

Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-03-20T11:01:38Z

Some rights reserved. For more information, please see the item record link above.

Title A coevolving systems approach to the organization of agile
software development.

Author(s) Wang, Xiaofeng; Vidgen, Richard

Publication
Date 2009

Publication
Information

Vidgen, R., & Wang, X. (2009). A coevolving systems
approach to the organization of agile software development.
Information systems research, 20(3), 355-376.

Publisher Institute of Management Sciences

Item record http://hdl.handle.net/10379/1861

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/

A coevolving systems approach to the organization of agile software

development

Richard Vidgen, University of Bath, UK

Xiaofeng Wang, Lero, Ireland

Abstract

Despite the popularity of agile methods in software development and increasing adoption by

organizations there is debate about what agility is and how it is achieved. The debate suffers from a lack

of understanding of agile concepts and how agile software development is practised. This paper develops

a framework for the organization of agile software development that identifies enablers and inhibitors of

agility and the emergent capabilities of agile teams. The work is grounded in complex adaptive systems

(CAS) and draws on three principles of coevolving systems: match coevolutionary change rate, maximise

self-organizing, and synchronize exploitation and exploration. These principles are used to study the

processes of two software development teams, one a team using eXtreme Programming (XP) and the

other a team using a more traditional, waterfall-based development cycle. From the cases a framework for

the organisation of agile software development is developed. Time pacing, self-management with

discipline and routinisation of exploration are among the agile enablers found in the cases studies while

event pacing, centralised management and lack of resources allocated to exploration are found to be

inhibitors to agility. Emergent capabilities of agile teams that are identified from the research include

coevolution of business value, sustainable working with rhythm, sharing and team learning, and collective

mindfulness.

Key words

agile software development, coevolving systems, complex adaptive systems, time-pacing, rhythm,

mindfulness, innovation

Page 2

1. Introduction

Modern software development projects are enacted in increasingly turbulent business environments

typified by unpredictable markets, changing customer requirements, pressures of ever shorter time-to-

deliver, and rapidly advancing information technologies (Baskerville et al. 2001). The values that were

held dear in conventional development methods, such as detailed upfront plans, precise prediction and

rigid control strategies, are being called into question by more subtle ways “to bound, direct, nudge, or

confine, but not to control” (Highsmith 2000, p.40). Communities have formed around new “agile”

development methods, such as Scrum (Schwaber and Beedle 2002) and eXtreme Programming (XP)

(Beck and Andres 2004). These methods are promoted through the “Manifesto for Agile Software

Development” (Agile Manifesto 2001), which specifies a set of agile values and principles. Agility itself

is defined by Highsmith and Cockburn (2001) as the “the ability to create and respond to change” (p.

120). Anecdotal evidence in the forms of lessons learnt and experience reports (Poole and Huisman 2001,

Bedoll 2003, Rasmusson 2003, Jackson et al. 2004, Schatz and Abdelshafi 2005, Coffin 2006), as well as

several scientific studies (Fitzgerald et al. 2006, Fruhling and De Vreede 2006, Sfetsos et al. 2006,

Dawande et al. 2008), have argued for the appropriateness and effectiveness of various agile methods and

practices. For example, in a theoretical analysis of pair programming (a common agile practice),

Dawande et al. (2008) found that pair programming will likely out-perform solo working when

knowledge sharing between developers is efficient or when a scarce expert resource can be shared

through pairing.

The application of agile methods in software development, however, has not been without

scepticism and criticism. Rakitin (2001, 2005) argues that processes, documentation, user contracts, and

plans are essential in software development, whereas agile values, such as interactions between people

and responding to change, reflect a hacker culture that allows people to throw together code with little or

no respect for engineering discipline. Rakitin’s “hacker interpretations” of the Agile Manifesto puts agile

methods at the opposite pole of planning and discipline and regards agile values as chaos generators. In

the same vein, Stephens and Rosenberg (2003) cast doubt on both the XP practices and the philosophy

Page 3

behind XP and try to restore the values of documentation and upfront planning and design in software

development. Some agile advocates also consider agile and plan-driven software development methods to

be polar opposites (Boehm 2002). In attempting to clarify what agile means, “authorities seeking to

describe agile software development methods often cast about for its opposite” (Baskerville 2006, p. 113)

and in doing so place ‘agile’ and ‘plan-driven’ methods as polar extremes.

The ongoing debate on agile vs. plan-driven methods reflects a lack of understanding of agile

concepts and how agile software development is conducted in practice, which can be attributed in part to

the weak theoretical grounding of agile methods (Turk et al. 2002, Conboy and Fitzgerald 2004) and

further conceptual problems such as lack of clarity and lack of “theoretical glue” (Conboy 2009). These

issues raise the concern that agile methods may be “reduced to a series of steps executed by rote”

(Highsmith 2000, p.14). One theory that holds promise for deepening our understanding of agile software

development is complex adaptive systems (CAS) theory. Indeed, agile advocates claim that CAS is an

appropriate theory for software development (Schwaber 1996, Highsmith 2000) and “the only way to

make sense of the world” (Highsmith 2002, p. 48). These claims, however, are a post-rationalization to

justify what is already done in practice and are not based on scientific and systematic studies. Augustine

et al. (2005) argue that software projects are complex adaptive systems and build a CAS-based agile

project management framework tailored for XP, but their work is mainly based on their experience of

rescuing a mission-critical product-development project. In contrast, Meso and Jain (2006) start by

identifying seven CAS principles and then map them to agile practices (such as frequent releases, minimal

planning and continuous learning) suggested by various agile methods. Although Meso and Jain’s work

shows that applying CAS in the study of agile software development could yield fruitful insights of agile

organizations and practices, their work remains conceptual and empirical evidence has yet to be collected

to validate the links they draw between CAS and agile practices.

The aim of the current study is to develop an empirically based framework grounded in CAS theory

that can be used to guide the organization of agile software development. To achieve this end we analyze

the practices used in software development processes and identify enablers and inhibitors of agility and

Page 4

the emergent capabilities that a team needs to possess to be considered agile. In doing this we adopt a

broad view of a software development process, which is not only a framework for the tasks and series of

steps that are required to build the software (Pressman 1997) but also incorporates the tools used and the

people building the software (Schach 1998). In contrast to a development method, which Iivari et al.

(1998) define as consisting of “a well-defined sequence of elementary operations which permits the

achievement of certain outcomes if executed correctly” (p. 165), in the current study a software

development process is viewed as the actual way a software product is developed in a real-world context.

Such a process may or may not apply a development method and may or may not follow a method

faithfully. In the next section the theoretical basis of the study is constructed, and then applied in the

following sections to guide the empirical investigation. The study uses an interpretive case study

approach to investigate and contrast the processes of two software development teams, one espousing

agile methods, the other a more traditional waterfall approach.

2. Theoretical development

A complex adaptive system is composed of loosely interconnected autonomous parts, or agents.

Agents have the ability to intervene meaningfully in the course of events (Choi et al. 2001) because they

have their own local rules (schemata) which are the changeable cognitive structures used to make sense of

the environment and determine what action to take. The behaviors of a complex adaptive system resulting

from its loosely coupled agents following their local (and sometimes rather simple) rules can be strikingly

complex. The concepts, insights and analytical tools of Complex Adaptive Systems (CAS) theory have

been applied in management and organizational studies (Mitleton-kelly 1997, Brown and Eisenhardt

1998, Anderson 1999, Haeckel 1999, Stacey 2003). Although Anderson (1999) suggests that CAS should

no longer be considered a new theory in organizational studies, the use of CAS theory in the Information

Systems (IS) domain has been more recent and represented by several special issues, e.g.,

Communications of the ACM (vol. 48 no. 5, 2005), IT & People (vol. 19 no. 1, 2006), and Journal of

Information Technology (vol. 21 no. 4, 2007). Little of the work on CAS in the IS domain has been

empirical, reflecting perhaps the difficulty of making the rather abstract ideas of CAS theory sufficiently

Page 5

concrete to support case study research.

There is no definitive account of CAS theory but Volberda and Lewin (2003) summarize and distil

the academic and practitioner writing on complexity studies to propose three principles of coevolving,

self-renewing organizations: match coevolutionary change rate, optimise self-organization, and

synchronize exploitation and exploration. These principles provide the theoretical structure for the

selection and encapsulation of key CAS concepts, including coevolution, the edge of chaos,

interconnected autonomous agents, self-organization and the edge of time (Brown and Eisenhardt 1998,

Anderson 1999, Stacy 2003). Volberda and Lewin (2003) say these principles are “higher-order principles

that must underline any theory of self-renewal and its associated enabling managerial routines and

capabilities involving strategy, structures, processes and leadership” (ibid., p. 2126). We consider that

these three principles constitute an appropriate theoretical basis for a CAS-grounded study of agile

software development and now review the underlying CAS concepts of each principle in turn.

Principle 1: match coevolutionary change rate. A complex adaptive system tends to alter its structures

or behaviors in response to interactions with other complex adaptive systems. These different systems

coexist and coevolve in an ecosystem in which adaptation by one system affects the fitness of the other

systems in the ecosystem, thus leading to further adaptations and reciprocal change (Kauffman 1993).

