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Small-amplitude inhomogeneous plane waves
in a deformed Mooney–Rivlin material

Michel Destrade

2002

Abstract

The propagation of small-amplitude inhomogeneous plane waves in
an isotropic homogeneous incompressible Mooney–Rivlin material is
considered when the material is maintained in a state of finite static
homogeneous deformation. Disturbances of complex exponential type
are sought and all propagating inhomogeneous solutions to the equa-
tions of motion are given, as well as the conditions for linear, ellip-
tical, or circular polarization. It is seen that a great variety of solu-
tions arises. These include some original solutions, such as circularly-
polarized plane waves which propagate with an arbitrary complex
scalar slowness, or linearly-polarized waves for which the direction of
propagation is not necessarily orthogonal to the direction of attenua-
tion. Throughout the paper, geometrical interpretations and explicit
examples are presented.
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1 Introduction

The theoretical study of elastic plane waves has generated a large litera-
ture in the area of finite elasticity. One type of plane waves which is of
practical interest is that of motions propagating in a finitely and homoge-
neously deformed elastic material [1], because the predeformation can be
used to model, at least locally, the anisotropy of many mechanical and ge-
ological structures. A review of these topics can be found in a textbook
by Ieşan [2]. Once it is homogeneously deformed, an elastic body presents
three privileged orthogonal directions, namely those of the principal axes of
the static deformation. Waves propagating in one of these directions are
called ‘principal waves’ [3] and their properties are well known and relatively
easy to establish, because the principal directions offer a natural rectangu-
lar Cartesian coordinate system. Homogeneous plane waves propagating in
an incompressible elastic material are necessarily transverse (the direction of
propagation is orthogonal to the plane of polarization). Therefore, for such
waves propagating in a nonprincipal direction, another rectangular Cartesian
coordinate system proves to be useful, that formed by the direction of prop-
agation and by two orthogonal directions in the plane of polarization. Currie
and Hayes [4] proved that the Mooney–Rivlin form for the strain energy den-
sity (which is used to model the mechanical behaviour of rubber [5, 6]), is
the most general one for which homogeneous plane waves, be they of finite
or of small amplitude, may propagate in any direction for an arbitrary finite
static homogeneous predeformation. Later, Boulanger and Hayes [7, 8] stud-
ied in great detail finite-amplitude homogeneous plane waves in a deformed
Mooney–Rivlin material.

Homogeneous plane waves are such that the planes of constant phase
(orthogonal to the direction of propagation) are parallel to the planes of
constant amplitude (orthogonal to the direction of eventual attenuation).
However, for a variety of physical problems, an attenuation of the amplitude
occurs in a direction distinct from the direction of propagation. In those
cases, a combination of ‘inhomogeneous’ plane waves is introduced, usually
in the form e−ωS

′′·x cosω(S′ · x − t)a, where ω is the frequency, and S′, S′′,
a are vectors. This procedure was successfully applied to various interfacial
problems, such as reflected and refracted waves, Rayleigh waves, Love waves,
Stoneley waves, Scholte waves, etc. When the directions of propagation
(that of the vector S′), of exponential attenuation (that of the vector S′′),
and of polarization (that of the vector a) are orthogonal with respect to one
another, they form the basis for a rectangular Cartesian coordinate system
in which the incremental equations of motion can be written and solved for
small-amplitude [9, 10] as well as for finite-amplitude [11] inhomogeneous
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waves in a deformed Mooney–Rivlin material. When these directions are not
orthogonal, the equations of motion become much harder to solve. This is
where the algebra of complex vectors, also known as ‘bivectors’, can play
a very useful role. The use of bivectors in order to describe inhomogeneous
plane waves is made clear in a textbook by Boulanger and Hayes [12]. Indeed
bivectors, that is vectors with a real part and an imaginary part, can be used
to describe the polarization of a wave through the ‘polarization bivector’ A =
A′ + iA′′, as well as its propagation and attenuation through the ‘slowness
bivector’ S = S′ + iS′′. Hence an inhomogeneous plane wave is modelled as
being proportional to the real part of the expression Aeiω(S·x−t).

Previously, the propagation of small-amplitude inhomogeneous plane waves
in a Mooney–Rivlin material subjected to a finite static biaxial homogeneous
deformation has been considered first by Belward [13], and later by Boulanger
and Hayes [14], using bivectors. In this paper, we consider the propagation of
infinitesimal inhomogeneous plane waves in a Mooney–Rivlin material which
is maintained in a state of arbitrary triaxial finite static homogeneous de-
formation. Most results obtained here are a generalization and an extension
to the case of inhomogeneous waves of results established by Boulanger and
Hayes [7] for the propagation of finite-amplitude homogeneous plane waves in
a homogeneously deformed Mooney–Rivlin material. However, this extension
is only possible when the amplitude of the wave is considered small enough
to allow linearization. This restriction is due to the fact that finite-amplitude
inhomogeneous plane waves can propagate in an incompressible elastic ma-
terial only when they are linearly-polarized [15]. For infinitesimal inhomo-
geneous plane waves, no such restriction applies and elliptical polarization
is possible. The purpose of this paper is to find all inhomogeneous small-
amplitude plane waves of complex exponential type travelling in a deformed
Mooney–Rivlin material, and to establish the conditions for linear, elliptical,
and circular polarization. Within this context, a much greater number of
solutions are found for inhomogeneous waves than for homogeneous waves.
For instance, elliptical polarization is possible for homogeneous waves only in
two special directions (the ‘acoustic axes’ [7]), whereas it is possible in other
directions for inhomogeneous waves. Also, for certain inhomogeneous waves,
the ‘complex scalar slowness’, which is the counterpart of the inverse of the
speed for homogeneous waves, may be arbitrarily prescribed. In general, for
a given orientation of the plane containing the directions of propagation and
of attenuation, there is an infinity of inhomogeneous wave solutions.

