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Abstract

In many situations it is of primary interest to estimate the rate of change of the relationship

between response and explanatory variables. In this thesis derivative estimation using spline

smoothing is explored. A review of derivative estimates found as a by product of several

popular spline smoothing techniques is provided. Concerns with these estimates are raised

and an additive penalty method utilising the attractive properties of P -Splines is introduced.

This approach is shown to improve on semiparametric and P -Spline derivative estimates in

simulated smoothing scenarios. Variability bands for derivative estimates are developed for the

additive penalty and P -Spline methods with these tested for coverage and precision in further

simulations. Motivating examples in environmental, biomedical and astronomical applications

are revisited throughout the thesis.
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Introduction

In a range of disciplines it is often the case that, when analysing data, the derivative, or rate of

change, of observed data is of primary interest. In the regression model y = f(x)+ε for example,

one is often not interested in the underlying function f itself, but rather in the relative change

d
dx

of f when increasing or decreasing x by a small value dx. In the situation where data are

observed over time, the �rst derivative will correspond to velocity, the second to acceleration.

Derivatives f ′ are also used in asymptotic approximations to obtain con�dence intervals and

optimal bandwidths for example. A further �eld of application for derivative estimation is

change point problems. For instance, when analysing blood lactate data of elite athletes, one

is interested in the workload at which the lactate level suddenly rises, which can be detected

by �nding the maximum of the second derivative (Newell et al. [39]).

A popular tool for derivative estimation is spline smoothing, with a large number of variants

(e.g. smoothing splines, P -Splines) being available. Choice of smoothing parameter for these

methods when the derivative is of primary concern is an area where there seems to be no

consensus for the optimal choice. Generally the smoothing parameter is selected based on

optimising f̂ and not the derivative, which may lead to considerable undersmoothing.

The usual way of estimating derivatives is to take the derivatives as a by-product of the

estimate f̂ . In other words, if f̂ is an estimate of f , one considers dl

dxl f̂ as an estimator of

the lth derivative f (l), l = 0, 1, 2, . . . . Several authors have pursued this idea (e.g. Heckman

& Ramsay [21]), using splines with or without penalisation. The simplicity of this idea led

to several papers which gave the impression that the entire issue of so called `nonparametric

derivative estimation' was solved. To a certain extent this has led to a lack of recent research

on the topic, which is unfortunate as many open questions remain. Derivative estimates tend
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to be much less robust to horizontal and vertical outliers than estimators of the regression

function. These estimates also su�er from boundary e�ects, Ramsay [42] noted that `typically

one sees derivatives go wild at the extremes, and the higher the derivative, the wilder the

behavior'. Further problems arise when it comes to smoothing parameter selection, where

automatic routines, such as cross-validation, can be `poor guides'.

The main goals of this PhD thesis are

• To provide a comprehensive review of derivative estimation for noisy data.

• To outline the challenges faced in obtaining accurate derivative estimates when a nonlinear

relationship between explanatory and response exists.

• To compare the performance of current methods for derivative estimation.

• To develop an approach to derivative estimation that achieves improved performance over

current methods.

• To establish suitable variance estimates for these estimators in order to produce reliable

variability bands.

The thesis is arranged as follows:

Chapter 1 introduces the datasets that have motivated this research. A nonlinear relation-

ship between explanatory and response variables and considerable noise are present in each. The

main question of interest for each dataset can be answered using a �rst and/or second derivative

estimate. In the Winter Nutrient and Scottish Bird Count illustrations �rst derivative estimates

are required to estimate whether signi�cant changes in levels of nutrients and/or bird count

are present over a period of time and to estimate when these changes transpire. In the Blood

Lactate illustration a second derivative estimate is used to �nd an objective endurance marker

for comparisons within and between athletes. The Astronomical data is somewhat complex in

its background; it involves �nding derivative estimates of a convolution of uncertain variables

of di�erent lengths as a means to estimate gravitational mass density distributions, which are

otherwise impossible to measure.

In Chapter 2 basic methods for estimating the rate of change are discussed. Considering

the situation of data (xi, yi) for i = 1, . . . , n, the simplest approach to derivative estimation
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is to calculate the di�erences between consecutive response observations yi − yi−1 and divide

by di�erences in corresponding predictor values xi − xi−1 for i = 2, . . . , n. It becomes obvious

that estimates from such �rst order di�erences are highly unstable for data in which a nonlinear

relationship between the variables is apparent. A small simulation to display these shortcomings

is presented. Some simple modelling based approaches to derivative estimation using linear

models are then described.

Focus then moves in Chapter 3 to more complex modelling techniques capable of handling

nonlinear relationships in observed data, i.e. smoothing. Derivative estimates are found as a

by-product of a smooth estimate of the relationship between observed variables. Spline smooth-

ing methods are motivated and several types of smoother are introduced including smoothing

splines, mixed model smoothing and P -Splines. Application of P -Splines to the case of a deriva-

tive estimation problem involving a count response is detailed. A literature review of derivative

estimation using spline smoothers is included. These methods are applied to the motivating

applications and the resulting estimates are compared.

Chapter 4 directs attention solely to derivative estimation using P -Splines. P -Splines have

become widely popular since their introduction (Eilers & Marx [12]). As far as derivative

estimation is concerned, little work has been done to study performance of derivative estimates

using P -Splines. Several simulation studies into the e�ects on P -Spline derivative estimates of

sample size, variability, smoothing parameter selection and P -Spline components are provided.

Chapter 5 examines possible adjustments to the P -Spline method for derivative estimation

which may help to improve goodness of �t. One such method is the use of an extra additive

penalty term in the P -Spline framework. Motivation for this additive penalty model is pro-

vided. This method introduces yet more choices to the already choice-laden P -spline smoothing

framework. These choices are explained, sensitivity to choice compared, and optimal decisions

are made. R code for this method is included in the Appendix. Since one of the datasets,

the Scottish Bird Count data, contains a response of counts the additive penalty method is

extended in this thesis to deal with a Poisson response and derivative estimates are shown to

be easily calculated. The performance of this modi�ed appraoch in derivative estimation is

compared to the methods of semiparametric regression and P -Splines.
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Chapter 6 investigates further aspects of derivative estimates. Variability bands have not

been �tted to derivative estimates from a P -Spline �t in the literature and so techniques for con-

struction of these bands, as well as for the additive penalty method, are developed and tested

rigorously for coverage. The variability bands developed for P -Spline and additive penalty

derivative estimates are compared with bands from mixed model smoothing and those found

through bootstrap resampling of residuals. Estimating certain features of a derivative is ex-

plored through some simulations using the additive penalty method. These �ndings are then

compared with those using other spline smoothing techniques.

Finally, in Chapter 7, a summary of the main results provided is given, along with proposals

for further research in the area of derivative estimation. A �nal conclusion for each of the

motivating examples is also presented.
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Chapter 1

Motivating Data

In this Chapter the four main motivating illustrations of analyses requiring derivative estimation

are introduced. Each example poses a distinct problem involving derivative estimation in some

sense. Later the functions which are used for simulations are introduced with reasoning provided

for their choice.

1.1 Winter Nutrients Data

Researchers at the Marine Institute of Ireland collected water samples from the western Irish

Sea between late November and early February in 1990/1991. EU member states measure

winter nutrient concentration in marine waters as an indicator of trophic status. Nutrient

inputs to the Irish Sea are numerous. By far the largest input, in terms of quantity, results

from the �ow of large volumes of water through St. George's Channel from the Celtic Sea.

Levels of two nutrients, Phosphate and NTRZ (which is a combination of Nitrate and

Nitrite), were measured in samples taken from a depth of 3 metres (see Figures 1.1 and 1.2).

The main goals for this study were to model the rate of change of the levels of contamina-

tion over the course of the Winter and to estimate the times at which signi�cant changes in

contamination were found. Once a reliable �rst derivative estimate, along with con�dence or

variability bands, has been achieved then signi�cant zero crossings (i.e. con�dence/variability

bands fully above or below zero of the derivative) indicate signi�cant increases or decreases of

contamination relative to the day of measurement. Once a signi�cant increase or decrease has
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Figure 1.1: Phosphate contamination of the Irish Sea measured on 131 days during 1990 and
1991.
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Figure 1.2: NTRZ contamination of the Irish Sea measured on 131 days during 1990 and 1991.

been found it is of interest to the researchers at what point in time it occurs.
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1.2 Scottish Bird Count Data

Counts of 11 wetland bird species were collected annually at speci�ed wetland locations across

Scotland from 1974 to 2004 as part of an environmental study into the relationship between

climate change and bird numbers. Water and wetland features have determined where people

have settled, and how communities and economies have grown. The vision is to see healthy

and biologically diverse rivers, lakes and wetlands in a landscape managed for the sustainable

use of water. Healthy numbers of these birds, such as the Grey Plover (Figure 1.3), is a strong

indicator of �ourishing wetlands.

Figure 1.3: Winter plumaged Grey Plover.

Figure 1.4 displays 31 counts of Grey Plover taken annually between 1974 and 2004. The

primary aim is to determine whether there has been a signi�cant decrease in count over time.

For conciseness, the results of the analysis of the count of Grey Plover only are contained in

later chapters, it is assumed that the analysis carried out here is transferable to the other ten

species where data are available. A Mann-Kendall test (Kendall [25]) could be performed in

order to test for an overall trend present in the data. The Mann-Kendall test works by �rst

identifying the sign of the change between consecutive observations, i.e. either -1, 0 or 1. The

Mann-Kendall statistic S is the sum of all signs of slopes. A high value of S indicates an

increasing trend, a low value a decreasing trend and a small value indicates no trend. However,

a global trend indicator is not of interest here. It is necessary to �nd an accurate representation

of the rate of change of the count relative to the year of measurement, i.e. the �rst derivative
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of the underlying function which describes the behaviour of the data. Finding an accurate �rst

derivative estimate of the observed count along with variability bands would allow signi�cant

rate of change to be found in a similar fashion to the Winter Nutrients example.
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Figure 1.4: Count of Grey Plover 1974 to 2004.

The count of Grey Plover in Figure 1.4 clearly has a nonlinear relationship with Year.

Therefore, simple linear regression methods are not suitable to model this relationship unless

a transformation of count is taken. A polynomial regression could be used, however, the

use of polynomial regression, as will be seen, has limitations for robust analysis of nonlinear

relationships. Furthermore, since the data come in the form of counts, observations of the

response variable should be treated as representations of a Poisson distributed random variable.

Methods to estimate derivatives of a Poisson generated response are presented in Chapters 3

and Chapter 5.

1.3 Blood Lactate Data

Blood lactate testing is often used as a measure of endurance in elite athletes. Such a test

involves collecting blood lactate at incremental workloads on a treadmill. A blood lactate test

was performed on a group of 23 elite athletes in order to estimate the �tness levels of each
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athlete. Figure 1.5 shows a single athlete's blood lactate measured at 10 incremental workloads

on a treadmill. The data are a discrete approximation to an underlying continuous system, i.e.

the lactate response to incremental exercise curve, or `lactate curve' for short.
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Figure 1.5: Blood lactate data for one individual measured at 10 speeds on a treadmill.

Several features of an individual's lactate data have been considered to be good predictors

of endurance performance to track changes in �tness over time. Typically these features, or

endurance markers, are used to monitor changes in aerobic �tness, set training regimes, and

predict endurance performance. However, determination of these markers can be problematic.

Lundberg et al. [31] �t two linear splines which join at the location (workload or speed) of

the lactate threshold (LT), a unique point at which lactate production shifts from an anaerobic

to an aerobic state. The location where the two linear splines join is known as a knot. Least

squares is used to estimate the knot location and the slopes and intercepts of the �tted lines.

This technique is known as a broken stick model, with the `break' occurring at the LT. Beaver

et al. [3] propose log transformations of both the workload and observed blood lactate to obtain

a better estimate of the LT.

Both of these methods have come in for criticism as the LT is not a known physiological

entity and its existence is merely an assumption which suits these markers. The broken stick

model assumption that lactate is linear post LT also leads to criticism, as does the fact that using
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linear regression is sensitive to outliers when the sample size is low. The log transformation of

both explanatory and response assumes the increase in lactate post LT is exponential.

Newell et al. [39] [40] suggest the workload corresponding to the maximum second deriva-

tive of the lactate curve (D2LMax) as another such marker. There is an intuitive reason for

measuring the point at which the maximum second derivative, or maximum change in slope,

occurs. From Figure 1.5 one could imagine that a broken stick model, as described above,

would be a good �t to the data. Attempting to estimate the point at which this `break' occurs

is equivalent to �nding the point at which the maximum of the second derivative occurs. This

marker has been shown (Newell et al. [39]) to be both reliable and replicable so that endurance

can be compared within and between athletes.

The main question of interest here is to obtain a second derivative estimate which leads to

an accurate estimate of the speed corresponding to its maximum.

1.4 Astronomical Data

Figures 1.6 and 1.7 display ρgas (gas density pro�le) and temperature emissions for a sample

galaxy cluster (A1995) obtained by the X-ray measuring satellites Chandra and XMM Newton.

The aim of this study is to �nd gravitational mass density distributions ρtot(x1, x2, x3) of clusters

of galaxies. The equation of hydrostatic equilibrium (1.1) allows for the estimation of ρtot using

di�erentiation together with the T and ρgas measurements

d

dx

d
dx

(ρgaskTµmp)

ρgas
= −4πGρtot (1.1)

where x (in arcmin) is a measure of distance, G is the universal gravitational constant, k is

Boltzmann's constant, µ is the mean molecular weight in any cluster and mp is the mass of the

proton.

The primary analysis requires di�erentiation of ρgaskTµmp and then further di�erentiation

of
d

dx
(ρgaskTµmp)

ρgas
. From this, estimates of ρtot can be ascertained. These estimates can be hugely

important to researchers in astronomy.

The ρgas variable is not measured directly but is found through an astronomical model
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Figure 1.6: Gas readings at 64 distances in arcmin (an astronomical distance measure).

developed by collaborators on this project. However, there is measurement error in the tem-

perature data. This uncertainty has contributions from instrumental errors as well as model

sensitive factors. As such, lower and upper con�dence estimates were provided along with an

estimate of temperature at each of 8 arcmin. There are collaborators on this project who have

doubts as to the accuracy of the set temperature measurements at the highest value of arcmin

in Figure 1.7. From the extent of the bounds around this estimate the value is clearly highly

unstable.

A further issue with these data is that the temperature variable contains far fewer obser-

vations (8) than ρgas (64). Hence, it is �rst necessary to predict values of temperature at the

values of arcmin where ρgas has been observed. The ρgas measurements are collected at arcmin

values far higher than the temperature data. Since extrapolation of the temperature data would

be inaccurate due to the nonlinear nature of the data, it is predicted only over the range of

arcmin where ρgas has been observed. This leaves 51 prediction points for the temperature

variable.
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1.5 Simulated Functions

Known functions will be used to simulate data in order to test the performance for the derivative

estimation methods which shall be introduced over the course of this thesis. These functions

were chosen from the smoothing literature as they o�er a range of trigonometric, polynomial

and exponential components which lead to varied nonlinear characteristics and subsequent

di�culties in derivative estimation. The functions chosen for simulation are displayed in Table

1.1 below, with each function and corresponding �rst and second derivatives plotted in Figures

1.8 to 1.13.
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Table 1.1: Six functions under examination throughout this thesis.
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Figure 1.10: Plot of f3, f
′
3 and f

′′
3

A simple sinusoidal function f1 was taken from Härdle & Bowman [19]. Both the `bump'

and `logit' functions f2 and f5 were taken from Ruppert [46] and f6 is just a variant on the

`bump' function, with a cosine term added. The functions f1, f2, f5 and f6 were chosen to

represent smoothing scenarios similar to that involved in the motivating illustrations. The
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Figure 1.11: Plot of f4, f
′
4 and f
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4
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Figure 1.12: Plot of f5, f
′
5 and f

′′
5
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Figure 1.13: Plot of f6, f
′
6 and f

′′
6

functions f2 and f6 have a single well de�ned maximum second derivative which is similar to

a typical Blood Lactate curve. These will be used later to discover how the proposed methods

are likely to perform in that example. The more complex sinusoidal f3 is from Härdle [18]

and the well known Doppler function f4 was obtained from the paper by Donoho & Johnstone

[10]. Both f3 and f4 were chosen since they present rather di�cult smoothing (and therefore

derivative estimation) problems in that a change in `wiggliness' is apparent.
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1.6 Chapter Summary

It is clear that these illustrations o�er interesting and distinct problems that involve obtaining

accurate derivative estimates. First derivative estimates are needed for a continuous (Winter

Nutrients) and count (Grey Plover) response. Second derivative estimates are required for

the Blood Lactate example where the sample size is small. In the Astronomical data two �rst

derivative estimates are required once variables with di�erent sample sizes have been combined.

The six functions which shall be used in simulation studies have been introduced with reasoning

provided behind each choice.

Discussion of what exactly one means by `rate of change', along with some rather basic

methods for estimating this quantity are introduced in the following Chapter. At several points

throughout this thesis, the datasets pro�led here will be revisited using the methods as they

are introduced.
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Chapter 2

Derivative Estimation Using Simple

Techniques

In this Chapter some basic methods to estimate derivatives will be introduced, beginning with

a simple data driven approach, then moving to more sophisticated modelling procedures. The

nonlinear relationships between variables (e.g. Figure 1.1, 1.2, 1.4, 1.5, 1.6 and 1.7) in the

motivating datasets from Chapter 1 suggest that modelling which can handle nonlinear rela-

tionships is required. Initially, polynomial regression is employed to achieve better performance

in derivative estimation, although �aws with this modelling approach are found and discussed

motivating the need for more complex procedures.

2.1 Derivative Estimation by Sequential Di�erences

When estimating the rate of change, or derivative, how the response variable y changes with

respect to an explanatory variable x from observation to observation is of interest, i.e.

∆yi
∆xi

=
yi+1 − yi
xi+1 − xi

. (2.1)

When calculated for all i = 1, . . . , n − 1 a vector of sequential di�erences or `slopes' y′ is

obtained. This is a �rst order di�erence estimate of the rate of change of the response. A

second order di�erence estimate of the second derivative is found by calculating
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∆2yi
∆2xi

=
yi+2 − 2yi+1 + yi
xi+2 − 2xi+1 + xi

(2.2)

for all i = 1, . . . , n− 2.

2.1.1 Example of a Sequential Di�erence Approach

The Grey Plover data, consisting of n = 31 counts taken annually from 1974 to 2004, are

displayed in the left panel of Figure 2.1. The primary aim of the study is to investigate

whether a signi�cant decrease in count is evident. One approach to this question is to �nd an

estimate for the rate of change and to compare this estimate with the line at y′ = 0. A negative

rate of change suggests a decrease in bird numbers (the notion of a `signi�cant' decrease will

be discussed at length in later Chapters).
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Figure 2.1: Grey Plover data 1974 to 2004 (left) with First Order Di�erences and interpolating
�t (right).

Since the measurements are taken annually they are equally spaced such that, taking x =

Y ear, ∆xi = 1 for all i = 1, . . . , n − 1. Using (2.1), the �rst order di�erences vector of length

n− 1 (for each order di�erence taken, an observation is lost) is displayed in the right panel of

Figure 2.1. Note that 14 of the 30 �rst order di�erences were negative, i.e. a decrease in count

was evident in 14 of the years. The �rst order di�erences have mean 3.6 and standard deviation

85.8. These summary statistics give an overall view of the likely change in levels of Grey Plover
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from 1974 to 2004. The primary goal, however, is not just to �nd whether a change occurs but,

if a change is found, to identify the year that this transpires. This cannot be estimated using

global measures or tests of trend. In order to investigate the performance of this estimate it is

necessary to quantify the error of these �ts.

2.1.2 Quantifying Error

In the scenario where y = f(x) + ε it is required to estimate the underlying function f which

best describes the relationship between x and y. The mean squared error (MSE) is the most

popular method for measuring goodness of �t and is de�ned

MSE[f̂ ] = E[f̂ − f ]2, (2.3)

where f̂ is the estimator of f . With a little manipulation

E[f̂ − f ]2 = E[f̂ 2 − 2ff̂ + f 2]

= E[f̂ 2]− 2E[ff̂ ] + E[f 2]

= E[f̂ 2]− 2fE[f̂ ] + f 2

= E[f̂ 2]− E[f̂ ]2 + E[f̂ ]2 − 2fE[f̂ ] + f 2

= V ar[f̂ ] + (E[f̂ ]− f)2

i.e.

MSEf̂(x) = V arf̂ +Bias2f̂ . (2.4)

The MSE quanti�es both the Variance and Bias of a �t; interpolation has high variance but

zero bias while a linear �t will have low variance but high bias. This so called `bias-variance

trade-o�' needs to be managed in order to �nd an optimum �t. A more detailed discussion of

the bias-variance trade-o� will be given later.

When quantifying the error in a real life application the function f is unknown and therefore

MSE (2.3) is not practical. A natural surrogate is to consider the mean squared residuals ε̂
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ε̂ =

√∑n
i=1(yi − ŷi)2

n
. (2.5)

To measure performance in derivative estimation, it is necessary to simulate from a known

function f such that derivatives f (l) (l = 0, 1, 2, . . . ) are known. When quantifying error the

root mean squared error can be employed for derivative estimation. This measures both the

variance and bias of the �tted derivative.

RMSED(l) =

√∑n
i=1(f

(l)(xi)− f̂ (l)(xi))2

n
. (2.6)

For l = 0, (2.6) is known as RMSE and measures the error in the �t to the observed data

yi = f (0)(xi).

2.1.3 Simulations for Sequential Di�erence Estimates

A small simulation study was performed to test the performance of �rst order di�erence esti-

mates for the rate of change on the function f1 from Section 1.5.

One thousand samples of n = 50 response values y were simulated from the function

f1 = sin 4πx (introduced in Section 1.5) with x uniform on [−1, 1] and some error ε added such

that y = f1(x) + ε, where ε ∼ N(0, 1). A sample size of �fty is taken as it is close to the

typical value of the sample sizes of the motivating examples (namely n = 11, 31, 64 and 131).

Since it is known that f ′1 = 4π cos 4πx the accuracy of the �rst order di�erence method can be

measured using the root mean squared error of the lth derivative (RMSED(l), (2.6)) of f1.

Figure 2.2 displays the error observed using a �rst order di�erence estimate of the rate of

change of the function f1 = sin 4πx. Without another method for comparison it is di�cult to

make judgements about the accuracy of this estimator. However, the range of f ′1 is [−10, 10],

such that an average error of 2359 with standard deviation 20,261 is not very good performance!

Figure 2.3 displays one randomly selected replicate of these simulations with �rst order

di�erences plotted along with the actual �rst derivative of f1. There are outliers beyond -1500

which would have a large in�uence on the RMSED(1). Outliers such as these are most likely

due to the sensitivity of di�erencing to unusual observations. This estimation procedure is not
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Figure 2.2: RMSED(1) found using First Order Di�erences (left panel) and log(RMSED(1))
(right panel).

a precise one, its simplicity hinders any accurate decision making and more complex methods

for estimating rate of change are necessary. The estimate of the rate of change in the Grey

Plover example using sequential di�erences thus comes into question.
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curve).
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2.1.4 Summary of Sequential Di�erences

Simply �nding the �rst order di�erence between successive observations does not give an ac-

curate guide to the likely rate of change of a response variable relative to an explanatory. The

method is too volatile and the variance of the observed data is magni�ed when estimating the

rate of change using a �rst order di�erence method. Whether there are methods involving dif-

ferences of observations which can o�er suitable derivative estimates has yet to be seen. Where

little variance exists in a nonlinear relationship between variables it is possible that �rst order

di�erences may o�er decent estimates of the rate of change. There have been few attempts in

the recent literature to use �rst order di�erences when estimating the rate of change. Tukey

[59] discusses data driven smoothing approaches using sequential di�erences. Sangalli et al. [50]

model the rate of change of blood �ow in the coronary artery but abandon the use of simple

di�erencing at an early stage in their paper in favour of a more practical approach. There now

seems to be an argument to model the relationship between the variables and then attempt to

discern from this an estimate for the rate of change.

2.2 Derivative Estimation Using Linear Models

Linear and polynomial regression methods are commonly used in statistical analyses. Here both

modelling approaches are reviewed, applied to some of the motivating examples and tested for

performance in derivative estimation through simulation.

2.2.1 Simple Linear Regression

The classical approach to modelling the relationship between a response variable y and a single

explanatory variable x is written as

y = β0 + β1x+ ε, (2.7)

and is known as the simple linear regression model where errors ε are assumed independent

and identically distributed (iid) Normal with zero mean and constant variance σ2. The slope

parameter β1 is the average change in response per unit change in explanatory. Hypothesis
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tests allow conclusions to be drawn about the relationship between response and explanatory,

but this model relies on the assumption that the response is linear in the parameters (β0, β1).

If a nonlinear relationship exists one may transform y to force a linear relationship with x.

In terms of derivative estimation, the coe�cient β̂1 is an estimate of the global slope pa-

rameter β1. Once �tted (using the simple least squares methods), it provides a one number

summary of the rate of change of the (linear) function underlying the observed data. In the

datasets which have motivated this research, a single scalar estimate of the rate of change is

unlikely to be adequate to answering the fundamental questions of interest.

2.2.2 Polynomial Regression

In order to model nonlinear relationships between the explanatory and response variable one

can amend the simple regression model by transforming y or by introducing polynomial e�ects

of x. A pth degree polynomial regression is of the form

y = β0 + β1x+ β2x
2 + · · ·+ βpx

p + ε. (2.8)

Thus �rst derivative estimates ŷ′ are found using

ŷ′ = β̂1 + 2β̂2x+ · · ·+ pβ̂px
p−1 (2.9)

where β̂ = (β̂0, . . . , β̂p) is estimated using the least squares method.

2.2.3 Application of Derivative Estimation Using Polynomial Regres-

sion

Figure 2.4 exhibits polynomial regression �ts of the Grey Plover data using quadratic, cubic

and quintic polynomials in x (i.e. Y ear) along with a simple linear regression �t.

The linear regression �t is not suitable due to the nonlinear relationship which exists between

Y ear and the Grey Plover count. The polynomial regression method �ts the data quite well

as the degree of polynomial is increased. The quintic �t seems to give a good description of
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Figure 2.4: Regression Models for the Grey Plover data using linear (red), quadratic (green),
cubic (blue) and quintic (cyan) polynomials.

the behaviour of the counts moving through the years. The mean squared residuals ε̂ (Section

2.1.2) of these �ts is displayed in Table 2.1. It is evident that as the degree of the polynomial

increases, the error decreases. However, at p = 30 (i.e. n − 1) no error would be present but

an interpolating �t is not useful to the analysis because it has very high variance. This is the

bias-variance trade-o� argument once again.

p εi
1 88.1
2 69.5
3 59.1
5 55.6

Table 2.1: Mean squared ε using degree p Polynomial Regression to �t the Grey Plover data.

