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Abstract 

Despite the popularity of agile methods in software development and increasing adoption by 

organizations there is debate about what agility is and how it is achieved. The debate suffers from a lack 

of understanding of agile concepts and how agile software development is practised. This paper develops 

a framework for the organization of agile software development that identifies enablers and inhibitors of 

agility and the emergent capabilities of agile teams. The work is grounded in complex adaptive systems 

(CAS) and draws on three principles of coevolving systems: match coevolutionary change rate, maximise 

self-organizing, and synchronize exploitation and exploration. These principles are used to study the 

processes of two software development teams, one a team using eXtreme Programming (XP) and the 

other a team using a more traditional, waterfall-based development cycle. From the cases a framework for 

the organisation of agile software development is developed. Time pacing, self-management with 

discipline and routinisation of exploration are among the agile enablers found in the cases studies while 

event pacing, centralised management and lack of resources allocated to exploration are found to be 

inhibitors to agility. Emergent capabilities of agile teams that are identified from the research include 

coevolution of business value, sustainable working with rhythm, sharing and team learning, and collective 

mindfulness. 
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1. Introduction 

Modern software development projects are enacted in increasingly turbulent business environments 

typified by unpredictable markets, changing customer requirements, pressures of ever shorter time-to-

deliver, and rapidly advancing information technologies (Baskerville et al. 2001). The values that were 

held dear in conventional development methods, such as detailed upfront plans, precise prediction and 

rigid control strategies, are being called into question by more subtle ways “to bound, direct, nudge, or 

confine, but not to control” (Highsmith 2000, p.40). Communities have formed around new “agile” 

development methods, such as Scrum (Schwaber and Beedle 2002) and eXtreme Programming (XP) 

(Beck and Andres 2004). These methods are promoted through the “Manifesto for Agile Software 

Development” (Agile Manifesto 2001), which specifies a set of agile values and principles. Agility itself 

is defined by Highsmith and Cockburn (2001) as the “the ability to create and respond to change” (p. 

120). Anecdotal evidence in the forms of lessons learnt and experience reports (Poole and Huisman 2001, 

Bedoll 2003, Rasmusson 2003, Jackson et al. 2004, Schatz and Abdelshafi 2005, Coffin 2006), as well as 

several scientific studies (Fitzgerald et al. 2006, Fruhling and De Vreede 2006, Sfetsos et al. 2006, 

Dawande et al. 2008), have argued for the appropriateness and effectiveness of various agile methods and 

practices. For example, in a theoretical analysis of pair programming (a common agile practice), 

Dawande et al. (2008) found that pair programming will likely out-perform solo working when 

knowledge sharing between developers is efficient or when a scarce expert resource can be shared 

through pairing. 

The application of agile methods in software development, however, has not been without 

scepticism and criticism. Rakitin (2001, 2005) argues that processes, documentation, user contracts, and 

plans are essential in software development, whereas agile values, such as interactions between people 

and responding to change, reflect a hacker culture that allows people to throw together code with little or 

no respect for engineering discipline. Rakitin’s “hacker interpretations” of the Agile Manifesto puts agile 

methods at the opposite pole of planning and discipline and regards agile values as chaos generators. In 

the same vein, Stephens and Rosenberg (2003) cast doubt on both the XP practices and the philosophy 
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behind XP and try to restore the values of documentation and upfront planning and design in software 

development. Some agile advocates also consider agile and plan-driven software development methods to 

be polar opposites (Boehm 2002). In attempting to clarify what agile means, “authorities seeking to 

describe agile software development methods often cast about for its opposite” (Baskerville 2006, p. 113) 

and in doing so place ‘agile’ and ‘plan-driven’ methods as polar extremes. 