The paper is organized as follows. First (section 2) we recall the basic
equations describing the Mooney–Rivlin material. Then (section 3) we write
the equations governing the motion of a small-amplitude disturbance in a ho-
mogeneously deformed Mooney–Rivlin material. The incremental equations
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of motion and the incompressibility constraint are given. In order to solve
these equations, we seek solutions of complex exponential type, which are
presented in section 4. The slowness bivector S is introduced; when the real
and the imaginary parts of S are not parallel, the wave is inhomogeneous, be-
cause the directions of propagation and of attenuation do not coincide. The
amplitude bivector A is also introduced; depending on whether or not the real
and the imaginary parts of A are parallel, the wave is linearly or elliptically
polarized, respectively. The special case of circular polarization corresponds
to the ‘isotropy’ of A, that is A ·A = 0 [16]. Using these quantities, we then
derive the incremental equations of motion for inhomogeneous plane waves
of complex exponential type propagating in the deformed Mooney–Rivlin
material.

Next (sections5 and 6) the propagation of such disturbances is investi-
gated. Different sub-cases arise, depending on whether or not the slowness
complex vector S is isotropic, and on whether the waves are circularly, ellip-
tically, or linearly polarized. For each case, the general solution is provided
(amplitude and slowness bivectors, incremental pressure, wave speed) as well
as various explicit solutions to the incremental equations of motion.

2 Basic equations

The Mooney–Rivlin material is a homogeneous isotropic hyperelastic solid,
for which the strain energy Σ per unit volume is given by [5]

2Σ = C(I − 3) +D(II − 3), (2.1)

where C, D are material constants, and I, II are the first and second in-
variants of the left Cauchy-Green strain tensor B. In order to satisfy the
strong ellipticity condition, the constants C, D are such that [17, 8] either
C > 0, D ≥ 0 or C ≥ 0, D > 0. When D = 0, the material is said to be
‘neo-Hookean’, but this possibility is not considered in this paper.

The strain tensor B is related to the deformation gradient F through
B = FFT, and its first two invariants I and II are defined by I = trB and
2II = (trB)2 − tr(B2).

Because the Mooney–Rivlin material is incompressible, we have at all
times,

detF = (detB)1/2 = 1. (2.2)

Finally, the Mooney–Rivlin constitutive equation is derived from (2.1)
and (2.2) as [7]

σ = −(p−DII)1 + CB−DB−1, (2.3)
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where σ is the Cauchy stress and −p1 a hydrostatic pressure, to be deter-
mined from the equations of motion, and initial and boundary conditions.

Throughout the paper, we assume that no body forces are applied, so
that the equations of motion reduce to

divσ = ρ(∂2x/∂t2). (2.4)

Here, x is the position at time t of a point of the deformed body which was
at X in the undeformed state, and ρ is the constant mass density.

3 Small motions superposed on a large ho-

mogeneous deformation

In this Section we give the incremental equations of motion corresponding
to the superposition of a small-amplitude motion upon a large homogeneous
strain. First, we assume that the Mooney–Rivlin material is subjected to a
finite pure homogeneous deformation, for which a point initially at X in the
rectangular Cartesian coordinate system (O, i, j, k) moves to a point at x in
the same system, with extension ratios λα (α = 1, 2, 3) and principal axes of
deformation along the axes of the coordinate system, so that

xα = λαXα (α = 1, 2, 3; no sum). (3.1)

The extension ratios are assumed to be distinct, constant, and without
loss of generality, to be ordered as λ1 > λ2 > λ3.

The deformation gradient F and strain tensor B corresponding to this
finite static deformation are constant and given by F = diag (λ1, λ2, λ3) and
B = diag (λ21, λ

2
2, λ

2
3). Then the tensor T, defined by [9, 7]

Tαβ = 0, α 6= β,
Tαα = −p+D(λ−21 + λ−22 + λ−23 ) + Cλ−2α −Dλ−2α , (α = 1, 2, 3; no sum)

(3.2)
where p is constant, is the constant Cauchy stress required to sustain the
static deformation (3.1).

Boulanger and Hayes [7] have shown that two axes, namely the ‘acoustic’
axes of the B−1-ellipsoid, exhibit remarkable properties with respect to the
propagation of finite-amplitude homogeneous plane waves in such a deformed
Mooney–Rivlin material. The acoustic axes are the only directions in which
circularly-polarized finite-amplitude homogeneous plane waves may propa-
gate. Their directions n± are defined in terms of the stretch ratios λ1, λ2, λ3,
and of the unit vectors i and k, which are in the directions of the principal
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axes of B (or B−1) corresponding to λ1 and λ3, respectively. These directions
are given by

n± = cosφi± sinφk, where cosφ =

√
λ−22 − λ−21

λ−23 − λ−21

, sinφ =

√
λ−23 − λ−22

λ−23 − λ−21

,

(3.3)
and are independent of the material parameters C and D. They lie along
the normals to the planes of central circular sections of the B−1-ellipsoid [12,
§5.7]. Their directions n± also appear in the Hamilton cyclic decomposition
of the B−1 tensor as,

B−1 = λ−22 1− 1
2
(λ−23 − λ−21 )(n+ ⊗ n− + n− ⊗ n+). (3.4)

Now we consider a further deformation, possibly time-dependent, in which
the particle at x moves to x such that

x = x + εu(x, t). (3.5)

Here the displacement εu is a vector depending on x and on the time t, and
ε is a small parameter. Throughout the paper, we neglect terms of second
and higher order in ε.

Now if the deformation gradient F, the strain tensor B, the invariants I,
II, the pressure p, and the stress tensor T corresponding to the deformation
(3.5) are expanded in powers of ε around their their value in the static state
of homogeneous deformation, we get

F = F + εF∗ + . . . , B = B + εB∗ + . . . ,
I = I + εI∗ + . . . , II = II + εII∗ + . . . ,

p = p+ εp∗ + . . . , T = T + εT∗ + . . .

