

Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-03-20T10:56:21Z

Some rights reserved. For more information, please see the item record link above.

Title The Evolution of a Kernel-Based Distance Metric for k-NN
Regression

Author(s) Madden, Michael G.; Howley, Tom

Publication
Date 2007

Publication
Information

The Evolution of a Kernel-Based Distance Metric for k-NN
Regression , Tom Howley and Michael G. Madden.
Proceedings of AICS-2007: 18th Irish Conference on Artificial
Intelligence and Cognitive Science, Dublin, August 2007.

Item record http://hdl.handle.net/10379/203

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/

The Evolution of a Kernel-Based Distance Metric for
k-NN Regression

Tom Howley and Michael G. Madden

National University of Ireland, Galway,
thowley@vega.it.nuigalway.ie, michael.madden@nuigalway.ie

Abstract. k-Nearest Neighbours (k-NN) is a well understood and widely-used
approach to classification and regression problems. In many cases, such applica-
tions of k-NN employ the standard Euclidean distance metric for the determina-
tion of the set of nearest neighbours to a particular test data sample. Thispaper
investigates the use of a data-driven evolutionary approach, named KTree, for the
automatic construction of akernel-based distance metric as an alternative to Eu-
clidean distance. The key idea behind this approach is that a different distance
metric is generated for a particular data domain. The performance of k-NN with
the standard Euclidean distance measure is compared with that of k-NN based on
a kernel-based distance metric evolved by KTree. This comparison is based on
experiments on both synthetic and real-world datasets.

1 Introduction

k-Nearest Neighbours (k-NN) is a well understood techniquethat is widely used in
many classification and regression problems [1]. In many applications of k-NN, the Eu-
clidean distance is used to determine thek nearest neighbours to a particular test sample,
the resulting prediction depending directly on the particular set of neighbours chosen.
As noted by Yuet al. [2], the conventional k-NN can perform well with non-linear
problems, but loses its power with some complicated problems, especially when the
sample distribution is arbitrary. However, if an appropriate kernel is chosen to reshape
the distribution of samples, akernelisedk-NN algorithm may improve its performance.
This is an example a kernel-based learning method, in which akernel function is used
to transform the original data into a new feature space. The choice of kernel and as-
sociated kernel parameters is a key step in the application of any kernel method, such
as kernelised k-NN, to a problem. Previous research carriedout by the authors demon-
strated that an evolutionary approach, named KTree, was effective in the automatic
construction of kernels in Support Vector Machine (SVM) classification [3]. This paper
investigates the use of the KTree approach to evolve a kernel-based distance metric for
k-NN regression.

The paper begins in Section 2 with an overview of kernel methods, kernel functions
and the kernelised k-NN algorithm. Section 3 then describesthe KTree algorithm. Ex-
perimental results and analyses are presented in Section 4.Section 5 evaluates research
related to this work and Section 6 presents the main conclusions.

240

Michael Madden
Text Box
Proceedings of AICS-2007: 18th Irish Conference on Artificial Intelligence and Cognitive Science, Dublin, August 2007.

2 Kernel Methods, Kernel Functions & k-NN

In kernel methods for classification or regression, the kernel function is used to recode
the data into a new feature space that may reveal regularities in the data that were not
detectable in the original representation. This allows theuse of algorithms based on
linear functions in the new feature space; such linear methods are both well understood
and computationally efficient. With kernel functions, no explicit mapping of the data to
the new feature space is carried out – this is known as thekernel trick. A kernel function,
K(x, z), calculates the dot-product of two data samples,x andz, in the feature space,
φ, that the kernel defines:K(x, z) = 〈φ(x), φ(z)〉

