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The mechanistic model of the Advanced Reach Tool (ART) provides a relative ranking of exposure

levels from different scenarios. The objectives of the calibration described in this paper are threefold: to

study whether the mechanistic model scores are accurately ranked in relation to exposure

measurements; to enable the mechanistic model to estimate actual exposure levels rather than relative

scores; and to provide a method of quantifying model uncertainty. Stringent data quality guidelines

were applied to the collated data. Linear mixed effects models were used to evaluate the association

between relative ART model scores and measurements. A random scenario and company component

of variance were introduced to reflect the model uncertainty. Stratified analyses were conducted for

different forms of exposure (abrasive dust, dust, vapours and mists). In total more than 2000 good

quality measurements were available for the calibration of the mechanistic model. The calibration

showed that after calibration the mechanistic model of ART was able to estimate geometric mean (GM)

exposure levels with 90% confidence for a given scenario to lie within a factor between two and six of the

measured GM depending upon the form of exposure.

Introduction

Exposure models are increasingly being used for exposure

assessment or guidance of expert judgment in situations where

exposure measurements are absent or scarce.1 Mechanistic

exposure models are being developed for workplace exposure

assessments under the Chemical Agents Directive 98/24/EC and

for regulatory exposure assessments. Recently, the new Euro-

pean regulation for Registration, Evaluation, Authorization and

Restriction of Chemical substances (REACH) provides

momentum for development and utilization of exposure models.

Various screening models are available to serve as an initial Tier

1 approach within REACH, including ECETOC TRA,2 Stof-

fenmanager,3 and the EMKG-Expo-Tool (http://www.reach-

helpdesk.de/en/Exposure/Exposure.html). These models are

intended to be conservative (i.e., protective) and should

discriminate between scenarios of potential concern in terms of

exposure and scenarios where exposures are low.4

A higher tier, more refined model for inhalation exposure

assessments has been developed which is referred to as Advanced

REACH Tool (ART) (www.advancedreachtool.com). The ART

framework incorporates a mechanistic model and available

exposure measurements using a Bayesian methodology in order

to produce more precise estimates for specific exposure

scenarios.5 The mechanistic model follows a source–receptor
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Environmental impact

The Advanced REACH Tool (ART) is the first generic higher tier exposure assessment tool incorporating a mechanistic model of

inhalation exposure and a database of empirical exposure information. ART is already freely available

(www.advancedreachtool.com) for assessing worker exposures in the registration processes in the scope of REACH.

This manuscript presents in a transparent way the shift from a mechanistic exposure model producing relative scores to a mecha-

nistic model estimating geometric exposure levels in units. It will help users to understand and interpret the output of the ART. We

believe that publication of studies like this might stimulate further evaluation of exposure assessment models in general.
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structure comprising modifying factors (MFs) representing the

source, transmission compartments and the receptor.6,7 The

model uses a list of MFs to describe the exposure process in

a particular scenario (e.g. substance emission potential, activity

emission potential, localized controls, dispersion, personal

enclosure, segregation, surface contamination and respiratory

protective equipment (RPE)). Various sources were used to

underpin the multipliers that were allocated to each MF. The

output of the mechanistic model is an exposure score that

provides a relative ranking of geometric mean (GM) exposure

levels for different scenarios. A detailed description of the

mechanistic model and its scientific underpinning is given by

Fransman and collegues (2010).8

In the present study, dimensionless ART mechanistic model

scores are compared with exposure measurements collected from

various occupational settings, substances, time periods and

countries. The objectives of this calibration are threefold: to

study whether the mechanistic model scores are accurately

ranked in relation to exposure measurements; to enable the

mechanistic model to estimate actual exposure levels rather than

relative scores; and to provide a method to quantify model

uncertainty.

Materials and methods

Collation of exposure data

Occupational exposure data were collected from institutes in the

United Kingdom (HSL, HSE, IOM), the Netherlands (TNO),

and Germany (BAuA). In addition, exposure data from a large

petrochemical company (Shell) and a multinational pharma-

ceutical company (GlaxoSmithKline (GSK)) were obtained.

