did not consider any special coatings for lens surfaces.
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Fig. 15. Optical transmittance of the E-ELT (relative to the telescope transmittance at
Zenith) as a function of field angle at different Zenith angles.

Figure 15 shows the relative normalized optical transmittance (OT ∗) of the telescope at
Zenith angles Z = 30, 45 and 55 deg, across the 2 arcmin full field in the vertical meridian. This
is considered with respect to the optical transmittance of the telescope at Zenith (Z = 0 deg):

OT ∗(Z) =
OT (Z)−OT (0)

OT (0)
×100%, (2)

As can be seen in Fig. 15, the OT of ADCs varies not only across the field, but also with Zenith

Table 4. Optical Transmittance of the E-ELT with the Linear and Achromatic ADC at
Zenith

-0.0167 (deg) -0.0083 (deg) 0 (deg) 0.0083 (deg) 0.0167 (deg)

Linear ADC in R band 0.6940 0.6940 0.6940 0.6940 0.6940
Two-lens ADC in R band 0.6101 0.6102 0.6102 0.6102 0.6101
Two-lens ADC in I band 0.6113 0.6113 0.6113 0.6113 0.6113
Two-lens ADC in J band 0.5970 0.5971 0.5971 0.5971 0.5970

angle. For a given zenith angle the variation of the OT across the field can be calibrated during
flat fielding. However, the OT variation with Zenith angle will alter the flat field by a small
amount in the range of 0.01-0.04 % for a long exposure starting at Z = 30 deg and finishing at
55 deg. For shorter exposures this effect should not present any problems.

7. Conclusion

In spite of the simplicity of LADCs, their chromatic performance in fast foci may not be good
enough for diffraction-limited imaging. Using other kinds of ADCs in fast foci, for example
traditional RADCs, could be difficult. They usually have powered elements with noticeable
amount of aberrations. Employing an LADC in the E-ELT shows unacceptable amount of
chromatic aberrations, especially axial color, which due to the stringent optical constrains in
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the E-ELT is not easily correctable by additional lens correctors. These constrains include the
optical conjugation of M4, fixed beam geometry and minimal vignetting.

To resolve the problem of intrinsic chromatic aberrations we have designed an achromatic
three-lens ADC for the E-ELT. The new ADC is intended for operation in the R, I, and J band
up to 55 deg off Zenith providing near diffraction-limited image quality over 2 arcmin full
filed. In addition to its exceptional optical performance, the ADC preserves the beam geometry,
which keeps the optical configuration of the E-ELT unchanged. The proposed three-lens ADC
has several advantages over an LADC. The main advantage is that the three-lens ADC gives
superior optical performance at the R, I and J bands. The intrinsic aberrations of this ADC are
so low that there is no need for any AO correction through the range of Zenith angles. It is two
times more compact than a typical LADC. The three-lens ADC does not require any translation
along the optical axis and also it does not introduce any vertical displacement of the image.

An LADC exceeds the performance of the three-lens ADC only in terms of the optical
throughput and image quality of LGSs. To improve these two characteristics we have designed
an achromatic two-lens ADC based on the same principle. The LGS image quality in the E-ELT
with a two-lens ADC is comparable to that of an LADC case. The image quality for science
objects observed at the R, I and J bands are about three times better in the E-ELT equipped with
the two-lens ADC. However, such good optical performance is achievable if the conic constant
of the primary and secondary mirror are slightly adjusted by active optics.

In the summary we would like to emphasize that the chromatic problems of using an LADC
in the E-ELT is solved by replacing an LADC with one of the two ADC designs presented
here. They provide diffraction-limited image quality up to 45 deg off Zenith and have several
opto-mechanical advantages over an LADC. The achromatic ADC designs can operate in the
final focus, yet their superior optical performance is more evident in fast foci.
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Geometry-invariant gradient refractive index lens:
analytical ray tracing
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Abstract. A new class of gradient refractive index (GRIN) lens is introduced and analyzed. The interior iso-indicial
contours mimic the external shape of the lens, which leads to an invariant geometry of the GRIN structure. The lens
model employs a conventional surface representation using a coincoid of revolution with a higher-order aspheric
term. This model has a unique feature, namely, it allows analytical paraxial ray tracing. The height and the angle of
an arbitrary incident ray can be found inside the lens in a closed-form expression, which is used to calculate the
main optical characteristics of the lens, including the optical power and third-order monochromatic aberration
coefficients. Moreover, due to strong coupling of the external surface shape to the GRIN structure, the proposed
GRIN lens is well suited for studying accommodation mechanism in the eye. To show the power of the model,
several examples are given emphasizing the usefulness of the analytical solution. The presented geometry-invariant
GRIN lens can be used for modeling and reconstructing the crystalline lens of the human eye and other types of eyes
featuring a GRIN lens. © 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JBO.17.5.055001]

Keywords: gradient index lens; crystalline lens; exact ray tracing; lens paradox.

Paper 11690 received Nov. 25, 2011; revised manuscript received Mar. 22, 2012; accepted for publication Mar. 22, 2012; published
online May 7, 2012.

1 Introduction
Recent advances in new materials facilitate the application of
gradient refractive index (GRIN) lenses in a variety of optical
devices, especially in the development of bio-inspired lenses1

and optical systems. Employing optical elements with a spatially
variable index of refraction is a powerful way to achieve
improved imaging. The best example of such a GRIN lens is
the well-known Luneburg lens,2which is free fromallmonochro-
matic aberrations. The crystalline lens in the human eye is another
example of a GRIN lens. In the present paper we explore a new
mathematical model describing the crystalline GRIN lens. The
gradual variation of the refractive index of the crystalline lens
has been known for a long time and several models have been
developed to account for theGRIN structure.3–7 Advances in ocu-
lar aberration measurements,8 magnetic resonance imaging,9,10

optical tomography,11 optical coherence tomography imaging,12

and X-ray Talbot interferometry13 have enabled researchers to
improve existing eye models. Using this new data, several
research groups have attempted to construct more realistic mod-
els of the GRIN lens. Navarro et al. proposed a GRIN lens model
with concentric iso-indical contours mimicking the external
conic surfaces of the lens.14 The GRIN spatial distribution of
this model follows the experimental age-dependent formula sug-
gested in earlier work.15 For the first time, a GRIN lens model
features a curved equatorial plane, where anterior and posterior
hemispheres meet. Using a different approach, Goncharov and
Dainty introduced a wide-field schematic eye model with a
GRIN lens, which uses a fourth-order polynomial describing
the refractive structure of the lens.16 Similar to the Navarro
model, the external shape of the lens defines its GRIN structure.
By estimating a parabolic path for the rays in the human GRIN

lens17 and using Sands’ third-order aberrations study in inhomo-
geneous lenses,18 this model presents approximated formulas for
the power of the lens and its spherical aberration. Another recent
model proposed byDíaz et al. uses a combination of polynomials
and trigonometric functions for describing the refractive index
distribution.19 The coefficients of the refractive index of the lens
are given as a linear function of age. Bothmodels, Goncharovand
Dainty and Díaz et al., are complete eye models providing age-
dependent equations for the curvatures of the cornea and lens.
Following the Navarro et al. model for the GRIN lens in vitro,14

in a recent work by Castro et al., the power law of the GRIN lens
profile has been modified to account for a possible toricity of the
lens surface.12 The variety of eye models featuring different
GRIN profiles shows the great interest in lens structure and its
effect on optical performance. In spite of the apparent progress
made in this area, there is no simple GRIN lens model providing
exact paraxial equations for the path of the rays inside the GRIN
structure. It would be beneficial to have an analytical way to
calculate the power and the third-order aberrations for the lens.
Analytical solutions can help researchers gain a better under-
standing of the GRIN structure role in image formation and sim-
plify the optical analysis of the lens. In addition, if such a model
could also provide a more realistic (continuous) geometry of the
GRIN lens’s iso-indicial contours, it would become a valuable
tool for reconstructing the human eye and modeling the accom-
modationmechanism. In the following sectionwe introduce such
a GRIN lens model and outline its main geometrical properties.

2 Parametric Model of the GRIN Lens

2.1 Refractive Index Equation Based on Experimental
Data

There are many experimental studies focusing on the distribu-
tion of refractive index in the crystalline lens. In 1969 NakaoAddress all correspondence to: Mehdi Bahrami, National University of Ireland,

Galway, School of Physics, Applied Optics Group, University Road, Galway,
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et al. suggested a parabolic distribution for the refractive index
in all directions:20

nðrÞ ¼ c0 þ c1r2; (1)

where c0 is the refractive index at the center of the lens, c1 is the
difference between the central index and the surface index, and r
is a normalized distance from the lens center defining the geom-
etry of the lens. Following this approach, Smith et al.6 intro-
duced more terms in Eq. (1) to get a better fit to experimental
data.21 Later, Smith et al.15 proposed power-law to describe the
distribution of refractive index along the optical axis as:

nðrÞ ¼ c0 þ c1r2p; (2)

where the parameter p in the exponent is used to account for age-
related changes in the GRIN lens. Equation (2) was used by
Navarro et al. as a starting point for modeling GRIN lenses
in vitro.14 For clarity we rewrite Eq. (2) as

nðζÞ ¼ nc þ ðns − ncÞðζ2Þp; (3)

where ζ is the normalized distance from the center of the lens, nc
and ns are the refractive indices at the center and at the surface of
the GRIN lens, respectively. Here, ζ changes between −1 to þ1
to cover both anterior and posterior hemispheres of the lens; also
we avoid introducing complex numbers by using the form ðζ2Þp.

