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Objectives: Assessment of worker’s exposure is becoming increasingly critical in the pharmaceutical

industry as drugs of higher potency are being manufactured. The batch nature of operations often

makes it difficult to obtain sufficient numbers of exposure measurements and occupational exposure

models may be useful tools in the exposure assessment process. This paper aims to describe further

refinement and validation of an existing deterministic occupational exposure model to predict airborne

exposure of workers in this industry. Methods: Workplace exposure assessment data (n ¼ 381)

containing all the contextual information required for the exposure model were collated from

a multinational pharmaceutical company. The measured exposure levels ranged from 5 � 10�7 to 200

mg m�3 for largely task based samples, and included a range of handling activities, local control

measures and abnormal operating conditions. Model input parameters for local control measures and

handling activities were refined to reflect pharmaceutical situations. Results: The refined exposure

model resulted in good correlations between the log-transformed model predictions and the actual

measured data for the overall dataset (rs¼ 0.61, n¼ 381, p < 0.001) and at scenario level (rs¼ 0.69, n¼
48, p < 0.001). The model overestimated scenarios with measured exposure levels <0.1 mg m�3 (rs ¼
0.69, bias¼ 0.71, n¼ 46, p < 0.001), and underestimated scenarios with higher measured concentrations

(>0.1 mg m�3) (rs ¼ 0.59, bias ¼ �4.9, n ¼ 33, p < 0.001). Including information on the refined sub-

parameters improved the correlations, suggesting the uncertainty in the model parameters was partly

responsible for the bias. Conclusion: Further scientific data from the pharmaceutical industry on model

input parameters, particularly on the efficacy of local control measures, may help improve the accuracy

of the model predictions. The refined exposure model appears to be a useful exposure assessment

screening tool for the pharmaceutical industry.

Introduction

Many pharmaceutical manufacturing processes involve powder

technologies and the control of solid aerosol emissions from

these processes into the surrounding work environment poses an

ongoing challenge for the occupational hygienist working in this

industry.1 In recent years the pharmaceutical industry has been

developing more selective drugs of increasing potency. Due to
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bInstitute of Occupational Medicine (IOM), Research Park North,
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Environmental impact

This paper describes the refinement and validation of an occupational exposure model, based on the determinants of exposure, for

predicting inhalation exposures in the pharmaceutical environment. The methodology explains the source–receptor approach that

incorporates parameters related to the contaminant, work process, workplace control measures and dispersion of contaminant into

the workplace, which improves understanding of exposure assessment. It also describes the refinement of model parameters related

to local control measures and handling activities and highlights the importance of collecting sufficient contextual information on the

determinants of exposure. Results show that inclusion of this information improved correlations between model predictions and

measurement data. The model is likely to have useful applications in selecting high risk exposure scenarios that warrant further

investigation or to screen low risk exposure scenarios.
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limited toxicity data for early life cycle pharmaceutical products,

it is often difficult to specify appropriate in-house occupational

exposure limits (OELs), and this has led to the use of control

banding or performance-based exposure control approaches for

setting exposure limits and managing worker exposure.2 Once

sufficient toxicological data become available pharmaceutical

companies typically develop in-house exposure limits for their

products. Exposure measurements are fundamental to the risk

assessment process, however, due to the batch nature of phar-

maceutical manufacturing, it is often difficult to obtain a suffi-

cient number of measurements to adequately characterise worker

exposure and verify controls.3 Furthermore the collection and

subsequent analysis of exposure measurements can be costly and

labour intensive.

Modelling techniques, based on the underlying determinants

of exposure,4 provide an alternative or complementary approach

to exposure measurements. There are many potential applica-

tions for exposure models, including assessing historical expo-

sures for epidemiological studies, prediction of exposures before

a process has been commissioned and using Bayesian statistics to

combine modelled and measured exposures.5,6 Importantly

exposure models can reduce the number of occupational hygiene

samples that are required to adequately characterise exposure,

enabling more cost-effective targeted exposure assessment

strategies.

