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Examining the dynamical transition in the Dow
Jones Industrial Index from Bull to Bear market

using recurrence quantification analysis
Kitty Moloney∗and Srinivas Raghavendra†

Abstract
We present evidence of phase transitions (periodic to chaotic and

chaotic to chaotic) in the Dow Jones Industrial Index as it transitions
from Bull to Bear market. There is also evidence of a completely un-
predictable (i.e., nondeterministic) regime just as the market peaks. The
noisy trader theory is suggested as the economic explanation for this un-
predictability i.e. rational but uninformed traders chase noise rather than
the usual macro economic and financial variables. We suggest that the
collapse in determinism allows the dynamics of the market to break from
the past and that the market is in fact piecewise deterministic. A principal
component series is developed and named the random market indicator,
(RMI). This can be used to indicate when the market is transitioning.
The RMI indicator could be used by market participants, financial regu-
lators and policy makers as an indicator of market crisis. During times of
crises, quantitative risk estimation techniques such as stationary value at
risk models, will give misleading results and should not be used.

JEL classifications: G17, G12, C61

Keywords: recurrence quantification analysis, financial market collapse, phase
transition, quantitative risk estimation.

1 Introduction
The twentieth century provides us with a rich repository of data in terms of
financial crises. We have had numerous crashes but the 1929 crash and 2007
crash stand out in terms of their persistence and their effect on the real economy.
However, the frequency of crashes and the vulnerability of the financial system
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sity of Ireland Galway, Galway. Email: kitty.moloney@nuigalway.ie.
†J.E.Cairnes School of Business and Economics, National University of Ireland Galway,
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has increased during the last three decades of the twentieth century. Even
though this can be attributed to the nature of financial globalization in the last
part of the twentieth century, the nature and subsequent impact of the latest
crash seems to resemble the 1929 crash. In this context, it is pertinent to ask are
there any quantifiable markers that we can derive from the ’29 and ’07 crashes
that will help us understand the transition from a bubble state of the market to
the crash. The objective of this paper is to precisely analyse the properties of
such a transition. The following section summarizes the theoretical background
to the methodology. Section 3 describes the empirical data to be used in the
paper. Section 4 presents and examines the empirical findings and section 5
concludes the paper.

2 A brief review of Recurrence Analysis
Dynamical recurrence indicates a recurring trajectory and suggests the existence
of an attractor. To analyse recurrence in a time series, we first refer to the
embedding theorems (Sauer et al 1991) noting that the motion of a dynamical
deterministic system can be reconstructed using the phase space of a single
time series variable. Thus the scalar time series, sn is embedded into a vector,
choosing an embedding dimension m and time delay τ (Kantz and Screiber
2003), as follows:

xi = (si, si+τ , . . . , si+(m−1)τ ) (1)

The method of false nearest neighbours is used to find m, (Kantz and Screiber
2003). Assuming the time series is continuous, the nonlinear mutual information
function (Fraser and Swinney 1986) is used to assess the value of τ . If the process
is discontinuous or discrete, Webber and Zbilut (2005) advise that the delay is
best set equal to 1 as no points in the time series will be skipped.

For low dimensional deterministic systems a 3 dimensional phase space re-
construction of the embedded time series may reflect the motion of the system.
For higher dimensional systems such as financial data, (Moloney and Raghaven-
dra forthcoming), an alternative approach must be used. One approach was re-
cently suggested by Eckmann et al, (1987). By analyzing the recurrence in the
embedded time series we can evaluate if the system is revisiting certain areas of
the plane.

2.1 Recurrence Plots (RP)
A recurrence plot is a visual representation of recurrence in the system. The
recurrence plot can be represented as follows:

Ri,j = I(εi− ‖ xi − xj‖), xi ∈ <m, i.j = 1 . . . n (2)

where n is the number of considered states xi, εi is a threshold distance,
‖.‖ a norm and I(.) the Heaviside function, (Marwan 2003). In the recurrence
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plot, 2 close vectors are represented by a black dot, whereas all other vectors
are represented by a white space.

2.1.1 The threshold, ε

Many methods have been suggested for the correct selection of the threshold
value. One such method is to choose the threshold equal to 5% of the maximal
phase space diameter (Basto and Caiado 2011). We found this approach lead
to too large a threshold. Instead we followed the advice of Webber and Zbilut
(2005) and applied the following guidelines;

(i) Threshold must fall within the linear scaling region of the double loga-
rithmic plot of recurrences versus threshold.

(ii) Threshold must be such that the number of recurrences is kept low,
(. 2%)

Guideline (i) above has strong theoretical underpinnings as we choose a
threshold such that the box counting dimension, (Webber and Zbilut 2005) can
be estimated. Thus this threshold should illustrate the deterministic structure
of the system. The second guideline ensures that we maintain the level of
recurrences to a low value so that we can be confidant we are focusing on the
deterministic structure rather than the noise. Thus the choice of threshold was
made by applying both guidelines to all data sets and averaging the resultant
estimated threshold.

2.1.2 Interpreting recurrence plots

RPs can be interpreted by following the pattern in the plot as the eye moves
from the bottom left corner up to the top right corner following the central
diagonal line, (known as the line of identity, LOI). By familiarizing ourselves
with the recurrence plots of known deterministic systems, such as the Lorenz
system for example, we can then search for similar patterns in empirical data
(Kantz and Screiber 2003). Below we illustrate the phase space reconstruction
of the Lorenz system of equations and the corresponding recurrence plot.