Estimates of the rate of change of count with respect to year are shown in Figure 2.5. These

estimates are a massive improvement on using �rst order di�erences.

In order to obtain a sensible estimate for rate of change it is necessary to �t a polynomial

of degree l + 2, where l is the order of derivative needed. If a degree of l + 1 is selected then

the lth derivative estimate will be linear which may not be a sensible estimate in nonlinear

scenarios. Discounting the �rst year, both the cubic and quintic estimates show an increasing
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Figure 2.5: Estimates of the rate of change of count obtained by linear (red), quadratic (green),
cubic (blue) and quintic (cyan) regression with reference line at 0 (dotted).

count until some time between 1995 and 2000.

2.2.4 Simulations Varying the Degree of a Polynomial Regression

In order to test the performance of polynomial regression derivative estimates, a simulation

study was performed. To reiterate, since actual derivatives of data are unknown, derivative

estimators can only be tested for performance using known functions.

Similarly to the simulations performed in Section 2.1.3, samples of size n = 50 were simu-

lated 1000 times from the function f1 = sin 4πx from Section 1.5. An error vector ε ∼ N(0, σ2)

was added to f1 with x uniform on [−1, 1] and σ = 1
3
range(f1). The variance is set to a fraction

of the range of the data to allow for realistic noise to be included in the simulated data. For

example, if σ = 1 were chosen this would be negligible if a function's range was (-100,100).

Polynomial regression with p = 3, 5, 7, 9 was used to estimate f1 and f
′
1 with performance once

again measured using the RMSE and RMSED(1) respectively.

Boxplots of the RMSE and RMSED(1) are provided in Figure 2.6. It is evident that as the

degree of the polynomial is increased the RMSE decreases, i.e. the estimates of f1 improve.

Interestingly this monotonic improvement is not carried over to estimates of f ′1. One would
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logically believe that a better estimate of f1 would garner a better estimate of f ′1, but this is

not the case. Indeed, results from Table 2.2 reveal that using a polynomial of degree p = 7

results in the best performance for estimating f ′1.
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Figure 2.6: RMSE and RMSED(1) for estimates of f1 (left) and f ′1 (right) using polynomial
regression.

p RMSE RMSED(1)
3 0.65(0.04) 9.1(0.47)
5 0.63(0.04) 9.7(0.77)
7 0.60(0.05) 8.6(1.34)
9 0.47(0.05) 12.8(3.51)

Table 2.2: Performance using degree p Polynomial Regression for the simulated data.

Figures 2.7 and 2.8 provide plots of one replicate simulation chosen at random along with

estimates of f1 and f ′1 which call into question the accuracy of estimates for the Grey Plover

data given in Figure 2.5.

The large variability in the higher degree polynomials causes over�tting estimates at di�er-

ent periods along the range of x. The results from Table 2.2 show that the p = 7 polynomial is

the better estimator for f ′1 and this seems to be resultant from the high variability of the nonic

polynomial.

Figure 2.9 displays interpolation of the Grey Plover data. Interpolation is not the optimum

method to explain a (nonlinear) relationship because it does not account for sampling error

and an interpolated �t has very high variance.
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Figure 2.7: Estimates of f1 (black curve) using cubic (red), quintic (green), septic (blue) and
nonic (purple) polynomials.
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Figure 2.8: Estimates of f ′1 (black curve) using cubic (red), quintic (green), septic (blue) and
nonic (purple) polynomials.

Using higher degree polynomials can lower RMSE for estimation of f , but this does not

always translate to improved RMSED(1), i.e. estimates of f ′. The large variance contained in

estimates which use a high degree global polynomial causes a high variability in estimates of

f ′.

The use of global polynomials o�ers no �exibility to local change. Since the bases on which

these �ts are made (i.e. powers of x) are global, a local change, say in a tail, will have a global
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Figure 2.9: Interpolation of the Grey Plover.
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Figure 2.10: Estimates using p = 5 of the Grey Plover data (left) and the rate of change of Grey
Plover (right) with (dashed red curve) and without (solid blue curve) the 1994 observation.

Figure 2.10 gives estimates of the Grey Plover data using a p = 5 polynomial where the 1994

observation of 583 birds has been removed. There is a global e�ect of removal of the observation

caused by the rigidity of the polynomial basis. The removed observation at Y ear = 1994 also

has an e�ect on f̂ circa Y ear = 1982, which is magni�ed when using this �t to estimate f ′. The
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higher the degree of the polynomial, the better the �t but the more sensitive to local change

estimates become. Higher degree polynomials do not necessarily lead to improved estimates of

rate of change. It seems that global polynomial �tting is not conducive for derivative estimation

in noisy data.

2.3 Chapter Summary

Using both simulated and real data, the sequential di�erencing approach to estimating rate of

change has been shown to possess too many problems to be a viable approach to the derivative

estimation problem. Simple linear regression o�ers a global measure of trend which is not

suitable for the datasets with which this thesis is concerned and for derivative estimation in

all but a limited case. At �rst glance, polynomial regression o�ers a suitable �t and derivative

estimate for the Grey Plover data. Strangely, monotonic increases in performance in derivative

estimation with higher degree polynomials were not observed in the context studied here. The

increased sensitivity of higher degree global polynomials leads to poor performance in simulated

derivative estimation scenarios due to local change having global in�uence. It now seems that

a more robust local polynomial structure needs to be in place to allow for better estimates of

�rst and second derivatives.
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Chapter 3

Derivative Estimation Using Spline

Smoothing

Global polynomial �tting has failed to o�er the �exibility required when estimating derivatives

of noisy data. In this Chapter local methods for �tting curves to noisy data are motivated

with several nonparametric regression or `smoothing' techniques introduced and compared for

performance in estimating �rst and second derivatives of simulated data The focus will be on

spline smoothing methods with a short discussion on kernel versus spline methods. Smoothing

splines, P -Splines, mixed model spline smoothing and some adaptive smoothing techniques will

all be introduced with a guide to obtaining derivative estimates from each given. The datasets

introduced in Chapter 1 are used to examine these methods graphically and simulations are

used to measure performance empirically.

3.1 Derivative Estimation by Local Methods

Consider the situation

y = f(x) + ε (3.1)

where ε ∼ N(0, σ2) for some constant variance σ. The goal is to estimate f such that the most

accurate estimates of f ′ and f ′′ can be found. Using global polynomials to model nonlinear
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relationships to obtain trustworthy estimates of rate of change is not plausible since a high

degree polynomial basis is too sensitive when estimating derivatives (as seen in Section 2.2.4).

Fortunately there exist a wide range of local modelling techniques which o�er the �exibility

required to model these relationships.

3.1.1 Knots, Splines and Bases

A simple �t of the Grey Plover data can be seen in the left panel of Figure 3.1. This piecewise

linear �t, known as a broken stick model, serves as a starting point to the �eld of nonparametric

regression and smoothing.
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Figure 3.1: Piecewise Linear �t to the Grey Plover data using one (left) and two knots (right).

This �t has been achieved by choosing a breakpoint, or knot, in order to break up the range

of the data. The number and position of these knots is a subjective choice, here one knot at

Y ear = 1990 was selected. There are two paths to improve this �t. Firstly, joining the stick

at the knot to make it continuous results in a more realistic description of the relationship and

choosing further knots permits additional �exibility. The broken stick model, when applied to

the Grey Plover data, can be written as

Count = β0 + β1Y ear + β2(Y ear − 1990)+ + ε (3.2)
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where a+ = a if a > 0 and 0 otherwise. A continuous �t employing a further knot at Y ear =

2000 is displayed in the right panel of Figure 3.1. The �tted values are obtained through

ˆCount = β̂0 + β̂1Y ear + β̂2(Y ear − 1990)+ + β̂3(Y ear − 2000)+.

Taking a large number K of knots at locations κ1, . . . , κK leads to what is known as the

truncated linear spline basis

[1 x (x− κ1)+ . . . (x− κK)+]. (3.3)

A spline of degree q is a qth degree polynomial between each pair of knots (κk−1, κk) which

has q continuous derivatives in these intervals. In statistical analyses, spline functions o�er the

�exibility required to accurately describe nonlinear patterns which may exist in the relationship

between variables.

Historically, splines were used as a tool by draftsmen in boat building to accurately draw

curves by hand. Long thin strips of wood or metal, known as splines, were held in place by

weights (or knots) and would, due to their elasticity, sag between these knots into the smoothest

possible shape. A recreation of a classic spline tool is displayed in Figure 3.2.

Figure 3.2: A recreation of a draftsman's spline

Mathematicians started studying the spline shape (Schoenberg [51]), and derived the piece-

wise polynomial formula known as the spline curve or spline function. A general form for the
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model in (3.2) is

y = β0 + β1x+
K∑
k=1

uk(x− κk)+ + ε (3.4)

for some weighting vector uk. The number (K) and position (κk) of knots can be vital to the

shape of the estimate obtained. To arrive at a satisfactory �t, one could cycle through di�erent

combinations of number and position of knots although this would be an arduous task if done

subjectively. Automatic methods for estimating f by changing the number and position of

knots are known as free-knot spline or regression spline methods. Alternatively, rather than

changing a feature of the knots, one may attempt to control the in�uence of the knots through

the coe�cients uk. This can be done using penalisation of a feature of the uk (smoothing splines,

P -Splines) or through mixed model smoothing. Moreover, the choice of basis is arbitrary, such

that any general basis of dimension m

φ1(x), . . . , φm(x) (3.5)

can replace (3.3). There are many types of bases which are used in practice, although here the

emphasis is on the truncated power series

[1 x x2 . . . xp (x− κ1)
p
+ . . . (x− κK)p+], (3.6)

cubic spline and B-Spline bases. For a comprehensive summary of basis types see Chapter 3 of

Ramsay & Silverman [44].

The spline function f can be written as a linear combination of coe�cients and bases

f =
m∑
j=1

αjφj (3.7)

where α = (α1, . . . , αm) are the coe�cients of the basis de�ning the behaviour of the estimate

of f . Using X to denote the basis design matrix, f may be written

f = Xα.
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Then from (3.1)

ε2 = ‖y − f‖2

= ‖y −Xα‖2

is to be minimised. Taking the derivative with respect to α and setting equal to zero gives the

normal equations

2XXTα− 2Xy = 0.

The �tted coe�cients α are found by solving

α̂ = (XTX)−1XTy (3.8)

and �tted values ŷ are subsequently obtained using

ŷ = X(XTX)−1XTy

= Hy.

(3.9)

The matrix which transforms the observed y into �tted values ŷ is known as the hat matrix,

denoted H, which has the property that the degrees of freedom (also known as the e�ective

dimension) of the �t is the trace of H

dffit = tr(H) (3.10)

since tr(H) gives the number of parameters of the �t in (3.9).

3.1.2 Penalties and Smoothing Parameters

There are several types of penalties which may be enforced in the �tting process in order to

achieve an accurate estimate of f . Two of the most popular techniques are described later in

this Chapter. A general penalised spline smoothing model may be written
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n∑
i=1

[yi − f(xi)]
2 + λP (f) (3.11)

where P (f) is a function penalising some feature of f and λ, known as the smoothing parameter,

is a non negative constant which controls the smoothness of f̂ .

The smoothing parameter λ governs the balance between the smoothness and the accuracy

of the �t, i.e. it controls the bias-variance trade-o�. Setting λ too small, f̂ tends towards the

least squares �t which minimises
∑n

i=1[yi − f(xi)]
2. This gives an low bias estimate with huge

local variability, known as `undersmoothing' (left panel of Figure 3.3).
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Figure 3.3: Undersmoothing (left) and oversmoothing (right) of the Grey Plover data.

If λ is very large the most smooth �t is achieved which would be unable to describe a typical

noisy data situation. This choice causes large smoothing bias but small variability, referred to

as `oversmoothing' (right panel of Figure 3.3).

The choice of λ is therefore critical in spline smoothing and as such there exist several meth-

ods for determining the `correct' choice. One could select the smoothing parameter subjectively

by simply choosing λ based on observing curves and selecting the one which graphically `looks

right'. However, there is a need for an automatic selection of λ, perhaps for the inexperienced

user, or just as a starting point for a subjective choice. To this end there exist several automatic

methods for selecting λ.
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3.1.2.1 Cross-Validation

Cross-validation (CV) [61] [62] is the most popular automatic smoothing parameter selection

tool. It is generally built into packages for computational spline smoothing methods. The data

are �rst split into two disjoint sets. The function f is estimated using information from one of

the sets and is then used to predict the outcomes from the second. The predicted and observed

values of the second set can then be compared. The process can be altered using di�erent

partitions of the data, however, leave-one-out cross-validation is generally used. In this case

one data point is removed and predicted from the rest of the observations. This is repeated

for each xi, i = 1, . . . , n where the estimator with (xi, yi) left out is denoted by f̂−i. The CV

choice of λ is given by minimising

CVλ =
n∑
i=1

[yi − f̂−i(xi;λ)]2. (3.12)

This method can quickly become computationally hard to manage for large n since f̂−i must

be computed for i = 1, . . . , n which leads to a problem of order n2. The algorithm can be

simpli�ed such that the cross-validation score can be computed more easily. Let Hλ be the hat

matrix such that

Hλy =



f̂(x1;λ)

f̂(x2;λ)

...

f̂(xn;λ)


.

It has been shown (Hutchinson & de Hoog [24]) that one may now write the cross-validation

score (3.12) as

CVλ =
n∑
i=1

(
yi − ŷi

1− hii,λ

)2

(3.13)

where hii,λ are the diagonal elements of Hλ.

3.1.2.2 Generalised Cross Validation

The computation discussed above can be reduced yet further by replacing the diagonal hat

matrix entries by their average i.e.
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1

n

n∑
i=1

hii,λ =
1

n
tr(Hλ). (3.14)

This is known as generalised cross-validation (GCV), and was developed by Craven & Wahba

[7]. The criterion to �nd the optimum smoothing parameter is to minimise λ over

GCVλ =
n∑
i=1

(
yi − ŷi

1− n−1tr(Hλ)

)2

. (3.15)

It is usually the case that the value of λ given by GCV does not di�er by much from the

CV value, but it is computationally much quicker to use GCV and therefore advisable for large

n. Kohn et al. [26] compare CV and GCV when estimating both f and f ′ using a penalised

spline method. They �nd that for unequally spaced data GCV performs better, but otherwise

these criteria are comparable.

3.1.2.3 Akaike's Information Criterion and the Bayesian Information Criterion

Other selection criteria include Akaike's information criterion or AIC (Akaike [1]) and the

Bayesian information criterion or BIC (Schwarz [53]). Each attempts to balance the least

squares estimate with sensible smoothness. For AIC, λ is found by minimising

AICλ = log
n∑
i=1

(yi − ŷi)2 +
2dffit,λ
n

(3.16)

where dffit,λ = tr(Hλ). For the BIC, λ minimises

BICλ = log
n∑
i=1

(yi − ŷi)2 +
log(n)dffit,λ

n
. (3.17)

3.2 Derivative Estimation Using Splines

Surprisingly, there are few papers in the literature which use derivative estimation based on

splines as part of an analysis. Especially rare are those which notice, and/or deal with, problems

when estimating some lth derivative f (l) (l = 0, 1, 2, . . . ). Ramsay [42] gives his thoughts on

boundary problems in derivative estimates:
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"None of the current methods works [sic] well at the boundaries, in spite of claims to the

contrary in the local polynomial smoothing literature. Methods that control bias pay a savage

price in variance. Typically one sees derivatives go wild at the extremes, and the higher the

derivative, the wilder the behavior."

Ramsay & Li [43] describe how to obtain the rate of change of an underlying function f

which has been estimated by smoothing splines. Heckman & Ramsay [21] propose using L-

Splines, a form of penalised spline, to obtain derivative estimates. Zhou & Wolfe [66] derive

properties of regression spline derivative estimates but do not discuss problems which may be

inherent with these. Newell & Einbeck [38] describe problems found using both spline and

kernel derivative estimation techniques through a small simulation study. Sangalli et al. [50]

use a free-knot spline model to estimate the curvature of three dimensional heart data and give

a nice summary of derivative estimation from this type of model but do not notice any potential

problems with their results.

There are many spline smoothing methods which can be constructed through the building

blocks of knots, penalisation and bases discussed in Section 3.1. Here some of the more popular

techniques which are commonly used to estimate f and its derivatives are pro�led.

3.2.1 Smooothing Splines

Smoothing splines [45] are a popular penalisation based smoothing method. Knots are placed

at each observation, i.e. K = n, and a natural cubic spline basis is used, i.e. outside the range

of x, the basis is constrained to be linear and inside the range it consists of cubic splines. Using

the de�nition of a spline of degree q from Section 3.1, a cubic spline is a cubic polynomial

on each interval [κk, κk + 1] for k = 1, . . . , K − 1 which has two continuous derivatives (i.e.

continuous �rst and second derivatives) at each κk.

Using least squares in (3.8) would lead to interpolation of the data (since K = n), which is

not a sensible estimate of f . To avoid interpolation, a roughness penalty is introduced on the

estimate f̂ . In order to hinder wild �uctuations of f̂ , large second derivatives of f̂ are penalised,

i.e. �nd f which minimises the penalised sum of squares equation
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PENSS =
n∑
i=1

[yi − f(xi)]
2 + λ

∫
X

f ′′(x)2dx. (3.18)

It can be shown (de Boor [9]) that the function f which minimises (3.18) is a cubic smoothing

spline. Green & Silverman [17] give an excellent description of the construction of a smoothing

spline �t f̂ . Fortunately, the software package R contains the function smooth.spline which

allows the user to �t cubic smoothing splines to data and smooth.Pspline, in the psplines

library, to �t smoothing splines of arbitrary order. In practice, derivative estimates are found

by numerical methods and in R through the predict function. One must be careful to choose

a spline basis of order l+ 2, where l is the highest order of derivative to be estimated, to avoid

linear and constant estimates in higher order derivatives of interest.

3.2.1.1 Application of Smoothing Splines to the Winter Nutrients Example

The Winter Nutrients dataset contains 131 salinity adjusted values of NTRZ and Phosphate

measured in 1990/1991. Figure 3.4 exhibits smoothing spline �ts to the NTRZ data.
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Figure 3.4: NTRZ �ts using cubic (red), quintic (blue) and septic (green) smoothing splines
.

The similarity of these smooths shows that the degree of natural spline basis used is not

an important choice for the smooth �t to the data. Each smooth does o�er an accurate
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representation of the data, but this was also achieved through polynomial regression with a

high enough degree in Chapter 2. Using local basis functions and coe�cients gives a more

robust model because local changes have only local e�ects and polynomials with a degree of

just three are required to achieve the smooth �ts in Figure 3.4. A global polynomial of degree

greater than ten would be required to accurately describe the NTRZ data judging by the major

oscillations of curves in Figure 3.4.
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Figure 3.5: Estimates of the rate of change of NTRZ using cubic (red), quintic (blue) and septic
(green) smoothing splines.

The main aim of the Winter Nutrients project is, however, not to model the relationship,

but to identify periods of signi�cant increase or decrease in contamination. It is therefore

necessary to estimate the rate of change of contamination. First derivative estimates using

smoothing splines for the NTRZ data from 1990 are provided in Figure 3.5. The di�erence of

chosen basis degree is more evident in these derivative estimates. Small changes in estimates of

the underlying function explaining the data are magni�ed when �nding estimates of derivatives

of this unknown function. The higher the degree, the greater the sensitivity. All three �ts

agree that there is a large amount of �uctuation in the rate of change of NTRZ with periods

of increase, decrease and no change. Quite a large discrepancy between estimates is noticeable

in the tails and in some of the major peaks and troughs towards the end of Winter.
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3.2.1.2 Comparisons of Polynomial Regression and Smoothing Splines

To measure the performance in derivative estimation using smoothing splines a simulation study

was carried out. Once again it is necessary to use simulated data from known functions in order

to record performance when estimating f ′ and f ′′.

Datasets of size n = 50 were simulated 1000 times from the function f2 = x + 2e−16x2

(from Section 1.5) with x uniform on [−1, 1] and some Gaussian error ε ∼ N(0, σ2) added. The

error was set to σ = 1
3
range(f). This function is used as it resembles the Winter Nutrients

data, speci�cally the Phosphate data from 1990. Recall the variance is set to a fraction of the

range of the data to simulate realistic noise (Section 2.2.4). For each of the 1000 replicates

the RMSE, RMSED(1) and RMSED(2) were recorded. The methods under investigation are

quintic smoothing splines (since the objective is to obtain smooth second derivative estimates)

as well as a septic polynomial �t for comparative purposes.

The boxplots in Figure 3.6 represent the summary statistics of the RMSE, RMSED(1)

and RMSED(2). The septic polynomial is preferred in terms of RMSE although, as has been

mentioned, the global basis on which it is formed is rigid and therefore unable to deal with

local changes locally. The smoothing spline derivative estimates appear superior to the global

polynomials due to the problems using higher degree global polynomials.

The outliers which can be seen in the RMSED(1) and RMSED(2) boxplots are of concern

however. For estimates of f ′2 there are 11 out of the 1000 replicates where the smoothing spline

�t has a higher RMSED(1) than the median RMSED(1) from the septic polynomial. More

worrying perhaps is that for estimates of f ′′2 roughly 30 errors from the smoothing splines are

considerably higher than the median error of the polynomial derivative estimate.

Mean (sd) Median
Quintic SS 1.27(0.19) 1.25
Septic Poly 0.43(0.07) 0.43

Table 3.1: Mean and median RMSE using smoothing splines for the simulated data.

Tables 3.1, 3.2 and 3.3 provide evidence of this outlier e�ect on the smoothing splines

derivative estimates where the median and mean errors grow further apart.

Overall the smoothing spline method o�ers improved estimates for the rate of change and
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Figure 3.6: RMSE, RMSED(1) (top row) and RMSED(2) (bottom) for estimates of f2, f
′
2 and

f ′′2 using smoothing splines and polynomial regression.

Mean (sd) Median
Quintic SS 3.58(3.29) 2.83
Septic Poly 16.5(3.38) 15.6

Table 3.2: Mean and median RMSED(1) using smoothing splines for the simulated data.

Mean (sd) Median
Quintic SS 31.7(29.5) 23.3
Septic Poly 139.4(28.6) 132.6

Table 3.3: Mean and median RMSED(2) using smoothing splines for the simulated data.

second derivative over polynomial regression. The improved model behind these estimates gives

greater �exibility when �tting curves to noisy data. However, a problem with some outlying
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poor �ts to f ′2 and f ′′2 has been uncovered. Figure 3.7 exhibits estimates of f2 and f ′2 for the

poorest of the 1000 �ts to f ′2 using smoothing splines which had RMSED(1) = 37.8.
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Figure 3.7: Estimates of f2 and f
′
2 (bold curves) using smoothing splines (red curves).

Thankfully it seems the problem does not come from the derivative estimation procedure.

The woefully undersmoothed estimate of f2 causes the poor estimate of f ′2. In practice, the

poor estimate of f2 would be noticed and amended, leading to a better derivative estimate. The

hugely erratic estimate of f2 is caused by a value of λ which is too low and needs to be changed

subjectively. Figure 3.8 provides several `normal' estimates of f2 along with the estimate from

Figure 3.7 above so it can be seen how this estimate is very much atypical.

3.2.1.3 Altering the Value of λ

The rate of change of a variable is naturally more sensitive to outliers, and behaviour of deriva-

tives is generally more erratic than for the functions underlying noisy data themselves. The

smoothing parameter λ is chosen to minimise criteria pertaining to estimating f and not its

derivatives. Thus it would seem intuitive to increase the smoothing parameter to achieve more

settled derivative estimates. The R function D1D2 in the sfsmisc package uses smoothing splines

to �nd derivative estimates but adds a constant `fudge' value to the cross-validation choice of λ.

There is no record of this method in the literature and it exists only in this R package. Figure

3.9 compares results from using this with those found in the simulations from 3.2.1.2.
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Figure 3.8: Using smoothing splines (multicoloured, with maximum error estimate in red) to
estimate f2 and f

′
2 (bold curves).
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Figure 3.9: RMSED(1) (left) and RMSED(2) (right) for comparisons of quintic smoothing
splines with D1D2.

The `fudged' smoothing parameter does improve on the outlying errors but does not improve

on the overall median or mean RMSED(·) for either �rst or second derivative estimates. The

selection of the `fudge' value is subjective with no automatic method provided and a mysterious

default setting of 0.1384 is used. On closer inspection of the D1D2 help �le the following

description of the `fudge' is found:

"It is well known that for derivative estimation, the optimal smoothing parameter is larger
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(more smoothing) than for the function itself. spar.offset is really just a fudge o�set added

to the smoothing parameter. Note that in R's implementation of smooth.spline, spar is really

on the logλ scale.

When deriv = 1:2 (as per default), both derivatives are estimated with the same smooth-

ing parameter which is suboptimal for the single functions individually. Another possibility is

to call D1D2(*, deriv = k) twice with k = 1 and k = 2 and use a larger smoothing parameter

for the second derivative."

Increasing λ when estimates of f ′ and f ′′ are of interest eliminates some of the poorest

�ts to f ′ and f ′′ yet there is no noticeable overall improvement. From the results of these

simulations there is no empirical evidence that this idea improves derivative estimation.

3.2.2 P -Splines

Another penalisation based spline smoothing method known as P -Splines (Eilers & Marx [12])

has become quite popular in the last decade. To begin, the K knots are (generally) spaced

equally across the range of x. Little attention is paid to knot selection in the P -Spline frame-

work, generally a modest number of knots is taken. Basis splines, or B-Splines (de Boor [9]),

are used as the building blocks for the estimate of the underlying function explaining the data.

A degree q B-Spline basis over K is made up of m = K+ q−1 B-Splines which are of degree q.

Figure 3.10 displays a cubic B-spline basis over K = 10 knots, which results in 10 + 3− 1 = 12

cubic B-Splines.

B-Splines possess advantageous mathematical properties which make them the most com-

mon basis function in spline smoothing today. B-Splines o�er �exibility as well as stability

thanks to a banded structure of their design matrix. Except at the boundaries, each B-spline

is positive over q + 2 knots (known as the compact support property) which leads to e�cient

computation since, at any given x, q+1 B-Splines are non-zero. Another asset which makes B-

Splines so attractive is that the bases are dispersed and lend themselves to large scale problems.

From (3.7) the estimate f̂ may be written as a combination of B-Splines and coe�cients

f = Bα (3.19)
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Figure 3.10: A cubic B-Spline basis using 10 knots which are marked by dashed lines.

where the B-Spline design matrix B is de�ned as

B =



B1(x1) B2(x1) . . . Bm(x1)

B1(x2) B2(x2) . . . Bm(x2)

...
...

...
...

B1(xn) B2(xn) . . . Bm(xn)


.

The coe�cients, α, of the B-Spline basis determine the scaling of the smooth estimate f̂ .

