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Abstract
Background: Cryptosporidiosis is increasingly recognised as a cause of gastrointestinal infection
in Ireland and has been implicated in several outbreaks. This study aimed to investigate the spatial
and temporal distribution of human cryptosporidiosis in the west of Ireland in order to identify high
risk seasons and areas and to compare Classically Calculated (CC) and Empirical Bayesian (EB)
incidence rates. Two spatial scales of analysis were used with a view to identifying the best one in
assessing geographical patterns of infection. Global Moran's I and Local Moran's I tests of
autocorrelation were used to test for evidence of global and local spatial clustering.

Results: There were statistically significant seasonal patterns of cryptosporidiosis with peaks in
spring and an increasing temporal trend. Significant (p < 0.05) global spatial clustering was observed
in CC rates at the Electoral Division (ED) level but not in EB rates at the same level. Despite
variations in disease, ED level was found to provide the most accurate account of distribution of
cryptosporidiosis in the West of Ireland but required spatial EB smoothing of cases. There were a
number of areas identified with significant local clustering of cryptosporidiosis rates.

Conclusion: This study identified spatial and temporal patterns in cryptosporidiosis distribution.
The study also showed benefit in performing spatial analyses at more than one spatial scale to assess
geographical patterns in disease distribution and that smoothing of disease rates for mapping in
small areas enhances visualisation of spatial patterns. These findings are relevant in guiding policy
decisions on disease control strategies.

Background
Cryptosporidium species cause gastrointestinal infection in
humans and animals and are now the commonest proto-
zoan parasites associated with gastroenteritis in Ireland

[1]. The genus comprises many morphologically similar
species that are distinguished by genotype and by host
range [2]. The two species most relevant to human health
are C. hominis, which is a pathogen of humans and is not
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associated with animal infection, and C. parvum which
has a broad mammalian host range including humans
[2,3].

The epidemiology of sporadic (non-outbreak associated)
cases is poorly understood. Infection varies spatially, with
C. parvum more prevalent in rural areas, reflecting contact
with farm animals. In the United Kingdom, socioeco-
nomic status was found to be associated with risk factors
for infection such as foreign travel and swimming pool
use [4]. Type of water supply [5] and water treatment
methods are important risk factors. In humans both spe-
cies are associated with acute diarrhoea with or without
additional gastrointestinal symptoms following an incu-
bation period of 7 to 14 days [6,7]. The condition is self-
limiting in otherwise healthy people, but can cause intrac-
table diarrhoea in patients with impaired immune func-
tion. The infection is transmitted by the faecal-oral route,
either by direct person-to-person contact or indirectly
through contamination of food or water. Several large
outbreaks of human cryptosporidiosis have been
reported, often associated with contaminated water sup-
plies. The prevention and control of waterborne outbreaks
of cryptosporidiosis is difficult because the oocysts of the
protozoan cryptosporidium are not inactivated by chlo-
rination at levels used in drinking water. As chlorination
is not effective in destroying the oocysts, the protection of
drinking water from contamination is dependent on
source protection (limiting animal and human faecal con-
tamination of water sources) and on removal or inactiva-
tion of cryptosporidium oocysts in the water treatment
process. Water that is fully compliant with accepted bacte-
riological standards (absence of E. coli, general coliform
bacteria, enterococci and C. perfringens) may contain via-
ble cryptosporidia. Conventional water treatment proc-
esses including chemical coagulation, flocculation,
sedimentation, filtration and disinfection successfully
remove the majority of microorganisms in raw water
which are a concern to public health [8], but these meth-
ods do not always remove cryptosporidium. Advances in
water treatment that successfully remove cryptosporidium
when the systems components are intact and operating
correctly include microfiltration and ultrafiltration, and
the most effective method to inactivate any cryptosporid-
ium remaining after filtration is ultraviolet treatment [8],
which requires that the treated water is of low turbidity.
However, treatment methods alone cannot solve the
problem; protecting water supplies and monitoring water
quality are crucial.