Mitleton-kelly (2003) argues co-evolution is not the same as proactive or re-active response. It asks for an

awareness of both changes in the environment and the possible consequences of actions, which

reverberate around the ecosystem playing themselves out in unpredictable and unexpected ways. Principle

1 states that organizations need to match or exceed the coevolutionary rate of the system in which they are

embedded (McKelvey 2003). Mittleton-Kelly (2003) also notes the importance of coevolutionary rate in

the context of the firm, which, for example, might be to match or exceed the rate of change of new

product improvements made by competitors.

Adaptive organizations must “develop routines, capabilities and measures which monitor and

track rates of change in all aspects of their environment” (Volberda and Lewin 2003, p. 2126). The

combination of structures, strategies and processes adopted by organizations governs the pace of

Page 6

coevolution through regulating each organization’s internal rate of change. The rate of change should be

sufficient to enable organizations to evolve to the edge of chaos (Anderson 1999, McKelvey 2003), which

is a region characterized by bounded instability, i.e., one that is paradoxically stable and unstable at the

same time (Stacey 2003). At the edge of chaos “organizations never quite settle into a stable equilibrium

but never quite fall apart, either” (Brown and Eisenhardt 1998, p. 12). The edge of chaos provides

organizations “with sufficient stimulation and freedom to experiment and adapt but also with sufficient

frameworks and structure to ensure they avoid complete disorderly disintegration” (McMillan 2004, p.

22), and “gives them a selective advantage: systems that are driven to (but not past) the edge of chaos out-

compete systems that do not” (Anderson 1999, p. 223). The achievement of the edge of chaos is also “a

requirement for the emergence of novelty” (Stacey 2003, p. 262). Brown and Eisenhardt (1998) site the

edge of chaos between structure, which they define as bureaucratic organizations attempting to run using

command and control mechanisms, and chaos. They contend that, to compete at the edge, organizations

must understand what to structure and what not to structure, to foster communication and to capture

cross-business synergies. McKelvey (2003) suggests that, in the context of organizations, it is better to

think of a “region of emergent complexity” rather than an “edge of chaos”. This region lies between stasis

and chaos and is defined by two critical values. If an organization falls below the first critical value

because it exhibits minimal response to addressing the adaptive tensions it faces then order will prevail. If

the organization over-responds to its adaptive tensions, for example, by initiating too many change

programmes too quickly, then it may exceed the second critical value and chaos will ensue.

In the context of software development, user requirements embody the most significant sources of

change that a team will encounter and have to continue to respond to. Principle 1 directs our attention to

the mechanisms of monitoring and tracking changes to user requirements and the practices that enable the

development team to match and exceed those rates of change.

Principle 2: optimise self-organization. Self-organization is the ability of interconnected autonomous

agents of a complex adaptive system to evolve into an organized form without external force. Agents are

autonomous since they have the ability to intervene meaningfully and to determine what action to take

Page 7

given their perceptions of their environment. Agents are interconnected in such a way that they are

responsive to the change around them but not overwhelmed by the information flowing to them through

that connectivity (Mitleton-Kelly 2003). In an organizational context, self-organization is the spontaneous

coming together of a group to perform a task (or for some other purpose): the group decides what to do,

how and when to do it, and no one outside the group directs those activities explicitly (Mitleton-Kelly

2003). Drawing on Nonaka (1988) and Anderson (1999), Volberda and Lewin (2003) argue that self-

organization requires a fundamental departure from the command and control philosophy of traditional

hierarchical bureaucratic organizations. It is consistent with the often espoused idea of delegating decision

making to the lowest possible level and it implies maximizing capabilities of scope at every level of

organization. The roles played by individuals in an organization are therefore reshaped in the light of self-

organization with emphasis placed on increased autonomy, more interactions with other individuals and

environment, and greater participation, especially in the decision making process (Ashmos et al., 2002).

The meaning of leadership shifts from leading and controlling to participating and mediating (Wilkinson

and Young 2003). Self-organization, however, does not mean that individuals or units can “pull in all

directions at will or break all rules” (Volberda and Lewin, 2003, p. 2126). Individuals and teams must still

define and follow local rules (and allow these rules to evolve over time) in the course of self-organization.

It is worth noting the difference between self-organization and a much advocated management practice,

self-management. Self-management is premeditated or deliberately implemented by management, while

self-organization is truly emergent. Self-organization may be achieved through implementing self-

management, but as Stacey (2003) emphasizes:

“It is the very essence of self-organization that none of the agents, as individuals, nor any small

group of them on their own, can directly design, or even directly shape, the evolution of the

system as a whole. The impact of any agent, no matter how powerful, on the systems is

indirectly through their local interaction only … No agent is setting the simple rules for others

to follow and then ‘allowing’ them to self-organize. If they were, the system could no longer be

described as a self-organizing one.” (p. 267)

This principle has two implications to the current study. On the one hand, it focuses attention on how

control and decision-making are distributed in a team in order to promote self-organization. On the other

Page 8

hand, the emphasis on local autonomy poses a challenge to the ability and attitude of the developers in a

project team, requiring that individuals use their autonomy to maximize their capabilities. One crucial

aspect not covered by Volberda and Lewin’s (2003) formulation of this principle is that self-organization

needs energy to flow into and within it constantly in order to move to and maintain the new form

(Prigogine and Stengers 1984). This energy can be in the form of information, knowledge or other

resources needed to sustain self-organized activities and therefore how a team communicates and

collaborates to keep informational resources flowing within it also needs to be investigated.

Principle 3: synchronize exploitation and exploration. This principle is concerned with balancing

concurrent innovation and knowledge creation (exploration) with improvements in productivity,

improvements in processes, and product extensions and enhancements (exploitation). Brown and

Eisenhardt (1998) conceptualize the balance of exploration and exploitation as the edge of time, that is,

“rooted in the present, yet aware of the past and future” (p. 12). Drawing on March (1991) and Levinthal

and March (1993), Volberda and Lewin (2003) claim that “the long-term survival of an organization

depends on its ability to engage in enough exploitation to ensure the organization’s current viability and

engage in enough exploration to ensure its future viability” (p. 2127). Both attributes need to be present

and operate simultaneously. Organizations must avoid being mired in the past but not so over-enamoured

with the future that they waste time and effort over-planning it. Organizations that focus on the past and

exploitation become trapped but those that forget the past are always starting from new and repeating

mistakes.

Since our focus is on the software development process, this principle guides our study to discover

how a team continually leverages its current resources and capabilities (exploitation) while exploring new

opportunities, learning about new technologies and ways of developing software, and being open to

innovation in their development process.

In summary, the theoretical basis presented above provides the structure for the empirical

investigation of how agile software development is practised.

Page 9

3. Research Approach

3.1 Research method

This study adopts an interpretive research approach. It emphasizes software development processes

as made and enacted by people with different values, expectations and strategies, as a result of different

frames of interpretation. These frames act as filters enabling people to perceive some things but ignore

others (Melao and Pidd 2000). Case study is considered an appropriate empirical research method to

investigate real-life contexts, such as software development processes, where control over the context is

not required or possible (Yin 2003). A multiple-case design is employed to reassure that “the events and

processes in one well-described setting are not wholly idiosyncratic” (Miles and Huberman 1994, p. 172).

Thus the multiple case design allows us to apply literal and theoretical replication logics (Yin 2003)

through the comparison and contrast of two cases that are analyzed using the same theoretical lens.

The two cases reported here represent two software development teams, Pongo and SysCheck.

Pongo has adopted XP, one of the most popular agile methods. SysCheck uses a variation of the

traditional waterfall-style method. Pongo acts as an exemplar case of agile software development, while

SysCheck provides a contrasting case to Pongo. Both cases are used to study the factors that enable and

inhibit agility and agile team capabilities rather than being viewed as opposing cases (e.g., agile and non-

agile). The core case study questions (see Table 1) are derived from the theoretical framework introduced

in Section 2 and are consequently organized by the three principles. Other relevant questions include

those about organizational context, team and interviewee background, and several questions to probe

interviewees’ understanding of agility and agile software development.

Organizing principles Core case study questions

Principle 1: Match
coevolutionary change rate

1-1 How are user requirement changes monitored and tracked?

1-2 How is the user requirements change rate matched or exceeded?

Principle 2: Optimize self-
organizing

2-1 How is management distributed?

2-2 How are the capabilities of individuals maximized?

2-3 How are communication and collaboration facilitated?

Principle 3: Synchronize
exploitation and exploration

3 How are exploitation and exploration in software development
synchronized?

Table 1: Core case study questions

Page 10

The main data collection method used is semi-structured interviews with open-ended questions.

Interviews were conducted in English and lasted between half an hour and two hours and were recorded

and transcribed. Interview quotes are reproduced verbatim. Most subjects have been interviewed twice

within a six-month timeframe (as shown in Table 2). Documentation review and field notes were

complementary data collection methods. Sources include software development documents, project

management documents and corporate websites and brochures.

Within-case analysis and cross-case comparison are two major steps of the data analysis. The level

of analysis is at the team level. The specific data analysis techniques for within-case analysis are coding

using the NVivo software package and a descriptive write-up for each case. In the cross-case comparison,

the software development processes of Pongo and SysCheck are contrasted and compared and then agile

enablers, inhibitors and agile team capabilities are identified accordingly.

Case Interviewees 1st visit 2nd visit Total interviews

Pongo 4 1 group interview
4 individual interviews

2 group interviews
3 individual interviews

10

SysCheck 3 1 individual interview 3 individual interviews 4

Table 2: Interviews conducted

3.2 Case sites

Pongo is a software development team in an Italian software house specializing in network security and

management systems. Pongo, ‘play-doh’ in English, symbolizes malleability - a quality the team feels is

most necessary to support change. After failing to deliver its last project the team embarked on a

collaborative effort with an XP training laboratory and underwent intensive XP training for six months.