Estimating α from (3.19) by minimising (y − Bα)2 would lead to a close to interpolating �t

(the �tted curve would oscillate K times). In order to avoid such an outcome, a roughness

penalty is introduced on the di�erence between adjacent coe�cients. This comes from the idea

that if coe�cients do not di�er much from near neighbours, large jumps of the �tted curve are

avoided. The di�erence penalty on the m coe�cients is de�ned as

∆αj = αj − αj−1 (3.20)
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for j = 2, . . . ,m. This may be written in matrix form as ∆α = Dα where D is de�ned

D =


−1 1 0 0

0 −1 1 0

0 0 −1 1


for m = 4 and n = 3. The roughness of the �tted curve f is now measured as

‖∆α‖2 = ‖Dα‖2 . (3.21)

There is a notational issue with P -Splines. In numerical analysis the term P -Splines refers

to polynomial splines used in mathematical modelling whereas here it refers to penalised B-

Splines. In a recent publication Eilers & Marx [13] propose changing the name of their method

to PB-Splines to avoid confusion but for the course of this thesis P -Splines shall continue to

refer to their method.

The function f is estimated by minimising

PENSS =
n∑
i=1

[yi − f(xi)]
2 + λ(Ddα)2 (3.22)

where the smoothing parameter λ controls the roughness of the �tted curve f̂ . Moreover, higher

order di�erence penalties, d, may be selected, e.g.

D2α = ∆2αj

= (αj − αj−1)− (αj−1 − αj−2)

= αj − 2αj−1 + αj−2

(3.23)

such that

D2 =


1 −2 1 0 0

0 1 −2 1 0

0 0 1 −2 1
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and

D3α = ∆3αj

= (αj − 2αj−1 + αj−2)− (αj−1 − 2αj−2 + αj−3)

= αj − 3αj−1 + 3αj−2 − αj−3.

(3.24)

Once again, λ may be selected subjectively by the user, although automatic methods, such as

cross-validation, are generally used to optimise smoothing.

Derivative estimates are found as a by-product of the P -Spline �tting procedure. Once the

�tted coe�cients α̂ = (α̂1, . . . , α̂m) are obtained, derivatives are found using a formula due to

de Boor [9]. For instance, the �rst derivative of a �tted B-Spline based curve with knots which

are equally spaced is given by

f (1)(x) =
∂

∂x

m∑
j=1

Bj(x; q)αj

= (qh)−1q
m∑
j=2

∆1αjBj(x; q − 1)

(3.25)

where h is the distance between adjacent knots. In general, the lth derivative of a �tted B-Spline

curve with equally spaced knots is given by

f (l)(x) =
L∏
l=1

((q + 1− l)h)−1(q + 1− l)
m∑

j=l+1

∆lαjB(x; q − l). (3.26)

3.2.2.1 Application of P -Splines to the Blood Lactate Data

In the Blood Lactate data it is required to estimate the speed at which the maximum second

derivative of the underlying lactate function occurs. The left panel of Figure 3.11 displays one

individual's observed lactate at ten workloads on a treadmill along with a P -Spline smooth �t

to the data.

The B-Spline basis used here is of degree 5 so that smooth second derivative estimates

can be achieved. The right panel of Figure 3.11 exhibits the second derivative estimate of this

lactate curve using P -Splines and the de Boor formula (3.26). The estimated maximum second
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Figure 3.11: One individual's lactate data with estimate of lactate curve (left) and second
derivative estimate (right) using P -Splines.

derivative of lactate is 0.885 which has a corresponding speed of 15.25 km/hr. This estimate

could be used for comparison against other athletes in the group or longitudinally on the same

individual if measured repeatedly over, say, a season. However, whether to trust this estimate is

still an unknown. Simulations need to be performed to investigate how well P -Splines perform

in terms of derivative estimation. These simulations will be carried out once more derivative

estimation methods have been introduced.

3.2.2.2 Generalised Smoothing with P -Splines

Until now, the Grey Plover data have been treated as having a continuous response. Here the

idea of generalised smoothing is introduced to deal with situations where a response variable

is thought to come from a Poisson process such as when the response is a vector of counts.

Derivative estimates are obtained from this model and are compared to estimates when the

response is modelled as a continuous variable. Generalised smoothing and derivative estimation

approaches to handling a Poisson response are now developed. The assumption of Poisson

distributed counts, i.e. y ∼ Pois(µ), can be rash as this relies on the mean and variance being

equal. For the purposes of simplicity, this assumption has been made here.

Consider the familiar smoothing scenario
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y = f(x) + ε.

It is still required to estimate f which best describes the relationship between x and y, although

now the assumption that y ∼ Pois(µ) is made such that

ln(µ) = Bα (3.27)

i.e.

µ = eBα, (3.28)

where B is the B-Spline design matrix and α is the vector of coe�cients. The likelihood function

is

L =
n∏
i=1

e−µiµyi

i

yi!
.

Taking logs

ln(L) = l =
n∑
i=1

(yilnµi − µi − ln(yi!))

and substituting (3.27) and (3.28) gives

l =
n∑
i=1

(
yi
∑
j

Bjαj − e
∑

j Bjαj − ln(yi!)

)

where j = 1, . . . ,m is the number of coe�cients to be estimated.

Applying the di�erence penalty on the αj, the likelihood is written as

l∗ = l − 1

2
λ ‖Ddα‖2 .

Di�erentiating with respect to α and setting to zero leads to the iteratively weighted least

squares solution for the coe�cients αj, i.e.

α̂t+1 = (BT ŴtB + λDT
dDd)

−1BT Ŵtẑt (3.29)
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where

z = Bα +W−1(y − µ)

and

Ŵ = diag(µ̂)

H = B(BT ŴB + λDT
dDd)

−1BT

with

η̂ = Bα̂

which can be rewritten

Bα̂ = Hẑ.

Once the coe�cients αj have been estimated, derivative may be estimated using the de

Boor formula (3.26). Here

f̂ = eBα̂

such that

f̂ ′ = eBα̂
1

h
B′∆α (3.30)

3.2.2.3 Application of P -Splines to the Grey Plover Example

Recall that the Grey Plover data consist of 31 counts taken annually between 1974 and 2004. In

all examples using these data to date, the response has been treated as a continuous one. Since

the response is a variable of counts this should be modelled accordingly. Using the standard

P -Spline approach will be less e�ective since it does not take into account the constraints

on the response, i.e. that they must be nonnegative integers. The left plot in Figure 3.12

exhibits smooth �ts of the Grey Plover data using P -Splines where the count variable has been

considered (blue) and not taken into account (red).

The standard P -Spline �t is slightly more smooth than the generalised approach. The

same number of knots (K = 6), basis degree (q = 3), penalty order (d = 2) and method for

smoothing parameter selection (CV) were taken such that any di�erence between the curves is
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Figure 3.12: P -Spline �t (left) and derivative estimate (right) for the Grey Plover data modelled
as counts (blue) and as continuous (red).

purely down to the standard versus generalised smoothing approach. The right panel of Figure

3.12 exhibits �rst derivative estimates obtained from each approach. Again, the generalised

P -Spline approach is slightly more `wiggly' and, given the better modelling approach taken, is

likely to be a better estimate of the true underlying �rst derivative.

3.2.3 Mixed Model Smoothing

Among the many desirable attributes of mixed or random e�ects models is their applicability to

the smoothing of noisy data. The use of mixed models in smoothing is comprehensively reviewed

in the seminal paper by Wand [63] which also o�ers an excellent summary of the background

to mixed model smoothing, also known as semiparametric regression. A �xed or parametric

component such as that discussed in Section 2.2 is combined with a random component which

allows for the �exibility needed to describe nonlinear relationships. The general linear mixed

e�ects model is

y = Xβ + Zu+ ε (3.31)

where X and Z are the �xed and random design matrices respectively, β are the �xed parame-

ters, u are the random e�ects with zero mean and covariance matrix G and ε is the error vector
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with zero mean and covariance matrix R. Assuming that ε and u are uncorrelated leads to

V ar

 u

ε

 =

 G 0

0 R

 . (3.32)

Typically the εi are assumed to be iid Normal with variance σ2
ε such that R = σ2

ε I and similarly

the uk are thought to depend solely on the single variance parameter σ2
u, i.e. G = σ2

uI. Recalling

the linear spline estimator (3.4), the vector of random e�ects u of length K may be substituted

to give

y = β0 + β1x+
K∑
k=1

uk(x− κk)+. (3.33)

From (3.31), the �xed design matrix X becomes

X = [1 x],

the random design matrix Z corresponds to

Z = [(x− κ1)+ . . . (x− κK)+]

and  u

ε

 ∼ N


 0

0

 ,
 σ2

uI 0

0 σ2
ε I


 .

Solving for β, σε and σu using maximum likelihood and u by best prediction (see Chapter

9, McCulloch & Searle [36]) is equivalent to solving

‖y −Xβ − Zu‖2 + λ ‖u‖2 (3.34)

where λ ≡ σ2
ε/σ

2
u is the familiar smoothing parameter controlling the balance between the least

squares �t to the data ‖y −Xβ − Zu‖2 by penalising large values of u. The solution of this

minimisation problem is  β̂

û

 = (CTC + λD)−1CTy (3.35)
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where C = [X Z] and D = diag(0, 0, 1, . . . , 1), i.e. the number of zeros beginning the diagonal

of D corresponds to the number of �xed parameters (e.g. β0, β1) used in the modelling process.

Derivative estimation from a mixed model smooth can be demonstrated more clearly using

a cubic spline estimator i.e.

y = β0 + β1x+ β2x
2 + β3x

3 +
K∑
k=1

uk(x− κk)3
+ (3.36)

so that X = [1 x x2 x3] and Z = [(x− κ1)
3
+ . . . (x− κK)3

+] in (3.31). The parameters β, u are

estimated as in (3.35) and an estimate for the rate of change of y relative to x is given by

ŷ′ = β̂1 + 2β̂2x+ 3β̂3x
2 +

K∑
k=1

3ûk(x− κk)2
+ (3.37)

such that X = [0 1 x x2] and Z = [3(x − κ1)
2
+ . . . 3(x − κK)2

+] in (3.31). An estimate of the

second derivative of f is

ŷ′′ = 2β̂2 + 6β̂3x+
K∑
k=1

6ûk(x− κk)+ (3.38)

such that X = [0 0 2 6x] and Z = [6(x − κ1)+ . . . 6(x − κK)+] in (3.31). Once more, it is

advisable to choose the degree of the basis to be l + 2 where l is the highest order derivative

estimate required for analysis. Other bases may be used for mixed model smoothing and

therefore derivative estimation, including the B-Spline basis (Currie & Durban [8]) and radial

basis functions (Wand [63]).

3.2.3.1 Application of Mixed Model Smoothing to the Astronomical Illustration

In the Astronomical example it is �rst required to smooth both the temperature and gas pro�le

data and to estimate the rate of change of the vector resulting from the multiplication of these

smooths. The top row of Figure 3.13 displays semiparametric regression �ts using a truncated

polynomial basis of degree 5.

The three temperature smooths along with their average appear jagged, which is due to

the small number (n = 8) of observations here. The mean temperature smooth was predicted

at the x's for the observed gas values and the bottom panel of Figure 3.13 shows the resulting
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Figure 3.13: Top row: Semiparametric smooth �ts to the temperature (black smooth is the
average of the coloured smooths) and gas pro�les from the astronomical data. Bottom: Tem-
perature predicted at x for which ρgas was observed (purple).

curve.

The �tted values for the combination of the average temperature smooth with the smooth

�t to the gas data are displayed in the left panel of Figure 3.14. Figure 3.14 also gives an

estimate for the rate of change of Tρgas using semiparametric method described in Section

3.2.3. As one moves away from the centre of the galaxy cluster, the decreasing of Tρgas appears

to level o�. Whether this estimate is accurate cannot be assured based on the fact that the

rate of change is unknown. In order to study the performance of this estimator, simulations

must be carried out and these will follow toward the end of this Chapter.
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Figure 3.14: Tρgas (left) with estimate for the rate of change using semiparametric smoothing
(right)

3.2.4 Spatially Adaptive Smoothing

In smoothing splines, P -Splines and semiparametric regression, the smoothing parameter (λ)

which acts to balance the bias-variance trade-o� (Section 2.1.2), has been treated as constant.

However, in situations where data display heteroscedacity, i.e. non constant variance over the

range of explanatory variable, there are obvious concerns with the single constant λ approach.

These situations can bene�t from yet more �exibility, where the value of λ is allowed to vary

to adjust to the needs of the data. Early spatially adaptive methods due to Friedman [15] and

Luo & Wahba [32] o�er a glimpse at the potential of such models. In the following sections two

more recent methods are summarised and used for analysis in a derivative estimation context.

3.2.4.1 Spatially Adaptive Penalised Splines

The method of Ruppert & Carroll [47] uses a large number K of knots with the kth knot κk

placed at the k/(K + 1)th sample quantile of xi, for i = 1, . . . , n observations. They use a

truncated polynomial basis such that the model is written

y = β0 + β1x+ · · ·+ βpx
p +

K∑
k=1

βp+k(x− κk)p+ (3.39)
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where β = (β0, . . . , βp, βp+1, . . . , βp+K) is the vector of coe�cients, p ≥ 1 is an integer de�ning

the degree of the basis and κ1 < · · · < κK are �xed knots. They use a penalty on βp+k for

k = 1, . . . , K and β̂ are estimated by minimising

n∑
i=1

[yi − f(x)]2 +
K∑
k=1

λ(κk)β
2
p+k (3.40)

where λ(κk) is a penalty function. To achieve a spatially varying smoothing parameter function

λ(κk), a set of subknots κ
∗
1, . . . , κ

∗
M is chosen whereM < K such that κ∗1 = κ1 < · · · < κ∗M = κK .

The penalty at each subknot κ∗k is controlled with a smoothing parameter λ∗k. The penalties at

κk for k = 1, . . . , K are determined using interpolation of the subknot penalties. This leads to

each knot κk having its own penalty λ(κk) relying solely upon λ∗ = (λ∗1, . . . , λ
∗
M)T , i.e. λ(κk)

for k = 1, . . . , K is a function of λ∗.

Fitted coe�cients β̂λ∗ are found using

β̂λ∗ = (XTX +Dλ∗)
−1XTy (3.41)

where X is a design matrix of the form X = [1 x x2 . . . xp (x − κ1)
p
+ . . . (x − κK)p+] and

Dλ∗ is the penalty matrix with p+1 zeros beginning the diagonal followed by λ(κ1), . . . , λ(κK).

Ruppert & Carroll [47] recommend selecting λ∗ using GCV, i.e.

GCVλ∗ =

(
y − ŷ

1− dfλ∗/n

)2

(3.42)

where the degrees of freedom of the �t is the trace of the hat matrix

dfλ∗ = tr(X(XTX +D(λ∗))−1XT ). (3.43)

Selecting M values λ∗1, . . . , λ
∗
M simultaneously would require a large computational e�ort

to search over an M dimensional space. To avoid this it is recommended to �rst set each

λ∗1, . . . , λ
∗
M equal to the best global λ using GCV. Then each λ∗k is varied sequentially (with

λ∗1, . . . λ
∗
k−1, λ

∗
k+1, . . . , λ

∗
M �xed) on a one dimensional grid centred at λ∗k. The value λ∗k is

replaced with the global λ chosen by GCV on this grid. This process reduces the computational
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cost using M one dimensional searches in place of one M dimensional search. The iterative

search can be repeated Niter times such that the user-de�ned inputs to the method consist of K,

M and Niter. The authors provide simulations over combinations of these three and recommend

that M > 6 and Niter > 2 be avoided due to the computational cost required.

Once β̂λ∗ have been obtained it is simple to �nd derivative estimates as a by product of

(3.40) using

f̂ ′(x; β) = β̂1 + 2β̂2x+ · · ·+ pβ̂px
p−1 +

K∑
k=1

pβ̂p+k(x− κk)p−1
+ . (3.44)

No R library exists for the implementation of this approach, however MATLAB code was

kindly sent by Professor Ruppert so that testing of this method could be undertaken (after

the code was updated). The spatially adaptive smoothing parameter should o�er improved

�exibility which can handle the rather sensitive estimation of rate of change of noisy data and

this will be tested against the constant smoothing parameter methods presented to date.

3.2.4.2 Adaptive Mixed Model Smoothing

The approach taken by Krivobokova et al. [27] is similar to the Ruppert & Carroll [47] model

in that a set of subknots is taken on a truncated polynomial basis. However, they use both

�xed and random coe�cients, i.e. a pth degree model is of the form

f(x) = β0 + β1x+ · · ·+ βpx
p +

K∑
k=1

uk(x− κk)p+ (3.45)

where the number of knots is K ≥ min(n/4, 40) as per the suggestion of Ruppert [46]. For the

truncated polynomial basis, the random coe�cients are generally taken to be uk ∼ N(0, σ2
uI)

and f(x) is found by minimising (3.34), i.e. β and uk are obtained from (3.35). Semiparametric

regression, as discussed in Section 3.2.3, uses just the single parameter σ2
u to shrink all of the

random coe�cients. The method allows for u1, . . . , uK to have di�erent prior variances

uk ∼ N(0, σ2
u(κk)) (3.46)
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for k = 1, . . . , K. The σ2
u(κk) are treated as a coming from a smooth function modelled as a

log penalised spline

σ2
u(κ) = exp

(
γ0 + γ1κ+ · · ·+ γqκ

q +
C∑
c=1

vk(κ− κ∗c)
q
+

)
(3.47)

where κ∗c , c = 1, . . . , C is a set of subknots covering the range of κ1, . . . , κK , γ0, . . . , γq are the

�xed and vk ∼ N(0, σ2
v) the random coe�cients de�ning the σ2

u(κk) process for some sub-basis

of degree q < p.

The parameters β, u, γ, v, σε, σu and σv are estimated using ML or REML (see Krivobokova

et al. [27] for full description). The R library AdaptFit accompanies their paper and the

function asp allows for (somewhat) automatic implementation of the above. First derivative

estimates can be obtained as a by-product of the model (3.45)

f̂ ′(x) = β̂1 + 2β̂2x+ · · ·+ pβ̂px
p−1 +

K∑
k=1

ûkp(x− κk)p−1
+ . (3.48)

3.2.4.3 Application of Adaptive Methods to the Winter Nutrients Data

The spatially adaptive methods are suited to situations where data are smooth in one region

and quite variable in another. The Winter Nutrients data, in particular the Phosphate mea-

surements, exhibit this type of behaviour. Both adaptive smoothing methods are applied here

to estimate the rate of change of the Phosphate observations.

Figure 3.15 displays smooth �ts to the data along with estimates for the rate of change

of Phosphate using both adaptive methods introduced in Section 3.2.4. The Phosphate data

exhibit steady increases except between days 90 and 100 where a sudden jump in Phosphate

level occurs. The adaptive/varying penalty methods should achieve superior results in �tting

a curve to the data since this situation is what they were intended for.

The derivative estimates are quite di�erent between the methods, with the adaptive mixed

model approach having a much larger estimate for the size of the aforementioned jump in

Phosphate than the spatially varying penalty method. It is clear from the right panel of Figure

3.15 that the adaptive mixed model �t takes full advantage of its adaptability. It is very smooth

in the tails but is hugely descriptive at the jump between measurement 60 and 100. A smooth
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Figure 3.15: Adaptive estimate of the function underlying the Phosphate data (left) and of the
rate of change of the Phosphate data (right) using spatially adaptive splines (blue) and the
adaptive mixed model methods (red).

with a single constant smoothing parameter would be unable to achieve this �t.

Given the added �exibility allowed in these modelling approaches one would tend to believe

these estimates of the data over methods employing a single �xed smoothing parameter λ.

Whether this translates to better derivative estimates is a matter to be decided based on

empirical investigations which now follow.

3.2.5 Simulation Study to Compare Derivative Estimation for Spline

Smoothing Methods

A simulation study was performed to compare the performance of the derivative estimation

methods which have been discussed in this Chapter. Under investigation were the quality of

�rst and second derivative estimates found using smoothing splines, P -Splines, semiparametric

regression, spatially adaptive splines and adaptive mixed model smoothing. Each approach was

measured for performance using the RMSED(1) and RMSED(2) criteria.

The function f2 = x+2e−16x2
was used to mirror a typical noisy data situation. A thousand

samples of n = 50 response values y = f2(x) + ε were simulated with ε ∼ N(0, σ2), σ =

1
3
range(f2) and x uniform on [−1, 1].
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The boxplots in Figure 3.16 summarise the results of these simulations. The median

RMSED(1) seems similar across the �ve approaches. What is striking is the di�erence in

precision of performance. The mixed model approaches have more stable error than the pe-

nalised spline techniques, with smoothing splines and spatially adaptive splines displaying many

RMSED(1) outliers and all three non-mixed model methods having many RMSED(2) outliers.

This has been discussed and explored previously in Section 3.2.1.2 and wildly �uctuating smooth

�ts to the data were again discovered to be the cause.
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Figure 3.16: RMSED(1) and RMSED(2) for estimates of f ′2 and f
′′
2 .

In Table 3.4 the results appear to suggest that P -Splines (�rst derivative) and semiparamet-

ric smoothing (second derivative) achieve the best overall goodness of �t. In these simulations

the mixed model techniques o�er the more stable derivative estimation procedures.

Method RMSED(1) RMSED(2)
Smoothing Splines 3.58(3.29) 31.7(29.5)
P -Splines 3.09(1.77) 29.9(27.8)
Semiparametric Smoothing 3.34(0.61) 25.3(5.28)
Adaptive MM Smoothing 3.66(0.35) 26.9(3.13)
Spatially Adaptive Splines 4.90(4.01) 39.3(31.4)

Table 3.4: Mean (standard deviation) RMSED(1) and RMSED(2) comparing the derivative
estimation performance of spline smoothing methods.

The results of simulations seem to show the P -Spline and semiparametric methods perform

best out of the �ve methods discussed in terms of derivative estimation. Using one run of
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simulations from the function f2 these results are investigated further. Figure 3.17 displays

smooth estimates of f2 and f
′
2 using each method.
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Figure 3.17: Estimates of f2 (black curve, left) and f ′2 (black curve, right) using smooth-
ing splines (red), P -Splines (green), semiparametric smoothing (blue), adaptive mixed models
(cyan) and a spatially varying penalty (purple).

Very similar results are found when estimating f2. The speci�c error in this one run has

caused all methods to overestimate the true function, where each sits above the actual function

f2 when the jump at x ≈ 0 occurs.

The results for estimating f ′2 show less similarities than those for f2. None of the methods

here achieves a very good estimate. The non-mixed model methods all follow the same pattern

as the actual rate of change but display a scaling error nearly throughout the function. The

methods exhibit super�uous oscillations (undersmoothing) in the tails, i.e. boundary e�ects.

Subjectively it is di�cult to choose a `winner' from the right panel of Figure 3.17 but the

P -Spline �t seems to be the most `accurate' here.

3.3 Derivative Estimation Using Kernels

The other main branch of nonparametric smoothing methods is known collectively as Kernel

Smoothing, with several subsidiary methods also available. Kernel smoothing uses local poly-

nomials �tted in the neighbourhood of a point xi (i = 1, . . . , n) using weighted least squares.
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The size of neighbourhood used, known as the bandwidth, determines the smoothness of the

�t f̂ .

The decision to use splines or kernels is arbitrary, there is no consensus on which to choose.

Some statisticians simply prefer kernels to splines or splines to kernels, perhaps through past

experience or `ease' of use. However, there are some clear cut advantages for each. For example,

spline smoothing methods integrate into a mixed model smoothing approach seamlessly whereas

kernels are often recommended when dealing with huge datasets of, say, a million observations.

Kernels are also more popular in density estimation.

There are many papers which mention derivative estimates from kernel smoothing, how-

ever, similarly to spline derivative estimation, few which deal with the problems encountered

in this thesis. Schwartz [52] and Wahba [60] give early but brief discussions on density deriva-

tive estimation. Stone [57] [58] investigates convergence of derivative estimators. Stoker [56]

discusses the bias inherent in derivative estimates of a regression function. Müller et al. [37]

discuss changing the bandwidth (the bandwidth in kernel smoothing is used in much the same

way as the smoothing parameter in spline smoothing) in order to deliver better derivative es-

timates. Hastie & Loader [20] propose reducing bias in derivative estimation by using higher

order polynomials in the �tting process. Fan & Gijbels [14] o�er an adaptive bandwidth which

"works out very neatly for derivative estimation". Xia [65] suggests using Gaussian kernels for

derivative estimation because of their smoothness. Mack & Müller [33], Ruppert & Wand [49],

Welsh [64], Lai & Chu [28], Huh & Carrierre [22] and Prewitt & Lohr [41] introduce their own

methods for kernel smoothing which work well when estimating derivatives compared to basic

kernel smoothing methods.

There is clearly more research for derivative estimation involving kernel smoothing than with

splines. Comparisons between the two branches of smoothing, in terms of estimating derivatives

are quite rare and a rigorous review of current methods across all smoothing approaches does

not exist.
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3.4 Chapter Summary

Finding derivatives as a by-product of a model used to �t a regression function seems to give

reasonable estimates, which far outperform using the data alone, i.e. �rst and second order

di�erencing. Several sophisticated models for estimating the regression function underlying

observed noisy data have been introduced, with derivative estimates obtained as a by-product

of these models. Simulations were used to reveal that smoothing with P -Splines or using semi-

parametric regression achieves the best performance for estimates of �rst and second derivatives

respectively. Some tuning of these smoothing methods has been attempted (altering λ) but

this did not achieve much, if any, improvement. Adaptive smoothing methods have shown

little to no improvement in derivative estimation over standard constant smoothing parameter

techniques.

In order to discover the causes of the problems encountered in derivative estimation, an

investigation into the e�ects of sample size, variability and method for selection of smoothing

parameter are carried out. For this, P -Splines are chosen because they o�er e�cient compu-

tational properties and perform well in comparison to the other techniques. Moreover, the

P -Spline model involves several choices which may a�ect the estimate f̂ and so in the next

Chapter a slight diversion is taken to provide guidelines on these P -Spline components when

derivative estimation is of primary importance.
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Chapter 4

Components of a P -Spline Model

P -Splines o�er an intuitive, �exible and computationally e�cient procedure for �tting curves

to noisy data. Moreover, derivative estimates found using P -Spline smooths perform well in

comparison to other spline smoothing methods (Section 3.2.5).

A common issue with the use of P -Splines is that the user often feels overwhelmed by the

plethora of choices (i.e. λ, K, d and q) in the underlying mechanics of the model. In this

Chapter the components of P -Spline smoothing are investigated to judge the sensitivity of

derivative estimates to the alteration of these choices. Simulation studies into the e�ects of

sample size, variability and the methods for selecting a smoothing parameter are included in

an attempt to discern a path to improvement for derivative estimation.

4.1 Penalties, Knots and Basis Degree

Eilers & Marx [12] do not regard the choice of penalty order (d), number of knots (K) or

B-Spline basis degree (q) as important to the performance of the P -Spline smoothing model.

