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Abstract

The propagation of surface acoustic waves in a rotating anisotropic
crystal is studied. The crystal is monoclinic and cut along a plane
containing the normal to the symmetry plane; this normal is also the
axis of rotation. The secular equation is obtained explicitly using the
“method of the polarization vector”, and it shows that the wave is
dispersive and decelerates with increasing rotation rate. The case of
orthorhombic symmetry is also treated. The surface wave speed is
computed for 12 monoclinic and 8 rhombic crystals, and for a large
range of the rotation rate/wave frequency ratio.
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1 Introduction

Introduced more than thirty years ago, Surface Acoustic Wave (SAW) de-
vices have been used with great success by the telecommunication industry:
nowadays, they are produced in large quantities (several billions per year)
and used in wireless transmission and reception technology for color televi-
sion sets, cell phones, global positioning systems, etc. In recent years, new
applications for SAW devices have emerged, namely acoustic sensors, which
are passive (no power supply is needed), resistant, almost non-aging, cheap
(only one photo-lithographic process is involved in the production), light (less
than 1g) and can be operated remotely and wirelessly. For instance [1] SAW
identification tags are used for highway toll collection in Norway and for the
Munich subway system; SAW temperature sensors can achieve a resolution
of 0.02oC from −196oC up to 500oC; wide ranges and fine resolutions are also
achieved for pressure, torque, or current sensors; etc. Also, the automotive
industry is engaged in the search for an “intelligent tire” which could provide
direct information on its current state as the car is moving; in this context
SAW sensors have been used to measure tire pressure [2] or friction [3] as the
wheel rotates. In general, SAW devices may be used as angular rate sensors
(gyroscopes) to measure frequency shifts due to the rotation [4, 5, 6]. In the
present paper, an investigation of the effect of rotation upon the speed of
surface (Rayleigh) waves in an anisotropic crystal is presented.

The crystal may possess as little as a single plane of symmetry. It is cut
along any plane containing the normal to the symmetry plane and is assumed
to rotate at a constant rate about this normal. The surface wave is polarized
in the symmetry plane. In other words, it suffices to consider the propagation
of a surface wave in the x1 direction of a monoclinic crystal with symmetry
plane at x3 = 0, cut along the x2 = 0 plane, and rotating about the x3-
axis (see Fig. 1). The secular equation for rotating materials was obtained
by others but in simpler settings: by Clarke and Burdess in an isotropic
material, first for small rotation rate/wave frequency ratios [4], then for any
ratio [5]; by Grigor’evskĭi, Gulyaev, and Kozlov [7] also for isotropic materials
but neglecting the centrifugal force; and by Fang, Yang, and Jiang [6] for
crystals having tetragonal symmetry. Here, the analysis is fully developed
for crystals with a single symmetry plane, up to the derivation of the secular
equation in explicit form, that is an equation giving the Rayleigh wave speed
in terms of the elastic parameters and of the rotation rate.

The equation is reached in Section 3, after the governing equations have
been written down in Section 2. The secular equation turns out to be a
polynomial of degree 8 for the squared wave speed and also for the squared
rotation rate/wave frequency ratio. In the simpler case of orthorhombic sym-
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metry (Section 4), the polynomial is of degree 6. The Rayleigh wave speed
is computed numerically for 20 specific anisotropic materials (12 monoclinic,
8 orthorhombic) and for a rotation rate/wave frequency ratio varying from 0
to 10. Of course, this range is way beyond the elastic behavior limit, and is
irrealistic for pratical purposes where the frequency of a SAW device is typi-
cally in the 100kHz-10MHz range. It is presented to show that the method of
resolution is exact and not approximate, applies for any rate of rotation, and
that in contrast with the non-rotating case, the secular equation is dispersive.
At small rotation rates, and for certain crystals such as PZT-5, other papers
[6, 8] show that the Rayleigh wave speed may at first increase slightly with
the rotation frequency/wave frequency ratio. At large ratios, it is seen here
that the wave speed decreases with increasing ratios. These variations are
crucial to the understanding and correct design of rotating SAW sensors or
SAW signal processing devices. A recent article [9] describes the manufac-
turing of a 1 cm × 1 cm SAW gyroscope and how the rotation rate may be
measured using SAW technology. Another example that springs to mind is
that of “spinning missiles” [10] for which it is reasonnable to speculate that
the communication is ensured via SAW generation and processing of high-
frequency signals modified by the rotation. Finally in Section 5, the merits of
several methods of derivation for the secular equation in non-rotating crys-
tals are discussed. This paper aims to provide a theoretical and analytical
framework for the study of surface acoustic waves in rotating crystals.

