(OLLSCOILNAGAILLIMHE

[JNIVERSITY oF GALWAY

Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the
published version when available.

Title The Evc_)l ution of a Kernel-Based Distance Metric for k-NN
Regression

Author(s) | Madden, Michael G.; Howley, Tom

Publication
Date 2007

The Evolution of a Kernel-Based Distance Metric for k-NN
Publication | Regression , Tom Howley and Michael G. Madden.
Information | Proceedings of AICS-2007: 18th Irish Conference on Artificia
Intelligence and Cognitive Science, Dublin, August 2007.

Item record | http://hdl.handle.net/10379/203

Downloaded 2024-03-20T10:56:217

Some rights reserved. For more information, please see the item record link above.

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/

Proceedings of AICS-2007: 18th Irish Conference on Atrtificial
Intelligence and Cognitive Science, Dublin, August 2007.

The Evolution of a Kernel-Based Distance Metric for
k-NN Regression

Tom Howley and Michael G. Madden

National University of Ireland, Galway,
thow ey@ega.it.nuigalway.ie, mchael.nmdden@ui gal way. i e

Abstract. k-Nearest Neighbours (k-NN) is a well understood and widely-used
approach to classification and regression problems. In many casbsagplica-
tions of k-NN employ the standard Euclidean distance metric for the detarmin
tion of the set of nearest neighbours to a particular test data samplepdpes
investigates the use of a data-driven evolutionary approach, nanree Kor the
automatic construction of kernetbased distance metric as an alternative to Eu-
clidean distance. The key idea behind this approach is that a differ¢éancis
metric is generated for a particular data domain. The performanceéNdf iith

the standard Euclidean distance measure is compared with that of k9¢d ba

a kernel-based distance metric evolved by KTree. This comparisorséi lim
experiments on both synthetic and real-world datasets.

1 Introduction

k-Nearest Neighbours (k-NN) is a well understood techniths is widely used in
many classification and regression problems [1]. In manyieqaons of k-NN, the Eu-
clidean distance is used to determinekthearest neighbours to a particular test sample,
the resulting prediction depending directly on the paféicset of neighbours chosen.
As noted by Yuet al. [2], the conventional k-NN can perform well with non-linear
problems, but loses its power with some complicated problerapecially when the
sample distribution is arbitrary. However, if an approfwikernel is chosen to reshape
the distribution of samples,kerneliseck-NN algorithm may improve its performance.
This is an example a kernel-based learning method, in whiarrel function is used
to transform the original data into a new feature space. Twoice of kernel and as-
sociated kernel parameters is a key step in the applicafianyokernel method, such
as kernelised k-NN, to a problem. Previous research captedly the authors demon-
strated that an evolutionary approach, named KTree, wastaf in the automatic
construction of kernels in Support Vector Machine (SVM3ssiéication [3]. This paper
investigates the use of the KTree approach to evolve a kbassid distance metric for
k-NN regression.

The paper begins in Section 2 with an overview of kernel madshkernel functions
and the kernelised k-NN algorithm. Section 3 then desctibe¥Tree algorithm. Ex-
perimental results and analyses are presented in Secti&ettion 5 evaluates research
related to this work and Section 6 presents the main cormigsi

240

Michael Madden
Text Box
Proceedings of AICS-2007: 18th Irish Conference on Artificial Intelligence and Cognitive Science, Dublin, August 2007.