The Lorenz system of equations are;

dx

dt
= σ (y − x) (3)

dy

dt
= −xz + rx− y (4)

dz

dt
= xy − bz (5)

As noted by Eckmann et al. (1987), the recurrence plot “checkerboard type”
structure indicates that the trajectories of the system are spinning around at-
tractors.
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Figure 1: (a) Three dimensional phase space reconstruction of a Lorenz curve
with parameters σ = 10, r = 28,b = 8

3 (b) its corresponding recurrence plot.
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The analysis of recurrence plots can indicate if we are indeed analyzing a pe-
riodic, chaotic or random process. In figure 2, we present three such recurrence
plots.

Figure 2: Recurrence plots of (a) periodic, (b) chaotic and (c)random processes
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The periodic process is iterated from the following equation;

y = sin
[ π

50 (t)
]

(6)

The chaotic process is iterated from the logistic map with r = 3.999;

xn+1 = rxn (1− xn) (7)
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The random process is generated from random numbers. The periodic pro-
cess is represented by long diagonal lines indicating the recurrence of the tra-
jectories in the same areas of the phase plane. The chaotic process can be
represented by a number of different structures; such as the checkerboard struc-
ture above for the Lorenz curve, or by a much more subtle structure; such as
for the logistic map with r=3.999. At this parameter value the logistic map is
extremely chaotic, yet small square-like structures can be seen in the recurrence
plot. This indicates that the trajectories are spinning around, moving close to
or being repelled from attractors. A completely random process will show no
structure and will be represented by a series of random black dots. As RPs make
no assumptions about the process, they can be used to analyse nonstationary
systems and the “phase transition” (Marwan 2003) of a process into differing
states. For these reasons, recurrence plots are particularly useful in the analysis
of bull and bear markets in financial time series. With this in mind, we sim-
ulated an ARGARCH process, from random Gaussian numbers and the S&P
500, (details of the simulation to be found in the data section). The ARGARCH
process represents the following equations;

rt = µt + θrt−1 + εt (8)

σ2
t = α0 + α1ε

2
t−1 + βσ2

t−1 (9)

εt ∼ N(0, 1) (10)

This model was first suggested by Bollerslev (1986) and is commonly used
in financial econometrics as it recognises the autocorrelation in returns and in
the variance of the financial time series (Jondeau et al 2007). It has been found
to be most useful in quantitative risk estimation, although there is significant
evidence to show that financial data residuals are non-Gaussian, (Jondeau et
al 2007). Even if a non-Gaussian distribution (such as a generalised extreme
value distribution, (GEV)) is applied, the ARGARCH model still underpredicts
risk in the financial markets (Jondeau et al 2007). Applying the recurrence plot
methodology, we present the recurrence plot in figure 3.
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Figure 3: ARGARCH process

The structure of the recurrence plot of an ARGARCH model shows square
structures. Zbilut (2004) noted similar squares in an RP of the S&P 500 and
suggested they indicate the autocorrelations in the system. The ARGARCH
model allows for periodic heteroscedastic variance, which is a stylised fact of the
financial markets (Jondeau et al 2007). In this model the variance is increasing
as we move towards observation 600. This is taken to be a stationary model
based on the Bollerslev constraints; that is that the two parameters α1, β must
sum to less than or equal to one, (in this simulation that is. 0.083 + 0.916 =
0.999) (Bollerslev 1986). The RP fades as we move from left to right up the
centre line, (LOI), this indicates a trend in the system (Eckmann et al 1987) and
may suggest remaining nonstationarities. To further analyse these dynamical
systems we need to introduce recurrence quantification analysis.

2.2 Recurrence Quantification Analysis
The quantification of the patterns in recurrence plots came from the field of
physiology (Zbilut and Webber 1992, Webber and Zbilut 1994), where statistical
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values known as recurrence quantification analysis (RQA) were first proposed.
These statistical values can indicate many surprising characteristics of a time
series and can facilitate distinction between random, periodic and chaotic pro-
cesses. More than fifteen interrelated statistical values have been proposed. we
will focus on three of these values, that is determinism, (DET), the maximum
diagonal line length, (Lmax) and the maximum vertical line length, (Vmax).
We will also consider the proportion of recurrences, (RR). These measures can
be used to extract meaningful information from dynamical systems which have
no supporting mathematical theory or conceptualisation (Webber et al 2009).
Physiological signals are nonlinear, nonstationary and noisy (Webber et al 2009)
so too is financial data (Moloney and Raghavendra 2011). Hence the RQA ap-
proach allows us to analyse this data without imposing parametric or modeling
constraints.

The first of the statistical values is the recurrence rate (RR) which is the
proportion of recurrence points in the matrix relative to the total number of
points. This can be expressed mathematically as;

RR(ε) = 1
n2

n∑
i,,j=1

Ri,j(ε) (11)

This measures the density of the recurrence points in the RP. It corresponds
to the definition of the correlation integral, (Marwan et al 2007), except that
the main diagonal line, (LOI) is not included. At the limit, n → ∞, it gives
the probability that a state recurs in the ε-neighbourhood of the phase space
(Marwan et al 2007).