2 Basic Equations

We consider a half-space x2 ≥ 0 occupied by a homogeneous anisotropic crys-
tal possessing one plane of symmetry at x3 = 0, and rotating at a constant
angular velocity Ω about the x3-axis. We study the propagation of a surface
(Rayleigh) wave in the x1-direction, with attenuation in the x2-direction. In
the rotating Cartesian frame (Ox1, Ox2, Ox3) ≡ (O, i, j,k), the equations of
motion are [11]

div σ = ρu,tt + 2ρΩk× u,t + ρΩ2k× (k× u), (1)

where σ is the Cauchy stress tensor, ρ is the constant mass density of the
material, and the comma denotes differentiation. The second term in the
right hand-side of Eq.(1) is due to the Coriolis acceleration, the third is due to
the centrifugal acceleration. Note that Eq.(1) represents the time-dependent
part of the full equations of motion. The time-independent part, namely div
σs = ρΩ2k×[k×(us+x)], where us = us(x) and σs

ij = cijklu
s
l,k must be solved

separately. The questions remain of (a) whether an actual time-independent
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solution exists for all Ω and if it does, of (b) whether the boundary conditions
of a traction-free rotating half-space may be satisfied without perturbating
the time-dependent boundary value problem. These questions do not seem
to have been addressed in the literature, but some preliminary work seem
however to suggest that (a) and (b) may be answered positively, at least
within the framework of small amplitude waves superimposed upon a large
elastic deformation.

Now, turning back to the time-dependent equations (1), the mechanical
displacement u is taken in the form

u(x1, x2, x3, t) = U(kx2)e
ik(x1−vt), (2)

showing a sinusoidal propagation with speed v and wave number k in the x1-
direction, and the possibility of an attenuation in the x2-direction through
the unknown function U(kx2).

We wish to describe the influence of the frame rotation upon the speed
of Rayleigh waves, and to this end, we introduce the following quantities,

X = ρv2, δ = Ω/(kv) = Ω/ω,

where ω is the real frequency of the wave.
For two-dimensional motions (∂u/∂x3 = 0) such as Eq.(2), the anisotropy

of a crystal possessing x3 = 0 as a symmetry plane is described by the
following strain-stress relationship [12]:

ε11
ε22
2ε23
2ε31
2ε12

 =


s′11 s′12 0 0 s′16

s′22 0 0 s′26
s′44 s′45 0

s′55 0
s′66



σ11
σ22
σ23
σ31
σ12

 ,
where the strain components εij are defined in terms of the displacement
components by: 2εij = ui,j + uj,i, and the s′ij are the reduced compliances.
Alternatively, the equivalent strain-stress relations can be used [12, p.39],

σo = Coεo, Cos′ = 1, (3)

where σo = [σ11, σ22, σ23, σ31, σ12]
T , εo = [ε11, . . . , 2ε12]

T. The Co
ij are ele-

ments, in the Voigt notation, of the fourth-order elastic stiffness tensor Cijkl.
Table 1 shows the relevant reduced compliances of 12 different monoclinic
crystals, computed from the corresponding stiffnesses as collected by Chad-
wick and Wilson [13]; the last column gives the corresponding Rayleigh wave
speed in the non-rotating case [14].
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In view of the form Eq.(2) for the displacement, we introduce the functions
t1, t2 for the tractions σ12, σ22 on the planes x2=const. as,

σ12(x1, x2, x3, t) = ikt1(kx2)e
ik(x1−vt), σ22(x1, x2, x3, t) = ikt2(kx2)e

ik(x1−vt).

