

Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the published version when available.

Title	Quantification of biofilm build-up in filters when intermittently loaded with low-strength synthetic wastewater
Author(s)	Healy, Mark G.; Rodgers, Michael
Publication Date	2011
Publication Information	Healy, M.G., Rodgers, M., Burke, P. (2011) 'Quantification of biofilm build-up in filters when intermittently loaded with low-strength synthetic wastewater'. Desalination, 271 (1-3):105-110.
Link to publisher's version	http://dx.doi.org/10.1016/j.desal.2010.12.024
Item record	http://hdl.handle.net/10379/2908
DOI	http://dx.doi.org/10.1016/j.desal.2010.12.024

Downloaded 2024-05-01T16:52:20Z

Some rights reserved. For more information, please see the item record link above.

1	Published as: Healy, M.G., Rodgers, M., Burke, P. 2011. Quantification of biofilm build-up
2	in filters when intermittently loaded with low-strength synthetic wastewater. Desalination
3	271(1-3): 105-110. doi:10.1016/j.desal.2010.12.024
4	
5	QUANTIFICATON OF BIOFILM BUILD-UP IN FILTERS WHEN
6	INTERMITTENTLY LOADED WITH LOW-STRENGTH SYNTHETIC
7	WASTEWATER
8	
9	M.G. Healy*, M. Rodgers, and P. Burke
10	Civil Engineering, National University of Ireland, Galway, Rep. of Ireland.
11	
12	*Corresponding author. Tel: +353 91 492219; Fax: +353 91 494507; E-mail:
13	mark.healy@nuigalway.ie
14	
15	ABSTRACT
16	
17	Accumulation of particulate matter and microorganisms present in wastewater as biofilm
18	on the surface of filters can lead to clogging of the media. If clogging of filters occurs,
19	they need to be temporarily decommissioned before they can be operated again. The
20	mechanisms causing clogging may only be delineated through destructive sampling of a
21	filter. The aim of this study was to characterise the build-up of biofilm in the upper layer
22	below the surface of polishing filters intermittently loaded with effluent from a novel
23	horizontal flow biofilm reactor used for the treatment of domestic-strength wastewater.
24	Three filter media were used: crushed glass, sand, and a shallow podzolized soil. The

25	parameters used to measure biofilm build-up were: soil water retention, total phosphorus
26	(Tot-P) content and loss on ignition (LOI). The LOI and Tot-P deposition near the filter
27	surface were lowest in the glass filters. Soil water retention curves indicated that biofilm
28	formation mainly occurred in the uppermost 0.03 m depth below the filter surface and
29	gradually decreased with depth. This indicates that measurements of volumetric water
30	content using time domain reflectrometry probes may be used as an in situ proxy for
31	measurements that would normally require the destructive sampling of a filter.
32	
33	Keywords: horizontal flow biofilm reactor; filtration; scanning electron microscopy;
34	surface clogging; biofilm; soil water characteristic curve.
35	
36	1. Introduction
37	
38	In Ireland, 396,000 houses use septic tanks and percolation areas to treat their wastewater
39	[1]. In these systems, wastewater flows into a two-chambered septic tank, where primary
40	sedimentation and some anaerobic treatment occur, and then to a percolation area for
41	further physical, chemical and biological treatment. If properly designed, constructed and
42	operated, septic tank/percolation systems are capable of treating domestic wastewater to a
43	high standard.
44	
45	Half of the soils of Ireland are considered unsuitable for percolation areas in the treatment
46	of septic tank effluent [2]. An area may be unsuitable for percolation if: 1) the saturated
47	hydraulic conductivity of the soil is too high or too low; 2) if the bedrock or water table is

48	too close to the surface; or 3) if the site is confined. In such cases, attached growth
49	systems, such as filters, rotating biological contactors, or suspended growth systems, such
50	as sequencing batch reactors and activated sludge systems, are recommended [3].

