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Abstract

The recent development of high-throughput genomics techniques and their
subsequent applications have completely transformed the study of biology. The
analysis, interpretation and storage of the resulting large volumes of data have
created a wide range of computational challenges and opportunities that have
driven the majority of recent bioinformatics research. In this thesis we focus on
four research questions grounded in functional genomics and epigenomics, yielding
novel methodologies and biological insights.

The first research question relates to whether miRNA activity, as a general
regulatory effect, is a heritable trait. To do this, we used Affymetrix Human
Exon Microarray and RNA-seq data from the International HapMap project. We
confirmed such an association in humans using the regulatory effect score (RE-
score) of a miRNA, which has previously been defined as the difference in the gene
expression rank of targets of the miRNA compared to non-targeted genes. We also
identified a SNP in the miRNA processing gene DROSHA, which is associated with
inter-individual difference in miRNA regulatory effect.

During this analysis we noted that correlations between gene expression mea-
sures from RNA-seq and gene expression microarray platforms were often rela-
tively poor. This led us to develop a method to improve the estimation of gene
expression from microarrays. Our method uses samples for which there is both
microarray and RNA-seq data available and builds statistical models which learn
the relationship between probe level gene expression, as measured by the microar-
rays, and gene level expression, as measured by RNA-seq. These models can
then be used to estimate gene expression on separate sets of microarray samples.
We have assessed the performance of our method in comparison to Affymetrix
Power Tools (APT). To do this, we fitted models for all genes on a training set
of the HapMap YRI samples and tested performance on the HapMap CEU (both
microarray and RNA-seq data are available for all of these samples). Overall,
our method improves within sample correlations with RNA-seq substantially, but
does not achieve the same level of performance as APT in terms of across sample
correlations.

The third research question aimed to determine whether or not it was possible
to ascertain a consistent pattern of differential methylation in a limited number
of ulcerative colitis (UC) biopsies, using data generated with the Agilent Human
CpG Island microarray. Although there were no statistically significant differ-
ences between the sample groups at CpG island or probe level, we did uncover
evidence of overall CpG island hypermethylation in UC. Subsequently, gene set



analysis (GSA) revealed highly significant results for several GO biological pro-
cesses. It became apparent that these results were a consequence of a sampling
effect, which stems from the large differences in numbers of probes (targeting CpG
sites) associated with genes in different gene sets.

The fourth and final research question consisted of the development of a
method to correct the bias in GSA analysis of these data. We applied our method
to both the UC microarray dataset and a previously published genome-wide CpG
island study of DNA methylation in lung cancer. We obtained novel biological
insights into both of these conditions, consistent with their respective pathologies.
Finally, we showed that this bias is also found with next generation sequencing
based methylation assays, which we demonstrated using a HELP-seq dataset.

In conclusion, this thesis presents novel analytical strategies encompassing
gene expression and genome-wide methylation, and it also introduces methodolo-
gies that link microarray and RNA-seq measures of expression. It documents for
the first time a correction for an intrinsic bias in GSA associated with many CpG
island methylation platforms, and yields results of biological consequence with re-
gard to endogenous RNAI regulatory processes and the epigenetic characterization
of several human diseases.
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Chapter 1

Introduction

1.1 Gene regulation

The regulation of gene expression is a complex process and is still only beginning
to be fully understood. Gene expression can be modulated at any stage, from
transcriptional control to post translational protein modification and degradation
[13] [1] (Fig. 1.1). Expression levels can directly determine the phenotypic traits
of a cell (e.g. cancer or normal) and thus, the molecular mechanisms controlling
expression are key to all aspects of biology [14]. Much of the work in this thesis is
based on high-throughput gene regulation and gene expression data; hence, this
section will review some of the most widely studied aspects of gene regulation,
with particular emphasis on microRNAs (miRNAs) and DNA methylation, which

are discussed in chapters 2, 4 and 5.
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1.1.1 Transcriptional control by DNA binding proteins

Transcriptional control is the first possible stage of gene regulation and it is par-
ticularly important, as it is only at this point that a cell can ensure that it does
not create superfluous transcripts [2]. In eukaryotes, protein coding genes are
transcribed by the enzyme RNA polymerase II, which is aided by a set of pro-
teins called general transcription factors. These are required for transcription of
almost all genes [15]. General transcription factors are responsible for steps such
as recognizing the transcription start site, positioning the RNA polymerase and
unwinding the DNA [16]. In higher organisms, transcription is a highly com-
plex process that varies subtely from gene to gene. In fact, the human genome
is thought to encode as many as 2,000 proteins which perform some regulatory
function [2]. Figure 1.2 (A) illustrates how a typical genomic locus may appear
when a gene is primed for transcription. General transcription factors and RNA
polymerase II have bound to the gene promoter region and regulatory proteins
known as activators have bound to up- and downstream DNA sequences called
enhancers. In some cases, these regulatory sequences may be as many as 50 kilo-
bases [17] from the gene which they control and the expression of one gene is often
influenced by many regulators [15].

DNA looping allows these regulatory proteins to interact with the proteins
assembled at the transcription start site (TSS). In figure 1.2 (B) the DNA has
looped to allow the regulatory proteins to initiate transcription, through the in-
termediary of a protein complex called Mediator [18]. Many regulatory proteins
interact with the TSS through the Mediator complex, but some others directly
influence RNA polymerase and/or general transcription factors [2]. There also
exist a class of repressor proteins, which bind to similar regulatory sequences,
but are associated with inhibition of transcription [19]. Differential expression
of these enhancer and repressor proteins can have an effect on the expression of
the genes that they regulate [20]. In eukaryotes, DNA is wrapped around histone
proteins (described below) and this further complicates the transcription process,
as transcription cannot occur until these regulatory regions can be bound by the
necessary proteins. This is discussed in detail in the following subsections.
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2].

1.1.2 Epigenetics

The mechanisms that control transcription factor binding in gene promoters in-
clude histone modification and DNA methylation. These are a class of epigenetic
modifications, which means that they may be passed to daughter cells and thus,
these types of modifications in germ line cells can cause heritable changes in
gene expression (and hence phenotype), without changing the underlying DNA
sequence [21]. Epigenetic modifications have been linked to a number of human
diseases, for example obesity [22] and cancer [23]. Because epigenetic changes
are more easily reversed than genetic mutations, they are of particular interest as
therapeutic targets, with a number of drugs already developed, for example, for
the treatment of leukemia [21]. The following subsections discuss these regulatory
mechanisms in detail.



Histone modification

Histones are a highly conserved class of protein that form the building blocks
of nucleosomes; in eukaryotic cells, chromosomal DNA is wrapped around nucleo-
somes into a compact form called chromatin. This allows the DNA strands, which
would normally total about 1.8 meters in length (in humans), to be stored in a
tiny space in the cell nucleus [24]. Proteins H2A, H2B, H3 and H4 are known as
the core histones and typically, 2 of each of these proteins assemble into a sin-
gle nucleosome complex, along with a H1 protein, which binds to the assembled
nucleosome to lock the formation in place [25].

Histone proteins are subject to post translational modifications, including
methylation (not to be confused with DNA methylation), phosphorylation, acety-
lation and ubiquitation [26]. Modifications at the N-terminal histone tails are
particularly important in controlling gene expression and have been extensively
studied. These tails protrude from the body of the nucleosome and their mod-
ification can regulate the ability of the transcriptional machinery to access the
underlying DNA and thus, regulate gene expression [27]. There are many exam-
ples of specific types of histone modifications and their affect on activation and
repression of transcription; for example, methylation of H3K4 at promoters is as-
sociated with active transcription [28] and H3K27 tri-methylation has been linked
to transcriptional repression [29].

DNA methylation

DNA methylation is another type of modification, that is also associated with
changes in gene expression. It typically involves the addition of a methyl group
to a cytosine nucleotide located in the context of a CpG site [30][31]. This re-
sults in two 5-methylcytosine (5mC) located diagonally across from each other on
opposite DNA strands [32]. Methylation is primarily mediated by DNA methyl-
transferase (DNMT) enzymes. These include DNMT1, which is primarily respon-
sible for maintenance of a methylated state, and DNMT3A and DNM3B which
are responsible for de novo methylation, although there is though to be overlap
between these roles [33] [34].

In some parts of the genome, particularly gene promoter regions, CpG sites
tend to cluster in higher concentrations to form CpG islands [35] (normally defined
as regions of length at least 200bp with GC content > 50% and observed /expected
CpG ratio > 60% [36] [37]). The promoters of more than half of protein coding
genes contain a region which satisfies this definition [38]. Methylation is most
widely studied in this context and it has been observed that CpG sites within
CpG islands, tend to be unmethylated approximately 90% of the time in healthy
tissue [39][40]. Methylation of the promoter region of a gene is normally associ-
ated with silencing of expression; it is thought that this occurs either by directly
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blocking the binding of transcription factors or by recruitment of methylated CpG
binding proteins, that are associated with changes in chromatin structure, thus
blocking transcription initiation [41] [36]. In healthy tissue, genes repressed due to
methylated CpG islands are normally subject to long term silencing, for example,
imprinted genes or genes that are only expressed during embryonic development
[38]. Aberrant CpG island methylation has been observed in many diseases, in-
cluding cancer [42][43], where it has been shown to be associated with silencing
of tumor-suppressor genes [44][45][46].

The mechanisms that cause de novo DNMT enzymes to target particular CpG
sites are not well understood [38], although recent research suggests that, at least
in some circumstances, methylation is used as a type of “lock” to reinforce a
silenced state that has already been induced by chromatin remodeling [47] (al-
though this was observed in the context of X chromosome inactivation). Other
observations of cellular dynamics during differentiation suggest that methylation
itself is directly affecting expression, although further work is required to fully
understand these processes [38].

In the remainder of the genome (outside of CpG islands), CpG sites are under-
represented, as a result of a deamination process, by which methylated cytosine
can be spontaneously or enzymatically converted to thymine, thus altering the
DNA sequence [48]. Despite this, methylation at these sites is still thought to
play an important role. The study of methylation of CpG sites within gene bod-
ies has recently revealed that these sites also affect gene regulation. However, gene
body methylation is not associated with silencing of expression [49]; in fact, there
have been reports of a positive association between gene body methylation and
gene expression levels in human, plants and animals [50][51][52]. One confirmed
function of gene body methylation is blocking transcription of parasitic DNA such
as retrotransposons, whereby the methyl tags block transcription of these elements
but allow for elongation of the host mRNA [53]. High throughput sequencing as-
says have shown that exons are more likely to be methylated than introns [54] and
it has also been suggested that gene body methylation affects alternative splicing
[55]. Recently, it was found that methylation affects CTCF (a transcriptional
represser protein) binding on exons, which slows RNA polymerase II elongation,
allowing the spliceosome time to recognize splice sites, leading to differential exon
inclusion; thus for the first time elucidating one of the mechanisms by which gene
body methylation influences alternative splicing [56].

CpG sites in intergenic regions also tend to be methylated in normal tis-
sue. As with gene bodies, this is thought to prevent transcription from parasitic
DNA. However, in cancer cells, the genome (outside of CpG islands) undergoes
widespread hypomethylation and the absence of these methyl tags is associated
with genomic instability [41]. This widespread genomic hypomethylation causes
an increased tendency for mutation and is thus thought to be an important driving



force in cancer [57][12].

1.1.3 Post-transcriptional gene regulation

In complex organisms, there is an additional layer of gene regulation, which
acts after RNA polymerase has begun RNA synthesis. This is known as post-
transcriptional regulation and these mechanisms allow further fine tuning of gene
expression levels, between transcription and translation [13]. Here, we will discuss
some of the mechanisms which are currently of most interest to researchers.

miRNAs

microRNAs (miRNAs) are a class of small non-coding RNA molecule of approx-
imately 21 nucleotides in length, that regulate gene expression. They typically
bind to complementary loci (known as the seed region) in the 3’ untranslated
region (UTR) of target mRNA and prevent translation to mature protein. An
individual miRNA can regulate the expression of hundreds of genes. Some genes,
particularly those with longer 3’ UTRs, are often the targets of multiple miRNAs
and miRNA mediated regulation tends to result in the fine tuning of the expres-
sion of many proteins within a cell [58][59]. In mammals, miRNAs are thought to
regulate the expression of as many as 50% of protein coding genes [60]. miRNA
expression impacts on almost every cellular process and miRNA dysregulation has
been implicated in many pathologies [61][58].

miRNAs regulate a range of biological pathways associated with cancer in-
cluding apoptosis [62] and cell proliferation [63]; dysregulation of miRNAs has
also been widely observed in cancer [64]. For example overexpression of miR-155
has been implicated in Hodgkin’s and Burkitt’s lymphoma [65], while miR-15
and miR~16, which target the anti-apoptotic gene BCL2, have been shown to be
dysregulated in chronic lymphocytic leukemia [66]. miRNAs have been found in
many of the genomic regions associated with chromosomal abnormalities in can-
cer, including regions of amplification, which may contain oncogenes, regions of
loss of heterozygosity, which may harbor tumor suppressor genes and fragile sites
which are preferential sites for translocation, deletion, amplification, sister chro-
matid exchange and insertion of tumor associated viruses like human papilloma
virus [67].

While many specific maturation steps have been uncovered for different miR-
NAs, most known human miRNAs are thought to be processed in the same way
by the miRNA biogenesis pathway. This process is as follows; miRNA precursors,
known as primary miRNA (pri-miRNA) are transcribed by RNA polymerase 11
or III. These transcripts are subsequently cleaved by the microprocessor com-
plex DROSHA-DGCRS to form the pre-miRNA, which is transported from the



nucleus to the cytoplasm by XPO5-RAN-GTP. There, it is cleaved by DICER1-
TRBP to form the two stranded miRNA duplex; the passenger strand is detached
and normally degraded, although in some cases it acts as a separate functional
miRNA. The remaining functional strand combines with E1F2C2 (AGO2) pro-
teins and forms the RNA-induced silencing complex (RISC). The miRNA then
guides RISC to prevent translation of target mRNAs. Translation is prevented
by mRNA deadenylation, mRNA target cleavage or translational repression [3].
Of the mechanisms of post-transcriptional regulation by miRNAs, lowered mRNA
levels (mRNA cleavage or deadenylation) accounts for most (>84%) of decreased
protein production [68]. This implies that it is possible to assess levels of miRNA
mediated gene silencing from the mRNA levels of a miRNA’s target transcripts
[69] and we have made use of this observation in chapter 2.
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Several other classes of small RNAs have been discovered that regulate gene
expression; of these, the most widely studied are siRNAs. These were originally
reported in 1998, as a class of double stranded RNA (dsRNA), which inhibit tran-
scription of target RNA through the RNAi pathway [70]. There is considerable
overlap in the mechanisms which process siRNAs and miRNAs, with DICER and
AGO proteins playing a vital role in both cases [71]. siRNAs were originally
thought to be primarily exogenous in origin, for example, RNA transcribed by
invading viruses [70][72]. This exogenous RNA is recognized by the RNAi path-
way and used to directly silence matching transcripts, using mechanisms similar



to the miRNA biogenesis pathway [73] . It has been confirmed that RNAi plays a
key role in genome defense, for example, silencing viral transcripts and transcrip-
tion from parasitic DNA; however more recently, this picture has become more
complex, with several reports of endogenous dsRNAs being incorporated into the
RNAi pathway and these RNAs have also been shown (like miRNAs) to some-
times regulate endogenous genes [74][75]. RNAI is thought to possess therapeutic
potential; siRNAs tend to bind with greater specificity than miRNAs [71], which
means that, in theory, they can be engineered to target the expression of a single
gene and RNAIi based therapeutics are expected to be commercialized within the
next 5-10 years [76].

miRNA Target Prediction

In chapter 2, we used a methodology which relies on the expression estimates of
a miRNA’s target genes to infer miRNA activity. These types of approaches rely
on miRNA target prediction algorithms, which we will briefly discuss here. The
miRNA seed region is small and in animals, miRNAs tend to bind imperfectly
to their target mRNAs; these factors mean that prediction of miRNA targets us-
ing simple pattern matching is impossible, as the set of matches produced would
include an enormous number of false positives [77]. Thus, many miRNA target
prediction algorithms have been developed, that take account of additional in-
formation to identify true miRNA-mRNA interactions. Databases of validated
miRNA targets also exist, but at present, the number of verified targets is small
in comparison to the likely large number of true interactions [13]. Recently, Baek
et al. [4] used a proteomics approach to compare the accuracy of some of the
most widely used prediction algorithms. Their method used quantitative mass
spectrometry to measure the response of proteins after introducing microRNAs
into cultured cells. TargetScan [78] performed best, followed by PicTar [79]. Thus,
our work in chapter 2 primarily uses TargetScan (which is also the most widely
used algorithm [69]) and here, we briefly discuss how this algorithm works. Some
other target prediction tools take quite a different approach, such as GenMiR++,
which applies a Bayesian data analysis algorithm to samples for which there is
both miRNA and mRNA expression data available to identify miRNA-mRNA
interactions [80].

TargetScan takes account of several criteria when calculating the likelihood of
an interaction between a miRNA and a mRNA. First, the seed match is considered,
which describes how the miRNA binds to the mRNA target 3’'UTR. The miRNA
“seed” is a 7 base sequence, from base 2 to 8 in the 5’ end of the miRNA, which
forms a complementary bond to a seed match region in the 3’UTR of target
mRNA. TargetScan recognizes four different possible types of interaction. These
are (in order of strongest to weakest bond):



e “8mer” which is a match to positions 2 to 8 of the miRNA followed by an
“A” in the mRNA sequence.

e “Tmer-m8” which is an exact match to positions 2-8.
e “Tmer-1A” which is a match in positions 2-7 followed by an “A”.

e “3’ compensatory” which is an imperfect match to the 5 seed region of the
miRNA but when a pairing to the miRNA 3’ region can compensate for the
nucleotide mismatch in the seed.
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Figure 1.4: miRNA seed matches. Sourced from [4].

Because there are so many non-functional seed matches, TargetScan also cal-
culates the “probability of conserved targeting” (PCT), which is an estimate of the
level of evolutionary conservation (between human, mouse, rat, dog and chicken)
of the target site, as it is known that true seed matches are more likely to be
conserved across species. Finally, TargetScan calculates the “total context score”,
which is a measure of other characteristics, aside from the seed match, which are
helpful in identifying true targets. The score is calculated as a function of five
criteria, which are, AU-rich nucleotide composition near the seed site, proximity
to other binding sites for co-expressed miRNAs, proximity to residues pairing to
miRNA nucleotides 13-16, positioning within the 3’UTR and positioning away
from the center of long UTRs [59].

Alternative splicing

Alternative splicing is the process by which a single gene can produce different
RNA transcripts, and hence multiple proteins, by including/excluding different
exons [81]. Splicing allows organisms to produce vastly more proteins than there
are genes, thus may facilitate greater phenotypic diversity [82]. Splicing normally
occurs co-transcriptionally, that is, while the gene is being transcribed by RNA
polymerase [83]. The molecular machinery responsible for this process is a complex
of RNA and proteins collectively known as the spliceosome [84]. Currently it is
estimated that 92-94% of human genes are alternatively spliced [85] and that 15-
60% of human genetic diseases involve splicing errors [86], for example increased
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inclusion of exons 16 and 26 of ERBB4 in brain tissue has been shown to be
associated with schizophrenia [87].

Other methods of post-transcriptional control of gene expression

Here, we will briefly describe some of the other post-transcriptional controls that
occur in humans.

e Riboswitches are regions of mRNA which can bind small molecules such as
metabolites and thus cause transcription to be aborted [88]. Most known
riboswitches are in bacteria, but this mechanism has recently been discovered
for the first time in humans [89]

e Post transcriptional cleavage of mature mRNA has been shown to some-
times produce functional byproducts, including small RNAs, coding RNAs
and long non-coding RNAs. This means that cleaved RNA transcripts are
not always degraded and recycled, but are also an important factor in tran-
scriptome diversity [90].

e RNA editing is a process which can alter the sequence of RNA transcripts.
Some RNA-editing is known to occur in humans [91], but how widespread
this is has been a source of controversy in recent times. A 2011 study using
high throughput sequencing technologies and mass spectrometry identified
over 10,000 sites which were thought to be altered due to RNA editing [92].
However, this work has been widely criticized and it has been suggested by
several groups that much of what was thought to be RNA editing can be
explained by sequencing error [93][94].

e The decay rate of mRNA molecules is also subject to regulation, for example,
by decapping enzymes, which can remove the 5 cap on an mRNA molecule
and thus cause rapid degradation [95].

e Regulation of transcription is recognized as the primary means by which gene
expression is adjusted, but there are also mechanism to regulate translation
[2]. For example, translational represser proteins can bind to the 3" or 5’
end of mRNA and prevent translation initiation. Sequences in the 3’ ends of
mRNA also determine to which cellular region a synthesized protein should
be transported (known as localization) [96] and eukaryotic cells also possess
mechanisms to modulate global levels of protein synthesis, for example in
response to environmental stress [2].
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1.2 Introduction to high throughput genomics
techniques

The recent development of high throughput genomics techniques, such as DNA
microarrays and next generation sequencing technologies (NGS) is transforming
the study of biology, which is becoming an ever more quantitative science. These
methods allow many thousands of simultaneous measurements, for example, the
expression levels of all genes in a sample. Analysis of these data is generally highly
computationally intensive, usually requiring specialized statistical techniques. As
the cost of high throughput experiments drops and their applications are better
understood, the volume of data produced continues to increase. This has driven
the demand for novel bioinformatics approaches, which fully utilize the informa-
tion captured. This thesis is focused on the development of improved methods
for the analysis of these data and the application of these (and existing) meth-
ods to reveal novel biological insight. We focus mostly on problems relating to
gene regulation, specifically miRNAs and DNA methylation, although much of the
work is also applicable in a broader context. This Introduction chapter contains
an overview of high throughput genomics platforms and a review of some of the
tools, technologies and methodologies that have been used throughout the thesis.

1.3 DNA microarrays

DNA microarrays are a high throughput technology which are used to measure the
quantity of many target DNA or RNA molecules in parallel. Their applications
include measuring the expression levels of genes [97], genotyping [98], identification
of protein binding sites [99] and quantification of small RNA expression [100]. A
microarray contains many thousands of spots, each of which constitute millions
of single stranded DNA oligonucleotides called probes. The sequence of these
probes is complementary to the specific sequence which the spot targets; thus,
the targeted sequence will tend to hybridize to a particular spot, forming covalent
bonds. These target molecules will have first been labeled with a fluorescent
dye. The level of fluorescence at each spot is thus indicative of the number of
target molecules which have hybridized and hence, their abundance in the original
sample. After sample preparation and hybridization, the florescence intensity at
each spot is measured with a scanner, which outputs this information as a text
file. These text files are generally the starting point for bioinformatics analysis
[101] (although analysis of the raw image files is also an active area of research
[102][103]).

Both single channel and two channel microarrays have been developed. Two
channel arrays allow two different DNA samples to be hybridized to the same array,
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where each sample is identified by labeling with a different colored fluorescent
dye. These types of array are popular in applications like ChIP-chip or DNA-
methylation analysis, where the level of DNA bound to a particular protein or
methyl tag is usually compared to the level of all genomic DNA, known as “input
DNA” [104]. Single channel arrays allow only one sample to be hybridized to each
array and these are the more common choice in gene expression experiments. At
the time of writing, the Affymetrix GeneChip, which is a single channel array for
estimating gene expression, has been by far the most widely used platform, with
expression estimates from over 100,000 human samples deposited in the online
repository GEQO.

1.3.1 The Affymetrix GeneChip and Exon microarrays

The GeneChip contains 1,000,000 distinct oligonucleotide features and each of
these spots contains millions of copies of a particular 25 base DNA oligonucleotide.
Each gene is typically (but not necessarily) targeted by 11 pairs of probes, col-
lectively termed a probeset. This set of probes contains 11 perfect match (PM)
probes, which are exactly complementary to a locus in the 3’ region of the target
mRNA. Each PM probe has a corresponding mismatch probe (MM), which con-
tains the same 25 base sequence as the PM probe, except that the middle base, is
substituted for its complement; for example, a G in the 13th base of a PM probe
will be replaced with a C in the matching MM probe [105]. This allows estimation
of the level of non-specific binding, which occurs when non-targeted mRNA binds
to a PM probe [106].
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Figure 1.5: Affymetrix GeneChip microarray shown with a matchstick for scale.
Sourced from [5].