Then, substituting Eqs.(2) and (3) into the equations of motion (1), we derive
the following system of linear first-order differential equations for U1, U2, t1,
t2, [

U′

t′

]
= i

[
N1 N2

Ň3 + (1 + δ2)X1 N1
T

] [
U
t

]
, (4)

where U = [U1, U2]
T, t = [t1, t2]

T, and the prime denotes differentiation with
respect to kx2. Note that, as in the static case [15], the anti-plane strain
(stress) decouples from the plane strain (stress) and need not be considered
for this problem. This decoupling would not occur if the the crystal was
rotating about the x1-axis or the x2-axis [6].

The surface x2 = 0 is free of tractions and so, the boundary conditions
are

t1(0) = t2(0) = 0. (5)

In Eq.(4), N1 and N2 are the same as the 2× 2 submatrices of the 6× 6
fundamental elasticity matrix N from Ingebrigsten and Tonning [16]. Their
real matrix N3 however has been modified by the introduction of off-diagonal
pure imaginary terms. Explicitly, we have

−N1 =

[
r6 1
r2 0

]
, N2 =

[
n66 n26

n26 n22

]
, −Ň3 =

[
η 2iδX

−2iδX 0

]
,

where the quantities r2, r6, n22, n26, n66, η are given in terms of the elastic
parameters as [14, 17]

η =
1

s′11
, r6 = −s

′
16

s′11
, r2 = −s

′
12

s′11
,

n66 =
1

s′11

∣∣∣∣s′11 s′16
s′16 s′66

∣∣∣∣ , n22 =
1

s′11

∣∣∣∣s′11 s′12
s′12 s′22

∣∣∣∣ , n26 =
1

s′11

∣∣∣∣s′11 s′16
s′12 s′26

∣∣∣∣ .
Thus the rotation of the crystal perturbs the equations of motion in three
ways: the introduction of dispersion through δ; a shift of magnitude δ2 in
X = ρv2 for the lower left submatrix of N proportional to the 2 × 2 unit
matrix; and the modification of N3, which is diagonal in the non-rotating

case (note that the new matrix Ň3 is Hermitian: Ň3 = ŇT
3 .) Despite these

modifications, the secular equation can be obtained explicitly for the surface
wave speed, using a method proposed by Currie [18] and by Taziev [19]
for non-rotating anisotropic crystals with and without a plane of symmetry,
respectively.
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3 Secular Equation

The method of the polarization vector was first presented by Currie [18] to
derive the secular equation for Rayleigh waves in the symmetry plane of
monoclinic non-rotating crystals. Then Taziev [19] generalized the method
to triclinic (no symmetry plane) crystals. This method takes advantage of
the Cayley-Hamilton theorem for the fundamental matrix N, which implies
that only n matrices Nk (k = 1, . . . , n) are linearly independent (n = 3 for
monoclinic crystals, n = 5 for triclinic crystals). Currie used the matrices
N, N2, N3; Taziev, the matrices N, N2, N3, N4, N5. Recently, Ting [20]
placed their results within the context of the Stroh-Barnett-Lothe formal-
ism and improved on them by showing that the choices of N−1, N, N2 for
monoclinic crystals and of N−2, N−1, N, N2, N3 for triclinic crystals lead
to simpler and more explicit secular equations. His approach is now adapted
to our present context of a rotating crystal with one symmetry plane. An
alternative derivation, not based on the Stroh-Barnett-Lothe formalism, is
available elsewhere [21, 22].