2.1 Kernelised k-NN

A machine learning algorithm may be “kernelised” by first reformulating the algorithm
so that all data enters it in the form of dot-products of sample pairs. Each dot-product
calculation in the algorithm is then replaced by a kernel function, thus transforming
the algorithm into the feature space defined by that kernel. The classic example of a
kernel method is the SVM [4]. However, other machine learning algorithms can be
reformulated as a kernel method, one example being k-NN, a method that can be used
in both classification and regression settings. There have been many variants of the k-
NN algorithm, but the basic idea is as follows: the distance between the test sample
and each sample in the training set is calculated to determine thek samples that are
closest to the test sample; in classification, the majority class of these nearest samples
(or nearest single sample whenk = 1) is returned as the prediction for that test sample;
in regression, the (possibly weighted1) average value of the dependent variable for the
k nearest samples is returned as the prediction.

Thek nearest samples are often determined using the Euclidean distance,d = ||x−

z||. With kernel methods, the kernel’s feature space is known asa dot product space
and therefore has a naturally defined norm:||x|| = 〈x, x〉. Any norm defines a metricd
via [5]:

d(x, z) = ||x − z||

=
√

〈x − z, x − z〉

=
√

〈x, x〉 + 〈z, z〉 − 2〈x, z〉

(1)

A kernel distance metric is therefore defined as:

dK(x, z) =
√

K(x, x) + K(z, z) − 2K(x, z) (2)

The above equation can be used to derive distance measures from any kernel, which
can substitute the Euclidean distance measure in a k-NN algorithm2.

1 The k-NN implementation used for the experiments reported in this paper does not employ a
distance-weighting mechanism.

2 In this work, a distinction is made between the Euclidean distance measure and kernel-based
distance measures. We use the term ‘Euclidean distance’ to refer to the conventional k-NN dis-
tance measure defined in the original input space and we use the term ‘kernel-based distance’
to refer to the Euclidean distance as defined in the kernel transformed space.

241

2.2 Kernel Function

As with any kernel method, a key step in the application of kernel k-NN is kernel selec-
tion. With SVMs, for example, typical choices for kernels are the Linear, Polynomial,
RBF and Sigmoid kernels. One alternative to using these standard kernels is to employ
a kernel that has been customised for a particular application domain, e.g. the string ker-
nel of Lodhiet al. [6] and kernels for protein classification [7]. Whether building com-
plex kernels from simpler kernels, or designing custom kernels, there are conditions that
the kernel must satisfy before it can be said to correspond tosome feature space. Firstly,
the kernel must be symmetric, i.e.K(x, z) = 〈φ(x), φ(z)〉 = 〈φ(z), φ(x)〉 = K(z, x).
Typically, kernels are also required to satisfy Mercer’s theorem, which states that the
matrix K = (K(xi, xj))

n
i,j=1

must be positive semi-definite, i.e. it has no negative
eigenvalues [4].

3 KTree

As previously highlighted, a critical stage in the use of kernel-based algorithms is kernel
selection, as this can be shown to correspond to the encodingof prior knowledge about
the data [8].

Evolving KTree Kernel Population

Final Kernel
Method Model

After Convergence:Select
Fittest Kernel

KTree
Kernel

Evaluate Kernel Method on
Training Data

KTree
Kernel

K(x,z) =

Training Dataset

Build Kernel
Method model

with KTree
Kernel

Set
Fitness

As the KM model is being built, the kernel is
calculated for different pairs of training samples

1,1.7,62,99,9..., -1

Sample X
10,4.5,3,0..., -1

Sample Z
19,2.2,7,8..., +1

17,7.5,3,1.2,0..., +1

57,7.9,6,6.2,3..., -1

5,70.9,11,32,3..., +1

4,14.7,22,12,9..., +1

KTree
Kernel

KTree
Kernel

KTree
Kernel

KTree
Kernel

Crossover/
Mutation

KTree
Kernel

KTree
Kernel

1. Create a random population of
KTree kernels.
2. Evaluate each kernel:
incorporate a kernel method
method and test on training data.
3. Select fitter KTree kernels as
parents for recombination.
4. Randomly mutate offspring.
5. Replace old population with
offspring.
6. Repeat Steps 2 to 5 until
convergence.
7. Build final kernel method model
using the fittest KTree kernel tree
found.