Following training the Pongo team successfully completed several projects using XP and believe that they

reached their goals of developing software “good, fast and cheap” and “working in an enjoyable way”

(Dani et al. 2003). Therefore, Pongo is considered here to be an exemplar case of agile software

development.

SysCheck (a pseudonym for the purpose of anonymity) is a software development team from a

major multi-national IT company. The company is considered to be a hierarchical and bureaucratic

Page 11

organization by the interviewees. SysCheck is required to use the waterfall model. SysCheck is aware of

agile methods and has also adopted some agile-like practices to circumvent the restrictions of the

waterfall processes imposed by the company. The profiles of the two case teams are summarized in Table

3.

 Pongo SysCheck

Team composition 3 developers (1 assumes the role of XP
coach), 1 project manager

4 developers, 1 project manager

Location Collocated in an open office space Collocated in a semi-open office space

Development method XP Waterfall

Years of use of the method More than 5 More than 5

Type of software developed Applications for external customers Applications for internal use

Company background Small software house, specializing in
network security and management
systems

A major IT company providing both IT
products and services

Table 3: Profiles of the two cases

4. Case analysis

4.1 Pongo

1-1: How are user requirement changes monitored and tracked? The life cycle for Pongo consists of

project configuration, initial requirements capture, and then a number of development iterations (Figure

1.A). User requirements are gathered throughout the whole project life span with user requirement

changes captured constantly in the planning game that initiates each iteration (Figure 1.B). User

requirements are structured as user stories, which are estimatable and testable statements of requirements

together with acceptance tests to specify what constitutes a complete and acceptable piece of software for

each user story.

The team delivers working software in an incremental way each week for acceptance test (Figure 1.B), as

one developer comments:

“Every week we have a delivery. It's better to discover that you have not understood some user

requirements after a week than after one month.” (Developer A/Pongo)

The rapid turnaround of user stories gives customers quick feedback on the requirements they have

Page 12

requested, allows them to monitor the progress of the developers, and gives them the opportunity to learn

to use the software through the execution of acceptance tests.

The team realizes the importance of separating business complexity from technical complexity, and

guides customers to write user stories and acceptance tests in such a way that they identify precise

business scenarios from a business perspective. User stories and acceptance tests are seen as the interface

between the customers and the team; the customers address business complexity while technical

complexity is internal to the team and not intermingled with user stories and acceptance tests.

Figure 1: The development life cycle of the Pongo team (adapted from Vidgen and Wang 2006)

1-2: How is the user requirements change rate matched or exceeded? Pongo uses one-week iterations. No

change should be introduced into the user stories under development during an iteration. The customers

can check the progress of the development anytime they want, or clarify the understanding of the user

stories, but can only change the stories when an iteration is completed. Although preferring one-week

iterations the team does change iteration length to account for different projects, different stages of a

Page 13

project, different frequency with which they communicate with customers, and different sets of user

stories being implemented:

“Every time we have to ask ourselves, what is the best [iteration length] for this particular set of stories,

every time, because the risk is that if you don't recognize that specific set of user stories is suitable for a

period of time… we prefer [to fix iterations] but it’s not always suitable, not always.” (Coach/Pongo)

Similar to the one-week iteration that paces the project, a working day is paced according to

pomodoro time (Figure 1.C). Pomodoro, “tomato” in Italian, comes from a tomato-shaped kitchen timer

the team used when they were trained at the XP training laboratory. The timer is set for 25 minutes of

work followed by a five-minute break when the team members can check emails, take coffee or have a

chat. The team also report that it is not easy to maintain the pace set by iterations and pomodori. Holding

the pace and keeping focus requires continual effort from the team members.

The pomodoro is the basic unit of planning. All the team members participate with the customers in

the weekly planning game in which the developers estimate the effort needed to implement the user

stories selected by the customers. Although a close interaction with customers helps when capturing user

stories the team finds that sometimes they become trapped into long discussions with customers during

the planning game with the result that no user stories are generated by the end of the game:

“For example, if we have a very long planning game, if it's difficult to communicate with customer, we are

of course not agile at this moment.” (Developer A/Pongo)

The team recognizes that when this kind of ineffective discussion happens they need the courage to stop

interaction with customers.

Estimates of user stories are expressed in the unit of the pomodoro and the team keeps the average

estimate of a user story to around 25 to 30 pomodori, which is considered an appropriate size:

““Typically when you have user stories big, it's not easy to have feedback from your activity… it's also very

hard to imagine if your estimate is realistic or not.” (Coach/Pongo)

The principle of writing user stories is “as small as possible”. A written user story should fit to a quarter

A4-sized story card. If a story card cannot contain a user story, it is a sign that the story is too big and

Page 14

needs to be broken into smaller ones. The capacity of the team to implement user stories in an iteration is

called “la cassetta dei pomodori” (the basket of tomatoes). In the planning game, this capacity is

compared with the sum of the estimates of user stories. This gives the customer and the team an idea of

which and how many user stories can be implemented in that iteration. If all the stories cannot be

implemented in the iteration then the customer prioritises the stories and chooses the ones that are to be

delivered at the end of the iteration using the rule “greatest value to the customers first”. The “basket of

tomatoes” should always match the estimates of the user stories chosen for that iteration so that the team

can work at a comfortable pace. Since the team plans for one week only and user stories are generally

small in size, the team tends to get accurate estimates for user stories. Constant prioritisation of tasks

helps them make a quick decision on what to drop as and when circumstances change and to adjust plans

accordingly. This typically takes place in the daily steering sessions (Figure 1.C). In the daily steering

session the team quickly plans what to do that day by picking up tasks from the storyboard. They also

raise issues such as technical obstacles and ask others for help.

The team considers planning a natural step following frequent external and internal feedbacks:

“Always plan, this is the core.” (Project Manager/Pongo)

The team also realizes that planning is a learnt ability which is improved and refined through the

development process with the ability of a team to understand systems, situations, and problems.

By planning in such a way and pacing development with iterations and pomodori, Pongo has

discovered rhythm, an emergent state of working, a state difficult to reach but easy to lose:

“It's a special condition, it's a magic condition, like in a sports team. There could be some moment, some

situation in which every component lives in another layer, all the things are much easier.” (Project

Manager/Pongo)

The Pongo coach describes a similar experience of rhythm:

“When you can maintain a rhythm you have no anxiety. You have no worry about something particularly,

so you are not stressed. And playing an instrument is the same. I play the guitar so I know what I am

talking about. When you reach the right rhythm, you can feel it. It is a special condition where work is

ideal, but it is a special condition you cannot reach every day… Rhythm is something that is very close to

Page 15

life. You are working without any anxiety, something that life does.” (Coach/Pongo)

2-1: How is management distributed? For Pongo, management is ultimately an internal process of the

team. Every team member is involved in management and assumes responsibilities to make decisions

for the team, even though roles like project manager and XP coach exist in the team:

“Project manager is kind of activity that is absorbed by all eventually, all the team has to participate in

managing the project in all the aspects of the project.” (Coach/Pongo)

However, when facilitating team self-management it is possible that the project manager becomes

externalized from the team:

“I don't live inside [the team] now. I can give them my feedback, but it isn't the same feedback… The risk

is it becomes idiosyncratic.” (Project manager/Pongo)

One important mechanism the team uses to implement self-management is constant observation, to be

attentive of what happens to other team members and in the environment. To effectively observe others,

one needs to be able to self-observe, as one developer comments:

“Feedback comes from continuous watching the activities of the project…Before observing others, you

must be able to observe yourself … but not in the sense of control, you have to look around, and watch

what the others are doing, if they are focusing on the things they are doing… It's good that every team

member can do if something goes wrong. A team is like a person, every part, member of the team must

check if the other part works good, like the body, if one part doesn't work, the other has to help.”

(Developer B/Pongo)

2-2: How are the capabilities of individuals maximized? Pongo team members are involved in all

development activities of a project, and all have to deal with customers, analyse user requirements, and

write code. There are no dedicated traditional roles, such as system analyst, designer, programmer or

tester, in the Pongo team. Each team member is able to assume all the roles, since comprehensive

competences are required to work with user stories, which are self-contained and encapsulate different

development activities including analysis, design, and coding.

Task self-assignment is an effective way to improve the competences of each team member. During

the steering session, the team members sign up and take ownership of tasks they would like to implement

Page 16

in that day. Neither the project manager nor the coach assigns tasks. Generally, the developers choose

tasks they feel confident in completing, but they also pick up tasks that they are not so good at, and then

pair up with a more experienced member in order to acquire new skills. Through pair programming,

learning happens naturally and in a mutual way. That is also the reason why the team always ensures that

team members work in pairs after a spike task (a task to explore an unknown technical issue) or a study

session (Figure 1.C) - what is learnt by a single developer can then be shared by working with another

developer as a pair.

2-3: How are communication and collaboration facilitated? The team works in an open working space,

which facilitates everyone’s involvement in communication. Regular weekly and daily meetings

(planning game, steering and feedback sessions) also facilitate and structure team communication.