We seek solutions to the equations of motion Eq.(4) presenting exponen-
tial decay with distance

U(kx2) = aeikpx2 , t(kx2) = beikpx2 , =(p) > 0,

where the constant vectors a and b are related through [12, p.139]: bi =
(Ck1i1 + pCi2k2)ak. Then the equations of motion Eq.(4) give

p

[
a
b

]
= Ň

[
a
b

]
, (6)

where Ň is the 4 × 4 matrix in Eq.(4). This eigenvalue problem yields a
quartic for p. We limit our investigation to the subsonic range, defined as
the greatest interval of values for v where the determinant of Ň−p1 possesses
two roots p1, p2, with positive imaginary parts. We call a1, a2, and b1, b2,
the vectors a and b corresponding to each root. Then the solution is of the
form [12, p.141]

U = A < eikp
∗
> q, t = B < eikp

∗
> q, < eikp

∗
>= diag (eikp1x2 , eikp2x2),

where A = [a1, a2], B = [b1,b2], and q is a constant vector. Using the
boundary conditions Eq.(5), we have at the free surface x2 = 0,

Bq = 0, and u(x1, 0, x3, t) = aRe
ik(x1−vt), aR = Aq. (7)

Moreover, the matrices A and B satisfy the orthogonality condition [23],

B
T
A + A

T
B = 0. (8)
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Now, the eigenrelation Eq.(6) may be generalized for any positive or neg-
ative integer n as

pn
[
a
b

]
= Ňn

[
a
b

]
, where Ňn =

[
N

(n)
1 N

(n)
2

Ǩ(n) N
(n)
1

T

]
(say). (9)

Explicitly, the elements of Ňn are computed by multiplication of Ň or its
inverse by itself. For instance, Ǩ(n) for n = 1, 2,−1 is given by Ǩ(1) =
Ň3 +X(1 + δ2)1,

Ǩ
(2)
11 = −2s′16[1− s′11(1 + δ2)X]/s

′2
11,

Ǩ
(2)
12 = [1− (s′11 − s′12)(1 + δ2)X − 2is′16δX]/s′11,= Ǩ

(2)
21 ,

Ǩ
(2)
22 = 0, (10)

and

Ǩ
(−1)
11 = −[s′22(1 + δ2)− (s′11s

′
22 − s

′2
12)(1− δ2)2X]X/D,

Ǩ
(−1)
12 = [s′26(1 + δ2) + 2is′12δ + (s′12s

′
16 − s′11s′26)(1− δ2)2X]X/D = Ǩ

(−1)
21 ,

Ǩ
(−1)
22 = [1− (s′11 + s′66)(1 + δ2)X + (s′11s

′
66 − s

′2
16)(1− δ2)2X2]/D, (11)

where D is a real denominator common to the K
(−1)
ij whose expression is too

long to reproduce and which turns out to be irrelevant for the derivation of
the secular equation.

Now we write in turn the second vector line of Eq.(9)1 for p1 and for p2,
and deduce

Ǩ(n)A + Ň1
(n)

B = B diag (p1, p2).

Multiplying this equality to the left by aR
T = qTA

T
and to the right by q,

and using Eqs.(7),(8), we conclude that (see [20] for the non-rotating case),

aR
TǨ(n)aR = 0. (12)

At n = −1, 1, 2, and aR = [1, α]T (say), three equations follow:

Ǩ
(−1)
12 α + Ǩ

(−1)
12 α + Ǩ

(−1)
22 αα = −Ǩ(−1)

11 ,

Ǩ
(1)
12 α + Ǩ

(1)
12 α + Ǩ

(1)
22 αα = −Ǩ(1)

11 ,

Ǩ
(2)
12 α + Ǩ

(2)
12 α = −Ǩ(2)

11 .
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We re-arrange this system as: Fikgk = hi, by introducing the following quan-
tities,

F11 = D<(Ǩ
(−1)
12 ), F12 = D=(Ǩ

(−1)
12 ), F13 = DǨ

(−1)
22 ,

F21 = 0, F22 = s′11=(Ǩ
(1)
12 ), F23 = s′11Ǩ

(1)
22 ,

F31 = s′11<(Ǩ
(2)
12 ), F32 = s′11=(Ǩ

(2)
12 ), F33 = 0,

g1 = α + α, g2 = i(α− α), g3 = αα,

h1 = −DǨ(−1)
11 , h2 = −s′11Ǩ

(1)
11 , h3 = −s′11Ǩ

(2)
11 .