These company data related mainly to sites in Europe but also

included some measurements from sites in Africa and Asia. The

data from the Netherlands had previously been used for cali-

bration and validation of the Stoffenmanager9,10 while the data

from HSE were selected from the National Exposure Database

(NEDB) and only contains exposure surveys performed within

the last five years. The calibration dataset also included data

taken from the Bayesian Exposure Assessment Toolkit (BEAT)

and the Biocides Technical Notes for Guidance (TNsG). All of

the exposure data reflect personal inhalation exposures and

relate to either single or multiple activities.

For the measurements reflecting exposure to dust and abrasive

dust most of the samples were gravimetrically analyzed, with the

exception of the data for grit blasting, where copper was chem-

ically analyzed, and part of the data from GSK which were

chemically analyzed for specific Active Product Ingredients

(API). Within the vapour and mist scenarios all measurements

were chemically analyzed.

Data quality, exclusion criteria, and assignment of ART scores

Guidelines for data quality were defined to rank data into one of

the three categories: good, moderate, or poor. In order to obtain

a reliable insight into model uncertainty only good quality data

were included in the calibration analyses. Poor quality data were

excluded whilst moderate quality data may be used in a subse-

quent cross-validation analysis. Exposure data were labeled to be

of good quality if they had the following characteristics:

(1) The required core information (i.e., sampling methods,

sample devices and analytical methods) was documented.11,12

(2) All of the ART modifying factors could be assessed, or

could be reliably assumed for all individual activities during the

measurement period; e.g., if a measurement period covered four

distinct activities, information on time registration, substance

emission potential, activity emission potential, localized controls,

dispersion, etc. must be available for all four activities.

(3) A unique company/site number was available in order to

define a company random effect in the mixed-effects analyses.

The influence of measurement error will increase with

decreasing sampling time and will have a substantial impact on

exposure levels of measurements with very short sampling times.

Therefore exposure measurements with sampling times less

than the arbitrary cut-off point of 5 minutes were excluded

to warrant representativeness of the exposure measurements. In

addition, measurement series with more than 50% of the

measurements below the limit of detection (LOD) were

excluded.

Based on the contextual information as described above, ART

scores were assigned to all MFs by one member of the project

team (JS) and subsequently these scores were reviewed by two

other members (ET, WF). The ART scores for the data from

GSK were assigned by PMD and for Shell by EV. These scores

were reviewed by JS and ET. General rules with respect to

assignment of number of air changes per hour (ACH) were

defined by the project team. In situations where the exact

information on ACH was missing, a situation with no ventilation

was coded as 0.3 ACH, natural ventilation as 1 ACH and

mechanical ventilation as 3 ACH. When multiple activities were

conducted during a measurement, ART scores were calculated

for each activity and then combined as a time-weighted

summation for the activities making up the measurement period.

The mechanistic model of ART estimates potential exposure in

the breathing zone of the worker (outside any RPE) and the

measurement data that were included in the calibration dataset

were also measured outside the RPE or in the absence of RPE.

Therefore the use of respiratory protective equipment (RPE) was

not included in the calibration.

Modeling different exposure forms

Within the ART mechanistic model the substance emission

potential MF had to be modeled very differently across the

various exposure forms: e.g., for liquids a well defined and

intrinsic property like vapour pressure was relevant, whereas for

powders a less clearly defined and non-intrinsic feature such as

dustiness had to be taken into account.8

Given the different innate properties separate calibrations

were conducted for each of the following forms of exposure:

Vapours: This is the airborne state of a chemical which, if

a sufficiently large amount of liquid were released into a closed

room at normal temperature, would not completely evaporate

but rather would reach equilibrium with its liquid.

Mists: Any airborne liquid aerosol, e.g. water in the form of

steam, fog, or a fine spray.

Dust: Solid particles that are formed by aerosolization of

already existing powders or by abrasion of solid objects. Both

sources of dust were calibrated separately.
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The calibration of three other exposure forms, i.e. gases, fumes

and fibers was outside the applicability domain of ART version

1.0 and therefore outside the scope of this paper.

Statistical methodology

Although a variety of methods for calibrating generic exposure

models like the ART model have been used in the past,

a natural point of departure for the calibration of any model is

to assume the true quantity is proportional to the estimated

quantity. That is:

Exposure ¼ a $ ARTscore (1)

This deterministic model assumed a perfect relationship

between exposure and ART model scores and has the desirable

property that the calibrated model predicts zero exposure exactly

when the dimensionless non-calibrated mechanistic model does.