52 A novel horizontal flow biofilm reactor (HFBR) for treating wastewater, comprising a 53 stack of about 40 horizontal polyvinyl chloride sheets, has been developed by researchers 54 at the National University of Ireland, Galway [4]. In this system, wastewater is 55 intermittently pumped onto the top of the stack. Wastewater flows along each sheet from 56 one end to the other and back again on the next underneath sheet, down through the stack. 57 As the wastewater flows along the sheets of the stack, biofilms form and organic carbon 58 (C), total suspended solids (TSS), nutrients and bacteria are removed. This system has 59 been successfully used in other studies to treat domestic-strength wastewater and has 60 achieved chemical oxygen demand (COD) and total nitrogen (Tot-N) removals of over 90% [5, 6]. The effluent from this unit may be polished using intermittently-loaded 61 62 filters, which are efficient in the treatment of domestic [7, 8] and agricultural wastewaters 63 [9, 10]. Over time, due to the accumulation of hydrated extracellular polymers 64 (exopolymers), the presence of living and dead microorganisms, or mass accumulation 65 within the media pores, the hydraulic conductivity may gradually reduce, leading to 66 clogging in the upper layers of the filter [11]. Clogging involves several mechanisms 67 such as [12]: reduction of pore space by TSS and bacterial growth on entrapped or 68 dissolved solids.

69

70 The occurrence of clogging is a function of the organic and TSS loading rates applied to

the filter [9, 13] and the US EPA has set guidelines for the operation of single-pass and

72 recirculating sand filters ([14]; single-pass: 22 g biochemical oxygen demand (BOD₅) m⁻²

- 73 d^{-1} , effective size, d_{10} , 0.25-1 mm; recirculation: 22 g BOD₅ m⁻² d⁻¹; d_{10} , 1-5 mm).
- 74

75 The presence of a clogging layer may be characterised in terms of physico-chemical 76 parameters, such as organic matter and nutrients, or physical parameters, such as water 77 retention capacity [15]. The effects of biomass build-up may be shown by the soil-water characteristic curve, $\theta_v(h)$ [16], which is a graph of the volumetric water content, θ_v , 78 79 against the pore-water suctions, h, imposed, and is dependent on the texture and structure 80 of the media. The presence of biofilm growth may also result in a higher air entry value 81 (the point at which air becomes continuous in a soil), greater water retention capacity (as 82 biofilm is hydrophilic), and lower field-saturated hydraulic conductivity [15]. In filters 83 loaded with domestic septic tank effluent, greywater septic tank effluent and tapwater, 84 Siegrist [17] attributed the most significant changes in water content near the infiltration 85 surface to the pore size reduction due to biomass build-up and, after 62 months of operation, the water contents in the upper 0.04 m layer for tapwater and domestic septic 86 87 tank effluent were 0.26 and 0.36, respectively. Rodgers et al. [15] obtained similar 88 results.

89

90 Spychała and Błażejewski [18] examined the performance of 0.3m-deep filter columns,

91 comprising fine sand with a d_{10} of 0.1 mm over a 596-day study duration. At organic and

92 TSS loading rates of 6 g BOD₅ m⁻² d⁻¹ and 2.7 g TSS m⁻² d⁻¹, respectively, five of the

93	filters became clogged after approximately 150 days (Table 1). The organic matter
94	content, measured as mg BOD ₅ g ⁻¹ dry sand, in the uppermost sand layer was 14 mg g ⁻¹
95	dry sand and reduced to 3 mg g^{-1} at a depth of 0.12 m below the filter surface. Spychała
96	and Błażejewski [18] attributed surface clogging to the presence of bacterial slimes,
97	rather than the presence of bacteria, which only occupied 0.00112% of the pore volume
98	in the clogging layer. Similar results were found by Rodgers et al. [15], who found
99	elevated organic matter content and nutrients in the uppermost layer of a 0.9 m-deep
100	stratified sand filter (d_{10} of uppermost sand layer, 0.1 mm) loaded with synthetic
101	agricultural wastewater at rates ranging from 6.5 to 76 g COD $m^{-2} d^{-1}$ over a 767-day
102	study (Table 1). Liu et al. [19] measured ATP (adenosine 5'-triphosphate) biomass in the
103	uppermost layer of stratified sand filters intermittently loaded at a rate of approximately
104	4.4 g COD m ⁻² d ⁻¹ with a butterfat and detergent mixture (Table 1). Before clogging
105	occurred at 132 days, the ATP concentrations ranged between $3.65 - 13.7 \ \mu g \ ATP \ mm^{-2}$,
106	when normalized to surface area.