The recent introduction of the Registration, Evaluation,

Authorisation and restriction of Chemicals (REACH) Regula-

tions places an additional requirement for employers to collect

exposure data for the compilation of Exposure Scenarios as part

of the Chemical Safety Assessments (CSA). Although chemicals

used in finished pharmaceutical products (e.g. drug actives and

excipients) are exempt from the requirements of REACH (as per

Article 2 (5) (a) of the Regulations), exposure models developed

for REACH may be useful in the pharmaceutical industry for

risk management, as required by the Chemical Agents Directive

98/24/EC and the relevant national legislation.

Several generic or first tier exposure models are available

including ECETOC TRA,7 the Estimation and Assessment of

Substance Exposure (EASE),8 the Easy-to-use workplace control

scheme for hazardous substances (EMKG)9 and Stoffenman-

ager.10 While models have been validated to differing extents for

use with specific chemicals and industries,11–14 there have been

few studies that have validated their use to predict exposures to

active pharmaceutical ingredients (APIs). Many of the local

control measures and handling activity parameter classifications

within these models are too vague to generate precise estimates of

exposure for the pharmaceutical industry. Furthermore few

models are capable of assessing worker behavioural effects on

exposure, and this may be a significant exposure determinant.15

A deterministic exposure model developed by Cherrie and

coworkers16,17 has been validated to a limited extent for pre-

dicting inhalation exposures to API’s.18 The model algorithm

incorporates a parameter to consider the potential effect of

worker behaviour on exposure and also allows consideration of

the proportion of API in the material being handled. The

objective of this study was to refine this exposure model to

accurately predict inhalation exposures to pharmaceutical APIs.

Model input parameters for local control measures and handling

activities were refined to incorporate manufacturing and control

technologies relevant to exposure scenarios found in the phar-

maceutical industry. A broad range of exposure assessments

from scenarios in the pharmaceutical industry were then used to

validate the refined version of the exposure model.

Methods

Exposure algorithm

The exposure estimates were calculated using a deterministic

model, which has been extensively described elsewhere.16–18 The

model uses a source–receptor approach that incorporates

parameters related to the contaminant, the work process,

workplace control measures and dispersion of contaminant into

the workplace. Exposure is estimated by assessing each sub-task

individually and combining them to produce a time-weighted

average estimate of exposure for the complete work task or

scenario.

The exposure algorithm is presented below:

C ¼ (3ih(1 � hlv)ta + 3p) � (1 � hppe)dgv

where 3i ¼ intrinsic emission of the contaminant (dustiness �
proportion of API in the material), h¼manner in which the solid

is handled (handling activity energy � quantity of the material

handled � worker behaviour), 1 � hlv ¼ the efficiency of local

controls at reducing exposure (efficiency of local controls �
adjustment factor), ta¼ the fractional time the source was active,

3p ¼ passive or fugitive emission, 1 � hppe ¼ the efficiency of

respiratory protection, dgv ¼ the effect of general ventilation i.e.

a combination of room size and the no. of air changes per hour.†

Model parameters are divided into classes and numerical

scores are assigned to the classes based on a logarithmic scale.

Intrinsic and passive emissions have concentration units (e.g. mg

m�3) and the other parameters in the equation are dimensionless.

As the model assesses exposure to dust, the intrinsic emission

(3i) parameter takes into account the dustiness of the material

and the proportion of API in the dust. Few quantitative data are

available on the dustiness characteristics of the powders being

handled in the pharmaceutical industry and for the purpose of

this study all materials were assigned the same model score. It is

assumed that the proportion of API in the bulk product is the

same as is found in the aerosol,18 and the proportion of API in

the material was multiplied by the intrinsic emission.