Ktree: Main Steps

Fig. 1. KTree algorithm

Kernel method users can select from one of the standard kernels, construct new ker-
nels using simpler kernels as building blocks, e.g. the kernel, K(x, z) = K1(x, z) +
K2(x, z), or customise a kernel for a particular problem. Ideally, a kernel is selected
or customised based on prior knowledge of the problem domain, but it is not always

242

possible to make the right of choice of kernela priori. KTree addresses this prob-
lem by using the evolutionary technique of Genetic Programming (GP) to discover a
suitable kernel for a particular problem. KTree has been previously demonstrated with
SVM classifiers [3], but this approach can be used with other kernelised pattern anal-
ysis algorithms. The aim of KTree is the discovery of new kernels that best represent
the underlying data from a particular problem domain; in thecontext of kernel k-NN,
KTree allows for the discovery of a new distance metric for a particular data domain.
With KTree, a tree structure, known as aKTree kernel(see Figure 2) is used to represent
a kernel function. The objective of KTree is to find a KTree kernel that best represents
the data. An overview of the KTree algorithm is shown in in Figure 1.

3.1 KTree Kernel Representation

The KTree kernel used to represent a kernel function must take two data samples as
inputs and provide a scalar value as output. An example of a KTree kernel is shown in
Figure 2.

x[….]

x[….]

z[….]

-
+

<,>

fv(x,z)

x
58.35

22.15

27.01
x

/ exp K(x,z)

Vector Tree Scalar Tree

fv(x,z)

K(x,z) = exp((<(x+x)-z, (z+z)-x>)*58.35)/(22.15*27.01)

z[….]

z[….]

x[….]

-
+

R
e
fl

e
c

te
d

 v
e

rs
io

n
s

 o
f

s
a
m

e
 t

re
e

Fig. 2. Example KTree Kernel

The diagram shows that the KTree kernel is split into two parts, the vector and the
scalar tree. The inputs to the vector tree are the two samples, x andz, for which the
kernel is being evaluated. These inputs are passed through vector operators, such as
addor subtract, which in turn pass vectors onto the next node. To ensure thatthe output
of this tree is symmetric, the entire vector tree is evaluated twice, swapping the inputsx
andz for the second evaluation. The final output of the vector tree, fv(x, z), is the dot
product of these two evaluations. This output becomes an input, along with randomly
generated constant terminals, for the scalar tree. This design was chosen to allow for
the use of complex mathematical operators, such asexp andtanh, in the scalar tree.
Applying these operators directly to the vector inputs could result in overly complex
and unusable kernels. A second motivation for this design isthat it is also capable of
representing the standard kernels used in SVMs, e.g. the RBFkernel and Polynomial

243

kernel. Although symmetry is satisfied, this kernel design is not guaranteed to produce
Mercer kernels. However, non-Mercer kernels are filtered out (see Section 3.2).

A specification of the KTree kernel is given in Table 1, showing the input terminals
and operators used for the vector and scalar tree parts of a KTree kernel. The vector
tree is a GP tree, where the input terminal set comprises the two vector inputs to the
kernel function,x andz. The operators of the vector tree take two vectors as an input
and return a single vector as output. A vector operator is calculated as follows:

[x1, x2, . . . , xm] op [z1, z2, . . . , zm] = [x1 op z1, x2 op z2, . . . , xm op zm] (3)

whereop is one of the operators listed for the vector tree in Table 1 and m is the length
of the vector inputs. For example, an addition in the vector tree is calculated as follows:

[x1, x2, . . . , xm] + [z1, z2, . . . , zm] = [x1 + z1, x2 + z2, . . . , xm + zm] (4)

The scalar tree of a KTree kernel is a GP tree, where the input terminal set comprises
the output of the vector tree, denoted asfv(x, z), and a set of randomly generated
constants. Note thatfv(x, z) may occur multiple times in a scalar tree. The set of scalar
operators (unary and binary) used in the scalar tree is listed in Table 1. Note that while
the use of constants in the scalar tree of the kernel influences the decision boundary of
an SVM classifier, it has no bearing on the ordering of neighbours for k-NN without
distance-weighting.