2 Kernd Methods, Kernel Functions & k-NN

In kernel methods for classification or regression, the éefumction is used to recode
the data into a new feature space that may reveal regutaiitihe data that were not
detectable in the original representation. This allowsubke of algorithms based on
linear functions in the new feature space; such linear nustloe both well understood
and computationally efficient. With kernel functions, ngksit mapping of the data to
the new feature space is carried out — this is known akdhwel trick A kernel function,
K (z, z), calculates the dot-product of two data sampleandz, in the feature space,
¢, that the kernel defined((x, z) = (¢(x), ¢(2))

2.1 Kernelised k-NN

A machine learning algorithm may be “kernelised” by firsorefiulating the algorithm
so that all data enters it in the form of dot-products of sanpgalirs. Each dot-product
calculation in the algorithm is then replaced by a kernektfiom, thus transforming
the algorithm into the feature space defined by that kerre. dlassic example of a
kernel method is the SVM [4]. However, other machine leagragorithms can be
reformulated as a kernel method, one example being k-NN,taaddhat can be used
in both classification and regression settings. There haea many variants of the k-
NN algorithm, but the basic idea is as follows: the distane®vien the test sample
and each sample in the training set is calculated to deterthiak samples that are
closest to the test sample; in classification, the majotagsof these nearest samples
(or nearest single sample whérr 1) is returned as the prediction for that test sample;
in regression, the (possibly weight¢cverage value of the dependent variable for the
k nearest samples is returned as the prediction.

Thek nearest samples are often determined using the Euclidstamded = ||z —
z||. With kernel methods, the kernel’s feature space is knowa @dst product space
and therefore has a naturally defined nofm}| = (z,). Any norm defines a metri¢
via [5]:

d(x, z) = [|z — 2|

N Y EP])
= \/<x,x> +(z,2) — 2(z, 2)

A kernel distance metric is therefore defined as:

di (z,2) = \/K(x,2) + K(z,2) — 2K(z, 2) 2

The above equation can be used to derive distance measumearily kernel, which
can substitute the Euclidean distance measure in a k-NNitdgs.

! The k-NN implementation used for the experiments reported in this papsrmin employ a
distance-weighting mechanism.

2 In this work, a distinction is made between the Euclidean distance measlkearel-based
distance measures. We use the term ‘Euclidean distance’ to refer tatventional k-NN dis-
tance measure defined in the original input space and we use the termal-kased distance’
to refer to the Euclidean distance as defined in the kernel transforraed.sp

241

2.2 Kernel Function

As with any kernel method, a key step in the application ohkek-NN is kernel selec-
tion. With SVMs, for example, typical choices for kernelg #éine Linear, Polynomial,
RBF and Sigmoid kernels. One alternative to using theselatdrkernels is to employ
a kernel that has been customised for a particular apgicdtbmain, e.g. the string ker-
nel of Lodhiet al.[6] and kernels for protein classification [7]. Whether birtgicom-
plex kernels from simpler kernels, or designing custom &ksirthere are conditions that
the kernel must satisfy before it can be said to correspordrtee feature space. Firstly,
the kernel must be symmetric, i.E.(x, z) = (¢(x), ¢(2)) = (¢(2), ¢(x)) = K(z,x).
Typically, kernels are also required to satisfy Mercersdtem, which states that the
matrix K = (K(xi,;));;—, must be positive semi-definite, i.e. it has no negative
eigenvalues [4].

3 KTree

As previously highlighted, a critical stage in the use ofi@tbased algorithms is kernel
selection, as this can be shown to correspond to the encoélpripr knowledge about
the data [8].

Evolving KTree Kernel Population

, N

Kemel,

After Convergence:Select
Fittest Kernel

KTree aree, Final Kernel
Method Model
X T KTree .
KTree ares, Kernel Ktree: Main Steps
1. Create a random population of
KTree kernels.
L 2. Evaluate each kernel
K Tree Crossover/ incc‘)r:pgrateda; ketrneltm_ethodd .
q : method and test on training data
Mutation 3. Select fitter KTree kernels as

Build Kernel
Method model
with KTree

Kernel

Set
Fitness

<>

Training Dataset

Evaluate Kernel Method on
Training Data

1,1.7,62,999.., -1
570911325 71

— Sample X

KTree
Kernel

K(x,z) =

") 19,2.2,78..., +1
IN~Sample Z

57,7.96.6.2.3... -1

\/

parents for recombination.