Affymetrix Exon arrays are a more recent technology, which allow measure-
ment of expression from individual exonic regions. These arrays contain over 6
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million probes and allow for the study of both gene expression and alternative
splicing. Typically 4 probes (known as a probeset) target each exon with an
average of approximately 40 probes for each gene (known as a metaprobeset).
Non-specific binding is estimated using a set of background probes, which do not
target a known exonic sequence [107]. In chapters 2 and 3 of this thesis, we have
used of a set of 178 Affymetrix Human Exon 1.0 ST array samples, that were
used to measure gene and exon expression in the lymphoblastoid cell lines of the
International HapMap project.

1.3.2 miRNA expression arrays

Microarrays are also widely used to detect miRNA expression levels, with Affymetrix,
[lumina, Agilent and Exiqon all having developed products. In chapter 2, we have
used data generated from Exiqon miRCURY™LNA arrays to assess miRNA ex-
pression in the HapMap cell lines. These arrays use Locked Nucleic Acid (LNA)
probes, which is a modified type of RNA that forms a more stable bond with
miRNA than standard DNA probes, allowing for more accurate expression mea-
sures [108]. Other than this, the processes of labeling the sample with a fluorescent
dye, hybridizing to the array and reading results with a scanner are similar to those
of gene expression arrays. Analysis and interpretation of the results are also very
similar.

1.3.3 Tiling arrays

Tiling arrays are similar in design to gene expression arrays, but instead of target-
ing sequences matching expressed mRNAs; their probes match sequences on the
genome itself, such as promoter regions or even the whole genome [109]. Their
utility depends on how the DNA hybridized to the array is isolated. For exam-
ple, the ChIP-chip protocol uses an antibody to isolate DNA bound to a specific
protein of interest. A tiling array can then be used to compare the level of this
protein bound DNA to input DNA across all regions which are represented on
the array [110], which gives an indication of where on the genome the protein is
bound. Other examples of tiling array applications include analysis of structural
variation in genes, such as copy number variation [109]. In chapter 4 of this thesis,
we used a type of tiling array, which targets CpG sites located in CpG islands.
This was used to assess differential methylation in sigmoid colon tissue of individ-
uals suffering long standing ulcerative colitis. Methylated DNA was isolated using
methylated DNA immunoprecipitation (MeDIP), which is similar to ChIP-chip,
but uses an antibody which targets 5-methylcytosine (5mC). These arrays are also
the main focus of chapter 5, where we describe a method to correct a severe bias
that occurs when gene set analysis (GSA) is applied to these data.
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1.3.4 Quality issues in microarray data

Several quality issues commonly arise in microarray experiments, which need to
be addressed to ensure that results are reliable and reproducible [111]. Qual-
ity control may result in the exclusion of certain samples from further analysis,
spots/genes being filtered out, or in extreme cases, the experiment being discarded
altogether. The first issue is the phenomenon of ambient florescence surrounding
each feature. This fluorescence is additive to the real signal at each spot, thus
causing inaccurate measurement of the true intensity level. The causes of this
include binding of labeled RNA to the glass surface of the array, contamination
from the wash stage or even noise introduced by the scanner itself [112][113]. Some
level of background noise affects all types of microarrays; in fact, even if labeled
sterile water is hybridized to an array, some fluorescence is still measured [114].
The process of removing these signals is called “background correction” and there
have been many of algorithms developed.

The most basic method of background correction is to subtract the local back-
ground estimates (returned by the scanner) from the corresponding intensity value
for each spot; however, this method is not widely used and has even been shown to
produce less reliable results than when no background correction is applied [115].
One popular method is implemented in the widely used Robust Multi-array Aver-
age (RMA) algorithm (which provides background correction, normalization and
summarization in one function) [116]. This method works by assuming that the
observed signal is the convolution of a normally distributed background and an
exponential foreground signal [117]. A similar method has also been adopted for
two channel arrays and tests comparing the performance of background correction
algorithms (using spike-in control data), have shown this to be one of the most
effective approaches [115].

The next common issue is differences in the overall brightness of microarrays
in the same experiment. Reasons for this include slightly different quantities
of starting DNA/RNA in samples or differences in detection efficiency between
dyes used [118]. To allow biologically meaningful comparison across arrays, these
differences must be corrected. As with background noise, this issue affects all
microarray platforms and many different algorithms have been developed to ad-
dress the problem. Severe scaling differences between one or more arrays could
indicate a hybridization problem, that may not be correctable with normaliza-
tion; hence it may be necessary to remove these arrays from the analysis [119].
The most convenient means to assess if severe scaling differences are evident, is
to view boxplots of log-transformed probe level expression intensities, before and
after normalization (Fig. 1.6). In the case of two channel microarrays, it may
be necessary to visualize these data for both channels separately and for the log
intensity ratios.

14



- - (E—
- f— 1

T
L1
1
T
T
£
1
I
C1]
1T
1]
1
T
[T ]
T
O
(R
T
T
T
[T |
I
(I
I

444444444444

N10S.CE

N11S.CE

N10S.CEL |

N11SCEL o f---------—1
N128.CEL

N7S.CEL o |p-----mm----
NOS.CEL o p-----------
PIS.CEL o f---mmmomom-
P2SCEL o f-------m---
P33.CEL

P43.CEL |

PSS.CEL o p-----------
PES.CEL H |

Figure 1.6: Boxplots of raw logy transformed probe intensity values (left) and
boxplots of RMA preprocessed logs intensities (right) of the same 12 Affymetrix
GeneChip arrays. Normalization has adjusted the small scaling differences be-
tween the arrays.

The most commonly used normalization algorithm is quantile normalization
[120], which is also implemented as part of the RMA procedure [116]. This algo-
rithm coerces the data in such way so that the gene at any particular rank, has
the same expression level in all samples. This is achieved by calculating the mean
expression level of the Nth ranked gene across all samples and then setting this
value as the expression level for the Nth ranked gene in every sample. The algo-
rithm can be applied to any type of expression matrix, be it probe (as is the case
in RMA) or gene level intensities from a one channel array, or either channel or
the log-ratios from a two channel array. Other popular normalization techniques
include the VSN [121] and MAS5 [122] algorithms.

The next quality issue is spatial artifacts, whereby certain regions of an array
have an obvious bias towards higher/lower expression levels, which can be caused
by, for example, scratches, marks or poor handling of the chip [123]. These can
be easily visualized by generating pseudo array images, which will highlight any
obvious artifacts (Fig. 1.7). Severe spatial artifacts may lead to an array being
discarded from further analysis, or a particular set of probes being filtered out.

15



T p—ET £ 6202 e 52,63)

Figure 1.7: Pseudo array images of red and green channels of a two channel
microarray. There is a clear spacial artifact in the center of the array, where a
group of spots have higher expression than the surrounding regions.

The next issue is clustering of samples. It is normally expected that the
quantity measured (e.g. gene expression) is more similar within a particular ex-
perimental condition. For example, if a gene expression microarray experiment
consists of 12 samples, 6 of which are from lung cancer tissue and 6 of which are
from healthy lung tissues, it would be expected that the gene expression profiles
of the 6 lung cancer samples are more similar to each other, than they are to the
normal lung tissue. Two of the more commonly used tools to create a visual rep-
resentation of similarity between arrays are hierarchical clustering and principle
component analysis (PCA) [124]. PCA is a technique that can reduce multidi-
mensional datasets to lower dimensions for analysis and can determine the key
features of high-dimensional datasets [125]. It works by identifying the directions
of greatest variance in high dimensional datasets. In the context of gene expres-
sion data, it can be used to visualize the similarity of expression profiles between
different samples in two or three dimensions. Hierarchical clustering attempts to
build hierarchies of clusters; there are many methods available, which are broadly
classed as either agglomerative, where each observation starts as its own cluster
and these are subsequently joined together, or divisive, where all observations
start as one cluster and these are split recursively [126]. Examples of these types
of plots for an experiment containing 12 Affymetrix GeneChip samples are shown
in figure 1.8. Samples labeled “Nxx.CEL” are from one experimental condition
(cases) and “Pxx.CEL” are from the other (controls). Both plots convey similar
information; in both cases, the sample “N7S.CEL” groups with samples of the
wrong phenotype, indicating a possible problem with this array. Typically, if a
small number of samples do not cluster as expected, this may indicate a problem
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with these samples and further consideration should be taken before including
these samples in downstream analysis. If samples of different phenotypes do not
cluster at all, this may indicate that there are either technical problems with the
arrays or that a confounding variable is affecting expression to a greater degree
than is the experimental condition, in which case it may be difficult to achieve
statistically significant results in, for example, a differential expression analysis
[127].
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Figure 1.8: Heirarchical clustering (left) and PCA plot (right) of raw probe
level data from 12 Affymetrix gene chip samples. Note non-grouping of sample

NS7.CEL.

The next issue is genes whose expression cannot be reliably detected above
background noise. As already outlined, labeled DNA will sometimes bind to
probes for which it is not a target. This leads to a residual florescence from all
probes, regardless of whether their target RNA is expressed. Methods for pre-
dicting whether a probe or set of probes are expressed above background are
very much platform specific. In the case of the Affymetrix GeneChip, the MAS5
algorithm implements a method that considers probesets detected present if the
expression of the PM probes is significantly higher than their matching MM probes
[122]; eliminating these unreliable probesets from downstream differential expres-
sion analysis has been shown to significantly increase the ratio of true positive to
false positive results [128]. Due to array design, the procedure for the Affymetrix
Exon array is different. In this case, Affymetrix have included an explicit set of
background probes on the array, with approximately 1000 of these probes per
GC content count [129]. The Affymetrix “detected above background” (DABG)
algorithm can be used to estimate the likelihood that a probeset’s expression is
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detectable above background, by comparing the probeset’s signal intensities to
those of the background probes (on the same array) with the same GC content
[129].

Here, we have outlined many of the common quality issues, that are broadly
applicable to most microarray platforms. However, at the time of writing, ex-
periments using 765 different types of microarray platform from Affymetrix alone
have been uploaded to GEO. The issues outlined here aside, a diligent researcher
should always take account of the specific consideration of the platform being
used and the experiment undertaken. For example, Affymetrix have released a
whitepaper [130] which gives specific guidelines on plots and quality metrics for
Exon and Gene arrays. With less established platforms, it is particularly impor-
tant to give close attention to the manufacturers guidelines and if possible, to
identify previously published studies of similar design in the scientific literature.

1.3.5 Summarization of gene expression microarray data

Gene expression microarrays target transcripts using several different probes, for
example, the Affymetrix Exon array typically uses 4 probes to target each exon.
These fluorescence intensity measures must be combined to yield a biologically
meaningful measurement that is useful in downstream analysis. This is the final
step in preprocessing gene expression microarray data and is known as “summa-
rization”. At the most basic level, summarization could be achieved by simply
calculating the mean or median value of all probes which target a particular gene,
but as with background correction and normalization, many more complex ap-
proaches have been developed. As an example, the popular RMA preprocessing
function uses the median polish algorithm. This summarizes the expression of
a gene, while taking account of probe and chip effects. The starting point is a
matrix containing the gene’s constituent probe expression levels (rows), in each
sample (columns), then the following steps are applied [131].

1. Calculate the median for each row (the row effect). Subtract this value from
each value in the row.

2. Calculate the median of the vector of row effects. Record this value as the
“overall effect”, then subtract this value from each of the row effects.

3. Calculate the median for each column (the column effect) then, for each
column, subtract the column effect from each value in the column.

4. Calculate the median of the column effects and add this value to the overall
effect, then subtract this value from each of the column medians.
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5. Continue the above until the change in row/column medians drops below
a predefined threshold, or a particular number of iterations has been com-
pleted.

6. The expression level for each gene, in any particular sample, is then calcu-
lated by the overall effect plus the column effect for that sample.

In chapter 2 of this thesis we propose a novel summarization method called se-
gArray. This method uses samples for which both RNA-seq and Affymetrix Exon
array data are available, to build statistical models which learn the relationship
between probe level gene expression, as measured by the microarrays, and gene
level expression, as measured by RNA-seq. These models can then be used to
estimate gene expression on separate sets of microarray samples.

1.3.6 Analysis of summarized microarray data

Typically, preprocessing of raw gene expression microarray data transforms a set
of probe level fluorescence intensities into a matrix of normalized gene level ex-
pression estimates, which are the starting point for analysis. The most common
type of assay is differential expression analysis, whereby gene expression levels in
one set of samples are compared to those in another. For example, comparing
gene expression between lung cancer samples and normal lung tissues could pro-
vide insight into which genes play a role in tumorigenesis and/or tumor function
and hence potentially lead to novel interventions. Again, there are a large number
of tools for these types of analysis, some of the most popular include the Biocon-
ductor package limma [132] and the standalone package Significance Analysis of
Microarrays (SAM) [133]. Some of the tools which we have used for summariza-
tion of gene expression and differential expression analysis are discussed later in
this chapter. Gene expression microarrays have also been widely used for class
prediction, whereby an algorithm can learn which gene’s expression characterize,
for example, a cancer subtype [134], or response to a treatment [135]. The most
popular program for this type of analysis is “Prediction Analysis for Microarrays”
(PAM) [136]. The high throughput nature of microarray expression data has also
allowed the inference of gene regulatory networks [137].

There are many other interesting applications of gene expression arrays, par-
ticularly when these data are integrated with other microarray platforms. For
example integration of gene expression microarray and SNP array data have lead
to dramatically increased understanding of the genetic basis of gene expression
[138]. Integration of gene expression and other types of tiling array platforms
has lead to many more insights, for example the interaction between CpG island
methylation, genetic polymorphisms and gene expression on a genome-wide scale
[139].
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1.4 High throughput DNA sequencing technolo-
gies

DNA sequencing is the process of determining the sequence of nucleotide bases
in a DNA molecule. Until recently, Sanger sequencing (also known as chain-
termination sequencing) had dominated this field for over 30 years and was a
crucial technology in the completion of the Human Genome Project [140]. The
method relies on radioactively or fluorescently labeled chain terminating nucleotides,
which when applied to a PCR amplified DNA segment, results in a library of DNA
fragments of varying length ending in one of the four nucleotides at each position;
these fragments can be size separated by gel electrophoresis and the sequence
read [141]. While a major advance over previous methods, by modern standards,
Sanger sequencing is expensive and slow. A further notable advance was made in
1990, with the introduction of DNA sequencing by capillary electrophoresis, which
drastically reduced the time required to separate DNA fragments (previously done
by gel electrophoresis); the use of these capillary gels in electrophoresis and de-
tection increased the speed of sequence analysis by over an order of magnitude
[142]. A major advance occurred in 2005, when 454 Life Sciences released their
new parallelized version of pyrosequencing, which reduced sequencing costs 6-fold
compared to automated Sanger sequencing [143]. Other companies have since
begun to market similar non-Sanger based high-throughput sequencing products;
these platforms vary in characteristics like read length, read accuracy, production
of paired-end reads and cost [144], but all share the ability to sequence a large
number of DNA molecules in parallel. A typical run produces millions of sequence
reads in only a few hours, dramatically increasing throughput and decreasing cost
when compared to traditional approaches. Collectively these are frequently re-
ferred to as “High throughput sequencing” (HTS) technologies. The terms “Next
generation sequencing” (NGS) or “deep sequencing” are also often used to describe
these platforms. The rapid uptake of HTS poses many bioinformatics challenges,
such as data storage, analysis and interpretation [145]; current HTS technolo-
gies produce reads which are shorter than those from previous Sanger sequencing
experiments, which means that the algorithms used in their analysis are often
considerably different, although newer HTS technologies are beginning to pro-
duce longer reads [144]. The continually growing rate of production of sequence
data by centers all over the world means that this area will be a focus of research
for the foreseeable future.

HTS is generally applied to either re-sequencing problems, where the read
fragments are aligned to a reference genome and hence requires less coverage,
or de novo sequencing, where a set of contigs or a whole genome is constructed
without prior knowledge of the underlying sequence [143]. These technologies have
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been applied to several types of problems, for example whole-genome sequencing
[146], detection of DNA binding by proteins (ChIP-seq) [147], DNA methylation
analysis [148] and sequencing of the transcriptome (RNA-seq) [149][85].

1.4.1 Illumina sequencing

At the time of writing, the Illumina Genome Analyzer has been by far the most
widely used HTS platform (based on the number of samples uploaded to GEO).
It was used to generate the RNA-seq data in chapters 2 and 3. Illumina provide
a standard set of protocols for sequence library preparation [150], an overview of
which is presented in figure 1.9, although researchers have found that there are
adjustments that can be made to optimize these steps [6]. With RNA-seq, the
first step is reverse transcribing extracted mRNA to its DNA complement. In the
case of genomic sequencing, this step is unnecessary. DNA is then fragmented
(usually by sonication), end-repaired, adenylated and adapter oligos are ligated
to both ends of the molecules. These sequences are then size selected using gel
electrophoresis [6] and the resulting size selected fragments are normally PCR
amplified.

Prepared DNA is loaded onto a flowcell, which is a small glass slide (Fig.
1.10). A flowcell normally contains 8 separate lanes and a large number of oligonu-
cleotides are bound to the surface of each lane. When the prepared DNA library
is loaded, individual DNA molecules bind to the lawn of oligonucleotides on the
flowcell (Fig. 1.11) [6]. Each of these molecules is extended and copied. Each
copy is then bound to the flowcell surface, this process results in millions of unique
clusters, with many copies of the same DNA fragment in the same cluster (Fig.
1.12). The reverse strand of each DNA molecule is removed and a sequencing
primer is hybridized to the remaining strands. All clusters are now sequenced
simultaneously. Each of the four nucleotides is fluorescently labeled with a dif-
ferent color and loaded onto the flowcell. During each round of sequencing the
four nucleotides compete with each other to bind to the next position of each of
the DNA templates, following which, the clusters are excited with a laser. The
color of the florescence reveals the newly added base. The fluorescent label and
blocking group are then removed and the process is repeated until the required
number of bases have been sequenced [151].
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Figure 1.10: Photograph of an Illumina flowcell (sourced from [7]) and a diagram-
matic representation of the millions of oligonucleotides present on the surface of
the flowcell (sourced from [8]).
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1.4.2 Sequencing the transcriptome with RNA-seq

RNA-seq is a newly developed method of sequencing the transcriptome, to which
in principle, any next-generation sequencing technology can be applied. The ap-
proach is normally used to quantify gene/transcript expression. RNA-seq over-
comes many of the problems of gene expression microarrays, such as poor dynamic
range, high levels of noise due to non-specific binding and the need for compli-
cated normalizations when comparing expression levels across samples [152][153]
and RNA-seq has been shown to provide a more accurate measure of absolute
expression levels [154]. Unlike microarrays, which rely on previous annotations
of the genome, RNA-seq can be used to discover novel transcripts in unanno-
tated regions of the genome [153]. Reads mapping to splice junctions can be used
to identify new transcripts, by determining novel connectivity patterns between
exons. RNA-seq reads can also be used to identify sequence polymorphisms in
transcribed regions [155].

Typically, an RNA-seq experiment begins by extracting the poly(A)+ fraction
of RNA from a sample, as protein coding mRNAs normally have a poly(A)+
tail. The isolated RNA is reverse transcribed and the cDNA library is sequenced
for the required number of bases, as described in the previous subsection. DNA
fragments may be sequenced from one or both ends generating either single-end
or paired-end reads [155]. The sequencer outputs millions of short sequence reads,
which must be analysed by a computer in order to estimate gene expression levels.

For RNA-seq, the first step in data analysis is alignment of reads to the ref-
erence genome. This procedure attempts to match each short read to its most
similar sequence in the genome and thus the most likely location from which the
read originated. Once reads have been aligned, other tools are used to quantify
gene and transcript expression, based on the locations of the mapped reads. Be-
fore and after alignment, steps should be taken to ensure the quality of the data.
Read alignment, quality control and expression analysis are discussed in detail
below, in subsections 1.4.3, 1.4.4 and 1.4.5. An overview of the tools used in these
procedures is presented in section 1.5.

1.4.3 Aligning sequenced reads to the genome

Sequence mapping programs and algorithms have existed since Sanger sequencing,
but HTS introduces new computational challenges because of the shorter read
lengths and far greater number of reads [9]. Recently, there have been new tools
developed for mapping these reads, which are aimed at meeting the challenges of
the data. In the case of RNA-seq there is the additional challenge in mapping
reads which span introns [9].

The major computational challenge faced by short-read mappers is handling
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the volume of data in a practical manner. When billions of sequences are being
mapped to a genome, memory and processing resources must be used highly effi-
ciently if the data are to be processed in a reasonable time-frame using a typical
desktop computer [156]. The first problem is handling reads which map equally
well to multiple regions of the genome, which is inevitable given the short length
of reads and the size of the the genome. The problem is exacerbated by the
fact that sequencing errors sometimes occur and that the reference genome will
not perfectly match the genome for the individual being mapped. Aligners use
a number of different strategies to deal with this, including reporting multiple
positions, picking one alignment at random or discarding multi-mapped reads[9)].
Many programs will also attempt to calculate a quality score for each alignment,
which gives an indication of the likelihood that a read is mapped to the correct
position, which can be useful in downstream analysis.

RNA-seq reads that map to splice junctions contain information that facilitates
the estimation of isoform expression and the identification of previously unknown
gene transcripts. Specialized algorithms are required for this task. These spliced
alignment algorithms fall into two categories, those that rely directly on known
gene annotations and those that do not. Algorithms that rely on annotations are
limited by those annotations, while alignment without known gene annotations
are limited by the ability of the underlying algorithms generate an accurate rep-
resentations of the data. Details of the algorithms used by TopHat and MAQ
(TopHat is a spliced-aligner, MAQ is not) are discussed in section 1.5.

The main challenge facing sequence alignment in the near future will be the
longer reads produced by newer platforms. Many of the current generation of
tools are designed to handle reads of up to 100bp, but it is unclear how these
algorithms will scale beyond this point. There is also currently poor support for
insertions and deletions and the usefulness of mapping qualities in downstream
analysis is yet to be fully explored. Ultimately however, the future of sequence
mapping will be determined by the nature of the next batch of high throughput
sequencing technologies produced by companies like Illumina and ABI Solid [9].

1.4.4 Quality issues in high throughput sequencing data

To ensure reliable results, it is important to quality assess sequence data. Given
the divergent nature of microarray and HTS platforms, there is very little overlap
in typical quality control procedures. When mapping to a reference genome,
quality assessment steps should be taken before and after read mapping. Based
on the results of quality control, a researcher will usually either remove a subset
of bad reads from the sample, trim a number of bases from either end of reads,
completely discard some or all samples from the experiment or take no action
and proceed with the analysis. At the time of writing, HTS quality procedures
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remain ad-hoc and many different approaches have been implemented for different
platforms and types of experiments. Here, we outline some of the common known
issues and methodologies.

The first issue is the number of reads in each sample, this should typically
be comparable across samples, both before and after mapping (in the case of re-
sequencing). If one or more samples have drastically different numbers of reads,
or a much smaller proportion of reads align to the genome, this is likely indicative
of a problem and further investigation should be carried out. The regions to
which reads map is also of interest, for example, in an RNA-seq experiment, the
majority of reads are expected to map to annotated exons. These can be easily
tested by loading the data in R (or a similar programming environment) or by
using a quality assessment tool like RNA-SeQC [157].

The next issue (which applies to both re-sequencing and de novo sequencing) is
sequence degradation from 3’ to 5’ end. This is more commonly observed in RNA-
seq and is manifested as poorer sequence quality scores and more N calls (where
the sequencer was unable to make a base call with sufficient confidence) towards
the 3’ end of reads. Better quality samples will have higher and more consistent
quality scores and less “N calls” across read bases. To assess the level of sequence
degradation in a particular sample, one can create boxplots of sequence qualities
and numbers of “N calls” across all reads in a sample (Fig. 1.13 and 1.14). There
are no strict guidelines on how to deal with this issue, but for sequence quality
degradation, the widely used program “FastQC” will flag a warning if the lower
quartile quality score of any base is less than 10 or if the median is less than 25;
a sample will fail this test if the lower quartile of any base is less than 5 or if the
median is less than 20. For “N calls”, FastQC will raise a warning if any position
has more then 5% N content and failure for more than 20%. Commonly, if there
is strong evidence that sequence quality degrades drastically, one may chose to
trim the poor quality reads [158].