They recommend choosing q = 3, d = 2 and K = min(40, n/5). Unfortunately the uninitiated

may �nd these choices di�cult to deal with.

4.1.1 Simulation Study into the Choices of P -Spline Components

Here the mechanics of the P -Spline model are varied and performance measured in order to

examine the e�ect these choices have on the accuracy of an estimate.
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A thousand replicates of n = 50 responses y = fi(x) + ε, i = 1, . . . , 6 (from each of the six

functions introduced in Chapter 1), were simulated with x uniform on [0, 1], ε ∼ N(0, σ2) and

σ = 1
6
range(fi). Each of the three parameters were varied and performance measured using the

RMSED(1) and RMSED(2) for penalty order d = 1, 2, 3, 4, number of knots K = 10, 20, 30, 40

and B-Spline basis degree q = 3, 5, 7, 9.

4.1.1.1 Penalty Order

Recall the roughness penalty involved in the P -Spline framework is a penalty on the di�erence

between adjacent coe�cients, i.e.

∆αj = αj+1 − αj

for j = 1, . . . ,m− 1. Eilers & Marx [12] recommend using a second order di�erence penalty

∆2αj = αj+2 − 2αj+1 + αj.

Raising the order of the penalty forces more coe�cients to `hold hands', i.e. be closer

together. Tables 4.1 and 4.2 summarise performance when using d = 1, 2, 3, 4 for derivative

estimation.
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Table 4.1: Mean RMSED(1) (standard deviation) comparing penalty orders.

Using a high order di�erence penalty, d = 4, results in the best performance in estimating

f ′1, f
′
2, f

′
3 and f

′
6 while the recommended d = 2 penalty order leads to the poorest performance
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for those four �rst derivatives.

Function d = 1 d = 2 d = 3 d = 4
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Table 4.2: Mean RMSED(2) (standard deviation) comparing penalty orders.

When estimating second derivatives, d = 1 o�ers the lowest RMSED(2) for f1, f3, f4 and f5

but the highest RMSED(2) for f2 and f6! There is no apparent consistent evidence from these

simulations for an optimum choice of penalty.

4.1.1.2 Knot Selection

Eilers & Marx [12] present little guidance on the choice of the number or placement of the

knots which break up the data into local segments. Rather than allow the knots to dictate the

modelling process, they recommend a modest number of knots K = min(40, n/5) and use the

smoothing parameter λ to control the smoothness of the �t. Moreover, several nice properties

(such as the de Boor [9] formula (3.26)) exist when the knots are equally spaced along the range

of x and so equally spacing knots is recommended. Tables 4.3 and 4.4 display RMSED(1) and

RMSED(2) respectively at K = 10, 20, 30, 40 knots equally spaced across the range of x.

The recommended choice here at n = 50 would be K = 10 using K = min(40, n/5). This

choice leads to the best performance in estimating �rst derivative of f2 and f6 but also leads

to the worst estimates of f ′1, f
′
3, f

′
4 and f ′5. Choosing K = 30 is best for f ′1, f

′
4 and f ′5 and

K = 40 o�ers the best estimates of f ′3 but the worst for f ′2 and f ′6. It is di�cult to see a

consistent pattern from these simulations and the results when estimating second derivatives

do not resolve matters.
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Table 4.3: Mean RMSED(1) (standard deviation) comparing number of knots used.
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Table 4.4: Mean RMSED(2) (standard deviation) comparing number of knots used.

Here K = 10 results in the highest mean RMSED(2) for f ′′1 and f ′′5 but the lowest in f ′′2 , f
′′
4

and f ′′6 . Using K = 20, which was not optimal for any of the �rst derivatives, leads to preferred

second derivative estimates of f1, f3 and f5. Similarly to the penalty order simulation, there is no

consensus for an optimum number of knots. Therefore no reason to alter the recommendations

of Eilers & Marx [12] is found.
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4.1.1.3 Basis Degree

Local modelling has been introduced because local low order polynomials are as e�ective as

global high order polynomials when joined together to give a smooth �t. Here a test of the

performance in derivative estimation when changing the degree (q) of the B-Spline basis un-

derlying the P -Spline model was performed. The RMSED(1) and RMSED(2) were measured

for q = 3, 5, 7, 9. Eilers & Marx [12] recommend taking q = 3 for any smoothing situation.
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Table 4.5: Mean RMSED(1) (standard deviation) comparing basis degree.

Table 4.5 summarises the performance in estimation of the �rst derivatives of f1, . . . , f6.

The recommended cubic B-Spline basis o�ers the best performance for �rst derivative estimates

of f1, f3, f4 and f5. The functions f2 and f6 prove to have di�erent needs and a high degree

basis q = 9 is to be preferred here. There is no overwhelming evidence here to dispute the

recommended degree.

Table 4.6 agrees wholeheartedly with Table 4.5 in terms of the values of q which achieve the

premium performance for each function. However, as discussed in Section 2.2.3, it is important

to take the degree to be at least l + 2 where l = 0, 1, 2, . . . is the highest derivative to be

estimated. Thus q = 3 is not sensible when estimating second derivatives and should be

discounted here. At the same time, changing the value of q seems to have the lowest in�uence

among the components of the P -Spline model, and a value q = 3 seems to be quite reasonable

unless derivatives of order l ≥ 2 are required. In this situation it is recommended to take
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Function q = 3 q = 5 q = 7 q = 9
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Table 4.6: Mean RMSED(2) (standard deviation) comparing basis degree.

q = l + 2.

4.1.2 Discussion of the E�ect of P -Spline Components

Figure 4.1 presents a matrix plot of estimates of f ′1.

There is little variation in estimates across penalty orders or basis degrees. Changing

the number of knots seems to result in slight variation of estimates but no clear optimum

level is evident. Simulations have been carried out to investigate whether any change to the

recommended values of penalty order d = 2, number of knots K = min(40, n/5), or basis degree

q = 3 was necessary when dealing with derivative estimation. No decisive empirical evidence

has been uncovered to stray from these recommendations when estimation of f ′ or f ′′ is of

primary concern.

4.2 The E�ect of Smoothing Parameter Selection Method

There are many automatic methods for smoothing parameter selection. Among these are the

CV, GCV, AIC and BIC selection criteria described in Section 3.1.2. Kohn et al. [26] found

evidence that CV and GCV are comparable when estimating f and f ′. Indeed, the advantage

of GCV is known to be not one of performance, but of computational e�ciency. Shibata [54]

and Hurvich et al. [23] �nd evidence that AIC can lead to undersmoothing of a (regression)
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Figure 4.1: Matrix plot changing (left to right increasing q, top to bottom increasing K) the
components of the P -Spline model with penalty order d =1, d =2, d =3 and d =4.

function.

4.2.1 Simulation Study into the E�ect of Smoothing Parameter Se-

lection Method

Here these selection methods are compared in terms of �rst and second derivative estimation

performance using simulated data from the familiar six functions f1, . . . , f6.

The four methods, namely CV, GCV, AIC and BIC, for selecting the smoothing parameter

(λ) of a P -Spline �t were compared across the functions f1, . . . , f6 using 1000 replicates of n = 50

responses from y = fi(x) + ε, i = 1, . . . , 6, with x ∼ U [0, 1], ε ∼ N(0, σ2) and σ = 1
6
range(fi).
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Results from the simulations into the smoothing parameter selection criteria are summarised

in Tables 4.7 and 4.8. Consistently similar results are obtained when using CV or GCV, which

is not surprising. AIC and BIC are outperformed in all but derivative estimation of data

simulated from f6.

Function CV GCV AIC BIC
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f6 1.60(0.94) 1.63(1.00) 1.17(0.25) 1.17(0.25)

Table 4.7: Mean RMSED(1) (standard deviation) comparing smoothing parameter selection
methods.

Again, when estimating second derivatives, the error resulting from CV and GCV λ selec-

tions is quite similar, with the CV selected λ o�ering the lower overall error in some functions.

When estimating f ′′6 , both CV and GCV selected λ's lead to mean RMSED(2) double that

obtained when using an AIC or BIC λ. Moreover, the variability of this error is higher than

the mean! Given the similarities between f2 and f6 it is strange that such a di�erence in overall

error is only evident in f6. The CV/GCV selected λs lead to estimates that are evidently

struggling to accurately describe the right hand tail of f6 compared to the AIC/BIC selections.

4.2.1.1 Fudging λ Revisited

Altering the choice of smoothing parameter (λ) in an attempt to improve performance in

derivative estimation has been discussed for the smoothing splines model in Section 3.2.1.3.

No signi�cant improvements in derivative estimation were found in this study although only

a subjective (and mysterious) constant fudge value was used. Here an investigation into the

merit of this idea is performed when a curve is �tted using P -Splines. Using simulated data one
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Function CV GCV AIC BIC
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f6 36.60(38.26) 38.96(43.48) 18.84(3.15) 18.84(3.15)

Table 4.8: Mean RMSED(2) (standard deviation) comparing smoothing parameter selection
methods.

can fudge λ to the optimum value for derivative estimates and investigate whether there is a

common fudge which may help estimates in general. Recall the reasoning behind this alteration

is that λ is chosen based on optimising f̂ and not the derivative, which may lead to considerable

undersmoothing.

Using the three functions f1, f2 and f3 the CV choice of λ was fudged until the mini-

mum RMSED(1) and RMSED(2) were obtained. This was performed by searching over a ±1

grid around the CV choice for λ until the values of λ which gave the lowest RMSED(1) and

RMSED(2) were found. Data were simulated from each of f1, f2 and f3, with x uniform on

[0, 1] and Gaussian error added with zero mean and standard deviation equal to one sixth the

range of fi, i = 1, 2, 3. A thousand replicates of n = 50 responses were simulated. The hope

was that a common scalar transform of the CV choice could be found and used to improve

derivative estimation.

Table 4.9 provides a summary of the e�ect on derivative estimates of fudging the smoothing

parameter. The multiplier of λ is displayed since it better represents the change to λ. The

simulations found that increasing the smoothing parameter improved the RMSED but when

this was applied in 1000 replicates it resulted in a mean deterioration for estimating f ′2, f
′′
2 and

f ′′3 . There is no pattern to either the multipliers or the improvements in Table 4.9. In real life

applications it is not possible to �nd the λ which gives the lowest RMSED(·) and therefore any
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Function Multiplier % Improvement in RMSED

0.0 0.2 0.4 0.6 0.8 1.0
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Table 4.9: Results of using λ `fudge' for derivative estimation of f1, f2 and f3.

hope of using a `fudge' relies on a common trait which is not evident here.

4.2.1.2 Discussion of Smoothing Parameter Selection Methods

Apart from the �ndings related to f6 there is empirical evidence that using either a CV or

GCV selected smoothing parameter works best when estimating derivatives using P -Splines in

the context studied here. Moreover, fudging λ to improve derivative estimation does not lead

to an ideal solution as no common multiplier for the CV selected λ was found in the scenarios

considered here.

More smoothing is seemingly required in order to remove the undersmoothing and boundary

e�ect issues present in derivative estimation. Unfortunately using a single constant (as opposed

to spatially varying) smoothing parameter appears to be yet another dead end!

4.3 The E�ect of Sample Size on Derivative Estimation

The motivating illustrations feature datasets of varying sample sizes, namely, 10, 31, 64 and

131. It would be expected that as sample size increases the resulting standard error decreases

and the accuracy of estimates increases. The sample size may be controlled at the design phase

and as such these simulations may be of interest in future studies (although the idea of power

calculations for nonparametric smoothing is not well researched).

73



4.3.1 Simulation Study into the E�ect of Sample Size on Derivative

Estimation

The following simulation study was performed to investigate the e�ect of sample size on the

performance of P -Spline derivative estimates. Three sample sizes of n = 20, 50 and 100 were

used.

Data were simulated 1000 times from the six functions f1, . . . , f6 under the situation y =

fi(x) + ε, i = 1, . . . , 6, with x uniform on [0, 1]. The error vectors were simulated from a

Normal distribution with standard deviation σ equal to one sixth the range of fi, i = 1, . . . , 6.

The P -Spline method was used to �nd �rst and second derivative estimates at sample sizes of

n = 20, 50 and 100. Comparisons across the three sample sizes were made using the RMSED(1)

and RMSED(2).

Figures 4.2, 4.3 and 4.4 display comparisons of the RMSED(1) for each of the six functions

f1, . . . , f6. The boxplots suggest that increasing sample size leads to better performance. Since

there are more data pairs, there is more information for the P -Spline model, which leads

to a better estimate of the underlying function, which, in turn, leads to improved derivative

estimates. The variability displayed in the boxplots, however, does not appear to either increase

or decrease consistently with increasing sample size. The range of RMSED(1) at n = 50 in the

f2 and f6 scenarios is lower than at either of the other two sample sizes tested here.

Table 4.10 con�rms the decrease in mean RMSED(1) as n increases, they also further allude

to a strange relationship between the variability of RMSED(1) and sample size. The standard

deviation of RMSED(1) at n = 50 is either the highest (f1, f3, f4, f5) or the lowest (f2, f6)

among the three sample sizes chosen.

Table 4.11 reveals that the variability in RMSED(1) for f2 and f6 has caused the mean

RMSED(2) to be lowest at n = 50. The di�erence in variability of RMSED(2) for both f2 and

f6 is remarkably high, with standard deviations of 6 for n = 50, 24 for n = 100 and 100 for

n = 20 for f2. One would expect that as n increases, the variability in the error would decrease

with each additional data pair but evidence here suggests otherwise.

Unusual relationships between n and the variance of RMSED(·) are evident for functions

f2 and f6. These functions are alike in that they have a common e−16x2
term, and also appear
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Figure 4.2: Boxplots of RMSED(1) for f1(left plot) and f2 (right plot) for comparisons of
sample size.
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Figure 4.3: Boxplots of RMSED(1) for f3(left plot) and f4 (right plot) for comparisons of
sample size.

quite similar from Figures 1.9 and 1.13. Figure 4.5 exhibits simulated �ts from each of the

three sample sizes using the same seed in R. Surprisingly, the P -Spline �t when n = 100 is the

poorest of the three. It seems to miss the trough which is the minimum of f2 and lose track of

f2 at the second tail.

Figure 4.6 displays derivative estimates at each of the three sample sizes, along with the

actual �rst and second derivatives of f2. None of the curves o�er impressive derivative estimates
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Figure 4.4: Boxplots of RMSED(1) for f5(left plot) and f6 (right plot) for comparisons of
sample size.
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Table 4.10: Mean RMSED(1) (standard deviation) for comparisons of sample size.

but the estimates at n = 50 certainly seem to be the most smooth. There are boundary e�ect

issues for each sample size.

4.4 The E�ect of Variability on Derivative Estimation

The variability of the data is di�erent in each of the motivating illustrations (Figure 4.7). In the

Blood Lactate and Astronomical data there is very little variability such that �tting a curve
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Function n = 20 n = 50 n = 100
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Table 4.11: Mean RMSED(2) (standard deviation) for comparisons of sample size.
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Figure 4.5: Fitted curves obtained by P -Splines for data simulated from f2 under the same
seed using n = 20 (red), n = 50 (green) and n = 100 (blue), with actual f2 (black).

to the data by eye alone should be relatively accurate, whereas the Winter Nutrients study

displays far more variability.

Certainly, in all real examples of noisy data, variability varies! This variation will e�ect

derivative estimates, and one would expect that as variability increases so performance of

derivative estimators should decrease.
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Figure 4.6: First (left) and second (right) derivative estimates using P -Spline for n = 20 (red),
n = 50 (green) and n = 100 (blue), with actual f ′2 and f

′′
2 (black).
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Figure 4.7: Di�ering levels of variability among motivating illustrations.
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4.4.1 Simulation Study into the E�ect of Variability on Derivative

Estimation

A simulation study into the e�ects of changing the standard deviation of the error added to

the simulated nonlinear functions follows.

Data were again simulated from the six functions f1 to f6 with x uniform on [0, 1] and

n = 50. A thousand responses y = fi(x) + ε, with i = 1, . . . , 6 and ε ∼ N(0, σ2), at each of

three values of σ were modelled using P -Splines and derivative estimates obtained using (3.26).

The values of σ were selected to be 1
3
range(fi),

1
6
range(fi) and

1
10
range(fi) for i = 1, . . . , 6.

The boxplots in Figures 4.8, 4.9 and 4.10 display the RMSED(1) for this simulation study.

As one would expect, increasing the variability decreases the performance of the P -Spline �rst

derivative estimates. Similar to the sample size simulations, f2 and f6 stand apart from the

others. Here there exists much more of a gulf in performance between high and moderate values

of σ for f2 and f6.
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Figure 4.8: Boxplots of RMSED(1) for f1(left plot) and f2 (right plot) for comparisons of
variability.

The performance in �rst and second derivative estimation of P -Splines with di�ering values

of σ are summarised in Tables 4.12 and 4.13 respectively. The estimates display decreasing

mean and variance of RMSED(·) as σ decreases. The variability in RMSED(1) is similar for

functions f1, f3, f4 and f5 whereas there is quite a large drop with decreasing σ for f2 and f6.
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Figure 4.9: Boxplots of RMSED(1) for f3(left plot) and f4 (right plot) for comparisons of
variability.
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Figure 4.10: Boxplots of RMSED(1) for f5(left plot) and f6 (right plot) for comparisons of
variability.

Similarly, the variability of RMSED(2) experiences a large decline only in f2 and f6. Odd

behaviour of RMSED(1) and RMSED(2) has been observed for these two (similarly shaped)

functions when altering sample size, and here they display a more dramatic decrease in error

when decreasing variability.

As expected the performance of derivative estimation is inversely related to the variance of

the observed data. With a low variance, more accurate �ts of the underlying regression function
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Function σ = 1
3
range σ = 1

6
range σ = 1

10
range

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

f(
x)

f1 8.74(0.52) 8.28(0.50) 7.48(0.50)

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

1.
0

1.
5

2.
0

x

f(
x)

f2 3.09(1.77) 1.51(0.38) 0.48(0.14)

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

f(
x)

f3 6.22(1.06) 5.09(1.06) 4.75(1.06)

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

x

f(
x,

 a
)

f4 0.58(0.14) 0.55(0.10) 0.54(0.10)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

f(
x)

f5 0.80(0.15) 0.74(0.14) 0.71(0.14)

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0

x

f(
x)

f6 2.89(1.6) 1.00(0.35) 0.45(0.13)

Table 4.12: Mean RMSED(1) (standard deviation) for comparisons of variability.

Function σ = 1
3
×range σ = 1

6
×range σ = 1

10
×range

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

f(
x)

f1 106.4(5.26) 103.2(5.25) 101.2(5.24)

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

1.
0

1.
5

2.
0

x

f(
x)

f2 29.92(27.81) 11.58(5.90) 5.95(2.10)

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

f(
x)

f3 189.0(36.45) 180.9(35.56) 177.7(35.52)

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

x

f(
x,

 a
)

f4 24.07(33.35) 20.13(33.23) 19.04(33.33)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

f(
x)

f5 10.00(1.90) 9.00(1.91) 8.47(1.91)

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0

x

f(
x)

f6 28.00(24.98) 10.85(5.30) 5.59(1.90)

Table 4.13: Mean RMSED(2) (standard deviation) for comparisons of variability.

are achieved, and thus better derivative estimates are obtained. In applications, one may be

more con�dent about derivative estimates for data where a clear pattern is present rather than

a highly variable nonlinear relationship.

4.5 Chapter Summary

P -Splines o�er a �exible smoothing method in situations of nonlinear data and are easily applied

to noncontinuous responses. However, in derivative estimation there is evidence of problems in

undersmoothing and boundary e�ects. Investigations into P -Spline derivative estimates when
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varying modelling situations (sample size, variability) and the choices underlying the model

(λ, d,K, q) have been carried out.

No evidence was found to alter the recommended values of penalty order, number of knots

or basis degree given by Eilers & Marx [12]. Simulations have also given evidence that choosing

λ by CV or GCV is to be preferred over AIC and BIC criteria and changing the value of λ using

a constant `fudge' o�ers little to no overall improvement in derivative estimation performance.

However, despite �nding no fault with these selection criteria it is still essential to check any

�t visually before relying on automatic choices of λ.

Increasing sample size leads to better performance in derivative estimation, although this

is not strictly the case for the variability in the precision of the estimator. Finally, as expected,

the simulations suggest that the larger the variability of the observed data, the harder the

problem of �nding accurate derivative estimates becomes.

P -Spline smoothing has many advantages and has performed well in comparison with other

derivative estimation techniques. Evidence has been found that the smoothing components of

the P -Spline model (d, K and q) have little e�ect on derivative estimation. It seems that the

model is most sensitive to change in the penalty term and corresponding smoothing parameter

λ, although the method for selecting λ seems to have little impact. In the next Chapter the ad-

vantages of using P -Splines for derivative estimation are exploited with possible improvements

in derivative estimation attempted using alternate penalisation.
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Chapter 5

Derivative Estimation Using An Additive

Penalty

The main issues in derivative estimation encountered in previous chapters relate to under-

smoothing and boundary e�ects. To better estimate derivatives of the underlying function f

additional smoothing is needed. Using penalised splines with a constant `fudge' added to the

smoothing parameter was found to o�er no improvement (Section 3.2.1.3 and Section 4.2.1.1).

More penalisation is needed, but perhaps in a di�erent place!

5.1 An Additive Penalty Approach

Aldrin [2] and Belitz & Lang [4] introduced methods to include an additive penalty structure

to a P -Spline model for increased sensitivity in smoothing. A secondary smoothing term has

also been used for constrained smoothing by Bollearts et al. [5] when monotonicity of response

is a scienti�c requirement. An example of an additive penalty P -Spline model with two penalty

terms may be written

n∑
i=1

[yi − f(xi)]
2 + λ1

m∑
j=d1+1

(∆(d1)αj)
2 + λ2

m∑
j=d2+1

(∆(d2)αj)
2 (5.1)

for i = 1, . . . , n observations, j = 1, . . . ,m coe�cients and di�erence penalty ∆ with orders

d1 and d2. The �rst two terms of (5.1) with d1 = 2 is the standard P -Spline model. The
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additional λ2

∑m
j=d2+1(∆

(d2)αj)
2 term allows for extra smoothing to ensure another coe�cient

is restricted to being similar to a neighbour.

The approach of using this additional penalty is extended to handle derivative estimation

in Simpkin et al.[55]. The motivation being that extra penalty terms should allow for increased

�exibility which is often required for derivative estimation. Using the additional smoothing

term, more smoothing can be focused in areas which display undersmoothing, while still making

sure other areas of the data are accurately described. The choice of where to place this extra

smoothing adds yet more subjective choices to the (already choice laden) task of smoothing.

Over the next few sections these choices shall be considered, with optimal selections determined.

5.2 Derivative Estimation with an Additive Penalty

The additive penalty model introduced in this thesis is a variant on the P -Spline model de-

scribed in Chapter 4. It shares many similarities in terms of inference and estimation of

coe�cients but has derivative estimation as its primary aim.

5.2.1 Modelling a Continuous Response Variable

Consider the situation where an estimate of the underlying function f which describes the

behaviour of a continuous response y is required, i.e.

y = f(x) + ε

where ε is taken to be some iid Normal error with mean zero and constant variance σ2. Using

a B-Spline basis for f this can be rewritten

y = Bα + ε

where B is the B-spline design matrix and α is the vector of coe�cients. Minimising

‖y −Bα‖2
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will give the least squares estimate of α, which attempts to interpolate the data up to the

number of knots chosen. Two additive roughness penalty terms are used to smooth out this

attempted interpolation, i.e. minimise

‖y −Bα‖2 + λ1 ‖Dd1α‖
2 + λ2 ‖Dd2α‖

2

and expand to get

yTy − 2αTBTy + αT (BTB + λ1D
T
d1
Dd1 + λ2D

T
d2
Dd2)α.

Taking the derivative with respect to α yields

−2BTy + 2(BTB + λ1D
T
d1
Dd1 + λ2D

T
d2
Dd2)α.

Setting the derivative to zero and rearranging gives the equation for the �tted coe�cients α̂ as

follows

α̂ = (BTB + λ1D
T
d1
Dd1 + λ2D

T
d2
Dd2)

−1BTy. (5.2)

Derivatives are again obtained using (3.26). Since using the extra penalty term changes only

the value of the αj, the formula works as in the ordinary P -Spline model.

5.2.2 Modelling a Count Response Variable

In the case where the response variable y is in the form of counts, estimation of coe�cients

using the additive penalty is very similar to estimation using P -Splines. For the purposes of

simplicity, only the case where the assumption of Poisson distributed counts has been made

shall be considered here.

The response y generated by a Poisson distribution with mean rate µ and is modelled such

that

ln(µ) = Bα (5.3)
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where

µ = eBα, (5.4)

for B-Spline design matrix B and coe�cients α.

where j = 1, . . . ,m is the number of coe�cients to be �tted. The αj are found using

iteratively weighted least squares, i.e.

α̂t+1 = (BT ŴtB + λ1D
T
d1
Dd1 + λ2D

T
d2
Dd2)

−1BT Ŵtẑt (5.5)

where

z = Bα +W−1(y − µ)

and

Ŵ = diag(µ̂)

Once the coe�cients αj have been estimated, derivatives are estimated using the de Boor

formula (3.30) in Section 3.2.2.2.

5.3 Choosing Smoothing Parameters

An interesting problem motivated by the additive penalty model is the selection of multiple

smoothing parameters λ1 and λ2. Similarly to P -Splines, a subjective choice is di�cult to make

since the derivative, and not the underlying function, is of primary concern. An automatic

method for selection of the two smoothing parameters needs to be speci�ed. In the following

sections a cross validation method is suggested since, as has been seen in Chapter 4, choosing

a smoothing parameter by GCV or CV give similar results with CV slightly better.

The �rst decision is whether λ1 and λ2 should be selected simultaneously or sequentially. A

sequential approach is bene�cial in terms of computational e�ciency. A two dimensional grid

search is far more exhaustive (n2 calculations) than two one dimensional, sequential, searches

(2n calculations). Aldrin [2] found that a sequential approach is to be preferred when estimating

the underlying function f , whether this holds for derivative estimation is investigated in the

simulations which now follow.
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5.3.1 Comparison of Sequential and Simultaneous Selection Methods

Sequential and simultaneous selection of (λ1, λ2) was assessed with a small simulation study,

with RMSED(1) and RMSED(2) used to quantify performance in �rst and second derivative

estimation respectively. Penalties on �rst and second order di�erences of coe�cients were used

i.e.

n∑
i=1

[yi − f(xi)]
2 + λ1

m∑
j=2

(∆(1)αj)
2 + λ2

m∑
j=3

(∆(2)αj)
2. (5.6)

For ease of interpretation methods using an additional penalty term will be denoted as `AP'

and the order of the penalties used will be appended to `AP'. For example, a model penalising

�rst and second order di�erences of coe�cients simultaneously shall be called APsim12, whereas

the method penalising �rst and second order di�erences of coe�cients sequentially shall be

called APseq12 etc.