(3.6)

Then the equations of motion (2.4) written for T and x take the form [18]

divT∗ = ρ(∂2u/∂t2), (3.7)

when we retain terms up to order ε. Explicitly, for the Mooney–Rivlin case,
they are found to be (see also Belward [13], Hayes and Horgan [19] for the
biaxial case):

−p∗,1 + Cλ21u1,11 + (Cλ22 +Dλ−21 )u1,22 + (Cλ23 +Dλ−21 )u1,33
−Dλ−22 u2,12 −Dλ−23 u3,13 = ρü1,

−p∗,2 + (Cλ21 +Dλ−22 )u2,11 + Cλ22u2,22 + (Cλ23 +Dλ−22 )u2,33
−Dλ−21 u1,12 −Dλ−23 u3,23 = ρü2,

−p∗,3 + (Cλ21 +Dλ−23 )u3,11 + (Cλ22 +Dλ−23 )u3,22 + Cλ23u3,33
−Dλ−21 u1,13 −Dλ−22 u2,23 = ρü3,

(3.8)
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where commas and dots denote differentiation with respect to position x and
time t, respectively. Thus, for example, u1,2 = ∂u1/∂y.

Finally, the incompressibility constraint (2.2) yields [18]

u1,1 + u2,2 + u3,3 = 0. (3.9)

4 Vibrations of complex exponential type

In order to solve the equations governing the incremental motion, we assume
that the displacement εu and the incremental pressure εp∗ are of the form

u = 1
2
{Aeiω(S·x−t) + c.c.}, p∗ = 1

2
{iωQeiω(S·x−t) + c.c.}, (4.1)

where A = A′+ iA′′ is a complex vector, called the ‘amplitude bivector’ [12],
ω is the real frequency, Q is a scalar, S = S′ + iS′′ is the ‘slowness bivector’,
and ‘c.c.’ stands for ‘complex conjugate’.

An ellipse may be associated with a bivector, as the ellipse for which the
vector corresponding to the real part and the vector corresponding to the
imaginary part are conjugate vectors. That is, to a bivector D = D′ + iD′′

say, we associate the ellipse described by the point M such that OM =
D′ cos θ + D′′ sin θ, 0 ≤ θ ≤ 2π.

When the real and imaginary parts of A are parallel, that is, when the
ellipse of A degenerates into a segment, the wave is linearly-polarized along
their common direction. Otherwise, the wave is elliptically-polarized, and
the ellipse of polarization is the ellipse of A. The special case of circular
polarization corresponds to the ‘isotropy’ of A [16]

A ·A = 0. (4.2)

The planes defined by S′ · x = constant are called planes of constant
phase, and the planes defined by S′′ · x = constant are the planes of constant
amplitude. When the real part S′ and the imaginary part S′′ of S are not
parallel, the wave is said to be inhomogeneous. In that case, we introduce
the ‘directional ellipse’ of the slowness bivector S, defined as follows. Let
m̂ and n̂ be unit vectors along the respective major and minor semi-axes
of the ellipse of S, and m be the aspect ratio of the ellipse of S. Then the
directional ellipse of the slowness bivector S is the ellipse of the ‘propagation
bivector’ C, defined by

C = mm̂ + in̂, with m̂ · m̂ = n̂ · n̂ = 1, m̂ · n̂ = 0. (4.3)

Then S may be written as [16] S = NC = N(mm̂ + in̂), where N = N ′ +
iN ′′ is a complex number, called the ‘complex scalar slowness’. Then the
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directions of propagation and attenuation are the directions of S′ and S′,
respectively, given by

S′ = mN ′m̂−N ′′n̂, S′′ = mN ′′m̂ +N ′n̂. (4.4)

Note that
S′ · S′′ = (m2 − 1)N ′N ′′, (4.5)

and therefore, the planes of constant phase are orthogonal to the planes of
constant amplitude either when m = 1 or when N is purely real or purely
imaginary.

So, we may write solutions of the form (4.1) in terms of C as

u = 1
2
{Aeiω(NC·x−t) + c.c.}, p∗ = 1

2
{iωNPeiω(NC·x−t) + c.c.}, (4.6)

where P = N−1Q. Now we substitute these expressions into (3.8) and (3.9).
First, equation (3.9) imposes the condition

A ·C = 0. (4.7)

A geometrical interpretation [12, §2.4] of this equation is that the orthogonal
projection of the ellipse of the bivector C onto the plane of the bivector A is
similar and similarly situated to the ellipse of A, rotated through a quadrant.
The amplitude and propagation bivectors are said to be ‘orthogonal’. For
homogeneous plane waves, the equation reduces to A · n = 0 (where n is
a real vector in the direction of propagation), which simply means that the
polarization of the wave is transverse.

Next, the equations of motion (3.8) yield

−PC + C(C·BC)A +D[(C ·C)B−1A− (A·B−1C)C] = ρN−2A. (4.8)

Taking the dot product of this last equation with C, and using equation
(4.7), yields

−P (C ·C) = 0. (4.9)

In conclusion, the propagation of small-amplitude waves of complex ex-
ponential type in a homogeneously deformed Mooney–Rivlin material is gov-
erned by the following equations,{

−PC + C(C·BC)A +D[(C ·C)1−C⊗C]B−1A = ρN−2A,
A ·C = 0, P (C ·C) = 0.

(4.10)

Now, we treat in turn the case where C is isotropic (C ·C = 0) and the
case where C is not isotropic (C ·C 6= 0).
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5 Propagating evanescent solutions, C ·C = 0

Here it is seen that corresponding to any isotropic bivector C, there exists an
infinity of linearly, circularly, and elliptically polarized inhomogeneous plane
wave solutions.

First, we note that when C ·C = 0, we have m = 1 in (4.3) and we
deduce from (4.5) that the planes of constant phase are orthogonal to the
planes of constant amplitude.

Next, the equations (4.8) and (4.9) reduce to

−PC + C(C·BC)A−D(A·B−1C)C = ρN−2A,
A ·C = 0, C ·C = 0.

(5.1)

Equations (5.1)2,3 allow us to decompose A as [12, §2.9]

A = α1C + α2C ∧ C̃, (5.2)

where α1, α2 are real constants and C̃ is the complex conjugate of C. Note
that because C is isotropic, it is written as C = m̂ + in̂ ((4.3) with m = 1)

and so, C ∧ C̃ = 2in̂ ∧ m̂ is parallel to a real vector. Substituting (5.2) in
(5.1)1 leads to two different types of solutions.