This density measure is then used as a benchmark for examining the dy-
namics of the recurrences. For example, determinism, (DET) is the proportion
of diagonal lines relative to the recurrence rate. To measure this we develop a
histogram P (l) of diagonal lines of length l. As we see above in figure 2 (a) ,
periodic processes have long diagonal lines parallel to the main diagonal, (LOI)
and no isolated recurrence points. Whereas random processes, (figure 2, (c))
have no or very few diagonal lines and many isolated recurrence points. Thus
analysis of the proportion of diagonal lines, (of at least length lmin) relative to
the total number of recurrences can indicate if a deterministic process is present.
The measure DET can be expressed mathematically as;

DET =
∑n
l=lmin

lP (l)∑n
l=1 lP (l) (12)

Marwan et al (2007) describe this as a measure of the predictability of the
system, as the higher DET, the higher the number of recurrences that are in
diagonal lines, indicating that through time the trajectory of the system is
recurring. A recurring dynamical trajectory suggests the existence of attractors
and that the system is deterministic. We note in the chaotic system (see figure
2(b)) there are many short diagonal lines. Therefore additional measures such
as the maximum diagonal line length can also be useful in system diagnosis.
The maximum diagonal line length can be expressed as;
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Lmax = max ({li}nl

i=1) (13)

Lmax has been associated with the speed of the divergence of the phase
space trajectory. The faster the divergence, the smaller Lmax will be, we note,
as above, the chaotic system in figure 2(b) has short diagonal lines. Eckmann
et al. (1987) suggested that the length of the diagonal lines is related to the
dynamical invariant, the Lyapunov exponent. Following from this, Trulla et al.
(1996) studied the bifurcation behaviour of the logistic equation (equation 7)
and noted a strong linear correlation, (ρ = 0.912) between the inverse of Lmax
and the Lyapunov exponent, during the chaotic regions of the logistic map, (i.e.
r > 3.5688). Marwan et al. (2007) developed this analysis further and showed
that in fact the inverse of Lmax, (known as DIV) is related to the K2 entropy,
(that is the lower limit of the sum of the positive Lyapunov exponents). By
analysing DIV, the inverse of Lmax, we can examine the speed of expansion of
nearby trajectories into new areas of the state space. The higher DIV is, the
more chaotic the system and the less predictable.

The final measure we will be using is the maximum vertical line length,
(Vmax). This value is similar to Lmax except it measure the maximum of all
the vertical line lengths,(v).This can be expressed as;

V max = max ({vl}nv

l=1) (14)

Marwan et al. (2007) describe a vertical line as a time when the state
of the system is ’trapped’ and suggest that this is typical of laminar states,
(i.e., intermittency). Intermittencies occur when the system alternates between
chaotic and periodic phases (Sprott 2004). Thus analysis of Vmax can facilitate
the discovery of phase transitions and laminar states.

2.2.1 Interpreting RQA

Although some information can be gathered by measuring each statistical value
for the whole data set, analysis of moving window (epoch) RQA can reveal
far more about the dynamical nature of the system. We begin, by presenting
moving window RQA results for the periodic and chaotic processes presented
above in figure 2. The epoch window size is 100 observations and the step
size is 1. The embedding dimensions, (m, τ , ε) are (10, 2, 0.1) for the periodic
process and (2, 2, 0.5) for the chaotic process. As the random numbers used
above in figure 2 (c) are computer generated, (from an algorithm), the RQA for
the ’random’ process are similar to that of a chaotic process. A truly random
process would have very low or zero values for DET, Lmax and Vmax. Firstly
we will present the periodic RQA, in figure 4.
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Figure 4: RQA for sine wave

DET is ≈ 1, Lmax is fixed at 81 and Vmax is fixed at 2, indicating the
periodic nature of the process. Marwan et al. (2002) notes that periodic states
are associated with vanishing Vmax. The RQA for the chaotic process are
presented in figure 5.

Figure 5: RQA for logistic map with r=3.999

The level of determinism, (DET) is much lower for the chaotic process and
the value varies over time. This indicates the chaotic nature of the determinism.
Lmax also varies and is much lower than for the periodic sine wave. This
indicates the lower predictability of the chaotic process. A low value for Lmax
indicates a high value for DIV i.e. 1/Lmax. This correlates with a high positive
Lyapunov exponent, suggesting a chaotic regime. Vmax is higher and variable
for the chaotic process. In general we would expect Vmax to be low or zero for
a periodic process.

Moving window RQA can be used to indicate transitions in the system, such
as periodic to chaotic transitions or chaotic to chaotic transitions. Marwan et
al. (2002) use moving window RQA to indicate bifurcation points i.e. period
doubling. Bifurcation points occur as the system changes, the structurally stable
attractors become unstable and new attractors are born, (Sprott 2004). The
main RQA characteristics which indicate transitions and bifurcation points are
summarized in table 1 below.

We will use table 1 to interpret the empirical findings presented in section
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Table 1: Using RQA measures to identify phase transitions.
Author Year RQA Characteristic of transition

Trulla et al. 1996 DET Sharp rise indicates
chaotic-periodic transitions

Lmax Should collapse prior to
bifurcation points

1/Lmax Is related to the Lyapunov
exponent during chaotic
windows

Marwan et al. 2002 Lmax Maxima at
periodic-chaotic/chaotic-periodic
transitions

Vmax Minima at periodic-chaotic
transitions and maxima at
chaotic-chaotic transitions,
vanishes during periodic
windows.

Marwan et al. 2007 Lmax, Peaks at periodic-chaos
transitions. Lmax finds all
periodic-chaos transitions. Size
of Lmax is related to the
predictability of the underlying
system.

DET Peaks at periodic-chaos
transitions, although DET only
finds some of the transitions.

Vmax Peaks at chaos-chaos transitions,
(for example, laminar
states/intermittencies, band
merging and inner crisis).
Transitions can still be identified
for small noise levels.