Pair programming is the main collaboration mechanism in Pongo. During development time, the

developers always work in pairs on tasks. They physically sit together and share one desktop, one using

the keyboard, as “driver”, the other using the mouse, as “navigator”. Generally team members are self-

pairing. Pair rotation happens frequently, sometimes to the extent of per pomodoro. Between the two

paired developers, the owner of the task generally stays, and the other goes to pair with a different

developer. When working in pairs, however, it is not always easy for the pair to recognize when to

stop talking and start writing code:

“When the pair starts long discussion, you don't communicate really… When you start this type of

discussion which is negative, you could spend 20 minutes on discussion without writing anything.”

(Coach/Pongo)

Effective communication and collaboration lead to constant sharing and team learning. Pongo considers

sharing an important aspect of team working. What is shared among the team members is not only the

technical knowledge related to different areas of a project (which helps to distribute competences among

the team) but it is also the knowledge about who knows what, which helps the team members self-

organize to implement tasks and facilitate learning:

“As a team, you have to face every moment, in any case, without barriers.” (Developer B/Pongo)

Page 17

For Pongo, learning means doing things differently, as the project manager explains:

“What is the effect of learning? That you change something… If I learn, I don't do the same thing in the

same mode. If I learn something, I modify, I change my behaviour. If I see that the behaviour is the same,

I think there is no more learning there in that cycle.” (Project Manager/Pongo)

3: How are exploitation and exploration in software development synchronized? A working day for

Pongo starts with a feedback session in which the team reflects on the previous day. The feedback is

focused on the development process, not technical issues. The team members also talk about the feelings

they had, anxieties felt, what the team achieved or whether something went wrong during the previous

day. One thing the team realizes is the importance of feedback on the positive aspects of the previous day,

which can provide them with satisfaction and help keep them motivated. Sometimes the team also

challenges the practices that work well, as the coach explains:

“It's important to perturb the system from time to time to see if it can survive.” (Coach/Pongo)

The regular use and review of the practices leads to the internalization of the process in the team’s

day to day life, becoming a part of the mental model of the team:

 “We practice [XP] everyday, and we have to deal with these practices all the time… It's what we do

everyday, it's real, it's something concrete.” (Developer B/Pongo)

While the daily feedback session helps the team exploit and retain what the team is doing well,

studying new things helps them understand what they might possibly do. Four pomodori (two hours) are

reserved for studying everyday, generally two before lunch and two afterwards. The team members can

freely choose the content they would like to explore in the daily study time out of their personal interests.

New ideas that emerge from study can then be tried out in the time allocated for development. Of the two

hours, one is dedicated to exploring issues not directly relevant to the current project, which can

particularly benefit the team with regard to creativity:

“We tried to experience different ways to approach the study, and we found that to split study time

considering one part dedicated to project related issues, and the other dedicated to issues one wanted to

explore for some reason, was better than always study the project related issues, because you could find

Page 18

some results that seem not useful in the future for the project, but sometimes, magically, it works, that

happens.” (Coach/Pongo)

Allocated study time allows the team members to learn new things within working hours and helps

to keep them motivated. Pongo believe that the productivity of the team will drop if there is no time for

personal interests to be pursued. Further, the presence of study time in daily work serves as a break from

intensive development activities and thus helps the team to work at a sustainable pace:

“When sometimes we skip study time, we have to develop all the time so we have to do the same activity

along the day, our efficiency is lower. It's very important to switch between activities of different kind …

When we study, and to pay attention to other issues, when we begin, when we start again the

development, we can start with more sources, more imagination.” (Coach/Pongo)

4.2 SysCheck

1-1: How are user requirement changes monitored and tracked? SysCheck follows a waterfall style

lifecycle that is roughly divided into sequential stages including requirements gathering, system analysis,

design, construction and testing (Figure 2). The business requirements are generally dictated by the

business units of the company, who decide which projects to initiate. The business requirements are then

broken down into product requirements and elaborated with technical details by the project manager with

the involvement of the team members. The product requirements must be signed off by senior

management before the work schedules can be made.

Since the system the team develops is a command-line package with a limited user interface, the

team does not believe there is a necessity for close interaction with customers and consequently

customers are only involved in the early scoping phase (Figure 2) and in the testing phase toward the end

of a project.

1-2: How is the user requirements change rate matched or exceeded? Generally the team delivers a new

major version of the product at the end of a 9 to 12 month period. Though the system the team is working

on has been around for so long that the requirements are considered stable and well-defined, there are

often changes coming from the business that impact on the project, such as organizational changes,

Page 19

project cut or scope changes, which may require the team to deliver something quickly and bring the

project to a close. As a response to this uncertainty, rather than have one big construction (coding) phase,

the team breaks the development work into multiple phases of 4 to 6 weeks each. In each phase, a mini-

waterfall cycle is followed, including analysis, design, coding and unit testing (Figure 2). The most

crucial blocks of work are put in early phases and packaged in a self-contained way such that, though the

team does not actually deliver anything to the customer at the end of a phase, they could if they have to,

as one developer describes:

“Each phase will basically stand by itself, and in our case we know that we have time to finish it and we

can finish it, so if we start a phase we will finish it… we always finish a phase.” (Developer A/SysCheck)

Figure 2: The development life cycle of the SysCheck team (adapted from Wang and Vidgen 2007)

This phased approach is seen as a way to protect the team from unexpected change:

“It's kind of like defensive planning, we plan in such a way that if we have to go out of the door we could

go out of the door.” (Project Manager/SysCheck)

If any significant change needs to be made to the signed-up requirements then a change request

must be completed and signed off and a change control mechanism is triggered. Once the request is

Page 20

authorized the team can implement the change.

The team has no shared routines at the daily level:

“[Do you have any daily routine to organize your work?] No, not really, just work, work, eat, work again,

and that's it.” (Developer A/SysCheck)

Project planning is an important activity at the start of a project and is time consuming. The plan

covers the entire lifespan of the project. The project manager breaks down the product requirements into

development tasks, consults the team members for task assignment, and works out a work schedule for

the whole project. The work schedule as a result is considered the most important document by the project

manager and it is meant to be followed:

“It [the work schedule] is done up in front, we’re trying to get schedule as accurate as possible to start... I

would be very aware in my head of the schedule and what’s going to come up next week and what we

should finish and what we should start, that kind of thing… The schedule is kind of like, if we were driving,

for me to be the map, and if we start to go out of the map, we have to figure out how to get back on to the

map… the schedule would be what I view as a kind of directive, so where we are going.” (Project

Manager/SysCheck)

The project manager tries to make the work schedule as accurate as possible. He manages to control the

size of a task with a sub-task generally taking several days while a predictable piece of work may have an

estimate of up to three weeks.

2-1: How is management distributed? Project management is seen mainly as the responsibility of the

project manager, as this developer comments:

“The project manager sets targets, deadlines… I suppose the project manager would adjust the task

states if something comes up or if the priority of the tasks changes, then he can have a meeting with us

and tell us about the changes.” (Developer B/SysCheck)

The project manager, who is also the technical lead and involved in the development tasks as the

other developers, nevertheless tries not to micro-manage the project. He is seen as open-minded and

giving the developers a certain amount of autonomy.

2-2: How are the capabilities of individuals maximized? There are no specific functional roles in the

Page 21

team. The developers are not specialized on specific tasks and everybody has the opportunity to do

different things, as the project manager claims:

“We don't kind of say ok you do this you do that, everybody kind of chips in.” (Project Manager/SysCheck)

The project manager assigns tasks to the team members in such a way that everyone can get what

they are interested in doing rather than what they are good at. The team has an open discussion on what

work they are really interested in doing, then the project manager arranges the task assignment based on

the collected opinions. The team members help each other in task implementation, which is self-arranged

through informal communication. If someone runs into difficulties they ask for help from the other

developers directly. SysCheck emphasizes the importance of people in software development, regardless

of what software development processes they use:

“You need to respect the fact of human being, and you need to listen to that, if you want good

communication [and] people working together well… You need people to feel confident and comfortable

with each other… If people are unhappy, the project falls apart.” (Developer A/SysCheck)

2-3: How are communication and collaboration facilitated? The team relies heavily on informal, person-

to-person communication. Depending on where a project is, the team does have some formal meetings at

different frequencies. For instance, they meet formally once every two or three weeks in the middle of a

design phase. During an intensive testing phase, they meet formally every few days. However, the team

members do not have positive opinions on formal team meetings:

“The meeting is here to help people to communicate on the project, but you don't have to be at the table to

speak about your project, you can go from your desk and go to another person… I find it’s pretty

depressing to be at the table.” (Developer A/SysCheck)

Though the team does not use pair programming in development, they use the idea of pairing when

checking code in and out of the code base. Two team members work as a pair in this case to look over

each other’s shoulders.

3: How are exploitation and exploration in software development synchronized? There is no built-in

practice targeting the improvement of the process during development to exploit what the team has

Page 22

already done well or to weed out what does not work well. The team holds a formal project ‘postpartum’

meeting at the end of a project, at which the issues regarding the development process are discussed. But

it is not seen as meaningful by the team members. Indeed, the team has no clear awareness of the

development method they are using and neither do they care about it. It is seen as imposed by the

management:

“The project life cycle is not decided by us. There is somebody from upstairs that says ‘listen, this is the

project life cycle that we use as a company, so you have to use it’… We don’t concern as much the

process, maybe the project manager, I should say he knows more about the approach, me personally I

just yeah I have a task, I implement it, that’s it.” (Developer B/SysCheck)

Driven by a common-sense view, the team borrows and blends some agile concepts into the

process. They believe it makes them work more efficiently, as the project manager comments:

“I think agile is great, and I like the whole idea the way it works and the concepts and all that. But like I

said, to me they are kind of common sense concepts. If we can use them, we should use them.” (Project

Manager/SysCheck)

The team does not have a built-in practice to support exploration. The team members may explore

new ideas ad hoc, but it mainly relies on the maturity level and willingness of each individual.