However, in practice the mechanistic model of ART does not

capture the full heterogeneity of workplace exposures and

therefore an ‘error’ term is introduced (eqn (2)). Although in

principle this error term could be additive, this results in highly

skewed residuals that do not conform to the assumption of

normality required for fitting via least squares regression. Instead

a multiplicative error is proposed that corresponds to exposure

measurements being lognormally distributed:

Exposure ¼ a $ ARTscore $ e3 (2)

Transforming this relationship through taking natural loga-

rithms gives:

ln (exposure) ¼ ln (a) + ln (ART score) + 3 (3)

However, as exposure levels vary between scenarios, between

premises and between workers, random scenario, company and

worker components should also be included resulting in a linear

mixed effect model. Unfortunately, unique codes per worker

were missing for part of the dataset, therefore no random

component for worker could be included in the models.

The linear mixed effects model used for calibration is given in

eqn (4), where Yijk is the exposure level for the kth measurement

within the jth company in the ith scenario. Xijk is the ln-trans-

formed exposure level; ln a is the intercept (natural logarithm of

the slope on the natural scale); di represents the random effect of

the ith scenario, cij represents the random effect of the jth

company in the ith scenario and 3ijk is the residual error term. It is

assumed that di, cij and 3ijk values are normally distributed with

mean equal to zero and variances representing the between-

scenario, between-company, and within-company components

of variance. The companies are nested within scenarios.

ln(Yijk) ¼ Xijk ¼ ln(a) + ln(ARTscore) + di + cij + 3ijk (4)

With this method the relative ART mechanistic model scores

are still proportional to actual exposure levels and importantly

the effects of individual MFs are preserved. For example, the

efficacy of fixed local exhaust ventilation (LEV) at reducing

inhalation exposures has been assessed as 90%8 and with

a proportional relationship between model score and actual

exposure levels this efficacy is applied over the whole range of

model scores. The intercept (ln(a)) represents the estimated

exposure if the ART model score is 1.

Effect of scenario definition and data grouping

Including scenario as a random component of variance will give

insight into the model uncertainty when the model is used to

estimate GM exposure levels at scenario level. Since scenario

definitions are to some extent subjective and could have

substantial impact on the model uncertainty, two different levels

of scenario were defined to investigate its impact.

(1) Broad scenario. A scenario is defined by the main MFs:

activity emission potential, substance emission potential, and

localized controls. Using this definition large scale bagging

operations with and without LEV are two separate scenarios.

Similarly, data from bagging operations of granules and fine

powders belong to different scenarios.

(2) Refined scenario. As above with the addition that data

from different measurement series are assigned to different

scenarios. For example, comparable bagging operations of

granules from two different studies belong to different scenarios.

For measurement results below the LOD, imputed values

based on the maximum likelihood estimation (MLE) procedure

were used. Uniform distributions were estimated per measure-

ment series. For measurements below LOD these distributions

were used to randomly impute values between zero and the LOD.

To fully account for the variance from the imputation, 30

imputations were preformed resulting in 30 datasets. The data

were analysed using SAS Statistical Software (version 9.1.3; SAS

Institute, Cary, NC, USA). Subsequently PROC MIANALYZE

was used to combine the regression results from the multiple

datasets. The process of imputation of values for measurements

below LOD is described in more detail elsewhere.13

Results

The calibration dataset consists of results from 2292 personal

inhalation exposure measurements collected by institutes and

companies in different countries. Table 1 presents the number of

measurements from each country or multinational company per

form of exposure. One percent of the measurements (n¼ 26) were

excluded because the sampling time was less than five minutes.

Furthermore 9% (n ¼ 210) of the measurements were excluded

because more than 50% of the measurements within a measure-

ment series were below the LOD. After applying these exclusion

criteria the dataset had 2056 measurements available, consisting

of 159 abrasion, 847 dust, 528 vapour and 523 mist measure-

ments. In the final dataset fewer than 4% (n ¼ 80) of the

measurements were below the LOD with the highest proportion

among the mist dataset (n ¼ 60). The median sampling time

ranged from 83 (dust) to 238 (abrasive dust) minutes (Table 2).