When investigating spatial disease patterns it is not clear
what the most appropriate spatial scale (areal unit) is [9]:
this is the phenomenon of the Modifiable Areal Unit
Problem (MAUP) where spatial patterns in disease distri-
bution may change with a change of the spatial scale of

analysis. There are two main problems associated with
MAUP: the zone effect and the scale effect. It is important
to acknowledge the role that the zone of analysis has on
health data when constructing and producing maps [10].
The zones are the basic building blocks of maps, which are
usually countries or states, with boundaries which can be
epidemiologically arbitrary and can be changed. Conse-
quently, any patterns observed across zones may be more
a function of the zone boundaries, rather than of the spa-
tial distribution of the values themselves [11]. Scale is also
not readily understood in relation to disease mapping. At
different scales, the same data can produce completely dif-
ferent results [10,12]. Patterns at one scale may be highly
evident, but at another may not even exist [13,14]. As a
result correlations between variables and outcomes can
seem to be reversed at different scales. This can lead to
considerable confusion when hypotheses rejected at one
level are accepted at another. Because of such confusion,
it is good practice if disease and health care investigations
are carried out at several different geographic levels [15].
With this in mind it is essential that unbiased maps of dis-
ease occurrence give a realistic portrayal of the situation
under investigation with minimized error. A number of
solutions to MAUP have been suggested. One such solu-
tion could be to re-aggregate the data to another set of
zones [14]. However this is almost always impossible due
to the limited availability of higher resolution data and
difficulties in assessing the ecological fallacy associated.
Selecting appropriate class intervals and display colours is
another possible solution [11]. The problem could be
avoided by using continuous shading or gradation of col-
our. However, it is widely recognised that the effects of
MAUP are difficult to control and that there is no defini-
tive solution [11], therefore it is necessary to understand
its effects, and become aware of its existence and impact
[16].

Measures of incidence rates of disease patterns in small
areas have limitations: as populations are dynamic, map-
ping and statistical comparisons with different variances
need to be conducted; and rates in areas of low popula-
tion usually have high variances but are more unstable
than those from areas of high population [17,18]. Low
population areas are often rural, and cover large areas, giv-
ing undue visual impressions that may be unreliable due
to higher variances.

Traditionally, disease mapping has been dominated by
the use of the Standardized or Classically Calculated (CC)
Incidence/Mortality rates or measured relative risk to dis-
play geographical variability. Although mapping stand-
ardized rates is a useful exploratory device, which has
been put to considerable use in medical geography and
epidemiology, this method is usually unable to deal effec-
tively with diseases affecting small numbers of people. In
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small number diseases, disease rates tend to be extremely
unreliable because of the small numbers upon which it is
based. One method of getting around this problem is to
use "smoothed" estimates of disease [19] such as the
Empirical Bayesian (EB) method. The Bayesian approach
is a form of statistical estimation, where observed data
and prior knowledge on parameters of interest are consid-
ered when estimating their values.

The objectives of this study were to describe the spatial
and temporal distribution of cryptosporidiosis cases
reported to the surveillance system in the Irish Health
Service Executive (HSE) Western Area in order to identify
areas with high rates, to identify the appropriate spatial
scale for mapping of the infection in this area, and to com-
pare Classically Calculated (CC) and Empirical Bayesian
(EB) incidence rates.

Figure 1 shows the local authority boundaries which are
nearly all co-terminous with most Local Health Office

boundaries, and urban and rural EDs as defined by the
Central Statistics Office [20]. Local Health Offices are the
administrative units of the Irish health service for Primary
Community and Continuing Care, which currently
include Environmental Health services [21].

Methods
Data collection and manipulation
Cryptosporidiosis is a notifiable disease in Ireland in all
age groups since 1st January 2004 [1]. Before then, a case
was only notifiable if it was cited as a cause of gastroen-
teritis in a child younger than two years.