4.3 Summary of findings

The findings from the cases are summarized in Table 4, reflecting how software development is

enacted and organized in Pongo and in SysCheck. Although they broadly follow a waterfall lifecycle,

SysCheck have a number of practices that would contribute to agility: project manager consults team

members about their task preferences; project manager takes account of personal development needs

when allocating work; functional roles are not separated; project is broken down into mini-phases to cope

with unexpected schedule changes; and pairing to check code in and out. These practices that may

contribute to greater agility are flagged with a “+” in Table 4. Pongo, on the other hand, faces a set of

issues that may put the team at the risk of losing agility: striving to maintain the pace set up by

Page 23

 Pongo findings SysCheck findings

1-1: How are user
requirement changes
monitored and
tracked?

- Ongoing requirements gathering throughout
project

- Incremental delivery at the end of each
iteration; customer learning how to use software
through iterative acceptance tests

- Separating business complexity from technical
complexity

- Over-communication between developers and
users to detriment of user story generation (-)

- Upfront user requirement specification
(dictated by the business unit); official
sign-off by senior management

- Formal customer involvement limited to
early scoping and final test phases

1-2: How is the user
requirements change
rate matched or
exceeded?

- One-week iterations, frozen user requirements
within an iteration, but varying iteration length
according to the project context

- Pacing a working day by 25 minute “pomodori”
with 5 minute break per pomodoro

- Pace set by iterations and pomodori can be
difficult to maintain (-)

- Planning at iteration and daily levels

- Managing granularity of story size (should fit to
a quarter A4 sheet)

- Matching estimates with the velocity (la
“cassetta dei pomodori”) of the team

- Task prioritization and re-prioritization

- Following waterfall stages (e.g.,
scoping, analysis, construction), but
using self-contained internal phases,
each 4 to 6 weeks duration, to help
protect the team from unplanned
change (+)

- Change control procedure for
substantial changes to requirements

- Up-front planning of the whole project

- Endeavouring to follow the entire work
schedule faithfully

- Large size of task (several days up to
several weeks)

2-1: How is
management
distributed?

- All team members involved in project
management and assume responsibility for
making decisions

- Team members observe each other and self-
observe

- Project manager may become externalized to
team (-)

- Management centralized through the
project manager

- Project manager consults developers
about their preferred tasks (+)

2-2: How are the
capabilities of
individuals
maximized?

- All team members are involved in all aspects of
development activity

- Task self-assignment based on the interests of
developers and supported by daily steering
session and pair programming

- Pair programming after spike or study session
to share learning

- Team members freely involved in all
activities - no separation of functional
roles (+)

- Tasks are assigned by the project
manager based on the interests and
developmental needs of the team
members (+)

2-3: How are
communication and
collaboration
facilitated?

- Open working space

- Regular weekly and daily meetings

- Pair programming and pair rotation

- Over-communication between developers to
detriment of code production (-)

- Relying on informal communication
between team members

- Pairing to check code in and out of the
code base (+)

3: How are
exploitation and
exploration in
software
development
synchronized?

- Daily feedback session on the progress of the
previous day, focusing on positive aspects as
well as issues arising

- Willingness to perturb the process to test its
robustness and to experiment

- Reserving four pomodori (two hours) for study
per day: one hour for project-related study and
one for non project-related

- Postpartum (at end of project)

- Use of “common sense” when following
the development process

- Ad hoc and informal exploration

Table 4: Summary of findings from the Pongo and SysCheck cases (“-” = potential sources of loss

of agility for Pongo, “+” = potential sources of agility for SysCheck)

Page 24

fixed-length iterations and pomodori in turbulent environments; over-communication between the team

and customers; over-communication between team members; and the project manager becoming

externalized from the team. These potential sources of loss of agility are flagged with a “-” in Table 4.

5. Discussion: agile organizing framework

In this section the case study findings are discussed and key themes identified, leading to the production

of an agile organizing framework that identifies enablers and inhibitors of agility and the emergent

capabilities of an agile team.

5.1 Match coevolutionary change rate

Evolving business value

Agility in software development is not only responding to change, or even proactively creating change, it

is the coevolutionary capability of a team and their customer. This coevolutionary capability is expressed

through the medium of user requirements, which evolve through the evolutionary process (Aldrich, 1999)

of variation (generating new requirements), selection (establishing the relative priority of requirements)

and retention (implementing the chosen requirements). Janzen (1980) says coevolution is more than

“interaction” or “mutualism” – each population must make evolutionary changes in response to a

selection pressure from an associated species. Thus, although development is driven by business value it

is not led blindly; the development team needs to challenge and be pro-active in its communication with

customers, as in the Pongo case. The user requirements reflect both developer and customer

understanding of the business domain and what constitutes a potential solution. A close relationship

between a team and their customers is needed such that developers understand the (changing) business

environment and customers understand the (changing) capability of technology such that each can apply

an informed selection pressure on the other. This suggests that the up-front specification of requirements,

as in the SysCheck case will inhibit coevolutionary potential.

Coping with change

For Pongo change is inevitable, routine, and expected but work is stable and fixed over short cycles. Time

pacing is a fundamental building block for Pongo to cope with change and drive the engine of team and

Page 25

customer coevolution. Time pacing with one-week iterations that are self-contained and ring-fenced gives

Pongo a steady pace, a clear focus and freedom from distractions. Viewed as a contract between the team

and the customer, short fixed-length iterations in which user stories do not change offer the team short-

term certainty to focus on work and to work without anxiety. Since iterations are short, user requirements

are only frozen for a short while and new changes can be accommodated quickly. They deliver software

at the end of each iteration and draw frequent satisfaction from this closure. Similarly, the daily routine

for Pongo, time paced by pomodori, includes short and guaranteed breaks to give respite from intensive

working. The SysCheck development process is driven by events, such as the end of scoping, the end of

analysis, etc., and the officially signed-off documents act as tokens for the transition from one stage to the

next. Work is fixed over long cycles but subject to unpredictable and exceptional changes requested by

senior management at short notice, often leading to instability. The phased approach SysCheck uses can

be seen as time-pacing of a kind but the phases are much longer than the iterations of Pongo and lack

immediacy and responsiveness. For SysCheck, phases are seen more as a way to protect the team from

change rather than an active desire to embrace change.

The findings of the study show that time pacing, or temporal pacing, is a way of combining

flexibility and control in turbulent environments. Gersick (1994) suggests that temporal pacing is a

prominent mechanism for keeping organizations adaptive in the face of uncertainty. Brown and

Eisenhardt (1998) define time pacing as an internal metronome that drives organizations according to the

calendar, e.g., “creating a new product every nine months, generating 20% of annual sales from new

services” (p. 167). This is opposed to event pacing, in which change happens as a response to events in

the environment such as competitor moves or the discovery of a new technology. Time pacing in software

development means that the development cycles are triggered by the elapse of time allowing a team to

change frequently but stopping them from changing too often or too quickly, thereby providing stability

for development activities. Time pacing based on short timeframes, therefore, reduces the risk and cost of

responding to change and keeps a team focused on work. The findings of this study suggest that several

aspects need to be considered when setting the pace. First of all, the team should consider the coevolution

Page 26

rate with customers, which will vary from team to team and project to project. Each team needs to find its

own pace in each specific context. Secondly, a team needs to understand what pace can be sustained over

time. A suitable pace strikes a balance such that the iteration cycle is long enough to get some meaningful

work done but short enough not to lose momentum and responsiveness to change. Once a pace is set it is

important to stick to it as regular pacing brings stability to a team and small, frequent closures at the end

of each boxed time period help keep team members satisfied and motivated.

Time pacing provides a basis for accurate planning. Pongo plans in detail for the short term through

weekly iterations and re-plans as needed at the start of each day. Although the team recognizes that

planning is an uncertain process, frequent planning for short time periods in fine-grain detail helps them

improve their planning capability leading to accurate estimates of what can be delivered in an iteration.

Planning in SysCheck is done at the beginning of a project and covers the whole lifespan of the project.

The project manager develops the work schedules that the developers are to follow and for SysCheck “the

plan is the plan” - it should be followed faithfully with change being dealt with on an exception basis. The

change control mechanism that SysCheck is mandated to use is peripheral to its development process

rather than a core component.

The Pongo case suggests that planning is of central and fundamental importance in an agile process,

but takes a different form than in traditional plan-driven approaches. An agile process is not plan-driven,

but planning-driven. Frequent planning is a natural consequence of frequent feedback loops in an agile

process due to close relationships between a team and their customers as well as among team members.

Both high-level, sketchy, long-term plans and detailed, accurate, short-term plans are necessary in an

agile process. Time pacing provides a team with a given amount of certainty which makes frequent and

accurate short-term planning possible and meaningful. To achieve accurate estimates in planning, a team

should be able to break down their work at a fine granularity level, which enables a bottom-up planning

process that leads to reliable plans for the short term. This is in contrast to the traditional top-down

planning at the project level, which generally results in coarse-grained tasks even for the short term.

Regardless, a team needs constantly to adjust the plans according to what happens in its environment.