The methods were compared across the six functions f1, . . . , f6 introduced in Section 1.5. A

thousand samples of size n = 50 were simulated from each function with x uniformly distributed

on [0, 1] and Gaussian error ε ∼ N(0, σ2) at σ equal to one sixth the range of f added.

Figures 5.1 to 5.6 display boxplots of the RMSED(1) and RMSED(2) for both selection

methods across the six functions. Tables 5.1 and 5.2 give the mean and standard deviation

of the RMSED(1) and RMSED(2) for each function and method across 1000 replications.

Figures 5.1 to 5.6 and Tables 5.1 and 5.2 suggest that the sequential approach outperforms the

simultaneous selection method in terms of RMSED(1) in f1, f2, f4 and f6, with typically lower

variability in its error for all but f4. For second derivative estimates, the sequential selection

method displays lower RMSED(2) for all functions, and also has lower variability in all but f5.

A simultaneous method for selection of λ1 and λ2 will lead to the optimum amount of

smoothing needed to best �t the data. It will therefore o�er the same amount of smoothing as

the standard P -Spline method, granted this smoothing is spread over the two penalty terms.

For this reason, as has already been demonstrated in Section 3.2.5, the simultaneous selection

approach will lead to undersmoothing in derivative estimates. The sequential method, on the

other hand, will �rst �nd the optimum amount of smoothing to best �t the data, and then use
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Figure 5.1: Boxplots of RMSED(1) (left plot) and RMSED(2) (right plot) of f1 comparing
smoothing parameter selection methods.
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Figure 5.2: Boxplots of RMSED(1) (left plot) and RMSED(2) (right plot) of f2 comparing
smoothing parameter selection methods.

the extra penalty term to improve derivative estimates by oversmoothing in the �t to the data.

It is also more computationally e�cient to estimate the (λ1, λ2) sequentially.

As an illustrative example, Figure 5.7 displays data simulated from f2 = x + 2e−16x2
with

smooths using APsim12 and APseq12. Both methods are comparable when smoothing the data,

with APseq12 there is evidence of oversmoothing at x ≈ 0.5. For estimates of the derivative,

this oversmoothing pays o�. In Figure 5.8 undersmoothing is evident when using APsim12 in
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Figure 5.3: Boxplots of RMSED(1) (left plot) and RMSED(2) (right plot) of f3 comparing
smoothing parameter selection methods.
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Figure 5.4: Boxplots of RMSED(1) (left plot) and RMSED(2) (right plot) of f4 comparing
smoothing parameter selection methods.

estimates of both the �rst and second derivative. APseq12 does a better job of capturing the

derivatives of the underlying function explaining the observed data. Both techniques display

boundary e�ects for each derivative at the left boundaries.

The results of this, albeit small, simulation study give enough evidence to eliminate the

simultaneous approach to smoothing parameter selection for the additive penalty method when

derivatives are of primary interest to an analysis. The simulations for the sequential method
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Figure 5.5: Boxplots of RMSED(1) (left plot) and RMSED(2) (right plot) of f5 comparing
smoothing parameter selection methods.
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Figure 5.6: Boxplots of RMSED(1) (left plot) and RMSED(2) (right plot) of f6 comparing
smoothing parameter selection methods.

(≈ 1350 seconds) were roughly �ve times faster than those for the simulataneuous (≈ 6900

seconds).

Attention can now be focused on determining the order of the penalties enforced on di�er-

ences of coe�cients. In the P -Spline literature little fuss is made regarding the choice of order

of penalty, d. Whether this is the case for the extra penalty model is to be determined.
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Table 5.1: Mean RMSED(1) (standard deviation) comparing smoothing parameter selection
methods.
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Table 5.2: Mean RMSED(2) (standard deviation) comparing smoothing parameter selection
methods.

5.4 Choosing Penalty Order

Now that a sequential approach to �nding λ has been adopted, it remains to choose the order

of the penalties imposed i.e. d1 and d2 in (5.1). Since it is recommended in the literature

(Eilers & Marx [12]) to choose d = 2 for smoothing with P -Splines, this seems like a good place

to begin. Here penalties on �rst, second and third order di�erences of coe�cients are tested.

Higher order di�erence penalties were not examined in much detail and perhaps this may be

an area for further work. The order of selection for the sequential approach was found to have
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Figure 5.7: Plot of f2 smoothed using APsim12 (blue) and APseq12 (red).
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Figure 5.8: Plots of �rst (left) and second (right) derivative estimates of f2 using APsim12
(blue) and APseq12 (red) with actual �rst and second derivative in black.

negligible impact on derivative estimates through a brief investigation.
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5.4.1 Comparison of Penalty Orders for the Additive Penalty Model

Simulations were carried out to test which pairing of penalty orders is optimal for derivative

estimation using a set of functions that mirror typical smoothing scenarios. The methods under

examination being APseq12, APseq23 and APseq13. Once again the RMSED(·) was used as

a measure of performance. The di�erent approaches were tested across the six functions f1 to

f6 from Section 1.5. The x values were simulated, as before, to be uniformly distributed on

[0, 1] with Gaussian error added at standard deviation equal to one sixth the range of f . One

thousand samples of size n = 50 were taken in all comparisons.

Figures 5.9 to 5.11 show boxplots of the RMSED(1) for the six functions f1 to f6. Aside

from the performance in f1 the error produced using each penalty pairing is quite similar. It is

possible that the di�erence in error for f1 is caused by the fact that f1 ∝ f ′′1 and APseq13 does

not penalise second order di�erences. The pairing of second and third order penalties seems to

result in more variability in the error of the derivative estimates with more outliers evident.
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Figure 5.9: Boxplots of RMSED(1) for f1 (left) and f2 (right) comparing pairings of penalty
orders.

Tables 5.3 and 5.4 show the similarity in goodness of �t for the three pairings of penalties.

There is also little to choose from in terms of variability of the �tting process. It would appear

that choice of order of di�erence penalty on the smoothing parameters has little bearing on the

performance of an additive penalty method for derivative estimation.
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Figure 5.10: Boxplots of RMSED(1) for f3 (left) and f4 (right) comparing pairings of penalty
orders.
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Figure 5.11: Boxplots of RMSED(1) for f5 (left) and f6 (right) comparing pairings of penalty
orders.

It is quite clear from the boxplots that there is little to no di�erence in performance among

the di�erent penalty order pairings. This agrees with the literature (Eilers & Marx [12]) and

results from Section 4.1.1.1, in which choosing the penalty order is seen as having little im-

portance when compared to the choice of λ. In order to simplify comparisons with current

derivative estimation techniques such as P -Splines and semiparametric smoothing the APseq12

method will be taken forward, since it has the lowest overall RMSED(·) across the six functions
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Table 5.3: Mean RMSED(1) (standard deviation) comparing pairings of penalty orders.
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Table 5.4: Mean RMSED(2) (standard deviation) comparing pairings of penalty orders.

f1, . . . , f6 and two derivatives in our simulations. For brevity, from this point forward APseq12

will be abbreviated as AP.

5.5 Comparison of the AP with P -Splines and Semipara-

metric Regression

It has been seen in Section 3.2.5 how modern spline smoothing techniques struggle in terms

of estimating derivatives. Whether the additive penalty method improves estimation of these
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derivatives is investigated here.

5.5.1 Simulation Study for Comparison of the Additive Penalty with

Spline Smoothing Methods

Once again simulated data are used to gauge performance. The methods under investigation

are the AP, P -Splines and semiparametric regression since the latter two were seen to perform

the best among available modern techniques in Chapter 3.

Testing was performed across the familiar six functions f1 to f6. For each of the functions,

n = 50 observations were simulated 1000 times using x uniform on [0, 1] and error ε ∼ N(0, σ2)

added, with σ = 1
3
range(f).

Figures 5.12 to 5.14 display boxplots of RMSED(1) for each function. The AP displays visi-

bly lower RMSED(1) across all functions under consideration although in f6 the semiparametric

regression method seems competitive. There is a vast improvement present for derivative esti-

mation of f1 when using the AP over the other two approaches. Each technique does however

result in many outliers for estimates of f2 and f6 which are quite similar in terms shape, i.e.

smoothing di�cultly.
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Figure 5.12: Boxplots of RMSED(1) for f1 (left) and f2 (right) comparing the AP approach
with P -Splines and semiparametric regression.

Tables 5.5 and 5.6 highlight the improvements made by using an extra penalty term when
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Figure 5.13: Boxplots of RMSED(1) for f3 (left) and f4 (right) comparing the AP approach
with P -Splines and semiparametric regression.
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Figure 5.14: Boxplots of RMSED(1) for f5 (left) and f6 (right) comparing the AP approach
with P -Splines and semiparametric regression.

searching for �rst and second derivative estimates. For each of the functions under investigation

the AP method displays the lowest mean RMSED(·) and the lowest variance of RMSED(·) for

f3, f5, f6. The results of this simulation study give empirical evidence that using the additional

penalty leads to better performance in derivative estimation.

In terms of RMSED(·), the results of this simulation study suggest that employing an extra

additive penalty term to a P -Spline smoothing process bene�ts derivative estimation. By taking
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Table 5.5: Mean RMSED(1) (standard deviation) comparing the AP approach with P -Splines
and semiparametric regression.
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Table 5.6: Mean RMSED(2) (standard deviation) comparing the AP approach with P -Splines
and semiparametric regression.

a closer look at the estimates returned for one of the functions, e.g. f1 = sin(4πx), how this

improvement is attained can be examined. Figure 5.15 shows smooths of f1 using the three

methods AP, P -Splines and semiparametric smoothing. One notices that the P -Spline (blue)

dashed line seems to give the best smooth of the data, with both the AP and semiparametric

methods slightly oversmoothing the behaviour of the data in the second crest and trough of

the sine wave.

The actual �rst and second derivatives of f1 (i.e. the gold standard) are displayed as the solid
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Figure 5.15: Plot of f1 smoothed using AP (red), P -Splines (blue) and semiparametric (green)
methods.
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Figure 5.16: Plots of �rst (left plot) and second (right plot) derivative estimates of f1 using AP
(red), P -Splines (blue) and semiparametric (green) methods.

black curve in Figure 5.16. The coloured dashed lines show the e�orts of the three techniques

to capture these derivatives. Very similar estimates of the �rst derivative are made by all three

methods, with the AP slightly more accurate in describing the second trough of the derivative
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of the sine wave. In the graph of the second derivative the AP method is clearly superior, with

both the P -Spline and semiparametric �ts exhibiting undersmoothing and boundary e�ects.

5.6 Comparison of the AP with P -Splines in the Motivat-

ing Datasets

Since it is apparent from the simulations that an improvement in derivative estimates can be

achieved using the additive penalty, the motivating examples can now be revisited for com-

parison. It is likely, from what has been discussed in this Chapter, that the additive penalty

method will display poorer estimates of the underlying function explaining the data but will

o�er improved derivative estimates.

5.6.1 Winter Nutrients Data

Figure 5.17 exhibits smooth �ts to the 1990 NTRZ and Phosphate data by P -Splines and the

AP method. Once more, the P -Spline approach leads to a more `wiggly' �t for both Winter

Nutrients because of the single smoothing penalty term. The goal here is to identify signi�cant

change in the trend of the data. Once more, this can be estimated using �rst derivative

estimates.

Figure 5.18 shows the �rst derivative estimates for NTRZ and Phosphate data using P -

Splines and the additive penalty approach. From the graphs, there is possibly a di�erence

between the two methods in the time at which zero crossings occur. However, until variability

bands for these derivative estimates have been developed, whether these zero crossings are

`signi�cant', or merely due to sampling variation, cannot be con�rmed.

5.6.2 Scottish Bird Count Data

The left panel of Figure 5.19 displays counts of Grey Plover from 1974 to 2004 along with

smooth �ts by the P -Spline and AP methods. Each of these smooths has used generalised

smoothing to deal with the count data observed here. It is evident that the AP �t is the

smoother of the two. This is expected due to the extra smoothing penalty enforced by the
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Figure 5.17: Plot of NTRZ (left) and Phosphate (right) data with smooth �ts by the P -Spline
(red) and AP (blue) methods.
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Figure 5.18: First derivative estimate of 1990 NTRZ (left) and Phosphate (right) with smooth
�ts by the P -Spline (red) and AP (blue) methods.

additive penalty �t. The goal of this study is to �nd the �rst instance of a decreasing count

of Grey Plover and this can be estimated by looking for zero crossings of the �rst derivative

estimate.

First derivative estimates of the Grey Plover data using P -Splines and the AP method can

be seen in the right panel of Figure 5.19. There is little graphical di�erence between the �rst

(and only) zero crossing of each smooth estimate, although whether or not these crossings are
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Figure 5.19: Grey Plover data with smooth �ts (left) and �rst derivative estimates (right) by
the P -Spline (blue) and AP12 (red) method.

signi�cant is not known as variability bands have yet to be developed (see Chapter 6).

5.6.3 Blood Lactate Data

Figure 5.20 shows some di�erence between estimates of the lactate curve and its second deriva-

tive from the P -Spline and AP methods. The AP �t is more crude and the P -Spline estimate

appears to be a better �t to the data. However, as has been seen previously (e.g. Section 2.2.4),

this better �t of the underlying function does not always lead to a better derivative estimate.

The AP approach is oversmoothing here and this can be seen in Figure 5.20 to lead to

a di�erence in derivative estimates. The AP smooth is far less `wiggly' than the P -Spline

method. Pertaining to the main question of interest in this study, the right panel of Figure 5.20

shows there to be a di�erence of roughly 1 km/h in the speed at which the maximum second

derivative of the lactate function is estimated to occur when comparing the AP and P -Spline

methods. This is quite a considerable di�erence given the range of speeds in question. From

�ndings based on the simulations in this Chapter, it is anticipated that the additive penalty

estimates are more accurate and therefore one would tend to believe the estimate given by the

AP approach.
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Figure 5.20: Plot of one individual's lactate data with smooth �ts (left) and second derivative
estimates (right) using P -Splines (red) and the AP (blue).

5.6.4 Astronomical Data

For the Astronomical data the main aim is to estimate ρtot (which is currently an unmeasurable

quantity) using the equation

d

dx

d
dx

(ρgaskTµmp)

ρgas
= −4πGρtot (5.7)

where G is the universal gravitational constant, k is Boltzmann's constant, x (in arcmin) is a

measure of distance, µ is the mean molecular weight in any cluster and mp is the mass of the

proton.

The collected data consist of the T and ρgas variables. Thus it is necessary to obtain

estimates of d
dx

(ρgaskTµmp) and then of d
dx

d
dx

(ρgaskTµmp)

ρgas
. Figure 5.21 gives estimates of these by

the P -Spline and AP methods. From 5.21 there seems to be little di�erence in the �ts from each

method. There is some di�erence in the right panel of Figure 5.21 and thus the estimated �tted

values corresponding to ρtot will di�er depending on the method which is used for derivative

estimation. This will impact on astronomical models based on this estimate of ρtot.
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(
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)
after rescaling (right)

using P -Splines (red) and an AP (blue).

5.7 Chapter Summary

Prior to this Chapter, considerable problems of undersmoothing and boundary e�ects in deriva-

tive estimation have been uncovered. An extra additive penalty included in the standard P -

Spline model was proposed to attempt to remedy these concerns. This model necessitates the

selection of two smoothing parameters (λ1, λ2), and so a decision on whether to use a sequential

or simultaneous approach was needed. The sequential selection of (λ1, λ2) resulted in better

derivative estimation performance and the simultaneous approach was eliminated.

Simulations varying the di�erence penalty order pairings (d1, d2) were carried out to test

whether this choice had an e�ect on the error in derivative estimation. This simulation o�ered

very similar results for each of the three pairings considered, although overall they suggest using

�rst and second order di�erence penalties.

Proceeding with this form of additive penalty model, comparisons of precision in derivative

estimation were made with P -Splines and semiparametric smoothing. The results of simulations

suggest that the AP approach is to be preferred when estimating the derivatives of a (regression)

function.

The AP and P -Spline methods were applied to the motivating datasets resulting in notice-

ably di�erent estimates. Using the simulations as evidence it would seem that the AP estimates
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should be believed. However, these estimates still fall short in a number of categories when

applying to the illustrative datasets. In the Winter Nutrient and Scottish Bird Count data it

is necessary to determine whether zero crossings of the �rst derivative are indeed signi�cant

(i.e. represent a systematic change in the population of interest). Estimates of the standard

error of these derivative estimates are now required so that variability/con�dence bands can be

constructed and this shall be the main focus of the next Chapter.
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Chapter 6

Inference Using Derivative Estimates

Statistical inference is the process of drawing conclusions about a population parameter based

on a sample statistic and its estimated standard error. These can be used for signi�cance tests

(tests that a parameter equals a certain value) or interval estimation (where a plausible range

of values for the parameter are provided).

When estimating derivatives the same theory applies. The population parameter is the true

derivative f (l), l = 0, 1, 2, . . . for which a point estimate f̂ (l) is calculated using, for example,

spline smoothing. How to obtain this point estimate has been discussed and the previous

Chapter provided empirical evidence that the additive penalty (AP) method o�ers improved

performance for estimating the �rst and second derivatives of noisy data.

In this Chapter theory for estimating the standard error of derivative estimates is developed

in order to create likely ranges around smooth estimates of the regression function and its

derivatives. The motivating datasets introduce problems which cannot be solved purely through

�tted values of a derivative estimate; features of the derivatives are often what is important.

Several simulation studies to test the performance of variability bands and the accuracy of

estimating certain features of a relationship between variables are carried out. The motivating

examples from Chapter 1 are revisited with methods for estimating variability bands, and

consequently areas of signi�cant change, available.
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6.1 Variability Bands

In statistical inference a con�dence interval provides a likely range of values for a population

parameter (e.g. µ) based on its point estimate (e.g. x̄) and its estimated standard error se(x̄).

For large samples, a 95% con�dence interval for µ is

x̄± 1.96se(x̄).

In the smoothing/derivative estimation context where f (l), l = 0, 1, 2, . . . , is the population

parameter and f̂ (l) is its estimate this may be written

f̂ (l) ± 2se(f̂ (l)) (6.1)

and is called a pointwise con�dence band. The value 2 (≈1.96) is taken since the asymptotic

properties of interval estimation on which the value 1.96 is based are not well established for

smoothing and using 2 is just a simple approximation. The con�dence band provides a range of

pointwise likely values for each observation of the true function/derivative f (l) but, as shall be

seen, it is not a 95% con�dence interval for the global parameter/function f (l). Thus the term

variability band is used for (6.1) in order to disassociate from the well known interpretation of

a con�dence interval. These variability bands o�er a somewhat plausible range of likely error

of a smooth estimate of a function and its derivatives. Therefore they may be used to identify

areas of signi�cant change in observed data through comparisons of estimated �rst derivative

variability bands with zero. De�ne signi�cant increase of a response variable y = f(x) when

f ′ − 2se[f ′] > 0 (6.2)

and signi�cant decrease when

f ′ + 2se[f ′] < 0. (6.3)

Otherwise there is no signi�cant change. The estimated standard error could potentially be

used for signi�cance testing that f ′ = 0 for example. However, it would be di�cult to quantify

the power of such a test since the asymptotics of the estimated standard errors are not well
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de�ned.

In the Scottish Bird Count and Winter Nutrients data, �rst derivative estimates can be used

to test for evidence of a signi�cant change in the respective response. The region representing

signi�cant change can be found by observing regions where both the upper or lower variability

bands of a �rst derivative estimate lie above or below zero simultaneously (6.2, 6.3). In this

section methods for calculating variability bands for each of P -Splines, AP and semiparametric

smoothing shall be introduced or developed where necessary through estimating se(f (l)).

6.1.1 Variability Bands for Semiparametric Regression

Variability bands have been developed for a semiparametric regression estimate and its deriva-

tives. Ruppert, Wand and Carroll [48] describe how these bands are achieved and here that is

summarised.

The package SemiPar gives the user the option to view variability bands for the smooth

�t and derivative estimates but does not contain �tted values for these (nor for the �tted

derivative estimates themselves). The Appendix of this thesis provides new code to extract

�tted derivative estimates and their variability bands from the spm function. This code is

useful as, in general, plots of the derivatives with variability bands alone are not adequate

for answering some questions, such as the ones involved in the motivating illustrations. For

example in the Winter Nutrients data, the analysis needs to report times at which a signi�cant

decrease or increase occurs. Simple graphical displays of �rst derivative estimates with bands

may not be enough as reading from a graph is too subjective.

6.1.1.1 Variability Bands for a Semiparametric Regression �t f̂sp

Semiparametric regression is similar to the linear mixed model setup i.e.

y = Xβ + Zu+ ε (6.4)

where X is the design matrix for the �xed parameters β, Z is the design matrix for the random

e�ects u ∼ N(0, σ2
uI) and ε ∼ N(0, σ2

ε I). It has been seen in Chapter 3 that, where y = f(x)+ε,
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taking, for example, three �xed parameters β = (β0, β1, β2) then �tted values are obtained by

ŷ = β̂0 + β̂1x+ β̂2x
2 +

K∑
k=1

ûk(x− κk)2
+. (6.5)

Similarly to the P -Spline method, the estimate of the observed y values are

ŷ = f̂sp = θTy (6.6)

where θ is a vector of length n turning observed y to �tted ŷ. The variance of y can then be

estimated by

var(f̂sp) = var(θTy)

= θTvar(y)θ

= σ2
ε θ
T θ

(6.7)

with the standard errors of y estimated as

se(f̂sp) = σ̂ε ‖θ‖ . (6.8)

The variability bands for y can be estimated as

f̂sp ± 2se(f̂sp)

where 2 (≈ 1.96) is again chosen as an approximate 95% con�dence coe�cient. This approx-

imate con�dence coe�cient is used throughout the rest of this Chapter for all methods. The

var(fsp) can be estimated by

var(f̂sp) = σ2
εC(CTC +

σ2
ε

σ2
u

D)−1CT (6.9)

with

C = [X Z] ≡ [1 x x2 (x− κ1)
2
+ . . . (x− κk)2

+]
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and

D = diag(0, 0, 0, 1, . . . , 1)

where the number of zeros beginning the diagonal of D is equal to the number of �xed param-

eters in the model.

6.1.1.2 Variability Bands for f̂ ′sp

Taking the derivative of f̂sp gives

f̂ ′sp = β̂1 + 2β̂2x+
K∑
k=1

2ûk(x− κk)+. (6.10)

Once more, variability bands are found by

f̂ ′sp ± 2
√
var(f̂ ′sp)

where

var(f̂ ′sp) = σ2
εC
′(CTC +

σ2
ε

σ2
u

D)−1C ′T (6.11)

and

C ′ = [X ′ Z ′] ≡ [0 1 2x 2(x− κ1)+ . . . 2(x− κk)+] (6.12)

As an example, Figure 6.1 displays variability bands for the semiparametric regression estimate

of the Phosphate data and the corresponding derivative estimate.

6.1.2 Variability Bands for P -Splines

Variability bands have not been developed for derivative estimates from a P -Spline �t in the

literature and a new approach is now developed. Variability bands for a P -Spline �t appear in

the literature (Marx & Eilers [35]) and the theory underlying these bands is summarised below.
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Figure 6.1: Fit (left) and �rst derivative estimate (right) of the Phosphate data using semi-
parametric regression with variability bands.

6.1.2.1 Variability Bands for a P -Spline Fit f̂p

Consider the familiar setup y = fp(x) + ε. For a B-spline basis one may write

fp = Bα

for some B-Spline matrix B and set of coe�cients α. Then one may write

ŷ = f̂p = Bα̂ = Hy

where

H = B(BTB + λDTD)−1BT

for some di�erence matrix D and smoothing parameter λ. Recall from Section 3.2.2 that a

di�erence matrix, taking penalty order d = 2 and m = 5 coe�cients for example, has the form

D2 =


1 −2 1 0 0

0 1 −2 1 0

0 0 1 −2 1

 .
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Then

var(ŷ) = var(Hy)

= Hvar(y)HT .

(6.13)

The variance of y is σ2 which is estimated by

σ̂2 =
‖y − ŷ‖2

n− tr(H)
(6.14)

since the e�ective dimension of the model is tr(H) from (3.10). Variability bands, given by

f̂p ± 2

√
var(f̂p),

can be approximated by

f̂p ± 2
√
diag(σ̂2HHT ). (6.15)

6.1.2.2 Variability Bands for a P -Spline First Derivative Estimate f̂ ′p

From (3.26) one may write

f̂ ′p = q(qh)−1B′∆α̂ (6.16)

where h is the distance between adjacent knots, ∆ is the di�erence operator, q is the degree

of the B-spline basis and B′ denotes the B-Spline design matrix for the `derivative' B-Spline

basis of degree q − 1. As before variability bands will be of the form

f̂ ′p ± 2
√
var(f̂ ′p).

Now f̂ ′p is de�ned by (6.16), however methods for calculating var(f̂ ′p) do not appear in the

literature. The following is proposed:

var(f̂ ′p) = var(H ′y)

= H ′var(y)H ′T

= σ̂2H ′H ′T

(6.17)
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where σ2 is estimated by (6.14) and

H ′ = q(qh)−1B′(BTB + λDTD)−1B′T . (6.18)

A problem of non-conformity arises here due to the fact that dropping the degree of a B-

Spline basis means losing a column from the B-Spline design matrix B. Recall that a matrix

B representing a degree q B-Spline basis is of the form

B =



B1(x1) B2(x1) . . . Bm(x1)

B1(x2) B2(x2) . . . Bm(x2)

...
...

...
...

B1(xn) B2(xn) . . . Bm(xn)


for i = 1, . . . , n observations and j = 1, . . . ,m coe�cients. The dimension of B depends on the

number of observations and the number of basis functions, which itself depends on the number of

knots and the degree of the basis, i.e. m = K+q−1 whereK is the number of knots. Thus a q−1

B-Spline design matrix B′ has dimension n×m′ where m′ = K+(q−1)−1 = K+q−2 = m−1

and

B′ =



B1(x1) B2(x1) . . . Bm′(x1)

B1(x2) B2(x2) . . . Bm′(x2)

...
...

...
...

B1(xn) B2(xn) . . . Bm′(xn)


.

Thus (6.18) involves multiplying an n×m′ matrix B′ by the n×mmatrix (BTB+λDTD)−1,

which is not possible. This can be recti�ed by attaching an extra column of zeros to the B′

matrix. This may be appended to the �rst or last column of B′. Testing has shown negligible

di�erences in results between this choice and here the case where a column of zeros are added
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to the end of B′ is detailed. This new conformant B-Spline design matrix B′(0) is

B′(0) =



B1(x1) B2(x1) . . . Bm′(x1) 0

B1(x2) B2(x2) . . . Bm′(x2) 0

...
...

...
...

...

B1(xn) B2(xn) . . . Bm′(xn) 0


.