(i) First type of solution: linearly and elliptically polarized waves

Here the amplitude bivector A is given by A = α1C + α2C ∧ C̃, α2 6= 0,
where α1, α2 are real constants. The corresponding complex scalar slowness
N is given by

ρN−2 = C(C·BC), (5.3)

and the incremental pressure is given by (4.6), where

P = −α1D(C·B−1C)− α2D(C ∧ C̃) · B−1C. (5.4)

Note that in this case, A ·A = −α2
2(C · C̃)2 6= 0, and thus the wave is

not circularly-polarized. When α1 = 0, the wave is linearly-polarized in the
direction of C∧C̃. When α1 6= 0, the wave is elliptically-polarized. Also, note
that (5.3) can be written in terms of the slowness bivector S as ρ = CS·BS.
The imaginary part of this equation yields S′ · BS′′ = 0, which means that
the direction of the normal to the planes of equal phase and the direction
of the normal to the planes of equal amplitude are conjugate directions with
respect to the B-ellipsoid. This condition has been established previously for
linearly-polarized finite-amplitude inhomogeneous plane waves propagating
in a deformed Mooney–Rivlin material with an isotropic slowness bivector
[11].
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(ii) Second type of solution: circularly-polarized waves

Here the amplitude bivector A is given by A = α1C, α1 6= 0, where α1 is a
real constant, and the incremental pressure is given by (4.6), where

P = α1[C(C·BC)−D(C·B−1C)− ρN−2]. (5.5)

For this wave, the complex scalar slowness N is arbitrary (a similar situation
was encountered by Boulanger and Hayes [14]); thus the displacement, which
is the real part of ε{α1C exp iω(NC · x− t)} is independent of the material
constants C and D. Also, A ·A = α2

1(C ·C) = 0 and the wave is circularly-
polarized.

Because there is an infinity of choices for an isotropic bivector C, there
is a triple infinity of propagation, attenuation, and polarization directions
for linearly (type (i), α1 = 0), elliptically (type (i), α1 6= 0), and circularly
(type (ii)) polarized inhomogeneous plane waves of complex exponential type,
provided the slowness bivector is isotropic. This is in sharp contrast to
elliptically and circularly polarized homogeneous plane waves, which can only
propagate along an acoustic axis [7].

Now we present explicit examples of the two types of solution correspond-
ing to an isotropic propagation bivector C.

Example 1: Waves with an isotropic slowness bivector

We choose an isotropic bivector C and write the corresponding two types
of solutions. One set of solutions consists of elliptically-polarized waves, the
other set consists of circularly-polarized waves travelling with an arbitrary
speed. Let C = (3i + 5ij + 4k)/5.

For waves of type (i), we have, using (5.2), A = (3α1 + 4iα2)i + 5iα1j +
(4α1− 3iα2)k, ρN−2 = C(9λ21− 25λ22 + 16λ23)/25 and P = −D[(9λ21− 25λ22 +
16λ23)α1 + 12i(λ−21 − λ−23 )α2]/5.

If the primary finite deformation is such that 9λ21 − 25λ22 + 16λ23 > 0,
then N is real and we can write the following solution to the incremental
equations of motion in a deformed Mooney–Rivlin material (3.8):

u1 = e−ω|N |y{3α1 cosω[|N |(3x+ 4z)/5− t]− 4α2 sinω[|N |(3x+ 4z)/5− t]},
u2 = −5α1e

−ω|N |y sinω[|N |(3x+ 4z)/5− t],
u3 = e−ω|N |y{4α1 cosω[|N |(3x+ 4z)/5− t] + 3α2 sinω[|N |(3x+ 4z)/5− t]},
p∗ = 1

5
Dω|N |e−ω|N |y{α1(9λ

−2
1 −25λ−22 + 16λ−23 ) sinω[|N |(3x+ 4z)/5− t]

+12α2(λ
−2
1 − λ−23 ) cosω[|N |(3x+ 4z)/5− t]},

(5.6)
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where ω, α1, α2 are arbitrary (α2 6= 0), and

|N | = 5
√
ρ/[C(9λ21 − 25λ22 + 16λ23)]. (5.7)

This wave travels in the direction of 3i + 4k and is attenuated in the y-
direction. If 9λ21 − 25λ22 + 16λ23 > 0, then a solution is given by

u1 = e−ω|N |(3x+4z)/5{3α1 cosω[−|N |y − t]− 4α2 sinω[−|N |y − t]},
u2 = −5α1e

−ω|N |(3x+4z)/5 sinω[−|N |y − t],
u3 = e−ω|N |(3x+4z)/5{4α1 cosω[−|N |y − t] + 3α2 sinω[−|N |y − t]},
p∗ = 1

5
Dω|N |e−ω|N |(3x+4z)/5{α1(9λ

−2
1 − 25λ−22 + 16λ−23 ) sinω[−|N |y − t]
+12α2(λ

−2
1 − λ−23 ) cosω[−|N |y − t]},

(5.8)
where ω, α1, α2 are arbitrary (α2 6= 0), and |N | is again given by (5.7). This
wave travels in the direction of−j and is attenuated in the direction of 3i+4k.
In both cases (5.6) and (5.8), the wave propagates with speed |N |−1 where
|N | is given by (5.7), and is elliptically-polarized (two conjugate radii of the
ellipse are α1(3i + 4k) and 5α1j + α2(4i− 3k)).

For waves of type (ii), we have: A = α1(3i + 5ij + 4k), ρN−2 is arbitrary
and P = α1[C(9λ21 − 25λ22 + 16λ23) − D(9λ−21 − 25λ−22 + 16λ−22 ) − ρN−2]/5.
For N real, the corresponding solution is given by

u1 = 3α1e
−ωNy cosω[N(3x+ 4z)/5− t],

u2 = −5α1e
−ωNy sinω[N(3x+ 4z)/5− t],

u3 = 4α1e
−ωNy cosω[N(3x+ 4z)/5− t],

p∗ = 1
5
α1ωNe

−ωNy{ρN−2 − C(9λ21 − 25λ22 + 16λ23)

+D(9λ−21 − 25λ−22 + 16λ−23 )} sinω[N(3x+ 4z)/5− t],
(5.9)

where α1, ω and N are arbitrary. This wave travels in the direction of 3i +
4k with an arbitrary speed N−1, is attenuated in the y-direction, and is
circularly-polarized (two orthogonal radii of the circle are α1(3i + 4k) and
5α1j). The displacement field εu does not depend on the constants C and
D. It is easily checked that the solutions (5.6), (5.8), and (5.9) satisfy the
general equations of motion (3.8).