The next important issue is the sequence content of the reads and identifying
over-representation of any of the four possible nucleotide bases. This is typically
manifested as higher than expected GC content. The change in base content
across reads in a sample can be plotted using FastQC or a similar program (Fig.
1.15 and 1.16). With RNA-seq, high GC content is commonly observed in the first
few bases of reads, this is due to the nature of the primers used in many RNA-seq
experiments [159]. When GC content is considered unacceptably high, one may
again chose to trim the reads, or apply one of the normalization procedures which
have been developed to correct for this [160].
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quality plot from an RNA-seq experi-
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read.
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from an RNA-seq experiment. On very
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The next issue is overall sequence quality in a each sample. It is expected
that sequence quality scores and GC content should be similar across samples and
above a certain threshold. Again, these thresholds will vary based on the type
of experiment and the type of sequencing platforms used. Typically, a plot of
sequence quality scores within a sample will yield a unimodal distribution (Fig.
1.17) and the mode of this distribution should be high (FastQC raises a warning
if the mode of the distribution has quality score below 27 (equating to a .02%
error rate) and raises failure if this is below 20, equating to a 1% error rate). A
bimodal distribution indicates that there is a subset of poor quality sequences and
it may be necessary to consider removing these sequences from further analysis.
If all sequence quality scores in a sample are low, this may indicate a systematic
problem and that sample may be omitted completely from further analysis. In
each sample, sequence GC content is also expected to follow a normal distribution
(Fig. 1.18); a shift to the left or right of GC count per read may indicate a
systematic bias and an unusually shaped distribution may indicate the presence
of some contaminant in the library.
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Figure 1.17: Per sequence quality plot for ~ Figure 1.18: Per sequence GC content
RNA-seq sample. plot for RNA-seq sample.

The next issue is sequence duplication. The proportion of duplicate reads
expected in a sample depends on the type of sequencing being undertaken. Nor-
mally, the majority of sequences in a library are expected to be unique. However,
in most RNA-seq experiments, some level of duplication is inevitable; in order
to detect expression of low copy number transcripts, highly expressed transcripts
(for example housekeeping genes) must be over-sequenced, which means that, be-
cause of the large number of sequences originating from these transcripts, some
duplication is expected. Very high levels of duplication may however indicate a
PCR effect, whereby some sequences have been preferentially amplified. Badly
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PCR duplicated libraries can produce extremely high levels of sequence duplica-
tion (> 90%) [161]. There are many tools which can be used to calculate the
proportion of duplicate reads in a sample, for example SAMtools [162]; FastQC
also allows the proportions of duplicates to be plotted (Fig 1.19). Samtools also
implements a feature which can identify and remove potential PCR duplicates.
Because of the problems introduced by PCR duplication, amplification-free se-
quence library preparation protocols have been developed and are beginning to
gain in popularity [163]. Tt is also possible to further investigate exactly which se-
quences are overrepresented and identify sequences that may originate from highly
expressed genes (in the case of RNA-seq) or possible containments; for example,
FastQC has a feature which can identify the possible source of contamination by
searching a database of known contaminants, such as PCR primers. Finally, a
ligation bias can sometimes occur, whereby PCR primers may be more likely to
bind to certain kinds of sequences, distorting the RNA profiles, these kinds of
problems have been overcome by using different kinds of adapters [164][165].

Sequence Duplication Level > = 53.84%

%Duplicate refative to unigue

Figure 1.19: Duplication levels in an RNA-seq sample. In this case, the peak for
sequences duplicated 10+ times is a result of a large proportion of reads originating
from a small set of highly expressed genes.

1.4.5 Estimating gene and transcript expression from RNA-
seq data

Once sequence reads are aligned to the genome, it is possible to quantify gene

and/or transcript expression. In this thesis, we have used two approaches to

quantifying expression in RNA-seq data. The first method is based on a cus-
tom pipeline in the programming language R; this pipeline counts the number
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of mapped reads overlapping the exonic regions of each gene and normalizes us-
ing “reads per kilobase of exon model per million mapped reads” (RPKM) [152]
procedure. We have also used Cufflinks [166], a standalone command line based
program that can estimate both gene and transcript expression. CufHlinks and
splice-junction read mapper TopHat (both tools developed by the same group),
can be used together to identify novel transcripts and splice isoforms. The tools
can also work from a known gene model. These are discussed in more detail in
the next section.

1.5 Tools and technologies used in data analysis

1.5.1 R/Bioconductor

R is a free open-source software environment, for statistical computing and graph-
ics, released under GNU General Public License (GPL) [167]. It runs on a wide
variety of UNIX platforms, Windows and MacOS. The design of R has been heav-
ily influenced by two existing languages, S and Scheme [167]. The main appeal is
its functionality for statistical procedures, such as linear models, nonlinear regres-
sion models, time series analysis, classical parametric and nonparametric tests,
clustering and smoothing. There is also a powerful graphical environment for cre-
ating publication standard plots [168]. The main disadvantage of R is that it is
sometimes slow; as with any interpreted programming language, it carries much
greater overhead than a compiled language like C. This means that for some tasks,
for example looping operations, it can be 100s of times slower [169], although these
types of bottlenecks can be avoided by coding them as functions in C, which can
be called directly from R.

Bioconductor is an open source collection of R libraries that provide tools for
the analysis of genomic data [170]. It is widely used in bioinformatics and support
is provided for hundreds of different microarray platforms and many different types
of sequence data. Examples of the types of analysis include data normalization
and summarization, clustering, differential expression analysis, gene annotation,
data visualization and gene set analysis. Bioconductor is constantly updated
with new materials, such as novel analysis procedures and pipelines; all of these
improvements are released free of charge as part of the biannual releases of R
[171].

R and Bioconductor have been the primary environment used in all data anal-
ysis in this thesis. We have, on occasion, built external functions in C; Python
has also been used for some tasks. For computationally intensive tasks, it has also
been possible to split R jobs across multiple processing nodes of a Beowulf clus-
ter, using the Rmpi [172] library. Other Bioconductor packages used extensively
include affy [114] and limma [173] for microarray analysis, GOstats [174] for gene
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set analysis and GenomicRanges [175] and GenomicFeatures [176] for sequence
analysis.

1.5.2 Tools for Microarray analysis
The limma package

Limma [132] is an R library, which is part of the Bioconductor project and is
used primarily for differential expression analysis of gene expression microarray
data. It is based on linear models and Bayesian statistics. The procedure first
fits a linear model to the expression level of each gene, dependent on phenotype.
Next limma uses a method called Empirical Bayes shrinkage, which computes
p-values for each gene, by shrinkage of the standard errors towards a common
value, which is estimated borrowing information from the expression levels of all
genes. This method has the advantage of providing a stable result, even when
the number of arrays in an experiment is small [132]. The package includes an
extensive collection of other functions for analysis of microarray data, including
background correction, normalization and visualization.

Affymetrix Powertools

Affymetrix Powertools (APT) is a standalone command line based application, de-
veloped by Affymetrix. It is used for preprocessing of data from their various gene
expression microarray platforms. As Bioconductor support for the Affymetrix
Exon microarray is relatively poor in comparison to other platforms, in chapters
2 and 3, we have used APT for preprocessing of these arrays. APT provides
the RMA preprocessing and DABG algorithms (discussed earlier in this chapter)
and, for Exon arrays, is capable of summarizing expression estimates at gene or
exon level. These results are output to flat text files, which can be subsequently
imported and analysed using R or other tools.

1.5.3 Tools for aligning RN A-seq data
MAQ

MAQ [177] is a popular aligner that can be used with single or paired-end short
sequences. It aligns reads to a reference genome for subsequent analysis (for
example quantification of gene expression) and can also infer variants like SNPs
and indels. It was the first short read aligner to incorporate the concept of a
quality score; instead of discarding poorly aligned data, the probability that a
read is mapped to the correct position is calculated and retained for downstream
analysis, allowing for better use of these reads than simply rejecting them.
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To align a read, MAQ first searches for the ungapped alignments with the
lowest number of mismatches using an algorithm called spaced seed indexing, this
algorithm is described in detail in figure 1.20. Next, the probability that a read
is correctly mapped is calculated using a Bayesian statistical model [177]. The
probability that a read is correctly mapped to a given position is calculated from
the error probabilities of the mismatch bases; however, the final quality score
for any alignment is also a function of the quality scores at all other alignment
positions in the reference genome. As this is impractical to calculate, the authors
have derived a formula which approximates this based on the quality score at
the second best hit and the number of other hits having the same number of
mismatches as the second best hit. A quality score of 0 is assigned if a read maps
equally well to multiple positions. In many analysis, these reads will be later
discarded, but in some circumstances may provide useful information and some
tools have begun to make use of these reads [177].

Tophat

TopHat is a splice junction mapper. It features the ability to discover novel splice
junctions by aligning reads without prior knowledge of splice sites in the reference
genome. While not the first de novo splice junction mapper, TopHat shows impres-
sive performance gains over its competitors, which allows many typical RNA-seq
experiments to be analysed in less than a day on a standard desktop computer.
TopHat is built on the short-read aligner Bowtie [178], which is developed and
maintained by the same group.

The TopHat pipeline first uses Bowtie to map non-junction reads to the genome.
Based on the locations of these aligned sequences, TopHat invokes a function
(which is part of MAQ) to identify contiguous “islands” of sequences which it
infers to be exons. The remaining unmapped reads are then mapped to putative
exon-exon boundaries in order to identify gene splicing patterns. TopHat’s align-
ment algorithm is based on a technique known as the Burrows-Wheeler transform,
this is described in more detail in figure 1.21.
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Figure 1.20: Spaced Seeds Indexing
(used by MAQ). This algorithm first di-
vides the reference genome into paired
seeds and stores them in a lookup table,
which allows fast searching. Then, each
read is divided into four equally sized
seeds and each seed pair is aligned to the
reference. For each read, there are 6 pos-
sible combinations of pairs of seeds, each
of which is aligned using the lookup ta-
ble. As MAQ allows at most two mis-
matches in the read sequence, 4 of the
6 possible seed combinations must align
perfectly to a particular locus, if the read
is to have a chance of mapping there. Af-
ter this initial pass, the resulting set of
candidate regions is small enough that
other seed regions can be checked indi-
vidually and the read mapped to the best
matching region. Sourced from [9)].
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Figure 1.21: Burrows-Wheeler Trans-
form (used by TopHat). This algorithm
first creates a memory efficient repre-
sentation of the reference genome using
the Burrows-Wheeler transform, a tech-
nique originally developed to improve
data compression. Using this method the
entire human reference genome can be
stored in under 2 gigabytes of memory,
small enough for analysis on a typical
desktop computer. The search algorithm
works by aligning reads one character
at a time, with each successive charac-
ter narrowing down the likely positions
that the read may map. While more
complicated than the spaced seeds algo-
rithm used by MAQ), this approach is also
more than 30 times faster, owing to the
speed of the Burrows-Wheeler search al-
gorithm. Sourced from [9]



1.5.4 Tools for estimating gene expression in RNA-seq
data

Custom R pipeline

Bioconductor provides a framework for analysis of short-read sequence data. When
estimating expression in RNA-seq data, there are advantages to using this ap-
proach in parallel with the TopHat/Cufflinks pipeline. R/Bioconductor affords
an experienced user much greater power and flexibility for closely examining and
manipulating data; for example, counting reads which map to individual exons of
a gene, investigating reads mapped to regions like introns and 3’ and 5" untrans-
lated regions, or manually computing metrics which may be useful for interpreting
the data. These outputs can then be seamlessly integrated with subsequent anal-
ysis pipelines, taking full advantage of the plethora of statistical analysis tools
available in R.

Bioconductor is beginning to implement some functionality for sequence align-
ment (for example in the Biostrings library). However, these tools are still in their
infancy, when compared to some of the more sophisticated aligners available, so for
this pipeline, reads were aligned using MAQ. The ShortRead [179] library (which
is capable of handling aligned reads in a number of different formats) was used to
import aligned data and perform various quality assessment and filtering steps.
GenomicFeatures [176] was used to download reference genome annotations and
GenomicRanges [175] was used to quantify reads mapped to genomic locations of
interest, such as exons. As this pipeline was computationally expensive, the Rmpi
[172] library was used to divide the workload across nodes of a high-performance
Beowulf cluster. Differential expression analysis of RNA-seq data is also possible
in R, for example, using the DEseq [180] or edgeR [181] libraries.

Cufflinks

Cufflinks is a standalone command line based program available on Linux and Mac
OS X platforms [166]. It can be used to estimate gene and/or transcript expres-
sion in RNA-seq experiments and can also perform differential expression analysis.
It works from single or paired-end RNA-seq spliced alignments (for example from
TopHat) and works with or without a known gene model. To estimate transcript
abundance, Cufflinks uses an algorithm based on graph theory, to construct a set
of parsimonious transcripts which best explain the observed alignments. Expres-
sion levels are normalized using the “Fragments Per Kilobase of exon per Million
fragments mapped” (FPKM) procedure, which is equivalent to the aforementioned
RPKM (but “fragment” may refer to a single read or to two paired reads). Cuf-
flinks’ statistical models estimate the likelihood that the abundance assigned to
any particular transcript is accurate, which means that all expression estimates
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are accompanied by a confidence interval. Sequence bias is also corrected (this
occurs when certain sequences are preferentially amplified, usually during PCR
or reverse transcription steps); the algorithm learns which sequences introduce
bias and incorporates this information into expression estimates. Cufflinks also
attempts to deal with the aforementioned problem that some reads map equally
well to multiple positions. These multi-mapped reads are initially down-weighted
based on the number of positions to which they map, for example a read which
maps equally well to 4 positions will be given 25% the weight of a normal read
at each of those four positions; then, after the initial expression estimate of each
of the transcripts to which the read maps, Cufflinks will attempt to recalculate
the likelihood that the sequence maps to any one of the putative locations, based
on the expression of each transcript, the inferred fragment length (in the case of
paired-end reads) and sequence bias estimations [166].

1.6 Applications of high throughput genomics
techniques

1.6.1 Gene set analysis

Gene-set analysis (GSA) is frequently used to discover meaningful biological pat-
terns from lists of genes generated from microarray or high-throughput sequencing
experiments. The objective is typically to identify similarities between the genes
in the list, with respect to annotations available from sources such as the Gene On-
tology (GO) [182] or Kyoto Encyclopedia of Genes and Genomes (KEGG) [183].
GSA approaches fall into two categories, “overrepresentation analysis” (ORA)
and “functional class scoring” (FSC) [184]. ORA (the more popular approach)
begins with a user supplied list of “foreground” genes, for example, genes that are
differentially expressed in a set of samples at some arbitrary p-value and/or fold
change threshold. These genes are then tested for over- or under-representation in
biologically meaningful gene sets (e.g. genes annotated with specific GO terms),
compared to a ‘background’ set of genes (which could be all genes in a genome or
all genes represented on a microarray). Popular tools that make use of this ap-
proach include GOstats [174] and DAVID [185][186]. The FSC approach does not
divide genes into foreground and background sets, but rather scores each gene (e.g.
by statistical significance, in a differential gene expression setting) and from that
attributes a score to each functional category, based on the scores of the individual
genes in the category. FSC methods can be further divided into “competitive”,
where significance of differential expression in the gene set is compared to that of
all other genes and “self-contained”, where only the genes within the gene set are
examined [187]. The most popular FSC method is Gene-set Enrichment Analysis
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(GSEA) [188]. A significant result for a gene set is typically interpreted as ev-
idence that the corresponding biological function or process is perturbed in the
experimental condition. Chapter 5 of this thesis discusses a severe bias when GSA
is applied to high throughput genome wide methylation data. We also propose a
method to correct this bias.

1.6.2 The International HapMap project and genome wide
associated studies (GWAS)

The International HapMap Project was initiated to develop a haplotype map
of the human genome, which catalogs the pattern of common human genetic
variation. The project aimed to identify a set of tag SNPs, which would allow
the determination of an individuals haplotypes at less expense than previously
[189][190]. The HapMap project used DNA isolated from lymphoblasts and the
common sites of genomic variation were identified using SNP microarrays; during
the project, over 1,000 individuals in 11 populations have been genotyped. The
HapMap project also genotyped some related individuals, which allows researchers
to investigate patterns of heritability. Other groups have performed gene and
miRNA expression analysis on some of the HapMap cell lines and all of this data
is freely available.

GWAS

The HapMap project has facilitated genome-wide association studies (GWAS),
because large cohorts can now be genotyped (capturing most common variants
using only tag SNPs) at less expense and this data can be used to assess the
genetic basis for various traits and diseases. GWAS examines the association of
common variation in genome sequence, with phenotypic traits (e.g. height, BMI,
disease etc.). The result of over 1,000 GWAS studies have been deposited in the
online database “GWAS catalog” and this continues to grow [191]. One example
is the 2007 Welcome Trust Case Control Consortium [10]. This study genotyped a
subset of 15,000 individuals from the British population, to assess the genetic basis
of 7 diseases. The study was successful in uncovering many new susceptibility loci.
A summary of these results is plotted in Fig.1.22.
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Figure 1.22: Manhattan plots showing p-values for SNP associations with each of
seven diseases, as identified by Welcome Trust Case Control Consortium. P-values
of < 107 are highlighted in green [10].

While GWAS has been successful in identifying a large number of new disease
susceptibility loci, some authors have deemed the approach a failure [192], as in
almost all cases, the SNPs identified still only explain a small fraction of the total
genetic component (as calculated from pedigree studies) of diseases. For example,
twin studies have revealed that between 60% and 80% of susceptibility to Crohn’s
disease can be explained by genetics [193], but the SNPs identified by GWAS have
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only captured approximately 10% of this [194]. The remaining genetic variance
has been referred to as the “missing heritability” [195]. One explanation is that
a large number of SNPs have a very small effect, below the threshold of what can
be detected by GWAS. This has been shown to be the case for many diseases and
in the case of Crohn’s disease, models considering all SNPs simultaneously have
explained up to 40% of the genetic variance [196]. The remaining heritability is
thought to be explained by rare variants, which are not genotyped on current
SNP arrays. As the cost of high-throughput sequencing continues to drop, it
is hoped that it will soon be possible to identify many of these rare variants
[192]. In this thesis, we have used the genotype and gene expression data from
the HapMap project to assess the genetic basis for inter-individual differences in
miRNA regulatory effect. In the following subsection we will briefly discuss some
of the key issues when performing GWAS analysis.

GWAS data quality control and filtering

Prior to GWAS, it is important to filter and quality assess SNP data. In most
cases there are no universally accepted thresholds or guidelines for this [197], but
some of the important criteria to consider are as follows. Firstly SNPs with low
minor allele frequency are normally filtered out, as these SNPs have little power to
detect an association, but contribute to the multiple testing problem. Next, both
SNPs and individuals with low call rate (where the SNP could not be determined
with high confidence) are normally removed, as these cannot provide reliable re-
sults. Also, each SNP is normally tested for deviation from Hardy-Weinberg
equilibrium. This describes the relationship between genotype distribution seen
in the data and allelic frequency in an idealized population. Deviation from the
expected proportions can theoretically occur because of selective pressure, mix-
ture of genetically heterogeneous populations, cryptic relatedness (kinship among
the individuals that is not known), or genotyping errors due to limitations in
microarray or other experimental technologies [198].

Population structure is also an important issue in GWAS. Normally, it must
be ensured that individuals originate from a genetically homogeneous population,
as population stratification will cause spurious results. This happens when a trait
varies between sub-populations and these populations happen to have different
allele frequencies at a genotyped SNP [197]. Because of this, different populations
are normally analysed separately.

38



Chapter 2

The regulatory effect of miRNAs
is a heritable genetic trait in
humans

The content of this chapter was published as:

Geeleher, P., Huang RS., Gamazon ER., Golden, A. and Seoighe, C. (2012).
The regulatory effect of miRNAs is a heritable genetic trait in humans.
BMC Genomics, 13:383.

2.1 Abstract

2.1.1 Background

microRNAs (miRNAs) have been shown to regulate the expression of a large
number of genes and play key roles in many biological processes. Several previous
studies have quantified the inhibitory effect of a miRNA indirectly by considering
the expression levels of genes that are predicted to be targeted by the miRNA.
This approach has been shown to be robust to the choice of prediction algorithm.
Given a gene expression dataset, Cheng et al. defined the regulatory effect score
(RE-score) of a miRNA as the difference in the gene expression rank of targets of
the miRNA compared to non-targeted genes.

2.1.2 Results

Using microarray data from parent-offspring trios from the International HapMap
project, we show that the RE-score of most miRNAs is correlated between par-
ents and offspring and, thus, inter-individual variation in RE-score has a genetic
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component in humans. Indeed, the mean RE-score across miRNAs is correlated
between parents and offspring, suggesting genetic differences in the overall effi-
ciency of the miRNA biogenesis pathway between individuals. To explore the
genetics of this quantitative trait further, we carried out a genome-wide associ-
ation study of the mean RE-score separately in two HapMap populations (CEU
and YRI). No genome-wide significant associations were discovered; however, a
SNP rs17409624, in an intron of DROSHA, was significantly associated with mean
RE-score in the CEU population following permutation-based control for multiple
testing based on all SNPs mapped to the canonical miRNA biogenesis pathway;
of 244 individual miRNA RE-scores assessed in the CEU, 214 were associated
(p < 0.05) with rs17409624. The SNP was also nominally significantly associated
(p = 0.04) with mean RE-score in the YRI population. Interestingly, the same
SNP was associated with 17 (8.5% of all expressed) miRNA expression levels in
the CEU. We also show here that the expression of the targets of most miRNAs is
more highly correlated with global changes in miRNA regulatory effect than with
the expression of the miRNA itself.

2.1.3 Conclusions

We present evidence that miRNA regulatory effect is a heritable trait in humans
and that a polymorphism of the DROSHA gene contributes to the observed inter-
individual differences.

2.2 Background

Of the mechanisms of post-transcriptional regulation by miRNAs, lowered mRNA
levels (mRNA cleavage or deadenylation) accounts for most (>84%) of decreased
protein production [68]. This implies that it is possible to assess levels of miRNA
mediated gene silencing from the mRNA levels of a miRNA’s target transcripts.
Cheng et al. quantified miRNA activity in this way by defining the regulatory
effect score (RE-score). For each miRNA in each sample, this is calculated by
the average expression rank of genes that are not predicted to be targeted by
the miRNA, minus the average expression rank of the predicted targets of the
miRNA [69]. Thus, the RE-score is intended to measure the extent to which
targets of the miRNA are downregulated in a sample relative to other genes. It is
not informative to compare the RE-scores of different miRNAs, but comparison
of the RE-score of a given miRNA between samples can provide an indication
of a difference in the repressive effect of the miRNA between the samples. For
example, if the targets of a given miRNA relative to non-targets are ranked higher
in a set of cancer samples than in comparable normal tissues, this suggests that
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the miRNA exerts less control over gene expression in the cancer samples. There
have been numerous other studies published that have also investigated miRNA
regulation by assessing changes in expression of mRNA targets [199] [200] [201]
[202] [203] [204].

Messenger RNA targets of each microRNA are deduced using a prediction
algorithm. If a specific microRNA’s inhibitory effect in a particular sample is
large one would expect that the RE-score for that miRNA would also be large, as
its targets would tend to be ranked lower. Conversely, if a microRNA’s inhibitory
effect is small, its targets will tend to be ranked higher and hence the RE-score
will be small.

We sought to investigate whether there is evidence of natural variation in this
phenotype between human individuals, using RE-scores calculated from microar-
ray and RNA-seq data generated from the CEU (Utah residents with ancestry
from northern and western Europe) and YRI (Yoruba in Ibadan, Nigeria) lym-
phoblastoid cell lines of the HapMap project [189][190][205][206][207]. Microarray
data were available for 56 trios of related individuals in these populations (consist-
ing of two parents and an offspring). We used these data to investigate the genetic
component of the variation in RE-scores. Positive correlation between the value
of a phenotype in an offspring and the mean value in parents provides evidence
of a heritable component in the variation of the phenotype and the slope of the
linear regression line can be used as an estimate of the narrow-sense heritability
[208][209][210] .

2.3 Results and Discussion

2.3.1 Heritability of the regulatory effect of miRNAs

Microarray data [207] were obtained for 56 trios (both parents and an offspring)
from the CEU and YRI populations of the HapMap project [189][190]. Using
miRNA targets predicted by TargetScan (for conserved miRNAs) [211][59] we
compared RE-scores between parents and offspring. For 51% of miRNAs the
mean RE-score of parents and the RE-score of the offspring were significantly
(p < 0.05) positively correlated (Table 2.1). Population of origin was included in
these regressions to model biological and technical differences between the CEU
and YRI cell lines. Histograms of regression p-values for heritability of individual
miRNA RE-scores from TargetScan and a second miRNA prediction algorithm
(PicTar [79]) are shown in figure 2.1.
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Number of miRNAs 244

Average number of target genes per miRNA 437
RE-score positively correlated between mean of parent and offspring 235
Positively correlated (p < 0.05) 124
Average Heritability (S.D) 0.30 (0.15)

Table 2.1: Summary of results for individual miRNA RE-scores calculated for
conserved miRNAs using TargetScan.

(a) TargetScan (b) PicTar
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Figure 2.1: Heritability for individual RE-scores. Histograms of p-values for tests
of heritability of individual RE-scores for (a) TargetScan and (b) PicTar algo-
rithms.