2.2 Geometry of Iso-Indicial Contours

From the optical design point of view, it is convenient to
describe the external surfaces of the GRIN lens as a conicoid
of revolution:

z ¼ cρ2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð1þ kÞc2ρ2

p ; (4)

where c and k are respectively the curvature and the conic con-
stant of the surface, and ρ is the distance from the optical z axis.
There are other possible mathematical representations for the
geometry GRIN lens, for example hyperbolic cosines22 or
Fourier series of cosines.23 However these alternative represen-
tations do not have a straight forward connection with the radius
of curvature and conic constant of the lens surface. On the other
hand, using Eq. (4) greatly simplifies the parameterization of the
surface. Following the idea of constructing the lens with conic
surfaces on both sides,14 one might get discontinuity of iso-indi-
cial contours in equatorial interface joining two hemispheres. To
avoid this problem, one could add an additional term on the right
side of Eq. (4). Before we derive the continuity condition for iso-
indicial contours at the equatorial interface, it is more convenient
to rewrite Eq. (4) as a function of surface sag:

ρ2 ¼ 2rz − ð1þ kÞz2; (5)

where r is the radius of curvature of the surface. Now introdu-
cing an additional term on the right side will help achieve the
continuity condition. The surface equation becomes as:

ρ2 ¼ 2rz − ð1þ kÞz2 þ bz3; (6)

where b is a constant, which is used to satisfy the continuity
condition by making the first derivative dρ∕dz ¼ 0 at the
equatorial interface connecting the posterior and anterior

hemispheres. Based on this approach, Eq. (7) represents our
new description for the surface of iso-indical contours:

ρ2a ¼ 2raðta þ zÞ − ð1þ kaÞðta þ zÞ2 þ baðta þ zÞ3;
− ta ≤ z < 0 (7a)

ρ2p ¼ 2rpðtp − zÞ − ð1þ kpÞðtp − zÞ2 þ bpðtp − zÞ3;
0 ≤ z ≤ tp (7b)

where subscripts a and p respectively stand for anterior and pos-
terior parts of the lens, and t is the intercept of the iso-indicial
contours measured from the origin O along the optical axis.
Figure 1 depicts the continuous contours described by
Eq. (7). With these recent techniques one could determine
the intercept and the radius of curvature of the external surface,
T and R, respectively. Iso-indical contours plots obtained by
Jones et al. 9 show that the center of curvature of the inner con-
tours gradually shifts toward the center O as a result of their
steepening. This effect is more obvious in younger eyes,
where central contours are still distinguishable. The simplest
way to account for such a gradual change in curvature with
depth is to define r as a linear function of the normalized dis-
tance from the center, r ¼ Rζ. It is worth noting that for both
anterior and posterior hemispheres r, R, t, and T are numerically
positive quantities; see Fig. 1.

By using Eq. (3), now we shall derive the continuity condi-
tion and find the corresponding refractive index for each iso-
indicial contour. To satisfy the continuity condition we have
to fulfill two constraints for an iso-indicial contour: zero deri-
vative, dρ∕dz ¼ 0, and equal heights, ρaðzcÞ ¼ ρpðzcÞ, at the
joining point zc, as shown in Fig. 1. Using the first constraint,
we determine ba and bp. As a result, for both hemispheres of the
lens we have:

ra

ρ

z

RpRa rp

t a tp Tp T a

O
zc

-

-

-

-

Fig. 1 Iso-indicial shells based on Eq. (7). Solid lines indicate the ante-
rior part of the lens and the dashed lines specify the posterior part.
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ba ¼
2

3

ð1þ kaÞðta þ zcÞ − ra
ðta þ zcÞ2

; (8a)

bp ¼
2

3

ð1þ kpÞðtp − zcÞ − rp
ðtp − zcÞ2

: (8b)

Using the second constraint we find the coordinate of the joining
point as a function of the lens parameters ra, rp, ka, kp, ta, and tp:

zc ¼
2η

−μ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − 4νη

p ; (9)

where

η¼1

3
½−t2að1þkaÞþ4taraþtpð−6rpþtpð1þkpÞð3þ2rpÞÞ�;

μ¼2

3
½−tað1þkaÞþ2raþ3rp−tpð1þkpÞð3−tpð1þkpÞþrpÞ�;

and ν¼1

3
½2−kaþ3kp−2tpð1þkpÞ2�.

In the following sections we shall describe the optical properties
of this GRIN lens model.

3 Thin Lens Approximation
The optical characteristics of a GRIN lens, such as the optical
power and third-order aberrations, are usually not available in
analytical form. However, in some cases (e.g., Ref. 24) and
for our GRIN lens model it is possible to derive analytical
expressions, which are given in Secs. 6 and 7. Although in
Sec. 5 we discuss exact paraxial equations, it would be useful
to start with a simplified power equation. The optical power of
the GRIN lens can be described as the sum of the contributions
from three components: the anterior surface of the lens, Fas; the
GRIN structure of the lens, FGRIN; and the posterior surface of
the lens, Fps. The optical power for the anterior and the posterior
surfaces are given by a conventional equation25

Fs ¼
n2 − n1

R
; (10)

where n1 and n2 are respectively the refractive indices before
and after the surface and R is the radius of curvature. To derive
the expression for the optical power arising from the GRIN
structure of the lens, we consider the GRIN lens structure as
an infinite sum of thin homogeneous shells. Now by adding
the power of all shells and considering that their thickness is
negligibly small, we can obtain an approximate expression
for the lens power. To do this, we rewrite Eq. (10) using the
definition of derivative in a continuous medium

δFGRIN ¼ n 0ðζÞδζ
R

: (11)

Using Eq. (3) and taking the integral we find the optical power
of the GRIN structure.

FGRIN ¼
Z

0

−1

2pðns − ncÞðζ2Þp−1
2

−Raζ
dζ

−
Z

1

0

2pðns − ncÞðζ2Þp−1
2

Rpζ
dζ: (12)

Experimental data suggest that for human eyes p is always larger
than 2 (e.g., Ref. 14) and therefore Eq. (12) can be simplified to

FGRIN ¼ 2p
2p − 1

ðnc − nsÞ
�
1

Ra
þ 1

Rp

�
: (13)

Finally, the total power of the lens is

Fthin ¼
ns − naqu

Ra
þ 2p

2p − 1
ðnc − nsÞ

�
1

Ra
þ 1

Rp

�
þ nvit − ns

−Rp
;

(14)

where naqu and nvit are respectively the refractive indices of the
media before and after the lens.

4 Optical Path Length
One other useful characteristic of an optical element is its optical
path length (OPL), defined as the product of the geometric
length of the light path and the refractive index of the medium.25

In a GRIN lens the refractive index gradually changes, then the
OPL can be calculated as the sum of the small propagations in
each infinitely thin iso-indicial shell. Since the paraxial thick-
ness of these thin shells is simply Tadζ and Tpdζ for anterior
and posterior hemispheres, respectively, using Eq. (3) we can
define the paraxial OPL of the presented GRIN model as

OPL ¼
Z

0

−1
ðnc þ ðns − ncÞðζ2ÞpÞTadζ

þ
Z

1

0

ðnc þ ðns − ncÞðζ2ÞpÞTpdζ; (15)

which results

OPL ¼ ðTa þ TpÞ
2ncpþ ns
2pþ 1

: (16)

It is worth mentioning that the geometry of the iso-indicial
contours is not contributing to the paraxial OPL of the lens, so
Eq. (16) is applicable for any GRIN lens employing the paraxial
refractive index distribution in Eq. (3) (e.g., the GRIN lens
model proposed by Navarro et al.14).

5 Analytical Paraxial Ray Tracing
It is notoriously difficult to perform exact ray tracing through a
GRIN lens, which is done numerically using optical design soft-
ware. Even exact paraxial ray tracing equations are not available
for GRIN lenses. One could also use an approximate method,
where the ray path within the GRIN lens is assumed to be para-
bolic.17 However, it would be desirable to have an exact method
for paraxial ray tracing so that all optical characteristics of the
lens can be found in closed form. Due to the linear dependence
of the iso-indicial contours radius r on the normalized axial dis-
tance, ζ ¼ z∕T , we are able to derive a closed-form solution for
paraxial ray tracing in the geometry-invariant GRIN lens. Para-
xial ray tracing is based on two main equations.25 According to
the first one we have

n2u2 ¼ n1u1 −
y1
R1

ðn2 − n1Þ; (17)

where n1 and n2 are respectively the refractive indices before
and after the interface surface, u1 and u2 are the angles of
the incident and refracted rays, y1 is the height of the ray at
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the surface, and R1 is the radius of the surface. For the next sur-
face located at the axial distance d2 from the first one, the height
of the incident ray, y2, is obtained by

y2 ¼ y1 þ d2u2: (18)

Following the same approach used to derive Eq. (11), we rewrite
the axial thickness of the infinitely thin shells as d2 ¼ δz, then
Eq. (18) becomes

uðzÞ ¼ y 0ðzÞ. (19)

Using Eq. (3) and substituting the definition of the derivative
from Eq. (19) into Eq. (17) results in

n

�
zþδz
T

�
yðzþ2δzÞ−yðzþδzÞ

δz

¼ n

�
z
T

�
yðzþδzÞ−yðzÞ

δz
þ yðzÞ
Rðz∕TÞ

�
n

�
zþδz
T

�
−n

�
z
T

��
:

(20)

Finally considering u and y as continuous functions of z, we
expand Eq. (20) around the origin for δz and keep only the
first order terms, which gives us

yðzÞn 0ðz∕TÞ
Rz

−
n 0ðz∕TÞy 0ðzÞ

T
− nðz∕TÞy 0 0ðzÞ ¼ 0: (21)

