
 
Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-03-20T10:12:21Z

 

Some rights reserved. For more information, please see the item record link above.
 

Title An evolutionary approach to automatic kernel construction

Author(s) Madden, Michael G.; Howley, Tom

Publication
Date 2006

Publication
Information

Madden, Michael G., & Howley, Tom. (2006). An evolutionary
approach to automatic kernel construction. Proceedings of
ICANN 2006: International Conference on Artificial Neural
Networks, Athens. Lecture Notes in Computer Science
(Springer), Vol. 4132, pp 417-426.

Item record http://hdl.handle.net/10379/190

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/


An Evolutionary Approach to Automatic Kernel
Construction

Tom Howley and Michael G. Madden

National University of Ireland, Galway
thowley@vega.it.nuigalway.ie, michael.madden@nuigalway.ie

Abstract. Kernel-based learning presents a unified approach to machine learning
problems such as classification and regression. The selection of a kernel and asso-
ciated parameters is a critical step in the application of any kernel-based method
to a problem. This paper presents a data-driven evolutionary approach for con-
structing kernels, named KTree. An application of KTree to the Support Vector
Machine (SVM) classifier is described. Experiments on a synthetic dataset are
used to determine the best evolutionary strategy, e.g. what fitness function to use
for kernel evaluation. The performance of an SVM based on KTree is compared
with that of standard kernel SVMs on a synthetic dataset and on a number of
real-world datasets. KTree is shown to outperform or match the best performance
of all the standard kernels tested.

1 Introduction

A major advance in recent research into pattern analysis has been the emergence of
an approach known as kernel-based learning. This unified approach to problems, such
as classification, regression and clustering, is based on a kernel that defines how two
objects of a dataset are related. Kernel-based learning first appeared in the form of sup-
port vector machines, a powerful classification algorithm that is capable of representing
non-linear relationships (via kernels) and producing models that generalise well to un-
seen data. A key decision in the use of any kernel-based method is the choice of kernel.
In the case of SVMs, the performance exhibited by different kernels may differ consid-
erably. Generally, kernel method practitioners will pick from a set of standard kernels,
the Radial Basis Function (RBF) and Polynomial kernel being two widely used exam-
ples. An alternative to using one of these pre-defined kernels is to construct a custom
kernel especially for a particular problem domain, e.g. the string kernel used for text
classification [1]. This approach can yield good results, but obviously depends on the
availability of expert knowledge of a particular domain.

This paper presents an approach, named KTree, that uses the evolutionary method
of Genetic Programming (GP) to find a kernel for a particular data domain. KTree is
a modified and extended version of the Genetic Kernel SVM (GKSVM) developed by
the authors [2]: it uses a more sophisticated kernel representation that can represent
standard kernels, such as RBF; a Mercer filter is used to improve performance; it uses
a different fitness function (based on cross-validation), which results have shown to be
superior. This study also includes a more extensive evaluation, using both a synthetic
dataset and wider range of real-world datasets. KTree allows for the generation of non-
standard kernels; the objective is to provide for the automatic discovery of kernels that

S. Kollias et al. (Eds.): ICANN 2006, Part II, LNCS 4132, pp. 417–426, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



418 T. Howley and M.G. Madden

achieve good classification accuracy when tested on unknown data. The major goal of
this research is to determine the best strategy in the use of GP to evolve kernels; key
issues include choice of fitness function and the filtering of non-Mercer kernels.

Kernel methods are described in Section 2, with particular emphasis on kernel func-
tions. Section 3 describes KTree. Experimental results and analyses are presented in
Section 4. Section 5 evaluates research related to this work and Section 6 presents the
main conclusions.

2 Kernel Methods and Classification

In kernel methods, the kernel function is used to recode the data into a new feature space
that reveals regualarities in the data that were not detectable in the original representa-
tion. This allows the use of algorithms based on linear functions in the feature space;
such linear methods are both well understood and computationally efficient. With kernel
functions, no explicit mapping of the data to the new feature space is carried out – this is
known as the “kernel trick”. It enables the use of feature spaces whose dimensionality is
more than polynomial in the original set of features, even though the computational cost
remains polynomial. This unified kernel approach approach can be applied to a number
of machine learning problems, such as supervised classification and regression, semi-
supervised learning and unsupervised methods, such as clustering. The classic example
of this kernel approach is found in the SVM classifier.