We calculated the mean of the RE-score over all miRNAs. Unsurprisingly,
the mean RE-score is also strongly correlated between parents and offspring in
HapMap trios (Fig. 2.2). This correlation is statistically significant using mean
RE-scores calculated from targets predicted by TargetScan (slope = 0.68 + 0.34;
p = 2 x 107%). The slopes of these regression lines provide estimates of the
narrow-sense heritability of the mean RE-score. We also assessed mean RE-
score heritability based on targets predicted by three other algorithms (although
TargetScan has previously been found to be most acurate in predicting change
in protein levels during miRNA transfection [4]). PicTar (slope = 0.62 £ 0.36;
p=1.3 x 107?), miRanda [212](slope = 0.40 £ 0.37; p = 3.6 x 1072) and mirTar-
get2 [213] (slope = 0.35 + 0.32; p = 2.8 x 1072) all showed significant evidence
of heritability. The Pearson’s correlation (against TargetScan) of mean RE-score
calculated using mirTarget2, miRanda and PicTar, are 0.73, 0.89 and 0.94 respec-
tively. This indicates that the mean RE-score is relatively robust to choice of
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prediction algorithm.
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Figure 2.2: Heritability of mean RE-score using TargetScan. The scatter plot
shows child values of mean RE-score against mean value of both parents. Points
from the CEU are colored blue and YRI are green. The estimated regression line
is shown in red.

It is possible that the apparent genetic contribution to the regulatory effect
of miRNAs is a consequence of the heritability of gene expression, rather than
a novel molecular phenotype. Since the expression levels of a large proportion
of human genes have a strong genetic component [214][215][216], the correlation
in RE-score between parents and offspring could simply reflect the correlation in
the expression levels of a proportion of the genes targeted by the miRNA. We
devised a permutation test to evaluate this possibility. For each set of mRNAs
predicted to be targeted by a given miRNA we replaced predicted target genes by
genes chosen at random (details in Methods). If the apparent heritability of RE-
scores is merely a consequence of heritability of individual gene expression levels,
the RE-scores obtained from sets of random genes should exhibit similar levels
of heritability to the RE-scores based on the true predicted target sets. Greater
evidence of heritability from true predicted targets compared to sets of randomly
selected genes suggests that the RE-score heritability cannot be explained by
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the heritability of individual gene expression levels. Of 1,000 randomizations,
just eight (p = 0.008) reached a regression p-value as extreme as the target sets
predicted by TargetScan. This approach could be criticized on the grounds that
the TargetScan predictions used conservation to identify putative miRNA binding
sites, as it has previously been shown that conserved genes are more likely to be
highly expressed [217] and also that more highly expressed genes are more likely
to be heritable [218], these factors introduce an obvious bias. To address this
issue, we repeated the analysis, but separated genes into 5 bins based on their
median expression levels across all samples; this time, during the permutations,
genes were only replaced with genes of similar expression level. This approach did
not affect the results, indicating that this potential bias is not an issue.

2.3.2 Genome-wide association of mean RE-score

In order to explore the genetic contribution to RE-score variation further, we
carried out a genome-wide association (GWA) test, treating mean RE-score, cal-
culated using miRNA targets predicted by TargetScan, as a quantitative trait,
and using genotype data from the HapMap project [189][190]. To avoid artifacts
resulting from population structure, we carried out these tests separately on the
CEU and YRI samples and excluded related individuals (offspring of the HapMap
trios). RE-scores were recalculated using expression data derived from RNA-seq
[205][206], which was available for parents but not for offspring of HapMap trios.
Histograms and Manhattan plots of p-values are shown in figure 2.3. The p-value
distributions show a peak towards low p-values, suggesting the presence of some
true positive associations. However, none of these associations remained signif-
icant following a permutation-based correction for multiple testing. This is not
surprising given the relatively small number of samples compared to typical GWA
studies.

2.3.3 Association of mean RE-score with SNPs in the miRNA
biogenesis pathway

In their original study, Cheng et al. [69] used the RE-score metric to compare
miRNA repression in Estrogen Receptor Positive (ER+) and Estrogen Receptor
Negative (ER-) breast cancers. They found that miRNAs tended to have higher
RE-scores in ER- and hypothesized that differences between the two cancer sub-
types may be attributable to dysregulation of key genes in the microRNA biogen-
esis pathway [69]. Thus, we used linear regression to investigate the relationships
between the expression levels of seven key genes in the miRNA biogenesis path-
way, (DICER1, EIF2C2, DROSHA, DGCRS8, XPO5, RAN and TRBP) and mean
RE-score. We first used all samples from both populations pooled (including pop-
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Figure 2.3: Histograms (a & b) of p-values for tests of association between all
SNP markers and mean RE-score and Manhattan plots (¢ & d) of p-values across
the genome in the CEU and YRI respectively.

ulation of origin as a factor in the model) and also in each of the populations
separately. Expression levels of five of these seven genes were significantly corre-
lated with mean RE-score (Table 2.2), consistent with a contribution of differential
regulation of the miRNA biogenesis pathway to differences in mean RE-score. In
fact, a large proportion (37.8%) of all genes were significantly associated (p < 0.05)
with mean RE-score; however, this proportion was somewhat higher (five out of
seven, or 71.4%) for genes in the miRNA biogenesis pathway. Given this rela-
tionship between RE-score and the activities of genes in the miRNA biogenesis
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pathway, these genes are worthy of closer examination for genetic association with

mean RE-score.

CEU YRI Pooled

Bonferroni P Slope | Bonferroni P Slope | Bonferroni P Slope
DROSHA | 9.42x107%  -1023 | 1.37x10"® 2212 | 519x107%  -15.64
DGCRS 0.036 11.57 0.95 -0.46 0.37 6.23
XPO5 0.47 -3.03 1.38x 1079 -17.85 | 217 x 1079  -10.74
RAN 0.27 0.49 0.14 -0.94 0.75 -0.12
DICER1 851 x 1079 1377 | 1.97x 10799  -26.18 | 557 x 10710  -21.72
TRBP 2.95 x 1079 12.26 0.085 8.12 2.68 x 1074 10.60
EIF2C2 0.022 -6.25 1.39 x 10707 -9.07 1.88 x 10708 -8.41

Table 2.2: P-values and slopes from the linear regression of expression level of
genes in the miRNA biogenesis pathway against mean RE-score, in the CEU,
YRI and for both populations pooled.

We carried out a second test of association, restricting to 336 SNPs that map
to the genomic regions (according to dbSNP) of these seven key genes involved
in the miRNA biogenesis pathway. A SNP is mapped a gene by dbSNP if it lies
between 2kb upstream and 500bp downstream of the gene. Again there appear
to be more low p-values than would be expected under the uniform distribution,
pointing to a proportion of true positive associations in both populations (Fig.
2.4). The ten SNPs most strongly associated with mean RE-score in CEU and YRI
are shown in Tables 2.3 and 2.4, respectively. One SNP, rs17409624, in an intron
of DROSHA remained statistically significantly (pagjustea < 0.05) associated with
mean RE-score in the CEU following Bonferroni and permutation-based control
for multiple testing. This SNP was also nominally significantly associated with
mean RE-score in the YRI (p = 0.04); however, the minor allele frequency was
much lower in YRI, limiting the power to detect an association with a significance
that could survive multiple test correction. The magnitude and direction of the
RE-score differences between genotypes are consistent across the two populations
(Fig. 2.5). Taken individually, the vast majority (214 of 244) of RE-scores are
associated (p < 0.05) with this SNP in the CEU. This number drops to 36 of 244
in the YRI, however the lower minor allele frequency in the YRI again limits the
power to detect the association.
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Figure 2.4: Histograms of p-values for the tests of association between SNP mark-
ers mapped to the miRNA biogenesis pathway and mean RE-score in the (a) CEU

and (b) YRI populations.
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As a further test of the association between rs17409624 and mean RE-score,
we investigated the RE-scores of a particular class of intronic miRNAs (mirtrons),
which are not processed by DROSHA [219]. If the association between the SNP
and mean RE-score is real and is mediated by an effect on miRNA processing
by DROSHA, the SNP should not be associated with the RE-scores of mirtrons.
Consistent with this prediction, we found that a much lower proportion of mirtron
RE-scores (based on TargetScan predictions from CEU RNA-seq data) are asso-
ciated (at o = 0.05) with the DROSHA SNP (5 out of 13 mirtrons, compared to
214 out of 244 conventional miRNAs; p = 0.0004, from a two-sided Fisher’s exact
test). We have found evidence that the subset of mirtrons that do show an asso-
ciation with the SNP do so because of an overlap between their target gene sets
and the target gene sets of conventional miRNAs. The mirtrons which are most
significantly associated with rs17409624 tend to target genes that are also targeted
by many other miRNAs; and mirtrons that target genes that are targeted by few
conventional miRNAs are less significantly associated with rs17409624 (Fig. 2.6).

3.0 35
|

25

T-statistic for association between mirtron and rs17409624
1.5

1.0

T T T T T T T
16 18 20 22 24 26 28

Mean number of miRNAs that also target mirtron's targets

Figure 2.6: Relationship between the strength of association with rs17409624
for mirtrons and the average number of conventional miRNAs that also target
the mirtron’s target genes. This figure is based on TargetScan predictions for
conserved miRNA families on HapMap CEU data (p = 1.2 x 1073).

49



2.3.4 Searching for causal SNPs

We investigated the function of SNP rs17409624 using the “SNP Function Pre-
diction” tool, which is part of the SNPinfo suite [220]; however, no significant
results were identified. We also searched the “GWAS Catalog” but did not find
any previous studies which had identified this SNP[221]. To search for other SNPs
that may be causally responsible for this association we used confidence intervals
[222] as implemented in HaploView to calculate haplotype blocks for the CEU
HapMap data. rs17409624 is located within a haplotype block that includes the
DROSHA promoter region (Fig. 2.7). We verified that this is the active promoter
of DROSHA using data recently released by the ENCODE project et al. [223].
Chromatin states for this locus are shown in figure 2.8. The expression level of
DROSHA is significantly associated with mean RE-score (Table 2.2); however,
the genotype of this locus was not significantly correlated with DROSHA expres-
sion level (p = 0.39); nor is it correlated with the relative expression level of any
DROSHA transcript isoforms (identified using Cufflinks [224]) or the inclusion of
any of the individual DROSHA exons. A further possibility is that rs17409624
is in linkage disequilibrium (LD) with an exonic SNP that was not genotyped on
the HapMap microarrays. Using SNP calls from genome sequence data released
by the 1,000 Genomes Project [225], we found no coding SNPs with a stronger
association to mean RE-score than rs17409624, the regions assayed included the
3" and 5 UTRs. We caution however, that there was much less statistical power
to detect an association using the 1,000 Genomes data, as there was an overlap
of only 45 samples between the 1,000 Genomes Project dataset (versus 59 for
the HapMap microarray data) and the RNA-seq samples from the CEU used to
calculate RE-scores. This means that it is difficult to rule out the possibility
of linkage of rs17409624 with a causative SNP in the coding region. Thus, the
causal mechanism linking genetic variation at the DROSHA locus to variation in
the RE-score remains unclear.

2.3.5 Integrative analysis of miRNA expression and RE-
score data

miRNA expression data has recently been generated for some of the HapMap
CEU and YRI cell lines [226]. In the majority of cases, miRNA expression lev-
els and their corresponding RE-scores were not significantly correlated. Average
Spearman correlation between miRNA expression and corresponding TargetScan
based RE-score from the RNA-seq data is only 0.009 in the CEU and -0.0003
in the YRI. Although surprising, this observation is consistent with the findings
of Cheng et al. [69], who, for the original RE-score study, performed Spearman
correlations of the t-scores of comparisons of miRNA expression and RE-scores
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Figure 2.8: DROSHA promoter region. Chromatin state of DROSHA region for
nine cell lines from the ENCODE project. Active promoter is shown in bright
red. The haplotype block for rs17409624 is shown in black and clearly overlaps
the promoter region.

between ER- and ER+ breast cancers, finding only very weak positive correlation.
Similar results have also been observed on two separate datasets by Liang et al.
[227]. However, we find that in the CEU, the expression of 17 of 201 miRNAs
(Table 6.3 in Appendix A) that were consistently expressed across the cell lines
is associated (p < 0.05) with rs17409624 and that 13 of these associations are in
the same direction as mean RE-score. One miRNA is associated with the SNP
in the YRI, but once again, the lower minor allele frequency of rs17409624 in
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the YRI limits the power to identify associations. Thus, this SNP represents a
trans-eQTL cluster for miRNA gene expression. We hypothesize that this trans-
eQTL reflects inter-individual differences in the efficiency of miRNA processing by
DROSHA. Given that miRNA expression measurements are relative (in this case
miRNA expression was measured using a pooled reference microarray design), it
is possible that this polymorphism may affect the absolute copy numbers of a
large fraction of miRNAs, even though an association between miRNA expres-
sion and the SNP is detectable for a relatively small fraction of miRNAs. This
hypothesis could be tested using transcriptome sequencing strategies designed to
measure the abundance of miRNAs relative to other RNA species. Indeed, given
a global and consistent change in expression of all miRNAs in a sample, one may
not expect the expression of any miRNAs to be associated with rs17409624, as the
proportion of the transcript pool occupied by any given miRNA, would remain
unchanged. However, the miRNA regulatory effect polymorphism need not affect
the expression of all miRNAs to exactly the same degree, potentially leading to
both positive and negative associations of miRNA expression with the SNP.

As discussed above, RE-scores of the majority of miRNAs were not correlated
with miRNA expression. This remained the case when we restricted to miRNAs
whose expression varied most across samples. However, the RE-scores of individ-
ual miRNAs were correlated with the mean RE-score calculated across all miR-
NAs. We restricted this analysis to the 20 most variable miRNAs. Of the top 20
in either population, 14 in the CEU and 13 in the YRI had TargetScan prediction
data and therefore RE-scores could be calculated. We only considered these highly
variable miRNAs because quantities that are relatively constant across samples
are not expected to be correlated, given the noise inherent in microarray data.
The correlation between mean and individual miRNA RE-scores is not simply a
consequence of overlaps in genes targeted by different miRNAs, since it holds true
even when the mean RE-score is recalculated, for each miRNA correlation test,
after all of the individual miRNAs targets have been subtracted from the target
sets of the remaining miRNAs. 13 of the 14 highly varying miRNAs in the CEU
and all 13 of 13 in the YRI show a stronger association between the individual
RE-score and (subtracted) mean RE-score, than between the individual RE-score
and the expression of the miRNA itself. In most cases this difference is large
(Tables 6.1 and 6.2 in Appendix A), hence, the mean RE-score in a sample may
be a much better predictor of the expression level of the targets of any particular
miRNA, than is the expression profile of the miRNA itself. It is, perhaps, not
surprising that the expression level of an individual miRNA is not indicative of the
expression of its target genes, given that genes are often targets of a large number
of miRNAs. Of 11,759 genes which are predicted to be targeted by at least one
miRNA (by the full TargetScan set), the average number of miRNAs targeting
each gene is 17.48. In this context, the fact that the mean RE-score has power to
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predict the expression levels of a miRNA targets, even when the mean RE-score
is calculated without considering the targets of that miRNA, is interesting and
points to differences in the effect of the miRNA pathway on target genes across
the samples.

2.4 Conclusions

We have found evidence of heritability of the regulatory effect of miRNAs in
human. We have also identified an association between the regulatory effect of
miRNAs and a SNP in the miRNA processing gene DROSHA. This association
was identified in lymphoblastoid cell lines and it remains to be seen whether
and in which primary cells the regulatory effect of miRNAs is associated with
the DROSHA locus. As noted in the Background, Cheng et al. had observed
that there is a change in miRNA RE-scores between ER- and ER+ breast cancer
subtypes. Thomsom et al. showed that mature miRNA levels are generally lower
in several human primary cancers, despite unchanged pri-miRNA levels and this
has been attributed to defective processing by DROSHA[228], while DROSHA
and DICER have also been shown to be downregulated in endometrial cancer
and specific subgroups of breast cancer[229][230]. Thus, it will be important
to investigate further the phenotypic consequences of inter-individual differences
in miRNA regulatory efficiency and the influence on gene expression, possible
tumorigenesis and the impact of such inter-individual differences in the context of
the use of miRNAs as biomarkers.

2.5 Methods

2.5.1 Data

Raw gene expression microarray data of related individuals from the CEU and
YRI populations of the HapMap project were downloaded from GEO under ac-
cession number GSE7792, these data were generated by Huang et al. [207] using
Affymetrix Human Exon 1.0 ST microarrays. Prior to calculating gene expression
level estimates, the data were RMA normalized [116] and genes whose expres-
sion level were below the detection threshold, as estimated by the DABG algo-
rithm (p < 0.05), were set to zero; these steps were performed using Affymetrix
Power Tools and R as described in [129]. RNA-seq data for unrelated individu-
als of the HapMap YRI population were generated by Pickrell et. al [205] and
we obtained these aligned data from GEO under accession number GSFE19480.
Similarly, Montgomery et al. [206] used RNA-seq to assess gene expression of
unrelated CEU samples and these data were obtained from ArrayExpress under
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accession number E-MTAB-197. All data were aligned to hg18 using MAQ [177].
We performed gene expression analysis using R/Bioconductor. Data were loaded
in R [167] using the ShortRead [179] library. Following Montgomery et al., only
reads that had a mapping quality score of greater than or equal to 10 were in-
cluded. The GenomicRanges [175] library was used to compute the number of
reads mapping to exons of each gene and expression values were normalized the
using the RPKM [152] procedure. miRNA prediction data were obtained using
the R library RmiR.Hs.miRNA [231] which provides a database of miRNA tar-
gets for several widely used algorithms. The HapMap release 28 (merged data
for phases I, IT and III) [189][190] SNP data were downloaded from the HapMap
website, converted to GenABEL format and trimmed to include only samples in
the CEU and YRI populations for which there was matching RNA-seq data.

2.5.2 Estimating Heritability of mean RE-score

Narrow sense heritability of individual miRNA RE-scores and mean RE-score was
estimated using a robust linear regression model [209][208]. The rlm() function
from the R library MASS was used to fit regression model for child value depen-
dent on mean of parents. Population of origin was included as a factor in the
models. The slope of the regression line provides an estimate of heritability.

2.5.3 Permutation testing of heritability of mean RE-score

To calculate a corrected p-value for heritability of mean RE-score of a miRNA pre-
diction algorithm, we performed 1,000 permutations of the prediction algorithm’s
miRNA gene target sets and recalculated heritability of mean RE-score following
each permutation; the permutation p-value was the proportion of permuted sets
that return p-values which are equal to, or lower than, the original raw p-value
for that algorithm. To perform a permutation, we replace each gene target of
each miRNA’s target set with a randomly chosen gene, but only genes for which
expression data is available are replaced or used for replacement, as only these can
affect RE-scores. If a gene is a target of multiple microRNAs, it is replaced by the
same randomly chosen gene in every target set, so as to maintain the structure of
the data.

2.5.4 Genome-wide association test

The R package GenABEL [232][233] was used for filtering and tests of association.
Prior to testing for association, genotype data were filtered as follows. Obvious
close relatives are removed by discarding the child samples and to avoid the effects
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of population stratification CEU and YRI samples are assayed separately. Mark-
ers with a low minor allele frequency were filtered by excluding SNPs for which
there were less than 5 copies of the minor allele across all samples. We used only
SNPs genotyped as part of HapMap phase I1II. Individuals or SNPs were excluded
for a call rate of < 0.95. Tests for Hardy-Weinberg equilibrium were conducted
using Pearson’s x2, comparing observed genotype frequencies in the data to the
calculated expected frequencies; a cut-off FDR level of 0.2 was applied. To assess
if any remaining relatedness exists among the samples, the pairwise proportion
of alleles identical-by-state (IBS) was calculated between all individuals based
on 2,000 randomly chosen autosomal markers, ensuring IBS < 0.95 for all sam-
ples. For multiple testing correction of association p-values, permutations were
calculated by permuting phenotype labels and performing tests of association as
normal; for each raw p-value, we computed the number of permutations for which
a p-value equal to, or lower than, the original raw p-value was reached and divide
this by the number of permutations, the result of which is the adjusted p-value.
False discovery rates were also assessed using the R package qualue [234].

2.5.5 Calculating association between individual miRNA
RE-score, mean RE-score and miRNA expression

For each of 14 highly varying miRNAs in the CEU samples and 13 in the YRI, we
fit a multiple linear regression model of individual miRNA RE-score dependent on
the expression of the miRNA and the mean RE-score. For each fit of the model,
mean RE-score was re-calculated with the genes that are targets of the particular
individual miRNA removed from the gene expression matrix, so as to avoid a bias
in the association between the two variables.
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Chapter 3

Improving gene expression
estimates from DNA microarrays
using machine learning

3.1 Abstract

3.1.1 Background

We have devised a method called SeqArray, which aims to improve gene expression
estimates from microarrays, by learning the relationships between probe-level ex-
pression intensities and gene expression estimates obtained using RNA-seq, from
samples for which both microarray and RNA-seq data have been generated. We
have used a flexible regression technique, Multivariate Adaptive Regression Splines
(MARS), to learn these relationships for each gene. In the training phase, the
models learn how microarray probe intensities respond to varying expression lev-
els of their corresponding genes. The trained models can then be used to estimate
gene expression in samples for which only microarray data are available. One
of the goals of this approach is to reproduce the association of mean RE-score
with rs17409624 (identified using RNA-seq data) using gene expression microar-
ray data.

3.1.2 Results

We identified 52 and 40 samples from the HapMap YRI and CEU populations,
respectively, for which both microarray and RNA-seq gene expression data were
available. Using the YRI data only we built MARS models for each gene. We
then used these models to estimate gene expression levels in the CEU samples.
We compared the performance of SeqArray and Affymetrix Power Tools (APT)
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by determining the within sample and between sample correlations between gene
expression estimated using these methods and using RNA-seq. The across sam-
ple correlation (between expression estimates of a given gene across all samples)
was slightly higher for APT; however, gene expression estimates calculated using
SeqArray had much higher within sample correlation with RNA-seq, indicating
that it has performed much better in estimating the absolute expression level of
each gene. We also developed a related method, that improves the performance
of APT, by omitting probes that are not strongly correlated with the expression
of their target gene (as measured by RNA-seq) in a training set of samples.

3.1.3 Conclusions

We have developed a method which dramatically improves the ability of microar-
rays to measure absolute gene expression levels. We also developed a method
which improves the performance of APT, a well established tool for estimating
gene expression from raw microarray probe intensities.

3.2 Background

In this Chapter, we propose SeqArray as a novel method to estimate gene expres-
sion levels, from probe-level fluorescent intensity data generated by microarrays.
In Chapter 2, we had difficulty in reproducing the RNA-seq based GWAS re-
sult using the equivalent microarray data. SegArray attempts to address this,
improving gene expression estimates in microarrays by learning the relationship
between probe level intensity on a microarray and gene expression level, as mea-
sured by an optimal technique. Here we treat RNA-seq as the optimal technique
for gene expression estimation; however, gene expression estimates obtained using
any technique could play this role.

Currently, the most common method of summarizing individual probe expres-
sion measures into gene level estimates is the median-polish algorithm, often as
part of the RMA method. This algorithm takes account of probe and sample
level effects in summarizing gene expression (see Introduction chapter). While
there have been some efforts in recent years to introduce improved techniques
[235][236][237], median-polish remains dominant. One of the few novel approaches
in the literature is SCOREM [238], which is for Affymetrix GeneChip microarrays.
It uses a statistical test, Kendall’s W coefficient of concordance, to consolidate ex-
pression estimates from redundant probesets to provide a more reliable measure of
gene expression. Frozen RMA (fRMA) [239] is another novel approach, which can
be used to improve normalization of experiments with small sample size and al-
lows comparisons between batches. It works by using information in large publicly
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available databases to estimate variances and probe specific effects for different
microarray platforms (ordinarily these parameters are calculated separately for
each batch by the median-polish algorithm). Outside these developments how-
ever, microarray summarization methods have remained largely stable in the last
number of years.

Several studies have compared gene expression estimates from RNA-seq and
gene expression microarrays on the same samples. The results have been con-
sistent in different experiments, with Spearman correlation coefficients between
expression estimates from the two platforms in a given sample, typically of ap-
proximately 0.75. However, correlation between expression estimates for a given
gene across samples is typically lower, at approximately 0.15 [160][240][154]. This
indicates that there is often considerable disagreement concerning the change of
expression levels across samples, as measured by the two platforms. As detailed
in the Introduction, RNA-seq has been shown to produce more accurate estimates
of gene expression than microarrays [241][154][242]. Our proposed method makes
use of overlapping gene expression datasets, obtained using both RNA-seq and
microarrays applied to the same set of samples. Using these overlapping datasets,
we build statistical models to learn the relationships between individual microar-
ray probe intensities and the RNA-seq gene expression estimates. The method
could be applied to any microarray platform and it is not limited to training on
RNA-seq data; in theory, any more accurate technology developed in the future
could be used as the basis to train the statistical models. It is also unnecessary to
restrict the method to any particular modeling technique and it is possible that
an as yet undeveloped or untested algorithm will outperform what we have used
in this study. Moreover the application of this approach should allow expression
estimates to be compared more easily between different laboratories and even
different microarray platforms.