Solving Eq. (21) for the anterior and posterior hemispheres
(where T corresponds to Ta and Tp, respectively) leads to a gen-
eral ray equation:

yðzÞ ¼

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

c12F1

�
−1þ 2p − α

4p
;
−1þ 2pþ α

4p
; 1 −

1

2p
;
nc − ns
nc

�−z
Ta

�
2p
�

þ z
c2
Ta

2F1

�
1þ 2p − α

4p
;
1þ 2pþ α

4p
; 1þ 1

2p
;
nc − ns
nc

�−z
Ta

�
2p
�

−Ta ≤ z < 0

c12F1

�
−1þ 2p − β

4p
;
−1þ 2pþ β

4p
; 1 −

1

2p
;
nc − ns
nc

� z
Tp

�
2p
�

þ z
c2
Ta

2F1

�
1þ 2p − β

4p
;
1þ 2pþ β

4p
; 1þ 1

2p
;
nc − ns
nc

� z
Tp

�
2p
�

0 ≤ z ≤ Tp;

(22)

where 2F1 is Gaussian (ordinary) hypergeometric function
and

α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8Tap∕Ra þ ð1 − 2pÞ2

q

β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8Tpp∕Rp þ ð1 − 2pÞ2

q

c1 ¼ −
ℱ2Tau0 þ y0ðℱ5 þℱ4γ1Þ
ℱ2ℱ3γ2 −ℱ1ðℱ5 þℱ4γ1Þ

c2 ¼ −
y0
ℱ2

þℱ1

ℱ2

c1;

where u0 and y0 are respectively the angle and the height of the
incident ray after refraction by the anterior surface of the lens
and the expressions for ℱi and γj are given in the appendix.
Using Eqs. (19) and (22), the angle of the ray can be found as

uðzÞ ¼

8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

c1
Ta

γ2
�−z
Ta

�
2p−1

2F1

�
−1þ 6pþ α

4p
;
−1þ 6p − α

4p
; 2 −

1

2p
;
nc − ns
nc

�−z
Ta

�
2p
�

þ c2
Ta

γ1
�−z
Ta

�
2p

2F1

�
1þ 6p − α

4p
;
1þ 6pþ α

4p
; 2þ 1

2p
;
nc − ns
nc

�−z
Ta

�
2p
�

−Ta ≤ z < 0

þ c2
Ta

2F1

�
1þ 2p − α

4p
;
1þ 2pþ α

4p
; 1þ 1

2p
;
nc − ns
nc

�−z
Ta

�
2p
�

c1
Tp

γ4
� z
Tp

�
2p−1

2F1

�
−1þ 6pþ β

4p
;
−1þ 6p − β

4p
; 2 −

1

2p
;
nc − ns
nc

� z
Tp

�
2p
�

þ c2
Ta

γ3
� z
Tp

�
2p

2F1

�
1þ 6p − β

4p
;
1þ 6pþ β

4p
; 2þ 1

2p
;
nc − ns
nc

� z
Tp

�
2p
�

0 ≤ z ≤ Tp:

þ c2
Ta

2F1

�
1þ 2p − β

4p
;
1þ 2pþ β

4p
; 1þ 1

2p
;
nc − ns
nc

� z
Tp

�
2p
�

(23)
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Both the height yðzÞ and the angle uðzÞ of the ray are necessary
to describe the optical properties of the GRIN lens, which is the
main goal of Secs. 6 and 7.

It is worth mentioning that the tilt or decenter of the lens can
be seen as a change in the angle and the height of the incident
ray, respectively, and Eqs. (22) and (23) are still applicable.

6 Analytical Expression for Optical Power
In this section we present an analytical expression for the
optical power of the GRIN lens derived with the help of
Eqs. (22) and (23). First we consider the power of a homo-
geneous lens:25

FL ¼
ðn2 − n1Þ

R1

−
ðn2 − n3Þ

R2

þ d
ðn2 − n3Þðn2 − n1Þ

n2R1R2

; (24)

where n1, n2, and n3 are respectively the refractive indices of
the medium before the lens, within the lens, and the medium
after the lens; d is the thickness of the lens, and R1 and R2 are
respectively the radius of curvatures for the anterior and pos-
terior surfaces. Equation (24) is derived from Eqs. (17) and
(18). Using a similar approach, Eqs. (22) and (23) will
give the optical power of the GRIN lens

F ¼ Aa
ðns − naquÞ

Ra
þ AGRIN − Ap

ðns − nvitÞ
−Rp

þ Ad
ðns − nvitÞðns − naquÞ

−nsRaRp
; (25)

where Aa, AGRIN, Ap, and Ad are constants associated with the
GRIN structure of the lens, the expressions of which are given
in Appendix. For a simple lens, where ns ¼ nc, it can be
shown that Aa ¼ 1, AGRIN ¼ 0, Ap ¼ 1, and Ad ¼ Ta þ Tp,
which reduces Eq. (25) to Eq. (24). On the other hand, by
assuming ta and tp are small enough to be ignored, we get
Aa ¼ 1, AGRIN ¼ FGRIN, Ap ¼ 1, and Ad ¼ 0, which simplifies
Eq. (25) to Eq. (14).

Using Eq. (25), we can find the focal length, f , and the back
focal length of the lens, f back as

f ¼ nvit
F

; (26)

and

f back ¼ f Bf ; (27)

where Bf is defined in the Appendix.
We shall stress that the optical power of the lens is not

affected by its tilt or decenter and remains one of the fundamen-
tal characteristics of the lens.

7 Third-Order Aberrations
In general, the contribution of a GRIN lens to Seidel aberrations
can be divided in two parts. The first part is the surface contri-
bution of the interface between the homogeneous medium and
inhomogeneous (GRIN) medium. The second part is the transfer
contribution originating inside the GRIN media. For a GRIN
lens with iso-indicial contours being coincident with the
external surfaces, the surface contribution can be calculated
as a conventional contribution from an interface between homo-
geneous media. Therefore we shall start with a single surface

contribution to the primary third-order monochromatic aber-
rations. The coefficient of third-order spherical aberration is
given by26

SI ¼ −y
��

u2 − u1
1∕n2 − 1∕n1

�
2
�
u2
n2

−
u1
n1

�
þ k

ðn2u2 − n1u1Þ3
ðn2 − n1Þ2

�
;

(28)

where y is the height of the marginal ray at the surface, u1 and u2
are respectively the incident and refracted rays angles relative to
the optical axis, n1 and n2 are respectively the refractive indices
before and after the surface, and k is the conic constant of the
surface. Similar to our derivation of Eq. (20), from Eq. (28) we
find the contribution of an infinitely thin layer within the GRIN
structure as

δSI ¼ −yðzÞ
�
Tn2ð zTÞy 0 02ðzÞ½−n 0ð zTÞy 0ðzÞ þ Tnð zTÞy 0 0ðzÞ�

n 02ð zTÞ

þk
½n 0ð zTÞy 0ðzÞ þ Tnð zTÞy 0 0ðzÞ�3

Tn 02ð zTÞ
	
δz; (29)

then by considering the contribution of the anterior and posterior
surfaces and summing up all thin layer contributions of the
GRIN structure we have
X

SI ¼− y0

��
u0 − ua

1∕ns − 1∕naqu

�
2
�
u0
ns

−
ua
naqu

�

þ ka
ðnsu0 − naquuaÞ3
ðns − naquÞ2

�

þ
Z

Tp

−Ta

dSI − yðTpÞ
��

up − uðTpÞ
1∕nvit − 1∕ns

�
2
�
up
nvit

−
uðTpÞ
ns

�

þ kp
½nvitup − nsuðTpÞ�3

ðnvit − nsÞ2
	
; (30)

where ua is the marginal ray angle at the anterior surface and
uðTpÞ and up are the angles of the marginal ray immediately
before and after the posterior surface, respectively. The latter
can be derived using Eq. (17)

up ¼
1

nvit

�
nsuðTpÞ þ

yðTpÞ
Rp

ðnvit − nsÞ
�
: (31)

In addition to the marginal ray we also need to trace the
chief (principal) ray when calculating coefficients for off-axis
aberrations. Using the chief and the marginal rays, the contribu-
tion of a single conic surface to the aberration coefficient of
third-order coma could be written as26

SII ¼ −y
��

u2 − u1
1∕n2 − 1∕n1

�
2
�
u2
n2

−
u1
n1

��
uc2 − uc1
u2 − u1

�

þ kðn2uc2 − n1uc1Þ
ðn2u2 − n1u1Þ2
ðn2 − n1Þ2

�
; (32)

where uc1 and uc2 are respectively the angle of the incident and
refracted chief ray. Note that the angles uc1 and uc2 are measured
with respect to the optical axis.

Similar to our derivation of Eq. (29), we find the contribution
to aberration coma from an infinitely thin layer of the GRIN
structure:
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δSII ¼ −yðzÞ
�
y 0 0c ðzÞ

Tnð zTÞ2y 0 0ðzÞ½−n 0ð zTÞy 0ðzÞ þ Tnð zTÞy 0 0ðzÞ�
n 0ð zTÞ2

þ k

�
n 0
�
z
T

�
y 0cðzÞ þ Tn

�
z
T

�
y 0 0c ðzÞ

�

×
½n 0ð zTÞy 0ðzÞ þ Tnð zTÞy 0 0ðzÞ2�

Tn 0ð zTÞ2
	
δz; (33)

where yc is the chief ray height defined by the general ray equa-
tion, Eq. (22), for which the input height at the anterior surface is
y0 ¼ 0, since in the human eye the aperture stop (iris) approxi-
mately coincides with the front surface of the lens, and u0 is the
chief ray angle after the refraction from the anterior surface,
u0 ¼ uc0. These initial conditions are reflected in coefficients
c1 and c2. Now using Eq. (23) we could also find the chief
angle uc within the GRIN lens. Finally by tracing both marginal
and chief rays we get the total third-order coma coefficient of the
GRIN lens:

X
SII ¼ −y0

��
u0 − ua

1∕ns − 1∕naqu

�
2
�
u0
ns

−
ua
naqu

��
uc0 − uca
u0 − ua

�

þ kaðnsuc0 − naquucaÞ
ðnsu0 − naquuaÞ2
ðns − naquÞ2

�

þ
Z

Tp

−Ta

dSII − yðTpÞ
��

up − uðTpÞ
1∕nvit − 1∕ns

�
2

×
�
up
nvit

−
uðTpÞ
ns

��
ucp − ucðTpÞ

ua − ua

�

þ kp½nvitucp − nsucðTpÞ�
½nvitup − nsuðTpÞ�2

ðnvit − nsÞ2
	
; (34)

where ucp is the outgoing chief ray angle at the posterior surface,
which could be calculated as up in Eq. (31), and uca is the angle
of the incident chief ray on the anterior lens surface.