The ongoing debate on agile vs. plan-driven methods reflects a lack of understanding of agile 

concepts and how agile software development is conducted in practice, which can be attributed in part to 

the weak theoretical grounding of agile methods (Turk et al. 2002, Conboy and Fitzgerald 2004) and 

further conceptual problems such as lack of clarity and lack of “theoretical glue” (Conboy 2009). These 

issues raise the concern that agile methods may be “reduced to a series of steps executed by rote” 

(Highsmith 2000, p.14). One theory that holds promise for deepening our understanding of agile software 

development is complex adaptive systems (CAS) theory. Indeed, agile advocates claim that CAS is an 

appropriate theory for software development (Schwaber 1996, Highsmith 2000) and “the only way to 

make sense of the world” (Highsmith 2002, p. 48). These claims, however, are a post-rationalization to 

justify what is already done in practice and are not based on scientific and systematic studies. Augustine 

et al. (2005) argue that software projects are complex adaptive systems and build a CAS-based agile 

project management framework tailored for XP, but their work is mainly based on their experience of 

rescuing a mission-critical product-development project. In contrast, Meso and Jain (2006) start by 

identifying seven CAS principles and then map them to agile practices (such as frequent releases, minimal 

planning and continuous learning) suggested by various agile methods. Although Meso and Jain’s work 

shows that applying CAS in the study of agile software development could yield fruitful insights of agile 

organizations and practices, their work remains conceptual and empirical evidence has yet to be collected 

to validate the links they draw between CAS and agile practices.  

The aim of the current study is to develop an empirically based framework grounded in CAS theory 

that can be used to guide the organization of agile software development. To achieve this end we analyze 

the practices used in software development processes and identify enablers and inhibitors of agility and 



 

 

Page 4 

the emergent capabilities that a team needs to possess to be considered agile. In doing this we adopt a 

broad view of a software development process, which is not only a framework for the tasks and series of 

steps that are required to build the software (Pressman 1997) but also incorporates the tools used and the 

people building the software (Schach 1998). In contrast to a development method, which Iivari et al. 

(1998) define as consisting of “a well-defined sequence of elementary operations which permits the 

achievement of certain outcomes if executed correctly” (p. 165), in the current study a software 

development process is viewed as the actual way a software product is developed in a real-world context. 

Such a process may or may not apply a development method and may or may not follow a method 

faithfully. In the next section the theoretical basis of the study is constructed, and then applied in the 

following sections to guide the empirical investigation. The study uses an interpretive case study 

approach to investigate and contrast the processes of two software development teams, one espousing 

agile methods, the other a more traditional waterfall approach. 

2. Theoretical development 

A complex adaptive system is composed of loosely interconnected autonomous parts, or agents. 

Agents have the ability to intervene meaningfully in the course of events (Choi et al. 2001) because they 

have their own local rules (schemata) which are the changeable cognitive structures used to make sense of 

the environment and determine what action to take. The behaviors of a complex adaptive system resulting 

from its loosely coupled agents following their local (and sometimes rather simple) rules can be strikingly 

complex. The concepts, insights and analytical tools of Complex Adaptive Systems (CAS) theory have 

been applied in management and organizational studies (Mitleton-kelly 1997, Brown and Eisenhardt 

1998, Anderson 1999, Haeckel 1999, Stacey 2003). Although Anderson (1999) suggests that CAS should 

no longer be considered a new theory in organizational studies, the use of CAS theory in the Information 

Systems (IS) domain has been more recent and represented by several special issues, e.g., 

Communications of the ACM (vol. 48 no. 5, 2005), IT & People (vol. 19 no. 1, 2006), and Journal of 

Information Technology (vol. 21 no. 4, 2007). Little of the work on CAS in the IS domain has been 

empirical, reflecting perhaps the difficulty of making the rather abstract ideas of CAS theory sufficiently 
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concrete to support case study research. 

There is no definitive account of CAS theory but Volberda and Lewin (2003) summarize and distil 

the academic and practitioner writing on complexity studies to propose three principles of coevolving, 

self-renewing organizations: match coevolutionary change rate, optimise self-organization, and 

synchronize exploitation and exploration. These principles provide the theoretical structure for the 

selection and encapsulation of key CAS concepts, including coevolution, the edge of chaos, 

interconnected autonomous agents, self-organization and the edge of time (Brown and Eisenhardt 1998, 

Anderson 1999, Stacy 2003). Volberda and Lewin (2003) say these principles are “higher-order principles 

that must underline any theory of self-renewal and its associated enabling managerial routines and 

capabilities involving strategy, structures, processes and leadership” (ibid., p. 2126). We consider that 

these three principles constitute an appropriate theoretical basis for a CAS-grounded study of agile 

software development and now review the underlying CAS concepts of each principle in turn. 