Collation of exposure data

GlaxoSmithKline (GSK) has over eighty pharmaceutical and

consumer healthcare manufacturing facilities worldwide,

involving approximately 2400 APIs. For this study occupational

hygiene survey reports and survey monitoring record sheets were

abstracted from GSK archives. To ensure that the descriptive

information was sufficient for the model parameters, survey

reports were analysed for data quality and those not containing

information on all model parameters were rejected. To reduce the

† The terminology used here is the same as originally reported for the
source–receptor algorithm17 and slightly different to that used when the
algorithm was developed for Stoffenmanager.19
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D
ow

nl
oa

de
d 

by
 N

U
I 

G
al

w
ay

 o
n 

24
 J

an
ua

ry
 2

01
1

Pu
bl

is
he

d 
on

 2
4 

Ja
nu

ar
y 

20
11

 o
n 

ht
tp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/C

0E
M

00
52

3A
View Online

http://dx.doi.org/10.1039/C0EM00523A


influence of the measurement error, measurements with

a sampling duration of less than 5 minutes were excluded. Where

necessary to help clarify any ambiguities, further enquiries were

made with site occupational hygienists. Where available, other

contextual information and photographs of the worker and the

processes were obtained. After checking for data quality, expo-

sure data (n ¼ 381) collected over the period 2002–2008 from

GSK primary (n ¼ 77) and secondary manufacturing (n ¼ 281)

and from consumer healthcare sites (n ¼ 23) located across

Europe and Asia were included in this study.

The exposure scenarios in the study included a wide range of

handling activities and control technologies used in the phar-

maceutical industry, and are considered to be representatives of

exposure scenarios found in this sector. All of the exposure data

were collected by experienced occupational hygienists or occu-

pational hygiene technicians. Exposure samples were collected

and analysed using GSK validated methods, and included

a range of analytical data for various types of APIs (n ¼ 18;

names confidential), and gravimetric analysis results for total

inhalable dust (TID) (n ¼ 74). For measured results less than the

limit of detection (LOD) of the analytical method, the substitu-

tion method of LOD/2 was employed (n ¼ 38).20 The majority of

the measurements were task-based with a median sampling time

of 30 min (range 5–240 min). In cases where sampling duration

was not reported (n ¼ 10), information on the relative durations

of individual tasks were obtained by consultations with the site

occupational hygienists. Exposure was estimated by assessing

each sub-task within a scenario, and combining them to produce

a time-weighted average estimate of exposure for the exposure

scenario. Thus it is the relative duration of the ‘n’ subtasks in the

exposure scenario that is of importance and not the sample

duration. Where identified as being required by risk assessment,

workers wore respiratory protective equipment (RPE); however,

as all exposure samples were collected in their breathing zone

(e.g. on their lapel) outside the RPE, the protection afforded by

the RPE was not taken into account when using the model to

predict exposure, although this can be incorporated.

Prior to the refinement of the model parameters the repro-

ducibility of the exposure model predictions was investigated. A

selection of exposure scenarios (n ¼ 27) from the dataset were

assessed by three independent assessors (JC, AS and PMD); the

results were found to be comparable between assessors, with an

excellent correlation between the log-transformed estimates and

the log-transformed arithmetic means from the corresponding

scenario (rs ¼ 0.88, 0.93 and 0.97).18

Model parameter refinement

Further refinements to the model input parameters were necessary

to include handling activities and local control measures that are

used in the pharmaceutical industry. In order to make such

refinements it was first necessary to compile a list of handling

activities and local control measures that occur within the

industry. Information on the efficacy of the local control measures

in reducing inhalation exposures was also collected. This was done

by reviewing the literature, reviewing GSK occupational exposure

assessment reports, engineering design kits (EDKs), and consul-

ting with occupational hygienists, professional organisations and

consultants working in the pharmaceutical industry (e.g.

Safebridge and International Society for Pharmaceutical Engi-

neering). Further details of the refined local control measures,

handling activity parameters, sub-parameters and assigned scores

are given in the following sections.