Following the same concept we can calculate aberration
coefficients for third-order astigmatism, where the contribution
of a single surface has the following form

SIII ¼ −y
��

u2 − u1
1∕n2 − 1∕n1

�
2
�
u2
n2

−
u1
n1

��
uc2 − uc1
u2 − u1

�
2

þ kðn2uc2 − n1uc1Þ2
ðn2u2 − n1u1Þ
ðn2 − n1Þ2

�
(35)

and the contribution of an infinitely thin layer is

δSIII¼−yðzÞ
�
y 00c ðzÞ2

Tnð zTÞ2y 00ðzÞ½−n 0ð zTÞy 0ðzÞþTnð zTÞy 0 0ðzÞ�
n 0ð zTÞ2

þk½n 0
�
z
T

�
y 0cðzÞþTn

�
z
T

�
y 0 0c ðzÞ�2

×
n 0ð zTÞy 0ðzÞþTnð zTÞy 00ðzÞ

Tn 0ð zTÞ2
	
δz; (36)

and the total third-order astigmatism coefficient of the GRIN
lens is

X
SIII¼−y0

��
u0−ua

1∕ns−1∕naqu

�
2
�
u0
ns
−

ua
naqu

��
uc0−uca
u0−ua

�
2

þkaðnsuc0−naquucaÞ2
ðnsu0−naquuaÞ
ðns−naquÞ2

�

þ
Z

Tp

−Ta

dSIII−yðTpÞ
��

up−uðTpÞ
1∕nvit−1∕ns

�
2
�
up
nvit

−
uðTpÞ
ns

�

×
�
ucp−ucðTpÞ

ua−ua

�
2

þkp½nvitucp−nsucðTpÞ�2

×
½nvitup−nsuðTpÞ�

ðnvit−nsÞ2
	
. (37)

In a similar way, the field curvature of a single surface can be
achievable as

SIV ¼ −n1ðuc1y − u1ycÞ2
n2u2 − n1u1

yn2
; (38)

where yc is the height of the chief ray at the surface. Then for an
infinitely thin layer we have

δSIV¼−
½−ycðzÞy0ðzÞþyðzÞy0cðzÞ�2½n0ð zTÞy0ðzÞþTnð zTÞy00ðzÞ�

TyðzÞ δz;

(39)

and finally for the GRIN lens we haveX
SIV ¼ −naquy0u2ca

nsu0 − naquua
ns

þ
Z

Tp

−Ta

dSIV − ns½ucðTpÞyðTpÞ

− uðTpÞycðTpÞ�2
nvitup − nsuðTpÞ

yðTpÞnvit
: (40)

Despite the advantages of the Seidel theory, the third-order
aberration calculations are limited to centered, rotationally sym-
metric systems, and do not support tilted or decentered elements,
such as the crystalline lens in the eye. However, deriving the
Seidel aberration coefficients of the GRIN lens in closed form
is useful for understanding the nature of aberration compensa-
tion inside the GRIN structure. In addition to this, in vitro stu-
dies of the crystalline lens and its reconstruction based on the
experimentally measured lenticular aberrations can benefit from
the Seidel aberration representation.

It is worth mentioning that the capability of the geometry-
invariant GRIN lens model is not limited to paraxial ray tracing
and third-order aberration theory. In future work numerical ray
tracing will be developed to calculate Zernike coefficients of the
GRIN model lens, which can take the tilt and decenter of the
lens into account.

8 Numerical Examples
We present an example of the eye model with the corneal and
lenticular shape corresponding to a 40-year-old eye16 with
GRIN profile exponent p ¼ 3.13 found in.14 Figure 2 shows
the main optical characteristics of the GRIN lens including
the optical power, focal length, back focal length, as well as
Seidel aberration coefficients; the lens geometry and GRIN
structure parameters are given on the left side. Figure 2 actually
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depicts the user interface for the open-source code written by the
authors, available at.27 This code incorporates all mathematical
expressions presented in this paper.

The optical power of the lens shown in Fig. 2 is based on the
thin lens approximation in Eq. (14), and the exact power formula
in Eq. (25). It is easy to see that the difference in optical power
calculation is less than 1.4%, which indicates that Eq. (14) is
useful especially if one wants to determine the exponent p
for a given optical power. This can be done by solving
Eq. (14) for p, which leads to

p ¼ Ranvit þ Rpðnaqu þ FRaÞ − nsðRa þ RpÞ
2½Ranvit þ Rpðnaqu þ FRaÞ − ncðRa þ RpÞ�

. (41)

Knowing the external shape, measuring the optical power of the
lens and the surface refractive index ns, and assuming nc is based
on extensive experimental data, one could determine the GRIN
profile exponent p for lenses in vitro. This approach provides a
practical way to approximate the GRIN profile, which defines
all optical characteristics of the lens.

The optical power of the crystalline lens and its age-related
changes have been a controversial topic for decades. Many stu-
dies (e.g., Ref. 28) show that for an unaccommodated lens, its
external surfaces become more curved and therefore more
powerful with age. On the other hand, measurements of the
total optical power of the eye suggest that the power does
not change much with age.29 This lens paradox might be
explained, at least in part, by adjusting the center and surface
refractive indices of the GRIN structure (nc and ns), the axial
position of the peak in the refractive index profile (Ta or Tp),
the lens axial thickness (Ta þ Tp), and also the exponent

p.16,19,30–32 The latter parameter is the most challenging one
to analyze, since calculating the contribution of the GRIN
structure to the lens power has not been derived in an easily
accessible form.

Pierscionek32 suggested that a slight change in the slope of
refractive index in the cortex might compensate the increase in
lens curvature and prevent the eye from becoming myopic with
age. Using Eq. (14) we can calculate the optical power change in
the lens due to an age-related increase in the exponent p.
Following a recent study14 we select three age groups (20-,
40-, and 60-year-olds) with corresponding empirical value for
p, see Table 1. To study the effect of p independently from
other variables, such radii and central thickness, all three age
groups have identical lens geometry. In Fig. 2 we can see that
1 D change in the optical power can be attributed to GRIN
profile steepening alone.

It can be seen from Eq. (25) that one can easily adjust other
parameters of the lens affecting the lens paradox and take into
account their effect due to aging on the lens power. To adjust
these parameters in a meaningful way, more experimental

Fig. 2 Optical characteristics of a typical 40-year-old eye (each contour indicates 0.005 change in the refractive index). The image depicts the user
interface for the open-source code available from the authors.27

Table 1 Three age groups (20-, 40-, and 60-year old) with corre-
sponding empirical value for p and corresponding powers.

Age (year) p Thin lens power (D) Exact power (D)

20 2.87 20.074 19.815

40 3.13 19.884 19.629

60 4.28 19.359 19.115
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data on the age-related changes in the GRIN structure is
required.

The model presented here is not only useful for human eyes,
it can also be beneficial for animal eye studies. For example,
Fig. 3 shows the octopus eye model based on the experimental
data provided by Jagger et al.,33 where a strictly symmetrical
lens was modeled. The original experimental data shows
some departure from symmetry, which is taken into account
in our model, presented in Fig. 3.

9 Conclusion
The characterization of GRIN lenses by ray-tracing is notor-
iously difficult and usually requires numerical methods, while
only a handful of analytical solutions exist (e.g., Lundberg lens).

In light of this, we introduce and analyze a new class of
GRIN lens, which has the following properties. The refractive
index distribution is based on the power law defined by the
exponent p, which can be adjusted in a continuous manner.
The mathematical description of the external surfaces is a stan-
dard conicoid of revolution with a higher-order term. Iso-inditial
contours feature smooth connection between the anterior and
posterior hemispheres. Analytical paraxial ray tracing is possi-
ble, which provides expressions for all optical characteristics of
the lens and its monochromatic aberrations. The description for
aberration coefficients of a thin homogeneous layer is useful for
a general GRIN lens description.

A few examples are presented to illustrate the advantage of
this GRIN mode with special emphasis given to the thin lens
approximation formula. The latter is very accurate, and can
be used to analyze the role of exponent p in lens paradox.
One could also determine the exponent p for a given optical
power measured experimentally in vitro.

The interior iso-indicial contours mimic the external shape of
the lens, which leads to invariant geometry of the GRIN struc-
ture. Due to this strong coupling between the external shape of
the lens and its GRIN structure, one could study the changes in
aberrations with accommodation. A dispersion model and chro-
matic aberrations of the lens will be derived in future work.