Zbilut & Webber 2008 Lmax Should decrease precipitously
prior to the inception of a
laminar state, and be at a
minimum just prior to the
laminar areas., (unstable
singularities, i.e. repellors)

Marwan 2010 DET DET rising to 1 implies a
chaotic-periodic transition.
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4. The RQA measures of an ARGARCH simulation will now be presented in
figure 6. The epoch window size is 100 observations and the step size is 1. The
embedding dimensions, (m,τ , ε) are (5, 1, 0.45).

Figure 6: RQA for ARGARCH simulation

We note that just after observation 300 DET and Lmax collapse to zero, and
that Vmax is zero throughout. We present in figure 7 a scaled moving window
variance (σi) for the ARGARCH process, calculated with a window size of 100
and a step size of 1. The moving window variance is scaled by dividing it by
the average variance for the entire series, such that;

σi = σi...i+99

σ
, i = 1 . . . (n− 100) (15)

Looking at the time series graph, (above the RP in figure 3) we can see that
this is around the time that the volatility is rising and clustering. It appears
as if the rise in the dynamic variance is cancelling out the autoregressive signal
and the system appears to be completely random for some time. As σi falls
again, the signal returns.

Collapses in RQA have been noted around the time of stock and currency
market collapse (Basto and Caiado 2001, Marwan et al 2007, Zbilut 2004) but
this has not been explained or modeled. It appears from the representation
of the ARGARCH simulation in figure 6 and 7, that the collapse in the RQA
is connected to the volatility clustering in the data. We will further test this
assertion by analysing empirical time series of the Dow Jones Industrial Index.

11



Figure 7: Moving window scaled variance of the ARGARCH model

3 Data
The data to be used in this analysis is the Dow Jones Index of 30 top ranking
industrial equities trading on the US Stock Exchange. This index is chosen
as it is one of the longest data samples available for the equity markets. The
objective of the research is to analyse the transition from bubble to collapse,
therefore we focus on the time just before and just after the market has reached
a localized peak. The four peaks and subsequent crashes chosen are 1929, 1973,
2000 and 2007. These samples are chosen due to the economic significance
of each crash in terms of rising unemployment and hardship and also due to
the large overall fall in the Dow Jones Index during each crash. The crash of
1973 and 2000 are generally agreed to be attributable to the oil and technology
sectors respectively, the crashes of 1929 and 2007/2008, have been attributed to
banking and financial market collapse. The details of each crash are outlined in
table 2 below;

Table 2: Dow Jones Industrial Average peaks and troughs
Date of Peak Date of Trough Peak value Trough value Decline %
03/09/1929 8/7/1932 381.17 41.22 -89%
08/01/1973 6/12/1974 1047.86 577.6 -45%
14/01/2000 9/10/2002 11722.98 7286.21 -38%
10/09/2007 9/3/2009 14164.53 6547.05 -54%

According to Johansen and Sornette (2000) there are distinguishable periodic
oscillations in the log of the time–to-crash. They present a Log Periodic Power
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Law model (LPPL) and suggest this can be used to predict a market crash. The
LPPL model has been tested and questioned by Brée et al. (2011) who conclude
that the model is not reliable. We also wish to review the LPPL model. To
do so we will simply test to see if there is evidence of a periodic regime prior
to a market peak. Johansen and Sornette (2000) note the oscillations can be
exhibited for up to 100 days prior to the market peak. Thus a sample size of
12 months (250 trading days) prior to and 12 months (250 trading days) after
the market peak is taken in order to analyze the lead up to the peak and the
turbulence or crash following on from the peak. The focus is on the dynamics of
the transition from bull into bear market. If for example, we note a rise in DET
up to 1, this will indicate the existence of a periodic phase prior to the peak.
The sample size in each case is 502 observations. One observation is lost as the
data is converted to log differentials, giving us 501 observations with the market
peak in the middle at observation 251. By placing the peak in the middle of
the sample, the changing dynamics prior to and after the event can be analyzed
(Marwan 2010). We will focus on the bubble prior to the peak with the objective
of assessing the possibility of early warning signals of the oncoming crash.

This sample neither take into account the entire period of the market crash
which can take as long as 3 ¼ years to occur (as in the case of 1929); nor the
entire period of market recovery after the crash. Specifically we are focusing
on the lead up to the market peak. The details of the four samples taken are
outlined in table 3.

Table 3: Dow Jones Industrial Average peak sample details
Sample Name Start Date Finish Date Start value Finish value

1929 31/08/1928 4/09/1930 240.41 236.04
1973 7/01/1972 07/01/1974 910.37 876.85
2000 29/01/1999 04/01/2001 9358.8 10912.4
2007 09/10/2006 07/10/2008 11857.8 9955.5

In experimental sciences it is customary to compare the relevant sample to
a control sample. In Marwan et al. (2002) samples of data are taken just prior
to the onset of a ventricular tachyarrhythmia (VT) and at a control time i.e.
when the patient is at rest, thus without a life threatening arrhythmia. In
this paper, we are interested in developing indicators of an upcoming transition
from bubble to collapse. As economic data is collected not from a controlled
laboratory environment but from the actual market data, a reliable control is
difficult to obtain. We propose taking a sample just prior to the peak sample
under question. This control sample will be similar to the peak sample in terms
of the number of observations and will occur in the same general epoch, but will
differ as a significant localized peak of historical economic importance does not
occur at the middle point of the control sample. This methodology has some
success although we note that market volatilities can occur in the control period.
As there is a 20% collapse in the market from April to May 1970, we remove
this period from the 1971 sample to maintain its control characteristics. Thus
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1971 sample is 90 observations less than the others. We use the full sample for
all other samples including 1998. This sample may not be fully appropriate as
a control as 1998 saw significant turbulence in the markets due to the Russian
currency crisis and the collapse of LTCM (Long Term Capital Management).
The details of the control samples are outlined in table 4.