108 To ensure enhanced removal of TSS, organics and nutrients, HFBRs can be used in 109 conjunction with a tertiary treatment system. This paper investigates the use of three types of filters – glass, sand, soil – in tertiary treatment. Specifically, the aim of this paper 110 111 was to characterise biofilm development after 525 days in intermittently-loaded filters 112 polishing low-strength effluent from a laboratory HFBR unit treating domestic-strength 113 wastewater. The measured parameters were: 1) soil water characteristic curve; 2) total 114 phosphorus (Tot-P); and 3) organic matter. Scanning electron microscopy (SEM) was 115 used to compare biofilm build-up in the clogging layer versus virgin material. To assess

the relative impact of loading filters with low-strength wastewater, the measured

117 parameters were compared to similar filters loaded with high-strength wastewater.

118

119 **2. Materials and Methods**

120

121 Eight 0.65 m and six 0.375 m-deep laboratory filter columns containing sand, crushed 122 glass and soil were built under a water suction of approximately 0.1 m (Fig. 1). Each of 123 the columns had an internal diameter of 0.150 m. Six columns contained glass, five 124 contained sand and three contained soil. Three glass columns were 0.65 m-deep and three 125 were 0.375 m-deep. Two sand columns were 0.65 m-deep, three sand columns were 126 0.375 m-deep, and three soil columns were 0.65 m-deep. The bottom layer of each 127 medium was underlain by a 0.075 m layer of distribution gravel (10-20 mm in diameter). 128 In the 0.65 m-deep glass and sand columns this was overlain by a 0.2 m layer of fine 129 glass (0.5 to 1.1 mm in particle size) or sand ($d_{10} = 0.15$ mm), respectively, under a 0.075 130 m-deep distribution gravel and 0.2 m-deep layer of fine glass or sand. The top layer was 131 0.1 m deep and comprised distribution gravel (10-20 mm in diameter). In the 0.375 m-132 deep glass and sand columns, a 0.1 m layer of distribution gravel (10-20 mm in diameter) 133 overlay a 0.2 m layer of fine glass and sand, respectively. In the 0.65 m-deep soil columns, a 0.1 m layer of distribution gravel (10-20 mm in diameter) overlay a 0.475 m 134 layer of top soil (a shallow podzolized soil sieved to less than 5 mm; $d_{10} = 0.02$ mm). The 135 136 glass, sand and soil filters were packed to average bulk densities of 1700, 1500 and 1200 kg m⁻³, respectively. The base of each filter comprised a series of holes drilled in plastic 137 138 stop-ends.

140	The influent wastewater used in this experiment was the final effluent from a laboratory
141	HFBR treating synthetic domestic-strength wastewater. The synthetic wastewater was
142	made up daily (after Odegaard and Rusten [20] and with composition as in Table 2) and
143	pumped onto the top sheet of the HFBR. The final effluent from the HFBR was collected
144	daily in a sump and was intermittently loaded, via spiral distribution manifolds, onto the
145	surfaces of the filters. The pump was operational for 5 minute durations each hour and,
146	throughout the 525-day study period, a hydraulic loading rate of 100 L $m^{-2} d^{-1}$ was
147	applied to all filter columns. Influent and effluent water samples were tested at least twice
148	per week in accordance with the Standard Methods [21].
149	
150	At the end of the 525-day study period, loading was suspended and the columns were
151	dismantled. The physical and chemical properties of each media in the uppermost 0.15 m
152	layer were examined. Two intact media samples were taken at each 0.03 m incremental
153	depth below the filter surface and the $\theta_V(h)$ was determined for each depth using the sand
154	box method (Eijkelkamp Agrisearch Equipment Ltd., The Netherlands). The sand box
155	method involves the application of incremental water suctions to a soil, contained in a
156	stainless steel core, 10^{-4} m ³ in volume, and positioned on Blokzijl sand, via an adjustable
157	suction device.
158	
159	Tot-P, an indicator of the abundance of organic matter, was tested (after [22]) at the
160	following depth increments: 0-0.01, $0.02 - 0.03$, $0.05 - 0.06$, and $0.09 - 0.12$ m. Mass
161	loss on ignition (LOI) was carried out at 0.01 m-depth increments to a depth of 0.06 m
162	below the filter surface in the sand and glass filters in accordance with the British