Here, we have chosen to use Multivariate Adaptive Regression Splines (MARS)
[243] to learn the relationships between the probe expression intensities and the
gene expression levels. MARS is a flexible extension of linear models that allows
the modeling of non-linearities using splines. A spline is a piecewise function,
meaning that its definition changes based on the value of the independent variable
[244]. For most applications of splines, the piecewise function is constructed from
a set of polynomials (which describe a set of curves); however MARS uses a set of
straight lines. MARS can also be applied to high dimensional data, which makes
it suitable for probe level microarray data. MARS builds models of the following
form:

flz) = éCiBz’(i’?)
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where B; is a set of basis functions (the constituent elements of the piecewise
spline function), with each function modeling the relationship between input and
response variables over a particular range of values. A juxtaposition of a linear
model and a MARS model for simulated two-dimensional data is shown below
(Fig. 3.1 and Fig. 3.2); these figures give a clear visual indication of the ability
of MARS to model non-linearities. An illustration of MARS in three dimensions
is provided in figure 3.3. It becomes impossible to visualise these models beyond
three dimensions.

The MARS model in figure 3.2 is represented by the following equation:

g = 20.40 + 5.06 max (0, x — 12) — 2.55 max(0, 12 — x)
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Figure 3.1: Linear Regression on simu-  Figure 3.2: MARS model on the same set
lated two dimensional data. of two dimensional data.

The positions in the model where MARS infers non-linearities are known as
knots, the basis functions which produce the knots in the graph are known as
hinge functions. In the example given, MARS has identified a knot at x = 12 and
the hinge functions indicate that the slope of the line has changed from 2.55 to
5.06 at this point. MARS calculates the values for these hinge functions in two
steps, the forward pass and the backward pass.

During the forward pass, a MARS model begins as a straight horizontal line
through the mean value of the response variables. MARS then repeatedly adds
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Figure 3.3: A MARS model fitted on simulated data for the expression level of two
hypothetical microarray probes against the RNA-seq measured expression level of
their corresponding gene.

pairs of mirrored hinge functions, identifying which pairs of functions give the
biggest reduction in sum-of-squares residual error. This process is repeated until
the maximum number of iterations is reached or the residual error reaches a cutoft
threshold. To avoid overfitting MARS implements a backwards pass step, in which
the least effective terms are iteratively removed. These models are then compared
using generalized cross validation (GCV), which estimates model performance
by rewarding for goodness-of-fit while penalizing for model complexity (i.e. the
number of knots). Using these calculations, the best overall model is identified.
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GCV is calculated as follows:

GOV = SSerr

Nx(1E)2

E = NTerms + Penalty x Merms=1

Where “SS,,,” is the residual sum of squares, “N” is the number of obser-
vations (i.e. the number of microarray probes) and “NTerms” is the number of
hinge function knots in the model, so that GCV penalizes for the number of knots
in the model. “Penalty” can be set to adjust how severely model complexity is
penalized.

Previously, MARS has been successfully applied to many types of problems
across multiple disciplines, for example predicting climate change [245], forecasting
energy prices [246] and breast cancer diagnosis [247]. MARS is useful for predict-
ing gene expression from microarray probe level data because probe intensities do
not necessarily scale linearly with gene expression (Fig. 3.4). Expression profiles
may also be significantly different for probes annotated to the same gene because
of different probe sequences, which leads to differences in levels of cross hybridiza-
tion and polymorphisms in the target gene sequence [248]. MARS is capable of
capturing this information and learning how each individual probe responds to
changes in overall gene expression.

To test the method, we used RNA-seq and Affymetrix Human Exon 1.0 ST
data generated from the HapMap project [240][160]. This is the same data that
was used in Chapter 2. These datasets are useful for testing SeqArray, as they con-
sist of RNA-seq as well as microarray data from a substantial number of samples.
We used the YRI samples as a training set to build the statistical models and then
used these models to predict gene expression in the CEU. In the training phase,
for each gene, a MARS model was fitted for gene expression level (as estimated by
RNA-seq) as a function of microarray probe level expression intensities. In the pre-
diction phase, the trained models were used to estimate gene expression from probe
level expression, in the CEU microarrays. We then compared the performance of
SeqArray and Affymetrix Power Tools (APT), which is a standard package for es-
timating gene expression levels in Affymetrix Human Exon microarrays. APT was
run using the RMA background correction/normalization/summarization method.
Our objective was to develop a microarray preprocessing method that mirrors the
RNA-seq expression estimates as closely as possible. Therefore, as an evaluation
of performance, we compared the extent of correlation between the RNA-seq and
the microarrays, preprocessed using our method or APT. As a further evaluation
we considered expression quantitative trait loci (eQTLs) inferred in the CEU sam-
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ples. Method performance is evaluated based on similarity in the eQTLs identified
using SeqArray and APT to the eQTLs identified from the RNA-seq data. Note,
however, that the method does not assume that RNA-seq provides accurate gene
expression estimates and results obtained using any alternative gene expression
measurement could be substituted for RNA-seq at the training stage.

3.3 Results and Discussion

3.3.1 SeqArray improves within-sample correlation with
RINA-seq

In our tests SeqArray outperforms APT for within-sample correlation with RNA-
seq. Scatterplots of gene expression levels, for CEU sample “NA06985”, of RNA-
seq against APT and SeqArray respectively, are shown below (Fig. 3.4). There
is a much more linear and tightly clustered relationship between RNA-seq and
microarray expression estimates for SeqArray than for APT. This is further sup-
ported by the increase in Spearman and Pearson correlations with RNA-seq, from
0.85 to 0.90 and 0.19 to 0.92, respectively, when microarray data are processed
using SeqArray, rather than APT. This means that if we assume the RNA-seq
expression estimates are accurate, SegArray has outperformed APT in correctly
estimating the expression levels of genes within samples. Because of differences in
probe sequences and varying levels of cross-hybridization, microarrays are not ex-
pected to accurately assess the relative expression level of genes within a sample,
meaning that using existing methods, the expression levels of two different genes,
can not be reliably compared within the same sample. Differences in probe se-
quence and array design also mean that expression levels from different microarray
platforms cannot be reliably compared. This is not the case with RNA-seq, where
normalized expression measures (for example FPKM) for different genes within
a sample are indicative of relative transcript abundance. Our results show that,
following processing with SeqArray, the distribution of microarray expression es-
timates now closely matches that of RNA-seq. This indicates that SeqArray can
potentially address these problems and, given the availability of suitable train-
ing data, can allow comparison of gene expression between different microarray
experiments and potentially even between different microarray platforms.
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Figure 3.4: Scatterplots of log transformed gene expression levels, for CEU sam-
ple “NA06985”, of RNA-seq against APT (left) and SeqArray (right). Note the
much more linear and tightly clustered relationship for gene expression estimates
calculated using SeqArray.

3.3.2 Across-sample correlation is not improved

The vastly improved within-sample correlation is, however, not matched with
an overall improvement in across-sample correlation. This is often the major
requirement of gene expression experiments, for example, differential expression
studies, as these kinds of analysis compare expression levels of genes across dif-
ferent samples. Fig. 3.5 and 3.6 illustrate histograms of Spearman correlations
with RNA-seq, of each gene, across all samples of the CEU for APT and SeqArray
respectively. The average across sample Spearman correlation for APT is 0.15,
clearly outperforming SeqArray, whose mean across sample correlation is only
0.06.
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3.3.3 Adjustments which improve across sample correla-
tion with RN A-seq

We have identified several steps that improve the performance of SeqArray. These
are, (1) silencing probes which are not detected above background noise, (2) set-
ting all genes whose expression is predicted to be negative to zero and (3) fitting
the models using only probes whose expression is strongly correlated with that of
their target gene in the training set.

Affymetrix also annotate unambiguous exonic probesets as belonging to one
of three evidence levels, “core”, “extended” or “full”. The core group are sup-
ported by RefSeq annotations and these are typically used in APT analysis; the
extended probesets are supported by EST evidence and the full set includes com-
putationally predicted probesets. The average number of probes per gene, for
core, extended and full probesets is 59.58, 73.19 and 75.96 respectively. However,
the evidence suggests that “core” probes perform best, suggesting that including
these additional probes in the models does not improve performance.

To silence probes not expressed above background noise, we used the “Detected
above background” (DABG) algorithm, which was developed by Affymetrix and
can estimate the probability that probesets expression is detectable above back-
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ground noise. It works by comparing the expression level of each probe, to the
expression level of a set of background probes, which have similar GC content,
but whose sequence does not target a real exon. We set the expression level of all
probes that belonged to probesets not detected at a p > 0.05 threshold to zero.
This is done in both the training and prediction phases.

The expression levels of some genes will also have been predicted to be less
than zero by the MARS models. As a negative value for gene expression cannot
exist in reality, the expression level of these genes is set to zero.

Finally, we implemented an approach whereby only probes that are likely to
contain useful information were used in fitting the models; these are identified by
calculating a Spearman correlation between each probe and its target gene (in
the training set) and only using probes which showed a positive correlation. We
examined the effect of using only probes with a positive correlation and probes
with a high positive correlation (selecting only probes in the top 50% of positive
correlations). Adding this step gives the biggest improvement in performance.

A summary of the improvements in correlation with RNA-seq gained by these
adjustments is presented in Tables 6.4 to 6.7 in Appendix B. In all cases applying
DABG and setting non-expressed genes to zero has improved correlations. Within
sample Spearman correlations reach 0.93, but across sample correlations remains
behind APT, with a maximum across sample Spearman correlation of 0.12. Core
probesets yield the best correlations with RNA-seq, suggesting that including the
additional (extended and full) probesets does not improve performance.

When we compare the best SeqArray based approach to APT we see that across
sample correlations are still well behind. The number of significant (p < 0.05)
across sample Spearman correlations for SeqArray is also far less, at 1,925, versus
3,025 for APT (p < 2.2 x 107! from Fisher’s exact test)

As noted, the performance of SeqArray improves dramatically when the mod-
els are fitted using only probes which are highly correlated with their targeted
gene in the training set. In the analysis above, we arbitrarily selected the top
50% of probes with positive correlations. We have assessed whether a different
cutoff might lead to improved performance. To do this we have selected between
10% and 90% (in steps of 10%) of positively correlated probes and compared the
performance of those with APT. However, while using ever smaller numbers of
highly correlated probes does improve performance, APT also performs better for
these subsets of genes (Fig. 3.7). As the number of probes uses to fit the models
decreases, so does the number of genes for which we have enough probes to fit a
model, e.g. when using only 10% of positively correlated probes, it is only possible
to fit a model for 2500 genes.
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Figure 3.7: Correlations with RNA-seq when fitting MARS models using an ever
smaller number of more highly correlated probes (in increments of 10%), on the
HapMap CEU samples. Correlations for APT are are shown as a blue line and
SeqArray as a green line.

3.3.4 Comparing the performance of SeqArray and APT
on eQTL finding

Next, we compared the performance of SeqArray and APT for a real-world appli-
cation, specifically, the ability of the two approaches to identify cis-eQTLs in the
HapMap CEU data. For this, we used the best performing SeqArray expression
matrix (in terms of correlation with RNA-seq); this was the data for which only
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the “core” probes are used, where probes belonging to probesets not detected
above background were set to zero, negatively expressed genes were set to zero
and only probes with high (top 50%) positive Spearman correlation with their
target gene in the YRI training set were used to fit the models. We then com-
pared eQTL finding for the set of genes for which we had expression data from
SeqArray, APT and RNA-seq platforms.

Using an additive linear model (see Methods for details), the CEU RNA-seq
data identified a total of 941 significant cis-eQTLs (p,q; < 0.05). APT finds
733 significant eQTLs with 35.3% of these interactions also identified by RNA-
seq. Unsurprisingly, given the lower across sample correlations, SeqArray does
not outperform APT, identifying 533 significant eQTLs, with an overlap of 23.8%
with the RNA-seq. This suggests that, at least as it is currently implemented, the
poorer across sample correlation will limit SegArray in many real world applica-
tions.

3.3.5 Identifying genes for which M ARS fits better models

As outlined in the background section, MARS uses Generalized Cross Validation
(GCV) to estimate model performance. This method rewards for goodness-of-fit
while penalizing for model complexity (i.e. the number of knots). Lower values
of GCV are indicative of a better model. We have investigated whether a subset
of genes whose associated MARS models have low GCV, can outperform APT.
To do this, we devised a simple analysis, whereby genes were segmented into 100
bins, based on the GCV value of their associated model. We then calculated the
mean across sample correlation of the genes in each bin with RNA-seq. Figure
3.8 shows the change in across sample correlation across these bins. Genes with
low GCV are in lower bins (i.e. genes with the lowest GCV values are in bin
1 and genes with the highest GCV are in bin 100). It is clear that genes with
low GCV do show higher across sample correlation with RNA-seq, indicating that
these models are performing better. However, APT also performs better for these
subsets of genes, suggesting that the factors which allow these genes to estimate
expression more accurately using our method, also apply to APT.

3.3.6 Comparing the performance of MARS models and
linear models

As outlined in the background section, MARS models could be easily substituted
for a different machine learning technique. As such, we have assessed the change
in performance when MARS is substituted with linear models. Whether linear
models outperform MARS is contingent on how linear the relationship between
probe level expression and gene level expression (as measured by RNA-seq) is for
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Figure 3.8: GCV against across sample Spearman correlation for SeqArray and
APT. Performance for core probes with DABG and zeroing applied are shown.
Models with low GCV clearly perform better, but the performance of APT also
increases on this subset of genes.

most probes. If the relationship is, for the most part, highly linear, MARS may
attempt to over-fit the data, incorporating knots where there is no need, which
may mean that linear models will perform better.

Linear models pose a problem, because the number of covariates in the model
must be less than the number of data points. This means that it is not possible to
fit a linear model for a gene which has more probes than the number of samples
available in the training data (52 samples in our YRI training set). Hence, for
the core probesets, when all probes are included, it is possible to fit models in
the YRI training set for only 5,347 genes. Training and testing are conducted as
before; core probesets are used, DABG applied, negatively expressed genes are set
to zero and we assess performance by using the models to predict expression on
the CEU samples and comparing across sample correlations with RNA-seq. For
this subset of genes linear models do not outperform MARS (Table 3.1)
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Linear MARS
Across sample Spearman  0.048 0.056
Across sample Pearson 0.054 0.060
Within sample Spearman 0.854 0.908
Within sample Pearson 0.909 0.927

Table 3.1: Comparison of linear and MARS models.

We have also fit the linear models for only probes which show high positive
correlation with the expression of their target genes (as measured by RNA-seq)
in the training set. We compare these to our MARS models, which were fit with
only highly positively correlated probes (the best performing MARS models).
The linear models are fit for probes with high Pearson correlation, as opposed to
Spearman correlation for the MARS models, as Pearson correlation also provides a
measure of linearity. Again, the top 50% of probes with highest positive correlation
are selected. Using only a subset of probes now means that it is possible to fit
linear models for 8943 genes. Again, the performance (as measured by correlation
with RNA-seq on this subset of genes) of MARS remains superior to that of linear
models (Table 3.2). The ability to detect significant (p < 0.05) correlations with
RNA-seq is only slightly improved using MARS compared to linear models, with
1345 as opposed to 1272 significant correlations detected (p = 0.12 from Fisher’s
exact test).

Linear MARS
Across sample Spearman  0.069 0.096
Across sample Pearson 0.080 0.101
Within sample Spearman  0.870 0.941
Within sample Pearson 0.844 0.949

Table 3.2: Comparison of linear and MARS models for models fit using only highly
positively correlated probes.

3.3.7 Improving the performance of APT

As outlined above, fitting the MARS models using only highly positively correlated
probes in the training set, markedly improves performance of the models when
tested against RNA-seq. We have also found that a similar approach can be used
to improve the performance of APT. More recent versions of APT (>= 1.8.0)
allow the user to mask out individual probes when estimating gene expression
in a set of samples. This functionality has previously been used to mask probes
which overlap SNPs [249]. We have found that masking probes which do not
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show high (top 50%) Spearman correlation with RNA-seq in the YRI training
set, improves across sample correlations of gene expression estimates with RNA-
seq in the CEU. The mean across sample Spearman correlation increases from
0.164 to 0.176, on a set of approximately 12,000 Entrez genes, for which there are
enough probes remaining to estimate expression. The number of genes that were
significantly (p < 0.05) positively correlated (Spearman correlation) between the
microarray and RNA-seq has increased from 3,318 to 3,727 (p = 4.034 x 107°
from Fisher’s exact test). This suggests that, using this smaller and potentially
more informative set of probes to estimate gene expression, can more accurately
measure change in gene expression between different samples/phenotypes.

3.3.8 Using SeqArray to the investigate the genetics of
miRNA regulatory effect

In the previous chapter, we were unable to achieve a significant association be-
tween the SNP rs17409624 in DROSHA and mean RE-score using the microarray
data. No significant SNPs were identified using the array data which suggests that,
unsurprisingly, RNA-seq may have more power to detect such associations. Here,
we try again to reproduce the result, using expression estimates from SeqArray.

We trained the models used to calculate expression in the CEU data have
been trained on the YRI data and the models used to calculate expression in the
YRI have been trained on the CEU. The core probesets were used, the DABG
algorithm was applied and negatively expressed genes were set to zero. RE-scores
were calculated using the TargetScan prediction algorithm. Analysis of association
of mean RE-score with SNPs in the miRNA biogenesis pathway was performed
as previously described. This first approach did not successfully reproduce the
significant result obtained for rs17409624 using RNA-seq (p = 0.89 in the CEU
and p = 0.88 in the YRI; Fig. 3.9)
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Figure 3.9: Stripcharts of mean RE-score against rs17409624 genotypes for the
CEU and YRI, calculated using seqArray gene expression estimates.

Finally, we attempted to reproduce the result by using as much training data
as possible, when predicting expression for each sample. This time, instead of
training the models used to estimate expression in the YRI samples on the CEU
and vise versa, we trained on all available samples (both CEU and YRI), leaving
out the one sample for which we wish to predict expression. Using this method,
gene expression on each sample is estimated using a different set of models, which
were trained on all other available samples. An approach like this could never
have any useful real world application, as clearly one could simply use the RNA-
seq data, but it is implemented here, to give an indication of whether it may be
possible to improve the performance of SegArray, by adding more training data
and to establish if it is possible to reproduce the results of the RNA-seq association
analysis using the microarray data. We used the core probesets, applied DABG,
set negatively expressed genes to zero and fit the models using only probes which
showed a high positive correlation with the RNA-seq estimated gene expression
level across all available samples. However, this approach does not improve the
results obtained for rs17409624 (p = 0.89 in the CEU and p = 0.88 in the YRI;
Fig. 3.10). As RE-scores are only meaningful when compared across samples, the
poor across sample correlation achieved between RNA-seq and SeqArray is the
most plausible explanation for this result.
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Figure 3.10: Stripcharts of mean RE-score against rs17409624 genotypes for the
CEU and YRI, calculated using seqArray gene expression estimates and using as
much training data as possible.

3.4 Conclusions and future work

In conclusion, we have developed a novel method to estimate gene expression
from microarray probe-level fluorescence intensities. We have applied this method
to Affymetrix Human Exon ST 1.0 arrays, using matching RNA-seq data as a
training set; we used MARS models to relate microarray probe level intensities to
RNA-seq gene level expression measures. To test the method we used these models
to estimate gene expression on a separate set of samples for which exon array and
RNA-seq data were also available. Our method has not outperformed APT, in
terms of across sample correlation with RNA-seq. This means that our method
is not as sensitive to change in gene expression between different samples. Most
real world applications (for example differential expression analysis) are primarily
concerned with comparing expression levels across samples, which means that we
have, as yet, been unable to develop SeqArray to a level where it is more useful
in these kinds of scenarios.

However SeqArray has far outperformed APT in both Pearson and Spearman
within sample correlation with RNA-seq. This means that it is more accurately
estimating the expression and rank of genes within samples. Because of differences
in hybridization affinity between different probes, estimating absolute expression
level of genes is not an application for which microarrays are often used. This

72



is illustrated by the poor within sample Pearson’s correlation, averaging at only
0.19 observed in the HapMap CEU, between expression levels estimated by APT
and RNA-seq. This is improved dramatically by our method, which shows an
average within sample Pearson’s correlation > 0.9. Although less common, there
are undoubtedly some applications where accurately estimating the absolute level
of expression of a gene may be useful. One example is a previous study which
assessed the relationship between intron length and gene expression level (which
were measured using microarrays); highly expressed genes were found to tend to
have shorter introns [250]. In this case, our method would have been far more
accurate in estimating which genes were in fact highly expressed.

The training data that we have used here is also very limited. All of the gene
expression estimates are from lymphoblastoid cell lines, which means that, for the
majority of genes, a great deal of variation in gene expression between the different
samples cannot be expected. Without at least some variation in expression in the
training set it is impossible to fit useful, broadly applicable models. This is also
supported by our observation that across sample correlations improve for genes
that have more variable expression in the training set (as measured by RNA-
seq). There are some other datasets that are becoming available which have
assessed gene expression using both RNA-seq and Affymetrix Human Exon ST
1.0 arrays on the same samples; future work may focus on incorporating more of
these datasets in the training phase, assuming that they are of sufficient quality.

A method similar to what we have outlined in this chapter may also be capable
of estimating transcript level expression in exon microarrays, as opposed to just
gene level expression. There are well established methods of estimating transcript
abundance in RNA-seq data, but at the time of writing we are not aware of a
tool which can accurately estimate the expression of different isoforms from exon
array expression data. The main challenge in this will be taking account of the
expression of overlapping transcripts when fitting the models. This could perhaps
be achieved using models that allow for a multi-variate response (i.e. multiple
transcripts dependent on the expression of multiple probes).

Finally, we have devised a separate method, by which to improve across sample
correlations between APT gene expression estimates and RNA-seq. This works
by estimating gene expression using only probes which show a positive correlation
with their target gene in a training set. As with SeqArray, it is possible that this
method could also be further improved using a more diverse set of training data.
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3.5 Methods

3.5.1 Data Analysis

All data analysis were performed in R. We used the same gene expression data
as in Chapter 2. RNA-seq data were processed as outlined in the Methods sec-
tion of that chapter. Microarray data were processed by Affymetrix Powertools
as previously described. Training and prediction microarray data were quantile
normalized together at probe level, using the Bioconductor library XPS [251].
This library allows very large datasets to be processed using only a small amount
of memory. It is built on top of the ROOT data analysis framework [252], an
application developed by CERN, which works by indexing the raw data on the
hard disk instead of loading it into memory. This is necessary, as the data are too
large to be loaded on any machine to which we had access, the largest of which
had 32gb of RAM. XPS also implements the DABG algorithm. MARS models
were fit using the mda [253] library in R.

3.5.2 eQTL Finding

We used an additive linear model [254] to identify eQTLs. P-values were corrected
using the Benjamini and Hochberg method and eQTLs were called significant
at an FDR < 0.05. This is a highly computationally intensive task; hence, we
used the “.C” interface in R, to call a function, written in the C programming
language, which performed the calculations. This function was based on the GNU
Scientific Library (GLS) [255]. We only considered cis-eQTLs and regarded a
SNP as associated with a particular gene if it is between 2kb upstream and 500bp
downstream of the gene.
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Chapter 4

Ulcerative Colitis is associated
with CpG island
hypermethylation in sigmoid
colon tissue

Some of the contents of this chapter have been submitted for publication as part of:

Affendi, RRA., Hartnett, L., Newell J., Golden, A. Seoighe C, Geeleher P., Egan, LJ.
Analysis of the interleukin-6/STAT3 signalling pathway and DNA methylation
patterns in patients with short or longstanding inflammatory bowel disease.
Inflammatory Bowel Diseases

4.1 Abstract

4.1.1 Background

Individuals suffering long standing ulcerative colitis (UC) have an increased risk
of developing colorectal cancer [256]. It has been previously shown that aberrant
DNA methylation is associated with colorectal cancer. Previous work has also
shown that there is likely a causative link between DNA methylation in UC and
the increased risk of colorectal cancer. Hence, we have investigated whether there
is evidence of differential CpG island methylation in sufferers of UC, by comparing
the genome-wide methylation pattern in sigmoid colon tissue of 5 UC patients
and 5 healthy controls, using data generated from the Agilent Human CpG Island
microarray.
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4.1.2 Results

We have found evidence of overall CpG Island hypermethylation in UC. This result
is consistent with previous findings in colorectal and other cancers. However,
differential methylation at the level of individual probes or CpG islands was not
significant following correction for multiple testing.