Page 27

Baskerville (2006) uses the term “artful planning”: planning for creativity and innovation, planning for

serendipity, and planning not-to-plan. Artful planning is a “paradox of planning and not planning that

unfolds as a practice required by settings in which large degrees of uncertainty and ambiguity are

inevitable” (ibid., p. 115). Agile planning can provide software development teams with an ability to

work with stability whilst embracing uncertainty, providing developers with a sense of security and

control over their work. However, uncertainty is inevitable and is also a source of novelty in an agile

process where ongoing change arises from close relationships with customers and evolving user

requirements. A truly agile process is a delicate balance of stability and uncertainty which enables a

software development team to work adaptively at a fast yet sustainable pace.

Working with a sustainable pace and leveraging both stability and uncertainty, a working rhythm

can emerge. This is a special condition where work is ideal, the team is not anxious or stressed about the

work, and there is a synergy of the team that brings the team members to a level transcending the

individual. It provides a relief against anxiety and a guard against over-working. Rhythm is different from

the mechanical metronome or heartbeat metaphor by which organizations synchronize their clock with the

marketplace and their environment. Instead, rhythm is a subtler state related to the flow and feel of work

that can emerge from a time-paced agile process. It is difficult for a team to reach such a state but easy to

lose it.

5.2 Optimize self-organizing

Self-management and team-discipline

The developers of Pongo have a large degree of autonomy and carry out their activities in a self-managed

manner. Total team involvement in all development activities with no separation of functional roles gives

everyone a chance to develop different competences and for these competences to be distributed among

the developers, leading to an autonomous team that can work on any aspect of the development. Pongo

endorses self-management but this does not mean that there are no rules or that the rules can be broken;

team members are autonomous but disciplined, which is achieved through the simultaneous presence of

peer-discipline and self-discipline. Observation and self-observation keep the team members aware of

Page 28

what state the team is in and stimulate self-responsibility, which is necessary for resolving management

into an internal process. The project manager of Pongo is more like a peer in terms of team interactions

and all team members are encouraged to interact directly with other team members. For SysCheck project

management is something external to the developers and is primarily the responsibility of the project

manager. Although the team members have a certain degree of autonomy, it is not an inherent

characteristic of the process and depends greatly on the open-mindedness and experience of the individual

project manager. The project manager is the hub of the formal communication and collaboration of the

team, even though the team members interact with each other directly in an informal manner. Sharing

thus depends on informal relationships between team members and the communication skills of the

project manager, who is in a sense external to and separate from the project team.

Agility is, therefore, closely linked to the ability of a team to be autonomous and self-managing.

Team self-management not only needs team autonomy, but also requires team discipline, which is self-

generated and from peers, not simply imposed by managers. There is no lack of discipline in a truly agile

team, yet the team can work with ease and satisfaction, where agility is “intimately related to the relaxed,

competent atmosphere that pervaded the developer group” (Sharp and Robinson 2004, p.373). This is in

contrast to mindlessness, which Butler and Gray (2006) define as the mechanical use of cognitive and

emotionally rigid, rule-based behaviours (p. 215), whereas mindfulness involves openness to novelty,

alertness to distinction, sensitivity to different contexts, awareness of multiple perspectives, and an

orientation in the present (ibid.). Drawing on an analogy with individual and collective learning, Butler

and Gray go on to define collective mindfulness, providing examples of organizational entities such as

hospitals providing life-and-death services and aircraft carriers coordinating resources in hostile

environments. Collective mindfulness is more than the sum of individual mindfulness and “ultimately

relates as much to the distribution of decision-making rights (i.e., power) as it does to the capabilities of

any particular individual.” (p. 216). In a self-managed team, a manager’s role is more of a facilitator,

creating an environment that fosters the emergence of self-organization. In such an environment managers

need to take a subtler approach than command and control and should nudge, remind, and reinforce agile

Page 29

behaviours through communication with team members. They must work with the paradox of control -

they are simultaneously in control and not in control (Streatfield 2001).

Supportive structures for communication and collaboration

Interactions among team members, in the form of communication and collaboration, are an indispensable

component of a self-managing team. In Pongo, spontaneous interactions happen all the time in the open

work space. They are fostered by interconnected practices, such as task self-assignment facilitated by

daily steering meetings, pair programming and pair rotation, which help to create the supporting

structures that in turn create a favourable environment for interactions to happen. Learning emerges from

the interactions of the team members and no one is left to their own devices in the learning process. In

SysCheck team interactions happen mainly informally, on a one-to-one basis, and knowledge sharing

depends largely on people’s willingness to share and their personal interests. There are no evident

structures to support team interaction and the learning process. Note that these supportive structures are

different from the channelled communication which Brown and Eisenhardt (1998) take as a sign of an

overly structured bureaucratic organization. The supporting structures are not rules of how to interact,

rather they provide an enabling context to sustain team self-organized activities and facilitate sharing and

learning among team members. Multi-skilling of the developers (no separation of functional roles), as

reported in both cases, also supports interactions among team members.

Through effective communication and collaboration, a team shares not only knowledge about the

project but also their understanding of the working context. Context sharing is a precondition for a team

to provide effective feedback, interpret that feedback in a sensible way, and take appropriate action.

Further, team learning emerges as a result of close interactions among team members. Team learning is a

prerequisite for organizational evolution and coevolution (Mitleton-Kelly 2003). It is different from

individual learning, though closely related and dependent on it. Team learning is a collective result

whereby a team as a whole acquires new knowledge and competences as a result of individual learning

being shared among team members.

5.3 Synchronize exploitation and exploration

Page 30

Process adaptation and improvement

SysCheck emphasizes the importance of “common sense”, which they believe is needed in addition

to simply following a mandated method. However, Pongo goes a step further: as well as having time for

the formalised process review to let people’s common sense speak there is an opportunity for the team to

reflect on and criticise “common sense” practices that would otherwise be taken for granted.

The findings of the study suggest that a process needs continuous adjustment and adaptation in

order to avoid rigidity and deterioration. Firstly, the agile team must be able to adapt the process to the

development context taking account of factors such as the type of application and the customer. Where a

one-week iteration might work for one customer, for another customer (or for the same customer with a

different business application) a different iteration length may be appropriate. Regularly reviewing

process allows a team to take gradual steps to change and improve the process rather than leaving it to a

stage where no effective action can be taken. It is not merely a passive responding to change - it is an

active seeking of opportunities for change. Secondly, regularly reviewing process makes the practices

meaningful to developers, infused into a team’s life and internalized as a part of the mental model that

guides the behavior of team members. Zmud and Apple (1992) suggest that routinization and infusion are

important aspects of capturing and retaining innovative organizational behavior. Teams using agile

practices as a routine part of their development work may be in a good position to discover innovative

ways of using them, and thus have the potential to improve the development process.

Routinizing exploration

Development of the product through the iterative delivery of user stories should be balanced with

routinized exploration, in which team members can research new ideas and new areas. Pongo

routinizes exploration through the allocation of study time whereas in SysCheck no resources are

allocated formally for exploratory activities. In SysCheck time needs to be accounted for against

project plan activities and the project manager is constrained by the need to report full utilization of

developers. In practice, the developers are given leeway to explore areas they are interested in as and

when they can.

Page 31

The Pongo case study suggests that exploration can facilitate innovation, which the UK Department

of Trade and Industry defines simply but succinctly as the “successful exploitation of new ideas” (DTI,

2003, p.18). The “vast majority of authors” dichotomize innovations as ‘incremental/minor’ or

‘radical/major’ (Freeman, 1994, p. 474), although these classifications can also be thought as defining a

continuum of innovation types (Abernathy and Clark, 1985). Regardless, the ‘magic’ of exploration is not

guaranteed. Exploration needs to be organized and slack resource is needed to nourish the emergence of

new ideas. Organized exploration explicitly acknowledges and encourages team members’ desire to learn

but at the same time it decouples learning from development activities so that team members can focus

and separate exploitation from exploration.

5.4 Agile organizing framework

The discussion is summarized in Table 5 in which the enablers and inhibitors of agility, and the emergent

capabilities of agile teams are presented. The enablers, when deployed properly, should help teams find -

and remain in - the region of emergent complexity (“edge of chaos”). The inhibitors will make it difficult

to achieve the region of emergent complexity, whether it be through contributing to stasis (e.g., over-

communication between developers) or to chaos (e.g., over-responding to unplanned disturbances). The

agile inhibitors suggest that traditional development methods, far from having too much structure, often

lack structure in key areas, leading to the use of local organizing practices (see Table 4). While agile

teams embrace change and uncertainty by constant planning to achieve stability, traditional teams, by

contrast, are plan-driven and see unforeseen events as disturbances to be managed on an exceptional

basis. In a volatile environment it seems reasonable to conjecture that traditional projects may display

chaotic behaviour, rather than order, as they seek to cope with unexpected and unwelcomed events. But

being agile is not easy. Firstly, Pongo find the continual team and individual effort can be difficult to

maintain. As Brown and Eisenhardt (1998) point out, time-pacing is relentless and if a business is not

setting its own pace then it will be driven by the actions of its competitors resulting in greater uncertainty

and the increasing likelihood of “death-marches” to catch up (p. 188). Secondly, although effective

communication with customers and between team members is essential to being agile, over-long

Page 32

Coevolving, self-renewing
principles

Agile team capabilities Agile enablers Agile inhibitors

Driven by evolving business value:

Coevolution of IT team
and customer to create

business value

• Continuous gathering of requirements

• Frequent, iterative delivery of business value

• Close, effective customer interaction

• Management dictating and signing off requirements

• Requirements identified up-front of the project

• Weak IT/business relationship

• Over-communication between team and customer
Change is embedded in and core to development:

Principle 1: Match
coevolutionary change rate

Sustainable working
with rhythm

• Time-pacing through short, fixed-length iterations
(e.g., one week)

• Regular and frequent breaks and closure

• Planning using small units of time (e.g., 30
minutes)

• Multi-level planning and re-planning (daily,
iteration, release)

• Small granularity of requirements

• Event-pacing by planned events (e.g., end of scoping,
end of analysis) and unplanned disturbances (e.g., major
change to user requirements mid-project)

• Elaborate change control procedures peripheral to the
development process

• Unsustainable time-pacing

• Up-front planning for the whole project and following the
plan rigidly

• Large granularity of requirements, deliverables, plans
Self-management and team-discipline:

Collective
mindfulness

• Shared responsibility for project management

• Team discipline through peer and self-observation

• Centralized project management which is external to the
team members

• Project manager becomes a bottleneck

• Project manager externalized from team
Supportive structures for communication and
collaboration visible to the team:

Principle 2: Optimize self-
organizing

Sharing and team
learning

• Formed by interconnected practices (e.g.,
learning-oriented task self-assignment supported
by daily meeting, pair programming, and pair
rotation)

• Fostered by open working spaces

• Multi-skilling (e.g., no separation of functional
roles)

• Over-reliance on informal communication and
collaboration

• Tasks allocated centrally by project manager with little
consultation of team

• Isolated communication and collaboration depending on
the willingness and attitudes of individual developers

• Over-communication between team members
Reviewing and improving process regularly:

Process adaptation and
improvement

• Adapt process to development context (e.g.,
different iteration lengths for different projects)

• Remove redundant activities

• Test the process by challenging effective practices

• Development process not internalized by team members

• Process is imposed by management and perceived as
external to the team

• Over-reliance on “common sense”

Routinizing exploration:

Principle 3: Synchronize
exploitation and exploration

Product
innovation

• Formalize study as a part of the development
process

• Allocate study time for both project and non-
project investigations

• Resource not specifically allocated to exploration

• Focus on timesheets and billable project time

• Exploration is not shared by the team

Table 5: Agile organizing framework – enablers, inhibitors, and emergent capabilities

Page 33

communication and extensive discussion can lead to stasis and a consequent deterioration in the

coevolutionary process. Thirdly, the project manager has an on-going struggle to not be externalized from

the project team; the project manager needs to continue to live inside the team at the same time as

fulfilling the role as a facilitator of a self-organizing team. Consequently, the effectiveness of agile

methods use, as Maruping et al. (2009) argue, is contingent. We need to examine closely how practices

are implemented rather than relying on the simple classifications such as agile vs. non agile (traditional)

practices (Conboy 2009).

By drawing on a theoretical framework that is grounded in CAS, the agile capabilities reported in

Table 5 go beyond the advocational literature found in the agile field (Baskerville and Pries-Heje 2004)

and point to new and promising directions for future investigation. In this study, we have enriched the

three coevolving systems principles of Volberda and Lewin (2003) by explicitly establishing a link

between the three principles and emergent agile capabilities, namely: coevolution for business value,

sustainable working with rhythm, collective mindfulness, sharing of learning, process adaptation and

improvement, and product innovation. Although many of the agile enablers are known from the literature,

the research identifies a particular and under-developed theme in agile software development –

metronomic time-pacing versus emergent rhythm - that has hitherto been given little attention. Given that

the three principles identified by Volberda and Lewin are a coherent and mutually self-reinforcing set of

ideas, it seems reasonable to expect that all of the six capabilities will need to be present in some mix for

a team to be truly agile. For example, the coevolution of business value will likely require the

development team to be innovative while process adaptation and improvement will likely require

collective mindfulness. The resulting theoretical framework and its application to this empirical study on

software development processes has demonstrated a concrete and feasible way to apply CAS-grounded

theory in IS research, the importance of which has been emphasized by Anderson (1999), Jacucci et al.

(2006) and Merali and McKelvey (2006).

The detailed analysis should be useful to practitioners through the identification of development

practices and agile enablers and inhibitors. These practices should not be seen as a pick and mix menu

Page 34

from which managers can select only those they feel comfortable with; our research suggests that the

agile capabilities are interdependent and are built through interdependent practices (and the inhibitors

serve as a useful reminder of where agility might be lost). For example, the relentlessness of time-paced

iterative delivery to the customer is mitigated by developers having daily study time. Of further value to

practitioners is the identification of agile capabilities, which will help managers assess the extent to which

a team is truly agile (and is therefore in the emergent region of complexity) through a focus on project

outcomes and collaborative achievement (Maruping et al., 2009). Since agile capabilities are emergent

properties of agile teams they could be used as the basis of an agility assessment method that treats the

development team as a black box thus allowing managers to assess the agile capability of a team rather

than its adoption and use of agile methods.

The research reported here, of course, has limitations. It relies to a large extent on observation and

self-reporting of agility. Further work is therefore needed in the assessment of agility to allow informed

judgements to be made concerning the effectiveness, or otherwise, of agile practices. For the organization

as a whole to be agile, i.e., not just the software development team, then the customer must also have the

space to evolve their business practices such that the business and technology can indeed be said to

coevolve. The coevolution of business and IT suggests that our work on agile development may help us

understand the larger business/IT alignment issue (Luftman 2005). However, to study coevolution in this

way will require research designs that take greater account of the relationships between developers and

business users and other stakeholders. The framework needs to be refined and tested with further cases,

especially more work is needed to further validate the three organizing principles proposed by Volberda

and Lewin (2003). From a research methodology perspective, while case study allows the capture of

detail and the analysis of many variables, the method is criticized for difficulties of generalization and is

subject to questions of external validity because of the unique characteristics of each case (Kitchenham et

al. 2002). Although this is a valid criticism, we follow Walsham (1995), who argues that when using case

study, researchers are not necessarily looking for generalization from a sample to a population, but rather

they are looking for the plausibility and logical reasoning through developing concepts and theory,

Page 35

drawing specific implications, and contributing rich insight.

6. Summary

In this paper we have built an organizing framework for agile software development that gives a deeper

understanding of agile practices, identifies enablers and inhibitors of agility, and shows what capabilities

an agile team would be expected to possess. The framework is rooted in the empirical evidence drawn

from the two software teams, one espousing a traditional waterfall model (SysCheck) and the other an

agile method (Pongo). Volberda and Lewin’s (2003) three principles of coevolving systems – match

coevolutionary change rates, optimize self-organization, and synchronize concurrent exploration and

exploitation – are used to inform the empirical investigation in the agile domain. Agile teams can be

recognized by their ability to: work with customers to coevolve business value, work sustainably with

rhythm, be collectively mindful, create team learning, adapt and improve the development process, and to

create product innovations. A further implication of the work is that traditional projects may often lack

appropriate structures which they then compensate for through informal mechanisms. Rather than being

bastions of order in an uncertain world, traditional teams may indeed become chaotic should their plan-

driven organization be overwhelmed by events. Future work will involve conducting more case studies of

software development teams and developing methods for assessing the agility of teams based around the

agile capabilities identified in the agile organizing framework.

References

Abemathy, W. J. and Clark, K. B. 1985. Innovation: mapping the winds of creative destruction, Research

Policy, vol. 14, 3-22.

Agile Manifesto. 2001. http://www.agilemanifesto.org/. last visit May 2007.

Aldrich, H. 1999. Organizations Evolving. London, Sage.

Anderson, P. 1999. Complexity Theory and Organization Science. Organization Science 10(3) 216-232.

Ashmos, D. P., D. Duchon, R. R., Jr. McDaniel, J. W. Huonker. 2002. What a Mess! Participation as a

Simple Managerial Rule to ‘Complexify’ Organizations. Journal of Management Studies 39(2)

189-196.

Augustine, S., B. Payne, F. Sencindiver, S. Woodcock. 2005. Agile Project Management: Steering from

the Edges. Communications of the ACM 48(12) 85-89.

Page 36

Baskerville, R. and J. Pries-Heje. 2004. Short cycle time systems development. Information Systems

Journal, 14(3): 237-264.

Baskerville, R. L. 2006. Artful Planning. European Journal Of Information Systems 15(2) 113-115.

Baskerville, R., J. Levine, J. Pries-Heje, B. Ramesh, S. Slaughter. 2001. How Internet Software

Companies Negotiate Quality. IEEE Computer 34(5) 51-57.

Beck, K., C. Andres. 2004. Extreme Programming Explained: Embrace Change. 2nd Edition, Addison

Wesley, Boston.

Bedoll, R. 2003. A tail of two projects: How 'agile' methods succeeded after 'traditional' methods had

failed in a critical system-development project. Extreme Programming and Agile Methods -

XP/Agile Universe 2003. Springer-Verlag, Berlin. LNCS 2753: 25-34.

Boehm, B. 2002. Get Ready For Agile Methods, With Care. IEEE Computer 35(1) 64-69.

Brown, S., K. Eisenhardt. 1998. Competing on the Edge: Strategy as Structured Chaos. Harvard Business

School Press, Boston.

Butler, B. S. and Gray, P. H. 2006. Reliability, Mindfulness, and Information Systems. MIS Quarterly,

30(2): 211-224.