Similarly, when moving to higher order derivatives extra columns of zeros must be added

to the end of the B matrix with the number of columns of zeros equal to the order of derivative

computed. Variability bands can now be estimated using

f̂ ′p ± 2
√
diag(σ̂2H ′H ′T )

with H ′ de�ned as

H ′ = q(qh)−1B′(0)(B
TB + λDTD)−1B

′T
(0). (6.19)

Figure 6.2 exhibits variability bands for a P -Spline �t and corresponding derivative estimate

of the Phosphate data.

●
●

●
●
●●

●

●
●
●●

●

●
●●

●
●

●
●

●

●●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●
●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

0 20 40 60 80 100 120

0.
6

0.
8

1.
0

1.
2

Measurement Day

P
ho

sp
ha

te
 (

m
m

ol
 p

er
 c

ub
ic

 m
et

re
)

0 20 40 60 80 100 120

−
0.

04
−

0.
02

0.
00

0.
02

0.
04

0.
06

Measurement Day

R
at

e 
of

 c
ha

ng
e 

of
 P

ho
sp

ha
te

Figure 6.2: Fit (left) and �rst derivative estimate (right) of the Phosphate data using P -Splines
with variability bands.
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6.1.3 Variability Bands for the Additive Penalty Method

Variability bands for the additive penalty method are found in much the same way as in P -

Splines with the extra smoothing/penalty term added to the P -Spline hat matrix resulting in

the AP hat matrix Hap. The non-conformity issue arises here again and the same amendment

is made, i.e. adding a column of zeros to the B matrix for each order of derivative estimated.

6.1.3.1 Variability Bands for an AP �t f̂ap

Let

f̂ap = Bα̂ = Hapy

where

Hap = B(BTB + λ1D
T
d1
Dd1 + λ2D

T
d2
Dd2)

−1BT

with d1 and d2 the orders of di�erence penalty used in the smoothing process. Variability bands

can be estimated by

f̂ap ± 2

√
var(f̂ap)

where

var(f̂ap) = var(Hapy)

= Hapvar(y)HT
ap

= σ2HapH
T
ap

with

σ̂2 =
‖y − ŷ‖2

n− tr(Hap)
.

Then bands are obtained using

f̂ap ± 2
√
diag(σ̂2HapHT

ap).
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6.1.3.2 Variability Bands for an AP First Derivative Estimate f̂ ′ap

The de Boor formula is used to obtain derivatives from AP estimates. Since it uses an equally

spaced B-Spline basis

f̂ ′ap = q(qh)−1B′∆α̂ = H ′apy

where h is the distance between adjacent knots, q is the degree of the B-Spline basis and

H ′ap = q(qh)−1B′(BTB + λ1D
T
d1
Dd1 + λ2D

T
d2
Dd2)

−1B
′T .

Again the B′ design matrix needs the addition of a column of zeros to the end of B′ in

order to conform. By calling this new design matrix B′(0) rede�ne

H ′ap = q(qh)−1B′(0)(B
TB + λ1D

T
d1
Dd1 + λ2D

T
d2
Dd2)

−1B
′T
(0).

The variance is estimated as follows

var(f̂ ′ap) = var(H ′apy)

= H ′apvar(y)H
′T
ap

= σ̂2H ′apH
′T
ap ,

and variability bands are given by

f̂ ′ap ± 2
√
diag(σ̂2H ′apH

′T
ap )

Figure 6.3 shows variability bands for a smooth estimate of the Phosphate data and corre-

sponding derivative using the AP method.

6.1.4 Variability Bands Using the Bootstrap

Residual resampling is a useful computational approach for estimating variability bands in

linear and nonlinear models. Consider the familiar model y = f(x) + ε. Once f̂ has been

estimated, through P -Splines for example, a vector of residuals e = (e1, . . . , en) is obtained

116



●
●

●
●
●●

●

●
●
●●

●

●
●●

●
●

●
●

●

●●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●
●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

0 20 40 60 80 100 120

0.
6

0.
8

1.
0

1.
2

Measurement Day

P
ho

sp
ha

te
 (

m
m

ol
 p

er
 c

ub
ic

 m
et

re
)

0 20 40 60 80 100 120

−
0.

04
−

0.
02

0.
00

0.
02

0.
04

0.
06

Measurement Day

R
at

e 
of

 c
ha

ng
e 

of
 P

ho
sp

ha
te

Figure 6.3: Fit (left) and �rst derivative estimate (right) of the Phosphate data using the AP
with variability bands.

where ei = yi − ŷi for i = 1, . . . , n. Resampling residuals works by randomly resampling the

vector of residuals e with replacement to form vectors e∗ of length n. Now taking

y∗ = ŷ + e∗ (6.20)

gives one resample. This can be repeated R times giving R resampled response vectors and

smoothing each of these gives R �tted curves. Picking o� the 2.5% and 97.5% percentiles of the

R×nmatrix of �tted values gives a data driven approach to creating pointwise variability bands

for f̂ . Similarly, 2.5% and 97.5% percentiles of R × n matrices of �rst and second derivative

estimates are taken as pointwise variability bands for f̂ ′ and f̂ ′′. An example of such bands

using the Phosphate data is given in Figure 6.4.

6.1.5 Comparison of Variability Band Estimators

Quantifying the performance of variability bands is not straightforward. There are two levels

of performance which are vital; variability bands should o�er an accurate description of the

likely pointwise error across the range of the data whilst maintaining a respectable width, i.e.

precision. Large band width implies low precision and vice versa. A very wide (i.e. imprecise)

variability band is likely to contain the actual underlying function but will overestimate, and
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Figure 6.4: Fit (left) and �rst derivative estimate (right) of the Phosphate data using with
bootstrap variability bands.

give little information about, the likely pointwise standard error. For example, Figure 6.5

displays data simulated from f2 = x + 2e−16x2
with Gaussian error added. The right panel

shows the true function which generated the data. An optimal band will contain the true

function whilst maintaining the lowest width, i.e. good precision.
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Figure 6.5: Data simulated from f2 with semiparametric �t (red) and variability bands (blue).
The right panel displays the true function (green).

One method for measuring the precision of each of the variability bands introduced in the
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previous section is as simple as �nding the mean standard error across the range of x. Measuring

the accuracy of the variability band, however, is more challenging. Optimum bands will fully

contain the actual function or derivative whilst being as precise as possible (Figure 6.6).
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Figure 6.6: A representation of good variability band performance.

Good coverage is de�ned by the actual function or derivative lying inside their respective

bands. In the simulation study that follows, the coverage of variability bands is measured

in four ways. Firstly, as a measure of global coverage, the number of points of f(xi) for

i = 1, . . . , n which lie inside f̂ ± 2se(f̂) (likewise for f ′ and f ′′) were counted for each of

the 1000 samples. To measure pointwise coverage, the inclusion of three arbitrarily chosen

observations in the variability bands produced by each of the four methods was recorded for

each of 1000 simulations. Thirdly, the number of times the actual function f departed the

variability bands was observed. Finally, a `slope zero test' was conducted. This entailed �rst

derivative estimates of a constant function fc with error added being compared to y′ = 0. Since

fc has zero slope, the line y′ = 0 should be fully contained inside the variability bands for f̂ ′c.

The number of points f ′c(xi), i = 1, . . . , n along the line y′ = 0 contained in the bands was noted.

This test is similar to a global test for zero slope used in simple linear regression. However,

the size of this test does not represent the number of times in repeated sampling the entire line

y′ = 0 is not captured fully by the bands. Here it represents the number of points f ′c(xi) along
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the line y′ = 0 in each sample which will not be captured by the estimated variability bands.

6.1.5.1 Strategy

The four variability band estimators, namely the additive penalty method (AP), P -Splines,

semiparametric smoothing and bootstrap were tested on the function f2 = x + 2e−16x2
with x

uniform on [−1, 1] and Normal error ε ∼ N(0, σ2) added with σ = 1
3
range(f). One thousand

samples of size n = 100 were simulated. Each of the four methods were measured for global

and pointwise coverage for each derivative (l = 0, 1, 2), precision (i.e. mean standard error)

and departures (i.e. the number of times that f (l) departed the range f̂ (l) ± 2se[f̂ (l)] for each

l = 0, 1, 2). The bootstrap bands are estimated by �rst resampling the residuals from a P -Spline

�t to the data 1000 times to obtain 1000 samples. For bands around f̂ each sample is smoothed

using P -Splines and the 2.5 and 97.5 percentiles of these smooth �ts are taken as the estimated

variability bands. For bands around f̂ (l) (l = 1, 2) each sample is smoothed using the AP and

2.5 and 97.5 percentiles of the derivative estimates are taken as the estimated variability bands.

6.1.5.2 Results

The �ndings from these simulations are summarised separately for coverage, precision and

departures, in order to give a clearer picture of the results. Beginning with coverage, Figure 6.7

and Table 6.1 summarise the coverage percentages of f2, f
′
2 and f

′′
2 (written f , f ′ and f ′′ for the

remainder of these results) for each method. In terms of f , the semiparametric and bootstrap

variability bands are evidently the best in terms of coverage. They double the performance

of both the P -Spline and AP methods while halving (roughly) the variability of the coverage

across the 1000 samples.

f f ′ f ′′

P -Spline 48.7 (14.5) 59.8 (14.9) 64.6 (18.7)
AP 48.4 (14.3) 62.8 (14.4) 67.5 (16.5)
SemiPar 89.9 (7.2) 55.0 (9.2) 44.2 (10.7)
Bootstrap 91.4 (4.8) 94.1 (4.4) 95.3 (3.6)

Table 6.1: Mean (standard deviation) coverage percentage of f , f ′ and f ′′.

There is a noticeable trend when focussing on derivative estimation. Whereas the P -
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Figure 6.7: Percentage of f (top) and f ′ and f ′′ (bottom) contained within variability bands

Spline, AP and bootstrap bands signi�cantly improve coverage, the semiparametric regression

variability band coverage rapidly declines. For the �rst derivative estimates, the semiparametric

bands perform the worst among the four methods. The bootstrap pointwise bands prove

superior in capturing both f ′ and f ′′, whilst maintaining the lowest variability in coverage

percentage. The AP and P -Spline bands o�er similar results, with the AP method slightly

ahead in mean and standard deviation of coverage for each of f , f ′ and f ′′.

The most striking observation from Table 6.1 is not any comparison between methods for

calculating bands, but the actual coverage each technique o�ers. For derivative estimates each

of the P -Spline, AP and semiparametric bands are achieving between 40% and 70% coverage

of the actual derivatives. One should clearly tread carefully when making inferences about a
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population parameter based on these bands as they do not o�er the classical interpretation

of a con�dence interval. Ruppert, Wand & Carroll [48] describe variability bands as acting

as pointwise 95% con�dence intervals at each xi for i = 1, . . . , n observations assuming that

f̂(xi) is approximately normally distributed. For inferences about the entire curve, global or

simultaneous variability bands are necessary.

The percentages in Tables 6.2, 6.3 and 6.4 refer to the proportion of inclusion of f(xi), f
′(xi)

and f ′′(xi) for arbitrarily chosen observations i = 25, 50, 75. These pointwise coverage measures

should all be roughly to 95% given the de�nition of a variability band from Section 6.1.

f(x25) f(x50) f(x75)
P -Spline 80.3 75.6 78.9
AP 81.4 72.8 79.1
SemiPar 93.2 91.8 92.7
Bootstrap 99 87 100

Table 6.2: Pointwise coverage percentage of f(xi) for i = 25, 50, 75.

The bootstrap variability bands are excellent in terms of pointwise coverage of the actual

function f , with very few simulated variability bands missing the chosen observations. The

three observations are captured by the AP and P -Spline variability bands 75 to 80% of the

time for the function f . Therefore, these bands are unlikely to be 95% pointwise bands for the

function f which would lead one to question the estimate of σ2 from (6.14). Gasser [16] proposes

a nonparametric estimate for the residual variance in nonlinear regression which could improve

the performance of these variability bands in capturing the function f . The semiparametric

variability bands achieve better pointwise coverage for the function f when compared to the

AP and P -Spline approaches, with over 90% coverage. This is still slightly below the nominal

95% and perhaps a di�erent estimate for the residual variance could be used.

f ′(x25) f ′(x50) f ′(x75)
P -Spline 89.2 87.2 91.6
AP 92.4 88.6 92.8
SemiPar 89.0 80.6 87.6
Bootstrap 100 93 100

Table 6.3: Pointwise coverage percentage of f ′(xi) for i = 25, 50, 75.

Similarly to global coverage the bootstrap bands are vastly superior in terms of pointwise

coverage for derivative estimation. For i = 25, 75, all variability bands captured the actual
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f ′′(x25) f ′′(x50) f ′′(x75)
P -Spline 90.9 85.8 90.1
AP 92.8 86.1 92.8
SemiPar 75.3 71.4 77.6
Bootstrap 100 97 100

Table 6.4: Pointwise coverage percentage of f ′′(xi) for i = 25, 50, 75.

pointwise �rst and second derivatives. This is not a good result, however, since the method

for estimating these bands should o�er 95% coverage. The bootstrap variability bands come

closer to 95% coverage of f ′(x50) and f ′′(x50) across the simulations here. The boundary

e�ects, discussed earlier, could well be responsible for the over coverage when estimating the

standard error closer to the tails. The AP and P -Spline bands underperform slightly in terms

of derivative estimates, with roughly 90% pointwise coverage being achieved for both �rst and

second derivative estimates. The pointwise coverage of the semiparametric variability bands

deteriorates with each order of derivate taken. For �rst derivative estimates the pointwise

coverage is still respectable, at between 80 and 90%. However, it dips below 80% for second

derivative estimates, which is a serious concern for purposes of interpretation. Hence, there

is empirical evidence here that the AP and P -Spline variability bands are superior to the

recognised semiparametric bands in pointwise coverage of derivative estimates.

Moving to precision, Figure 6.8 and Table 6.5 present a summary of variability band width

(not to be confused with bandwidth). Here, low width (i.e. high precision) is favourable as

long as coverage percentage is maintained.

f f ′ f ′′

P -Spline 0.10 (0.04) 1.07 (0.55) 12.7 (9.18)
AP 0.09 (0.02) 0.95 (0.29) 10.7 (4.31)
SemiPar 0.26 (0.02) 0.83 (0.08) 6.26 (0.73)
Bootstrap 0.54 (0.05) 5.02 (1.14) 80.2 (32.7)

Table 6.5: Mean (standard deviation) width of f , f ′ and f ′′.

The performance in coverage percentage for the bootstrap pointwise bands is obviously

explained by the huge width of these bands, especially as attention shifts to derivative estimates.

For estimates of f and f ′ the bootstrap bands are several times wider than those o�ered by

P -Splines, the AP or semiparametric smoothing. In estimating bands around f ′′ the width of

the bootstrap bands is much higher when compared to the other three, being over ten times
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Figure 6.8: Width of variability bands for estimates of f (top), f ′ and f ′′ (bottom).

wider on average.

Similarly to coverage percentage, the AP and P -Spline bands are very similar in terms of

width, with the P -Spline bands slightly wider on average and the AP bands more stable across

the 1000 simulations from f . In estimating variability bands for the true function f the AP and

P -Spline bands o�er width three times lower than the semiparametric approach. This explains

the results in Table 6.1 where the semiparametric smoothing variability bands outperformed

those from the AP and P -Spline procedures.

Concentrating on derivative estimation, the three methods o�er similar widths and, recalling

Table 6.1, similar coverage percentages. To reiterate, the bootstrap bands here are roughly

eight times wider than the other three bands on average. The variability of precision (as is

124



evident by the mean to standard deviation ratio) seems to increase as one moves to higher

order derivatives which is logical due to the sensitive nature of high order derivatives. One

worrying factor discovered through viewing Figure 6.8 is the outliers in width of variability

bands found using the AP and P -Splines. The semiparametric model does not show signs of

this and o�ers far more stable variability bands. The bands constructed through the AP and

P -Splines are clearly more susceptible to outliers.

Another measurement obtained from these simulations was the number of departures of f ,

f ′ and f ′′ from estimated variability bands. Ideally zero departures would be evident, although

zero departures could mean that the function never enters the bands! This ambiguity is a facet

of measuring coverage in this way. A low number of departures could mean that, say f ′, leaves

the bands for most of its course and returns near the end. This is clearly not good performance

and the simulations test for such a potential loophole in results (using a minimal coverage

indicator). However, observing Figure 6.9 and Table 6.6 the results here concur with those

found for coverage percentages in Table 6.1. The bootstrap bands o�er excellent performance

for estimates of f ′ and f ′′ and here prove superior in terms of the number of departures of f ′

and f ′′. The imprecise nature of the bootstrap bands has been shown to be the reason for this.

f f ′ f ′′

P -Spline 4.8 (1.8) 5.4 (2.5) 5.4 (2.8)
AP 4.5 (1.4) 5.1 (2.0) 5.4 (2.3)
SemiPar 1.5 (0.8) 5.8 (1.1) 6.7 (1.3)
Bootstrap 2.8 (1.1) 2.3 (0.9) 1.8 (0.8)

Table 6.6: Mean (standard deviation) departures of f , f ′ and f ′′ from bands.

P -Splines and the AP o�er a similar number of departures in the n = 100 observations,

with f , f ′ and f ′′ leaving the bands on roughly �ve separate occasions. The semiparametric

approach is comparable with the AP and P -Splines in departures of the actual �rst and second

derivative of f whilst performing better in terms of departures of f itself.
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Figure 6.9: Number of departures in 100 observations of f (top), f ′ and f ′′ (bottom) from
variability bands.

6.1.5.3 Discussion of Variability Band Performance

The performance of the four variability band estimators has been examined from an empirical

perspective in terms of coverage, precision and number of departures. Figures 6.10, 6.11 and

6.12 display estimates and variability bands for f , f ′ and f ′′ by each of the four approaches. The

superior coverage performance of the bootstrap bands has been discovered to be caused by large

band width which o�ers little information about estimates of the function or its derivatives.

The bottom left panels of Figures 6.10, 6.11 and 6.12 rea�rm that the width of these bands

is much larger than in the other methods, although bands around f by semiparametric and

bootstrap techniques are comparable.
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Figure 6.10: Actual f (green) with estimates of f (red) and variability bands (blue).

There is little di�erence between the P -Spline and AP variability bands in terms of coverage

percentage from Table 6.1 and this can be seen clearly across estimates of f , f ′ and f ′′.

The semiparametric regression model has comparably wide variability bands for estimates

of f and this leads to a good coverage percentage (Table 6.1). Moving to derivative estimates

it is apparent that the poor coverage is caused by the substandard estimates of f ′ and f ′′ found

using semiparametric smoothing and not by the variability bands themselves. Whereas the

AP and P -Spline derivative estimates are reasonably accurate, the semiparametric regression

derivative estimates are not. The bootstrap pointwise bands are excessively wide and o�er

limited information about the likely error of the estimate of f ′′.

Figure 6.13 gives a scatterplot of global coverage against precision of bands for f2 and its
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Figure 6.11: Actual f ′ (green) with estimates of f ′ (red) and variability bands (blue)

derivatives for each of the four methods. In derivative estimation the variability of width is

larger for the P -spline bands than the semiparametric or AP but the reverse argument seems

to hold for coverage. The bootstrap bands have excellent coverage but this is evidently due to

a lack of precision.

6.1.5.4 Zero Slope Test

Another, more subtle, approach to measuring variability band performance is presented here

through a test of zero slope.

Data from a function fc = 4 with some error, ε ∼ N(0, 1), added was simulated 1000

times and smoothed using each of the three smoothing techniques. Since f ′c = 0, each of
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Figure 6.12: Actual f ′′ (green) with estimates of f ′′ (red) and variability bands (blue).

the derivative estimation techniques should �nd a �at and linear �rst derivative estimate at

0. Moreover, variability bands placed around these estimates should contain 0 for each xi in

f̂ ′c(xi) ± 2se[f̂ ′c(xi)], i = 1, . . . , n. Each of the four variability band estimators were tested on

this and the results are detailed here.

A large percentage of the zero line contained within the variability bands corresponds to

good performance for this test. Figure 6.14 and Table 6.7 summarise the �ndings of the slope

zero test.

The bootstrap bands performed perfectly by including the n = 100 observations on the

line y′ = 0 for 1000 simulations but, as has been discussed, has far wider bands than the other

three approaches. The P -Spline and AP variability bands are once again comparable with the
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Figure 6.13: Coverage versus precision for the P -Splines (red), AP (blue), semiparametric
(green) and bootstrap (purple) variability band estimators for the estimate of the function f2

and its derivatives.

% Coverage
P -Spline 95.1 (5.9)
AP 94.9 (6.8)
SemiPar 92.5 (12.2)
Bootstrap 100 (0)

Table 6.7: Mean Coverage Percentage of f ′c (i.e. y = 0) with standard deviation.

P -Spline bands slightly better in mean and standard deviation of coverage of the zero line. The

semiparametric model is outperformed by both on each count and this agrees with �ndings for

coverage percentages of f ′ from Table 6.1.

Figure 6.14 provides yet more evidence that variability bands found using the AP and P -
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Figure 6.14: Percentage of zero line contained within variability bands.

Splines are not stable. Moreover, in terms of capturing the line y′ = 0, the semiparametric

method displays this instability. Sensitivity to large values of εi is problematic when estimating

variability bands for derivative estimates.

Now, it is clear that 95% global or pointwise coverage is not achieved by any of the modelling

based variability band estimators for any of f , f ′ or f ′′. Thus these bands are not 95% con�dence

bands in the sense of a 95% con�dence interval. They are merely a representation of the likely

error contained when using these smoothing or derivative estimation techniques.

6.1.6 Application of Variability Bands to the Motivating Illustrations

Variability bands for �rst derivative estimates allow signi�cant changes in a response variable

relative to an explanatory to be identi�ed by comparison with y′ = 0. The Winter Nutrients

and Scottish Bird Count datasets require this type of analysis and in the following sections the

four variability band estimators are compared in both illustrations.

6.1.6.1 Winter Nutrients Data

The Winter Nutrients data contain 131 salinity adjusted measurements of NTRZ (a nitrate

and nitrite compound) and Phosphate. The main aim is to determine periods of time in which
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levels of the nutrients are increasing or decreasing. Here these times are estimated using �rst

derivative estimates and corresponding variability bands.
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Figure 6.15: Smooth �ts of NTRZ with variability bands.

In Figure 6.15 smooth �ts to the NTRZ data are displayed. Once more the AP method is

slightly more smooth than P -Splines owing to the extra smoothing from the additional penalty

term, however the semiparametric �t is the smoothest of all. The bootstrap bands are found by

resampling the residuals of the P -Spline smooth to the NTRZ data since the extra smoothing

included in the AP model leads to an oversmooth �t to the data. The bootstrap bands for

the �rst derivative estimates are obtained using the AP derivative estimation technique on the

1000 resamples found using the residuals of the P -Spline �t.

First derivative estimates are presented in Figure 6.16. The most striking observation from
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Figure 6.16: First derivative estimates of NTRZ with variability bands and highlighted regions
signi�cant decrease (red) and signi�cant increase (blue).

these estimates is how �at and smooth the semiparametric derivative estimate is compared

to the others. If this is to be believed there is no time during 1990/1991 at which NTRZ is

signi�cantly increasing or decreasing!

The other three plots o�er an alternative view of events during this Winter. The AP and P -

Spline bands appear to pick up similar regions of increase and decrease, with much �uctuation

towards the right tail. The di�erence in estimated increasing/decreasing times seems to come

from the end of the Winter, where the P -Spline �t is more erratic than the AP. Both display

an almost sinusoidal e�ect, however the AP �rst derivative estimate barely crosses zero in the

second trough (circa day 125) whereas the P -Spline derivative, together with its bands, dips
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considerably below zero. This agrees with all the previous discussions on comparisons of these

two methods, where the AP �t is less volatile in derivative estimates due to the extra smoothing

term.

The bootstrap bands, being the widest of all, fail to identify as many regions of signi�cant

change although any regions where these bands �nd signi�cance are more likely to be true in the

population. This could be thought of as analogous to a higher percentage con�dence interval

for a population parameter. If small Type I error is of primary importance to the researchers

then using the bootstrap bands would be the recommended choice. In general it appears that

there are more decreasing days than increasing, and that most of the time there is no change.

Tables 6.8 and 6.9 summarise the regions of signi�cant change throughout 1990/1991 for

each of the four methods. The semiparametric bands cannot recognise any regions of signi�cant

change owing to the severely oversmooth �t and subsequent derivative estimate. From Table 6.8

the only common area of signi�cant decrease found by the other three method comes between

days 113 and 116, this being the only such section determined by the bootstrap bands. It

is evident that the P -Spline method determines many more periods of decrease than the AP.

However, there are some sections of decline found by the AP and not P -Splines (days 47, 98-

100 and 117). These days re�ect the AP bands staying below zero for longer due to the extra

smoothness inherent in the model.

Periods of Decrease (Total)
P -Spline 8-10, 30-31, 43-46, 56, 67-69, 82-87, 96-97, 101, 112-116, 123-126 (31)
AP 44-47, 83-87, 96-100, 112-117 (20)
SemiPar None identi�ed
Bootstrap 113-116 (4)

Table 6.8: Estimated regions of signi�cant decrease in NTRZ.

Periods of Increase (Total)
P -Spline 1-5, 35-40, 72-78, 105-111, 118-122, 127-130 (34)
AP 1-5, 35-40, 72-79, 102-111, 118-123, 125-131 (42)
SemiPar None identi�ed
Bootstrap 37-39 106-110 118-122 127-131 (18)

Table 6.9: Estimated regions of signi�cant increase in NTRZ.

Table 6.9 shows many similarities between periods of signi�cant increase found by the P -

Spline and AP. The bootstrap bands again �nd less regions due to their width and thus give
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more conservative estimates of regions of signi�cant change.
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Figure 6.17: Smooth �ts of Phosphate with variability bands.

Unsurprisingly, similar comparisons between methods can be drawn for the Phosphate data.

Figure 6.17 reveals that the AP �t is smoother than that using P -Splines. The semiparametric

�t is the smoothest of all and that the bootstrap pointwise bands are the widest. In Figure 6.18

this leads to more areas of signi�cant change being identi�ed by the AP and P -Spline approaches

and, for instance, no periods of signi�cant decrease being found by the semiparametric bands.

Both large band width (bootstrap) and severe oversmoothing (semiparametric) lead to low

power in �nding signi�cant change. For example, 102 days were found to display no signi�cant

contamination change using the bootstrap pointwise bands compared to 40 found by the AP

bands. The AP derivative estimate detects more areas of signi�cant increase than the P -Spline
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estimate due to more volatility in the P -Spline �t between days 20 and 40 (the AP derivative

estimate together with its corresponding variability bands remain above zero for nearly all this

period).
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Figure 6.18: First derivative estimates of Phosphate with variability bands and highlighted
regions signi�cant decrease (red) and signi�cant increase (blue).