163	Standards [23]. Supplementary LOI measurements were made at the following depth
164	increments: $0.06 - 0.09$ m and $0.09 - 0.12$ m. LOI gives an indication of biomass
165	distribution within each column. SEM was used to compare biofilm build-up on grains at
166	the filter surface with a virgin sample. The samples were taken using an aluminum stub
167	coated with quick-drying silver paint. The specimens were gold-coated in an Emscope SC
168	500 sputter coater (Emscope, Ashford, UK) and were viewed with a SEM (Model S-570,
169	Hitachi, Tokyo, Japan).
170	
171	3. Results and Discussion
172	
173	3.1 Water quality results
174	
175	The operational regime and performance of the filters are tabulated in Tables 3 and 4,
176	respectively. The organic loading rate on the filters was 9.8 g COD m ⁻² d ⁻¹ , based on the
177	top plan area. Throughout the study duration, statistical analysis using a paired-samples T
178	test proved that there was no significant difference in COD removal within each set of
179	filters for a particular medium at the 95% confidence interval (P=0.05). The 0.65m soil
180	filter achieved the greatest COD reduction -65% - and produced an average COD
181	effluent concentration of 34.0 ± 10.5 mg COD L ⁻¹ . At the 95% confidence interval, there
182	was a significant difference between the 0.65 m-deep soil, glass and sand columns. The
183	0.65 m and 0.35 m–deep sand filters had effluent COD concentrations of 53.8 ± 23.7 mg
184	COD L ⁻¹ and 54.5 \pm 21.3 mg COD L ⁻¹ , respectively – a 45% and 44% reduction,

185	respectively	. All filters	produced	final	effluent	COD	concentrations	that v	were much	less

186 than the Urban Waste Water Treatment Directive [24] value of 125 mg COD L^{-1} .

187

188	Complete TSS	removal occur	red in all filter	columns. The	e 0.65 m-dee	p soil columns also
-----	--------------	---------------	-------------------	--------------	--------------	---------------------

189 performed best in bacteria removal and achieved an average effluent bacteria

190 concentration of $0.5 \times 10^6 \pm 0.2 \times 10^6$ CFU per 100 ml. The effluent NH₄-N concentration

191 from all filters was close to zero, indicating that practically complete nitrification had

192 occurred in all filters, irrespective of their depth.

193

194 3.2 Soil water characteristic curves

195

196 The $\theta_V(h)$ curves for the glass, sand and soil filters are illustrated in Figures 2, 3 and 4, 197 respectively. The $\theta_V(h)$ curves indicate that biofilm formation mainly occurred in the 198 uppermost 0.03 m depth below the filter surface and gradually decreased with depth. The 199 saturated volumetric water content, θ_s , decreased from the surface to a depth of 0.15 m – 200 indicating that biofilm did not extend far into the media - and ranged from 38.6% to 201 34.2% in the glass filter, 45.9% to 39.2% in the sand filter, and 54% to 51% in the soil 202 filter. The lack of significant increases in the removal of COD with respect to filter depth 203 would appear to be related to the build-up of biofilm in the uppermost filter layer of each 204 medium. θ_s is used as an indication of biofilm build-up as it allows all the media to be 205 compared against each other under zero suction. The extent to which biofilm permeated 206 the filters appeared to vary between media. Generally, there was very little difference 207 between the $\theta_V(h)$ curves at all measured suctions greater than 0.1 m of water in the glass