Table 1. KTree kernel specification

Vector Tree

Input Terminals:x[..], z[..]
Operators: add, subtract, multiply

Scalar Tree

Input Terminals:const, fv(x, z)
Operators: add, subtract, multiply, divide,

exp, power, tanh

As shown in Figure 1, the first step of the KTree algorithm is tocreate a random
population of kernels. For this initial population, each KTree kernel (both vector and
scalar parts) is generated by randomly creating a root node and by growing a tree from
this node until either no more leaves can be expanded (i.e. all leaves are terminals) or
until a presetinitial maximum depth has been reached (2 for the experiments reported
here). The evolutionary process shown in Figure 1 involves the application of mutation
and crossover operators on selected KTree kernels. For mutation, a point in either the
vector or scalar tree is randomly chosen and the sub-tree at that point is replaced with
a newly generated tree (vector or scalar, depending on wheremutation occurred). Mu-
tation of individual nodes (e.g. constant terminals) is notemployed. Crossover between
two KTree kernels begins with the selection of a random pointfrom either the vector or
scalar part of the first KTree kernel. The location of the crossover point on the second

244

KTree kernel is constrained so that crossover does not occurbetween the scalar part of
one KTree kernel and the vector part of another. Rank-based selection was employed
for the selection of the candidates for crossover. To prevent the proliferation of massive
tree structures, pruning is carried out on KTree kernels after mutation, maintaining a
maximum depth of 12 (for either the vector or scalar part). A population of 500 KTree
kernels was used for all experiments.

3.2 Fitness Function

As with any evolutionary algorithm, a key element of KTree isthe choice of fitness
function. In previous work on the use of KTree for SVM classification [3], the authors
investigated a number of fitness functions and found that thebest results were achieved
with a fitness function based on an internal cross-validation (3-fold) coupled with a
tiebreaker fitness that favours smaller KTree kernels. Thisinvestigation also found that
the stability of KTree was improved by the use of aMercer filter. Furthermore, a non-
Mercer kernel does not define a distance metric as described in Section 2.1. The Mercer
filter estimates the Mercer condition of a kernel by calculating the eigenvalues of the
kernel matrix over the training data; if any negative eigenvalues are discovered, the
kernel is marked as non-Mercer and is assigned the worst possible fitness, e.g. a cross-
validation error of 100%. To reduce the computational cost when dealing with larger
datasets, the kernel matrix is based on only a subset of the training data; this subset is
randomly selected and the same subset is used in each kernel evaluation. For the exper-
iments reported here, the kernel matrix was limited to a maximum size of 250x250.

4 Experimental Results

The goal of the experiments presented here is to determine ifKTree can evolve kernel-
based distance metrics that improve on the standard Euclidean distance when embedded
in a k-NN regression algorithm. The next two sections describe experiments based on
synthetic and real-world data and discuss the results.

4.1 Synthetic Dataset

A synthetic dataset, namedFeatureSpace, was devised to comprise two predictor at-
tributes and one dependent attribute, the value of which is to be predicted using k-NN re-
gression.FeatureSpaceis based on a specified feature mapping from a two-dimensional
to a three-dimensional space. To create this dataset, 1000 two-dimensional points were
randomly generated. The following feature space mapping was then applied to each
point,xi:

φ1(xi) = (xi1 − xi2)
2

φ2(xi) = (xi1 + xi2 + 1)3

φ3(xi) = xi1xi2

(5)

wherexi1 is the value of the first attribute of samplexi, xi2 is the value of the
second attribute of samplexi, andφp(xi) is the value of the mapping ofxi along the