4.1.3 Conclusions

CpG Island hypermethylation is associated with UC, which may be a factor in the
increased risk of carcinogenesis. In this analysis, we have been unable to identify
which individual genes are more likely to be targeted by this methylation. This is
likely due to the small sample size, but it may also be the case that overall CpG
island hypermethylation in UC is not targeted at any particular genes.

4.2 Background

Inflammation is a normal biological response to damage caused by external fac-
tors such as physical injury, burns, toxins and infection by pathogens. In humans,
acute inflammation is a vital defense mechanism which is crucial to survival. It
causes infiltration of white blood cells to the affected area and leads to redness,
swelling, heat, pain and disturbance of function [257] [258]. In some cases, a per-
sistent or prolonged inflammatory response may occur; this is known as chronic
inflammation and is the cause of harmful disorders such as celiac disease, asthma
and inflammatory bowel disease (IBD). Chronic inflammation is also associated
with approximately 20% of cancers in humans [259] [260]. Ulcerative colitis (UC)
is a common chromic inflammatory disease. It is a class of IBD and affects up
to 200 in 100,000 individuals in some populations [261]; it is characterized by
chronic inflammation of the gastrointestinal tract [262]. Common symptoms in-
clude abdominal pain, blood and pus in stools, diarrhea and weight loss. Medical
interventions include drugs, dietary change [263], or in severe cases, surgical re-
moval of part of the bowel [264].

The causes of UC are not well understood, but early studies on twins revealed
a likely genetic component [265]. More recently, genome-wide association studies
(GWAS) have identified approximately 100 loci which are associated with UC, but
the individual contribution of these alleles is small, suggesting that susceptibility
is influenced by many genomic variants [266] [267] [268]. Sufferers of UC are 2-
to 3- times more likely than average to develop colorectal cancer (CRC), over
the course of their lifetime. Colitis associated cancer (CAC) is similar to sporadic
CRC, although the frequency and timing of malignancy is thought to be influenced
by the inflammation [256] [269] [270]. The most important factors determining
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risk are the duration, extent and severity of the UC [271] [272]. The use of anti-
inflammatory drugs has also been shown to significantly decrease the risk of cancer
in individuals suffering chronic inflammation, which establishes strong evidence
for a causal link between chronic inflammation and cancer [273].

Epigenetic changes, particularly DNA methylation and histone modification,
play a key role in cancer [274] (see Introduction chapter for detailed discussion).
CRC is among the cancers affected [275]. Methylation in cancer involves ge-
nomic hypomethylation and hypermethylation of gene promoter regions. These
lead to genomic instability and downregulation of tumor suppressor genes; factors
which, followed by a selection process, contribute to uncontrolled cell proliferation
[44][45][46]. Chronic inflammation is associated with aberrant DNA methylation
in several conditions, such as Barrett’s esophagus [276], chronic biliary tract in-
flammation [277] and IBD [271]. Several previous studies have identified an over-
lap between genes hypermethylated in UC and CRC (Table 1). This suggests
that inflammation associated DNA methylation in UC, may be a factor in the
increased risk of neoplastic transformation.

Gene Symbol Methylation Status Disease Reference Array
CDKN2A Promoter hypermethylation UC and CAC  [278][279][280] Y
ESR1 Promoter hypermethylation UC and CAC  [279][281] Y
APC1A Promoter hypermethylation IBD and CAC [282] N
APC2 Promoter hypermethylation IBD and CAC [282] Y
SFRP1 Promoter hypermethylation IBD and CAC [282] Y
SFRP2 Promoter hypermethylation IBD and CAC [282] Y
F2RL1 Promoter hypermethylation UC [283] Y
SOCS3 Hypermethylation CAC [284] Y
TUSC3 Promoter hypermethylation UC [285] Y
CDH1 Hypermethylation UC [286] Y
GDNF Hypermethylation ucC [286] Y
ABCBI1 Hypermethylation ucC [287] N

Table 4.1: Genes previously identified as differentially methylated in IBD, UC or
CAC [12]. The “Array” column refers to whether a gene is represented on the
Agilent Human CpG Island microarray.

In this chapter, we present the results of a study to characterize the genome-
wide differential CpG island methylation in UC, using the Agilent Human CpG
Island microarray. We compared promoter methylation in sigmoid colon tissue,
between five individuals suffering UC and five healthy controls. Methylated DNA
was isolated using the methylated DNA immunoprecipitation (MeDIP) protocol
and input DNA and DNA isolated using a 5-methylcytosine (5mC) antibody are
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competitively hybridized to each array [288][289]. These data were generated in
the National Centre for Biomedical Engineering Science, NUI Galway (see Meth-
ods for details). Each microarray probe is targeted to a particular CpG site,
within a CpG island; the log ratio intensity for each probe indicates the level
of methylation of the corresponding targeted region. Comparing these levels of
methylation between UC and control samples gives an indication of the level of
differential methylation between the two phenotypes.

The majority of previous MeDIP-chip based experiments have set out to char-
acterize a methylation pattern in a particular tissue or cell type [290][291]. Tools
such as Agilent Genomic Workbench [292], Ringo [293][294] and Batman [295][296]
have been used to analyse these experiments. Most commonly, methylation mi-
croarrays are used in an experimental design in which isolated methylated DNA
from two different phenotypes are hybridized to the same microarray [297][298];
in that case, genes of interest are usually identified using an arbitrary probe level
fold-change cutoff. The dataset discussed in this chapter is different, because
samples of each phenotype have been hybridized to different arrays. At the time
of writing, we are not aware of an equivalent published study, that has used the
MeDIP-chip protocol and this experimental design, with this platform. Thus,
we have analysed these data by developing methods based on existing strategies
for analysis of ChIP-chip and gene expression microarrays. We have compared
the performance of the various approaches by assessing their ability to find genes
which have previously been identified as differentially methylated in UC (Table
4.1).

4.3 Results and Discussion

4.3.1 Data quality assessment

Quality assessment steps for CpG Island methylation microarrays are slightly
different to those typically used for gene expression arrays. We used some of the
steps suggested by Palmke et al. [290] and also applied some methods tailored
specifically to this dataset. Boxplots of raw log intensity ratios did not indicate
any sizable scaling differences between arrays (Fig. 4.1). Quantile normalization
corrected the small differences that were evident (Fig. 4.2). We have also assessed
pseudo array images, which did not reveal any spacial hybridization artifacts (Fig.
6.2 in Appendix C).
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Figure 4.1: Boxplot of raw log intesity ratios. UC samples are highlighted in red.
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Figure 4.2: Boxplot of quantile normalized log intensity ratios. UC samples are
highlighted in red.

We used principle components analysis (PCA) to visualize the similarity be-
tween log intensity ratio patterns in UC and normal samples. If the experimental
condition was the main source of variation within the data, one would expect that
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UC and normal samples cluster on opposite ends of principle component 1 (PC1).
This is not the case for the raw or normalized data (Fig. 4.3 and 4.4). This sug-
gests that some unknown factor(s) has a greater influence over the variability in
measured methylation levels in the 10 samples, than their status as UC or normal.
Any number of factors which influence methylation may be responsible, known
examples include smoking [299] and diet [300]. Only age and gender are available
as additional phenotypic information and we have included this on the PCA plots,
but it is clear that neither of these is correlated with PC1. This indicates that
there may be difficulty in achieving statistically significant results. However, UC
and normal samples cluster on PC7, which means that PCA analysis has identified
that there is potentially some subset of probes which vary consistently between
the two phenotypes. These could be identified by statistical analysis. PCs 1-10
are shown in figure 6.1 in Appendix C. The proportion of variance captured by
any of PCs 2-10 is much lower than that of PC1 (Fig. 4.5)
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Figure 4.3: PCA plot for raw log intensity ratio data, showing PC1 (x-axis) and
PC2 (y-axis). UC samples are highlighted in red.
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Figure 4.5: PCA scree plot, showing the proportion of variance captured by each
PC on the normalized data. This result is similar for the raw data.

4.3.2 Adapting a ChIP-chip approach to identify methy-
lated loci

We have first used a ChIP-chip type approach to quantify the number of methy-
lated loci in each sample. This will give an indication of whether overall hyper-
methylation is evident in UC. To do this, we used Ringo, which is a Bioconductor
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package designed for the analysis of two color ChIP-chip microarrays and genomic
tiling arrays, but can also be applied to some types of methylation experiments
[293]. Typical ChIP-chip experimental design is similar to MeDIP-chip; the dif-
ference is that, in the case of ChIP-chip, an antibody is used to isolate DNA
bound to a protein of interest, but with MeDIP-chip, an antibody is used to iso-
late methylated DNA. Thus, Ringo can be adapted to characterize methylation
profiles in MeDIP-chip samples [294][290].

The log intensity ratio distribution within a sample, for a typical ChIP-chip
experiment is expected to follow a bimodal distribution [293], with the enriched
probes contained in the smaller of two Gaussian distributions. Unsurprisingly,
this also applies to MeDIP-based two channel microarray experiments [11](Fig.
4.6), but in this case the smaller distribution contains the probes enriched for
methylation. The log intensity ratio distributions of our 10 samples are shown in
figure 4.7. Some of these distributions appear somewhat bimodal, while others do
not. This is not uncommon and the Ringo library implements functionality that
takes account of this when identifying enriched probes. The Agilent documenta-
tion provides an explanation for why a clear bimodal distribution is not always
evident, calling attention to the fact that different probes have different binding
affinities (referred to as “melting temperature”). Binning probes based on melting
temperature leads to cleaner enriched distributions and it is recommended that
direct probe comparisons are only made within these bins [11]. Consequently, on
each array, we divided probes into 17 bins of 0.1°C (Fig. 4.8). Using this approach,
we determined the number of enriched probes in each sample (see Methods for
details). A one sided t-test shows a greater number of enriched probes in the
UC (p = 0.036; Fig. 4.9), which is consistent with our expectations. To estab-
lish if there is evidence of differential methylation between different loci, we have
implemented statistical tests, which are discussed below.

log-ratiog,q. 1

Right
Gaussian
" (methylated)

Figure 4.6: Typical bimodal distribution of log-ratios expected from MeDIP-chip
experiment [11].
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Figure 4.7: Log-ratio distribution for the 10 UC samples; in theory, enriched
probes are in a smaller right Gaussian distribution.
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Figure 4.8: Histograms of bins 1, 2, 3 and 4 from sample 251479115460. The
cutoff identified by the “upperBoundNull()” function from the Ringo package is
included as a red vertical line.
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Figure 4.9: Number of methylated probes identified by Ringo in UC and normal
samples (p = 0.036).
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4.3.3 Statistical inference of differentially methylated probes

We have used several different methods to identify candidate lists of differentially
methylated genes. None of these methods have been verified experimentally, nor
has any method that we are aware of for this type of experimental design. Because
of this we have used a list of genes previously found to be differentially methylated
in UC, IBD or CAC (Table 4.1) as a benchmark by which to compare the various
methods; 10 of the 12 genes in this table are represented on the Agilent Human
CpG Island microarray.

Identifying differential probe methylation using limma

We used the Bioconductor library limma (normally used for analysis of gene ex-
pression microarrays) to assess differential probe methylation between UC and
normal phenotypes. Unlike Ringo, this approach ignores the shape of the log
intensity ratio distribution and instead attempts to directly identify statistically
significant differences between UC and normal, in the quantile normalized log
intensity ratios of probes or groups of probes.

Unsurprisingly, given the results of PCA, none of the individual probes reach
the p < 0.05 threshold, following correction for multiple testing (Table 4.2). A
histogram of the raw p-values reveals that there are many more high p-values (and
hence much fewer low p-values) than would be expected by chance (Fig. 4.10).
Nonetheless, we know that there is some consistent variation between the two
phenotypes (identified by PCT), hence, we identified a list of nominally significant
probes by using the p < 0.05 threshold. This identified 615 probes. Of these
380 showed hypermethylation in the UC, compared to 235 in controls and this
difference is statistically significant (p = 5 x 1072 from a binomial exact test).
again suggesting CpG island hypermethylation in UC. Of the 380 probes, 2 map
to genes previously identified as hypermethylated in UC (GDNF and APC2).
The probability of 2 or more of these 10 genes being identified by chance is 0.09
(this is calculated using the method developed in the next chapter). This test
assumes that all 10 previously reported genes are truly hypermethylated in all 5
of our UC samples; in reality, this is unlikely and as such 0.09 can be considered
a conservative p-value estimate.

Next, we conducted a similar analysis, but this time included PC1 as a covari-
ate in the linear model (which is fitted for each probe using limma); this approach
will improve power to detect differential methylation of probes that are strongly
influenced by PC1, while sacrificing power to detect those which are not. These
types of methods, which use PCA to identify hidden confounding factors, that are
subsequently included in statistical models, have previously been applied to, for
example, eQTL analysis [301]. Again, no significant probes remained following
multiple testing correction. This time, 1,633 hypermethylated probes reached the
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p < 0.05 threshold. However, this did not appear to improve the power to detect
true associations, with only 3 of these probes mapping to the same set of 10 genes
which yields a less significant p-value than previously (p = 0.32). This suggests
that factoring in PC1 has not improved the analysis.
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Figure 4.10: P-value distribution for all probes, from the limma differential methy-
lation analysis.

Probe ID Gene Symbol Log FC P-Value

A_17_P17272535 None —0.41 1.09 x 10793
A_17_P15810386 None —0.56 1.15 x 10793
A_17_P15865576 SLC35D3 —0.56 1.35 x 10793
A_17_P16393414 LHPP —0.37 1.87 x 10793
A_17_P16975164 PIGW —0.65 2.18 x 10793
A_17_P16879789 FUS —0.39 2.70 x 10793
A_17P15219918 FAMS4A —0.49 2.86 x 10793
A_17P16897414 IRX3 —0.49 3.32 x 10793
A_17_P16464772 KIAA1394 —0.82 3.50 x 10793
A_17_P16645611 PCDH9 —0.42 3.53 x 10793

Table 4.2: P-values for top 10 probes identified by limma. Negative fold-change
implies hypermethylation in UC. False discovery rates are 1 for all of these probes.
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Identifying differential probe methylation using fold changes and a non-
stringent p-value threshold

The MicroArray Quality Control (MAQC) project has suggested, that in the case
of gene expression microarrays, identifying differentially expressed genes using a
fold change and non-stringent p-value cutoff leads to improved reproducibility,
although strict p-value based methods are still much more commonly used [302].
Consequently, we also tried a fold change based approach. We used probes with
p < 0.25 (as identified by limma) and selected 615 probes with the highest ab-
solute value of log fold change. This number of probes was selected to facilitate
comparison with the previous analysis, which identified 615 probes with p < 0.05.
Again, many more of the probes identified are hypermethylated in UC (457 vs
158). Two of the set of ten genes of interest are identified, APC2 (also identified
by the p-value based approach) and SFRP2. This indicates that, for these data,
a fold change based cutoff has approximately the same power to detect differen-
tial methylation as a strict p-value cutoff. Importantly, this alternate approach is
again suggestive of CpG island hypermethylation in UC.

Identifying differential probe methylation using variance filter and t-
tests

We have also attempted to identify differentially methylated probes using t-tests.
To reduce the multiple testing problem, we first filter out 50% of probes, which
show the lowest variance across all samples, as these probes are unlikely to be
differentially methylated [303]. 214 probes reached the p < 0.05 threshold and of
these 165 showed hypermethylation in the UC (again consistent with the previous
approaches). Unsurprisingly, the probes identified are very similar to those ob-
tained using limma, with 211 of the 214 probes also having p < 0.05 in the limma
analysis. However, the high false discovery rates remain and none of the probes
survive Benjamini and Hochberg correction for multiple testing (Table 4.3). T-
tests do not improve on limma as regards finding genes which were previously
identified as hypermethylated in UC, with only one (APC2) of the two genes
identified by limma reaching p < 0.05.

4.3.4 Assessing differential methylation at CpG island level

The Agilent documentation states that “It is generally observed that CpG islands,
measured on the Agilent catalogue CH3 design array, are either fully methylated
or fully unmethylated”. This statement is not referenced, nor have we found any
supporting evidence in the literature. In fact, there are studies which show differ-
ential methylation occurring preferentially at CpG island shores [304]. This has
also been shown to be the case in colon cancer [305]. Nonetheless, we have applied
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Probe ID Gene Symbol Log FC P-Value

A_17P16393414 LHPP —0.37 5.27 x 10704
A_17_P17272535 None —0.41 5.96 x 1074
A_17_P15000049 PPP2R3B 0.34 1.36 x 10793
A_17_P16879789 FUS —0.39 2.21 x 10793
A_17_P15366352 ASNSD1 —0.38 3.60 x 10793
A_17P15810386 None —0.56 3.64 x 10793
A_17_P15865576 SLC35D3 —0.56 4.37 x 10793
A_17_P16645611 PCDH9 —0.42 5.20 x 10793
A_17P16672113 None —0.41 5.33 x 10793
A_17_P15427385 STAC —0.41 5.58 x 10793

Table 4.3: P-values and false discovery rates for top 10 probes from t-tests. Neg-
ative fold-change implies hypermethylation in UC. False discovery rates are 1 for
all of these probes.

two methods to assess whether there is evidence of CpG island level differential
methylation and tested performance as previously. CpG island level also has the
advantage of drastically reducing the multiple testing problem, as there are far
fewer CpG islands than individual microarray probes.

Comparing the median expression level of CpG islands

The first method has summarized each CpG island by their median probe ex-
pression level and used limma to assess differential methylation between UC and
normal phenotypes. We included only CpG islands which had at least two asso-
ciated microarray probes and where all probes on the island were annotated to
the same gene. This yielded a set of 17,322 CpG islands which were associated
with 11,494 genes. Differential methylation analysis revealed a total of 78 CpG
island regions with p < 0.05, but as with the probe level analysis, none of these
was significant following multiple testing correction (Table 4.4). Also, none of
the 10 genes previously identified as hypermethylated in UC were identified as
nominally significant by this method, which gives no evidence that this method
provides meaningful insight.
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CpG Island Location Gene Symbol Log FC P-Value

chr11:56950916-56951226 MSX1 —0.26 4.61 x 10793
chr7:72364760-72365376 CENTA1 0.18 6.62 x 10793
¢chr12:50938285-50939010 TRIM50 —0.19 8.02 x 10793
chr10:126268288-126268493 FPGS —0.20 8.34 x 10793
chr18:2903059-2903307 LHPP 0.20 0.48 x 10793
chr9:129604684-129605387  SLC43A3 0.17 9.96 x 10793
chr15:89298998-89299619 KRT7 0.20 1.22 x 10702
chrX:48974153-48974464 RCCD1 0.19 1.24 x 10792
chr7:909233-909466 EMILIN2 0.18 1.24 x 10792
chr4:4917339-4917714 CACNAIF 0.22 1.39 x 10792

Table 4.4: Top 10 results for differential methylation of CpG islands assessed by
limma from the median log ratio intensity of each CpG island. False discovery
rates are 1 for all of these probes.

Assessing all probe fold changes on CpG islands

We have developed a second method for assessing differential methylation at CpG
island level. This attempts to identify CpG islands where many of the probes are
concordantly differentially hyper- or hypomethylated. To do so, we calculated a
fold change, between UC and normal, for each individual probe; then, for each
CpG island, used a one sample t-test to assess the degree to which these fold
changes deviate from zero. Again, this approach did not identify any significant
differential methylation, following correction for multiple testing; nor were any of
the genes previously identified as methylated in UC found among the nominally
significant genes. This indicates that it is unlikely that this method is useful for
identifying differential methylation in this case.

4.3.5 Gene set analysis

In order to determine the functional significance of the genes identified by our
analysis, we subjected the results to gene set analysis (GSA). We have found that
a severe bias affects this kind of assay. This stems from the fact that different
genes often have very different numbers of associated probes. Several previous
studies have applied GSA to high throughput methylation data and many of
these results are inaccurate. The next chapter contains a detailed discussion of
this bias and we have also proposed a novel method for an unbiased GSA in genome
wide methylation datasets. This approach reveals results which were previously
unidentifiable in this dataset.

89



4.4 Conclusions

We have found evidence of hypermethylation of CpG island regions in UC. This
conclusion is supported by two different approaches; firstly a ChIP-chip assay,
analyzed using the R package Ringo and secondly, a statistical analysis, using
limma. We were unable to identify statistically significant evidence of differential
methylation at the level of individual probes or CpG islands, after correction for
multiple testing. This may be due to the small numbers of samples. However, of
the approaches that we implemented, differential methylation analysis at probe
level, using limma, performed best in identifying genes that were previously found
to be hypermethylated in UC. We selected the genes identified by limma for GSA
and identified a severe bias which affects the analysis. This is the subject of the
next chapter.

4.5 Methods

4.5.1 Identifying methylation using Ringo

Raw microarray data were loaded in R and log intensity ratios were calculated.
As suggested by Agilent, in order to allow comparison, probes were binned by
melting temperature, into 17 bins of 0.1°C. These distributions were centered
and enriched probes were identified using the upperBoundNull() function from
the Ringo package. The numbers of enriched probes identified in samples of each
phenotype were then compared using a t-test.

4.5.2 UC Microarray Data

MeDIP was performed to capture methylated DNA sequence as previously de-
scribed by Weber et al with slight modifications. Briefly, 10ug of 5-methylcytosine
antibody was incubated with 50ul of Dynabeads M-28 Sheep anti-mouse IgG
for 5 hours in immunoprecipitate (IP) buffer at 4°C. Genomic DNA was soni-
cated using the Branson digital sonifier and 4ug of genomic DNA was incubated
with the antibody-beads complex overnight at 4°C. Then, the DNA-antibody-
dynabeads complex was washed three times with IP buffer and incubated with
5ul of proteinase K for 2 hours at 55°C. In our experiment, we labeled the IP
DNA with fluorescent dye, cyanine 3 and reference (R) DNA with cyanine 5 and
co-hybridized to the Agilent microarrays. The MeDIP followed by CpG island
microarray analysis enables us to identify the methylated and unmethylated CpG
islands between long standing UC patients and age-matched control patients. Pu-
rification of labeled products, array hybridization and scanning were performed
at the functional genomics and high throughput screening facility at the National
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Centre for Biomedical Engineering Science, NUI Galway. These data have been
uploaded to GEO and are available under accession number GSE39188.
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Chapter 5

Severe bias in gene set analysis
applied to high-throughput
methylation data

The content of this chapter has been submitted for publication as:

Geeleher, P., Hartnett, L., Affendi, RRA., Egan, LJ., Golden, A. and Seoighe, C.
Severe Bias in Gene-Set Analysis Applied to High-throughput Methylation Data.
Oncogene

5.1 Abstract

5.1.1 Background

Changes in DNA methylation play a major role in the development of cancer, for
example by silencing tumor suppressor genes. Because of its biological and clini-
cal significance, several previous studies have compared genome-wide patterns of
methylation between phenotypes. The application of gene set analysis to identify
biological processes that are enriched for differentially methylated genes is often a
major component of these analysis. This can be used, for example, to identify bi-
ological processes that are perturbed by methylation in cancer development. This
chapter discusses gene set analysis applied to high throughput methylation data
in the context of the results from the previous chapter, as well as other publicly
available datasets.
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5.1.2 Results

Gene set analysis, as it is typically applied to genome-wide methylation assays
is severely biased as a result of differences in the numbers and sizes of CpG
islands associated with different classes of genes. We demonstrate this bias using
published data from a study of differential CpG Island methylation in lung cancer
and a data set we generated to study methylation changes in patients with long-
standing ulcerative colitis (both experiments used the Agilent Human CpG Island
microarray) and show that several of the gene sets that appear enriched would
also be identified with randomized data. We also report a method to correct the
bias. Application of the corrected method to the lung cancer and ulcerative colitis
data sets provides novel biological insights into the role of methylation in cancer
development and chronic inflammation.

5.1.3 Conclusions

Gene set analysis is a very widely used tool in genomics research, but is unreliable
when genes belonging to different gene sets have, a priori, different probabilities
of appearing in the foreground list. We show that this is a particularly impor-
tant effect in genome-wide methylation analysis and provide a method to correct
the bias. Our results have significant implications for several prior genome-wide
methylation studies that have inadvertently drawn conclusions on the basis of
strongly biased gene set analysis.