Handling activity parameter

The handling activity parameter consists of three sub-parameters

related to the energy input to the material during the task,

quantity of the material handled per hour and the influence of

worker behaviour on the task.

All new handling activities were subjectively assigned to

a handling activity energy class, and scored on a logarithmic

scale according to the level of energy that was considered to be

transferred to the material during the activity. For example,

sweeping product on the floor would produce a higher handling

component (h ¼ 10) than careful weighing of a powder in

a weighing cabinet (h ¼ 0.001). Table 1 shows the handling

activity energy classes, corresponding model scores and example

handling activities per class.

The sub-parameter related to the quantity of the material

handled was categorised as tonne per h, kg h�1, g h�1 or mg h�1

and scored on the logarithmic scale as 3, 1, 0.3 and 0.1 respec-

tively.

The sub-parameter related to the influence of worker behav-

iour on the task was categorised as: exposure very prone to

worker behaviour effects, exposure prone to worker behaviour

effects, and exposure not prone to worker behaviour effects and

scored using the logarithmic scale as presented in Table 2. For

example the activity of sweeping a floor is very prone to worker

behaviour, while automated processes are not affected by worker

behaviour. Using the contextual information provided in the

occupational hygiene survey report, the worker behaviour sub-

parameter was adjusted to take account of any administrative

measures, such as training or supervision, relevant to the task.

The classifications of worker behaviour are quite subjective and

in some cases handling activities may be more or less prone to

worker behaviour than is presented in Table 2; hence if the

information in the monitoring record sheet suggested otherwise,

this would over-ride the general classification presented and the

appropriate worker behaviour subclass was applied.

Local control measure parameter

The local control measure parameter consists of two sub-

parameters related to: the efficacy of the local control measure,

and an adjustment factor to take account of the condition and/or

the performance of the control at the time of the exposure

assessment. Using the GSK performance based occupational

exposure limit (PB-OEL) approach to exposure control and

information collected from professional experts working within

the pharmaceutical industry, the efficacy of the local control

measures was scored. An overview of the GSK control banding

approach incorporating occupational hazard categories (OHC)

and exposure control approaches (ECA), a list of local control

measures and assigned model scores used in the study are pre-

sented in Table 3.

Using the contextual information recorded in the occupational

hygiene survey reports the local control adjustment factor was

This journal is ª The Royal Society of Chemistry 2011 J. Environ. Monit.
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scored using the following categorisation: poorer than expected

(3), typical of the control (1), with some additional control (0.3),

or with good additional control (0.1).

Data processing

All of the exposure information collected was summarised and

model scores were assigned to the model parameters in Microsoft

Excel and analysed using SAS statistical software (version 9.1.3;

SAS Institute, Cary, NC). Measured exposure concentration and

model predictions were found to approximate to log-normal

distributions and descriptive statistics are presented both as

arithmetic and geometric mean levels with geometric standard

deviation and range of the exposure distribution.

Spearman rank correlation coefficients were calculated to

study the relationship between the model predictions and the

actual measurement data and between the geometric mean (GM)

model predictions and the GM of the measurement data when

grouped to scenario level. Model bias i.e. the ratio of the

geometric mean (GM) of the model predictions to the GM of the

measured data was determined to assess accuracy of the model

exposure predictions.

Results

Data were obtained for 381 exposure measurements across

primary and secondary pharmaceutical manufacturing and

healthcare sites. Exposure measurements and information on

potential exposure determinants were collated. A summary of the

descriptive statistics of the measurement data is presented in

Table 4. The dataset included a wide range of exposure

measurements. The lowest measured exposure level was found

during a task involving dispensing an API in a negative pressure

glove-box (5� 10�7 mg m�3) while the highest exposure level was

found during a sack tipping operation (200 mg m�3) in a down-

ward laminar flow booth (the worker wore RPE). It is important

to note that this measurement with the high exposure levels

involved excipients and was based on a short (8 min) task based

measurement for TID.