6 Propagating evanescent solutions, C ·C 6= 0

In this Section, we consider the case where the bivector C is not isotropic.
A great variety of solutions is uncovered, and a systematic method of con-
struction and classification for linearly, circularly, and elliptically polarized
waves is presented.
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When C ·C 6= 0, (4.10)3 implies that P = 0 and therefore p∗ = 0.
Equation (4.10)1 then reduces to

{C(C·BC)1 +D[(C ·C)1−C⊗C]B−1}A = ρN−2A. (6.1)

Following [7], we symmetrize this equation, using (4.7), to give the equivalent
form

Π[C(C·BC)1 +D(C ·C)B−1]ΠA = ρN−2A and A ·C = 0, (6.2)

where we have introduced the ‘complex’ projection operator Π, defined by

Π = 1− C⊗C

C ·C
. (6.3)

This operator generalizes the ‘real’ projection 1 − n ⊗ n upon the plane
n · x = 0 [7], and has the following properties: Π2 = Π, ΠC = 0 and
ΠA = A.

By inspection of (6.2), we see that solving the equations of motion, once
C is prescribed, is equivalent to finding the eigenbivectors A of the tensor
Π[C(C·BC)1 + D(C ·C)B−1]Π such that A ·C = 0, and their correspond-
ing eigenvalues ρN−2. This procedure is analogous to that used in [7] for
finite-amplitude homogeneous plane waves, with the replacement of their
real vectors of propagation n and polarization a, and their speed c with the
bivectors C and A, and the quantity N−1, respectively.

First of all, we compute the possible eigenvalues ρN−2.

6.1 Secular equation

The equations (6.2) admit solutions, provided that

det(Π[C(C·BC)1 +D(C ·C)B−1]Π− ρN−21) = 0. (6.4)

Equation (6.4) is the classical secular equation for inhomogeneous plane
waves. Because det Π = 0, then ρN−2 = 0 is one root of (6.4). The two
other eigenvalues ρN−2± (say) are the roots of the quadratic

[ρN−2 − C(C·BC)]2 −D[(C ·C)trB−1 − (C·B−1C)][ρN−2 − C(C·BC)]

+D2(C ·C)(C·BC) = 0.(6.5)

Explicitly, ρN−2± are given in terms of C alone as

2ρN−2± = 2C(C·BC) +D[(C ·C)trB−1 − (C·B−1C)]

±D
√

[(C ·C)trB−1 − (C·B−1C)]2 − 4(C ·C)(C·BC). (6.6)
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These last quantities are the two eigenvalues corresponding to the amplitude
bivectors which are orthogonal to C. Equations (6.6) generalize the corre-
sponding equations written for homogeneous waves by Boulanger and Hayes
[8], by replacing their vector of propagation n and speed c by C and N−1,
respectively. Now we establish in turn the conditions for linear, circular, and
elliptical polarization.

6.2 Linearly-polarized waves, C ·C 6= 0

Here we prove that linearly-polarized inhomogeneous waves with a non-
isotropic slowness bivector can propagate in a deformed Mooney–Rivlin ma-
terial only when they are polarized in a principal direction.

When the amplitude bivector A is parallel to a real unit vector a (linear
polarization), the incompressibility constraint (4.7) written as a · S = 0 im-
plies that the directions of propagation (S′) and attenuation (S′′) are both
orthogonal to a. Hence, we write a = αS′∧S′′, where α is such that a · a = 1.
The equations of motion (4.10) then reduce to

C(S·BS)a +D[(S · S)1− S⊗ S]B−1a = ρa, a = αS′ ∧ S′′, P = 0. (6.7)

The dot product of (6.7)1 by S̃ = S′ − iS′′ yields

(S · S)(a·B−1S̃)− (S · S̃)(a·B−1S) = 0, (6.8)

or, separating real and imaginary parts,{
(S′′ · S′′)(a·B−1S′)− (S′ · S′′)(a·B−1S′′) = 0,
(S′ · S′′)(a·B−1S′)− (S′ · S′)(a·B−1S′′) = 0.

(6.9)

Using (S′ · S′)(S′′ · S′′) − (S′ · S′′)2 = α−2a · a 6= 0, we see that this homo-
geneous linear system of two equations admits only trivial solutions, that is
a·B−1S′ = a·B−1S′′ = 0. Thus a is parallel to B−1S′ ∧ B−1S′′, so that for
some β,

a = β(B−1S′ ∧ B−1S′′) = βB(S′ ∧ S′′) = α−1βBa. (6.10)

This last equality means that a is an eigenvector of B. Therefore, provided
S is not isotropic, linearly-polarized inhomogeneous plane waves of com-
plex exponential type can propagate in a deformed Mooney–Rivlin material
only when polarized in a principal direction of the primary homogeneous
deformation. Examples of such waves are given in section 6.4. When S (or
equivalently, C) is isotropic, the inhomogeneous plane wave can be linearly-
polarized in nonprincipal directions (such as in example (5.6) when α1 = 0).
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6.3 Circularly-polarized waves, C ·C 6= 0

Here, we establish the condition for the propagation of circularly-polarized
inhomogeneous plane waves with a nonisotropic slowness bivector. From
(4.2) and (6.1), the equations governing the propagation of such waves are

C(C·BC)A +D(C ·C)B−1A−D(A · B−1C)C = ρN−2A,
A ·C = 0, A ·A = 0.

(6.11)

Taking the dot product of (6.11)1 by A yields A·B−1A = 0, or, using (3.4),

A·n± = 0. (6.12)

Therefore, A is orthogonal to n±. In other words, the planes of circular
polarization for inhomogeneous plane waves with a nonisotropic slowness
bivector are the planes of central circular section of the B−1-ellipsoid. This
is the same situation as for homogeneous plane waves [7].