2.1 Kernel Functions

One key aspect of the SVM model is that the data enters both the optimisation problem
and the decision function only in the form of the dot product of pairs. This enables
SVMs to handle non-linear data. The dot product is replaced by a kernel function,
K(x, z) = 〈φ(x), φ(z)〉, that computes the dot product of two samples in a feature
space, where φ(x) represents the mapping to this feature space. The SVM finds the
maximum margin separating hyperplane in the feature space defined by this kernel,
thus yielding a non-linear decision boundary in the original input space. With the use
of kernel functions, it is possible to compute the separating hyperplane in a high di-
mensional feature space without explicity carrying out the mapping, φ, into that feature
space [3]. Typical choices for kernels are the Linear, Polynomial, RBF and Sigmoid
kernels. Note that using a Linear kernel is equivalent to working in the original input
space. Apart from this kernel, all of the above kernels require the setting of one or more
parameters, such as σ, the kernel width of the RBF kernel. One alternative to using
these standard kernels is to employ a kernel that has been customised for a particular
application domain, e.g. the string kernel of Lodhi et al. [1].

Whether building complex kernels from simpler kernels, or designing custom ker-
nels, there are conditions that the kernel must satisfy before it can be said to corre-
spond to some feature space. Firstly, the kernel must be symmetric, i.e. K(x, z) =
〈φ(x), φ(z)〉 = 〈φ(z), φ(x)〉 = K(z, x). Typically, kernels are also required to satisfy
Mercer’s theorem, which states that the matrix K = (K(xi, xj))n

i,j=1 must be positive
semi-definite, i.e. it has no negative eigenvalues [4]. In SVM classification, this condi-
tion ensures that the solution of the optimisation problem produces a global optimum.



An Evolutionary Approach to Automatic Kernel Construction 419

However, good results have been achieved with non-Mercer kernels, and convergence
is expected when the SMO algorithm is used, despite no guarantee of optimality when
non-Mercer kernels are used [5]. Furthermore, despite its wide use, the Sigmoid kernel
matrix is not positive semi-definite for certain values of the parameters γ and θ [6].

3 KTree and SVM Classification

A critical stage in the use of kernel-based algorithms is kernel selection, as this can
be shown to correspond to the encoding of prior knowledge about the data [7]. SVM
users typically employ one of the standard kernels listed in Section 2.1. Kernels can also
be constructed by using simpler kernels as building blocks, e.g. the kernel, K(x, z) =
K1(x, z)+K2(x, z) or by using the custom kernel approach. Ideally, a kernel is selected
based on prior knowledge of the problem domain, but it is not always possible to make
the right of choice of kernel a priori.

Evolving Kernel Tree Population

Final SVM

After Convergence:Select 
Fittest Kernel

Kernel
Tree

Evaluate SVM on Training Data

Kernel
Tree

K(x,z) =

Training Dataset

Build SVM with 
Kernel Tree

Set 
Fitness

As the SVM is being built, the kernel is 
calculated for different pairs of training samples

1,1.7,62,99,9..., -1

Sample X
10,4.5,3,0..., -1

Sample Z
19,2.2,7,8..., +1

17,7.5,3,1.2,0..., +1

57,7.9,6,6.2,3..., -1

5,70.9,11,32,3..., +1

4,14.7,22,12,9..., +1

Kernel
Tree

Kernel
Tree

Kernel
Tree

Kernel
Tree

Crossover/
Mutation

Kernel
Tree

Kernel
Tree

1. Create a random population 
of trees.
2. Evaluate each kernel: test 
with SVM on training data.
3. Select fitter kernel trees for 
recombination.
4. Randomly mutate offspring.
5. Replace old population with 
offspring.
6. Repeat Steps 2 to 5 until 
convergence.
7. Build final SVM using the 
fittest kernel tree found.