Choi, T. Y., K. J. Dooley, M. Rungtusanatham. 2001. Supply Networks and Complex Adaptive Systems:

Control Versus Emergence. Journal of Operations Management 19(3) 351-366.

Coffin, R. 2006. A Tale of Two Projects. Agile 2006, Proceedings. IEEE, New York: 155-161.

Conboy, K., B. Fitzgerald. 2004. Toward a Conceptual Framework of Agile Methods. Proc. Extreme

Programming And Agile Methods - XP/ Agile Universe 2004, Calgary, Canada, August 15-18 2004.

Conboy, K. 2009. Agility From First Principles: Reconstructing the Concept of Agility in Information

Systems Development. Information Systems Research (forthcoming) 2009.

Dani, M., Gualfetti, A., Mengoni, L. and F. Cirilo (2003). “How We Became the Pongo Team”, XP2003

Conference, Genova, Italy, May 2003.

Dawande, M., M. Johar, S. Kumar, V. S. Mookerjee. 2008. A Comparison of Pair Versus Solo

Programming Under Different Objectives: An Analytical Approach. Information Systems Research

19(1): 71–92

DTI. (2003). Innovation Report - Competing in the Global Economy: the Innovation Challenge.

Department for Trade and Industry, London.

Eisenhardt, K. and D. Galunic 2000. Coevolving:at last, a way to make synergies work. Harvard Business

Review 78(1): 91-101.

Fitzgerald, B., G. Hartnett and K. Conboy (2006). Customising Agile Methods to Software Practices at

Intel Shannon. European Journal of Information Systems, 15(2): 200-213.

Freeman, C. 1994. Critical survey: the economics of technical change. Cambridge Journal of Economics,

Page 37

18, 463-514.

Fruhling, A. and G. J. De Vreede (2006). Field Experiences with Extreme Programming: Developing an

Emergency Response System. Journal of Management Information Systems, 22(4): 39-68.

Gersick, C. 1994. Pacing Strategic Change: The Case of a New Venture. The Academy of Management

Journal 37(1) 9-45.

Haeckel, S. 1999. Adaptive Enterprise: Creating and Leading Sense-and-respond Organizations. Harvard

Business School Press, Boston.

Highsmith, J. 2000. Adaptive Software Development: A Collaborative Approach to Managing Complex

Systems. Dorset House Publishing, New York.

Highsmith, J. 2002. Agile Software Development Ecosystems. Addison-Wesley, Boston.

Highsmith, J., A. Cockburn. 2001. Agile Software Development: the Business of Innovation. Computer

34(9) 120-122.

Iivari, J., Hirschheim, R., and Klein, H.K. “A Paradigmatic Analysis Contrasting Information Systems

Development Approaches and Methodologies,” Information Systems Research (9:2), June 1998, pp.

164-193.

Jackson, A., S. L. Tsang, A. Gray, C. Driver and S. Clarke (2004). Behind the Rules: XP Experiences.

Proceedings of the Agile Development Conference. IEEE Computer Soc, Los Alamitos: 87-94.

Jacucci, E., O. Hanseth and K. Lyytinen (2006). Introduction: Taking Complexity Seriously in IS

Research. Information Technology & People, 19(1): 5-11.

Janzen, D., (1980). When is it Coevolution? Evolution, 34(3): 611-612.

Kauffman, S. 1993. The Origins of Order: Self-Organization and Selection in Evolution. Oxford

University Press, New York.

Kitchenham, B., S. L. Pfleeger, L. Pickard, P. Jones, D. C. Hoaglin, K. E. Emam, J. Rosenberg. 2002.

Preliminary Guidelines for Empirical Research in Software Engineering. IEEE Trans. Software

Eng. 28(8) 721-734

Levinthal, D. A., J. G. March. 1993. The Myopia of Learning. Strategic Management Journal 14 95-112.

Luftman, J. 2005. Key Issues for IT Executives 2004, MIS Quarterly Executive 4(2) 269-285.

March, J. G. 1991. Exploration and Exploitation in Organizational Learning. Organization Science 2(1)

71-87.

Maruping, L. M., V. Venkatesh and R. Agarwal. 2009. A Control Theory Perspective on Agile

Methodology Use and Changing User Requirements. Information Systems Research (forthcoming)

2009.

McKelvey, B. 2003. Micro Strategy and Macro Leadership: New Science Meets Distributed Intelligence.

Page 38

In A. Y. Lewin and H. W. Volberda (Eds.) The Coevolution Advantage: Mobilizing the Self-

Renewing Organization. M.E. Sharpe, Armonk, NY.

McMillan, E. 2004. Complexity, Organizations and Change. Routledge, Taylor & Francis Group,

London.

Melao, N., M. Pidd. 2000. A Conceptual Framework for Understanding Business Processes and Business

Process Modeling. Information Systems Journal 10(2) 105-129.

Merali, Y. and W. McKelvey. 2006. Using Complexity Science to Effect a Paradigm Shift in Information

Systems for the 21st Century. Journal of Information Technology Special Issue on Complexity and

Information Systems, 21(4): 211-215

Meso, P., R. Jain. 2006. Agile Software Development: Adaptive Systems Principles and Best Practices.

Information Systems Management 23(3) 19-30.

Miles, M. B., A. M. Huberman. 1994. Qualitative Data Analysis: an Expanded Sourcebook. Thousand

Oaks, Calif.; London, Sage.

Mitleton-kelly, E. 1997. Organisations as Co-evolving Complex Adaptive Systems. British Academy of

Management Conference, BPRC (Business Processes Resource Center) Paper Series, No 5.

Mitleton-kelly, E. 2003. Ten Principles of Complexity & Enabling Infrastructures. Chapter in Complex

Systems & Evolutionary Perspectives of Organisations: The Application of Complexity Theory to

Organisations, Elsevier, Pergamon.

Nonaka, I. 1988. Creating Organizational Order out of Chaos: Self-Renewal in Japanese Firms.

California Management Review 30(3) 57-73.

Poole, C. and J. Huisman. 2001. Using Extreme Programming in a Maintenance Environment. IEEE

Software, 18(6): 42-50.

Pressman, R. S. 1997. Software Engineering: A Practitioner's Approach. McGraw-Hill.

Prigogine, I., I. Stengers. 1984. Order out of Chaos: Man’s New Dialog with Nature. Flamingo, London.

Rakitin, S. 2001. Manifesto Elicits Cynicism. IEEE Computer 34(12) 4.

Rakitin, S. 2005. Agile Methods - Beyond the Hype. Food for Thought newsletter from Software Quality

Consulting 2(7) http://www.swqual.com/newsletter/vol2/no7/vol2no7.html, last visited 04/05/2007.

Rasmusson, J. 2003. Introducing XP into Greenfield Projects: Lessons Learned. IEEE Software, 20(3):

21-28.

Schach, S. R. 1998. Software Engineering with JAVA. McGraw-Hill.

Schatz, B. and I. Abdelshafi. 2005. Primavera Gets Agile: a Successful Transition to Agile Development.

IEEE Software, 22(3): 36-41.

Schwaber, K, A. Beedle. 2002. Agile Software Development with SCRUM. Prentice-Hall, Upper Saddle

River, NJ.

Page 39

Schwaber, K. 1996. Controlled Chaos: Living on the Edge. American Programmer 9(5) 10-16.

Sfetsos, P., L. Angelis and I. Stamelos. 2006. Investigating the Extreme Programming System - an

Empirical Study. Empirical Software Engineering, 11(2): 269-301.

Sharp, H., H. Robinson. 2004. An Ethnographic Study of XP Practice. Empirical Software Engineering

9(4) 353-375.

Stacey, R. D. 2003. Strategic Management and Organisational Dynamics: The Challenge of Complexity.

4th Edition. Financial Times Prentice Hall.

Stephens, M., D. Rosenberg. 2003. Extreme Programming Refactored: The Case Against XP. Apress,

New York.

Streatfield, P. 2001. The Paradox of Control in Organizations. Routledge, London.

Turk, D., R. France, R. Bernhard. 2002. Limitations of Agile Software Processes. Proc. 3rd International

Conference on eXtreme Programming and Agile Processes in Software Engineering. Alghero,

Sardinia, Italy, 2002.

Vidgen, R. and X.Wang. 2006. Organizing for Agility: a Complex Adaptive Systems perspective on

Agile Software Development Process. Proc. of the 14th European Conference on Information

Systems, Goteborg, Sweden, 12-14 June 2006.

Volberda, H. W., A. Y. Lewin. 2003. Guest Editors’ Introduction Co-evolutionary Dynamics Within and

Between Firms: From Evolution to Co-evolution. Journal of Management Studies 40(8) 2111-2136.

Walsham, G. 1995. Interpretive Case Studies in IS Research: Nature and Method. European Journal of

Information Systems 4(2) 74-81.

Wang, X. and R. Vidgen. 2007. Chaos and Order in Agile Software Development: a Comparison of Two

Software Development Teams in a Major IT Company. Proc. of the 15th European Conference on

Information Systems, St. Gallen, Switzerland, 7-9 June, 2007.

Wilkinson, I., L. Young. 2003. A View from the Edge. Marketing Theory 3(1) 179-181.

Yin, R. K. 2003. Case Study Research: Design and Methods. Thousand Oaks, California, Sage.

Zmud, R. W., and L. E. Apple 1992. Measuring Technology Incorporation/Infusion. Journal of Product

Innovation Management, 9(2): 148-155.