From (6.11)2,3 and (6.12) it follows that the projection of the ellipse of C
onto a plane of central circular section of the B−1-ellipsoid is a circle. Note
that there is an infinity of such C.

We consider the case where A·n+ = 0 and denote the corresponding
isotropic amplitude bivector by Aθ

�. Noting that n+ is defined by (3.3), it
follows that Aθ

� is given by [12, §2.2]

Aθ
� = αeiθ(j ∧ n+ + ij), α, θ real. (6.13)

Now, because Aθ
�, Ãθ

�, and n+ are linearly independent bivectors, the
corresponding propagation bivector Cθ

� (say) can be written as Cθ
� = λAθ

�+

µÃθ
� + νn+. From (6.11)2 we have Cθ

� ·Aθ
� = µÃθ

� ·Aθ
� = 0, and therefore

µ = 0. Then from (4.3), we have Cθ
�.C

θ
� = m2 − 1 = ν2, and therefore, ν is

real and given by ν =
√
m2 − 1. Also, Cθ

� · C̃θ
� = m2 + 1 = 2λλ̃α2 + ν2, and

so |λα| = 1. We conclude that C can be written as

Cθ
� = eiθ(j ∧ n+ + ij) +

√
m2 − 1n+. (6.14)

Using (6.13) and (6.14), we compute the eigenvalue ρ(N θ
�)−2 (say) from

(6.11)1 and find that it is given by

ρ(N θ
�)−2 = Λθ

�[CΛθ
� +D

√
m2 − 1], (6.15)

where

Λθ
� = λ−22

√
m2 − 1 + eiθ

√
(λ−22 − λ−21 )(λ−23 − λ−22 ). (6.16)
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Example 2: Circularly-polarized waves

As an example of circularly-polarized solutions, we consider the case where
θ = 0. In that case, we deduce from (6.13)–(6.16) the following solution to
the equations of motion (3.8),

u1 = α sinφe−ωN
0
�y cosω(N0

�m · x− t),
u2 = −αe−ωN0

�y sinω(N0
�m · x− t),

u3 = −α cosφe−ωN
0
�y cosω(N0

�m · x− t) and p∗ = 0.

(6.17)

Here α, ω and m are arbitrary, cosφ and sinφ are defined by (3.3), N0
� is

given by (6.15)–(6.16) with θ = 0, and m is the vector defined by

m = j∧n++
√
m2 − 1n+ = (sinφ+

√
m2 − 1 cosφ)i−(cosφ−

√
m2 − 1 sinφ)k.

Note that N0
� is real, and therefore the planes of constant phase are orthog-

onal to the planes of constant amplitude (see (4.5)).
The wave described by (6.17) is circularly-polarized in the plane orthog-

onal to the acoustic axis n+, as would be the case for a homogeneous plane
wave. The wave is attenuated in the y-direction and travels with speed
(mN0

�)−1 in the direction of m, which is not along an acoustic axis, in con-
trast to homogeneous waves.

6.4 Elliptically-polarized waves, C ·C 6= 0

Now we consider elliptically-polarized waves. In order to find the planes
of polarization, we follow a procedure introduced by Boulanger and Hayes
[7] for the propagation of finite-amplitude homogeneous plane waves in a
deformed Mooney–Rivlin material. However, their method, which dealt with
real vectors, is generalized here to the case of bivectors.

We know from section 6.3 that inhomogeneous plane waves (with a non-
isotropic S) are not circularly-polarized when the projection of the ellipse of
C upon the plane orthogonal to n± is not a circle. Choosing a and b, two
unit vectors such that (n±, a, b) form an orthogonal triad, we decompose C
as C = (C · a)a + (C · b)b + (C · n+)n+, and see that we must have

(C · a)2 + (C · b)2 6= 0, or C ·C− (n+ ·C)2 6= 0. (6.18)

This last inequality is equivalent to

n±·Πn± 6= 0. (6.19)

Within this context, we seek the nonisotropic eigenbivectors A± (say) of
the tensor Π[C(C·BC)1 + D(C ·C)B−1]Π such that A± ·C = 0. We note
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that with the Hamilton cyclic decomposition (3.4) of the tensor B−1, we may
write the tensor ΠB−1Π as

ΠB−1Π = λ−22 Π− 1
2
(λ−23 − λ−21 )(Πn+ ⊗Πn− + Πn− ⊗Πn+). (6.20)

Using (6.19), we construct the bivectors H±, given by

H± =
Πn±√

n±·Πn±
, H± ·H± = 1. (6.21)

Note that ΠH± = H±, so that we may write (6.20) of the tensor ΠB−1Π as

ΠB−1Π = λ−22 Π− 1
2
(λ−23 −λ−21 )

√
(n+·Πn+)(n−·Πn−)[H+⊗H−+H−⊗H+].

From the definition (3.3) of n± and (3.4), we note that n+ ∧ n− (parallel
to j), n+ + n− (parallel to i), and n+ − n− (parallel to k) are orthogonal
eigenvectors of B−1. Similarly, it can be checked that the eigenbivectors of the
symmetric operator ΠB−1Π are C (parallel to H+∧H−) and the orthogonal
bivectors A± defined by

A± = H+ ±H− =
Πn+

√
n+·Πn+

± Πn−√
n−·Πn−

. (6.22)

Now, because ΠA± = A±, we can find the amplitude bivectors A, solutions
to (6.2), and orthogonal to the propagation bivector C. They are the two
bivectors A± given by (6.22) and their corresponding eigenvalues ρN−2± are
given by (6.6), or in this case, by

ρN−2± = C(C·BC) +
D

2
(C ·C){(λ−23 + λ−21 )

+ (λ−23 − λ−21 )[
(n+ ·C)(n− ·C)

C ·C
∓
√

(n+·Πn+)(n−·Πn−)]}.

We note that

ρ(N−2+ −N−2− ) = −D(C ·C)(λ−23 − λ−21 )
√

(n+·Πn+)(n−·Πn−), (6.23)

= −D(C ·C)(λ−23 − λ−21 )

√[
1− (n+ ·C)2

C ·C

][
1− (n− ·C)2

C ·C

]
.