208 filters, suggesting that the biofilm mainly formed in the uppermost 0.03 m filter layer 209 (Figure 2). Relative to the glass filters, the sand and soil filters had a greater variation in 210 water retention capacities at all measured suctions (Figures 3 and 4, respectively), 211 suggesting that the biofilm layer penetrated further into these filter media. As all filters 212 had the same organic and hydraulic loading regime, this suggests that media size or 213 composition may influence clogging layer formation. 214 215 3.3 Other indicators of biofilm formation 216 217 The deposition of Tot-P (Figure 5) and the LOI in the upper 0.12 m sand and glass filter 218 layers (Figure 6) appear to confirm the conclusions from the $\theta_V(h)$ curves. Over the study 219 duration, approximately 12 g P was applied to the sand and glass filters, whereas 220 approximately 6 g P was applied to the soil filters. The Tot-P adsorbed in the filters over 221 the measured depth of 0.12 m was approximately 80 mg (glass), 120 mg (sand) and 173 222 mg (soil). The Tot-P deposition was lowest in the glass filter and ranged from 31.8 ± 2 mg kg⁻¹ near the filter surface to 19.2 ± 2 mg kg⁻¹ at a depth of 0.12 m (Figure 5). The LOI 223 224 ranged from $0.43\pm0.09\%$ in the upper-most layer to $0.04\pm0.01\%$ at a depth of 0.12 m. 225 These values reflect the soil water characteristic curves. The LOI of virgin glass was 0.04%. The greatest reduction in LOI - 71% of the overall reduction – occurred within 226 227 0.01 m of the glass filter surface (Figure 6). The Tot-P deposition in the upper 0.12 m 228 layers of the sand and soil filters followed the same trend (i.e. higher concentrations at the 229 filter surface versus lower concentrations with depth), but were more evenly distributed with depth below the filter surfaces. Tot-P deposition ranged from 50 ± 5 mg kg⁻¹ to 230

231	30.2 ± 4 mg kg ⁻¹ for the sand filter, and from 50 ± 3 mg kg ⁻¹ to 45.6 ± 4 mg kg ⁻¹ for the soil
232	filter. Echoing the results of the $\theta_V(h)$ curves for the sand filter (Figure 3), the LOI values
233	for the sand filter suggested a more even distribution of biofilm in the upper 0.12 m depth
234	than the glass filter. Measured values ranged from 0.72 ± 0.09 % at the surface to
235	0.34 ± 0.02 % at a depth of 0.12 m from the filter surface. The LOI of virgin sand was
236	0.33%. In a sand filter loaded at rates ranging from 6.5 to 76 g COD $m^{-2} d^{-1}$ for a period
237	of 767 days and dismantled after clogging (at a final organic loading rate of 18.2 g COD
238	m ⁻² d ⁻¹ applied for 42 days), Rodgers et al. [15] measured Tot-P concentrations ranging
239	from 1500 mg kg ⁻¹ near the filter surface to 600 mg kg ⁻¹ at a depth of 0.12 m.
240	
241	Figures 7 and 8 show the SEM analysis for the glass and sand surface filter layers,
242	respectively, at the end of the 525-day study period on virgin samples of media. SEM
243	analysis was conducted on the soil filters, but, due to the nature of the soil granules, the
244	results were indistinguishable. SEM analysis showed organic deposits that were in
245	accordance with the indirect quantitative $\theta(h)$ and loss on ignition results. The figures
246	indicate varying degrees of biofilm build-up, although they were not as pronounced as the
247	schmutzdecke of biofilm measured at the filter surface by Rodgers et al. [15]. In virgin
248	glass and sand (Figures 7 and 9, respectively), the grains were clearly distinguishable,
249	but, after 525 days of operation, they are indistinguishable. This confirms that the
250	clogging layer is a surface phenomenon. Although the organic and inert materials were
251	high below the surface of the upper-most filter layers (Figures 2-6), Figures 7 and 8
252	indicate that the clogging layer developed as a <i>schmutzdecke</i> (a surface biological layer)
253	on the surface.