Principle 1: match coevolutionary change rate. A complex adaptive system tends to alter its structures 

or behaviors in response to interactions with other complex adaptive systems. These different systems 

coexist and coevolve in an ecosystem in which adaptation by one system affects the fitness of the other 

systems in the ecosystem, thus leading to further adaptations and reciprocal change (Kauffman 1993). 

Mitleton-kelly (2003) argues co-evolution is not the same as proactive or re-active response. It asks for an 

awareness of both changes in the environment and the possible consequences of actions, which 

reverberate around the ecosystem playing themselves out in unpredictable and unexpected ways. Principle 

1 states that organizations need to match or exceed the coevolutionary rate of the system in which they are 

embedded (McKelvey 2003). Mittleton-Kelly (2003) also notes the importance of coevolutionary rate in 

the context of the firm, which, for example, might be to match or exceed the rate of change of new 

product improvements made by competitors. 

Adaptive organizations must “develop routines, capabilities and measures which monitor and 

track rates of change in all aspects of their environment” (Volberda and Lewin 2003, p. 2126). The 

combination of structures, strategies and processes adopted by organizations governs the pace of 
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coevolution through regulating each organization’s internal rate of change. The rate of change should be 

sufficient to enable organizations to evolve to the edge of chaos (Anderson 1999, McKelvey 2003), which 

is a region characterized by bounded instability, i.e., one that is paradoxically stable and unstable at the 

same time (Stacey 2003). At the edge of chaos “organizations never quite settle into a stable equilibrium 

but never quite fall apart, either” (Brown and Eisenhardt 1998, p. 12). The edge of chaos provides 

organizations “with sufficient stimulation and freedom to experiment and adapt but also with sufficient 

frameworks and structure to ensure they avoid complete disorderly disintegration” (McMillan 2004, p. 

22), and “gives them a selective advantage: systems that are driven to (but not past) the edge of chaos out-

compete systems that do not” (Anderson 1999, p. 223). The achievement of the edge of chaos is also “a 

requirement for the emergence of novelty” (Stacey 2003, p. 262). Brown and Eisenhardt (1998) site the 

edge of chaos between structure, which they define as bureaucratic organizations attempting to run using 

command and control mechanisms, and chaos. They contend that, to compete at the edge, organizations 

must understand what to structure and what not to structure, to foster communication and to capture 

cross-business synergies. McKelvey (2003) suggests that, in the context of organizations, it is better to 

think of a “region of emergent complexity” rather than an “edge of chaos”. This region lies between stasis 

and chaos and is defined by two critical values. If an organization falls below the first critical value 

because it exhibits minimal response to addressing the adaptive tensions it faces then order will prevail. If 

the organization over-responds to its adaptive tensions, for example, by initiating too many change 

programmes too quickly, then it may exceed the second critical value and chaos will ensue.  

In the context of software development, user requirements embody the most significant sources of 

change that a team will encounter and have to continue to respond to. Principle 1 directs our attention to 

the mechanisms of monitoring and tracking changes to user requirements and the practices that enable the 

development team to match and exceed those rates of change. 

Principle 2: optimise self-organization. Self-organization is the ability of interconnected autonomous 

agents of a complex adaptive system to evolve into an organized form without external force. Agents are 

autonomous since they have the ability to intervene meaningfully and to determine what action to take 
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given their perceptions of their environment. Agents are interconnected in such a way that they are 

responsive to the change around them but not overwhelmed by the information flowing to them through 

that connectivity (Mitleton-Kelly 2003). In an organizational context, self-organization is the spontaneous 

coming together of a group to perform a task (or for some other purpose): the group decides what to do, 

how and when to do it, and no one outside the group directs those activities explicitly (Mitleton-Kelly 

2003). Drawing on Nonaka (1988) and Anderson (1999), Volberda and Lewin (2003) argue that self-

organization requires a fundamental departure from the command and control philosophy of traditional 

hierarchical bureaucratic organizations. It is consistent with the often espoused idea of delegating decision 

making to the lowest possible level and it implies maximizing capabilities of scope at every level of 

organization. The roles played by individuals in an organization are therefore reshaped in the light of self-

organization with emphasis placed on increased autonomy, more interactions with other individuals and 

environment, and greater participation, especially in the decision making process (Ashmos et al., 2002). 