The calibration datasets consist of very diverse activities with

a broad range of products, localized controls and environmental

circumstances resulting in large standard deviations. Geometric

standard deviations (GSD) between 15 and 22 were found for

dust, vapour and mist exposures, while a smaller GSD of 5 was

found for exposure measurements during abrasion (Table 2).

Within the dataset for abrasion the lowest exposure levels were
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found for copper exposure during grit blasting where paint

containing copper was removed from ships. The highest exposure

levels were found during demolishing activities with a jack-

hammer. Dispensing a pharmaceutical product in a glovebox

resulted in the lowest measured dust exposures, while the highest

dust exposures were measured during the unloading of fine

powder from a ship. The lowest vapour exposures were found

during the collection of quality control samples, with the highest

vapour exposures being measured in the shoe repair industry

during activities involving solvent-based glues. The lowest mist

exposures were measured during pesticide spraying, while the

worker was in a tractor cabin, and the highest exposures

occurred during antifouling paint spraying.

Table 2 also shows the descriptive statistics for the assigned

ART model scores. For abrasive dust and vapour exposure

scenarios the range in measured concentration was comparable

to the range found in the relative ART model scores. For the dust

exposure form the range in measured exposures (4 � 10�7 to 646

mg m�3) was nine orders of magnitude while the range in relative

ART scores (3� 10�5 to 21) was six orders of magnitude. For the

mist exposure form the range in measured concentration was two

orders of magnitude larger than the range in relative ART model

scores.

The ratio of GM measured exposures and the GM from the

uncalibrated ART scores varied by a factor of approximately 1.5

for scenarios reflecting exposure to abrasive dust to a factor of

35 000 for scenarios reflecting exposures to vapour.

Using the detailed scenario level definition generally resulted

in very limited number of companies per scenario. The broader

scenario level definition resulted in a more balanced structure but

nonetheless the number of companies per scenario remained

fairly small. For the measurements reflecting mist exposure the

detailed as well as the broad scenario level definitions resulted in

multiple companies per scenario (Table 2).

The results of the statistical analyses are presented per expo-

sure form in Table 3. Model A represents the model without any

fixed effects while those with ART model scores included as fixed

effects are denoted by Model B. The results of the models are

presented for both the detailed and broad scenario definitions.

As discussed later, the broad scenario definitions were used for

the calibration.

Factually the exponent of the estimated intercept (ln (a))

should be similar to the difference that was found between

measured GM and GM of assigned ART scores (Table 2).

Overall between-scenario components were the largest variance

components, indicating that exposure varies more between than

within scenarios. With the exception of the abrasive dust models,

the models based on detailed scenario level definitions resulted in

higher between-scenario variance compared to models with

broader scenario level definitions as a random component.

For the measurement series reflecting exposure to abrasive

dust, dust and vapours, including the ART model score in the

model (Model B) explained around 60% of the variance that was

found in models with only scenario and company as random

effects. The lowest proportion of variance explained by the ART

model score (30%) was found for exposures to mists. The

reduction in the variance was mainly observed for the between

scenario variance.

The model uncertainty can be expressed as an uncertainty

cfactor (UF) and may be defined as follows:

UF ¼ e
1:6449

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

between-scenario

q
. In the ART Bayesian model

this factor will be interpreted as providing a 90% probability that

the true GM exposure level is within that factor of the model

estimate; e.g., an UF of 5 represents a 90% probability that the

true GM of a scenario is within a factor 5 of the model exposure

estimate. The UFs found for the models with the broad scenario

definitions were 2.1, 4.4, 5.0 and 5.8 for the exposure forms

abrasive dust, dust, vapour and mist respectively.

The results of model B with the broad scenario descriptions,

for each form of exposure, are shown in Fig. 1, illustrating that

the variation in GM exposure and GM ART scores was

approximately equal for all forms of exposure. The 90% confi-

dence upper limit is derived by multiplying the estimated GM by

the respective UF, while the 90% confidence lower limit is derived

by dividing the estimated GM by the respective UF.