255	Although the results from this study indicate that organic and particulate materials will
256	build up in filters loaded with low-strength effluent, after 525 days of operation, no
257	substantial filter clogging occurred. As biofilm is hydrophilic, measurements of the
258	volumetric water content using time domain reflectometry (TDR) are a good way to
259	determine <i>in-situ</i> measurements of biofilm build-up, and can be used as an indication of
260	the 'state' of a filter. Although the small diameter of the columns used in this study (0.15)
261	m) precluded such measurements, the variation in the $\theta_V(h)$ curves are correlated with the
262	volumetric water content [15], and exhibit the same trend as the physical measurements
263	of biofilm build-up.
264	
265	4. Conclusions
266	
267	The following conclusions may be drawn from this study:
268	
269	1. Biofilm formation in intermittently-loaded sand, glass and soil polishing filters
270	occurs mainly in the uppermost 0.12 m-deep filter layer.
271	2. The degree to which nutrients are deposited in a filter media depends on the
272	applied organic loading rate.
273	3. On the basis of soil water retention, Tot-P and LOI measurements, the biofilm did
274	not appear to penetrate as deep into the glass filters as in the sand and soil filters.
275	This may indicate that media size and composition may also be controlling factors
276	in biofilm formation.

277	4. As soil water retention measurements were analogous to measured parameters,
278	which can only be quantified through destructive sampling of a filter,
279	measurements of the volumetric water content using TDR are a good way to
280	determine <i>in-situ</i> measurements of biofilm build-up, and can be used as an
281	indication of the 'state' of a filter.
282	
283	Acknowledgements
284	
285	This research was supported by a student fellowship from the College of Engineering and
286	Informatics, NUI Galway. The authors acknowledge the support of the late Dr. John
287	Mulqueen, NUI Galway; Mr. Michael Coughlan, Dept. of Microbiology, NUI Galway;
288	Messrs. Gerry Hynes and Peter Fahy, and Ms. Mary O'Brien, Civil Engineering, NUI
289	Galway.
290	
291	
292	
293	
294	
295	
296	
297	
298	
299	

302 [1] Census of Republic of Ireland, Census of population – Republic of Ireland, 2006.

303 Volume 6: Housing. http://www.cso.ie/census/Census2006_Volume6.htm Accessed

304 April, 2010.

305

- 306 [2] H. Henry, Treatment of septic tank effluent using the Puraflo Peat Biofiltration
- 307 System. Proceedings of: Annual on-site wastewater treatment conference, minimizing
- 308 impacts, maximising resource potential. Jane S. McKimmon Center for Extension &
- 309 Continuing Education, North Carolina State University, Raleigh, NC. October 16-18,

310 1996.

311

312 [3] EPA, Wastewater treatment manuals: treatment systems for single houses. EPA,
313 Wexford, Ireland, 2000.

314

[4] M. Rodgers, J. Mulqueen, A. Lambe, L. Xiao, E. Clifford, A biofilm reactor. Patent
application no. S2004/0461, 2004a.

317

- 318 [5] M. Rodgers, L.W. Xiao, J. Mulqueen, Synthetic dairy wastewater treatment using a
- new horizontal-flow biofilm reactor. J. Env. Sci. and Heal. 41 (2006a) 751-761.

320

- 321 [6] M. Rodgers, A. Lambe, L. Xiao, Carbon and nitrogen removal using a novel
- horizontal flow biofilm system. Process. Biochem. 41 (2006b) 2270-2275.