Ktree: Main Steps

Fig. 1. Application of KTree to the SVM

The approach presented here uses an evolutionary technique to discover a suitable
kernel for a particular problem. In this case, KTree is used to evolve kernels specifically
for SVM classifiers, but this approach can be used with other kernelised pattern analysis
algorithms. The aim of KTree is to eliminate the need for testing various kernels and
parameter settings, while also allowing for the discovery of new non-standard kernels.
With KTree, a tree structure, known as a kernel tree (see Figure 2) is used to represent
a kernel function. The objective of KTree is to find a kernel tree that best represents the
data. An overview of the application of KTree to the SVM is shown in Figure 1, which
also includes the main steps in the building of a SVM using KTree.



420 T. Howley and M.G. Madden

3.1 Kernel Tree Representation

The kernel tree used to represent a kernel function must take two data samples as inputs
and provide a scalar value as output. An example of a kernel tree is shown in Figure 2.

x[….]

x[….]

z[….]

-
+

<,>

fv(x,z)

x
58.35

22.15

27.01
x

/ exp K(x,z)

Vector Tree Scalar Tree

fv(x,z)

K(x,z) = exp((<(x+x)-z, (z+z)-x>)*58.35)/(22.15*27.01)

z[….]

z[….]

x[….]

-
+

R
e
fl

e
c

te
d

 v
e

rs
io

n
s

 o
f 

s
a
m

e
 t

re
e

Fig. 2. Kernel Tree generated for Ionosphere Data

This particular kernel tree was generated from experiments on the Ionosphere data-
set. The diagram shows that the kernel tree is split into two parts, the vector and the
scalar tree. The inputs to the vector tree are the two samples, x and z, for which the ker-
nel is being evaluated. These inputs are passed through vector operators, such as add or
subtract, which in turn pass vectors onto the next node. To ensure that the output of this
tree is symmetric, the entire vector tree is evaluated twice, swapping the inputs x and z
for the second evaluation. The final output of the vector tree, fv(x, z), is the dot product
of these two evaluations. This output becomes an input, along with randomly generated
constant terminals, for the scalar tree. This design was chosen to allow for the use of
complex mathematical operators, such as exp and tanh, in the scalar tree. Applying
these operators directly to the vector inputs could result in overly complex and unus-
able kernels. A second motivation for this design is that it is also capable of representing
the standard kernels, e.g. the RBF kernel and Polynomial kernel. Although symmetry is
satisfied, this kernel tree design is not guaranteed to produce Mercer kernels. However,
non-Mercer kernels can be filtered out (see Section 3.2).

For the initial population, each kernel tree (both vector and scalar parts) is generated
by randomly creating a root node and by growing a tree from this node until either no
more leaves can be expanded (i.e. all leaves are terminals) or until a preset initial max-
imum depth has been reached (2 for the experiments reported here). The evolutionary
process shown in Figure 1 involves the application of mutation and crossover opera-
tors on selected kernel trees. For mutation, a point in either the vector or scalar tree
is randomly chosen and the sub-tree at that point is replaced with a newly generated
tree (vector or scalar, depending on where mutation occurred). Mutation of individual
nodes (e.g. constant terminals) is not employed. Crossover between two kernel trees be-
gins with the selection of a random point from either the vector or scalar part of the first
kernel tree. The location of the crossover point on the second kernel tree is constrained
so that crossover does not occur between the scalar part of one kernel tree and the vector



An Evolutionary Approach to Automatic Kernel Construction 421

part of another. Rank-based selection was employed for the selection of the candidates
for crossover. To prevent the proliferation of massive tree structures, pruning is carried
out on kernel trees after mutation, maintaining a maximum depth of 12 (for either the
vector or scalar part). A population of 500 kernel trees was used for all experiments,
each being evolved over 32 generations, on average.