Table 4: Dow Jones Industrial Average control sample details
Sample Name Start Date Finish Date Start value Finish value

1927 03/09/1926 30/08/1928 163.75 238.85
1971 27/05/1970 6/01/1972 663.2 908.49
1998 12/02/1997 28/01/1999 6961.63 9281.32
2005 12/10/2004 06/10/2006 10002.32 11866.69

The prices are transformed into log differentials. The log differentials are a
customary transformation in financial econometrics, used to remove the nonsta-
tionary trend in the data (Patterson 2000). We note that the transformation of
the prices to log differentials may have its drawbacks, as Sprott (2004) argues;
the nonstationarity may be the interesting feature of the data. The trans-
formation is applied in order to ensure our results are comparable to existing
financial econometric results, and to ensure that any evidence of determinism
is not merely as a result of a linear trend in the data. We present in table 5,
a summary of the chosen parameters for financial data to be found in recent
literature. Note that in the table ws is window size, ss is step size, ld is logged
differentials, td is transformed differences, n is normalized i.e. xi−xmin

xmax−xmin
and ns

is not specified. We note the significant heterogeneity in the parameters chosen,
this can lead to difficulties in comparison of results.

As discussed in section 2, the false nearest neighbours method is used to
estimate the embedding dimension, m, and it is found to be equal to 5. The
time delay τ, is kept equal to 1, as we are dealing with discrete data. The
threshold is found (using the methodology outlined above in section 2.3.1) to
be 0.73. As suggested by Zbilut (2004) when he analyzed the S&P 500, in all
cases we take a window size of 90 observations and a step size of 1, giving 411
estimates of each RQA. We note that Sornette and Johansen (2000) suggest
that on average it takes 30 days for the log periodic model to lead to the critical
time that is market collapse. Thus 90 days should give enough time to allow
the dynamics to unfold, without being so large as to average out any small scale
dynamical changes.

The ARGARCH simulation applied in section 2, is generated from random
normally distributed numbers that have been transformed using the saved AR-
GARCH variance series and the estimated coefficients of a sample of the S&P
500 from 8th May 2006 until 26th November, 2008, (xo is set equal to the
value of the log differential on 8th May 2006). This simulation is also used in
Moloney and Raghavendra (2011) to compare phase portraits of Gaussian and
non-Gaussian series.
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For illustrative purposes we will also analyse a series of data from 9th Octo-
ber 2006 until 5th October 2010, named the 2008 sample. This data set extends
the 2007 data set by a further 502 observations.

Table 5: Embedding dimensions for financial data
Author Year Data m tau ε/σ ws/ss ld/td/n No.

of
obs

Fabretti
and

Ausloo

2005 Nasdaq
and
Dax

5 10 ns 100/10 ld 1482

Marwan
et al.

2007 Exchange
rates

20 1 0.048-
4.350/σv

- ld 168

Strozzi et
al.

2007 High
fre-

quency
ex-

change
rates

11 260 0.043 336/48 td 268554

Crowley 2008 EU and
US
GDP

4 1 0.009/σv ns ld 147

Guhatha-
kurta et

al.

2010 Dow,
Nifty
Hong
Kong
Index

3 10 0.1/σv 200-
100/100

n 766-
921

Karagia-
nni and
Kyrtsou

2011 CPI
and
Dow
Jones

1 1 10 100/10 ld 561

Basto &
Caiado

2011 46
MSCI
Indices

11 1 0.16/σv 260/ns n 3914

Aparicio
et al.

2011 Simula-
tions
and

equity
data

1-6 1 ns - ld 2211

4 Empirical Findings
Initially we will present the RPs of the four peak samples in figure 8 and the four
control samples in figure 9, to compare and contrast the dynamic structures.
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Figure 8: RPs of the Dow Jones Index peak samples (a) 1929 (b) 1973 (c) 2000
(d) 2007

16



Figure 9: RPs of the Dow Jones Index control samples (a) 1927 (b) 1971 (c)
1998 (d) 2005

We can see evidence of nonstationary or extreme events indicated by the
white bands or lines (Marwan et al. 2002). During the peak samples there
appears to be more white bands both in number and width, particularly after
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the peak (observation 251). In the recurrence plot figure 8 (a) 1929 and figure
8(d) 2007 we see large black squares, followed by thick white lines indicating
that the system swings from having many close trajectories i.e. low turbulence,
to extreme turbulence. The RPs of the control samples are more uniform and
have small squares indicating small scale correlations throughout the period.
We note that figure 9 (c) 1998 is somewhat similar to the peak samples as
there are large black squares followed by a large white band around August
1998. This may be explained as the summer of 1998 saw the Russian currency
crisis and the LTCM crisis, which was noted earlier. There is a fading of the
recurrence plot figure 8 (d) 2007 as the eye moves up the LOI. Similarly to
the ARGARCH simulation, this indicates an underlying trend in the system.
Analysis of the time series (shown above the recurrence plot) shows a rising
variance. With this in mind, the sample is extended as outlined in the data
section and we illustrate the recurrence plot for sample 2008 (figure 10). The
overall pattern in this recurrence plot is very similar to that of figure 8 (a)
1929. A large white band can be seen around September 2008, which was when
Lehman Brothers collapsed. This initial analysis suggests similarities in the
dynamics of the market during the peak samples, with particular similarities in
the RPs of 1929 and 2008.