The Spearmans correlation (rs) between model predictions and

the measurement data appeared to be good (rs ¼ 0.61, n ¼ 381, p

< 0.001). Fig. 1 presents a scatter plot of the predicted exposure

levels in relation to the measured exposure levels on a log scale.

The figure shows a good degree of correlation with the predicted–

measured data points falling close to the 1 : 1 agreement line and

over half of the points are within one order of magnitude of the

measured values.

The degree of accuracy of the model predictions or model bias

was assessed using the ratio of the GM estimate to the GM of the

measured value. A bias value of �3.2 indicates that the model

underestimated exposure for this particular dataset.

Exposure measurements (n ¼ 381) for the same or similar

tasks, and collected from the same site were grouped to exposure

scenarios. In order to calculate a GM exposure level per exposure

scenario (n ¼ 48), each scenario had a minimum of 3 measure-

ments of exposure available (range 3–22). The mean exposure

levels of the scenario groups ranged from 0.000003 to 64 mg m�3.

18 scenarios had an average exposure level of less than 0.1 mg

m�3, 12 had average exposure levels between 0.1 and 1 mg m�3, 14

scenarios had average exposure levels between 1 and 10 mg m�3

and 4 scenarios had average exposure levels above 10 mg m�3.

The correlation between model predictions and the GM of

measurement data per scenario was also good (rs ¼ 0.69, n ¼ 48,

p < 0.001). There was no clear trend of an improved correlation

Table 1 Handling activity energy classes, corresponding model scores and examples of handling activities per class

Handling activity energy
classes: model scores Handling activities

10 Sweeping
3 Drying Milling

Material transfers (including vacuum) Charging
Filling materials (>0.5 m drop height) Coating
Blending Cleaning with blowing tool/hose
Mixing

1 Tableting/compression Brushing
De-duster Wash objects with water or power kettle (not power hose)
Sieving/grating De-lumping (>10 kg)
Encapsulation Disposal of filters, etc. with substantial contamination

0.3 Vibrating table Handling of contaminated objects
0.1 Manipulate/poking of wand/hose Tablet sorting machine

Filling materials (drop heights <0.5 m) Packaging (including blistering and de-blistering)
Hand sieving Disassemble machine
Weighing and breaking up lumps (<10 kg) Handling/disposal of objects with limited contamination
Test hardness (crush) Handling (connections/disconnections)

big-bag/IBC/drum/keg
0.03 Handling (opening/closing) of bags/liners/boxes Short transfer of materials (<1 kg) e.g. sampling,

filling vials, probe samples
Add liquid to powder Seal and de-dock

0.01 Careful sampling for QC Vacuum cleaning
Fixing problems/hand cleaning inside machine Sticking packs together
Manual connections of liner/bottle bag Moving containers/lids/bins
Handling/checking capsules

0.003 Handling of small potentially contaminated objects Wet wiping
0.001 Weighing bottle bag Count packages

Careful laboratory weighing

J. Environ. Monit. This journal is ª The Royal Society of Chemistry 2011
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between the mean measured and predicted exposures with an

increasing number of measurements per scenario group

(Table 5). Fig. 2 shows a scatter plot of the predicted exposure

levels in relation to the mean measured exposure for each

scenario group.

The model tends to overestimate exposure at lower exposure

concentrations (<0.1 mg m�3) and to underestimate exposure at

the higher exposures concentrations (>0.1 mg m�3). Limiting the

correlation analysis to data above 0.1 mg m�3 caused a decrease

in the association per exposure scenario (rs¼ 0.59, bias¼�4.9, n¼
33, p < 0.001), and limiting the analysis to data below 0.1 mg

m�3 resulted in a similar correlation coefficient per scenario (rs

¼ 0.69, bias ¼ 0.7, n ¼ 19, p < 0.001). There did not appear

to be any trends in particular pharmaceutical products (API/

TID), classes of handling activities or local controls resulting

in improved correlations.