The new GRIN lens model can be used for other types of
eyes, even for such an extreme case as the octopus eye. A
user-friendly software incorporating all mathematical expres-
sions is available from the authors.27

Appendix: Coefficient Definitions

ℱ1 ¼ 2F1

�
−1þ 2p − α

4p
;
−1þ 2pþ α

4p
; 1 −

1

2p
;
nc − ns
nc

�
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�
1þ 2p − α

4p
;
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4p
; 1þ 1

2p
;
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�
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;
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4p
; 2 −

1
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;
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;
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�
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�
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; 2þ 1

2p
;
nc − ns
nc

�
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�
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;
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;
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;
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4p
; 1 −

1
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;
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�

γ1 ¼
nc − ns
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ð1þ 2pÞ2 − α2
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γ2 ¼
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8p − 4

γ3 ¼
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AGRIN ¼ ns½γ4Taðγ1ℱ4 þℱ5Þℱ6 þ γ2Tpℱ3ðγ3ℱ7 þℱ8Þ�
TaTp½γ2ℱ2ℱ3 −ℱ1ðγ1ℱ4 þℱ5Þ�

Aa ¼
γ4Taℱ2ℱ6 þ Tpℱ1ðγ3ℱ7 þℱ8Þ
Tp½ℱ1ðγ1ℱ4 þℱ5Þ − γ2ℱ2ℱ3�

Ap ¼
γ2Tpℱ3ℱ8 þ Taðγ1ℱ4 þℱ5Þℱ9

Ta½ℱ1ðγ1ℱ4 þℱ5Þ − γ2ℱ2ℱ3�
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Fig. 3 The octopus eye model (each iso-indicial contour at 0.008 step
in the refractive index).
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Ad ¼
Tpℱ1ℱ8 þ Taℱ2ℱ9

ðℱ1γ1ℱ4 þℱ5Þ − γ2ℱ2ℱ3

Bf ¼ −
Taℱ10ðγ1ℱ4 þℱ5Þ þ γ2Tpℱ3ℱ8

Taðγ2ℱ2ℱ3 − γ1ℱ1ℱ4 −ℱ1ℱ5Þ

þ ns − naqu
nsRa

Taℱ10ℱ2 þ Tpℱ1ℱ8

γ2ℱ2ℱ3 − γ1ℱ1ℱ4 −ℱ1ℱ5
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Geometry-invariant GRIN lens:
iso-dispersive contours
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Abstract: A dispersive model of a gradient refractive index (GRIN) lens
is introduced based on the idea of iso-dispersive contours. These contours
have constant Abbe number and their shape is related to iso-indicial
contours of the monochromatic geometry-invariant GRIN lens (GIGL)
model. The chromatic GIGL model predicts the dispersion throughout
the GRIN structure by using the dispersion curves of the surface and the
center of the lens. The analytical approach for paraxial ray tracing and
the monochromatic aberration calculations used in the GIGL model is
employed here to derive closed-form expressions for the axial and lateral
color coefficients of the lens. Expressions for equivalent refractive index
and the equivalent Abbe number of the homogeneous equivalent lens are
also presented and new aspects of the chromatic aberration change due to
aging are discussed. The key derivations and explanations of the GRIN lens
optical properties are accompanied with numerical examples for the human
and animal eye GRIN lenses.
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1. Introduction

The experimental studies have shown a spatial change in chromatic dispersion of the gradient
index (GRIN) eye lens. In spite of a noticeable variety in human GRIN lens models, modeling
the dispersion of the GRIN lens has been considered only in two studies, [1] and [2]. However,
the existing chromatic models of the GRIN lens do not have enough flexibility to be consistent
with the experimental data that shows different amount of dispersion at the surface and the
center of the GRIN lens. To understand the origin of chromatic effects in the GRIN lens and
the corresponding aberrations arising from the spatial change of dispersion within the lens,
one should consider the chromatic contribution of different layers in the GRIN structure. For
doing this, we need at least to develop a paraxial ray tracing method (preferably analytical) for
predicting the ray path within GRIN structure at different wavelengths. The paraxial ray-tracing
will be the basis for calculating chromatic aberration of the GRIN structure, provided that the
dispersion model for the surface and the center of the GRIN lens is given by experimental
measurements.

In this paper we employ the geometry-invariant GRIN lens (GIGL) monochromatic model
[3] and introduce wavelength dependence of the refractive index. This allows us to obtain a
chromatic model matching experimental data on dispersion of the GRIN lens as well as to
retain all properties of the GIGL mode including the analytical description for paraxial ray-
tracing. Figure 1 depicts the GIGL geometry and its interior geometry-invariant iso-indicial
contours, where R is the external radius of curvature and k is the external conic constant of
the lens surfaces and subscripts ‘a’ and ‘p’ designate the anterior and the posterior surfaces,
respectively, so that Ta and Tp are the axial thicknesses of the anterior and the posterior hemi-
spheres, respectively. The sign convention used here is such that the radii and thicknesses are
considered to be always positive as in our previous work [3]; however to be consistent with the
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Fig. 1. The invariant-geometry GRIN lens and its interior iso-indicial contours [3].

optical design sign convention, we introduce ‘−’ in front of Ta and Rp.

2. Dispersion model

2.1. Characteristics of dispersive GRIN lens

In the geometry-invariant GRIN lens model, the refractive index distribution is based on the
power law profile, which was originally proposed by Pierscionek [4] and later supported by
several studies [5–9]. In the GIGL model [3], this GRIN profile is presented as:

n(ζ ) = nc +(ns −nc)(ζ 2)p; (1)

where the parameter p in the exponent is employed to account for age-related dependence of
the GRIN lens, ζ is the normalized distance from the center of the lens, and nc and ns are the
refractive indices at the center and at the surface of the GRIN lens, respectively. Here, ζ varies
between −1 to +1 to cover both anterior and posterior hemispheres of the lens. Note that the
exponent p is not limited to integer numbers, so to avoid complex numbers we use the form
(ζ 2)p. In monochromatic aberration studies, nc and ns are measured at a certain wavelength
(typically at λm = 555 nm) for which the eye shows its highest sensitivity. It is well known that
the GRIN lens is a dispersive medium with different dispersion characteristics at the center and
at the surface [10,11]. In other words, the GRIN refractive index profile is different at different
wavelengths along the Z axis. We assume that these axial GRIN distribution profiles follow
the power law with their own wavelength specific nc(λ ), ns(λ ) and p(λ ). In view of the well-
known concept of iso-indicial contours in the GRIN lens, we propose the idea of iso-dispersive
contours. We consider the lens structure consisting of very thin shells whit a constant chromatic
dispersion (constant Abbe number). An iso-dispersive contour is the interface between the two
adjacent shells.
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There are several papers on suggesting theoretically sound equations for chromatic disper-
sion. Atchison et al. [12] have studied and reviewed experimental and theoretical data on ocular
media dispersion and found the Cauchy’s equation as the best fit:

n(λ ) = A+
B
λ 2 +

C
λ 4 +

D
λ 6 + . . . . (2)

We use a modified representation of the Cauchy’s equation as

n(λ ) = nm +nλ2

(
1

λ 2 − 1
λ 2

m

)
+nλ4

(
1

λ 4 − 1
λ 4

m

)
, (3)

where λm is the main wavelength and nm is the refractive index at λm. nm, nλ2 and nλ4 could
be found by fitting Eq. (3) to a given dispersion data. Considering the experimental error in one
of the dispersion measurements (Ref. [10]) used in the present paper, having only three terms
in Eq. (3) provides an acceptable fit. In our experience, employing higher terms of Cauchy’s
equation gives the fitted curve a freedom to follow the noise in the data and even to develop a
minimum, which does not correspond to a theoretically valid dispersion function.

Equation (1) can be rewritten to describe a dispersive GRIN medium as

n(ζ ,λ ) = ncenter(λ )+
(
nsur f ace(λ )−ncenter(λ )

)
(ζ 2)p(λ ), (4)

where

ncenter(λ ) = nc +ncλ2

(
1

λ 2 − 1
λ 2

m

)
+ncλ4

(
1

λ 4 − 1
λ 4

m

)
, (5)

and

nsur f ace(λ ) = ns +nsλ2

(
1

λ 2 − 1
λ 2

m

)
+nsλ4

(
1

λ 4 − 1
λ 4

m

)
. (6)

nc and ns are respectively the refractive indices at the center and at the surface of the GRIN lens
at the main wavelength λm, since Eq. (4) would be reduced to Eq. (1) where λ = λm. Therefore
any characteristic of the lens (e.g. the optical power equations and the third-order aberration
representations) defined for the monochromatic GIGL model [3, 13] will remain unchanged
when using this representation.

To our knowledge this is the first attempt to represent the dispersive nature of the GRIN lens
structure in terms of wavelength-dependent ncenter(λ ), nsur f ace(λ ), and p(λ ). In the following
section we show two numerical examples that emphasize the advantage of using this model
when experimental dispersion data for the center and the surface of the lens is available.

2.2. Numerical examples

Equation (4) describes the gradual change in dispersion from the surface to the center of the
lens. There are not so many published experimental data on the spatial change in dispersion of
the GRIN lens in the human. These available data are limited to the dispersion curves at the
center and the surface of the lens. This does not provide enough information to determine the
rate of change in GRIN profile at any specific wavelength, which corresponds to the exponent
p(λ ). Due to the lack of experimental data on wavelength dependence of the exponent p(λ ), for
now, we limit our examples to the case of constant p. However the presented model is capable
of taking into account the wavelength dependence of p(λ ) when more complete data become
available. In the following, two sets of data are used to determine all the coefficients in the
dispersive GRIN structure given by Eq. (4).