The study area is the Health Services Executive (HSE)
Western Area located on the west coast of Ireland encom-
passing all of County Galway and Galway City, County
Mayo and County Roscommon. The total population for
this area is approximately 414, 277 [22] spread across 14,
280 km2. Spatial analysis was carried out at the district (n
= 30) and electoral division (ED) (n = 498) levels. Surveil-

Urban Centres in the West of Ireland 2006Figure 1
Urban Centres in the West of Ireland 2006.
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lance data on cryptosporidiosis collated by the Public
Health Department at HSE West and the microbiology
laboratory at Galway University Hospital for the years
2004-2007 form the basis of this study. The study popula-
tion included all laboratory confirmed cases of crypt-
osporidiosis with addresses in the area.

Personal identifiers of the patients were deleted before the
database was released to the investigators. The variables
available for analysis included age, sex and address at
diagnosis. Address at diagnosis was used as the spatial
locator for all cryptosporidiosis cases. From the original
dataset of 593 confirmed cases, 569 (95%) cases were
used in the analysis. It was possible to match 365 (64%)
addresses to ED level without revisions: after spelling revi-
sions this was increased to 569 addresses. It was not pos-
sible to match 24 (4%) of the original addresses due to
missing information, invalid addresses or addresses
located outside the study area: these were excluded from
the study.

The GeoDirectory was obtained from An Post GeoDirec-
tory Limited [23]. GeoDirectory is a complete database of
unique, verified addresses of all buildings in the Republic
of Ireland together with a precise Geocode. The GeoDirec-
tory was used to assign each disease case to its implicit
location to display cases on a map. The total observed
number of cases of cryptosporidiosis was taken from the
annual publications of the HSE and Health Protection
Surveillance Centre (HPSC) on the epidemiology of crypt-
osporidiosis in Ireland, and the total population counts
were sourced from the 2006 Irish census data [22].

Statistical Analyses
The disease standardized incidence was calculated by
dividing the observed cases by the expected cases for each
spatial unit. These rates were expressed as percentages
with those higher than 100% having above average
national rates and those below 100% having below aver-
age national rates. Cryptosporidiosis in Ireland is essen-
tially a small numbers disease with many EDs having
fewer than 2 cryptosporidiosis cases. Global and local
Empirical Bayesian smoothing was performed at both
spatial levels.

Temporal patterns were displayed by plotting the
monthly number of notified cryptosporidiosis cases.
Months were grouped into their respective seasons with
February, March, April as spring, May, June and July as
summer, August, September and October as autumn and
November, December and January as winter. To test
whether there was heterogeneity between the different
months, we used a χ2 test for trend taking into account the
differences in the number of days in the months. In a sec-
ond analysis testing for the presence of seasonality, we
used Edward's test for a twelve month period.

Computation of measures of spatial clustering
Global Moran's I and Local Moran's I were computed for
cryptosporidiosis rates using tools within Arc toolbox. Z
scores were used to indicate statistical significance and
maps were produced.

Cartographic Displays
Choropleth maps were produced to examine and explore
the differences in spatial distribution between the differ-
ent cryptosporidiosis incidence rates at the different geo-
graphical scales. ESRI's ArcView 9.2 was used to
manipulate data and produce the maps. Mapping inter-
vals were assigned using Manual classifications. The
groupings assigned to EB rates matched those assigned to
CC rates. Clustering of rates were measured using Local
and Global Moran's I.