The availability of accurate information on many of the model

parameters significantly improved model exposure predictions

when compared to omitting the individual parameters from the

algorithm and assigning the mean score for all of the other

parameters. Including information on the energy input during

the handling activity, the quantity of the material handled, and

worker behaviour increased the Spearmans correlation by 19%,

12% and 4% respectively. Similarly, including information on

local control measures and the local control adjustment factors

increased the correlation by 12% and 5% respectively. It was also

noted that inputting information on the proportion of API in the

material increased the correlation by 1%. Table 6 shows the effect

of omitting information on individual model sub-parameters on

the correlation for the overall dataset.

Discussion and conclusion

This paper presents the refinement of an existing exposure model

for use within the pharmaceutical industry. The handling activity

and local control measure model parameters were refined to

reflect work tasks and control technologies used within the

pharmaceutical manufacturing and healthcare. The refined

model was then validated using a dataset collected from within

the pharmaceutical industry. The refined exposure model resul-

ted in good correlations between the model predictions and the

measured data for the overall dataset (rs ¼ 0.61, n ¼ 381, p <

0.001) and at scenario level (rs ¼ 0.69, n ¼ 48, p < 0.001).

The correlation coefficient (rs ¼ 0.69) between model predic-

tions and the mean measured exposure levels at scenario level is

slightly lower than that found when using the unrefined exposure

algorithm for a smaller pharmaceutical dataset (rs ¼ 0.88–0.97

and n ¼ 278).18 This is most likely due to the fact that in the

previous study the dataset included greater number of

measurements per scenario, with on average eleven measure-

ments per scenario compared with on average six measurements

per scenario in this study. Using fewer measurement values to

assess the accuracy and precision of the model exposure predic-

tions compared to mean exposure levels per scenario ignores the

fact that the individual measured exposure levels are likely to

represent a point in an exposure distribution.

The correlation coefficient for the overall dataset (rs ¼ 0.61)

reported in this study is within the range of the correlation values

obtained using the original unrefined exposure algorithm forT
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non-pharmaceutical agents such as asbestos, toluene, man-made

mineral fibre, respirable dust and styrene (rs ¼ 0–0.93).17

Correlation coefficients are also comparable to the results

reported for other exposure models that were developed for

specific industries. For example, results are comparable to those

obtained when modelling dust exposures in saw mills (rs ¼ 0.70–

0.79),21 and slightly higher than those reported for cotton dust,

endotoxin (rs ¼ 0.58) and asphalt paving (rs ¼ 0.28).22,23 Corre-

lation coefficients are also similar to those reported for Stoffen-

manager (rs ¼ 0.2–0.69), a generic model which has been

validated as a first tier exposure assessment tool for REACH.24

Results from this study indicate that exposure models developed

for specific scenarios or industries are more accurate than generic

first tier models; however, it is acknowledged that when devel-

oping a first tier exposure model, there is generally a compromise

between accuracy of the model predictions and broadness of the

applicability domain.

The availability of accurate information on model parameters

such as handling activities and local control measures clearly

improved exposure model predictions (Table 6). Including

information on refined model sub-parameters of handling

activity energy, quantity of the material handled, and worker

behaviour increased the correlation coefficient by 19%, 12% and

4% respectively. Including information on local control measures

and the local control adjustment factors was found to increase

the model correlation coefficient by 12% and 5% respectively and

including information on the proportion of API in the material

increased the correlation coefficient by 1%. This highlights the

importance of both handling activities and local control

measures as exposure determinants for the pharmaceutical

industry and further emphasises the importance of collecting

comprehensive contextual information specific to each exposure

assessment to enable more accurate model predictions.