When the bivector C and the complex quantities N−1± are replaced by n
(direction of propagation) and c1, c2 (speeds) for homogeneous waves, this
equation reduces to ρ(c22− c21) = D(λ−23 −λ−21 ) sinφ+ sinφ− [7], where φ± are
the angles between n and n±. This in turn is reminiscent of the ‘law of the
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product of the two sines’ (la loi du produit des deux sinus), for the propa-
gation of light through a biaxial crystal in classical linear optics, established
empirically by Biot [20] in 1818 and theoretically by Fresnel [21] in 1821.

From (6.23) and (6.19), we see that here, the eigenvalues are distinct
and therefore neither A+ nor A− is isotropic [12, §3.2]. This means that,
as expected, the waves corresponding to these amplitudes are elliptically-
polarized [16] (and not circularly-polarized). In this connection, it may be
recalled that [15] finite-amplitude inhomogeneous plane waves of complex ex-
ponential type can only be linearly-polarized (and not elliptically-polarized),
when they propagate in an incompressible elastic material. Here this restric-
tion is removed because we are dealing with small -amplitude inhomogeneous
plane waves.

Finally, using (6.1) and the fact that A± ·A± 6= 0, we can write ρN−2± in
terms of C and A± as

ρN−2± = C(C·BC) +D(C ·C)
A± · B−1A±

A± ·A±
. (6.24)

For homogeneous plane waves, these expressions reduce to results established
by Boulanger and Hayes [7]: replacing N−2± with their squared wave speeds
c1, c2, and the bivectors C and A± by their real unit vectors n, a, and b,
respectively, the expressions are transformed into ρc21 = C(n·Bn)+D(a·B−1a)
and ρc22 = C(n·Bn) +D(b·B−1b).

We now write down explicit examples of elliptically-polarized waves.

Example 3: Elliptically-polarized waves

In this example, we present waves propagating in a principal direction with
attenuation in another principal direction. It is seen that for one solution,
the wave is elliptically-polarized in the plane of the slowness bivector, while
for the other solution, the wave is linearly-polarized in the direction normal
to the plane of the slowness bivector.

We take C = mi + ij with m > 1.
For waves corresponding to the eigenvalue ρN−2+ , we have for the ampli-

tude: A+ = α(i+ imj), with eigenvalue: ρN−2+ = C(m2λ21−λ22)+D(m2λ−22 −
λ−21 ), so that the corresponding solution is given, for N+ real, by

u1 = αe−ωN+y cosω(mN+x− t),
u2 = −αme−ωN+y sinω(mN+x− t),
u3 = 0 and p∗ = 0,

(6.25)

where ω, α and m are arbitrary (m > 1), and

N+ =
√
ρ/[C(m2λ21 − λ22) +D(m2λ−22 − λ−21 )]. (6.26)
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For waves corresponding to the eigenvalue ρN−2− , we find the amplitude
to be: A− = αk, with eigenvalue: ρN−2− = C(m2λ21 − λ22) + D(m2 − 1)λ−23 ,
and the corresponding solution is given, for N− real, by

u1 = 0, u2 = 0, u3 = αe−ωN−y cosω(mN−x− t), p∗ = 0, (6.27)

where ω, α and m are arbitrary (m > 1), and

N− =
√
ρ/[C(m2λ21 − λ22) +D(m2 − 1)λ−23 ]. (6.28)

The waves described by (6.25) and (6.27) propagate in the x-direction
with speed (mN±)−1, where m is prescribed and N± is given by (6.26) and
(6.28), respectively. They are attenuated in the y-direction. The wave given
by (6.25) is elliptically-polarized in the xy-plane (two conjugate radii of the
ellipse are αi and mαj); the wave given by (6.27) is linearly-polarized in the
z-direction.

Example 4: Elliptically-polarized waves

Our next example is a wave solution propagating along an acoustic axis with
attenuation in the direction orthogonal to the acoustic axes.

Let C =
√

2n+ + ij =
√

2 cosφi + ij +
√

2 sinφk, where 2φ is the angle
between the acoustic axes, defined by (3.3). After some calculation, we write
another explicit solution to the incremental equations of motion (3.8) as

u1 = [−1± 1− 2 cos 2φ√
cos 4φ

] cosφ e−ωN±y sinω(
√

2N±n+ · x− t),

u2 = −
√

2[1± cos 2φ√
cos 4φ

]e−ωN±y cosω(
√

2N±n+ · x− t), (6.29)

u3 = [−1∓ 1 + 2 cos 2φ√
cos 4φ

] sinφ e−ωN±y sinω(
√

2N±n+ · x− t) and p∗ = 0,

where ω is arbitrary, φ and n+ are defined by (3.3), and

ρN−2± = C(2λ−42 −λ22)+D
2
{λ−23 +λ−21 +(λ−23 −λ−21 )[2 cos 2φ∓

√
cos 4φ]}. (6.30)

The waves described by (6.29) propagate in the direction of the acous-
tic axis n+ with speed (

√
2N±)−1, where N± is given by (6.30). They are

attenuated in the y-direction, and are elliptically-polarized.
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Example 5: Elliptically-polarized waves

Our last examples are inhomogeneous plane waves for which the planes of
constant phase are not orthogonal to the planes of constant amplitude.

Let C = mp + iq (m > 1), where

p = cos θi + sin θk, q = sin θi− cos θk, 0 < θ < π/2. (6.31)

The corresponding slowness bivector S = NC has real and imaginary parts
given by

S′ = mN ′p−N ′′q, S′′ = mN ′′p +N ′q. (6.32)

It is found from (6.22) that the amplitude bivectors A± are given by

A+ = α(mq− ip), A− = αj. (6.33)

Corresponding to A+, we have the inhomogeneous wave,

u = αe−ωS
′′·x[mq cosω(S′ · x− t) + p sinω(S′ · x− t)]. (6.34)

The directions of propagation and attenuation are those of S′ and S′′, given
by (6.32), where N ′ and N ′′ are the real and imaginary parts of N , which is
given from (6.24) by

ρN−2 = C[m2(p·Bp)− (q·Bq)] +D
m2 − 1

m2 + 1
[m2(q·B−1q)− (p·B−1p)]

+ 2im[C(p·Bq)−Dm
2 − 1

m2 + 1
(p·B−1q)].