Figure 10: RP of the Dow Jones Index 2008 sample
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In both cases the time series and the RPs indicate that a rising variance in
the logged differentials is coupled with extreme events or nonstationarities i.e.
white bands in the RPs.

4.1 Phase transitions
The moving window RQA measures for all eight samples are calculated. The
objective of the paper is to examine the transition in the samples from one phase
of the market to another, i.e. from bull to bear market. The terminology, phase
transition, is borrowed from physics were it is used to define the transition of
a substance from one form to another, e.g. from liquid to a gas. In nonlinear
dynamics, phase transitions occur as structure of the trajectory changes due
to changes in the parameter values of the underlying system. The trajectory
can change from periodic to chaotic, or from chaotic to chaotic., for example.
Bifurcations points occur at a period doubling. RQA measures have been shown
to indicate phase transitions and bifurcation points. Table 1 above indicates
that Lmax has been shown to peak during a periodic to chaotic transition and
to collapse prior to bifurcation points. Vmax has been shown to peak during
a chaotic to chaotic transition. Evidence of phase transitions around the time
of a market peak and collapse could be a useful indicator of rising risk and a
changing market. In figure 11 and 12 below, we present graphs of the windowed
Lmax and Vmax for all eight samples of the Dow Jones Index. Looking at the
scales of the graphs it appears as if Lmax peaks at values above 20 in 1929 and
2007. We also note a smaller peak in Lmax (above 15) in January 1998.

Following the methodology of Marwan et al. (2002) (when examining heart-
rate variability), we use the Mann-Whitney U test to compare the medians of
the peak samples with the control samples. The null hypothesis of the test is
that the two samples have the same distribution. As part of the test the two
samples are ranked and the medians are calculated and compared.

Marwan et al. (2002) interpret a rejection of the null as evidence of a phase
transition in the data and concluded that RQA measures can be used to indicate
an oncoming life-threatening arrhythmia. The results are illustrated in table 6
and 7 below. In all cases the null hypothesis is rejected. If we compare the
estimates of the median and the mean for Lmax (table 6) we note that only for
peak 1929 and 2007 is Lmax(peak) greater than Lmax(control) i.e. Lp>Lc. In
the other two samples, although the null is rejected, the median Lmax is the
same, and the means are similar. Thus we can only be confident of suggesting
evidence of periodic to chaotic transitions in samples 1929 and 2007. Looking
at the graphs themselves, we see Lmax collapses around the middle of the peak
samples i.e. around observation 251, the market peak. A collapse on Lmax
suggests a rise in the Lyapunov exponent and this can indicate bifurcation points
around the market peak (see table 1).
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Figure 11: Lmax & Vmax (a) 1929 (b) 1973 (c) 2000 (d) 2007
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Figure 12: Lmax & Vmax (a) 1927 (b) 1971 (c) 1998 (d) 2005
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Figure 13: Lmax & Vmax (a) 2008
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Table 6: Mann-Whitney U test for Lmax

Sample median mean rank Mean (s.e.) Mann U p value
1927 7 279.3333 6.7664 0.1033
1929 12 543.6667 13.0827 0.2932 15.9591 0.0000 Lp > Lc
1971 6 409.4783 6.57683 0.1026
1973 6 333.7202 5.9440 0.0874 4.8073 0.0000 Lp.Lc
1998 6 443.3224 7.2871 0.2247
2000 6 379.6776 5.3577 0.1253 3.8424 0.0001 Lp.Lc
2005 5 345.8796 4.6813 0.0467
2007 7 477.1204 10.1800 0.4127 7.9236 0.0000 Lp > Lc

Similarly to the Lmax test, the null hypothesis is rejected in all cases and the
median and the mean value for Vmax(peak) is great than the median and mean
value for Vmax(control) i.e. Vp>Vc for the samples 1929 and 2007. Therefore
it appears as if there is evidence of chaotic to chaotic transitions in these peak
samples, as well as evidence of periodic to chaotic transitions.

Table 7: Mann-Whitney U test for Vmax

Sample median mean rank Mean (s.e.) Mann U p value
1927 3 299.3345 3.6521 0.2092
1929 7 523.6655 8.8127 0.2936 13.5440 0 Vp>Vc
1971 4 429.7019 4.0155 0.1118
1973 3 317.8759 2.9273 0.0744 7.0961 0 Vp.Vc
1998 2 337.4647 2.3406 0.0453
2000 3 485.5353 3.1192 0.0868 8.9397 0 Vp&Vc
2005 2 352.6156 2.8029 0.1515
2007 3 470.3844 5.7202 0.2919 7.1102 0 Vp>Vc

This suggests that there is significant and measurable change in the deter-
ministic structure of the trajectory of the market around the time of these eco-
nomically and historically important market peaks. Without evoking a model,
we suggest that these indicators could be used as warning signals of transition
in the market. For illustrative purposes we include the 2008 sample in figure 14.
We note that for all of the peak samples (including 2008) there is a collapse in
Vmax as well as Lmax at or close to the observation 251 i.e. the market peak.
This pattern is repeated for DET below. We can see a clear repeated pattern
in all the peak samples of a collapse in the RQA measures around the market
peak. This collapse may be another indicator of the transition from bull to
bear market. The following section further analyzes this pattern and suggests
an interpretation.
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4.2 Collapse in RQA
To summarize the collapse in the RQA measures, we examine the windowed
DET and compare it to the scaled variance, VAR (see equation 15). We note
that the scaled variance VAR rises around the same time as DET collapses. We
also note that VAR falls as DET recovers. This can be illustrated in all four
peak samples (figure 14).