Results
Temporal distribution
There were seasonal patterns in the distribution of crypt-
osporidiosis with the highest number of cases occurring
during the late spring months of March and April. Figure
2 shows the distribution of cryptosporidiosis each month
over four years. Table 1 shows the observed frequency and
expected frequency of disease cases per month if there
were no seasonality, taking into account the difference in
number of days in each month. A trend of seasonality was
observed with cryptosporidiosis cases occurring more fre-
quently in spring and summer months compared to
autumn and winter (χ2 for trend 560.133 df 3; p = 0.000).
Edward's test showed a seasonal pattern, which peaked in
March (p = 0.000). The data includes a major outbreak in
early 2007 due to contamination of the water supply in
Galway City. Typing of isolates was only possible on a
small proportion of the cases, as there is no cryptosporid-

Table 1: Monthly distribution of cryptosporidiosis

n = 569

Observed Expected

Jan 20 48.3
Feb 25 43.6
Marc 152 48.3
Apr 148 46.8
May 102 48.3
Jun 41 46.8
Jul 30 48.3
Aug 11 48.3
Sept 15 46.8
Oct 5 48.3
Nov 10 46.8
Dec 10 48.3

χ2 11 df 681.94
p-value 0.000
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ium reference laboratory in Ireland: the data refer to both
C. hominis and C. parvum

Spatial distribution
Maps showing the geographical distribution of CC and EB
incidence rates are shown in Figures 3 and 4. Visually, at
the ED level, high CC rates appear to be concentrated
around the main urban centres in the West of Ireland
including Galway City, Castlebar, Tuam, Loughrea and
Roscommon town (CC>120). At the district level, the
majority of districts are seen to have CC incidence rates
above the national average. There are also a large number
of EDs from which no cases of cryptosporidiosis were
reported (Figure 3). In comparison, the EB rates produced
more distinct patterns of disease distribution highlighting
potential clusters around the West of Ireland. High EB
rates appeared to be concentrated in rural areas. There are
also only two districts which have an EB rates above the
national average (Figure 4).

Measures of spatial clustering of cryptosporidiosis rates
Using inverse distance weights, there was a significant glo-
bal autocorrelation of CC cryptosporidiosis rates at the
ED level (p < 0.01). EB rates at the ED level were found to
be random and not significant. At the district level, both
CC and EB incidence rates produced a weak negative
result which indicates a random pattern with no global
autocorrelation (p < 0.05). Local Moran's I statistic was
also used to examine small scale or local auto correlation
within the datasets at the different geographic levels. CC
cryptosporidiosis rates are mostly dispersed throughout
counties Galway, Mayo and Roscommon, though there is
some clustering of higher CC cryptosporidiosis rates in
the east and south east of Galway City and in the south of
County Roscommon. Similar to CC calculated rates of
cryptosporidiosis, EB cryptosporidiosis rates were mainly
dispersed throughout the study area. Clustering of EB
cryptosporidiosis rates is weaker (values of 1-6) than that
of CC calculated rates. The strength of the local Moran's I
values for CC cryptosporidiosis rates are notably weaker at

district level to that of the values at ED level indicating
that CC cryptosporidiosis rates are generally dispersed
throughout the West of Ireland with little evidence of clus-
tering. Stronger positive values of Moran's I in districts
with higher than average cryptosporidiosis rates are
located to the east and south east of Galway City and also
in the north and North West of County Mayo. However,
the Moran's I values are quite low, indicating that there
may only be a slight clustering in these areas. The Local
Moran's I statistics for EB cryptosporidiosis rates in the
West of Ireland, at district level also indicate very little spa-
tial autocorrelation exists in EB incidence rates.

Discussion
Geographical and temporal patterns of cryptosporidiosis 
distribution
The increasing temporal trend in observed cryptosporidi-
osis cases could be a result of improved surveillance in Ire-
land. Before January 2004, routine testing and
notification of cryptosporidiosis was not carried out in all
age groups. On the 1st January 2004, a new list of notifia-
ble infectious diseases came into place [24] when crypt-
osporidiosis became a notifiable disease in all age groups
and a requirement was introduced for confirmed cases to
be reported. There was also an outbreak of cryptosporidi-
osis in Galway city in March 2007 which accounts for the
notable increase in cases in that year [25].