4. Randomly mutate offspring.

5. Replace old population with
offspring.

6. Repeat Steps 2 to 5 until
convergence.

7. Build final kernel method model
using the fittest KTree kernel tree
found.

As the KM model is being built the kernel'is
calculated for different pairs of training samples

Fig. 1. KTree algorithm

Kernel method users can select from one of the standardlkeocomstruct new ker-
nels using simpler kernels as building blocks, e.g. thedeiki (z, z) = Ki(x,z) +
K(z, z), or customise a kernel for a particular problem. Ideallyeankl is selected
or customised based on prior knowledge of the problem dgnhainit is not always

242

possible to make the right of choice of kerrgelpriori. KTree addresses this prob-
lem by using the evolutionary technique of Genetic ProgramgniGP) to discover a
suitable kernel for a particular problem. KTree has beewipusly demonstrated with
SVM classifiers [3], but this approach can be used with otleenddised pattern anal-
ysis algorithms. The aim of KTree is the discovery of new késrihat best represent
the underlying data from a particular problem domain; in¢batext of kernel k-NN,
KTree allows for the discovery of a new distance metric foragtipular data domain.
With KTree, a tree structure, known a&K@iree kerne(see Figure 2) is used to represent
a kernel function. The objective of KTree is to find a KTreeraithat best represents
the data. An overview of the KTree algorithm is shown in inuiy1.

3.1 KTreeKerne Representation

The KTree kernel used to represent a kernel function must tak data samples as
inputs and provide a scalar value as output. An example ofr@&Kernel is shown in
Figure 2.

Reflected versions of same tree

Vector Tree Scalar Tree

‘ K(x.2) = exp((<(c+X)2, (2+2)-%>)*58.35)(22.1527.01) ‘

Fig. 2. Example KTree Kernel

The diagram shows that the KTree kernel is split into twogdtte vector and the
scalar tree. The inputs to the vector tree are the two samplasd z, for which the
kernel is being evaluated. These inputs are passed thraeghrvwperators, such as
addor subtract which in turn pass vectors onto the next node. To ensurd¢hbatutput
of this tree is symmetric, the entire vector tree is evalditéce, swapping the inputs
andz for the second evaluation. The final output of the vector, tfgér, z), is the dot
product of these two evaluations. This output becomes aut,imong with randomly
generated constant terminals, for the scalar tree. Thigniegas chosen to allow for
the use of complex mathematical operators, suckwasandtanh, in the scalar tree.
Applying these operators directly to the vector inputs dawsult in overly complex
and unusable kernels. A second motivation for this desighasit is also capable of
representing the standard kernels used in SVMs, e.g. thekeBfel and Polynomial

243

kernel. Although symmetry is satisfied, this kernel desgnat guaranteed to produce
Mercer kernels. However, non-Mercer kernels are filteraddsee Section 3.2).

A specification of the KTree kernel is given in Table 1, shayihe input terminals
and operators used for the vector and scalar tree parts ofr@ekernel. The vector
tree is a GP tree, where the input terminal set comprisesstbevéctor inputs to the
kernel function,x andz. The operators of the vector tree take two vectors as an input
and return a single vector as output. A vector operator sutatled as follows:

(X1, T2, ...y Tm] 0P [21, 225+, Zm] = [T1 0D 21,%2 0P 22, . ., Ty, OP 2] (3)

whereop is one of the operators listed for the vector tree in Tabledlrans the length
of the vector inputs. For example, an addition in the vect® is calculated as follows:

(1,22, ..y xm] 4 [21, 22, - oy 2m] = [T1 + 21,22 + 22, -+, T + 2] 4)

The scalar tree of a KTree kernel is a GP tree, where the ippuital set comprises
the output of the vector tree, denoted &gz, z), and a set of randomly generated
constants. Note thgt, (x, z) may occur multiple times in a scalar tree. The set of scalar
operators (unary and binary) used in the scalar tree iglligt@able 1. Note that while
the use of constants in the scalar tree of the kernel inflieetimedecision boundary of
an SVM classifier, it has no bearing on the ordering of neiginbdor k-NN without
distance-weighting.