3.2 Fitness Function

Another key element of KTree is the choice of fitness function. Three different fitness
functions were tested in experiments on a synthetic dataset (see Section 4.1). Two of
the fitness functions are based on training set classification error in combination with a
different tiebreaker fitness (to limit overfitting on the training set). The first tiebreaker
fitness is based on kernel tree size, favouring smaller trees, in the spirit of Ockham’s
Razor. The second tiebreaker fitness is based on the sum of the support vector values,∑

αi (where αi = 0 for non-support vectors). It favours kernels with a smaller sum
and also incorporates a penalty corresponding to the radius of the smallest hypersphere,
centred at the origin, that encloses the training data in feature space. The third fitness
function employed is based on a 3-fold cross-validation test on the training data and
also uses tree size as a tiebreaker fitness. In this case, the same kernel is used to build an
SVM three times over the course of one fitness evaluation. The experimental analysis
of Section 4.1 details the results of applying the above fitness functions on a synthetic
dataset.

In addition to the above fitness evaluations, the use of a filter for non-Mercer kernels
(referred to as the Mercer filter) was investigated. To estimate the Mercer condition
of a kernel, the eigenvalues of the kernel matrix over the training data are calculated;
if any negative eigenvalues are discovered, the kernel is marked as non-Mercer and is
assigned the worst possible fitness, e.g. a cross-validation error of 100%. To reduce
the computational cost when dealing with larger datasets, the kernel matrix is based on
only a subset of the training data. This approach was to found to be effective in the
experiments (detailed in Section 4). The kernel matrix was limited to a maximum size
of 250x250.

4 Experimental Results

4.1 Synthetic Dataset

To determine the best strategy for evolving kernels for use in SVM classifiers, a number
of experiments were carried out on a synthetic dataset, the checkerboard dataset, shown
in Figure 3(a). A checkerboard dataset (similar to that used by Mangasarian et al. [8]) of
10,000 samples was generated with an equal distribution of both classes. This synthetic
dataset allows for the creation of a large test set that is suitable for comparing different
kernel classifiers and is also useful for visually comparing kernel performance. In addi-
tion to finding a strategy that generates kernels with good classification accuracy, this
research is concerned with issues such as the selection of fitness function, the effect of
using non-Mercer kernels, and the contribution of genetic operators.



422 T. Howley and M.G. Madden

Table 1. Results on Checkerboard Dataset

(a) Standard Kernels

Standard Fitness Error
Kernel

Linear (C=1) 43.3% 48.4%
Poly (C=32,d=13) 19.6% 27.48%
RBF (C=16,σ=8) 14.8% 11.67%
Sigmoid (C=0.1,
(γ=10,θ=1E-6) 40.8% 48.92%

(b) KTree

KTree Fitness Error

Default 9.6% 10.74%
Training + No. Nodes – 14.19%
Training +

∑
αi – 41.26%

No Mercer Filter 8.00% 7.43%
No Crossover 11.6% 7.71%
No Mutation 11.2% 12.57%

Table 1 shows the results on the checkerboard dataset for the standard kernels and
KTree. In both cases, the SVM was trained on a subset of 250 samples from the checker-
board dataset and then tested on the full dataset. For each standard kernel, a simple
technique is employed for choosing parameters: an SVM with the standard kernel is
tested on the training dataset over a range of settings for both kernel and SVM (C pa-
rameter). The degree parameter, d, ws tested with the values: 1, 2, . . . , 19, 20. C and σ
were tested with the values 2−20, 2−19, . . . , 219, 220, except for the Sigmoid kernel, in
which case C and the two other parameters (γ and θ) were tested with the following
values: 10−6, 10−5, . . . , 105, 106. For each kernel type, the kernel setting of the best
fitness (based on 3-fold cross-validation error) is chosen and used to build an SVM on
the entire training dataset, the resulting model used for the test dataset. Table 1 shows
the fitness of the final selected kernel (for both standard and KTree) along with its
test error. Table 1(a) shows the RBF kernel outperforming all other standard kernels.
The KTree results are based on different variations of KTree, depending on choice of
fitness estimate, use of Mercer filter and crossover/mutation rates. The default KTree
of Table 1(b) uses a fitness function based on 3-fold cross-validation error, employs a
Mercer filter and uses both mutation and crossover. The next two KTree variations use
the other two fitness estimates (based on Training error with either number of nodes or∑

αi as tiebreaker) outlined in Section 3.2. The results show that the default setting
achieves the best results out of the three, with KTree using training error with α-radius
estimate performing very badly. Further analysis of fitness vs. test error showed the fit-
ness based on 3-fold cross-validation to be more stable; this fitness estimate is used as
the default in the remaining experiments (both synthetic and UCI datasets).