The model tends to overestimate exposure at lower exposure

concentrations (<0.1 mg m�3) and to underestimate exposure at

the higher exposures concentrations (>0.1 mg m�3). Limiting the

correlation analysis to data above 0.1 mg m�3 caused a decrease

in the association per exposure scenario (rs¼ 0.59, bias¼�4.9, n¼
33, p < 0.001), and limiting the analysis to data below 0.1 mg

m�3 resulted in a similar correlation coefficient per scenario

(rs ¼ 0.69, bias ¼ 0.7, n ¼ 19, p < 0.001).

Results from this study show that the exposure model tends to

overestimate exposure scenarios with measured exposure levels

<0.1 mg m�3 (rs ¼ 0.69, bias ¼ 0.7, n ¼ 19, p < 0.001), and

Table 3 GSK control banding approach detailing OHC, performance band and ECA categories, with local control measure options and model scores

OHC
Performance
band/mg m�3 ECA Local control measures Model scores

1 >1000 # 5000 Risk assessment A No special engineering containment is required, general
room ventilation

1

2 >100 # 1000 B Local exhaust ventilation 0.1
Partial enclosures
Downward laminar flow booths
Solids transfer using standard docking station or using

slot LEV and transfer sock
3 >10 # 100 C Downward laminar flow booths (fitted with barriers or

shower curtains)
0.01

Containment with extraction
Enclosed material transfer systems (e.g. split butterfly

valves, flexible liners or inflatable heads)
Vacuum transfers
Shrouds

4 >1 # 10 D Slot LEV and transfer sock 0.001
Enclosed processes
Single chamber glove boxes
Contained or Rapid Access Port (RAP)

5 #1 E Multiple compartment glove boxes 0.001
Continuous liner systems in glove boxes
Isolators
Enclosed process plus additional containment

Fig. 1 Relationship between the model predictions and the measured

concentrations (mg m�3) for exposure assessments.

Table 4 Descriptive statistics of the measured exposure dataa

N AM/mg m�3 GM/mg m�3 Minimum/mg m�3 Maximum/mg m�3

381 3.1 0.21 0.0000005 200

a N ¼ number of samples; AM ¼ arithmetic mean; GM ¼ geometric
mean.
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underestimate scenarios with measured concentrations >0.1 mg

m�3 (rs¼ 0.59, bias¼�4.9, n¼ 33, p < 0.001). Overall the refined

exposure algorithm underestimated exposure to pharmaceutical

dusts by a factor of 3, which is slightly higher than the bias values

found when using this model for non-pharmaceutical agents

(bias ¼ 0.47–2.86).17 The tendency of the model to overestimate

scenarios with low exposure levels has also been observed in

a previous study with a smaller subset of the current pharma-

ceutical dataset.18 Also, previous studies have shown that the

occupational hygienists tend to overestimate exposure when

using exposure assessment tools.25 In this study the model

assessor was not a GSK occupational hygienist and thus was not

very familiar with the exposure scenarios included in the study. It

is likely that the following could improve the assessors under-

standing of the scenarios and the model correlations with

measurement data: photographs or video clips of the scenario;

provision of training on the identification and classification of

model parameters, especially those requiring subjective assess-

ment; reference material for the relevant industries; and devel-

opment of a user interface for the model.

For all of the other exposure data with exposure levels <0.1 mg

m�3 where the model overestimated exposure, this is probably

related to the classification and scoring of the local control

parameter within the model. In the pharmaceutical industry it is

a common practice to use dual containment systems for handling

activities involving potent APIs, for example glove-boxes fitted

to contained enclosures or down flow booths fitted with full

screens and glove-ports. While the model allows for a local

control adjustment factor, it is only possible to select one specific

local control measure which does not allow the combined effi-

cacy of two local control measures to be assessed. It would be

desirable to further refine the local control measure parameter to

enable the efficacy of two specific local control measures to be

accounted for e.g., vacuum transfers within a down-flow booth.