Fig. 2 shows the residuals of the relation between measured

GM exposure minus estimated GM exposure per broad scenario

against the ART score. Fig. 2 provides no evidence for a positive

or negative correlation between residuals and ART scores,

indicating that the relationship between log-transformed ART

model scores and log-transformed measured concentrations is

proportional.

Discussion

This paper presents the results of the calibration of the mecha-

nistic ART model that is used to estimate GM exposure levels for

many exposure scenarios. The calibration of the model with

measured exposure data enabled the ART mechanistic model to

estimate exposure levels (in mg m�3) rather than relative scores for

different exposure forms (abrasive dust, dust, vapour and mist).

Furthermore the calibration provided insight into the uncertainty

of the estimated GM for specific scenarios. This uncertainty is

expressed as an UF (UF ¼ e
1:6449

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

between-scenario

q
) and this

Table 1 Overview of the number of measurements per exposure form before and after selections

UK Netherlands Germany GSK Shell
Total
collected

After excluding
measurements <5 min duration

After excluding
50% <LOD

Total in
calibration

Dust (abrasive) 35 100 27 0 0 162 162 158 158
Dust 32 409 127 316 0 884 869 847 847
Vapour 19 177 76 0 264 536 536 528 528
Mist 425 245 40 0 0 710 699 523 523
Total 511 931 270 316 264 2292 2266 2056 2056
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UF is used to calculate confidence limits around the estimated

GM exposure. The analyses indicate that the model could esti-

mate with 90% confidence GM exposure levels within a factor

between two and six of the measured GM exposure levels

(depending upon the form of exposure).

The influence of different scenario definitions on the calibra-

tion results was investigated by running linear mixed effect

models separately with two different scenario definitions

included as random effect. The broader definition of scenarios

resulted in slightly less between-scenario variance and more

between company variance. The numbers of measurements from

different companies within the detailed scenario level definitions

were limited, resulting in unbalanced data. Table 2 shows that

the number of companies per scenario is higher within the

broader scenario level definitions. For the purpose of REACH,

the ART is intended to be used to estimate exposures at this

broad level of scenarios. Therefore, the results of the broad

scenario definition were used to quantify the relative scores from

the mechanistic model of ART. By only fitting the intercept and

keeping the regression coefficient at 1, a proportional relation

between the measurement data and the model scores is assumed.

The residuals presented in Fig. 2 did not provide evidence for any

trend between the model residuals and log-transformed ART

scores suggesting that the assumption of a proportional rela-

tionship between the log-transformed ART score and log-

transformed measurement concentrations is justified.

Exposure measurements with values below the LOD can be

treated in several ways. Traditionally half the value of the LOD is

adopted as the value.14 At present, more sophisticated methods

exist which take into account the variability within these

measurements.13 Especially for linear mixed models that are used

to estimate exposure and models that are used to get insight into

the uncertainty and variability of exposure estimates, these more

sophisticated methods are preferred. Because of the small

number of measurements below the LOD, as shown in Table 2,

the models based on imputations differed only slightly from

models using traditional methods (results not shown).

Several studies found time trends in a range of exposures, with

decreasing exposures over time.15–21 A generic exposure assess-

ment tool like the ART does not take into account these trends in

exposure levels over time, although it could be assumed that most

of the determinants causing these reduction are described in the

MFs of the mechanistic model. This assumption is illustrated by

Vermeulen and colleagues (2000) who reported that modeling the

effectiveness of local control measures explained almost entirely

the observed drop in inhalable exposure levels. However, it is

warranted to update the calibration in the future in order to take

these time trends into account.

Different exposure levels between countries were reported by

de Vocht and colleagues.22 They reported that a two- to threefold

difference in exposure levels was presumably caused by less up-

to-date technology and local control measures. The generic

mechanistic model of the ART is not able to fully take into

account this technology driven variation in exposures and

therefore these differences are expressed in the UF. The resulting

variability is accounted for in the Bayesian model. However, the

dataset used for the calibration contains mainly measurements

from western-Europe. Reasonably, technology driven differences

in exposure levels could be seen between companies in the sameT
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region but are assumed to be larger between different regions of

Europe and therefore the influence of this effect is probably

underestimated by the current UF.