Table 1. KTree kernel specification

Vector Tree

Input Terminals:z|..], z[..]
Operators: add, subtract, multiply

Scalar Tree

Input Terminalsconst, f,(z, z)
Operators: add, subtract, multiply, divide,
exp, power, tanh

As shown in Figure 1, the first step of the KTree algorithm i€teate a random
population of kernels. For this initial population, eachrk& kernel (both vector and
scalar parts) is generated by randomly creating a root nedd®wpagrowing a tree from
this node until either no more leaves can be expanded (i.eaaks are terminals) or
until a presetnitial maximum depth has been reached (2 for the experiments egport
here). The evolutionary process shown in Figure 1 involkesapplication of mutation
and crossover operators on selected KTree kernels. Fotionyta point in either the
vector or scalar tree is randomly chosen and the sub-trémpoint is replaced with
a newly generated tree (vector or scalar, depending on whetation occurred). Mu-
tation of individual nodes (e.g. constant terminals) iseraployed. Crossover between
two KTree kernels begins with the selection of a random pioamh either the vector or
scalar part of the first KTree kernel. The location of the sower point on the second

244

KTree kernel is constrained so that crossover does not detween the scalar part of
one KTree kernel and the vector part of another. Rank-baaledtion was employed
for the selection of the candidates for crossover. To prevenproliferation of massive
tree structures, pruning is carried out on KTree kerneksr aftutation, maintaining a
maximum depth of 12 (for either the vector or scalar part) ofsydation of 500 KTree

kernels was used for all experiments.

3.2 Fitness Function

As with any evolutionary algorithm, a key element of KTredtis choice of fithess
function. In previous work on the use of KTree for SVM clagsifion [3], the authors
investigated a number of fithess functions and found thalbésé results were achieved
with a fitness function based on an internal cross-validaf®fold) coupled with a
tiebreaker fitness that favours smaller KTree kernels. iflisstigation also found that
the stability of KTree was improved by the use dflarcer filter. Furthermore, a non-
Mercer kernel does not define a distance metric as descrilfgelgtion 2.1. The Mercer
filter estimates the Mercer condition of a kernel by caléntathe eigenvalues of the
kernel matrix over the training data; if any negative eigdugs are discovered, the
kernel is marked as non-Mercer and is assigned the worsiy@$itness, e.g. a cross-
validation error of 100%. To reduce the computational casémvdealing with larger
datasets, the kernel matrix is based on only a subset ofdhnéng data; this subset is
randomly selected and the same subset is used in each keahedtéoon. For the exper-
iments reported here, the kernel matrix was limited to a maxn size of 250x250.

4 Experimental Results

The goal of the experiments presented here is to determifierde can evolve kernel-
based distance metrics that improve on the standard Eaalidistance when embedded
in a k-NN regression algorithm. The next two sections déscexperiments based on
synthetic and real-world data and discuss the results.

4.1 Synthetic Dataset

A synthetic dataset, namdgbatureSpacewas devised to comprise two predictor at-
tributes and one dependent attribute, the value of whiahbie predicted using k-NN re-
gressionFeatureSpaces based on a specified feature mapping from a two-dimenisiona
to a three-dimensional space. To create this dataset, d@ddimensional points were
randomly generated. The following feature space mapping tiwvan applied to each
point, x;:

(1’;) (Tyl — xb2)
¢2(Iz) (I’Ll + T2 + 1) (5)
d)S(xz) = X142

wherez;; is the value of the first attribute of sample, ;> is the value of the
second attribute of sample, and¢,(z;) is the value of the mapping af; along the