The meaning of leadership shifts from leading and controlling to participating and mediating (Wilkinson 

and Young 2003). Self-organization, however, does not mean that individuals or units can “pull in all 

directions at will or break all rules” (Volberda and Lewin, 2003, p. 2126). Individuals and teams must still 

define and follow local rules (and allow these rules to evolve over time) in the course of self-organization. 

It is worth noting the difference between self-organization and a much advocated management practice, 

self-management. Self-management is premeditated or deliberately implemented by management, while 

self-organization is truly emergent. Self-organization may be achieved through implementing self-

management, but as Stacey (2003) emphasizes: 

“It is the very essence of self-organization that none of the agents, as individuals, nor any small 

group of them on their own, can directly design, or even directly shape, the evolution of the 

system as a whole. The impact of any agent, no matter how powerful, on the systems is 

indirectly through their local interaction only … No agent is setting the simple rules for others 

to follow and then ‘allowing’ them to self-organize. If they were, the system could no longer be 

described as a self-organizing one.” (p. 267) 

This principle has two implications to the current study. On the one hand, it focuses attention on how 

control and decision-making are distributed in a team in order to promote self-organization. On the other 
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hand, the emphasis on local autonomy poses a challenge to the ability and attitude of the developers in a 

project team, requiring that individuals use their autonomy to maximize their capabilities. One crucial 

aspect not covered by Volberda and Lewin’s (2003) formulation of this principle is that self-organization 

needs energy to flow into and within it constantly in order to move to and maintain the new form 

(Prigogine and Stengers 1984). This energy can be in the form of information, knowledge or other 

resources needed to sustain self-organized activities and therefore how a team communicates and 

collaborates to keep informational resources flowing within it also needs to be investigated. 

Principle 3: synchronize exploitation and exploration. This principle is concerned with balancing 

concurrent innovation and knowledge creation (exploration) with improvements in productivity, 

improvements in processes, and product extensions and enhancements (exploitation). Brown and 

Eisenhardt (1998) conceptualize the balance of exploration and exploitation as the edge of time, that is, 

“rooted in the present, yet aware of the past and future” (p. 12). Drawing on March (1991) and Levinthal 

and March (1993), Volberda and Lewin (2003) claim that “the long-term survival of an organization 

depends on its ability to engage in enough exploitation to ensure the organization’s current viability and 

engage in enough exploration to ensure its future viability” (p. 2127). Both attributes need to be present 

and operate simultaneously. Organizations must avoid being mired in the past but not so over-enamoured 

with the future that they waste time and effort over-planning it. Organizations that focus on the past and 

exploitation become trapped but those that forget the past are always starting from new and repeating 

mistakes. 

Since our focus is on the software development process, this principle guides our study to discover 

how a team continually leverages its current resources and capabilities (exploitation) while exploring new 

opportunities, learning about new technologies and ways of developing software, and being open to 

innovation in their development process. 

In summary, the theoretical basis presented above provides the structure for the empirical 

investigation of how agile software development is practised. 
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3. Research Approach 

3.1 Research method 

This study adopts an interpretive research approach. It emphasizes software development processes 

as made and enacted by people with different values, expectations and strategies, as a result of different 

frames of interpretation. These frames act as filters enabling people to perceive some things but ignore 

others (Melao and Pidd 2000). Case study is considered an appropriate empirical research method to 

investigate real-life contexts, such as software development processes, where control over the context is 

not required or possible (Yin 2003). A multiple-case design is employed to reassure that “the events and 

processes in one well-described setting are not wholly idiosyncratic” (Miles and Huberman 1994, p. 172). 

Thus the multiple case design allows us to apply literal and theoretical replication logics (Yin 2003) 

through the comparison and contrast of two cases that are analyzed using the same theoretical lens. 

The two cases reported here represent two software development teams, Pongo and SysCheck. 