The calibration was performed on a comprehensive set of

exposure measurements. Although the collated exposure data

cover a broad range of exposure situations measured at many

sites, not all the possible ART MF combinations were included

in the dataset. Ideally more exposure data from more companies

including more MF combinations would have been available for

calibration.

Input parameter uncertainty may impact on the exposure

model; i.e., the percentage of a substance in a product may be

reported in the material safety data sheet (MSDS) in a range such

as 25–50%. Secondly, measurement error such as differences in

sample device or laboratory analyses could also be a source of

uncertainty. However, measurement error is considered to be

relatively unimportant23 compared to the last and more funda-

mental type of uncertainty, which is the model uncertainty, as all

models are never a perfect representation of reality.24 The

mechanistic model of ART does not consider all possible deter-

minants of exposure and the scaling or scoring of individual

determinants (i.e. MFs) was based upon scientific evidence and

expert judgment. Hence, the scaling may not be a perfect

reflection of reality and should be reconsidered if more evidence

becomes available. The overall uncertainty found in the cali-

bration incorporates these three types of uncertainty and was

used to determine the confidence limits around the estimated

GM. The overall uncertainty can be reduced in the future by

collecting more exposure data with all the relevant contextual

information available or with better underpinning of the scaling

of the ART MFs. Therefore more experimental exposure studies

providing insight into specific processes (e.g. dustiness and effi-

cacy of localized controls) are to be welcomed.

The total percentage of explained variance is 61% for the

abrasion exposure form, 64% for dust, 60% for vapours and 30%

for mist. ART scores were assigned per measurement and

afterwards measurements with, to a large extent, similar expo-

sure determinants were grouped to scenario level. Consequently

within a scenario, measurements with more or less similar ART

scores were grouped. Differences in model scores were therefore

found mainly between scenarios and only to a limited extent

within scenarios. Consequently, the ART scores mostly

explained between-scenario variability (92% for the abrasion

exposure form, 87% for dust, 85% for vapours and 67% for mist).

Although a substantial part of the total variance is explained by

the mechanistic model, the non-negligible unexplained variance

ranged from 1.4 to 5.4 on log transformed scale. This proportion

of variance reflects the model uncertainty and the exposure

variability found between and within companies.

With this calibration the mechanistic model of ART was able

with 90% confidence to estimate GM exposures of a scenario to

lie within a factor between two and six of the measured GM

(depending upon the form of exposure). When estimating

exposures for single companies or for an individual worker not

only the model uncertainty found in this calibration (expressed as

UF) but also the variability in exposures found between

companies, between workers and within workers should be taken

into account. The methods used to estimate the variability in

exposures between companies, between workers and within

workers are described elsewhere.5

The relatively low explained variance for mist can possibly be

explained by the fact that most of the data were spray application

of liquids. During spraying several determinants such as spray

equipment, spray pressure, nozzle diameter are likely to influence

exposure levels.25–29 For a generic exposure model such as ART,

it is not feasible to include very specific determinants such as

these for the spraying scenarios. In addition, these determinants

are difficult to quantify and are therefore not included in the

mechanistic model. Also a substantial part of the measurements

within the exposure form mist were conducted outdoors.

Determinants like wind direction and wind speed are known to

influence exposure (variability)30 and are not part of the ART

mechanistic model.

Comparing the capability of two different exposure estimation

models (i.e. Stoffenmanager and ART) to explain variability in

exposure concentration can only be done properly when the same

dataset is being used. Therefore measurements that were used in

the calibration of Stoffenmanager9,10 were selected from the ART

Table 3 Results of the mixed effect regression models for the calibration of the ART mechanistic model for the different exposure forms

Exposure form Model ln a s2
bs

c (95% CI) s2
bc

d(95% CI) s2
residual

e(95% CI) s2
total

Dust (abrasive) Aa-refined 0.91 1.66 (1.07–2.93) 0.07 (0.008 to 4.41 � 1010) 0.72 (0.54–1.00) 2.45
A-broad 1.39 2.56 (1.40–6.09) 0.23 (0.09 to 1.04) 0.70 (0.54–0.96) 3.49
Bb-refined 0.43 0.39 (0.19–1.18) 0.30 (0.13 to 1.38) 0.57 (0.43–0.77) 1.26
B-broad 0.48 0.21 (0.06–4.43) 0.58 (0.34 to 1.18) 0.57 (0.43–0.78) 1.36