This study is also concerned with the behaviour of the genetic operators used in
KTree. The traditional view of Genetic Algorithms (GAs) is that crossover is primarily
responsible for improvements in fitness, and that mutation serves a secondary role of
reintroducing individuals that have been lost from the population. However, an impor-
tant difference with GPs (compared with GAs) is that crossover in GP swaps trees of
varying sizes, shape, and position, whereas the typical GA swaps alleles at exactly the
same locus [9]. Furthermore, changing a function or a terminal in a GP can have a dra-
matic effect on the operations of other functions and terminals not only within its own
subtree, but throughout an individual. The default setting for KTree shown in Table 1
adopts the classical approach, i.e. a high crossover rate (0.8) relative to the mutation



An Evolutionary Approach to Automatic Kernel Construction 423

rate (0.2). The results for KTree with two other different settings are shown in the last
two rows of this table: one without crossover and the other without mutation. KTree
without crossover achieved a very good test error, but the actual fitness of its best indi-
vidual is worse than that produced by the default KTree. In terms of final kernel fitness,
there is very little difference between KTree based on crossover alone and that based
on mutation alone. This is in agreement with Luke & Spector’s conclusion that there
is often no significant difference between the performance obtained by an all-crossover
strategy or an all-mutation strategy. As selecting a very high mutation rate can have
adverse effects on convergence and also result in a significant increase in the number of
kernel evaluations required in one run, KTree used for tests on the UCI datasets uses a
higher crossover rate (0.8) than mutation rate (0.2).1

In addition to these results, the output for four different kernels, shown in Figure 3,
was used to compare the performance of KTree with that of standard kernels. Two
variations of the KTree are shown: the default KTree with Mercer filter and the same
KTree, except without a filter for Mercer kernels. It can be seen from these figures that
both kernels achieve an output that is much closer to the original checkerboard pattern
than the standard kernels’ output. A comparison of the fitness versus test error of the
kernels produced during the non-Mercer KTree run shows a reasonable trend, but does
indicate a greater danger for finding highly fit kernels with poor test performance.

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) Original

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b) Polynomial

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(c) RBF Kernel

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(d) KTMerc

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(e) KTNon-M

Fig. 3. Output of standard and KTree kernels

4.2 UCI Datasets

The overall conclusion from the experiments on the synthetic dataset is that KTree is
capable of producing kernels that outperform the best standard kernels. A further test on
nine binary classification datasets from the UCI machine learning repository [10] was
carried out. The results of Table 2 show the average error from a single 10-fold cross
validation test on each dataset. For each dataset, the lowest average error is highlighted
in bold. A pairwise comparison between kernels over all datasets (see Table 3) was
carried out using a two-tailed Wilcoxon Signed Rank test [11] at a confidence level of
5%. Table 3 shows that KTree (with Mercer filter) significantly outperforms all other
kernels, with the exception of the RBF kernel (no significant difference found). These
results show that KTree is capable of outperforming or matching the best results of the
most widely used standard kernels. Further tests on the UCI data showed that KTree
without Mercer filter yielded poor results (not shown) in comparison with the KTree
that incorporates the Mercer filter.