Figure 14: DET & VAR (a) 1929 (b) 1973 (c) 2000 (d) 2007
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In the peak samples (including 2008) DET varies more widely than in the
control samples; at times DET rises to close to 1 and collapses to zero. the
change in VAR is particularly notable in 1929 and 2008. In 2008 VAR rises as
high as 9.
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Figure 15: DET & VAR (a) 1927 (b) 1971 (c) 1998 (d) 2005
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In the control samples DET varies between 0.5 and 0.9 and VAR stays below
2 (except for a brief period in Q31970). The negative relationship between DET
and VAR is not as striking in the control samples.

Figure 16: DET & VAR 2008
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We note that around the time of the collapse in DET, the scaled variance
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VAR peaks. Why is this happening? It appears as if an additional force is
entering the system, causing the relationship between signal and noise to alter.
We examine this proposition in more detail in the next section.

4.3 Random Market Indicator (RMI)
Let us visualize the system as follows. Let us assume that the signal is deter-
ministic with a map f which is not known to us. All that we do have knowledge
of are noisy measurements (sn) of this signal (xn). Following from the work of
Kantz and Schreiber (2003) we present the system using time delay embedding,
such that;

sn = f(xn−m, . . . xn−1) + εt (16)

εt ∼ g (x, σ) (17)

We assume that the noise variable (εt) is random and has no correlation with
the signal and also that the system is stationary. This is a stochastic model (it
could be linear or nonlinear). It is clear from the analysis of VAR that during
times of transition from bull to bear market, variance rises considerably. If we
take VAR as a proxy of the variance of the noise εt, we can see that during
peak times variance is correlated with f (measured by DET) and cannot be
said to be stationary (figure 14 and 16). We suggest that during these times the
system is no longer conservative but is experiencing an exogenous force which
is causing εt to rise. So much so, that the deterministic signal f can no longer
be measured. All the RQA measures collapse to zero and the system appears
completely random.

Classical Newtonian dynamics assume the existence of derivatives at all times
i.e. Lipschitz conditions This allows for the use of differential equations as a
mathematical framework. Zbilut (2004) and Zbilut and Webber (2008) suggest
that under ’non-Lipschitz dynamics’ if a system experiences an exogenous force,
this will cause unstable singularities and a ’stochastic’ repellor to be born. The
trajectory of the system becomes probabilistic and the dynamics of the system
are irreversible. Zbilut asserts that non-Lipschitz dynamics allow for a ’dynamic
pause’ as the system adapts to its environment. In physiological or social sys-
tems, non-Lipschitz dynamics would allow the system to ’learn’. By definition,
chaotic systems require that the dynamical structure of the system is dependent
on initial conditions (Sprott 2004). Zbilut (2004) argues that for physiological
and social systems this is unlikely. For example, it is unlikely that the behaviour
of Coca Cola’s share price today is determined by the IPO (Initial Public Of-
fering) price back in 1919. Although it is also true that social systems do not
appear to be completely random. They appear to have deterministic structure.
It is argued by Trulla et al. (1996), Zbilut (2004), and Zbilut and Webber (2008)
that these systems should be modeled so that they can adapt or learn. Zbilut’s
approach allows a dynamical pause in the system which allows the system to
forget and adapt. Zbilut (2004) describes this as “piecewise determinism”. We
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assert that the collapse in the RQA measures indicated in the above graphs
illustrates a transition in the stock markets from a deterministic to a random
system. After the market peak, the RQA measures recover as the variance falls,
and the deterministic relationships within the system reappear. This collapse in
the RQA measures when VAR increases has also been illustrated by the analysis
of the ARGARCH model (figure 6 and 7).

With this is in mind, we use principal component analysis (PCA) to linearize
the relationship between DET and VAR and to create a principal component
series. We suggest that this series could be useful in indicating a market peak
and collapse. PCA allows us to compose the principal components of a set of
variables by computing the eigenvalue decomposition of the observed variance
matrix. We will use the first principal component, which is the unit length
linear combination of the original variables with maximum variance.

In table 8, we present the eigenvalues for the eight samples, the 2008 sample,
and the ARGARCH sample. The proportion is the eigenvalue divided by the
number of data series (in this case two). It can be interpreted as the percentage
of variance between the variables i.e. DET and VAR, which is accounted for by
the first principal component.

Table 8: Principal Component Analysis of DET & VAR

Sample Eigenvalue Proportion Correlation
1927 1.4326 0.7163 -0.4326
1929 1.4409 0.7205 -0.4409
1971 1.1859 0.5929 -0.1859
1973 1.6729 0.8364 -0.6729
1998 1.5213 0.7607 -0.5213
2000 1.8356 0.9178 -0.8356
2005 1.1990 0.5995 -0.1990
2007 1.9257 0.9629 -0.9257
2008 1.7699 0.8849 -0.7699