Palmer and Sivak [10] have done a series of measurements on a 70 year old eye for the
wavelength range from 410 nm to 680 nm. It is worth mentioning that Palmer and Sivak have
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Fig. 2. The fit of the dispersion curves at the center and the surface of the lens to the
dispersion data from Palmer and Sivak for a 70 year old eye [10].

stated that the material of the lens has not been altogether homogeneous and there have been
inclusions of lower refractive index. Due to this, their data may not be as reliable as other data
from human lenses. Figure 2 depicts their data and the least square fit using Eqs. (5) and (6).
The fitting equations are

ncenter(λ ) = 1.39879+6241.59

(
1

λ 2 − 1
5552

)
−2.10368×108

(
1

λ 4 − 1
5554

)
, (7)

and

nsur f ace(λ ) = 1.37555−7994.17

(
1

λ 2 − 1
5552

)
+1.58549×109

(
1

λ 4 − 1
5554

)
. (8)

In another work, Sivak and Mandelman [11] measured the GRIN lens dispersion of several
subjects from 16-year old to 78-year old. They have provided averaged data for the dispersion
curves of the center and the surface of the lens. Figure 3 shows the dispersion curves from
the least square fit using Eqs. (5) and (6) to Sivak and Mandelman’s data averaged over 6 to 9
separate eyes given by

ncenter(λ ) = 1.40395+7256.06

(
1

λ 2 − 1
5552

)
−1.54846×108

(
1

λ 4 − 1
5554

)
, (9)

and

nsur f ace(λ ) = 1.37763+9260.03

(
1

λ 2 − 1
5552

)
−3.12554×108

(
1

λ 4 − 1
5554

)
. (10)

In addition to this, Fig. 4 demonstrates the dispersion curves across the lens provided by
Eq. (4) for p equal to 2.0 and 5.0. This range is chosen in relation to the fitting results by
Navarro et al. [8], where the case p = 2.0 could be considered as an extreme minimum for the
refractive index profile of a very young healthy eye, whereas p = 5.0 corresponds to an aged
eye. The intermediate curves between the lens center and surface show internal dispersion of
the lens material predicted by Eq. (4) for ζ equal to 0.1, 0.2, . . . , 0.9. The spacing between
these curves indicates the power profile of the GRIN structure (characterized by exponent p).

Another way of distinguishing two cases (p= 2.0 and p= 5.0) is examining the refractive in-
dex profiles along the lens optical axis; these profiles are shown in Fig. 5. Figure 5 illustrates an
age-related alteration originally suggested by Pierscionek [4] in the lens paradox explanation.

#168414 - $15.00 USD Received 10 May 2012; revised 13 Jun 2012; accepted 13 Jun 2012; published 22 Jun 2012
(C) 2012 OSA 1 July 2012 / Vol. 3,  No. 7 / BIOMEDICAL OPTICS EXPRESS  1688



lens surface

lens center

400 450 500 550 600 650 700

1.37

1.38

1.39

1.40

1.41

1.42

n

λ (nm)

Fig. 3. The fit of the dispersion curves at the center and the surface of the lens to the
dispersion data from Sivak and Mandelman [11].
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Fig. 4. The fit of the dispersion curves at the center and the surface of the lens to the dis-
persion data from Sivak and Mandelman [11], and our calculated dispersion curves across
the lens employing Eq. (4) for (a) p = 2.0 and (b) p = 5.0.
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Fig. 5. The refractive index profiles across the lens for λF = 486.1 nm, λd = 587.6 nm, and
λC = 656.3 nm using Eq. (4) for (a) p = 2.0 and (b) p = 5.0 fit to the dispersion data from
Sivak and Mandelman [11].

3. Chromatic aberration

3.1. Chromatic coefficients

Using the idea of thin, iso-dispersive shells, we shall describe the chromatic effects occurring
within the bulk of the lens. For this we need to revisit the definition of the axial and transverse
chromatic aberrations in terms of paraxial optics.

The axial color coefficient for a single refractive surface CL [14] is given by

CL = ndy
(y

r
+u

)(nd −1
ndVd

− n′d −1
n′dV ′

d

)
, (11)

where nd is the refractive index of the medium at the spectral line d (λd = 587.6 nm) before the
surface, y and u are the height and the angle of the incident ray at the surface, respectively, r is
the surface radius of curvature, and Vd and V ′

d are the Abbe numbers of the media respectively
before and after the surface. The Abbe number is defined as

Vd =
nd −1
nF −nc

, (12)
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where nF and nc are the refractive indices of the medium at the spectral line F (λF = 486.1 nm)
and the spectral line C (λC = 656.3 nm), respectively.

By adding the CL coefficients of all surfaces in an optical system the total axial color coeffi-
cient is obtained. Using this coefficient, the axial distance between the image position at F and
C wavelengths can be calculated as longitudinal axial chromatic aberration δAX ,

δAX =
1

ndiu2
i

CL, (13)

where ndi is the refractive index at d line in the last medium and ui is the refracted ray angle at
the image plane.

In a similar way, the lateral color coefficient CT is given by

CT = ndy
(yc

r
+uc

)(nd −1
ndVd

− n′d −1
n′dV ′

d

)
, (14)

where yc and uc are the height and the angle of the incident chief (principal) ray at a refractive
surface, respectively. The total coefficient CT can be used in calculating the transverse lateral
chromatic aberration δTLC, which corresponds to the vertical distance between the images at F
and C wavelengths:

δTLC =
1

ndiui
CT . (15)

The total axial and lateral color coefficients of a GRIN lens are the key to understanding
its chromatic behavior in the eye. Using the paraxial ray tracing as in our derivation of the
monochromatic aberrations in the GIGL model [3], the total chromatic coefficients can be ob-
tained for the dispersive GRIN structure. Following the analytical ray tracing through the GIGL
model, we shall derive the expressions for the axial and lateral color coefficients. First we define
the Abbe number of the iso-dispersive shells Using Eq. (4)

Vd(ζ ) =
n(ζ ,λd)−1

n(ζ ,λF)−n(ζ ,λC)
, (16)

In general ζ corresponds to the normalized distance from the lens center to any point in the
lens. The distance ζ along the optical axis is simply z/Ta and z/Tp for the anterior and posterior
hemispheres, respectively. For a constant Abbe number Vd Eq. (16) defines the corresponding
constant ζ of the iso-dispersive contour.

Equation (16) can be described in terms of axial distance z for paraxial ray tracing. Employ-
ing Eqs. (11), (4), and (16) we find the contribution of a thin layer with the thickness of δ z
within the GRIN structure in the total axial color coefficient of the lens as

δCL = n
( z

T
,λd

)
y(z)

(
y(z)
−Rz

+
y′(z)

T

)[
∂n
∂ z

( z
T
,λd

)(
n
( z

T
,λF

)
−n

( z
T
,λC

))
−

−n
( z

T
,λd

)(∂n
∂ z

( z
T
,λF

)
− ∂n

∂ z

( z
T
,λC

))]
/n2

( z
T
,λd

)
δ z, (17)

where y(z) is the height of the ray inside the GRIN lens and R is the radius of curvature of
the surface; the analytical expression for y(z) in the GIGL model is derived in Ref. [3]. By
summing up the contributions from all infinitely thin layers in the GRIN structure (where R
equals to Ra and Rp in the anterior and posterior hemispheres, respectively) and including the
contributions from the external surfaces of the lens we find the total axial color coefficient of
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the lens,

∑CL = naquy0

(
y0

Ra
+ua

)(
naqu −1
naquVaqu

− n(−1,λd)−1
n(−1,λd)Vd(−1)

)
+

+
∫ Tp

−Ta

dCL +n(1,λd)y(Tp)

(
y(Tp)

−Rp
+u(Tp)

)(
n(1,λd)−1

n(1,λd)Vd(1)
− nvit −1

nvitVvit

)
, (18)

where y0 and ua are respectively the height and angle of the marginal ray at the anterior surface,
y(Tp) and u(Tp) are respectively the height and the angle of the marginal ray just before the
posterior surface, naqu and Vaqu are respectively the refractive index and the Abbe number of
the medium before the lens at the d line, and nvit and Vvit correspond to the medium after the
lens. It is worth noticing that the ray tracing for these calculations should be done at the d line.

Similarly the coefficients for the lateral color of the lens is given by

δCT = n
( z

T
,λd

)
y(z)

(
yc(z)
−Rz

+
y′c(z)

T

)[
∂n
∂ z

( z
T
,λd

)(
n
( z

T
,λF

)
−n

( z
T
,λC

))
−

−n
( z

T
,λd

)(∂n
∂ z

( z
T
,λF

)
− ∂n

∂ z

( z
T
,λC

))]
/n2

( z
T
,λd

)
δ z, (19)

where yc(z) is the chief ray height inside the lens. Assuming the aperture stop is located at the
anterior surface of the lens we obtain the total lateral color coefficient of the lens

∑CT = naquy0uca

(
naqu −1
naquVaqu

− n(−1,λd)−1
n(−1,λd)Vd(−1)

)
+

+
∫ Tp

−Ta

dCT +n(1,λd)y(Tp)

(
yc(Tp)

−Rp
+uc(Tp)

)(
n(1,λd)−1

n(1,λd)Vd(1)
− nvit −1

nvitVvit

)
, (20)

where uca is the angle of the chief ray at the anterior surface, and yc(Tp) and uc(Tp) are respec-
tively the height and the angle of the chief ray just before the posterior surface of the lens.

At this stage we have all equations ready for analysis of chromatic effects in the GRIN lens.

3.2. Numerical example

Using Eqs. (18) and (20) we can calculate the chromatic effects arising from a typical GRIN
lens. To use these two equations, one needs the dispersion data for the GRIN lens as well as the
dispersion data for the medium surrounding the lens. For the media before and after the lens,
the aqueous and vitreous, respectively, we have used combined data provided by Atchison and
Smith in terms of coefficients for Cauchy equation presented in Table 5 in Ref. [12].