Dust A-refined �0.05 6.30 (4.73–7.87) 0 2.07 (1.84–2.31) 8.37
A-broad �0.55 6.03 (3.37–8.70) 1.35 (0.87 to 1.82) 2.37 (2.10–2.65) 9.75
B-refined 2.98 1.13 (0.65–1.60) 0.12 (�0.12 to 0.36) 2.17 (1.92–2.41) 3.42
B-broad 3.01 0.81 (0.25–1.36) 0.38 (0.12 to 0.64) 2.29 (2.03–2.55) 3.48

Vapour A-refined 0.10 7.65 (5.55–9.75) 0.47 (0.11 to 0.84) 1.18 (1.00–1.36) 9.30
A-broad 0.95 6.35 (2.97–9.72) 1.34 (0.88 to 1.81) 1.18 (1.00–1.36) 8.87
B-refined 10.57 0.84 (0.18–1.49) 1.19 (0.59 to 1.79) 1.24 (1.05–1.43) 3.27
B-broad 10.56 0.95 (0.11–1.78) 1.41 (0.92 to 1.90) 1.23 (1.05–1.42) 3.59

Mist A-refined �3.43 4.23 (1.63–6.83) 1.38 (0.67 to 2.09) 2.59 (2.01–3.18) 8.20
A-broad �3.67 3.41 (0.92–5.89) 1.47 (0.81 to 2.12) 2.83 (2.26–3.40) 7.71
B-refined 10.15 1.18 (0.31–2.05) 1.58 (0.84 to 2.32) 2.64 (2.05–3.23) 5.40
B-broad 10.23 1.14 (0.17–2.10) 1.65 (0.94 to 2.36) 2.62 (2.06–3.18) 5.41

a Model A: ln(Yijk) ¼ Xijk ¼ ln(a) + di + cij + 3ijk. b Model B: ln(Yijk) ¼ Xijk ¼ ln(a) + ln(ART) + di + cij + 3ijk. c s2
bs: between-scenario component of

variance. d s2
bc: between-company component of variance. e s2

residual: residual error component of variance.
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calibration dataset. For the data reflecting exposure to abrasive

dust (n¼ 85) the mechanistic model of ART explained 66% of the

total variance while Stoffenmanager explained 47%. Similar

results were found for the three other exposure forms. The

percentage of variance explained by the ART mechanistic model

was 66%, 50% and 50% for respectively dust (n ¼ 385), vapour

(n ¼ 164) and mist (n ¼ 199) scenarios. For the same scenarios

Stoffenmanager explained 51%, 40% and 43% of the total variance.

Overall the ART mechanistic model explained approximately 10%

more variance than Stoffenmanager. The improved performance

of the ART mechanistic model is most likely due to a more

structured characterization of activity emission potential and more

precise categories for MFs localised controls and dispersion.

The current modeling framework of lower and higher tier

models is useful and necessary to evaluate large amounts of

chemicals. However, the exposure models clearly need further

development and await the necessary validation research.

Surprisingly, only a few validation studies focusing on generic

models for inhalation exposure are currently available.10,31–35 The

exposure modeling science will only evolve when more of such

comparisons with good quality data become available and thus

this field would benefit substantially from the sharing of exposure

data.36

In conclusion, the mechanistic model of ART was calibrated

using broad scenario level definitions and included company as

a random component, where the random scenario component

was used as an estimate of model uncertainty. Data were used to

calibrate the intercept to translate the dimensionless model

outcome into an exposure estimate in mg m�3. The proportional

relationship between relative model scores and measured expo-

sures was maintained.

This paper showed that the mechanistic model of ART was

able to estimate with 90% confidence GM exposures of a scenario

to lie within a factor between two and six of the measured GM

exposure (depending upon the form of exposure). In the future,

evaluation studies investigating the applicability, accuracy and

reliability of the mechanistic model estimates are necessary to

further test the usability of this exposure assessment tool.

Fig. 1 Visual depiction of the relationship between model scores and actual exposure, per broad scenario definition, for the different forms of exposure.
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