5.2 Background

The application of gene set analysis (GSA) is not restricted to the results of high-
throughput gene expression measurements; the same approach is used for many
other high-throughput experiments. We focus on the application of GSA to the
results of high-throughput DNA methylation experiments. Microarrays have fre-
quently been used to assess the methylation status of CpG sites and CpG islands
genome-wide. Platforms for this purpose have been developed by Agilent, Illu-
mina and NimbleGen. Here, we analyze data generated using the Agilent Human
CpG Island microarray, which measures methylation levels at 244,000 CpG sites,
located within CpG islands. Applications of this platform have included the study
of CpG island methylation in leukemia [306] and in lung [307], prostate [297] and
breast [308] cancers. Several previous studies have applied GSA to lists of differ-
entially methylated genes obtained using the Agilent Human CpG Island array,
including Helman et al. [298], who applied GSA to hypermethylated genes in
lung cancer, using the Bioconductor package GOstats and Dunwell et al. [309],
who assessed differentially methylated gene sets in childhood acute lymphoblastic
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leukemia (ALL) using the bioinformatics tool DAVID. In both cases, several func-
tional categories of genes were identified as highly enriched among differentially
methylated genes.

We show that when GSA is applied to differentially methylated genes, detected
using microarrays, the results are strongly biased towards certain gene sets. The
bias stems from large differences between genes in the number of probes on the
array that map to CpG islands in the promoter region of the gene. This is be-
cause different gene promoters have very different CpG content [310], thus GSA
applied to data from any microarray designed to assay methylation of these CpG
dinucleotides may be affected by this bias. On the Agilent array, the number
of probes associated with each gene ranges from 1 to 285 (Fig. 5.1). Similar
platforms by NimbleGen (Human DNA Methylation 385K Promoter Plus CpG
Island Array) and Illumina (Infinijum HumanMethylation450 BeadChip) contain
from 1-80 and 1-1288 probes per gene, respectively (Fig. 6.3 in Appendix D).
Given the criteria typically used to designate genes as differentially methylated
(e.g. [298][309]) genes with higher numbers of associated probes are more likely to
meet the criteria by chance (higher false positive rate). Indeed, there may also be
more power to detect a real differential methylation signal for these genes. These
factors combined mean that genes with more associated CpG probes are more
likely to be called as differentially methylated. Critically, there are often large dif-
ferences between the mean numbers of probes that map to genes in different gene
sets; hence, gene sets that contain genes with large numbers of associated probes
are more likely to be identified as significant during GSA. We demonstrate this
problem for two kinds of experimental design using the Agilent platform. First, for
the lung cancer study described above and next for a study that we have recently
performed on methylation changes associated with ulcerative colitis (UC). We also
demonstrate that the same bias affects DNA methylation data generated using
high-throughput sequencing. Finally, we propose a method of unbiased gene set
analysis that uncovers previously unidentified, plausible and biologically relevant
patterns of differential methylation in these datasets.
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Figure 5.1: A histogram illustrating the distribution of the numbers of microarray
probes associated with each gene on the Agilent Human CpG Island Array.

5.3 Results and Discussion

Rauch et al. [307] used the Agilent Human CpG Island microarray to assess
methylation in five lung cancer samples compared to normal lung tissue and Hel-
man et al. [298] applied GSA to identify hypermethylated gene sets in this dataset.
CpG islands were called as hypermethylated in a sample “when at least two ad-
jacent probes, allowing a one-probe gap, within the CpG island scored a fold-
difference factor of > 2 when comparing tumor and normal tissue DNA” [307].
Genes were considered hypermethylated in lung cancer if any associated CpG
island met this criterion in four out of the five samples. A total of 102 hyper-
methylated genes were identified in this way. The R package GOstats was then
used to assess aberrant methylation of GO biological processes (BP) containing
between 100 and 1,000 genes. Differentiation/developmental and transcription
factor activity related gene sets were identified as highly significantly enriched
among the hypermethylated genes.

95



5.3.1 Genes identified as hypermethylated have more as-
sociated probes

We obtained the dataset of Rauch et al. [307] from GEO (accession number
GSE9622) and, following their methodology (summarized above), we identified
73 genes hypermethylated in lung cancer, 71 of which overlap the 102 identified
in the original study. Our results are slightly different from the results reported
by Rauch et al. [307], as we mapped microarray probes to CpG island regions
of the hg18 human genome build (as opposed to hg17 in the original study).
The 73 hypermethylated genes identified had, on average, a far higher number
of associated probes than non-hypermethylated genes (39.6, compared to 9.7;
p < 2.2 x 107 from Wilcoxon rank sum test; Fig. 5.2(a)), suggesting that genes
with more associated reporters are more likely than other genes to appear in the
foreground list.

5.3.2 Strong bias in the results of GSA

We used GOstats to identify enriched gene sets for GO BPs in the size class
range used above and obtained results similar to Helman et al. [298]. The top
ten most significantly enriched GO categories are shown in Table 5.1. The mean
number of probes per gene in these ten gene sets was significantly higher, compared
to the mean for all other genes (15.5, compared to 8.8; p < 2.2 x 107'% from
Wilcoxon rank sum test), suggesting that larger numbers of associated probes
may be at least partially responsible for the enrichment of these gene sets among
the hypermethylated genes. We performed a permutation test to investigate this
hypothesis further. Log-intensity ratios associated with each probe were permuted
randomly 100 times within each sample; for each permutation we repeated the
inference of differential methylation followed by GSA. To ensure that the results
were comparable with the original data, we modified the fold change cutoff for
differential methylation so that the average number of hypermethylated genes was
the same as in the original data. Given these random permutations, one would
expect approximately 5% of gene sets tested to be significantly enriched at p <
0.05. However, we found that, in 100 permutations, 34% of GO BP terms tested
had a median p-value less than 0.05. In particular, the gene sets in Table 5.1 all
showed evidence of enrichment among the genes called as differentially methylated
in most or all permutations (Fig. 5.2(b)). These results demonstrate that, using
the existing methodology, many of the gene sets tested achieve significance, even
when the input probe log intensity ratios are essentially randomly generated noise.
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Figure 5.2: (A) Number of probes associated with genes called as hypermethylated
and not hypermethylated in the lung cancer dataset. (B) Boxplots of —log,,
p-values for the top 10 GO BPs (from Table 5.1) obtained from 100 random
permutations of probe values. The dashed red line shows the p = 0.05 threshold.
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5.3.3 Bias correction

We used logistic regression to model the association between the odds of a gene
appearing in the foreground list (i.e. being detected as hypermethylated) and
the log-transformed number of microarray probes associated with the gene (Fig.
5.3). The model can be used to predict the probability of a gene appearing in
the foreground list as a function of the number of associated probes. Given these
probabilities, we calculated the expected number of foreground genes in each gene
set, under the null hypothesis of no association between gene set membership
and differential methylation, by summing the probabilities corresponding to each
gene in the gene set. Expected and observed numbers of foreground genes in
each gene set were then compared, either using a chi-squared goodness of fit test
or by simulation (see Methods). However, since the chi-squared goodness of fit
test is unreliable when expected counts are small [311] only the results of the
simulation-based method are discussed in the main text.

0.5

0.2 0.3 0.4
| |

Estimated probability of hypermethylation

0.1

0 20 40 60

Number of associated probes

Figure 5.3: Fit of the logistic regression to the lung cancer data. The logistic
regression is shown as the solid green line, with 95% confidence intervals shown
as dashed green lines. The blue points show the proportion of hypermethylated
genes, in bins of minimum size 100 genes. 95% confidence intervals for the bins
are shown as blue lines.
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The number of GO biological process categories that were significantly enriched
(FDR < 0.05) following correction was much smaller than the number that were
significant if the correction for the number of probes associated with each gene was
not carried out (11, compared to 72). In Table 5.2 “Embryonic Morphogenesis”
is now the most significant category (p = 9.8 x 107°, compared to p = 8.1 x
10717, prior to correction). The expected number of hypermethylated probes for
“Embryonic Morphogenesis” rose from 1.94 to 7.34, but this is still considerably
less than the observed number of hypermethylated genes for this category, which is
21. This suggests that the reported hypermethylation of developmental associated
genes in lung cancer is not an artifact of the higher numbers of associated probes.
However, several of the gene sets identified in the original analysis are no longer
significant. These include gene sets related to transcription factor activity and,
perhaps importantly, the gene sets related directly to differentiation. The p-value
for “Regulation of Cell Differentiation” increased from p = 3 x 107* to p = 0.17
and “Cell Morphogenesis Involved in Differentiation” from p = 8.8 x 1073 to
p = 0.34. This may bring into question the validity of the original conclusions of
Helman et al, that hypermethylation silences genes required for maintenance of
the differentiated state.

5.3.4 Application of corrected GSA to differential methy-
lation in ulcerative colitis

We also applied the corrected GSA approach to a dataset that we generated to as-
sess differential methylation in patients with long standing (more than 25 years)
ulcerative colitis (UC). These patients are at risk of developing colorectal can-
cer (CRC) [271]. We used Agilent Human CpG Island microarrays to compare
methylation patterns in sigmoid colon tissue between five individuals suffering
from ulcerative colitis and five healthy age-matched controls. This is a different
experimental design to the dataset discussed above. Cases and control samples
were hybridized to different microarrays. The Cy3 channels were hybridized with
immunoprecipitated methylated DNA (isolated using the MeDIP [312] approach)
from sigmoid colon tissue and the Cyb channels were hybridized with input DNA
(both methylated and unmethylated) from sigmoid colon tissue of the same indi-
vidual (see Methods for details). Thus, the log intensity ratio of a probe is, in this
case, indicative of the extent of methylation of a probe in a given sample. This is
in contrast to the lung cancer dataset, discussed above, which, like the majority
of datasets in the literature, was generated by hybridizing methylated DNA from
cancerous and normal tissue of the same individual to separate channels of the
same two-channel microarray. In this case the log intensity ratio on an array is
indicative of the level of differential methylation between lung and normal tissue.
The experimental design of the UC dataset allows results from gene set analysis
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to be corrected using sample label permutations, an established approach in both
gene expression and gene set analysis, used by tools such as SAM [133] and GSEA
[188]. We can thus assess the performance of our model-based correction for dif-
ferences in numbers of mapped probes, by comparing to the results obtained from
sample label permutation.

We used the Bioconductor package limma [173] to identify probes that were
hypermethylated in the UC samples (p < 0.05), and all genes associated with at
least one hypermethylated probe were considered hypermethylated (see Methods
for details). This approach identified a foreground list of 380 genes for gene set
analysis, which was carried out using GOstats (Table 5.3). It is clear that many
of the functional categories identified in the lung cancer study are again among
the most significant. In fact, the Pearson correlation between the GO BP —log,,
p-values from the lung cancer dataset and the UC dataset is 0.69 (p < 2.2 x 10716;
Fig. 5.4(a)). This indicates that both experiments are finding similar p-values
for the same gene sets. This similarity may be biological, so that similar genes
are differentially methylated in the lung cancer and UC datasets. This would
be of interest since it might shed light on the involvement of chronic UC in the
development of colon cancer. However, because of the strong bias, discussed above,
this similarity could be completely artifactual — a result simply of the tendency
for genes associated with a large number of probes on the microarray to be called
differentially methylated.

To address these issues we performed a corrected GSA on the UC data set.
The logistic regression model again indicates a strong association between the
number of associated probes and probability of differential methylation (p < 2.2 x
10716; Fig. 5.5). Corrected p-values and corrected expected values for all 22 gene
sets with p < 0.05 are provided in Table 5.5. The Pearson correlation between
the corrected p-values in the UC and lung cancer datasets is considerably lower
than for the uncorrected results (r = 0.17, compared to r = 0.69; Fig. 5.4(b)).
Furthermore, after correction, the number of gene sets with p < 0.05 in the UC
dataset drops from 262 to only 22, suggesting that a large proportion of the results
from the original analysis were indeed artefacts.

101



(D)) stsATeue 39s a3 pajoalLIod uoneinuLed [aqel 10J GO0 > d Ynm sdg O ¢ o[qRL

snnwig ororg 03 osuodsay 0T X L6'E 6 1096000:0D
jrodsuel], 1eIPUN 0T X L6'E 8 69TT1S00:0D
p10dsuel], oruse[d0) A0 N z0—0T X L6°€ 8 ¢169000:0D
A1A1)Oy O11ATRYRD) JO UORININY SAINSOd 4 0T X L6'€ LT G80€700:0D
80001 O10qeIdIN PIAIOI0AT) .1 0T X LT°¢ g 9879700:0D
80001 O1oqeIdIN PIAIT 1[0 4 0T X LT°€ ¥T  GS9gyrv00-:0D
889001 ONOqRIIN PIAIT 4, 0T X LT'E 02 6299000:0D
§89001d d1[0qRPIN ajeydsoydouesi) ., 0T X 8€'C L L€96100:0D
89001 drjoqeId]y pidijoydsoyd ,,_0T X 8¢'C L ¥¥99000:0D
89001 duetjudsor pidry . 0T X 8€'C ¢l 0T98000:0D
UOISIUPY 93eIISqNG-T[PD) 90T X 69T 8  684T€00:0D
W9, anfea-4 junon arddoo

(D) sisATeue 10s oU0S PajoaIIOIUN 10} SaLI0F01ed Jg OH 0T doJ, :€°G o[qr],
UOISOUPY 03BIISAUG[9) 10T X 06°¢ ¥4°¢ 8 68GT€00-:0D
KemyyeJ Surreudtg 103deday] AN c0—0T X €.°€ 29°¢ 0T SS09T00:0D
stsoua3oydIofN UR3I() e0—0T X GF°¢ ¢O'TT I¢  1886000:0D
SISOUABOYAIO OTUOAIqUI  ¢o(_(0T X 98°T ]¢'9 GT  86S8%00:09
$890014 uorjedyoadg umeled o, 0T X 0T'T &v'a YT 68¢€L000:0D
yuetdo[eAd(] URSI() JTUOAIqUIY 70-0T X ¥7°6 6G°¢ IT 89G8700:OD
UOI)RULIO] WI9}JReJ IOLI)SOJ/IOLIONUY y0—0T X LE°C 90°¢ 1T 2966000:0D
yuowrdo[eAd(] dTuoAIquuIy 50—0T X LG'T 02’11 G 06.6000:0D
SISoue30YdIO[N UeSI() dIUOAIqUIT +0—0T X F0'T 6LC 1T 29S8¥00:09
UOIYRZI[RUOISNY (T X 3G’ €V T G00£000:0D
wWIa], anfea-q juno)) pajdadxy juno)H aidgoo»

102



(D)) SISATeuR 198 9UAS PIYISLIOD UOISSOIFOI D1YSISO[ 10] GO'() > d YIm Yam sqg O :G'G 9[qR],

stsojdody Jo monyenday 9AISOd ;40T X L6'F 868 VT 990€700:00
UOTYRZI[RUOISNY . 0T X GL'F ¢0'6 71 200£000:0D

snnuing 21301¢] o, osuodsay] .o 0T X Z0F 16°% 6 L096000-:0D

§89001 ONOqeIN PIAIOIALD)  ,,_0T X 10'F L1°C ¢ 98%9%00:0D

$59001J OI[OqRIDIN 2ye(dsordOTOIN OPISOSINN 5 0T X 6L°€ 97°€ L €¢16000-:0D
Kemypyed surreudtg 103deday] JuAN z0—0T X 6L°€ Go'G 0T SS09T100:0D
SISB)SO9WIO] UOIYe)) IBN[[9) 0T X 9L°E STy 8  €000€00:0D

UOIRULIO UId}JR] IOLIDISO] /IOy .o (O X &€ €¢'9 IT 2%66000:0D
prodsued], TeIPUN  ,_0T X €1°¢ 107 8 69T1500:0D

110dsuel], orse[dojAD09ON N z0—0T X 2L0°€ 66°¢ 8  ¢169000:0D

890014 d10qeIdIN PIAIT 70 0T X ¥6°C YO°€T1 0¢  6299000:0D

$89001 21[0qeIdIN PIdIT 1eMmIpe) ;0T X 68°C 0€'8 VT 949¢¥1r00:00

89001 JTOYIUASOI] PIOY dAX0qIe) .o 0T X 08°C 16°¢C 9 ¥6€9700-:0D
$89001 OPUIUASOL PIOY OIURSI) ;10T X 08°C L8°C 9 €909T00-:0D
sisouagorg juonoduwioy) IRy Jo UONRMINYY ;4 0T X LG 9¢'¢ L L80¥%00:0D
UOTOUN] TR[NDIOIN JO UOTIRINSNY ATISO] 55 0T X 0L'C LETI 8T  €60¥700:0D
SISeue30YdIO[ UeSI() dIUOAIqUIT z0—0T X GT°g €6°G IT  2948700:0D

80001 o1joqeIely oeydsoydoueSiy ., 0T X G9'T ixé L L€96100-:0D
£31A130Y O13ATRIR)) JO UOIPRNSOY OATNSOJ .0 0T X FG'T 16°6 LT G80€¥00:0D
$80001J dI[0qRIdIN prdrjoydsoyd 4 0T X Lg'T 8L°C L ¥¥799000:0D

UOISOUPY 93eISAUGS-[[9)  ¢9—0T X ¥CT'L qre 8 684T€00-:0D

889001 d1judsor pidry 0T X 10°G L€¢ ¢l 0T98000:0D

wWIa], anfea-q juno)) pajdadxy juno)H ardgo»

103



(A) Uncorrected GSA, R?=0.48
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Figure 5.4: Scatterplot of — log,, p-values for each GO BP category tested in the
lung cancer and ulcerative colitis datasets for (A) the uncorrected GSA and (B)
the corrected GSA. In each plot, a linear regression line is shown in red.
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Figure 5.5: Fit of the logistic regression to the UC data. The logistic regression
is shown as the solid green line, with 95% confidence intervals shown as dashed
green lines. The blue points show the probability of differential methylation,
as calculated by grouping the data by number of associated probes, in bins of
minimum size 100 genes. 95% confidence intervals for the bins are shown as blue
lines.

We also corrected the UC GSA results using sample label permutation (Table
5.4). All 11 of the gene sets identified by label permutation are also identified
by our logistic regression-based correction for differences in numbers of mapped
probes and the top three most significantly enriched gene sets identified by the
two methods are the same. The similarity to the results of an independent and
robust permutation-based approach provides good evidence that our corrected
GSA has performed well. By comparison, only 7 of the 11 gene sets identified
using label permutation were detected using the uncorrected GSA, despite an or-
der of magnitude more processes reported significant in the latter analysis. The
results identified by the corrected method are also highly plausible. Although,
the false-discovery rates are high (Table 5.4), a number of biological processes
related to lipids appear to be hypermethylated in UC. It has recently been shown
that colonic mucus from UC patients has decreased phosphatidylcholine (a class
of phospholipid) content and that the addition of phosphatidylcholine reduced in-
flammation [313]. Our results suggest, for the first time, that DNA hypermethy-
lation of genes involved in lipid biosynthesis may be one of the causes of decreased
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phosphatidylcholine. The gene CHPT1 (cholinephosphotransferase 1) appears in
our foreground list (ranked 42nd at p = 9.1 x 107%) of candidate genes hyper-
methylated in UC. This gene is known to catalyze phosphatidylcholine biosyn-
thesis [314] and is included in the foreground list on account of microarray probe
(A_17_P08575667), which targets part of a CpG island in the promoter region of
this gene. This suggests that hypermethylation may be the causative mechanism
in the disruption of this process; however, the p-value associated with this probe
is not significant following correction for multiple testing and the relationship
requires further investigation. “Cell-substrate adhesion” was also enriched for hy-
permethylated genes. Increased intestinal permeability is known to be associated
with UC [315] [316] and hypermethylation of these genes may play a role in this
association.

Where label permutation is possible (e.g. in the UC experimental design but
not in the case of the lung cancer data set) it can be used to perform GSA in a way
that is robust to the differences in the number of probes per gene. However, it is
likely that the corrected method that we describe provides better power to detect
gene sets that are enriched for differentially methylated genes. The statistical
significance that can be achieved by a permutation method can be very limited
due to the relatively small sample sizes that are often encountered in genome-wide
methylation experiments. For example, the minimum p-value that can be obtained
by label permutations in our case with two groups of five samples is 7.9 x 1073 (see
Methods). Approaches that make use of the extent of over-representation of a gene
class (beyond comparing the over-representation between observed and permuted-
label data) can achieve much higher power, but at the expense of lower robustness,
for example to confounding factors such as the differences in detection power
between different gene classes (discussed here). By correcting for the bias caused
by differences in the number of associated probes, we detected a larger number of
gene sets that were nominally significant than were detected using permutation
(22 gene sets reached the nominally significant p < 0.05 threshold, compared
to 11 using label permutation). There is evidence to suggest that some of the
additional gene sets are biologically relevant. Using our method we identified
the “Wnt Receptor Signaling Pathway” (p = 3.7 x 1072), but this reached only
p = 0.36 using the permutation based approach. Hypermethylation of genes
in this pathway has been previously identified in IBD and these genes have been
shown to become progressively more methylated during IBD associated neoplastic
transformation [282]. This suggests that correcting for the bias in the number
of probes per gene is still potentially insightful, even when the option of label
permutation is available.
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5.3.5 GSA bias in methylation analysis using high-throughput
sequencing

We have recently performed a HELP-seq assay to study the effect of pro-inflammatory
factor IL-6 on DNA methylation in human epithelial colorectal adenocarcinoma
cells (in preparation). The experiment compared methylation levels in three IL-
6 treated samples and three controls. The methylation of each CCGG site was
estimated from the angle subtended by the two-dimensional vector comprising
counts of short reads derived from samples digested with MSP1 and HPAII as
described by Suzuki et al. [317]. A gene was considered differentially methylated
if any one of its associated CCGG sites consistently achieved an angle value of
> 60 in one set of samples and < 30 in the other set. Similarly to the case of
the microarray probes, there are large differences in the numbers of CCGG sites
associated with each gene (Fig. 5.6). We assessed hyper- and hypomethylation
of both gene promoters and gene bodies. Unsurprisingly, the same bias that af-
fected the microarrays is evident in HELP-seq, in that genes with more associated
CCGG sites are more likely to be called as “differentially methylated” and hence
more likely to appear in the foreground list for GSA. The corrected analysis was
performed exactly as described for microarrays, except that the number of as-
sociated microarray probes per gene is replaced with the number of associated
CCGG sites. Plots of the logistic regression models are provided in figures 6.4 to
6.7 in Appendix D. Tables of the corrected results for GO BPs (of the same size
class as before) are provided in tables 6.8 to 6.11 in Appendix D. Again, there
is clear evidence of a bias and hence, researchers applying GSA to the results of
high-throughput sequencing for genome-wide methylation analysis should account
for this bias either using a permutation strategy, which may have low power, par-
ticularly for modest numbers of samples, or by correcting the bias using a method
such as the one we propose.

In general, when different genes and gene sets are associated with different a
priori probabilities of appearing in the foreground list as a consequence of factors
other than those that are of biological interest there is the potential for bias. This
arises in many, if not most GSA applications, including applications of GSA to
the results of genome-wide association studies as well as genome-wide analysis. It
is common in GSA to associate multiple and different numbers of features with
each gene; typically, multiple features are collapsed onto single gene identifiers.
For instance, the popular web-based GSA tool, DAVID [185][186] offers the option
to use microarray probe IDs (e.g. from methylation or gene expression arrays)
as foreground and background lists. These are converted to unique gene IDs
prior to statistical analysis. When there is a difference in the numbers of probes
associated with each gene this can give rise to the bias that we have outlined in
this paper. The approach we used here can account for this bias by modeling the
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Figure 5.6: Histograms illustrating the distribution of the numbers of CCGG sites
associated with each (left) promotor regions and (right) gene body region.

relationship between the number of features (e.g. probes) associated with a gene
and its probability of appearing in the foreground list.

5.4 Conclusions

We have identified a severe bias that causes spurious results in gene set analysis of
results from microarray and high throughput sequencing based DNA methylation
assays. This bias is caused by differences in the numbers of CpG sites associated
with each gene. We have developed a method to correct for this and applied it
to reanalyze the results of a published study of differential methylation in lung
cancer and to a dataset that we generated from ulcerative colitis samples. Based
on our analysis, there is no evidence that the hypermethylation in lung cancer is
targeted towards genes involved in maintaining a differentiated state or towards
transcription factors, as was originally reported, although the evidence for hy-
permethylation of genes associated with embryonic development remains. The
application of our corrected GSA method to the UC dataset revealed evidence of
hypermethylation of some highly relevant biological processes in ulcerative colitis,
including lipid biosynthesis and cell-substrate adhesion.