A seasonal peak is observed in cryptosporidiosis in the
late spring and early summer months. These peaks coin-
cide with the lambing and calving season, and with the
spreading of agricultural waste (slurry) as fertiliser. The
Edwards test shows a monthly peak in cryptosporidiosis
in March. This peak may be emphasized by the confirmed
outbreak in March 2007. It is possible that heavy rainfall
in the preceding winter may have increased flooding and
subsequent water contamination as the lake that provides
the water supply to the outbreak affected area was at its
second highest level ever recorded just before the out-
break.

Although there was evidence of clustering of cryptosporid-
iosis at the ED level, there was no evidence of this at the
district level possibly due to the scale effects of the MAUP.
In relation to the CC incidence rates at the ED level, clus-
tering of these cases tended to occur in areas with dense
populations reinforcing the need for the EB incidence
rates to smooth out disease incidence and reduce the var-
iability in disease rates. Scale effects of MAUP and EB
methods were found to have the greatest effect on the geo-
graphical distribution of the cryptosporidiosis rates.

Smoothing of rates for mapping
EDs are the smallest spatial unit for which small area pop-
ulation statistics are currently available in Ireland and are
therefore the smallest unit examined in this study. They

Distribution of cryptosporidiosis each month over four yearsFigure 2
Distribution of cryptosporidiosis each month over 
four years.
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have the smallest number of cases and the smallest popu-
lations, making rate calculations at this level more unsta-
ble and resulting in extreme values. In the West of Ireland,
the average population of an ED is 832 (range 86-12,792)
[22].

The EB approach to rate calculation differs from that of
the CC method in that it has used prior knowledge or
beliefs about parameters of interest to increase the stabil-
ity of the most unstable results and regulate extreme val-
ues [11,26]. In this study, the majority of EDs have no
observed cryptosporidiosis incidence, resulting in rates for
these EDs below the national standardized rate. Addition
or deletion of even just one or two events can result in
drastic changes in the observed value [27]. The calculation
of EB estimates for disease rates has been suggested as a
means to stabilize extreme values [27]. When the
observed count increases from zero, the effects of the EB
smoothing can be seen. The rates calculated by the CC
method produce more extreme and variable results than
those calculated by EB methods (Figures 3 and 4). Overall,

it can be seen that EB calculated rates exhibit lower values
which are closer to the national average than those calcu-
lated by the CC method. It is apparent that CC rates are
more variable and therefore more unstable, with the max-
imum CC rate recorded at over 30 times greater than the
national average. This is a typical result, in that the popu-
lation at risk and the number of observed cases are too
small resulting in unreliable and highly variable rates
[11]. This is not the case with the EB calculated rates: using
this method has moderately lessened the small numbers
problem resulting in more stable rates, which fluctuate
around the national average.

Districts are the next spatial unit at which the data is
examined in this study. Spatially, districts are larger than
EDs which nestle into districts. There are 30 districts in the
West of Ireland included in this study, of which 9 are clas-
sified as urban and 21 as rural. The average population of
a district in the West of Ireland is 13,809 (range 1,600-
72,414) [22].

Distribution of Classically Calculated cryptosporidiosis Incidence Rates at the ED and District levelFigure 3
Distribution of Classically Calculated cryptosporidiosis Incidence Rates at the ED and District level.
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At district level, calculating EB incidence rates produced
more stable results as there was less variation in the data.
At this level, only two districts had zero cases of crypt-
osporidiosis in comparison to a large number of EDs hav-
ing zero cases of cryptosporidiosis. However due to the
aggregation of the data to this level, there was a loss in
spatial information. There was an average of 19 cases of
cryptosporidiosis per district (range 0-108) [22]. There is
clearly a large amount of hidden variation in the data at
district level. The small numbers problem can be seen at
district level for the CC incidence rates but not for the EB
incidence rates, indicating that at this level EB incidence
rates are better able to deal with the small numbers issue.