This wave propagates in the direction of S′ with speed |S′|−1, is attenuated
in the direction of S′′, and is elliptically-polarized (two conjugate radii of the
ellipse are mp and q).

Corresponding to A−, we have the wave

u = αje−ωS
′′·x cosω(S′ · x− t). (6.35)

Here, the respective directions of propagation and attenuation are those of
S′ and S′′, given by (4.4), where N ′ and N ′′ are the real and imaginary parts
of N , which is given from (6.24) by

ρN−2 = C[m2(p·Bp)− (q·Bq)] +D(m2 − 1)λ−22 + 2im(p·Bq). (6.36)

This wave propagates in the direction of S′ with speed |S′|−1, is attenuated in
the direction of S′′, and is linearly-polarized in the y-direction. In this connec-
tion, it may be noted that finite-amplitude linearly-polarized inhomogeneous
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plane waves of complex exponential type can propagate in a homogeneously
deformed Mooney–Rivlin material only when the planes of constant phase
(orthogonal to S′) are orthogonal with the planes of constant amplitude (or-
thogonal to S′′) [11]. Here, from (6.32), we have S′ · S′′ = (m2−1)N ′N ′′ 6= 0,
and these planes are not orthogonal to each other. This is possible because
we are dealing with small -amplitude inhomogeneous waves only.

7 Summary and concluding remarks

We have found all possible inhomogeneous small-amplitude motions of com-
plex exponential type that can be superimposed upon the large homogeneous
static deformation of a Mooney–Rivlin material. The results are summarized
in Tables 1 and 2, where the solutions of exponential sinusoidal form are listed
for inhomogeneous plane waves with an isotropic and a nonisotropic bivector
C, respectively. In the last column of the tables, it is recalled whether or not
each motion is possible with a finite amplitude, and the corresponding refer-
ence is given. In the second column, the equation numbers of corresponding
examples in this paper are given. Thus for instance, line 1.3 reads as follows:
a small-amplitude circularly-polarized inhomogeneous plane wave of com-
plex exponential type with isotropic propagation bivector C can propagate
in a homogeneously deformed Mooney–Rivlin material; for this wave, the
amplitude bivector A is isotropic and orthogonal to C; an example of such
solution is given by equation (5.9); also note that A is parallel to C and that
the complex scalar slowness N is arbitrary; finally, such a finite-amplitude
wave solution is not possible in a homogeneously deformed Mooney–Rivlin
material (see [15]).

Through the use of bivectors, all inhomogeneous solutions of complex
exponential type for the problem of small deformations superposed on a large
static triaxial strain of a Mooney–Rivlin incompressible hyperelastic material
were obtained systematically. A great diversity and richness of solutions was
uncovered, using the Directional Ellipse method [16].

For inhomogeneous waves with an isotropic slowness bivector (§5), any
direction of polarization or plane of polarization is permitted for linear or
elliptical polarization, respectively; also, for circular polarization the complex
scalar slowness can be arbitrarily prescribed.

For inhomogeneous waves with a nonisotropic slowness bivector (§6), the
secular equation was established and solved (§6.1), generalizing the secular
equation for homogeneous waves [8]. Then it was seen that such linearly-
polarized waves (§6.2) can only propagate along one of the principal axes
of the finite static stretch; that circularly-polarized waves (§6.3) can only
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Polarization Type Displacement Notes Finite case?

1.1 Linear {Aeiω(NC·x−t) + c.c.},
A ·C = 0, A ∧ Ã = 0. A = α2C ∧ C̃, yes [11]

Example: (5.6) with α1 = 0

1.2 Elliptical {Aeiω(NC·x−t) + c.c.},
A ·C = 0, A ·A 6= 0. A = α1C + α2C ∧ C̃

Example: (5.6) with α1 6= 0 no [15]

1.3 Circular {Aeiω(NC·x−t) + c.c.},
A ·C = 0, A ·A = 0. A = α1C,

Example: (5.9) N is arbitrary.

Table 1: Inhomogeneous plane waves, C isotropic (C ·C = 0)

Polarization Type Displacement Notes Finite case?

2.1 Linear {Aeiω(NC·x−t) + c.c.}, A along only when

A ·C = 0, A ∧ Ã = 0. principal axis S′ · S′′ = 0,
Examples: (6.27), (6.35) of basic strain (S = NC) [11]

2.2 Elliptical {Aeiω(NC·x−t) + c.c.},
A ·C = 0, A ·A 6= 0. (n± ·C)2 6= C ·C

Examples:
(6.25), (6.29), (6.34) no [15]

2.3 Circular {Aeiω(NC·x−t) + c.c.},
A ·C = 0, A ·A = 0. A · n± = 0

Example: (6.17)

Table 2: Inhomogeneous plane waves, C nonisotropic (C ·C 6= 0)
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be polarized in one of the two planes of central circular section of the B−1-
ellipsoid, but can propagate in directions other than the directions of the
acoustic axes of this ellipsoid; and that all elliptically-polarized wave solutions
(§6.4) can be obtained by generalizing a method introduced in [7] to the
consideration of bivectors.

Also, in contrast to the case of finite-amplitude inhomogeneous plane
waves [11, 15], it was seen (§5 and §6.4) that elliptical polarization is possi-
ble, and that for waves linearly-polarized in a principal direction (§6.2 and
Example 5), the planes of constant phase need not be orthogonal to the
planes of constant amplitude.

Finally, it is of interest to note that the results established here can easily
be specialized to the case of a biaxial pure homogeneous static prestrain,
simply by taking λ1 = λ2 = λ (say), and λ3 = µ = λ−2 (say). In that case,
the tensor ΠB−1Π may be written as [7]

ΠB−1Π = λ−2Π− (λ−2 − µ−2)Πk⊗Πk. (7.1)

It follows that the computation of the amplitude bivectors and correspond-
ing complex scalar slownesses is greatly simplified, and that the results of
Boulanger and Hayes [14] are directly recovered from the analysis presented
here.
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