324	[7] D.J. Nichols, D.C. Wolf, M.A. Gross, E.M. Rutledge, Renovation of septic effluent in
325	a stratified filter, in: Bedinger, M.S. Fleming, J.S., Johnson, A.I., eds., Site
326	characterisation and design of on-site septic systems. ASTM STP 1324. American
327	Society for Testing and Materials. West Conshohocken, PA, USA, 1997, pp. 235-247.
328	
329	[8] Z. Hu, G.A. Gagnon, Impact of filter media on the performance of full-scale
330	recirculating biofilters for treating multi-residential wastewater. Wat. Res. 40 (2006)
331	1474-1480.
332	
333	[9] M.G. Healy, M. Rodgers, J. Mulqueen, Performance of a stratified sand filter in
334	removal of chemical oxygen demand, total suspended solids and ammonia nitrogen from
335	high strength wastewaters. J. Env. Man. 83 (2007a) 409-415.
336	
337	[10] M.G. Healy, M. Rodgers, J. Mulqueen, Treatment of dairy wastewater using
338	constructed wetlands and intermittent sand filters. Biores. Tech. 98 (2007b) 2268-2281.
339	
340	[11] Y. Le Bihan, P. Lessard, Monitoring biofilter clogging: biochemical characteristics
341	of the biomass. Wat. Res. 34 (2000) 4284-4294.
342	
343	[12] H.L. Leverenz, G. Tchobanoglous, J.L. Darby, Clogging in intermittently dosed sand
344	filters used for wastewater treatment. Wat. Res. 43 (2009) 695-705.
345	

- 346 [13] R.L. Siegrist, W.C. Boyle, Wastewater induced soil clogging development. ASCE J.
- 347 Env. Eng. 113 (1987) 550-566.
- 348
- 349 [14] US EPA, Onsite wastewater treatment systems manual. Manual No. EPA/625/R-
- 350 00/008. EPA, Washington, DC, 1992.
- 351
- 352 [15] M. Rodgers, J. Mulqueen, M.G. Healy, Surface clogging in an intermittent stratified
- 353 sand filter. Soil Sci. Soc. Am. J. 68 (2004b) 1827-1832.
- 354
- 355 [16] D.G. Fredlund, H. Rahardjo, Soil mechanics for unsaturated soils. John Wiley &
 356 sons. New York, 1993.
- 357
- 358 [17] R.L Siegrist, Soil clogging during subsurface wastewater infiltration as affected by
- effluent composition and loading rate. J. Env. Qual. 16 (1987) 181-187.
- 360
- 361 [18] M. Spychała, R. Błażejewski, Sand filter clogging by septic tank effluent. Water Sci.
- 362 Tech. 48(11-12) (2003) 153-159.
- 363
- [19] Q. Liu, K. Mancl, O.H. Tuovinen, Biomass accumulation and carbon utilization in
 layered sand filter biofilm systems receiving milk fat and detergent mixtures. Biores.
 Tech. 89 (2003) 275-279.
- 367

368	[20] H. Odegaard, B. Rusten, Nitrogen removal in rotating biological contactors without
369	the use of external carbon source, in: Proceedings of the first international
370	symposium/workshop on rotating biological contactor technology, Champion, PA, USA,
371	1980, pp. 1301-1317.
372	
373	[21] APHA-AWWA-WEF, Standard methods for the examination of water and
374	wastewater. 21 st edition. American Public Health Association. Washington, DC, 2005.
375	
376	[22] E. Byrne, Chemical analysis of agricultural materials. An Foras Taluntais, Dublin,
377	1979.
378	
379	[23] British Standards Institution, Determination by mass-loss on ignition. British
380	standard methods of test for soils for civil engineering purposes. Chemical and electro-
381	chemical tests. BS 1377:2:1990:4. BSI, London, 1990.
382	
383	[24] EU, Council directive 91/271. EEC concerning urban waste water treatment (OJ L
384	135,30.5.91), as amended by Commission Directive 98/15/EC (OJ L 67,7.3.98).
385	
386	[25] Metcalf and Eddy. Wastewater engineering: treatment, disposal and reuse. 3 rd
387	edition. Revised by G. Tchobanoglous, F.L. Burton and H.D. Stensel. McGraw-Hill,
388	London; New York, 2003.
389	