ARGARCH 1.5535 0.7767 -0.5535

In general the proportion is higher in the peak samples, indicating the ap-
propriateness of the principal component series as a linear summation of the
relationship between DET and VAR. This point is also highlighted by compar-
ing the correlations, which in all cases are negative, but which are higher in the
peak samples than the control. The correlations are particularly strong in the
later samples of 2000 2007, and 2008. This suggests that the linear relationship
between DET and VAR is strengthening through the twentieth century and into
the twenty first century. We note that the correlation for the ARGARCH model
is not as strong as for the actual market samples. This could be due to the fact
that the ARGARCH model is by design stationary and thus will not allow for
the extreme changes we see in the actual market. This point is highlighted in
figure 17 which presents the squared return series for the S&P 500 (as a proxy
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for realized volatility) with the forecast variance from the ARGARCH Gaussian
model. The ARGARCH Gaussian model reflects the volatility of the actual
data but consistently underestimates it. Therefore a principal component se-
ries based on the ARGARCH model would underestimate the variance of the
market. Figures 18, 19, and 20 illustrate graphs of the principal component
series, which we have named the random market indicator (RMI) for the eight
samples and for 2008. Comparing the samples, we can see that RMI is higher
during the peak samples and peaks around the time of the market peak. This
is particularly noticeable for figure 18 (a) 1929, figure 18 (c) 2000 and figure 20
2008. Comparing the absolute value of the RMI, it appears as if a value well
above 3 indicates a transition in the market; variance is rising high and DET is
collapsing to close to or to zero. During these times the signal f can no longer
be read and the variance VAR is high. To use a stationary stochastic model,
such as that in equation 16 and 17, would lead to poor estimates of risk. The
system appears nonstationary and the covariance between f and εt is nonzero.
We suggest that stationary risk models should be switched off as the market
is behaving in a nonstationary and unpredictable manner. Once the RMI falls
back to acceptable levels the models can be used again.

One central question remains: what is this (exogenous) force? Much work
has been done in the economic literature on the relationship between senti-
ment and noise (Brown and Cliff 2004, Malcolm and Wurgler 2006, Mendel and
Shleifer, forthcoming). The ’noisy trader theory’ suggests that ’noise traders’
are rational but uninformed and as a result chase noise. By chasing noise, these
traders cause the market to fall into and remain in disequilibrium for a period
of time. If we consider this exogenous force as sentiment or ignorance or fear,
we can explain the collapse in the RQA measures as a result of noise traders.
When sentiment recovers, trading becomes more predictable and the market
calms down; variance falls, and the RQA measures recover.

Figure 17: Comparison of ARGARCH model with S&P 500
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Figure 18: RMI (a) 1929 (b) 1973 (c) 2000 (d) 2007
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Figure 19: RMI (a) 1927 (b) 1971 (c) 1998 (d) 2005
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Figure 20: RMI 2008
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5 Conclusions
The comparison of recurrence plots and recurrence quantification analysis mea-
sures for peak and control samples of the Dow Jones Industrial Index have
illustrated some similarities across the time periods, particularly the 1929 and
2007 samples. We find some evidence of periodic to chaotic transitions and
chaotic to chaotic transitions prior to the market peak in the 1929 and 2007
time series. Secondly we find that the RQA measures collapse just prior to or
around the time of the market peak. This would indicate that the trajectory
of the market loses its deterministic structure at this time. As the markets do
not appear to be periodic, our results do not support Johansen and Sornette’s
LPPL model (2000).

There is also evidence of a collapsing Lmax and thus a rising Lyapunov
exponent prior to each of the peaks, which indicates a chaos to chaos phase
transition. This suggests that the dynamics of the system are changing prior
to the market collapse and that the system becomes structurally unstable. In
the middle of the peak samples, there is evidence of collapsing RQA measures,
which implies that the market is losing all its deterministic structure and is
behaving in a completely random manner.

Following from Zbilut (2004) and Zbilut and Webber (2008) the system can
be thought of as piecewise deterministic. We argue that as noise increases (due
to an exogenous force) the determinism in the model is lost and the system tran-
sitions from chaotic to nonstationary random. We suggest that the cause of the
exogenous force is due to rational but uninformed noise traders. The relation-
ship between the RQA measures and the variance can be summarized through a
principal component series named the random market indicator (RMI). If RMI
increases above 3 this is an indication of a transition in the data to a non-
stationary random process. Quantitative risk estimation techniques should be
turned off during these times until the market has transitioned back to a more
predictable deterministic process.

One criticism of recurrence quantification analysis is that it is presented
without a model. In fact applying recurrence quantification analysis allows us
to understand the dynamics of the system without evoking a model. This pa-
per suggests that the system is in fact piecewise deterministic: applying any
stationary, fixed parameter model onto the entire data series will lead to mis-
leading forecasts. Recurrence quantification analysis allows us to reconsider the
methodological steps taken during the modeling procedure as well as allowing
us to question the assumptions made as part of the mathematical framework
imposed.

This methodology has been used by many disciplines to better understand
their dynamics: including biology, physiology, psychology, and meteorology. For
example, Trulla et al. (1996) suggest that:
biological processes are high-dimensional entities, living on transients amidst a field of
relatively weak attractors

(Trulla et al 1996)
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This paper suggests that social systems such as the stock market are similar
such entities. Allowing for the market to be piecewise deterministic allows
it to adapt and learn from its environment. Over-modeling the data can be
misleading and dangerous, as it may ignore phase transitions, intermittencies,
transients and dynamical pauses. Quantitative risk estimation techniques need
to be accurate, and when they are not accurate, they should not be used. As
a general principal, ’known’ unknowns should be distinguished from ’unknown’
unknowns, that is we should highlight when we are confident in the application
of our models and when we are not. This

suggests that at times of high uncertainty and variance, the predictability of
the markets collapses. Quantitative risk modeling should not be used at these
times. To generalize these results, further work needs to be done with other
time series, other embedding values and other frequencies. Also the reliability
of the RMI should be back-tested by matching failures of stochastic quantitative
risk estimation techniques with different values for the RMI.
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