245

p-th axis in the new feature space. To generate the value of thedependent variable for
each sample,yi, for each sample, the following simple function is used:

yi = f(xi) = φ1(xi) + φ2(xi) + φ3(xi) (6)

Table 2 compares the performance of k-NN on the FeatureSpacedataset with differ-
ent distance metrics. This experiment uses 200 samples of the FeatureSpace dataset for
training and the remainder of the dataset as the test set. Table 2 shows the root relative
squared error of prediction [9] achieved by k-NN with each distance metric on the test
set. This table also shows the fitness of the final kernel selected by KTree and compares
this with the ‘fitness’ of the two other distance metrics; thefitness of the Euclidean and
FeatureSpace kernel distance is calculated using the same evaluation function as used
by KTree, i.e. the average root relative squared error over a3-fold cross-validation run
on the training subset3. The results indicate that 3-NN with a distance metric basedon
the evolved KTree kernel improves on the performance of 3-NNwith the standard Eu-
clidean distance, both in terms of test error and fitness on the training data. Note that
the higher errors over the training set may be due to the smaller training set used within
the 3-fold fitness evaluation than that used for the test set.

Table 2. Results of 3-NN with different distance metrics on the FeatureSpace dataset. Both fitness
and error values are the root relative squared error of prediction achieved by k-NN using each
distance metric. Fitness is the 3-Fold CV root relative squared error over the training subset.

Distance Metric Training Set Fitness Test Set
(3-Fold CV Error) Error

Euclidean 17.61% 14.51%
KTree 15.56% 11.15%
FeatureSpace Kernel 11.81% 6.54%

The final row of Table 2 shows the fitness and test error for 3-NNbased on the Fea-
tureSpace kernel. This kernel explicitly maps its two inputs according to the mapping
defined in Equation 5 to generate two vectors of length 3, and then returns the dot-
product of these two vectors. Using 3-NN with the FeatureSpace kernel is equivalent
to operating 3-NN in the original three-dimensional feature space, in which the target
function was defined. This result represents the best resultthat could be achieved with
3-NN. Note that the FeatureSpace kernel does not achieve 0% error as the training set
does not provide 100% coverage of the target function; this was confirmed by calcu-
lation of the minimum theoretical error for 1-NN with the same training and test sets,
which was found to be 5.16%. The results show that the performance of KTree on the
test set is roughly half-way between that of the Euclidean distance and the FeatureSpace
kernel distance. Despite the good performance of KTree relative to the benchmark of
the Euclidean distance, the FeatureSpace kernel distance result shows that better ker-
nels could possibly be found, e.g. by increasing populationsize or by increasing the
maximum number of generations allowed.

3 Since fitness is computed using an error measure, lower fitness values are better.

246

4.2 Real-world Datasets

To extend the results of KTree with k-NN on the synthetic dataset, a similar compar-
ison of KTree with Euclidean distance was carried out, usinga number of real-world
regression datasets [10]. Table 3 shows the average error from a single 10-fold cross-
validation run over 10 regression datasets; due to the relatively large size of the Abalone
dataset (4177 instances) and the resultant significant increase in computation that would
be required for KTree, a single subset of 250 instances was used for the training phase
with the remainder being used as the test set. This table shows the results for 3-NN
based on Euclidean distance and the results for 3-NN based ona KTree-evolved kernel
distance. The lowest numerical test error on each dataset ishighlighted in bold.

Table 3. k-NN regression 10-fold CV error rates (RMSEP): KTree-evolved distance vs. Euclidean
distance. *The errors reported for this dataset are based on a single train/test split. Table also
includes the number of samples and attributes of each dataset.