245

p-th axis in the new feature space. To generate the value afgpendent variable for
each sampley;, for each sample, the following simple function is used:

yi = [(x:) = o1(xi) + d2(xi) + ¢3(w;) (6)

Table 2 compares the performance of k-NN on the Feature Sizdaset with differ-
ent distance metrics. This experiment uses 200 samples &thtureSpace dataset for
training and the remainder of the dataset as the test sde Zadhows the root relative
squared error of prediction [9] achieved by k-NN with eac$taince metric on the test
set. This table also shows the fitness of the final kernel ®aldry KTree and compares
this with the ‘fitness’ of the two other distance metrics; tiwess of the Euclidean and
FeatureSpace kernel distance is calculated using the saheton function as used
by KTree, i.e. the average root relative squared error o&fad cross-validation run
on the training subs&tThe results indicate that 3-NN with a distance metric based
the evolved KTree kernel improves on the performance of 3whiN the standard Eu-
clidean distance, both in terms of test error and fitness err#ining data. Note that
the higher errors over the training set may be due to the sntadlining set used within
the 3-fold fitness evaluation than that used for the test set.

Table 2. Results of 3-NN with different distance metrics on the FeatureSpaceetldBash fithess
and error values are the root relative squared error of predictioievaed by k-NN using each
distance metric. Fitness is the 3-Fold CV root relative squared errotlowdraining subset.

Distance Metric ~ Training Set Fitness Test Set
(3-Fold CV Error) Error

Euclidean 17.61% 14.51%
KTree 15.56% 11.15%
FeatureSpace Kernel 11.81% 6.54%

The final row of Table 2 shows the fithess and test error for 3bidbed on the Fea-
tureSpace kernel. This kernel explicitly maps its two ispat¢cording to the mapping
defined in Equation 5 to generate two vectors of length 3, Aed teturns the dot-
product of these two vectors. Using 3-NN with the FeatureBpaernel is equivalent
to operating 3-NN in the original three-dimensional featapace, in which the target
function was defined. This result represents the best rmatltould be achieved with
3-NN. Note that the FeatureSpace kernel does not achievet@¥oas the training set
does not provide 100% coverage of the target function; tlsis eonfirmed by calcu-
lation of the minimum theoretical error for 1-NN with the sartnaining and test sets,
which was found to be 5.16%. The results show that the pegoom of KTree on the
test set is roughly half-way between that of the Euclideatadice and the FeatureSpace
kernel distance. Despite the good performance of KTregivelto the benchmark of
the Euclidean distance, the FeatureSpace kernel distaso# shows that better ker-
nels could possibly be found, e.g. by increasing populagiaa or by increasing the
maximum number of generations allowed.

3 Since fitness is computed using an error measure, lower fitness vadussteer.

246

4.2 Real-world Datasets

To extend the results of KTree with k-NN on the synthetic detaa similar compar-

ison of KTree with Euclidean distance was carried out, usimgumber of real-world

regression datasets [10]. Table 3 shows the average eorardrsingle 10-fold cross-
validation run over 10 regression datasets; due to thevelatarge size of the Abalone
dataset (4177 instances) and the resultant significargaserin computation that would
be required for KTree, a single subset of 250 instances wexd fas the training phase
with the remainder being used as the test set. This tableshwvresults for 3-NN

based on Euclidean distance and the results for 3-NN basaddnee-evolved kernel

distance. The lowest numerical test error on each databighghted in bold.

Table3. k-NN regression 10-fold CV error rates (RMSEP): KTree-evolvistatice vs. Euclidean
distance. *The errors reported for this dataset are based on a siaigléest split. Table also
includes the number of samples and attributes of each dataset.