Pongo has adopted XP, one of the most popular agile methods. SysCheck uses a variation of the 

traditional waterfall-style method. Pongo acts as an exemplar case of agile software development, while 

SysCheck provides a contrasting case to Pongo. Both cases are used to study the factors that enable and 

inhibit agility and agile team capabilities rather than being viewed as opposing cases (e.g., agile and non-

agile). The core case study questions (see Table 1) are derived from the theoretical framework introduced 

in Section 2 and are consequently organized by the three principles. Other relevant questions include 

those about organizational context, team and interviewee background, and several questions to probe 

interviewees’ understanding of agility and agile software development.  

Organizing principles Core case study questions 

Principle 1: Match 
coevolutionary change rate 

1-1 How are user requirement changes monitored and tracked? 

1-2 How is the user requirements change rate matched or exceeded? 

Principle 2: Optimize self-
organizing 

 

2-1 How is management distributed? 

2-2 How are the capabilities of individuals maximized? 

2-3 How are communication and collaboration facilitated? 

Principle 3: Synchronize 
exploitation and exploration 

3 How are exploitation and exploration in software development 
synchronized? 

Table 1: Core case study questions 
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The main data collection method used is semi-structured interviews with open-ended questions. 

Interviews were conducted in English and lasted between half an hour and two hours and were recorded 

and transcribed. Interview quotes are reproduced verbatim. Most subjects have been interviewed twice 

within a six-month timeframe (as shown in Table 2). Documentation review and field notes were 

complementary data collection methods. Sources include software development documents, project 

management documents and corporate websites and brochures. 

Within-case analysis and cross-case comparison are two major steps of the data analysis. The level 

of analysis is at the team level. The specific data analysis techniques for within-case analysis are coding 

using the NVivo software package and a descriptive write-up for each case. In the cross-case comparison, 

the software development processes of Pongo and SysCheck are contrasted and compared and then agile 

enablers, inhibitors and agile team capabilities are identified accordingly. 

Case Interviewees 1st visit 2nd visit Total interviews 

Pongo 4 1 group interview 
4 individual interviews 

2 group interviews 
3 individual interviews 

10 

SysCheck 3 1 individual interview 3 individual interviews 4 

Table 2: Interviews conducted 

3.2 Case sites 

Pongo is a software development team in an Italian software house specializing in network security and 

management systems. Pongo, ‘play-doh’ in English, symbolizes malleability - a quality the team feels is 

most necessary to support change. After failing to deliver its last project the team embarked on a 

collaborative effort with an XP training laboratory and underwent intensive XP training for six months. 

Following training the Pongo team successfully completed several projects using XP and believe that they 

reached their goals of developing software “good, fast and cheap” and “working in an enjoyable way” 

(Dani et al. 2003). Therefore, Pongo is considered here to be an exemplar case of agile software 

development. 

SysCheck (a pseudonym for the purpose of anonymity) is a software development team from a 

major multi-national IT company. The company is considered to be a hierarchical and bureaucratic 
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organization by the interviewees. SysCheck is required to use the waterfall model. SysCheck is aware of 

agile methods and has also adopted some agile-like practices to circumvent the restrictions of the 

waterfall processes imposed by the company. The profiles of the two case teams are summarized in Table 

3. 

 Pongo SysCheck 

Team composition 3 developers (1 assumes the role of XP 
coach), 1 project manager 

4 developers, 1 project manager 

Location Collocated in an open office space Collocated in a semi-open office space 

Development method XP Waterfall 

Years of use of the method More than 5 More than 5 

Type of software developed Applications for external customers Applications for internal use 

Company background Small software house, specializing in 
network security and management 
systems 

A major IT company providing both IT 
products and services 

Table 3: Profiles of the two cases 

4. Case analysis 

4.1 Pongo 

1-1: How are user requirement changes monitored and tracked? The life cycle for Pongo consists of 

project configuration, initial requirements capture, and then a number of development iterations (Figure 

1.A). User requirements are gathered throughout the whole project life span with user requirement 

changes captured constantly in the planning game that initiates each iteration (Figure 1.B). User 

requirements are structured as user stories, which are estimatable and testable statements of requirements 

together with acceptance tests to specify what constitutes a complete and acceptable piece of software for 

each user story. 