1 We note that this is still a reasonably high mutation rate.



424 T. Howley and M.G. Madden

Table 2. Classifier 10-fold Error Rates(%): see Table 3 for pairwise comparisons of kernels over
all datasets

Dataset Linear Polynomial RBF Sigmoid KTree

Ionosphere 13.66±3.62 8.30±4.12 5.72±2.68 9.49±5.02 5.70±2.32
Heart 17.78±7.96 17.78±7.96 18.15±8.27 18.52±5.52 17.78±8.69
Hepatitis 17.91±9.84 25.33±22.00 18.66±12.18 21.09±14.05 14.08±8.82
Sonar 21.72±9.56 16.84±10.61 14.43±8.98 18.25±9.18 11.58±7.25
Glass2 29.55±12.89 27.36±13.66 15.72±13.06 27.12±13.08 16.31±11.42
Pima 25.91±11.15 23.44±3.44 23.05±3.96 22.66±4.44 22.53±4.48
WBCP 26.85±9.20 32.09±17.99 22.62±5.44 30.93±9.33 24.2±2.72
Liver 31.54±7.71 30.63±9.31 29.18±8.30 27.15±8.41 27.73±8.93
Tic-Tac-Toe 1.67±1.12 0.10±0.33 0.21±0.65 0.00±0.00 0.42±0.72

Table 3. Performance on Independent Test Sets: pairwise comparison of kernels using Wilcoxon
Test (W=Win, L=Loss, D=Draw–no sig. difference). Overall, KTree exhibits the best results.

Kernel Lin Poly RBF Sig KTree

Lin - D W D W
Poly D - W D W
RBF L L - D D
Sig D D D - W
KTree L L D L -

W/L/D 0/2/2 0/2/2 2/0/2 0/1/3 3/0/1

Table 4. Average kernel fitness (based on 3-fold error) on the Training Sets: this shows that KTree
kernels achieve the best fitness

Dataset Linear Polynomial RBF Sigmoid KTree

Ionosphere 12.38±0.64 8.00±0.58 4.72±0.47 11.05±3.6 4.12±0.77
Heart 16.13±0.77 16.09±0.79 15.56±0.93 15.68±0.94 13.91±0.84
Hepatitis 15.63±1.49 14.27±1.79 14.70±1.88 17.06±1.64 12.76±2.03
Sonar 22.54±2.32 14.69±2.06 12.82±1.77 19.66±2.70 8.01±1.70
Glass2 28.09±2.58 20.31±2.04 15.13±2.47 27.06±2.33 13.98±2.82
Pima 22.51±0.45 22.02±0.43 22.05±0.50 22.18±0.51 21.76±0.52
WBCP 23.63±0.16 23.23±0.53 21.44±1.24 23.12±0.66 22.17±0.99
Liver 30.08±1.61 24.80±1.24 24.83±1.17 25.60±1.16 23.41±1.17
Tic-Tac-Toe 1.67±0.12 0.94±0.21 0.51±0.25 0.59±0.28 0.38±0.19

All methods compared in Table 2 use the same basic fitness evaluation for selecting
the best model for a given training set, namely 3-fold cross-validation error. Therefore,
ten different kernels are selected over the course of a 10-fold cross-validation run. Ta-
ble 4 shows the average fitness (or 3-fold error rate) of the ten models selected for each



An Evolutionary Approach to Automatic Kernel Construction 425

kernel type. The best fitness (or lowest error) is highlighted in bold. It was found that
KTree significantly outperformed (using the same Wilcoxon test as before) all of the
standard kernels in terms of the average fitness of the final kernels selected. This re-
sult suggests that with with a better fitness function (i.e. one that follows the actual test
error more closely), KTree may be able improve its performance on test data. On the
other hand, the datasets used in these tests may be the cause of some of the problems;
the presence of noise in these datasets may be adversely affecting the usefulness of this
particular fitness estimate. Although the 3-fold error fitness results in good performance,
further investigation is required to find a more suitable (and possibly more efficient) fit-
ness measure. For example, it may be possible to use the training error (which is quicker
to compute) as a fitness estimate when dealing with larger datasets, where there is less
danger of overfitting.