Table 6.10 shows one common region of signi�cant decrease determined by the P -Spline,

AP and bootstrap methods (days 85-93). Evidence that the AP derivative estimate is more

accurate than that found using P -Splines has been found (Section 5.5.1). Thus one would tend

to believe these bands more given the similar performance of variability bands between the two

(Section 6.1.5.2). Again if the researcher is interested in low Type I then 85-93 is an advisable

estimate, otherwise one would report days 83-100 as having signi�cant decrease.
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Periods of Decrease (Total)
P -Spline 67, 82-100 (20)
AP 83-100 (18)
SemiPar None identi�ed
Bootstrap 85-93 (9)

Table 6.10: Estimated regions of signi�cant decrease in Phosphate.

Table 6.11 again shows marked similarities in regions of increase found by the P -Spline and

AP techniques. For the �rst time the semiparametric bands manage to distinguish a period

of signi�cance and so an area of increase common to all four methods is between days 71 and

77. Even for the overtly careful researcher this represents an abundance of evidence that this

feature exists in the population!

Periods of Increase (Total)
P -Spline 1-6, 19-25, 34-40, 70-80, 103-111, 117-128 (52)
AP 1-6, 18-42, 67-81, 103-129 (73)
SemiPar 10-24, 48-77 (45)
Bootstrap 71-80, 119-128 (20)

Table 6.11: Estimated regions of signi�cant increase in Phosphate.

6.1.6.2 Scottish Bird Count Data

Recall the Scottish Bird Count data consists of counts of Grey Plover (amongst other wetland

bird species) measured annually for 31 years (1974 - 2004). The bottom left panel of Figure 6.19

is a P -Spline smooth of the Grey Plover data with pointwise bootstrap bands. Bootstrapping

residuals from a generalised P -Spline smooth was used here.

The generalised AP and semiparametric �ts are very similar in both the smooth estimates

to the data and their variability bands. The bootstrap bands are wider than any of the other

three, which is intuitive from the method by which these bands are calculated and agrees with

simulation �ndings from Section 6.1.5.2. The AP smooth is much smoother than the P -Spline

�t, which again agrees with the discussions from Chapter 5.

Figure 6.20 exhibits �rst derivative estimates from the Grey Plover data using the P -Spline,

AP and semiparametric methods. Pointwise bootstrap bands of the AP �rst derivative estimate

are shown in the bottom left panel of Figure 6.20.
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Figure 6.19: Smooth estimates of Grey Plover with variability bands. The semiparametric
model is the only method which does not recognise that the response consists of counts.

The question of interest here is to investigate whether a signi�cant decrease in count is

evident and to estimate the time at which this decrease occurs. A �rst derivative estimate with

fully positive variability bands represents evidence of an increasing count; a �rst derivative

estimate with fully negative bands implies a decreasing count and if zero is contained inside

the bands the count is neither signi�cantly increasing or decreasing.

Each of the four estimates displayed here have similar features, with an increasing count

up to the late 1990's followed by an eventual shift to a decreasing count somewhere around the

turn of the millennium. Thus, each method agrees that a signi�cant decrease in Grey Plover

has occurred. The year where this decrease occurs is estimated by the point at which the upper
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Figure 6.20: First derivative estimates of Grey Plover with variability bands and regions of
signi�cant increase (blue) and decrease (red) shown.

variability band crosses zero such that both bands are negative from (6.3). This procedure

presents a more useful estimate to that found by merely observing the time at which the �rst

derivative estimate itself crosses the zero line. Interestingly, the semiparametric and bootstrap

bands share comparable precision, which opposes simulation �ndings where the bootstrap bands

were by far the widest. The simple structure evident in this example could be responsible for

this �nding.

Table 6.12 gives four estimates for the time (in years) where a signi�cant decrease in Grey

Plover was identi�ed. All four give similar results, the AP and P -Spline methods give evidence

that a signi�cant decrease in count began close to 1997 and the semiparametric and bootstrap

139



Y ear
P -Spline 1997
AP 1997
SemiPar 1998
Bootstrap 1998

Table 6.12: Estimated year of signi�cant decrease of Grey Plover count.

bands o�er evidence that a signi�cant decrease began closer to 1998. From simulations in

Chapter 5, it is presumed that the AP estimate is the most accurate, although if low Type I

error is of interest the bootstrap bands should be reported.

6.2 Estimating a Feature in Noisy Data

In the Blood Lactate illustration the question of interest concerns identifying a feature of the

underlying lactate function which can be best explored through derivative estimation. The

workload corresponding to the maximum second derivative of the Blood Lactate response to

workload function is of interest. To test and compare the performance of the derivative esti-

mation techniques in such problems, an overall measure of error, such as RMSED(·), is limited.

Performance in estimating the features must also be assessed and this is a di�erent problem

when a feature and not the whole of f is of interest.

6.2.1 Simulation Study

A small simulation study was carried out to investigate which of the methods best estimated

the x value (xmax) corresponding to a maximum second derivative. The function f2 from

Section 1.5 of Chapter 1 is used since it is similar, in having a unimodal second derivative, to

a typical second derivative estimate of a lactate curve. An estimate of the magnitude of the

maximum second derivative is not required in the Blood Lactate example but performance in

estimating this value, i.e. d2max, is recorded here for reference.

A small sample size, n = 15, and Normal error ε with standard deviation equal to one sixth

the range of f2 was chosen. These choices of sample size and standard deviation were chosen

to resemble typical Blood Lactate readings. Once again comparisons were made between the

AP, P -Spline and semiparametric methods. One thousand responses y = f2 + ε were simulated
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such that 1000 estimates of the xmax and d2max pair could be obtained through each of the

AP, P -Spline and semiparametric methods. The corresponding absolute di�erences from the

estimates to the actual xmax and d2max, denoted x.err and d2.err respectively, were recorded

to assess the performance of each of the three approaches.

Figure 6.21 displays boxplots for x.err and d2.err across 1000 simulations of f2. The AP

and P -Spline �ts are roughly equal in ability to �nd the maximum of the second derivative

and the x value at which this occurs. The semiparametric method is the poorest in terms of

recognising this feature.
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Figure 6.21: Boxplots of x.err and d2.err for f2.

Mean x.err (sd)
AP 0.093(0.087)
P -Splines 0.104(0.118)
SemiPar 0.227(0.165)

Table 6.13: Performance in estimating the location of the maximum second derivative.

Table 6.13 provides evidence that the AP is to be preferred for estimating the x value

corresponding to the location of the maximum of the second derivative, while Table 6.14 suggests

the P -Spline �t gives the best estimate of the maximum of the second derivative itself (this is

not required for the Blood Lactate illustration).
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Mean d2.err (sd)
AP 11.77(5.126)
P -Splines 10.50(6.887)
SemiPar 13.56(10.87)

Table 6.14: Performance in estimating the maximum second derivative.

6.3 Inverse Prediction

To make inferences when estimating a feature of the data it is required to calculate the estimated

standard error for the purpose of performing interval estimation or signi�cance testing. Methods

for calculating the standard error of an estimate f̂ have been provided (Section 6.1). However,

there are circumstances in which the prediction of a value of explanatory variable (e.g. xinv)

which gave rise to a certain value of response is needed, i.e. the inverse prediction problem. For

example in the Blood Lactate data the estimated speed corresponding to the maximum second

derivative value is simply a point estimate of the true population parameter. For inference it is

necessary to calculate the standard error underlying this estimate. A simple empirical approach

of residual resampling is now described to �nd a range of likely values for the true xinv. The

residuals ei, i = 1, . . . , n are taken from the �t, i.e.

ei = yi − ŷi.

The bootstrap technique of resampling e = (e1, . . . , en) with replacement leads to R `new'

observed samples y(r), r = 1, . . . , R. These are calculated by

y(r) = y + e(r)

where e(r) is the rth resample of the residuals. For each y(r) the required feature is estimated

and the corresponding value of explanatory (xrinv) is obtained. In this manner a distribution

of R xinv's is obtained. From this empirical distribution a bootstrap interval estimate can be

constructed by taking the required percentiles from this distribution.
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6.3.1 Application of Inverse Prediction in the Blood Lactate Dataset

In the Blood Lactate example it is necessary to estimate the speed (xinv) at which the maximum

second derivative of the underlying lactate function (D2LMax) occurs. Evidence that the AP

approach performs better than the P -Spline and semiparametric methods in this task has been

found (Section 6.2). Using residual resampling the left panel of Figure 6.22 displays R = 1000

second derivative estimates along with the sample estimate in bold.
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Figure 6.22: Left: A thousand second derivative estimates of the Blood Lactate data found
using resampling (multicoloured) with original sample estimate (bold). Right: Histogram of
1000 xinv's obtained through resampling residuals with sample estimate (dashed black line) and
95% bootstrap interval estimate (blue dashed lines).

For each of these R D2LMax's a corresponding speed is obtained. A histogram of these

speeds is exhibited in the right panel of Figure 6.22. The interval estimate was found to be

(13.71, 14.46) km/h using the 2.5% and 97.5% percentiles of the empirical distribution of xinv.

This leads to an estimated range of likely values for the speed at which the true maximum

second derivative of lactate occurs.

6.4 Chapter Summary

The need for variability bands is motivated by the requirement to estimate periods of signi�cant

change in a response variable over time or relative to some other explanatory variable. In this
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Chapter, methods for estimating the variance of derivative estimates of semiparametric models

have been summarised and new methods for variance calculation of P -Spline and AP derivative

estimates have been developed. These variance estimates have been used to create approximate

variability bands for each of the three methods, with a further resampling method for variability

bands introduced.

These four approaches were tested across a large simulation study for coverage and pre-

cision. Also tested were the number of departures of a true function (f2) and its derivatives

from variability bands and the ability to correctly estimate a slope of zero from simulated data.

The AP and P -Spline variability bands performed best overall in terms of coverage and pre-

cision when estimating derivatives, although the semiparametric bands o�er the best coverage

and precision when �tting a curve to observed data. Varying results were found between the

four methods when applied to the Winter Nutrients and Scottish Bird Count examples and a

discussion of which to believe based on the simulation results was provided.

The performance of the P -Spline, AP and semiparametric approaches to estimating a max-

imum second derivative and its location was assessed. This type of analysis is needed for the

Blood Lactate study and evidence that the AP method is better at estimating the location

of the maximum second derivative was found. Residual resampling was used to construct an

empirical interval estimate in an inverse prediction problem.

A discussion of the main �ndings and conclusion of this thesis will now follow. Some

interesting research problems which could stem from this research are discussed. The motivating

datasets will also be revisited for a �nal time with concluding remarks provided.
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Chapter 7

Conclusion and Further Work

The main aims of this research were to review current methods for derivative estimation and

to attempt to �nd an improved method to estimate derivatives in situations where a nonlinear

relationship exists. The goals laid out in the Introduction were as follows:

• To provide a comprehensive review of derivative estimation for noisy data.

• To outline the challenges faced in obtaining accurate derivative estimates when a nonlinear

relationship between explanatory and response exists.

• To compare the performance of current methods for derivative estimation.

• To develop an approach to derivative estimation that improves on current methods.

• To establish suitable variance estimates for these estimators in order to produce reliable

variability bands.

This thesis has summarised approaches to estimating derivatives using sequential di�er-

encing, linear models and several spline smoothing methods. Issues of instability and lack of

�exibility were cause to reject the use of sequential di�erences and linear models respectively.

Using local modelling via spline smoothing to �rst �t a curve to estimate the underlying func-

tion f and then to estimate derivatives as a by-product of this estimate was shown to improve

on simpler estimation methods.

Through simulation, evidence suggested that the P -Spline and semiparametric regression

techniques were to be preferred, in terms of �rst and second derivative estimation respectively,
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compared to other spline smoothing methods. Unfortunately, problems with boundary e�ects

and concerns regarding undersmoothing suggested that more smoothing was necessary when

attempting derivative estimation. Hence, it was decided to introduce an extra additive penalty

to the P -Spline framework in order to penalise another feature of the estimate to the underlying

function. This motivation came from evidence that any single constant smoothing parameter

could not resolve the problems encountered in derivative estimation. The additive penalty (AP)

method was shown empirically to achieve more accurate �rst and second derivative estimates

than both P -Splines and semiparametric regression across a range of smoothing scenarios.

Methods to estimate the standard error of derivative estimates were developed for the AP

and P -Splines. These estimated standard errors were then used to build pointwise variability

bands around derivative estimates. When these bands were compared through simulation,

they were found to have better (global and pointwise) coverage and precision for derivative

estimation when compared to the recognised variability bands from semiparametric regression.

However, concerns about the interpretation of these bands were raised since in the simulation

study, none of the AP, P -Spline or semiparametric variability bands o�ered 95% pointwise

coverage. A possible reason for this is the estimate of σ2 which is based on an assumption

of normality. This could be amended using a nonparametric estimate such as that introduced

by Gasser [16]. The AP and P -Spline bands still outperform the recognised semiparametric

bands in terms of global and pointwise coverage and do achieve respectable performance for

derivative estimation. Therefore the use of these bands, in particular those of the AP method,

in determining regions of signi�cant change for example, is recommended.

7.1 Summary

Chapter 1 introduced the four main motivating illustrations for which derivative estimation

played a crucial role. Each context had a slightly di�erent question of interest. The Winter

Nutrients illustration, for example, involved obtaining �rst derivative estimates for two nutrients

(Phosphate and NTRZ) over time in order to �nd evidence of signi�cant increase or decrease.

A similar analysis was needed for the Scottish Bird Count study but as the response variable

represented counts a di�erent modelling approach was required. Accurate second derivative
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estimates were required for the Blood Lactate data such that the workload corresponding

to the maximum second derivative could be identi�ed. In the Astronomical example it was

required to build a response from a convolution of two exploratory variables which involved

derivatives. In Chapter 1 the six functions on which simulations throughout the thesis are

based were introduced with an explanation of the pretext behind the choice of each provided.

Chapters 2 and 3 reviewed and compared several derivative estimation techniques which

are commonly employed in the literature. These ranged from basic methods such as sequential

di�erences and linear models to more complex models of spatially adaptive smoothing. In

between the popular techniques of smoothing splines, mixed model smoothing and P -Splines

were discussed. Many simulations were carried out to compare the performance in derivative

estimation of these approaches. It was found that sequential di�erences are far too volatile to

handle noisy data and that the lack of �exibility to deal with local change rules out the use of

high order polynomial regression. The mixed model smoothers o�er stability of estimates and

P -Splines o�er good performance as well as computational e�ciency. No evidence was found

that altering the chosen smoothing parameter, either by way of a constant `fudge' or by letting

it vary spatially, improved performance in derivative estimation.

P -Spline derivative estimation was thoroughly examined in Chapter 4 through yet more

simulations. Under investigation were varying sample size, error variance and the selection

method for the smoothing parameter. It was suggested that CV be used to select λ and that

increasing n and decreasing σ resulted in increased precision of derivative estimates. No grounds

were found to alter the Eilers & Marx recommended choices for basis degree, number of knots

or penalty order when derivative estimation was of primary concern.

The proposed additive penalty approach to derivative estimation was introduced in Chapter

5 and extended to the Poisson case in order to model the Scottish Bird Count data. The additive

penalty requires several extra choices for implementation, namely the use of a either a simulta-

neous or sequential approach to the selection of multiple smoothing parameters and then to the

choice of order of di�erence penalties to employ. These matters were investigated through sim-

ulations and evidence was found to proceed with a sequential method using di�erence penalties

of order 1 and 2. This additive penalty model was then compared to semiparametric smoothing
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and P -Splines, resulting in improved derivative estimates across the six simulated functions.

The Winter Nutrients and Scottish Bird Count examples require tests of the rate of change

in levels of contaminants and bird count respectively. Derivative estimates alone are incapable

of answering these questions. In Chapter 6 variability bands were developed for both P -Spline

and additive penalty derivative estimates. These were then compared to semiparametric bands

in a large simulation study which tested coverage and precision. Variability bands found by

residual resampling were also included in the study but these bands are generally imprecise. The

comparisons of the other three variability bands indicated that the semiparametric bands were

to be preferred when estimating the underlying function f but that P -Splines and the additive

penalty were superior for derivative estimation. The P -Spline and AP bands o�er very similar

results in terms of coverage, precision and departures. The Blood Lactate illustration requires

a point estimate of the explanatory variable for a particular feature of the second derivative

of the response. A brief simulation was performed to test which of P -Splines, semiparametric

smoothing and AP were best able to handle this task with the AP found to o�er the most

precision. Finally a simple data driven approach to obtaining a likely range for an explanatory

value at which a certain feature of a response occurs was given.

7.2 Motivating Examples

The four illustrations from Chapter 1 have been constantly updated through each Chapter in

this thesis. A �nal visit to each is now provided using all of the results which have been gained

throughout this work.

7.2.1 Winter Nutrients Data

The Winter Nutrients dataset contains salinity adjusted measurements of the nutrients NTRZ

and Phosphate taken in the Irish Sea in the Winter of 1990/1991. Of interest to researchers

is the rate of change in the level of nutrients over this Winter. More speci�cally, the primary

goal is to evaluate the periods of signi�cant decrease and signi�cant increase in levels. A period

of signi�cant increase is de�ned as one in which both variability bands of the �rst derivative
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estimate are positive, signi�cant decrease where bands are negative and no signi�cant change

where 0 is contained within the bands. The data, which are displayed in Figure 7.1, involve a

nonlinear relationship between the measurement order and level of nutrient.
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Figure 7.1: Winter Nutrients data.

In order to estimate the regions of signi�cant change it is required to �nd accurate �rst

derivative estimates from each which include variability bands. The AP method has been seen

to o�er improved �rst derivative estimates in simulations carried out in Chapter 5 as well as

respectable variability bands in terms of precision and coverage in Chapter 6. These methods

applied to both the NTRZ and Phosphate data are shown in Figure 7.2.

Tables 7.1 and 7.2 summarises the regions of signi�cant increase and signi�cant decrease

for both nutrients.

Nutrient Periods of Signi�cant Decrease
NTRZ 44-47, 83-87, 96-100, 112-117 (20)
Phosphate 83-100 (18)

Table 7.1: Estimated regions of signi�cant decrease for the Winter Nutrients example.

Nutrient Periods of Signi�cant Increase
NTRZ 1-5, 35-40, 72-79, 102-111, 118-123, 125-131 (42)
Phosphate 1-6, 18-42, 67-81, 103-129 (73)

Table 7.2: Estimated regions of signi�cant increase for the Winter Nutrients example.
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Figure 7.2: First derivative estimates with variability bands for the Winter Nutrients data. The
blue boxes indicate areas of signi�cant increase and the red boxes refer to areas of signi�cant
decrease

Since the simulations suggest the AP gives the most accurate estimates for rate of change

among methods under examination, one can be relatively con�dent in the results presented in

Tables 7.1 and 7.2. It seems that in 1990 Phosphate has longer overall periods of increase than

decrease and that NTRZ has more decreasing periods than increasing.

7.2.2 Scottish Bird Count Data

The Scottish Bird Count example contains 31 annual counts of 11 bird species. The main

goal is to estimate whether a signi�cant decrease in bird count occurs and, if so, at what year

this decrease begins. Similarly to the Winter Nutrients data, a �rst derivative estimate with

accurate variability bands is required in order to answer this question. The Grey Plover counts

are displayed in Figure 7.3.

One important di�erence in this study is that the response variable is one of counts rather

than of continuous observations. Generalised smoothing using the AP method has been in-

troduced in Chapter 5. By incorporating the assumptions of generalised smoothing one can

be more con�dent of the accuracy of the �rst derivative estimates obtained. First derivative

estimates of the Grey Plover counts along with variability bands are displayed in the right panel

of Figure 7.3. A signi�cant decrease can be seen when the bands are both negative, as happens
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Figure 7.3: Counts of Grey Plover (left) with �rst derivative estimate and variability bands
(right) using the AP method. The blue boxes indicate areas of signi�cant increase and the red
boxes refer to areas of signi�cant decrease

here at roughly 1997.

7.2.3 Blood Lactate Data

The Blood Lactate illustration consists of lactate measurements taken from 23 elite athletes at

several incremental workloads on a treadmill. The primary aim here is to achieve an objective

measure of endurance. One such marker is the D2LMax (Newell et al. [39]) where the speed

corresponding to the maximum of the second derivative of the underlying lactate function is

taken. The data for one athlete are displayed in Figure 7.4.

Once again there is a nonlinear relationship between the explanatory variable (speed) and

response (blood lactate). In comparison to the Winter Nutrients example, and to an extent in

the Scottish Bird Count data, there is less noise present in this case. It is required to obtain

a second derivative estimate from the observed data, the right panel of Figure 7.4 exhibits one

such estimate using the AP method described in Chapter 5. Given the evidence in Chapter 5

the speed at the maximum second derivative for this athlete is likely to be close to 14.19 km/h

with the 95% bootstrap interval between 13.71km/h and 14.46 km/h.
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bootstrap interval (blue box) for speed at D2LMax (left) and second derivative estimate using
the AP method with 95% bootstrap interval (blue box) for speed at D2LMax (right).

7.2.4 Astronomical Data

The Astronomical dataset comprises of two main variables gas (ρgas) and temperature (T )

measured at several distances in arcmin from the centre of galaxy cluster A1995. It is the

primary goal of this research to estimate a variable ρtot found by

d

dx

d
dx

(ρgaskTµmp)

ρgas
= −4πGρtot (7.1)

where x (in arcmin) is a measure of distance, G is the universal gravitational constant, k is

Boltzmann's constant, µ is the mean molecular weight in any cluster and mp is the mass of the

proton. The gas and temperature pro�les are shown in Figure 7.5.

A nonlinear relationship exists for both pro�les and another issue is that gas is measured

64 times over a range (0.32, 1.84) of arcmin while temperature is measured 8 times over a range

of (0.29, 1.81) arcmin. The equation in (7.1) requires these two variables to be multiplied. The

temperature is �rst smoothed and estimated at the arcmin for gas over a range of (0.32, 1.84)

arcmin. The smoothing curve using P -Splines is shown in the top panel of Figure 7.6.

The next stage in building the response is to multiply T by ρgas and obtain a �rst derivative

estimate using the AP method, these are shown in the bottom row of Figure 7.6. To complete
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Figure 7.5: Gas and temperature pro�les for the Astronomical data.
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Figure 7.6: Top: Temperature smoothed and estimated at the arcmin for gas over a range of
(0.32, 1.81) arcmin. Bottom: Tρgas (left panel) with �rst derivative estimate (right panel).

153



the building of ρtot, this derivative is divided by ρgas, a �rst derivative is again obtained by AP

and then is rescaled accordingly. The �nal estimate for ρtot is plotted in Figure 7.7.
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Figure 7.7: Estimated ρtot.

7.3 Review of Simulation Studies Performed

During the course of this research, simulation studies were performed to compare methods

of derivative estimation. These were generally performed by simulating data from the six

functions f1, . . . , f6 (Section 1.5) with x uniformly distributed and some Gaussian error added

with constant variance equal to a fraction of the range of f(x). Here a review of the main results

of these extensive simulations is presented such that clear recommendations for a potential

future researcher can be outlined.

The simulation studies from Chapters 2 and 3 reveal that P -Splines or semiparametric

regression should be used for derivative estimation when compared to other well-known tech-

niques such as linear models and smoothing splines as well as the adaptive methods summarised

in Section 3.2.4. In Chapter 4 no evidence was found to change any recommended choices of

knots, penalty or or basis degree of the P -Spline �tting procedure. Evidence was discovered

that using CV/GCV to choose λ for derivative estimation was to be preferred to AIC/BIC
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methods. Once the AP method was introduced in Chapter 5, simulations were �rst performed

to eliminate some potential choices underlying the approach. Firstly, for reasons of accuracy

in derivative estimation and computational e�ciency, it was decided to select the smoothing

parameters sequentially. Choosing di�erent pairings of penalty orders was demonstrated to

have negligible impact on the performance of the AP for derivative estimation. Finally the AP

was compared to P -Splines and semiparametric regression and clear empirical evidence that

the AP should be used for derivative estimation was found across each function f1, . . . , f6. It

is therefore the recommendation of this research that an additive penalty P -Spline approach,

with penalty orders d1 = 1 and d2 = 2 should be used when derivative estimation is the main

aim of an analysis.

7.4 Further Work

While evidence that the additive penalty method o�ers improved performance in derivative esti-

mation has been seen it is also clear that these estimates themselves are far from perfect. Issues

of boundary e�ects and inability to handle heteroscedatic data still linger. Further research

into derivative estimation methods could well �nd an approach which o�ers yet more improve-

ment, however, derivative estimation is doubtless a di�cult problem. Here some extensions

and potential future research topics in derivative estimation are summarised.

7.4.1 Derivative Estimation on a Surface

The most obvious extension of the additive penalty method is to two dimensional relationships

where surface �tting is required in place of curve �tting. Most of the smoothing techniques de-

scribed in Chapter 3 have been extended to two dimensions in the literature, although software

packages are not widely available. The rate of change of a surface is, although more complex,

as essential in some contexts as derivative estimation for explanatory/response data. One nice

example can be found in Durban et al. [11] where the relationship between age, year and

deaths from a mortality database is studied using a two dimensional Poisson P -Spline model.

It is clear that the rate of change of this relationship would be of interest to people in the life
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insurance industry.

7.4.2 Mixed Model Derivative Estimation

Evidence that an additive penalty, when applied to the standard P -Spline model, o�ers im-

proved derivative estimates has been provided in Chapter 5. No attempt was made to modify

the mixed model approach to handle derivative estimation. It is a matter for future research

whether this would lead to improvements in derivative estimation. Using an additive penalty

approach to mixed model smoothing could lead to improvements, since evidence that the mixed

model smoothers already o�er more stable derivative estimates was found in Section 3.2.5.

7.4.3 Bayesian Derivative Estimation

Bayesian approaches have not been considered in this research (although the adaptive mixed

model technique from Section 3.2.4.2 does specify a distribution for the shrinkage penalties in

order to have a spatially varying �t). Bayesian P -Splines have appeared in the literature (Lang

[29]), yet no application of these methods to derivative estimation has been attempted. Using

Bayesian methods has the potential to aid the problems in derivative estimation, through the

choice of a suitable prior for example, but research into this has yet to be explored.

7.4.4 Correlated Error Structure

The simulations which have been used to compare derivative estimation methods have used

constant variance in the errors added to simulated data. In real life situations this is not always

the case. Alterations to the P -Spline model to take into account other variance/covariance

structures have been made by Currie & Durban [8]. Further testing into scenarios of correlated

error structures and how the di�erent derivative estimation methods cope with this is required.

Moreover, the AP derivative estimation theory developed as part of this research should be

expanded to handle problems with a correlated error structure. For instance, it is quite likely

that the Blood Lactate example contains a response in which correlated error exists since the

measurements are taken on the same player at incremental workloads.
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7.4.5 SiZer for P -Splines and the AP

Chaudhuri & Marron [6] introduced an exploratory tool known as SiZer to test whether certain

features of a relationship `really exist'. The method is based on kernel smoothing and this is

extended to incorporate smoothing splines in Marron & Zhang [34]. The method works by

varying the bandwidth to get a `family' of smooth �ts of the data. For each bandwidth at each

x, a con�dence interval for the derivative is constructed. The SiZer map is then colour coded

where this interval is fully above zero (blue), below zero (red) and contains zero (purple). In

situations where modes are indistinguishable from background noise the map is coloured grey.