As there were only a small number of scenarios in the current

dataset with double control systems, it was not possible to

comprehensively test the effect of this proposed adaptation with

the dataset. Furthermore it is possible that the efficacy of indi-

vidual local control measures, such as high specification glove-

boxes may be underestimated by the current scoring system and

increased efficacy values may be warranted. This information is

not available in the open literature and so further expert work-

shops and scientific data are necessary to develop more concise

parameter classifications and to scientifically underpin the

assigned model scores for local control measures. Work being

undertaken in this area includes the development of an exposure

control efficacy library (ECEL)26 for use within the Advanced

REACH tool.

The tendency of the model to underestimate exposure

scenarios with higher measured concentrations may be attributed

to the fact that many of these scenarios involve manual handling

activities with large quantities of material and are very prone to

worker behaviour. One example is a scenario in which bags of

material were manually tipped into an open vessel; the scenario

took place within a downward laminar flow booth and had

measured task-duration exposures ranging from 32–200 mg m�3.

Manual processes, or those where the worker frequently inter-

venes in the process, are prone to the effects of worker behaviour

as they are dependent on the worker adhering to standard

operating procedures and carrying out the tasks in a careful

manner. Such manual processes often result in high exposure

levels; hence the collection of observational information on

worker behaviour and the manner in which manual tasks were

carried out is pertinent. Further refinement of the worker

behaviour parameter and scores is probably needed to provide

more accurate model predictions for scenarios of this kind.

The purpose of this study was to refine an existing exposure

model to predict inhalation exposures of workers in the phar-

maceutical industry. This study builds on previous work18 by

including refinements on model parameters for local control

measures and handling activities specific to the pharmaceutical

and healthcare industry. In total 381 exposure assessments were

collated from across pharmaceutical manufacturing and

Table 5 The correlation coefficients between the model predictions and
the mean measured concentrations with varying number of measure-
ments per scenario group

Minimum no. of measurements per
scenario

No. of
scenarios rs

3 48 0.69
4 38 0.68
5 30 0.76
6 23 0.66
7 17 0.61
8 11 0.50

Fig. 2 Relationship between the GM model predictions and the GM

measured concentrations (mg m�3) per exposure scenario.

Table 6 The correlation coefficients between the model predictions and
the mean measured concentrations when individual model parameters
were omitted

Model parameter omitted rs

Handling activity energy 0.50
Quantity of material handled 0.57
Worker behaviour 0.65
Local controls 0.57
Effectiveness of local controls 0.64
% Active ingredient 0.78
Full model (all parameters) 0.69

This journal is ª The Royal Society of Chemistry 2011 J. Environ. Monit.
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healthcare and were used to validate the refined exposure model.

Good correlations were found between the exposure model

predictions and the measurement data for the overall dataset and

also at scenario level. Model correlations were largely consistent

with those found in previous studies of models developed for

specific industries and were slightly greater than those reported

for generic exposure models. Improved correlations were ach-

ieved by including information on the refined exposure model

parameters. The model has a tendency to overestimate scenarios

with low exposure levels and underestimate scenarios with high

exposure concentration. Further improvements in the model

predictions could be made by refining the local control measure

and handling activity parameters, adjusting model scores and

possibly by gathering additional information specific to the

pharmaceutical industry. In future developments of the model

the present dataset could be used to calibrate the model to

provide more accurate exposure predictions. This study high-

lights the importance of recording contextual information during

the exposure assessment process to enable more accurate expo-

sure predictions to be made. The exposure predictions of this

model should not be used in place of measurement data which

have an important role in the exposure assessment strategy. The

model is likely to have useful applications in selecting high risk

exposure scenarios that warrant further investigation or to screen

low risk exposure scenarios. This work also highlights the most

significant exposure determinants within an exposure scenario

and will allow the assessor to explore how changing the work

situation, for example by introducing local exhaust ventilation,

may alter the exposure. In conclusion, the refined exposure

model appears to provide a useful basis for an exposure assess-

ment tool for the pharmaceutical industry enabling improved

targeting of exposure monitoring strategies.
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