No. Samples No. Attributes Average Test Error
Euclidean KTree

Auto-MPG 398 8 2.86±0.47 2.58±0.51
CPU 209 7 0.04±0.04 0.03±0.03
Boston-Nox 506 14 0.04±0.01 0.036±0.01
Boston-Price 506 14 4.18±1.14 3.45±1.11
Octane 82 5 0.61±0.16 0.62±0.24
Deathrate 60 16 46.79±14.89 46.63±10.49
Bodyfat 252 15 2.87±0.36 2.75±0.45
Houseprice 117 7 212.97±62.89210.31±70.73
Tecator 240 101 2.47±0.48 2.35±0.38
NO2 500 7 0.56±0.08 0.55±0.08
Abalone* 4177 11 2.69 2.60

For these experiments, the error is the root mean squared error of prediction (RM-
SEP). 3-NN using KTree achieves the lowest numerical test error on all datasets, except
for the Octane dataset. A pairwise comparison over all datasets based on a Wilcoxon
Signed Rank test [11] at a confidence level of 5% shows that 3-NN based on KTree
outperforms the standard 3-NN. This demonstrates the ability of KTree to derive new
distance metrics for a given data domain. In a similar analysis to that carried out for the
synthetic dataset, the average fitness (based on 3-fold cross-validation RMSEP) of the
Euclidean distance and KTree-evolved kernel distance was compared; the results are
shown in Table 4. As was previously found with KTree for SVM classification, KTree
is the clear winner in terms of the fitness of the distance metric it derives; this is also
confirmed by the Wilcoxon Signed Rank test at a confidence level of 5%.

Overall, the results on both synthetic and real datasets demonstrate the effectiveness
of the data-driven evolutionary approach of KTree when applied to a k-NN regression
task. KTree is capable of evolving a kernel-based distance metric that is suited to a
particular dataset. Distance metrics evolved by KTree could be used in library search
applications, where the goal is to search for a list of the closest matches to a test sample.

247

Table 4. Average fitness (based on 3-fold CV RMSEP): KTree-evolved distance vs. Euclidean
distance. *The fitness values reported for this dataset are based on a single train/test split.

Average Fitness on Training Data Average Fitness on Training Data
Euclidean KTree Euclidean KTree

Auto-MPG 3.07±0.06 2.57±0.07 Bodyfat 3.44±0.12 2.99±0.19
CPU 0.06±0.01 0.04±0.00 Houseprice 221.38±13.42 176.35±11.23
Boston-Nox 0.05±0.00 0.04±0.00 Tecator 2.57±0.1 2.44±0.1
Boston-Price 5.12±0.21 4.14±0.44 NO2 0.57±0.01 0.55±0.01
Octane 0.71±0.04 0.67±0.043 Abalone* 2.48 2.27
Deathrate 48.82±3.27 41.07±2.02

5 Related Research

Some previous work on the use of evolutionary algorithms with kernel-based learning
has focussed on the optimisation of a single kernel, e.g. theRBF kernel for SVM clas-
sification [12]. In Lessmannet al. [13], a GA is used to optimise a set of parameters for
five kernel types and the SVMC parameter, and is also used to determine how the result
of each kernel is combined (addition or multiplication) to give the final kernel output.
This approach is guaranteed to produce Mercer kernels, provided the Sigmoid kernel
component setting does not break Mercer’s condition. In comparison with KTree, how-
ever, the approach of Lessmannet al. is significantly restricted in the range of kernels
that it can generate.

In more recent research, Gagneet al. [14] have proposed an approach for evolving
kernels for a k-NN classifier. This approach is called the Evolutionary Kernel Machine
(EKM). Although EKM bears some similarity to KTree in its useof GP to evolve a
kernel, it differs considerably in a number of areas, including the kernel function repre-
sentation and fitness measure used to evaluate candidate kernels. Their approach does
not guard against non-Mercer kernels and the fitness function is based on k-NN specif-
ically, i.e. the same fitness could not be used with SVMs, as isthe case with the fitness
function of KTree. Furthermore, EKM uses a co-evolutionaryframework to evolve two
subsets of the training dataset, afitnessand aprototypeset, which are used in the fitness
measure (see Gagneet al. for more details on this fitness measure). The authors do note
that this competitive co-evolution can be problematic in that there is a danger of the
fitness subset capturing noisy examples, thus resulting in apoor final model.