An example of a SiZer map is given in Figure 7.8, the white curves show e�ective window

widths for each bandwidth.
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Figure 7.8: SiZer map for the NTRZ data with regions found to have signi�cant decrease (red),
increase (blue) or no change (purple). The boxes represent regions found by the AP to have
signi�cant decrease (red) or increase (blue) in contamination.

Both the Winter Nutrients and Scottish Bird Count datasets use signi�cant zero crossings of

the derivative as their primary goal. As such these SiZer plots are of immense use to researchers

in these studies. The SiZer method could be updated to use the methods discussed in this thesis,

which o�er improvements in derivative estimation over smoothing splines.
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7.4.6 Derivative Estimation for Generalized Linear Models

The Poisson P -Spline model discussed in Section 3.2.2.2 has been extended to handle derivative

estimation. Generalised linear smoothing has been discussed in the literature, for instance, a

Binomial P -Spline model appears in Eilers & Marx [12]. Derivative estimation needs to be

extended to the case where

g(µ) = η = Bα

for µ = E(y) such that the changes in any exponential family response variable relative to some

explanatory can be modelled su�ciently.

7.4.7 Comparisons with Kernel Derivative Estimates

A brief discussion of the available kernel derivative estimation literature was provided in Section

3.3. No extensive comparison into the performance in derivative estimation of kernel and

spline methods appears in the literature. For practical analysis, it would be of great interest

to understand which set of methods works better in speci�c situations (e.g. sample sizes,

variances).

7.4.8 Multiple Sample Problems

In the Scottish Bird Data the count of Grey Plover has been analysed using derivative estima-

tion. However, as was mentioned in Section 1.2, the Grey Plover is but one of eleven species

contained in this dataset. It would be useful to compare across these eleven species to �nd

whether there exist common or, alternatively, distinct features of the rate of change of the

counts of the bird species. In general, the extension of derivative estimation to multiple sample

problems should be addressed such that comparisons of estimates and error between samples

can be accurately described.

7.4.9 The Inverse Prediction Problem

In the Blood Lactate example it is required to estimate the speed corresponding to the maximum

second derivative of the underlying lactate function. Several derivative estimation methods
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introduced in this thesis are easily capable of obtaining these estimates (although results may

vary!). An empirical interval estimate giving a range of likely values for this speed was discussed

in Section 6.3. This rather crude method could be improved on by using asymptotic properties

of a smooth �t such that true 95% con�dence intervals may be obtained for a certain value of

explanatory variable at which a feature of the response occurs.

7.4.10 Derivative Estimation for Spatial Data

P -Splines are used to smooth spatial data in Lee & Durban [30] such that the AP could easily be

extended to handle this type of analysis. However, for the case of a spatial derivative estimation

problem, little research exists. This is unfortunate since this is a clear area of application for

derivative estimation. In the Marine dataset, where levels of two nutrients are measured from

the same place over time, repeated measurements at di�erent positions across the Irish Sea

would lead to a spatio-temporal model involving derivative estimation.
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Appendix A

R Code

A.1 Additive Penalty Method

The `AP' function �ts the additive penalty P -Spline model to data with one explanatory and
one continuous (family = 2) or count (family = 1) response. The smoothing parameters may
be inputed directly or chosen using CV, GCV, AIC or BIC. The output provides �rst and second
derivative estimates as well as variability bands for the �t and derivative estimates. The routine
includes functions for creating the B-Spline and di�erence matrices B and D respectively and
also has calls to �tting and update functions which are listed below.

AP <-

function (x, y, offset, w, family = 2, nseg = min(40,

floor(length(x)/5)), bdeg = 3, pord = 2,

lambda1 = NULL, lambda2 = NULL, df = NULL,

method = 1, control = list(), se = 2)

{

# other components

if (missing(w)) {

w <- rep(1, length(y))

}

if (missing(offset)) {

offset <- rep(0, length(y))

}

m <- length(y)

FAM <- family

wei <- w

MET <- method

MON <- F

TOL1 <- 1e-06

TOL2 <- 0.002

MAX.IT <- 50

TOL <- TOL1

xl <- min(x)

xr <- max(x)

xmax <- xr + 0.01 * (xr - xl)

xmin <- xl - 0.01 * (xr - xl)

165



# some functions

ndiff <- function(n, d = 1) {

if (d == 1)

{D <- diff(diag(n))}

else

{D <- diff(ndiff(n, d - 1))}

D}

tpower <- function(x, t, p)

(x - t) ^ p * (x > t)

bbase <- function(x, xl, xr, nseg, bdeg){

dx <- (xr - xl) / nseg

knots <- seq(xl - bdeg * dx, xr + bdeg * dx,

by = dx)

P <- outer(x, knots, tpower, bdeg)

n <- dim(P)[2]

D <- ndiff(n, bdeg + 1) / (gamma(bdeg + 1)

* dx ^ bdeg)

B <- (-1) ^ (bdeg + 1) * P %*% t(D)

B }

# set up B and D's

B <- bbase(x, xmin, xmax, nseg, bdeg)

nb <- ncol(B)

zeros1 <- rep(0, nb - pord)

zeros2 <- rep(0, nb - (pord+1))

D.1 <- diff(diag(nb), diff=pord)

D.2 <- diff(diag(nb), diff=pord+1)

# count response

if (FAM == 1) {

# initialise

y[is.na(y)] <- 0

eta0 <- log(y + 1)

mu0 <- exp(eta0 + offset)

w0 <- wei * mu0

z0 <- wei * ((y - mu0)/mu0 + eta0)

P1 <- sqrt(1e+08) * D.1

P2 <- sqrt(1e+08) * D.2

fit0 <- lsfit(rbind(B, P1, P2), c(z0,

zeros1, zeros2), wt = c(w0,

(zeros1 + 1), zeros2 + 1),

intercept = F)

a.init <- fit0$coef

# Method 1 or 2, optimise lambdas by AIC or BIC

if (MET == 1 | MET == 2) {
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by.lambda <- length(seq(0.0001, 1,

by = TOL2))

opt.ic1 <- function(X) {

FIT <- APpois(x = x, y = y, offset =

offset, wei = wei, zeros1 =

zeros1, zeros2 = zeros2,

B = B, lambda1 = X, lambda2

= 0, D.1 = D.1, D.2 = D.2,

a.init = a.init, MON = MON,

TOL = TOL1,

MAX.IT = MAX.IT)

return(ifelse(MET == 2, FIT$aic,

FIT$bic))

}

lambda1.hat <- cleversearch(fn = opt.ic1,

lower = 0.0001, upper = 1,

ngrid = by.lambda, logscale

= F, verbose = FALSE)[[1]]

opt.ic2 <- function(X) {

FIT <- APpois(x = x, y = y, offset =

offset, wei = wei, zeros1 =

zeros1, zeros2 = zeros2, B = B,

lambda1 = lambda1.hat,

lambda2 = X, D.1 = D.1, D.2 = D.2,

a.init = a.init, MON = MON,

TOL = TOL1,

MAX.IT = MAX.IT)

return(ifelse(MET == 2, FIT$aic, FIT$bic))

}

lambda2.hat <- cleversearch(fn = opt.ic2,

lower = 0.0001, upper = 1,

ngrid = by.lambda, logscale = F,

verbose = FALSE)[[1]]

FIT <- APpois(x = x, y = y, offset = offset,

wei = wei, zeros1 = zeros1,

zeros2 = zeros2, B = B,

lambda1 = lambda1.hat,

lambda2 = lambda2.hat,

D.1 = D.1, D.2 = D.2, a.init

= a.init, MON = MON, TOL = TOL1,

MAX.IT = MAX.IT)

}

# Method 3, given lambdas

if (MET == 3) {

lambda1.hat <- lambda1

lambda2.hat <- lambda2
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FIT <- APpois(x = x, y = y, offset = offset,

wei = wei, zeros1 = zeros1, zeros2 =

zeros2, B = B, lambda1 = lambda1.hat,

lambda2 = lambda2.hat, D.1 = D.1, D.2

= D.2, a.init = a.init, MON = MON,

TOL = TOL1, MAX.IT = MAX.IT)

}

# fill

aic <- FIT$aic

bic <- FIT$bic

df <- FIT$df

dev <- FIT$dev

coef <- FIT$a

h <- FIT$h

eta.hat <- B %*% coef

y.hat <- exp(eta.hat + offset)

lambda1.hat <- lambda1.hat

lambda2.hat <- lambda2.hat

sigma <- sqrt(sum((y - y.hat)^2)/(m - sum(h)))

q <- bdeg

P1 <- sqrt(lambda1.hat)*D.1

P2 <- sqrt(lambda2.hat)*D.2

W <- matrix(0, nrow = m, ncol = m)

for(i in 1:m)

{

W[i,i] <- exp(eta.hat)[i]

}

# error bands

u <- seq(xl, xr, length = m)

Bu <- bbase(u, xmin, xmax, nseg, q)

Covb <- solve(t(B) %*% W %*% B + t(P1) %*% P1

+ t(P2) %*% P2)

Covz <- sigma^2 * Bu %*% Covb %*% t(Bu) %*% W

%*% Bu %*% Covb %*% t(Bu)

seb <- se * sqrt(diag(Covz))

# first derivative

b.d1 <- bbase(x, xmin, xmax, nseg, q - 1)

vec <- as.vector(coef)

dseg <- (xmax-xmin)/nseg

temp1 <- cbind(vec[2:length(vec)],

c(vec[2:length(vec)-1]))

d1.coef <- temp1[,1] - temp1[,2]

d1.eta <- q * (q * dseg)^(-1) * b.d1 %*%

d1.coef

d1 <- d1.eta*exp(eta.hat + offset)
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# d1 error bands

u <- seq(xl, xr, length = m)

Bd1 <- bbase(u, xmax, xmin, nseg, q - 1)

dummy <- cbind(Bd1, rep(0, m))

Covb <- solve(t(B) %*% W %*% B + t(P1) %*%

P1 + t(P2) %*% P2)

Covz <- sigma^2 * q^2/((q*dseg)^2) * dummy

%*% Covb %*% t(dummy) %*% W %*% dummy

%*% Covb %*% t(dummy)

seb.d1 <- se * sqrt(diag(Covz))

# second derivative

b.d2 <- bbase(x, xmin, xmax, nseg, q - 2)

temp2 <- cbind(vec[3:length(vec)],

c(vec[3:length(vec)-1]),

c(vec[3:length(vec)-2]))

d2.coef <- temp2[,1] - 2 * temp2[,2] + temp2[,3]

d2.eta <- (q - 1) * (dseg * (q - 1))^(-1) * q

* (q * dseg)^(-1) * b.d2 %*% d2.coef

d2 <- exp(d2.eta + offset)

# d2 error bands

u <- seq(xl, xr, length = m)

Bd2 <- bbase(u, xmin, xmax, nseg, q - 2)

dummy <- cbind(Bd2, rep(0, m), rep(0, m))

Covz <- ((q - 1) * (dseg * (q - 1))^(-1) * q *

(q*dseg)^(-1))^2 * dummy %*% Covb %*%

t(dummy) %*% W %*% dummy %*% Covb %*%

t(dummy)

seb.d2 <- se * sqrt(diag(Covz))

object <- list(call = call, n = m, aic = aic,

bic = bic, lev = h, df = df, dev = dev,

lambda1 = lambda1.hat, lambda2 =

lambda2.hat, nseg = nseg, bdeg = bdeg,

pord = pord, x = x, y = y, offset =

as.vector(offset), w = as.vector(wei),

y.hat = y.hat, linear.predictors =

as.vector(eta.hat), coefficients =

as.vector(coef), d1 = as.vector(d1),

d2 = as.vector(d2), se = se, seb = seb,

seb.d1 = seb.d1, seb.d2 = seb.d2)

class(object) <- "AP"

return(object)

}
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# continuous response

if(FAM == 2)

{

# initialise

y[is.na(y)] <- 0

mu0 <- mean(y)

P1 <- sqrt(1e+08)*D.1

P2 <- sqrt(1e+08)*D.2

fit0 <- lsfit(rbind(B, P1, P2), c(y, zeros1,

zeros2), wt = c(wei, (zeros1 + 1),

(zeros2 + 1)), intercept = F)

a.init <- fit0$coef

# Method 1, optimise lambdas by CV

if(MET==1){

by.lambda <- length(seq(0.001,1,by=TOL2))

opt.cv1 <- function(X){

FIT <- APnorm(x=x, y=y, wei=wei, zeros1=

zeros1, zeros2=zeros2, B=B,

lambda1=X, lambda2=0, D.1=D.1,

D.2=D.2, a.init=a.init, MON=MON,

TOL=TOL1, MAX.IT=MAX.IT)

return(FIT$cv)

}

lambda1.hat <- cleversearch(fn=opt.cv1,

lower=0.001, upper=1, ngrid=

by.lambda, logscale=F,

verbose=F)[[1]]

opt.cv2 <- function(X){

FIT <- APnorm(x=x, y=y, wei=wei, zeros1=

zeros1, zeros2=zeros2, B=B, lambda1

=lambda1.hat, lambda2=X, D.1=D.1,

D.2=D.2, a.init=a.init, MON=MON,

TOL=TOL1, MAX.IT=MAX.IT)

return(FIT$cv)

}

lambda2.hat <- cleversearch(fn=opt.cv2,

lower=0.01, upper=1, ngrid=

by.lambda, logscale=F,

verbose=F)[[1]]

FIT <- APnorm(x=x, y=y, wei=wei, zeros1=

zeros1, zeros2=zeros2, B=B,

lambda1=lambda1.hat, lambda2=

lambda2.hat, D.1=D.1, D.2=D.2,

a.init=a.init, MON=MON, TOL=TOL1,

MAX.IT=MAX.IT)

}
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# Method 2, optimise lambdas by GCV

if(MET==1){

by.lambda <- length(seq(0.001,1,by=TOL2))

opt.cv1 <- function(X){

FIT <- APnorm(x=x, y=y, wei=wei, zeros1

=zeros1, zeros2=zeros2, B=B,

lambda1=X, lambda2=0, D.1=D.1,

D.2=D.2, a.init=a.init, MON=MON,

TOL=TOL1, MAX.IT=MAX.IT)

return(FIT$gcv)

}

lambda1.hat <- cleversearch(fn=opt.cv1,

lower=0.001, upper=1, ngrid=

by.lambda, logscale=F,

verbose=F)[[1]]

opt.cv2 <- function(X){

FIT <- APnorm(x=x, y=y, wei=wei, zeros1

=zeros1, zeros2=zeros2, B=B,

lambda1=lambda1.hat, lambda2=X,

D.1=D.1, D.2=D.2, a.init=a.init,

MON=MON, TOL=TOL1, MAX.IT=MAX.IT)

return(FIT$gcv)

}

lambda2.hat <- cleversearch(fn=opt.cv2, lower

=0.01, upper=1, ngrid=by.lambda,

logscale=F, verbose=F)[[1]]

FIT <- APnorm(x=x, y=y, wei=wei, zeros1=zeros1,

zeros2=zeros2, B=B, lambda1=lambda1.hat,

lambda2=lambda2.hat, D.1=D.1, D.2=D.2,

a.init=a.init, MON=MON, TOL=TOL1,

MAX.IT=MAX.IT)

}

# Method 3, given lambdas

if(MET==3){

lambda1.hat <- lambda1

lambda2.hat <- lambda2

FIT <- APnorm(x=x, y=y, wei=wei, zeros1

=zeros1, zeros2=zeros2, B=B,

lambda1=lambda1.hat, lambda2

=lambda2.hat, D.1=D.1, D.2=D.2,

a.init=a.init, MON=MON, TOL=TOL1,

MAX.IT=MAX.IT)

}
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# fill

coef <- FIT$a

cv <- FIT$cv

gcv <- FIT$gcv

df <- FIT$df

dev <- FIT$dev

h <- FIT$h

y.hat <- B%*%coef

lambda1.hat <- lambda1.hat

lambda2.hat <- lambda2.hat

sigma <- sqrt(sum((y - y.hat)^2)/(m

- sum(h)))

q <- bdeg

P1 <- sqrt(lambda1.hat)*D.1

P2 <- sqrt(lambda2.hat)*D.2

# error bands

u <- seq(xl, xr, length = m)

Bu <- bbase(u, xmin, xmax, nseg, q)

Covb <- solve(t(B) %*% B + t(P1) %*%

P1 + t(P2) %*% P2)

Covz <- sigma ^ 2 * (Bu %*% Covb %*%

t(Bu))^2

seb <- se * sqrt(diag(Covz))

# first derivative

b.d1 <- bbase(x, xmin, xmax, nseg, q - 1)

beta <- as.vector(coef)

mu <- B %*% beta

vec <- beta

dseg <- (xmax-xmin)/nseg

temp1 <- cbind(vec[2:length(vec)],

c(vec[2:length(vec)-1]))

d1.coef <- temp1[,1] - temp1[,2]

d1 <- q * (q * dseg)^(-1) * b.d1

%*% d1.coef

# d1 error bands

u <- seq(xl, xr, length = m)

Bu <- bbase(u, xmax, xmin, nseg, q - 1)

dummy <- cbind(Bu, rep(0, m))

Covb <- solve(t(B) %*% B + t(P1) %*% P1 +

t(P2) %*% P2)

Covz <- sigma ^ 2 * q^2/((q*dseg)^2) * (dummy

%*% Covb %*% t(dummy))^2

seb.d1 <- se * sqrt(diag(Covz))

# second derivative
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b.d2 <- bbase(x, xmin, xmax, nseg, q - 2)

temp2 <- cbind(vec[3:length(vec)],

c(vec[3:length(vec)-1]),

c(vec[3:length(vec)-2]))

d2.coef <- temp2[,1] - 2 * temp2[,2] + temp2[,3]

d2 <- (q - 1) * (dseg * (q - 1))^(-1) * q

* (q * dseg)^(-1) * b.d2 %*% d2.coef

# d2 error bands

u <- seq(xl, xr, length = m)

Bu <- bbase(u, xmin, xmax, nseg, q - 2)

dummy <- cbind(Bu, rep(0, m), rep(0, m))

Covb <- solve(t(B) %*% B + t(P1) %*% P1 +

t(P2) %*% P2)

Covz <- sigma ^ 2 * ((q - 1) * (dseg *

(q - 1))^(-1) * q * (q*dseg)^(-1))^2

* (dummy %*% Covb %*% t(dummy))^2

seb.d2 <- se * sqrt(diag(Covz))

object <- list(call = call, n = m, cv = cv,

gcv = gcv, lev = h, df = df,

dev = dev, lambda1 = lambda1.hat,

lambda2 = lambda2.hat,

nseg = nseg, bdeg = bdeg,

pord = pord, x = x, y = y,

offset = offset,

w = as.vector(wei), y.hat

= y.hat,

coefficients = as.vector(coef),

sigma = sigma, d1 = d1, d2 = d2,

se = se, seb = seb,

seb.d1 = seb.d1,

seb.d2 = seb.d2)

class(object) <- "AP"

return(object)

}

}

The �tting function for a continuous response is APnorm:

APnorm <-

function(x, y, wei, zeros1, zeros2, B, lambda1,

lambda2, D.1, D.2, a.init, MON,

TOL, MAX.IT)

{

w <- wei

# penalty

P1 <- sqrt(lambda1)*D.1

P2 <- sqrt(lambda2)*D.2
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# initialise

tol <- 1

i <- 0

a <- a.init

a.old <- 10

# run

while(tol > TOL && i < MAX.IT){

i <- i+1

# update the coefficients

a <- APnorm.update(x=x, y=y, wei=wei,

B=B, P1=P1, P2=P2, zeros1=zeros1,

zeros2=zeros2, a=a)

# compute tol

tol <- max(abs(a - a.old)/abs(a))

# replace old coefficients

a.old <- a

}

if(i > (MAX.IT-1)) {

warning(paste("Parameter estimates did NOT

converge in", MAX.IT, "iterations.

Increase MAX.IT in control."))

}

# fit

fit <- lsfit(rbind(B, P1, P2), c(y, zeros1,

zeros2), wt = c(wei, (zeros1 + 1),

(zeros2 + 1)), intercept = F)

a <- fit$coef

mu <- B%*%a

# diagonal of the hat-matrix

h <- hat(fit$qr)[1:length(w)]

# effective dimension

df <- sum(h)

# dev

dev <- sum(fit$residuals^2)

# cv

r <- (y - mu)/(1 - h)

cv <- sqrt((sum(r^2))/m)

# gcv

g <- (y - mu)/(1 - ((1/m))*sum(h))

gcv <- sqrt((sum(g^2))/m)

# aic

aic <- dev + 2 * df

# bic

bic <- dev + log(length(y)) * df

# fill

return(list(a=a, h=h, df=df, cv=cv, gcv=gcv,

aic=aic, bic=bic, dev=dev))

}
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The update function for continuous response is APnorm.update:

APnorm.update <-

function(x, y, wei, B, P1, P2, zeros1, zeros2, a)

{

# expected values

mu <- B%*%a

# weights

w <- wei

# working response

z <- wei*((y - mu)/mu)

# fit

fit <- lsfit(rbind(B, P1, P2), c(y, zeros1,

zeros2), wt = c(wei, (zeros1 + 1),

(zeros2 + 1)), intercept = F)

# coefficients

a <- matrix(fit$coef, ncol = 1)

return(a)

}

The �tting function for count response is APpois:

APpois <-

function(x, y, offset, wei, zeros1, zeros2, B,

lambda1, lambda2, D.1, D.2, a.init, MON,

TOL, MAX.IT){

# penalty

P1 <- sqrt(lambda1)*D.1

P2 <- sqrt(lambda2)*D.2

# initialise

tol <- 1

i <- 0

a <- a.init

a.old <- 10

# run

while(tol > TOL && i < MAX.IT){

i <- i+1

# update the coefficients

a <- APpois.update(x=x, y=y, offset =

offset, wei=wei, B=B, P1=P1, P2=P2,

zeros1=zeros1, zeros2=zeros2, a=a)

# compute tol

tol <- max(abs(a - a.old)/abs(a))

# replace old coefficients

a.old <- a

}

if(i > (MAX.IT-1)) {

warning(paste("Parameter estimates did NOT

converge in", MAX.IT, "iterations.

Increase MAX.IT in control."))
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}

# fit

eta <- B%*%a

mu <- exp(eta + offset)

w <- wei*mu

z <- wei*((y - mu)/mu + eta)

fit <- lsfit(rbind(B, P1, P2), c(z, zeros1,

zeros2), wt = c(wei, (zeros1 + 1),

(zeros2 + 1)), intercept = F)

a <- fit$coef

# diagonal of hat matrix

h <- hat(fit$qr)[1:length(w)]

# effective dimension

df <- sum(h)

# deviance

dev <- sum(fit$residuals^2)

# cv

r <- (y - mu)/(1 - h)

cv <- sqrt((sum(r^2))/m)

# gcv

g <- (y - mu)/(1 - ((1/m))*sum(h))

gcv <- sqrt((sum(g^2))/m)

# aic

aic <- dev + 2 * df

# bic

bic <- dev + log(length(y)) * df

# fill

return(list(a=a, h=h, df=df, cv=cv, gcv=gcv,

aic=aic, bic=bic, dev=dev))

}

The update function for count response is APpois.update:

APpois.update <-

function(x, y, wei, offset, B, P1, P2, zeros1,

zeros2, a)

{

# expected values

eta <- B%*%a

mu <- exp(eta + offset)

# weights

w <- wei*mu

# working response

z <- wei*((y - mu)/mu + eta)

# fit

fit <- lsfit(rbind(B, P1, P2), c(z, zeros1,

zeros2), wt = c(wei, (zeros1 + 1),

(zeros2 + 1)), intercept = F)

# coefficents

176



a <- matrix(fit$coef, ncol = 1)

return(a)

}

A.2 Extracting Derivative Estimates from an spm Object

The spm routine in the SemiPar library of R allows the user to �t a semiparametric regression
model to noisy data. Using the plot function one may plot the �t as well as derivative estimates
along with estimated variability bands. However, �tted values for the derivative estimates and
for the estimated standard errors must be extracted. The following code is for an example of
data pairs (xi, yi), i = 1, . . . , n using a truncated polynomial basis of degree p = 8.

# fit

fit <- spm(y~f(x, cv = T, basis="trunc.poly", degree=8))

yhat <- fit$fit$fitted

cov.mat <- fit$aux$cov.mat

# get ese of fit

dm <- dim(fit$fit$data)

theta <- c(fit$fit$coef$fixed, fit$fit$coef$random)

C.mat <- as.data.frame(fit$fit$data)[,-c(1,dm[2])]

X <- C.mat[,1:length(fit$fit$coef$fixed)]

Z.mat <- as.data.frame(fit$fit$data)[,-1]

Z <- Z.mat[,(length(fit$fit$coef$fixed)+1):(dm[2]-2)]

C <- as.matrix(cbind(X, Z))

se <- as.vector(sqrt(diag(C%*%cov.mat%*%t(C))))

# get fitted d1 and ese of d1

X.drv1 <- X[,-length(fit$fit$coef$fixed)]

X.drv1[,2] <- 2*X.drv1[,2]

X.drv1[,3] <- 3*X.drv1[,3]

X.drv1[,4] <- 4*X.drv1[,4]

X.drv1[,5] <- 5*X.drv1[,5]

X.drv1[,6] <- 6*X.drv1[,6]

X.drv1[,7] <- 7*X.drv1[,7]

X.drv1[,8] <- 8*X.drv1[,8]

X.drv1 <- cbind(rep(0,length(x)), X.drv1)

Z.drv1 <- 8*Z^(7/8)

C.drv1 <- as.matrix(cbind(X.drv1,Z.drv1))

drv1 <- C.drv1%*%theta

se.d1 <- as.vector(sqrt(diag(C.drv1%*%cov.mat%*%t(C.drv1))))

# get fitted d2 and ese of d2

X.drv2 <- X[,-c(length(fit$fit$coef$fixed)-1,

length(fit$fit$coef$fixed))]

X.drv2[,1] <- 2*X[,1]

X.drv2[,2] <- 6*X[,2]
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X.drv2[,3] <- 12*X[,3]

X.drv2[,4] <- 20*X[,4]

X.drv2[,5] <- 30*X[,5]

X.drv2[,6] <- 42*X[,6]

X.drv2[,7] <- 56*X[,7]

X.drv2 <- cbind(rep(0,length(x)), rep(0, length(x)),

X.drv2)

Z.drv2 <- 7*Z.drv1^(6/7)

C.drv2 <- as.matrix(cbind(X.drv2, Z.drv2))

drv2 <- C.drv2%*%theta

se.d2 <- as.vector(sqrt(diag(C.drv2%*%cov.mat%*%

t(C.drv2))))
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