5 Related Research

Some research has been carried out on the use of evolutionary approaches in tandem
with SVMs. Frohlich et al. use GAs for feature selection and train SVMs on the re-
duced data [12]. The novelty of this approach is in its use of a fitness function based
on the calculation of the theoretical bounds on the generalisation error of the SVM.
This approach was found to achieve better results than when a fitness function based
on cross-validation error was used. A RBF kernel was used in all reported experiments.
Other work has used evolutionary algorithms to optimise a single kernel, typically the
RBF Kernel [13,14]. Similarly, Lessmann et al. [15] used a GA to optimise a set of pa-
rameters for five kernel types and the SVM C parameter, and is also used to determine
how the result of each kernel is combined (addition or multiplication) to give the final
kernel output. A separate hold-out validation set is used to assess the fitness of each
kernel candidate.

6 Conclusions

This paper has described an evolutionary method for constructing the kernel of a kernel-
based classifier, in this case the SVM. KTree is a data-driven approach that uses GP to
evolve a suitable kernel for a particular problem. Experiments on a synthetic dataset
were carried out to determine suitable settings for KTree. Using a fitness function
based on an internal cross-validation test was found to yield the best result. In addi-
tion, both mutation and crossover operators were found to be useful for the discovery
of better kernels. Tests on a number standard datasets show that KTree is capable of
matching or beating the best performance of any of the standard kernels tested. When
compared using the fitness measure, the kernels produced with KTree clearly outper-
form the best standard kernels. The results also highlight the need for future work into
finding a more effective fitness estimate, with which the performance of KTree could be
improved.Future work will also involve testing on more datasets and using the KTree
approach for regression problems and cluster analysis.



426 T. Howley and M.G. Madden

References

1. Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., Watkins, C.: Text classification
using string kernels. Journal of Machine Learning Research 2 (2002)

2. Howley, T., Madden, M.G.: The Genetic Kernel Support Vector Machine: Description and
Evaluation. Artificial Intelligence Review 24 (2005)

3. Scholkopf, B.: Statistical Learning and Kernel Methods. Technical Report MSR-TR-2000-
23, Microsoft Research, Microsoft Corporation (2000)

4. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines. Cambridge
University Press (2000)

5. Bahlmann, C., Haasdonk, B., Burkhardt, H.: On-line Handwriting Recognition with Support
Vector Machines - A Kernel Approach. In: Proc. of the 8th Intl. Workshop on Frontiers in
Handwriting Recognition. (2002)

6. Lin, H., Lin, C.: A Study on Sigmoid Kernels for SVM and the Training of non-PSD Ker-
nels by SMO-type Methods. Technical report, Dept. of Computer Science and Information
Engineering, National Taiwan University (2003)

7. Cristianini, N., Shawe-Taylor, J.: Kernel Methods for Pattern Analysis. Cambridge Univer-
sity Press (2004)

8. Mangasarian, O., Musicant, D.: Lagrangian Support Vector Machines. Journal of Machine
Learning Research 1 (2001)

9. Luke, S., Spector, L.: A Comparison of Crossover and Mutation in Genetic Programming.
In: Genetic Programming: Proc. of the 2nd Annual Conference, Morgan Kaufmann (1997)

10. Newman, D., Hettich, S., Blake, C., Merz, C.: UCI Repository of machine learning databases
(1998)

11. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics 1 (1945) 80–83
12. Frolich, H., Chapelle, O., Scholkopf, B.: Feature Selection for SVMs by Means of Genetic

Algorithms. In: Proc. of the Intl. IEEE Conference on Tools with AI. (2003) 142–148
13. Runarsson, T., Sigurdsson, S.: Asynchronous Parallel Evolutionary Model Selection for

Support Vector Machines. Neural Information Processing - Letters and Reviews 3 (2004)
14. Friedrichs, F., Igel, C.: Evolutionary Tuning of Multiple SVM Parameters. In: Proc. of the

12th European Symposium on Artificial Neural Network. (2004) 519–524
15. Lessmann, S., Stahlbock, R., Crone, S.: Genetically constructed kernels for support vector

machines. In: Proc. of General Operations Research (GOR). (2005)


	Introduction
	Kernel Methods and Classification
	Kernel Functions

	KTree and SVM Classification
	Kernel Tree Representation
	Fitness Function

	Experimental Results
	Synthetic Dataset
	UCI Datasets

	Related Research
	Conclusions