3.2.1. Sivak and Mandelman’s experimental data

As an example, Table 1 presents a typical GRIN lens geometry and its surrounding media
with dispersive characteristics. Since the eye GRIN lens receives a converging beam we shall
take into account its convergence by assuming a typical corneal shape with the anterior and
posterior radii of curvature of 7.8 mm and 6.7 mm, respectively, the corneal thickness of 0.5
mm, and the 3.5 mm axial distance to the GRIN lens. This corresponds to the marginal ray
angle ua =−0.036352 rad at the pupil such that y0 = 1 mm. The aperture stop (iris) is located
just before the anterior surface of the lens, so the height of the chief ray at the anterior surface
of the lens is zero. For the object located at infinity and the full field of view of 2 deg the chief
ray angle at the anterior surface of the lens is uca = 0.015000 rad.

Table 2 presents the chromatic coefficients of this typical GRIN lens for each part of the lens
using the dispersion data from Sivak and Mandelman [11] in Eqs. (9) and (10). Here to describe
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the dispersive GRIN medium in accordance with Eq. (11) we assumed p = 4.0, which impacts
the magnitude of the coefficients CL and CT for the GRIN structure.

Axial color coefficients in Table 2 show an interesting compensation effect in axial chromatic
aberration of the lens. The negative CL arising from the peripheral surfaces is to some extent
corrected by the positive CL originating from the GRIN structure of the lens. To understand the
origin of the sign in coefficient CL we revisit Eq. (11). Assuming u � y/r and noting that 0 < y,
it is clear that the radius of curvature r and the variation of the quantity (nd − 1)/(ndVd) play
the main role in establishing the sign of the axial color coefficient.

Figure 6 illustrates the variation of the quantity (nd −1)/(ndVd) inside the lens is positive for
the anterior hemisphere and negative for the posterior hemisphere. On the other hand, the radius
of curvature r for the iso-indicial contours in the GRIN structure is also positive in the anterior
and negative in the posterior hemispheres, thus the overall sign of the axial color coefficient of
the GRIN structure is positive in both hemispheres.

In contrast, the quantity (nd −1)/(ndVd) in the medium before and after the lens (0.004979
and 0.004888 respectively) is less than that of the surface of the lens (0.010015). This leads to
the negative axial color coefficients at both anterior and posterior lens surfaces, see Table 2. A
similar approach could be used to understand the change of sign in lateral color coefficients of
the lens, although for the posterior surface we have an additional contribution to the coefficient
from the non-zero height of the chief ray.

Table 1. A typical GRIN lens geometry and the dispersive characteristics of the surrounding
media at the d line. (∗using Table 5 in Ref. [12].)

Lens geometry (mm) Surrounding medium∗

Ta 2.10 naqu 1.3347
Tp 1.40 Vaqu 50.37
Ra 11.00 nvit 1.3347
Rp 7.50 Vvit 51.30

Table 2. The chromatic coefficients of a typical GRIN lens defined in Table 1 with the
dispersion data from Sivak and Mandelman [11] described by Eqs. (9) and (10).

Axial color coefficients

CL from the anterior surface -0.000367
CL from the GRIN structure +0.000450
CL from the posterior surface -0.000958
∑CL -0.000875

Lateral color coefficients

CT from the anterior surface -0.000101
CT from the GRIN structure +0.000018
CT from the posterior surface +0.000047
∑CT -0.000036

To get a feeling about the magnitude of calculated axial color coefficient, we also calculate
the axial chromatic aberration δAX in the whole eye using this typical lens. We assume that the
lens in the eye is not tilted and then the total axial color coefficient of the eye is the sum of the
axial color coefficients of the cornea and the GRIN lens. We assume that the optical power of
an average eye is 60 D and the corneal refractive index and Abbe number are nd = 1.3677 and
Vd = 55.48 [12], which corresponds to the axial color coefficient of −0.000843 for the cornea.
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Fig. 6. The quantity (nd −1)/(ndVd) as a function of ζ (the normalized distance from the
lens center) using the dispersion data from Sivak and Mandelman [11] for p = 4.0.

The sum of the axial coefficients of the cornea and the lens is −0.001718, and from Eq. (13)
we find that the axial chromatic aberration of this eye is 2.09 D. This amount of chromatic
aberration is within the expected range of 1.87± 0.26 D found in the study by Gilmartin and
Hogan [15], which used a similar spectral range of 488 nm and 633 nm.

In addition to the lens dispersion data, Sivak and Mandelman have also provided the disper-
sion of the capsule of the lens. To study the effect of the lens capsule dispersion on the lens axial
color coefficient we have performed a numerical fit to Sivak and Mandelmans measurements
using Eq. (3) for the capsule

ncapsule(λ ) = 1.37108+2617.71

(
1

λ 2 − 1
5552

)
+2.5783×108

(
1

λ 4 − 1
5554

)
. (21)

Table 3 provides the lens axial color coefficients using Eq. (21) and (11), which takes into
account the chromatic effect of the lens capsule. For the anterior and the posterior layers of
the lens capsule we have assumed a typical axial thickness of 0.015 mm and 0.002 mm, re-
spectively [16]. A comparison of Tables 2 and 3 shows that the effect of the capsule is only

Table 3. The chromatic coefficients of a typical GRIN lens defined in Table 1 with the dis-
persion data from Sivak and Mandelman [11] on the eye lens capsule described by Eq. (21).

Axial color coefficients

CL from the anterior surface of the capsule -0.000075
CL from the anterior surface of the lens -0.000292
CL from the GRIN structure +0.000450
CL from the posterior surface of the lens -0.000749
CL from the posterior surface of the capsule -0.000208
∑CL -0.000874

0.1 percent of the total axial color coefficient and thus can be ignored. A closer look at Ta-
bles 2 and 3 reveals that the lens capsule does not change the magnitude of the chromatic effect
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Fig. 7. The quantity (nd −1)/(ndVd) as a function of ζ (the normalized distance from the
lens center) using the dispersion data from Palmer and Sivak [10] for p = 5.5.

at the anterior and posterior surfaces of the lens. This is due to a very small thickness of the
capsule, which means the radii of curvature of the capsule is very close to those of the lens,
leading to a cancellation effect of the capsule contribution to the axial color coefficients.

3.2.2. Palmer and Sivak’s experimental data

Employing the same lens geometry and the same dispersive characteristics of the surrounding
media, we shall calculate the axial color coefficients of the lens using the dispersion data from
the study by Palmer and Sivak of a 70 year old eye [10]. In this study the age of the eye is well
defined, so we consider the exponent p = 5.5 based on the equation suggested by Navarro et
al. [8] for connecting the exponent p to the age of the eye. Table 4 presents the color coefficients
of the lens and Fig. 7 depicts the quantity (nd − 1)/(ndVd) as a function of the normalized
distance ζ from the lens center.

Table 4. The chromatic coefficients of a typical GRIN lens defined in Table 1 with the
dispersion data from Palmer and Sivak [10] described by Eqs. (7) and (8).

Axial color coefficients

CL from the anterior surface +0.000120
CL from the GRIN structure -0.000948
CL from the posterior surface +0.000290
∑CL -0.000537

Lateral color coefficients

CT from the anterior surface +0.000033
CT from the GRIN structure -0.000038
CT from the posterior surface -0.000014
∑CT -0.000019

In this example we can also see the compensation of chromatic aberrations in the lens, how-
ever in comparison to Table 2 the compensation happens in a different way. Table 4 indicates
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that the GRIN structure of the lens produces a negative axial color coefficient, while the axial
color coefficients of the external surfaces are positive. This is due to the different rate of growth
of the quantity (nd − 1)/(ndVd) presented in Fig. 7, and also due to the different amount of
the quantity (nd − 1)/(ndVd) at the lens surface, 0.003328, which is less than the surrounding
media. As a result, the total axial color coefficient of the lens is still negative (−0.000537) in
comparison with Table 2, but its absolute value is reduced by 20%. Using the same character-
istics for the cornea, as in Section 3.2.1, the chromatic aberration of the whole eye becomes
1.68 D. This amount of chromatic aberration is within the expected range of 1.87± 0.26 D
found in the study by Gilmartin and Hogan [15] using a similar spectral range.

3.2.3. Theoretical equations

In addition to the experimental data used in our two examples, it is worth revisiting the lens
dispersion equations suggested by Atchison and Smith (Table 5 in Ref. [12]), which is based
on the combined theoretical data from Le Grand [17] and Navarro et al. [18]. One can notice
that the two equations describing the center and the surface dispersion can be reduced to the
simple expression ncenter(λ ) � nsur f ace(λ )×1.014430. For such a simple connection between
the center and the surface dispersion curves, the quantity (nd −1)/(ndVd) becomes independent
of ζ terms and remains constant (0.006127) inside the GRIN lens. This becomes clear when we
rewrite the quantity (nd −1)/(ndVd) as (nF −nc)/nd . The significance of the constancy of the
quantity (nd − 1)/(ndVd) is that the GRIN structure is free from both chromatic effects (axial
and lateral color) and only the external surfaces of the lens contribute to the chromatic aberra-
tions. Table 5 shows this fact numerically under the same conditions considered in Table 1.

We would like to emphasize that for a non-dispersive GRIN structure as well as for a homo-
geneous refractive index lens (featuring in Le Grand [17] and Navarro et al. [18] models) one
has only to worry about the dispersion description of the external surfaces of the lens. However
the experimental data [10, 11] suggest that the chromatic contribution of the GRIN structure
is comparable to that of the external surfaces, and furthermore plays an important role in the
chromatic aberration compensation of the whole eye.

Table 5. The chromatic coefficients of a typical GRIN lens defined by Table 1 using the
dispersion data from Atchison and Smith (Table 5 in Ref. [12]).