391 **Captions for figures**

- 392
- 393 Figure. 1. Schematic of the laboratory filters.
- 394 Figure 2. Soil-water characteristic curve for the glass filters.
- 395 Figure 3. Soil-water characteristic curve for sand filters.
- 396 Figure 4. Soil-water characteristic curve for the soil filters.
- 397 Figure 5. Deposition of Tot-P (mg kg⁻¹ of filter media) in the upper 0.12 m from the filter
- 398 surface.
- Figure 6. Mass loss on ignition to a depth of 0.15 m from the filter surface in the sand and
- 400 glass filters.
- 401 Figure 7. Scanning electron microscopy (SEM) photography on a sample of the surface
- 402 virgin glass layer (*left*) and on a sample of the glass layer (*right*) after 525 days of
- 403 operation.
- 404 Figure 8. Scanning electron microscopy (SEM) photography on a sample of the surface
- 405 virgin sand layer (*left*) and on a sample of the sand layer (*right*) after 525 days of

406 operation.

407

Reference	Wastewater type	Media type	Column depth (m)	Loadir	ig rates	Time to clogging	Comments
				g COD $m^{-2} d^{-1}$	g TSS $m^{-2} d^{-1}$	days	
Liu et al., 2003	Butterfat and	Sand	0.61	~ 4.4		131	Single layer fine sand
	detergent		0.61	~ 4.4		131	0.3m coarse sand overlain 0.3m fine sand
			0.92	~ 4.4		245	3 layers – pea gravel, coarse and fine sand.
Rodgers et al., 2004b ¹	Agricultural	Sand	0.9	18.2	3.1	42	Filter previously operated at lower organic
							loading rates with no occurrence of clogging
Spychała and	Domestic	Sand	0.3	11.6 ²	2.7	~150	Clogging due to bacterial slimes.
Błażejewski, 2003							
EPA guidelines ³	Domestic	Sand	0.61-0.91	9.3	3.9		

Table 1. Performance of intermittently-loaded filters prior to clogging.

3

Organic concentration reported in paper = 71 mg BOD L⁻¹. BOD₅/COD ratio estimated as 0.5 [25]. US EPA [14]. Calculations based on a typical flow of 24 L m⁻² d⁻¹ with a septic tank effluent COD and TSS concentration of 389 and 163 mg L⁻¹, respectively [3]. 433

	Component	Amount (g)
	Glucose	18
	Yeast	2.7
	Dried Milk	10.8
	Urea	2.7
	NH ₄ Cl	5.4
	Na ₂ PO ₄ .12H ₂ O	9
	KHCO ₃	4.5
	NaHCO ₃	11.7
	MgSO ₄ .7H ₂ O	4.5
	FeSO ₄ .7H ₂ O	0.18
	MnSO ₄ .H ₂ O	0.18
	CaCl ₂ .6H ₂ O	0.27
	Bentonite	3.6
1	Diluted to 90 litres	

434 Table 2. Composition of synthetic wastewater used to simulate domestic wastewater¹

Days of operation (d)	525
Filter hydraulic loading rate (L m ⁻² d ⁻¹)	100
Average organic loading rate (g COD $m^{-2} d^{-1}$)	9.9
Average influent COD concentration (mg L^{-1})	99.2±13.4
Average TSS loading rate (g TSS m ⁻² d ⁻¹)	2.2
Average influent TSS concentration (mg L ⁻¹)	22.4±13.5

457 Table 3. Operational parameters, water quality parameters and loading rates for the laboratory

filters.

		0/ D	1	
Media	Depth	% Remova	als	
	m		maa	TT 1
		COD	TSS	Heterotrophs
Class	0.65	56 0	100	01 0
Glass	0.03	30.2 42.4	100	01.0 70.7
G 1	0.375	42.4	100	19.1
Sand	0.65	45.3	100	85.3
	0.375	44.4	100	79.6
Soil	0.65	65.4	100	92.6

489 Table 4. Performance of laboratory filters.

615 Figure 5.

641 Figure 6.

Figure 7.

671

697 Figure 8.