6 Conclusions

This paper has demonstrated the use of KTree to evolve a kernel-based distance metric
for use in a k-NN regression algorithm. Experiments on both synthetic and real-world
data showed that KTree is capable of evolving a distance metric that can improve on
the widely used Euclidean distance. This represents a novelapproach that facilitates
the automatic discovery of a custom distance metric for a particular data domain. In
building on previous work with KTree, these results also demonstrate that KTree can

248

be applied to different kernel methods and to different machine learning problems, i.e.
classification and regression. One of the great advantages in the use of kernel methods
is that they are easily adapted to work with different types of data; provided a kernel
function can be defined for comparing two data objects, any kernel method can be
applied to this data and a kernel-based distance metric may also be derived. Future
work could investigate the use of KTree in structured data domains, such as the protein
structure classification problems tackled by Wang & Scott [7]. The extension of this
KTree research to tackle such problems may require the definition of new operators for
the KTree kernel, which would allow it to manipulate structured data objects.

Acknowledgements

This first author’s research has been funded by Enterprise Ireland’s Basic Research
Grant Programme. The second author acknowledges the support of a Marie Curie Trans-
fer of Knowledge Fellowship of the European Communitys Sixth Framework Pro-
gramme, Contract MTKD-CT-2005-029611. The authors are also grateful to the High
Performance Computing Group at NUI Galway, funded under PRTLI I and III, for pro-
viding access to HPC facilities.

References

1. Karakoc, E., Cherkasov, A., Cenk Sahinalp, S.: Distance basedalgorithms for small
biomolecule classification and structural similarity search.22 (2006)

2. Yu, K., Ji, L., Zhang, X.: Kernel Nearest-Neighbour Algorithm. Neural Processing Letters
15 (2002) 147–156

3. Howley, T., Madden, M.G.: An evolutionary approach to automatic kernel construction. In:
Proceedings of the International Conference on Artificial Neural Networks (ICANN). (2006)

4. Cristianini, N., Shawe-Taylor, J.S.: An Introduction to Support Vector Machines. (2000)
5. Scholkopf, B., Smola, A.: Learning with Kernels: Support Vector Machines, Regularization,

Optimization, and Beyond. MIT Press (2002)
6. Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., Watkins, C.: Text classification

using string kernels. Journal of Machine Learning Research2 (2002) 419–444
7. Wang, C., Scott, S.D.: New Kernels for Protein Structural Motif Discovery and Function

Classification. In: Proc. of the 22nd International Conference on Machine Learning. (2005)
8. Cristianini, N., Shawe-Taylor, J.: Kernel Methods for Pattern Analysis. (2004)
9. Witten, I., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques with

Java Implementations. Morgan Kaufmann Publishers (2000)
10. Newman, D.J., Hettich, S., Blake, C.L., Merz, C.J.: UCI Repository of machine learning

databases (1998)
11. Demsar, J.: Statistical Comparisons of Classifiers over Multiple Data Sets. Journal of Ma-

chine Learning Research7 (2006) 1–30
12. Friedrichs, F., Igel, C.: Evolutionary Tuning of Multiple SVM Parameters. In: Proc. of the

12th European Symposium on Artificial Neural Network. (2004) 519–524
13. Lessmann, S., Stahlbock, R., Crone, S.: Genetically constructedkernels for support vector

machines. In: Proc. of General Operations Research (GOR). (2005)
14. Gagne, C., Schoenauer, M., Sebag, M., Tomassini, M.: GeneticProgramming for Kernel-

based Learning with Co-evolving Subsets Selection. In: Parallel ProblemSolving from Na-
ture (PPSN IX). (2006)

249