Axial color coefficients

CL from the anterior surface -0.000084
CL from the GRIN structure +0.000000
CL from the posterior surface -0.000232
∑CL -0.000315

Lateral color coefficients

CT from the anterior surface -0.000023
CT from the GRIN structure +0.000000
CT from the posterior surface +0.000011
∑CT -0.000012

It is worth mentioning that for achieving an achromatic lens (i.e. ∑CL = 0), the axial color of
the external surfaces is to be compensated by that from the GRIN structure, so the latter should
not be zero. As an example of such aberration balancing, the lens in Section 3.2 can be made
achromatic simply by adjusting one of the center dispersion coefficients, ncλ2, in Eq. (9) from
7256.06 to 5098.80. This corresponds to the change in the Abbe number of the lens center from
33.71 to 51.51, using Eq. (4). The example illustrates that the proposed dispersion model can
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also help in developing bio-inspired lens designs, where the achromatic correction in individual
components is needed.

4. Equivalent Abbe number approximation

It is a common practice, in the reduced eye models, to replace the GRIN lens by a simple lens
providing spatially constant refractive index and Abbe number. Typically the characteristics of
the eye lens in the reduced eye models are defined based on the optical power and axial chro-
matic aberration of the whole eye. In this section a different approach is proposed to calculate
the equivalent Abbe number of the lens just using the experimental dispersion curves of the sur-
face layer (cortex) and the center (core) of the GRIN lens. This approach may help in improving
the reconstruction methods of a subject-specific GRIN lens.

The GIGL model provides a convenient equation for the optical power of the lens derived
from a thin lens approximation as

Fthin =
ns −naqu

Ra
+

2p
2p−1

(nc −ns)

(
1
Ra

+
1

Rp

)
+

nvit −ns

−Rp
. (22)

For the crystalline lens Eq. (22) gives less than 1.4% error compared with the exact power
calculations, and then can be a useful tool in the ocular calculations. The equivalent optical
power of the lens defined as

Feqv =
neqv −naqu

Ra
+

nvit −neqv

−Rp
, (23)

where the equivalent refractive index neqv provides the equivalent optical power for the lens.
Equating the right hand sides of Eqs. (22) and (23) and solving for neqv result

neqv =
2 p nc −ns

2 p−1
. (24)

The definition of neqv by Eq. (24) is not limited to the main wavelength and can be expanded
to the equivalent powers of other wavelengths as

neqv(λ ) =
2 p(λ ) ncenter(λ )−nsur f ace(λ )

2 p(λ )−1
. (25)

Substituting Eq. (24) in Eq. (12) leads to the equivalent Abbe number of the equivalent lens. If
the change in p with wavelength λ is negligible the equivalent Abbe number can be rewritten
as

Veqv(λ ) =
VdcVds [ns −1−2 p (nc −1)]
Vdc (ns −1)−2 pVds (nc −1)

, (26)

where Vdc and Vds are the Abbe numbers of the center and the surface of the GRIN lens, respec-
tively. As an example, Table 1 presents the calculated lens equivalent refractive index neqv and
the equivalent Abbe number Veqv using the dispersion data from Sivak and Mandelman [11],
and Palmer and Sivak [10] for p = 3.0 (representing a 34-year old eye according to the study
by Navarro et al. [8]).

Employing the equivalent refractive indices and Abbe numbers listed in Table 6, one can
calculate the axial and lateral color coefficients of the equivalent lens. These coefficients are
approximate, while the exact color coefficients derived in Eqs. (18) and (20). The comparison
between the axial and lateral color of a typical GRIN lens and its equivalent refractive index lens
is presented in Table 7. Here, the angles and the height of the incident rays, and the geometry
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Table 6. The calculated quantities neqv and Veqv using the dispersion data from Sivak and
Mandelman [11], and Palmer and Sivak [10] for a typical p = 3.0.

Data set nc ns neqv Vdc Vds Veqv

Sivak and Mandelman 1.4018 1.3751 1.4071 33.71 27.23 35.25
Palmer and Sivak 1.3968 1.3750 1.4011 42.73 81.95 39.22

Table 7. A comparison between the exact and equivalent color coefficients calculated re-
spectively for a typical GRIN lens and its equivalent refractive index lens.

Data set Equivalent Exact Equivalent Exact
∑CL ∑CL ∑CT ∑CT

Sivak and Mandelman -0.000856 -0.000852 -0.000034 -0.000035
Palmer and Sivak -0.000618 -0.000626 -0.000024 -0.000022

of the lens and its surrounding media are the same as in the previous numerical examples (See
Section 3.2.1), except for the exponent p, here p = 3.0.

Table 7 demonstrate a good agreement between the exact and equivalent color coefficients,
which indicates practical advantages of this approach in finding the exact equivalent optical
characteristics. However, replacing a complicated GRIN structure with a homogeneous mate-
rial will not transfer all optical characteristics of the lens simultaneously. Here, the equivalent
refractive index calculation aims at preserving the optical power of the lens, yet other optical
characteristics of the lens need their own equivalent refractive index. As an example, we con-
sider the optical path length (OPL) in the GRIN lens. The axial OPL in GIGL [3] is derived
as

OPL = (Ta +Tp)
2nc p+ns

2p+1
, (27)

which defines the quantity (2nc p+ ns)/(2p+ 1) as the equivalent refractive index in the OPL
calculation of the lens. This OPL equivalent refractive index known as the average refractive
index [19] is different from the one calculated in Eq. (24).

5. Axial Chromatic aberration and aging

There are two independent studies, which found no significant changes in the magnitude of
chromatic aberration with age [20, 21], but some earlier studies claim that the magnitude of
chromatic aberration decreases with age [22, 23]. Considering the growth of the GRIN lens, it
is well known that for an unaccommodated lens, the external surfaces become more curved with
aging [24]. The lens considered in Section 3.2.2 shows positive axial color coefficients at its
surfaces (Table 4). Aging lens increases the optical power of its surfaces, thus this lens surfaces
will show larger positive axial color coefficients, see Eq. (11). In addition to this, the chromatic
effect arising from the GRIN structure should be taken into account. To examine the role of the
GRIN structure in the age-related chromatic effect individually, we keep the geometry of the
lens in Section 3.2.2 unchanged, only adjust the age-related exponent p to three different age
groups. Following the study by Navarro et al. [8] we selected three age groups (20, 40, and 60
year old) with corresponding value for p and calculated the resultant axial color coefficients for
each group in Table 8.

Table 8 indicates that the magnitude of the axial color coefficient originated from the GRIN
structure of the lens decreases due to an increase in the exponent p. Looking at the sign of the
coefficients of the lens surfaces, it is evident that the total axial color coefficient of the lens
goes toward zero or even positive amounts. As mentioned in Section 3.2.1, a typical cornea
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Table 8. The axial color coefficients from the GRIN structure for three age groups (20, 40,
and 60 year old) using the dispersion data provided by Palmer and Sivak [10].

Age (year) p CL from the GRIN structure

20 2.87 -0.001046
40 3.13 -0.001028
60 4.28 -0.000977

shows a negative axial color coefficient. Due to aging, the surfaces of the cornea get slightly
more curved [25], which increases the magnitude of this negative corneal axial color coefficient.
Considering these two effects for the GRIN lens and the cornea, one could argue that the eye,
as a whole, might show a constant or a better chromatic performance with aging.

It is worth mentioning that employing the Sivak and Mandelman’s data in the same approach
provides an increase in the total axial color coefficient, which does not support the argument
above. Since the dispersion data from Sivak and Mandelman is averaged over 6 to 9 subjects
with different ages, some valuable information of each individual lens might be missing. This
highlights the need of more chromatic measurements on the GRIN lens and its surrounding
media for a more confident conclusion.

6. Discussion and conclusion

In this study the potential of the existing GIGL monochromatic model [3] has been realized and
demonstrated by introducing a flexible chromatic GRIN lens model. The model is examined
with different data fittings to gain better understanding of the GRIN lens chromatic aberration
behavior of the lens. The advantages of the provided equations are not limited to this data fitting
only, since the model can also be used to help explaining other chromatic characteristics of the
eye for example spherochromatism. The latter can be calculated using the spherical aberration
coefficients for different color wavelength.

We would like to emphasize that the provided model should be regarded as a tool, which can
be employed in experimental data fitting and further analysis for better understanding of the
chromatic nature of the eye. The scope of the chromatic model is not limited to the human eye
and can be applied to animal GRIN lenses, where unusual chromatic behavior might happen
(e.g. [26,27]). Table 9 provides the axial color coefficients of a semi-spherical octopus eye lens
calculated based on the measurements from Jagger and Sands [27].

Table 9. The chromatic coefficients of a typical octopus GRIN lens using the dispersion
data from Jagger and Sands [27].

Axial color coefficients

CL from the anterior surface -0.000779
CL from the GRIN structure -0.003499
CL from the posterior surface -0.000629
∑CL -0.004909

The proposed dispersive GIGL model completes the description of the monochromatic GIGL
model. The concept of iso-dispersive contours introduced in this paper is a unique feature of
the dispersive GIGL model. The optically-friendly geometry of the GIGL model featuring iso-
dispersive contours (constant Abbe number Vd) supports the calculations for the contribution
of the individual layers to the total chromatic effects of the lens. Thus the model gives a new
insight in the derivation of the equivalent Abbe number based on experimental dispersion curves
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for the center and the surface of the lens. The proposed model offers easy analysis of equivalent
refractive index and OPL equivalent index. One could use the model to investigate chromatic
aberration evolution in the aging human eye, in particular the effect of the power constant p on
the color coefficients. The model also predicts the amount of induced defocus (change in optical
power with wavelength) when using different wavelengths, e.g. adaptive optic system with
wavefront sensor operating at one wavelength and the retinal imaging at another wavelength,
although retinal absorption effects still have to be included in this case.
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