Note that the explicit expressions for the non-dimensional quantities Fik and
hi in terms of X = ρv2, δ = Ω/ω, and the s′ij are easily read off Eqs.(10),(11).
For instance, F12 = 2s′12δX, F32 = −2s′16δX, h2 = 1 − s′11(1 + δ2)X, and so
on.

The linear non-homogeneous system Fg = h has a unique solution for g.
Introducing ∆ = det F and ∆k (k = 1, 2, 3), the determinant of the matrix
obtained from F by replacing its k-th column with h, we write the solution
as gk = ∆k/∆. But the components of g are related one to another through
g3 = (g1/2)2 + (g2/2)2. This relation is the explicit secular equation for
Rayleigh waves on an anisotropic crystal rotating in its plane of symmetry,

∆2
1 + ∆2

2 − 4∆3∆ = 0. (13)

This equation is a polynomial of degree 8 in X = ρv2, and also of degree 8
in δ2. Because δ = Ω/ω appears only in even powers in the secular equation,
the Rayleigh speed obtained as a root of Eq.(13) does not depend on the
sense of rotation. Numerically, we find that the rotation slows the Rayleigh
wave down and that the speed is a monotone decreasing function of δ. We see
this behavior on Fig. 2, where the dependence of the Rayleigh wave speed
upon δ is shown for the 12 monoclinic crystals from Table 1. The curves
are arranged in the same order as in the Table, from the slowest (diphenyl,
starting at 1276 m/s) to the fastest (diallage, starting at 4000 m/s).

The secular equation is valid for any crystal possessing at least one plane
of symmetry, as long as the half-space is cut along a plane containing the
normal to the plane of symmetry. In particular, it is also valid for orthorhom-
bic crystals when the plane of cut contains one of the crystallographic axes.
When this plane contains two crystallographic axes, the secular equation
factorizes and a separate treatment is required.

4 Orthorhombic Materials

When the material possesses three orthogonal planes of symmetry and the
axes (O, i, j,k) are aligned with the crystallographic axes, some compliances
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vanish: s′16 = s′26 = 0. Table 2 lists the values of the relevant reduced
compliances for 8 rhombic crystals, computed from the corresponding values
of the stiffnesses as collected by Shutilov [24]. The corresponding Rayleigh
wave speed vR in the non-rotating case (last column) is found from the exact
secular equation [27],

(1−Xs′11)
√

1−Xs′66 −X
√
s′11[s

′
22 −X(s′11s

′
22 − s

′2
12)] = 0.

When the frame is rotating, the system Fg = h reduces to 0 F12 F13

0 F22 F23

F31 0 0

g1g2
g3

 =

h1h2
0

 ,
where F31 6= 0 and

F12 = 2s′12δX, F13 = 1− (s′11 + s′66)(1 + δ2)X + s′11s
′
66(1− δ2)2X2,

F22 = −2s′11δX, F23 = s′11(1 + δ2)X,
h1 = [s′22(1 + δ2)− (s′11s

′
22 − s

′2
12)(1− δ2)2X]X, h2 = 1− s′11(1 + δ2)X.

From this new system of equations, we deduce that g2 = ∆̂2/∆̂ and g3 =
∆̂3/∆̂, where

∆̂ = F12F23 − F22F13, ∆̂2 = h1F23 − h2F13, ∆̂3 = F12h2 − F22h1,

and also that g1 = α + α = 0, implying that g2 = 2iα, g3 = −α2 = (g2/2)2

as well. This last equality is the explicit secular equation for Rayleigh waves
on an orthorhombic crystal rotating in one plane of symmetry,

∆̂2
2 − 4∆̂3∆̂ = 0.