No. Samples No. Attributes Average Test Error

Euclidean KTree

Auto-MPG 398 8 2.86:0.47 2.584+0.51
CPU 209 7 0.04-0.04 0.03+0.03
Boston-Nox 506 14 0.040.01 0.03640.01
Boston-Price 506 14 4.181.14 3.45+1.11
Octane 82 5 0.61+0.16 0.62+:0.24
Deathrate 60 16 46.7914.89 46.631-10.49
Bodyfat 252 15 2.8F%0.36 2.754+0.45
Houseprice 117 7 212.9962.89210.31+70.73
Tecator 240 101 2.4i0.48 2.354+0.38
NO2 500 7 0.56:0.08 0.554+0.08
Abalone* 4177 11 2.69 2.60

For these experiments, the error is the root mean squareddaprediction (RM-
SEP). 3-NN using KTree achieves the lowest numerical test en all datasets, except
for the Octane dataset. A pairwise comparison over all d&gdsased on a Wilcoxon
Signed Rank test [11] at a confidence level of 5% shows thaN3bised on KTree
outperforms the standard 3-NN. This demonstrates theyabiliKTree to derive new
distance metrics for a given data domain. In a similar afmgtgsthat carried out for the
synthetic dataset, the average fitness (based on 3-fold-uadislation RMSEP) of the
Euclidean distance and KTree-evolved kernel distance wawpared; the results are
shown in Table 4. As was previously found with KTree for SVMgdification, KTree
is the clear winner in terms of the fitness of the distance im&tderives; this is also
confirmed by the Wilcoxon Signed Rank test at a confidencé &h\&%.

Overall, the results on both synthetic and real datasetedsirate the effectiveness
of the data-driven evolutionary approach of KTree when iepio a k-NN regression
task. KTree is capable of evolving a kernel-based distanetienthat is suited to a
particular dataset. Distance metrics evolved by KTreedcbel used in library search
applications, where the goal is to search for a list of theetd matches to a test sample.

247

Table 4. Average fitness (based on 3-fold CV RMSEP): KTree-evolved distasc Euclidean
distance. *The fitness values reported for this dataset are basedngieatsain/test split.

Average Fitness on Training Data Aver age Fitnesson Training Data

Euclidean KTree Euclidean KTree
Auto-MPG 3.074-0.06 2.57+0.07 Bodyfat 3.44+0.12 2.99+0.19
CPU 0.06£0.01 0.04+0.00 Houseprice 221.3813.42 176.35+11.23
Boston-Nox 0.05-0.00 0.04+0.00 Tecator 2.5#0.1 244+0.1
Boston-Price 5.120.21 4.14+0.44 NO2 0.57-0.01 0.55+0.01
Octane 0.710.04 0.67+0.043 Abalone* 2.48 2.27

Deathrate 48.823.27 41.074+2.02

5 Related Research

Some previous work on the use of evolutionary algorithmé kérnel-based learning
has focussed on the optimisation of a single kernel, e.gRBie kernel for SVM clas-
sification [12]. In Lessmanat al.[13], a GA is used to optimise a set of parameters for
five kernel types and the SVKI parameter, and is also used to determine how the result
of each kernel is combined (addition or multiplication) feegthe final kernel output.
This approach is guaranteed to produce Mercer kernelsidehe Sigmoid kernel
component setting does not break Mercer’s condition. Ingamson with KTree, how-
ever, the approach of Lessmaanal. is significantly restricted in the range of kernels
that it can generate.

In more recent research, Gageteal. [14] have proposed an approach for evolving
kernels for a k-NN classifier. This approach is called thel@imnary Kernel Machine
(EKM). Although EKM bears some similarity to KTree in its us& GP to evolve a
kernel, it differs considerably in a number of areas, intigdhe kernel function repre-
sentation and fithess measure used to evaluate candidawskerheir approach does
not guard against non-Mercer kernels and the fitness funigibased on k-NN specif-
ically, i.e. the same fitness could not be used with SVMs, #iseigase with the fitness
function of KTree. Furthermore, EKM uses a co-evolutiorfaggnework to evolve two
subsets of the training datasefitaessand aprototypeset, which are used in the fithess
measure (see Gageeal.for more details on this fithess measure). The authors do note
that this competitive co-evolution can be problematic iattthere is a danger of the
fithess subset capturing noisy examples, thus resultingpooafinal model.