Several other published studies have applied gene set analysis to DNA methy-
lation microarray data, using similar experimental designs and analysis method-
ologies to the lung cancer study discussed here. We have demonstrated the bias
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in the case of one DNA methylation microarray, but the same considerations ap-
ply to other similar microarray platforms (from Illumina and NimbleGen) and to
methylation data generated using high-throughput sequencing strategies. Results
obtained by applying uncorrected GSA to these data are likely to be affected by
the bias we describe and should be reanalyzed, taking into account the numbers
of probes or CpG sites per gene. Given the increasing popularity of these types
of experiments, researchers should be aware of and correct for this severe bias.
The method that we have developed can be applied to both microarray and HTS
based assays and has the potential to uncover biologically relevant results that
would otherwise be overlooked.

5.5 Methods

5.5.1 Logistic regression model

We used the glm() function in R [167] to fit a logistic regression model to gene
hypermethylation status as a function of the log-transformed number of probes on
the array that map to the gene. Log-transformation of the explanatory variable,
which had a heavy tailed distribution (Fig. S1), was found to improve the fit
of the model substantially, as judged by the Akaike Information Criterion [318].
Given the regression model we estimated the probability of hypermethylation of
each gene as a function of the number of probes that were mapped to the gene. In
order to visualize the fit of the model to the data (e.g. Fig. 2), we grouped genes
according to the number of associated probes, in bins of minimum size 100 genes.
The probability of methylation was calculated for each bin from the proportion
of hypermethylated genes.

5.5.2 Corrected gene set analysis

Each gene was associated with a probability of hypermethylation from the logistic
regression model, based on the number of probes that map to the gene, indepen-
dently of gene set membership. Thus, the expected number of hypermethylated
genes in the gene set under the null hypothesis (that hypermethylation is inde-
pendent of gene set membership, given the number of probes that map to the
gene) is the sum of these probabilities. This expected number of hypermethylated
genes can be compared to the number observed using the chi-squared goodness of

fit test. The chi-squared statistic is
2 __ Oset_Eset Oatheronthe'r
X Eget + Eother

where
Oser and FEy; are the observed and expected numbers of hypermethylated
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genes in a gene set and Oyper and Fype, are the observed and expected numbers
of hypermethylated genes not in the gene set.

Because the chi-squared goodness of fit test is unreliable when expected counts
are small [311], we also developed an approach based on randomization. One
million foreground/background groups were generated randomly such that the
probability of a gene appearing in the foreground list was equal to its probability
of hypermethylation, given the number of associated probes. GSA was applied
to each randomly generated foreground /background group using G Ostats version
2.14.0, with annotations from version 2.4.1 of the org. Hs.eg.db library. A corrected
GSA p-value for each gene set was calculated as the proportion of random data
sets with an enrichment odds ratio at least as extreme as the observed enrichment
odds ratio.

5.5.3 Gene set analysis using label permutation

Sample labels were rearranged in all possible combinations. As there were a total
of 10 samples, split equally between UC and control phenotypes, this yielded a
total of 126 distinct arrangements of the samples. For each of these arrangements
the enrichment odds ratio test statistic was recalculated for each gene set. P-values
were calculated as the proportion of the test statistics that were as extreme, or
more extreme, than the test statistic corresponding to the observed data.
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Chapter 6

Conclusions and scope for future
work

In this thesis we have uncovered novel insights into the genetics of miRNA reg-
ulatory effect (chapter 2) and CpG island hypermethylation in ulcerative colitis
(chapter 4). In chapter 3 we have developed a method to improve the absolute
level of gene expression estimates in microarrays and in chapter 5 we have de-
veloped a new method to correct gene set analysis on high throughput genome
wide methylation platforms. Much of this work leaves questions which could be
pursued as part of future research projects.

In chapter 2, we discovered that the regulatory effect of miRNAs is a heritable
trait in humans and uncovered an association with a SNP (rs17409624) in and
intronic region of the gene DROSHA. This association was evident in both popula-
tions assayed. However, we have thus far been unable to establish the mechanism
by which this SNP affects miRNAs. Interestingly, since the publication of this
work, it has come to our attention that this same SNP is also associated with
BMI in British populations (p = 0.01) [319]. There have also been studies which
have reported that miRNAs play a key role in the differentiation of adipose tissue
and a number of miRNA have been shown to be differentially expressed in these
tissues in overweight individuals [320] [321]. These observations suggest a possi-
ble link between obesity and the regulatory effect of miRNAs, although further
research will be required to establish a clear link.

Chapter 3 developed a novel method called seqArray for estimating gene ex-
pression in microarray experiments. This method dramatically improved the esti-
mation of absolute gene expression level within samples, which is not an applica-
tion for which these arrays have traditionally been useful. We have also developed
a method that improves sensitivity to change in gene expression level across sam-
ples, by discarding probes which are likely not to be informative. Both of the
approaches would likely benefit from more training data. Presently, there are
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very few datasets publicly available for which both microarray and RNA-seq data
are available and are of suitable quality. A more diverse set of training data would
allow the seqArray models to predict gene expression in a more diverse range of
conditions, which should allow for more broadly applicable models. Similarly for
the alternate method, more training data would allow greater power in detecting
which probes are more useful in estimating expression. It should also be possible
to adapt seqArray to estimate transcript expression. This would require transcript
expression to be estimated on the RNA-seq training set using an application like
Cufflinks and a modeling technique which allows for a multivariate response would
be needed for training. Currently, there is no way of reliably estimating transcript
expression from exon microarray data.

Chapters 4 and 5 analysed CpG island methylation in ulcerative colitis. We
first established that there is evidence of CpG island hypermethylation genome
wide, but we were unable to identify which regions are targeted at gene level.
We also established that a severe bias affects GSA when applied to this type of
data and we developed a method to correct this bias. Then, using the results of
our modified GSA approach, we identified some individual genes which may be
targets of methylation. Among the interesting results are the genes relating to lipid
proteins, with hypermethylation of CHPT1 perhaps particularly relevant, because
of its involvement in catalyzing phosphatidylcholine biosynthesis. However, these
results have as yet not been validated experimentally. There are many other
studies in the literature which have applied GSA to methylation data in a similar
way to the lung cancer study which we have discussed, these studies should be
re-analysed and it is likely that in many cases biologically relevant findings will
be uncovered when an unbiased approach is applied.

The method that we developed could in theory be applied to any GSA where
there is an obvious confounding variable. One example of this is RNA-seq, where
it is known that there is more power to detect differential expression from genes
which have more mapped reads [322]. Our method could easily model the prob-
ability of a gene appearing in the GSA foreground list, based on its number of
mapped reads; it would then be possible to correct for this confounder in the
same way as we corrected for the number of associated probes in the methylation
data. With RNA-seq, our method could be particularly useful when sample sizes
are small and sample label permutations have little power. Also, at present our
GSA method has only been implemented as a basic R script, but this could be
implemented as an R package as part of future work.

Overall, this thesis has demonstrated the utility of high throughput genomics
techniques in deriving biological insights, much of which would have been impos-
sible only a few years ago. Our work into the genetics of miRNA regulatory effect
and genome wide CpG island methylation in ulcerative colitis are examples of
this. The major drawback of these kinds of data is that it has never been eas-
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ier to generate seemingly meaningful, statistically significant results, using flawed
analysis approaches. Gene set analysis applied to high throughput methylation
data was one example of this. These types of issues are inevitable, but provide
us with the opportunity to develop novel analytical approaches, that properly
account for biases in the data. We have done this in correcting the bias in high
throughput methylation data, which has revealed previously undetectable insight
into the pathology of lung cancer and ulcerative colitis.
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hsa-miR~30c hsa-miR~223 hsa-miR-30c-2* miRPlus_17869 hsa-miR-18a
hsa-miR-542-3p hsa-miR-~519e hsa-miR-125a-5p  hsa-miR-186 hsa-miR-~101
hsa-miR-30a miRPlus_42487 hsa-miR-921 hsa-miR-9* hsa-miR-29a
hsa-miR-30e hsa-miR-19a hsa-miR-423-3p hsa-miR-886-3p hsa-miR-198
hsa-miR-625%* hsa-miR-503 hsa-miR-17 hsa-miR-20b* hsa-miR-744
hsa-miR-140-3p hsa-miR-887 hsa-miR-29b hsa-miR-525-5p hsa-miR-191
hsa-miR-634 hsa-miR-424 hsa-miR-550 hsa-miR-7 hsa-miR-519d
hsa-miR-30b hsa-miR-335 hsa-miR-620 hsa-miR-21* hsa-miR~298
hsa-miR-342-3p miRPlus_42793 hsa-miR-574-3p hsa-miR-371-5p hsa-miR-361-5p
hsa-miR~551b miRPlus_42745 hsa-miR-33a hsa-miR-140-5p hsa-miR-331-3p
hsa-miR-939 hsa-miR-29b-1* hsa-miR-629* hsa-miR-20a* hsa-miR-193b
hsa-miR-302d* hsa-miR-92b hsa-miR-374b miRPlus_42780 hsa-miR-765
hsa-miR-~106b hsa-miR-933 hsa-miR-18b hsa-let-7a hsa-miR-518c*
miRPlus_42526 hsa-miR-487b hsa-miR-516a-5p  hsa-miR-923 hsa-miR-106a
hsa-miR-16 hsa-miR-600 hsa-miR-23a hsa-miR-665 hsa-miR~590-5p
hsa-miR-34b hsa-miR-29a* miRPlus_42856 hsa-miR~185 hsa-miR~549
miRPlus_17858 hsa-let-7f hsa-miR-141 hsa-miR-181b hsa-miR-155%
hsa-miR-642 hsa-let-7e hsa-miR-339-5p hsa-miR~658 hsa-miR-184
hsa-miR-620 hsa-miR-491-3p hsa-miR-637 hsa-miR-766 hsa-miR-98
hsa-miR-32* hsa-miR-29c¢ hsa-miR-24 hsa-miR-210 hsa-miR-25
miRPlus_28431 hsa-miR-20a hsa-miR-27a hsa-miR-27b hsa-miR-378
hsa-miR-92a hsa-miR-151-5p hsa-miR-671-5p hsa-miR-374b* hsa-miR-142-5p
hsa-miR-628-3p miRPlus_17848 hsa-miR-320a hsa-miR-148b hsa-miR-155
hsa-miR~130a hsa-miR-~301a hsa-miR-221 hsa-miR-30b* hsa-miR~720
hsa-miR-768-5p hsa-miR-~105 hsa-miR~103 hsa-miR-142-3p hsa-miR-22
hsa-miR-485-3p hsa-miR-23b hsa-let-7d hsa-miR-21 hsa-miR-28-5p
hsa-miR-30e* hsa-let-7i hsa-miR-583 hsa-miR-181a hsa-miR-425
hsa-miR-183 miRPlus_27560 hsa-miR~10a hsa-miR-146b-5p  hsa-miR-576-3p
hsa-miR-106b* hsa-miR-185%* hsa-miR-625 hsa-miR-574-5p hsa-miR-520d-5p
hsa-miR-768-3p hsa-miR-300 hsa-miR-183* hsa-miR-93 hsa-miR-19b
hsa-miR-361-3p hsa-miR-374a hsa-miR-185 hsa-miR-130b hsa-miR-25*
hsa-miR-886-5p hsa-let-7c miRPlus_17952 hsa-miR~20b hsa-miR-138
hsa-miR-30d hsa-miR-193a-5p  hsa-miR-129-5p hsa-miR-1 hsa-miR-518a-5p/hsa-miR-527
hsa-miR-149* hsa-miR-~510 hsa-miR-148a hsa-miR-9 hsa-miR-129*
hsa-miR-365 hsa-let-Tg hsa-miR-15a hsa-miR-34a hsa-miR-26a
hsa-miR-483-5p hsa-miR-15b hsa-miR-107 hsa-miR-885-5p hsa-miR-146a
miRPlus_42521 hsa-miR-668 hsa-miR-340 hsa-miR-150* hsa-miR-494
hsa-miR-513a-5p  hsa-miR-363* hsa-miR-222 hsa-miR-196a* hsa-miR-17*
hsa-miR-26b hsa-miR-340* hsa-miR-675 hsa-miR-519¢e* hsa-miR-423-5p
hsa-miR-363 hsa-miR-193b* hsa-miR-32 hsa-miR-132 hsa-miR-138-1*

hsa-miR-524-5p

Table 6.3: The complete list of 201 miRNAs whose expression was tested for
association with rs17409624.

153



Appendix B - Improving gene
expression estimates from
DNA-microarrays using machine
learning

154



(€9T°0=d.LV) SuoIje[ol100 uosIedd o[dures ssoIy :G'9 o[qr],

TE6IT°0 SPITO LTTT°0 Suromyz pue HYI YHM
€4660°0 <L60°0 €L0T°0 SUI0I97, YA\

S9(|OIJ 9AI)ISOJ O doT1 AU
¥80T°0  L60T°0 99110 0dvVd YHM dotd ermsed %06 oL A0
¢e60'0  0960°0 L¥0T°0 pajsulpeun
G600 LG60°0 ¢00T°0 8uroreyz, pue HYI YHM
86.0°0 6080°0 GL80°0 SUI0I97, I $0q0I1] 0ATHISO] ATU()
¢680°0  €060°0 L¥60°0 DAVd YHM
1LL0°0  €8L0°0 8780°0 pajsulpeun
8L0°0 8L0°0 080°0 gurorez, pue HYI YHM
G90°0 G90°0 29070 SUI0I97, I\ $0qO0I1] [V
€L0°0 €L0°0 GL00 DAVd YHM
L90°0 890°0 690°0 pajsulpeun
A POpPUIX{ 9J00)

(FST0=1dV) suoneprioo ueurreadg siduwes ssomy :§°9 o[qe],
FIOT'0 €€0T°0 POTT°0 Suromyz pue HYI UM
T980°0 6.80°0 0860°0 8u10107, YA

S9(|OIJ OAI)ISOJ O doT AU
900T°0 G¢0T°0 G60T1°0 0dvdad Yvm 401d SAIHEOd %09 CoL AT10
9680°0 ¥.80°0 €¢1.60°0 paojsulpeun
0780°0 44800 L680°0 8uro1ez, pue HYI UM
T0L0°0  LTL00 98.0°0 8uI10107, YA 8001 OATISO ATU()
0€80°0  SG¥80°0 9880°0 0dvVdad yvm
76900 60.0°0 82200 pagsnlpeun
890°0 690°0 ¢L00 8uro1ez, pue HYI YHM
090°0 090°0 ¢90°0 8u10107, YA 80001 [V
2900 890 1,00 0dvVAd YHM
8G0°0 6500 ¢90°0 pajsulpeun

mAg

peapusixy 910D

155



(96T°0=d.LV) Suorje[ol100 uosresd o[dures urqjipy :/°9 o[qeJ,

768°0 G680 L06°0  8utoidy pue HGVA YN
€88°0 1880 G06°0 Sur0107, UM
SOOI J 9ATISOJ O doT AU

€68°0 G680 9060 DIVA YHM qotd ermsed %04 oL A0
€88°0 9880 7060 pojsnlpeun

6280 T98°0 680  Suromdy pue HY YHM

0.8°0 €580 1.8°0 SuroI07, YA 5001 9AISOg ATUO
8280 1980 680 DIV YHM

0.8°0 €880 0.8°0 pajsnlpeun

0260 LI6°0 L26'0 Sutordy pue HGVJ YNM

I188°0  €88°0 ¥26°0 Sur0I07 UM $0q01d [[V
0260 9160 9260 Dgva

8280 6.8°0 €760 pojsnlpeun

[N PopPuUdIXy dI0)

.Amvw.oH&,H?Q mgoﬂwﬂwﬁoo Q@Emmwgm ﬁgaﬁw Q_Qﬁ,\(/ uw.w @BBF
T86°0 €60 9¢6°0 Suroryz pue HYJ UM
8¢6'0 8260 786°0 BUI0I07, YA
SOOI J OATIISOJ O dot AU

1€6°0  2€6°0 Ge6°0 OgvVAa YHM 401d SAIHSOd %05 GOl AT10
GZ6'0 960 026°0 1RGOy

€26'0 %260 086°0  8utoidz pue HIVA YHM

L16°0  SI6°0 GZ6°0 BUI0107, YA 5001 9AMSOq ATUQ)
126°0 2260 6260 DIavVa YHM

160 G160 360 IeINSOY

6160 0260 €76°0  8utoidz pue HIVA YHM

€160 ¥16°0 8160 Sur0107, YIM 8qo1Ld [V
€160 ¥16°0 8160 DIvVa YHM

€060 F06°0 6060 pojsnlpeun

m4g

papuaixy 910D

156



Appendix C - CpG island
hypermethylation is associated
with ulcerative colitis

157



PC1 PC2

S 4
= 7 g 3
o - =
o _] o -
T T T ? T T
uc Normal uc Normal
PC3 PC4
S g 7
- R o
o — N - .
© - | .
i T T T T
uc Normal uc Normal
PC5 PC6
g ] 2 -
o [
S . . N . .
! T T ! T T
uc Normal uc Normal
PC7 PCs
o -
N 3 8 -
g 3 - o 3 .
ki f T P T T
uc Normal uc Normal
PC9 PC10
o -
N ~
- FI' -
o - . — . .
P T T 8 T T
7

uc Normal uc Normal

Figure 6.1: Clustering of UC data on principle components 1 to 10.
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Figure 6.2: Pseudo array images of log intensity ratios, for the 10 Agilent Human

CpG Island microarrays.
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Appendix D - Severe bias in gene
set analysis applied to
high-throughput methylation
data
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Figure 6.3: A histogram illustrating the distribution of the numbers of microarray
probes associated with each gene on (a) the NimbleGen Human DNA Methylation
385K Promoter Plus CpG Island Array and (b) the Illumina Infinium Human-
Methylation450 BeadChip.
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Figure 6.4: Fit of the logistic regression to the HELP-seq data (for gene body
hypermethylation).
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Figure 6.5: Fit of the logistic regression to the HELP-seq data (for gene body
hypomethylation).
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Figure 6.6: Fit of the logistic regression to the HELP-seq data (for promoter
hypermethylation).
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Figure 6.7: Fit of the logistic regression to the HELP-seq data (for promoter
hypomethylation).

163



‘uorye[AyjowrodAy Apoq oues - sisAeue bas-JHH oY) WO s)Nsal YSO) 69 9[qe],

880  6¢0 €00 1070 00¢ 19¢ 9 Juowdo[aAd(] 0IM3ANIYG OPSUN  T90TI00:0D

880 610 00 10°0 'l 971 G SISOUZOINBN JO ORIy £920G00:0D

@80 ¢€0 00 ¢0°0 8L'C  €9€ L uorjdeniad A10susg  009.000:0D

¢l’0 910 1000 720070 9€'T  8LI 9 yuewdoEAd(] 19D JO UOHRMSNT  F8Z0900:0D

¢Ll’0 0c¢0 10°0 1070 ce'e ¥EY 6 UOHRIIDIOPI( [19D JO UOHRIINY  G6GGF00:0D

¢l0 910 10°0 610070 786G  €9L i $S9001J WAYSAG [edI30[0IMON  LL80S00:0D

¢l'0  ¢€0 10°0 00 L0°T  OFI i Juomdo[aAd(] weSI() JTUOAIqUIY  89G8700:0D

¢l'0 910 1000 L1000 LT 991 9 JuOWdO[PAd(] UISYSAS SIOATON JO UOHRMBNY 096150000

¢l’0 910 1000 7€00°0 10T <€l g uonenue.LgLd ([P0 SPSUA - 669¢700:00D

cL0 €20 17000 100 ¢80 L0T v stsouo3oydIopy UeS1() JMOAIqUY  Z9G8F00:0D

M Pa1eLIo) YA onrea-d pejodrio)) onjea-qJ Juno)) peredxy ozI§  juno)) WL, ardgos
‘uorye[AyjouriodAy Apoq dues - sisATeur bos-JTHH oY) WOIJ SHNSAI YSE) ' 9[qR],

690 190 10°0 €00 9¢v  L91 6 o[PURSI( U] UOMRZIRI0T W01 GIEEE00:0D

690 790 10°0 700 €001  €6¢€ 91 uorjonpoldey [enxeg  £466100:0D

690 €70 100 1070 LT'C Vol 8 SIBPUN U UOTRZI[EI0T U0 $0S7E00:0D

690 970 1070 00 16¢  €S1 6  UOIRZIUR3I() UOIS[ONSOIAD) SMANIOWIN  9ZZ0000:0D

690 ¢¥0 10°0 10°0 11°0T  96¢ 81 jI0dsued], UejoI IR 9889000:0D

650 1€0 10°0 10°0 9T'IT  LEV 0¢ UOIBZI[BIOT] S[MOS[OWOLRIA TB[9])  LgL0L00:0D

650 1€0 10°0 10°0 8O0°'IT  ¥E¥ 0¢ UORBZI[EOOTT UPI0I TB[U[P])  ET9FE00:0D

€50 v¢0 6¢00°0  6€00°0 €6V €61 ¢l podsuedy, reopuN - 691150000

€50 V20 86000 8€00°0 067 261 41 odsuer], oruse[dojfoospnN - €169000:0D

€60 ¢c0 7100°0  98000°0 169 §9¢ 91 8890014 posed-o[nqmjobIN  LT0L000:0D

HdA pejoadro) YdA ®5~d>|g Po3oalLIo)) onrea-4  jyunoy) U@uU@QNm 9ZIG junoy) WLIT, diddon

164



‘uone[AjewodAy 1ojoword - sisAeur bos-JHH oY) WOIJ s3NSaI YSY) 11°9 9[qe],

¢e0  ¢E€0 10°0 10°0 LT vee 9 qyea( (0D powrmre1dord JO UOWOUPUL  Z0SZT00:0D
¢&0  ¢€0 1070 1070 0L'T  €ce 9 sisopdody jO wononpul  L169000:0D
¢€’0  ¢€0 1070 00 090 €11 € UOTRUIqUIOSOY BUT  0TE€9000:0D
6’0 ¢Ee0 10°0 ¢0'0 6g’0  ¥oI1 € UOIOIOG JO UOHRINIIY 9ABISOd  LF0TS00:0D
6’0 ¢E0 10°0 10°0 GL0  evl i UOIRHUOIOPI( [19D PIOPAN  6600£00:0D
¢€0  ¢€0 9700°0 10°0 e 00v L osdu] AN JO UOISSIWSURL],  9Z6100:0D
¢&0  v¢0 9€00'0 61000 €T 6¥¢ 9 UOIROIUNIIO) [[2)) JO UOHRMSNY 9A1IR3ON  8790T00:0D
¢€0 910 6¢00°0  66000°0 9,0 G¥I ¢ Aemyieq /oulog uw)0I] 10900y dURIqUIDWISURLL,  82TL000:0D
6’0 910 L200°0  69000°0 697 068 el $59001 SUIRUSIS JO UOHRMBNY  1G0€Z00:0D
¢e’0 910 L¢00°0  69000°0 697 068 el UOHONPSURL], [RUSIS JO UOWRM3NT 996600000
HAA Pa1e1Io) YA onpea-d pejddlio) onfea-J Juno)) peroedxy ozZI§  juno)) WL, ardgos
‘uorye[AyjouriodAy mejoword - sisATeur bos-JTHH oY) WO SHNSaI YSE) 09 9[qe],
6.0 960 €00 G0°0 66'T Gve G QOGBSI SARBALID( PUY PV OUIIY B[P 615900000
6.0 960 ¢00 v0°0 8¥V'¢  6¢v 9 §50001 SHOqRPIN punodwo) wBoIIN FeMIP)  TFIFE00:0D
6.0 960 00 €00 IT'T  ¢6l i TIM0I) [[9) JO WORMSBaNT  8GGTO00:0D
6.0 960 00 €00 ¥9°0  TII € HM0L) JO UOHRMSENY 2A13R3ON  9Z65700:0D
6.0 960 ¢0°0 €00 6L 1T ¢og g 559901 OHOqeION dutwy B[Py 901¥%00:0D
6.0 960 ¢00 €00 9L'T  €0€ G $S9001 OIOYJUASOL MO [[BWS  £8ZFF00:0D
6.0 960 10°0 ¢00 0T LLT 7 SS9001d ONOQRIN W01 JO UORISIY 9A1R3ON  SFZTS00:0D
6.0 960 1070 00 66°0 TLI P OHOQRIIN URj01d IR[U{[d) JO UONRNIN 2A1RION  6922£00:0D
6.0 960 1070 10°0 660 651 7 SSe90dd OORISIN 9ANRALIS(] PV OUILY IRI{[PT  GL59000:0D
6.0 960 6700°0 10°0 9¢’c  16€ L 559901 OTOqeIPN WY 80€6000:00D
HdA pejoarro) YHdA wﬂ:ﬁ\wug Po3oalLIo)) onrea-4 junoy) Uwpongm 9ZIG yunoy) WLIT, diddon

165