Choice of spatial scale of analysis
Through changing the level at which the data is examined
from ED to District level, the observed changes in both
sets of disease incidence rates can be seen as the scale
effect of the MAUP. At the ED level the non-spatial distri-
bution of disease rates is quite different to that of the dis-
trict level. The different distributions of diseases at the

different levels are only a product of the aggregated zones
from which they are created and therefore any results
obtained are conditional upon the zones on which they
are set [11,28]. Consequently any patterns observed at
each of the different levels may be as much a product of
the zone boundaries as it is of the underlying distribution
of rates.

The scale effects of MAUP can be notably seen at all levels
in this study. Using the EB incidence rates as an example,
at district level, 10 districts (33%) were found to have EB
rates higher than that of the national average while at ED
level, 195 EDs (39%) were found to have rates higher than
that of the national average. The aggregation problem of
MAUP is illustrated clearly here in that the variation in
EDs changes or is lost when the data is aggregated to dis-
trict or county level [10]. This example also highlights the
problem of the ecological fallacy, in that it is implied that
all individuals living in an area share the characteristics of
that area [16,18] which is obviously not true. In this study
both the EB and CC rates have been shown to illustrate

Distribution of Empirical Bayesian cryptosporidiosis Incidence Rates at the ED and District levelFigure 4
Distribution of Empirical Bayesian cryptosporidiosis Incidence Rates at the ED and District level.
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very different distributions at ED and District level, but
this study does not provide sufficient evidence for one
approach over the other due to small numbers of the dis-
ease.

Limitations
One limitation to this study was the relatively low number
of cases of cryptosporidiosis. Low numbers causing high
variability in rates may have introduced errors into the cal-
culations and therefore have had an effect on statistical
results of this study. A further limitation in the data was
that there was a confirmed outbreak of cryptosporidiosis
in County Galway in 2007. This data may have skewed the
dataset as there were over twice as many cases recorded for
this year than any of the other years under investigation.
Exclusion of this data from the whole dataset was consid-
ered but it was felt that the effects of the small numbers
problem would have been amplified further in doing so.

The extent to which the actual incidence and distribution
of cryptosporidiosis is reflected in the data is also limited
by complex potential disease ascertainment bias. Only
laboratory confirmed cases are available for mapping.
This represents those individuals who developed diar-
rhoea, who sought medical advice, from whom a speci-
men of faeces was submitted to the laboratory, and from
whom a specimen was tested based on the practice of the
receiving laboratory. The extent to which the number of
laboratory confirmed cases under-represents actual cases
and the potential for distortion of geographical distribu-
tion arising from ascertainment bias is poorly understood
as we do not know how many people who were unwell
did not attend their family doctor, and we do not know
how many of those who attended did not have laboratory
specimens sent.

Conclusion
This study shows visual and statistical evidence of spatial
clustering as well as significant seasonal patterns and
increasing temporal trend in the distribution of crypt-
osporidiosis cases in the West of Ireland. This study
showed that the ED level, although not ideal, is more
appropriate than district level for mapping cryptosporidi-
osis rates in Ireland. However mapping at this level
requires smoothing to reduce variability in disease rates.
This study has clearly demonstrated the usefulness of Geo-
graphic Information Systems (GIS) in analyzing and
exploring disease incidence. Its unique ability to integrate
a large range of datasets in a common framework facilitat-
ing in the spatial and non spatial analysis of disease events
adds a different dimension to disease analysis and surveil-
lance. Through analyzing disease in a spatial format,
trends and interrelationships may be revealed more easily
than would be in tabular format [29]. Its efficiency in vis-
ualizing problems also allows policy makers to target

resources more efficiently. GIS software is now more user
friendly allowing a wider audience to make use of this
powerful tool. Further studies to investigate risk factors in
more detail could provide more information to inform
risk assessments and control strategies.
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