6 Conclusions

This paper has demonstrated the use of KTree to evolve alkemned distance metric
for use in a k-NN regression algorithm. Experiments on bgtitreetic and real-world
data showed that KTree is capable of evolving a distanceiertétit can improve on
the widely used Euclidean distance. This represents a rapioach that facilitates
the automatic discovery of a custom distance metric for siquéar data domain. In
building on previous work with KTree, these results also destrate that KTree can

248

be applied to different kernel methods and to different nraekearning problems, i.e.

classification and regression. One of the great advantagés iuse of kernel methods
is that they are easily adapted to work with different typkdaia; provided a kernel

function can be defined for comparing two data objects, ampeiemethod can be

applied to this data and a kernel-based distance metric nsayb& derived. Future

work could investigate the use of KTree in structured dataalas, such as the protein
structure classification problems tackled by Wang & Scditt The extension of this

KTree research to tackle such problems may require the tlefiraf new operators for

the KTree kernel, which would allow it to manipulate strueth data objects.

Acknowledgements

This first author’s research has been funded by Enterpredanid’s Basic Research
Grant Programme. The second author acknowledges the sappdviarie Curie Trans-
fer of Knowledge Fellowship of the European Communitys ISikramework Pro-
gramme, Contract MTKD-CT-2005-029611. The authors are @tateful to the High
Performance Computing Group at NUI Galway, funded underlPRa&nd Ill, for pro-
viding access to HPC facilities.

References

1. Karakoc, E., Cherkasov, A., Cenk Sahinalp, S.: Distance bakgatithms for small
biomolecule classification and structural similarity sea@h(2006)
2. Yu, K., Ji, L., Zhang, X.: Kernel Nearest-Neighbour Algorithmeudal Processing Letters
15 (2002) 147-156
3. Howley, T., Madden, M.G.: An evolutionary approach to automatioddeconstruction. In:
Proceedings of the International Conference on Artificial Neural Meks/(ICANN). (2006)
Cristianini, N., Shawe-Taylor, J.S.: An Introduction to Supporttge®achines. (2000)
Scholkopf, B., Smola, A.: Learning with Kernels: Support Vectadiines, Regularization,
Optimization, and Beyond. MIT Press (2002)
6. Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., Watk@: Text classification
using string kernels. Journal of Machine Learning Rese2(@002) 419-444
7. Wang, C., Scott, S.D.: New Kernels for Protein Structural Motif Digcg and Function
Classification. In: Proc. of the 22nd International Conference orhivied_earning. (2005)
8. Cristianini, N., Shawe-Taylor, J.: Kernel Methods for Pattern Asialy(2004)
9. Witten, I, Frank, E.: Data Mining: Practical Machine Learning Toald @&echniques with
Java Implementations. Morgan Kaufmann Publishers (2000)
10. Newman, D.J., Hettich, S., Blake, C.L., Merz, C.J.: UCI Réposof machine learning
databases (1998)
11. Demsar, J.: Statistical Comparisons of Classifiers over Multiple Detsa Sournal of Ma-
chine Learning Resear@h(2006) 1-30
12. Friedrichs, F., Igel, C.: Evolutionary Tuning of Multiple SVM Paraemns. In: Proc. of the
12th European Symposium on Artificial Neural Network. (2004) 5235
13. Lessmann, S., Stahlbock, R., Crone, S.: Genetically constrketad|s for support vector
machines. In: Proc. of General Operations Research (GOR)5) 200
14. Gagne, C., Schoenauer, M., Sebag, M., Tomassini, M.: GdrPeigramming for Kernel-
based Learning with Co-evolving Subsets Selection. In: Parallel Probt#wng from Na-
ture (PPSN 1X). (2006)

S

249