This equation is a polynomial of degree 6 in X = ρv2 and in δ = Ω/ω. As
in the monoclinic case above, the roots are even functions of δ. Numerically,
the results are similar to those of the monoclinic case, as Fig. 3 shows for
the eight orthorhombic crystals of Table 2. Again, the curves are arranged
in the same order as in the Table, from the slowest (sulfur, starting at 1628
m/s) to the fastest (benzophenone, starting at 4723 m/s).

5 Concluding Remarks

Several methods have been proposed to derive explicitly the secular equa-
tion for surface waves in non-rotating monoclinic crystals with the plane
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of symmetry at x3 = 0. This Author [14] wrote the equations of motion
as a system of two second-order differential equations for the tractions t:
α̂ikt

′′
k − iβ̂ikt′k − γ̂iktk = 0, where α̂, β̂, γ̂ are 2× 2 real symmetric matrices.

Then the method of first integrals [25] yields the secular equation. The equa-
tions of motion Eq.(4) may also be written in a similar manner for a rotating

crystal, but α̂, β̂, γ̂ become complex and the method of first integrals is
no longer applicable as such. Next, Ting [17] assumed an exponential form
for t(kx2) and obtained the secular equation through some simple algebraic

manipulations, taking advantage of the fact that α̂12 = β̂22 = 0; in the ro-
tating case however, these quantities are no longer zero. Furs [26] (using the
displacement field) and this Author [27] (using the traction field) devised
yet another method, where the secular equation is the resultant of two poly-
nomials; again, having real quantities for the components of N is a crucial
property, no longer true for rotating crystals.

All in all, it seems that the method of the polarization vector is the most
appropriate for the case of a rotating crystal. Note that a simple derivation
of its main result (12), not relying on the Stroh formalism, was presented
recently [21, 22].
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Figure 1: Monoclinic crystal with symmetry plane at x3 = 0, cut along
x2 = 0, and rotating about x3 at constant angular velocity Ω.
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Table 1. Values of the reduced compliances (10−12 m2/N), density (kg/m3),
and (non-rotating) surface wave speed (m/s) for 12 monoclinic crystals.

material s′11 s′22 s′12 s′16 s′26 s′66 ρ vR

diphenyl 854 1858 -366 -698 -1.44 5049 1114 1276
tin fluoride 345 228 -59.2 -197 120 922 4875 1339
tartaric acid 343 211 -164 -223 301 1650 1760 1756
oligoclase 133 227 -108 97.0 -160 483 2638 2413
microcline 94.5 165 -35.1 47.2 1.69 446 2561 2816
gypsum 243 130 -68.6 32.9 28.1 326 2310 3011
hornblende 63.3 103 -32.7 -15.8 -2.72 320 3120 3049
aegirite-augite 53.6 78.4 -21.0 -10.6 -33.5 237 3420 3382
epidote 53.3 49.6 -11.3 17.7 -3.74 237 3400 3409
augite 54.5 64.4 -19.5 -19.0 -15.7 211 3320 3615
diopside 53.1 58.6 -20.1 24.0 6.98 186 3310 3799
diallage 49.8 69.1 -11.3 -6.88 -14.5 166 3300 4000
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Figure 2: Rayleigh wave speeds for 12 monoclinic crystals rotating about x3.
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Table 2. Values of the reduced compliances (10−12 m2/N), density (kg/m3),
and (non-rotating) surface wave speed (m/s) for 8 orthorhombic crystals.

material s′11 s′22 s′12 s′66 ρ vR

sulfur 65.1 76.2 -42.2 132 2070 1628
iodic acid 36.1 20.1 -7.88 57.5 4630 1678
α-uranium 4.89 5.29 -1.13 13.5 19000 1819
rochelle salt 49.3 33.0 -18.2 102 1775 2114
sodium-tartrate 32.1 27.1 -16.8 102 1818 2197
strotium formate 24.5 30.9 -7.32 58.1 2250 2451
olivine 3.26 5.34 -0.97 12.6 3324 4599
benzophenone 13.0 13.9 -7.17 27.9 1219 4723
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Figure 3: Rayleigh wave speeds for 8 rhombic crystals rotating about x3.
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