The team delivers working software in an incremental way each week for acceptance test (Figure 1.B), as 

one developer comments: 

“Every week we have a delivery. It's better to discover that you have not understood some user 

requirements after a week than after one month.” (Developer A/Pongo) 

The rapid turnaround of user stories gives customers quick feedback on the requirements they have 
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requested, allows them to monitor the progress of the developers, and gives them the opportunity to learn 

to use the software through the execution of acceptance tests. 

The team realizes the importance of separating business complexity from technical complexity, and 

guides customers to write user stories and acceptance tests in such a way that they identify precise 

business scenarios from a business perspective. User stories and acceptance tests are seen as the interface 

between the customers and the team; the customers address business complexity while technical 

complexity is internal to the team and not intermingled with user stories and acceptance tests.  

 

Figure 1: The development life cycle of the Pongo team (adapted from Vidgen and Wang 2006) 

1-2: How is the user requirements change rate matched or exceeded? Pongo uses one-week iterations. No 

change should be introduced into the user stories under development during an iteration. The customers 

can check the progress of the development anytime they want, or clarify the understanding of the user 

stories, but can only change the stories when an iteration is completed. Although preferring one-week 

iterations the team does change iteration length to account for different projects, different stages of a 
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project, different frequency with which they communicate with customers, and different sets of user 

stories being implemented: 

“Every time we have to ask ourselves, what is the best [iteration length] for this particular set of stories, 

every time, because the risk is that if you don't recognize that specific set of user stories is suitable for a 

period of time… we prefer [to fix iterations] but it’s not always suitable, not always.” (Coach/Pongo) 

Similar to the one-week iteration that paces the project, a working day is paced according to 

pomodoro time (Figure 1.C). Pomodoro, “tomato” in Italian, comes from a tomato-shaped kitchen timer 

the team used when they were trained at the XP training laboratory. The timer is set for 25 minutes of 

work followed by a five-minute break when the team members can check emails, take coffee or have a 

chat. The team also report that it is not easy to maintain the pace set by iterations and pomodori. Holding 

the pace and keeping focus requires continual effort from the team members. 

The pomodoro is the basic unit of planning. All the team members participate with the customers in 

the weekly planning game in which the developers estimate the effort needed to implement the user 

stories selected by the customers. Although a close interaction with customers helps when capturing user 

stories the team finds that sometimes they become trapped into long discussions with customers during 

the planning game with the result that no user stories are generated by the end of the game: 

“For example, if we have a very long planning game, if it's difficult to communicate with customer, we are 

of course not agile at this moment.” (Developer A/Pongo) 

The team recognizes that when this kind of ineffective discussion happens they need the courage to stop 

interaction with customers. 

Estimates of user stories are expressed in the unit of the pomodoro and the team keeps the average 

estimate of a user story to around 25 to 30 pomodori, which is considered an appropriate size: 

““Typically when you have user stories big, it's not easy to have feedback from your activity… it's also very 

hard to imagine if your estimate is realistic or not.” (Coach/Pongo) 

The principle of writing user stories is “as small as possible”. A written user story should fit to a quarter 

A4-sized story card. If a story card cannot contain a user story, it is a sign that the story is too big and 
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needs to be broken into smaller ones. The capacity of the team to implement user stories in an iteration is 

called “la cassetta dei pomodori” (the basket of tomatoes). In the planning game, this capacity is 

compared with the sum of the estimates of user stories. This gives the customer and the team an idea of 

which and how many user stories can be implemented in that iteration. If all the stories cannot be 

implemented in the iteration then the customer prioritises the stories and chooses the ones that are to be 

delivered at the end of the iteration using the rule “greatest value to the customers first”. The “basket of 

tomatoes” should always match the estimates of the user stories chosen for that iteration so that the team 

can work at a comfortable pace. Since the team plans for one week only and user stories are generally 

small in size, the team tends to get accurate estimates for user stories. Constant prioritisation of tasks 

helps them make a quick decision on what to drop as and when circumstances change and to adjust plans 

accordingly. This typically takes place in the daily steering sessions (Figure 1.C). In the daily steering 

session the team quickly plans what to do that day by picking up tasks from the storyboard. They also 

raise issues such as technical obstacles and ask others for help. 

The team considers planning a natural step following frequent external and internal feedbacks: 

“Always plan, this is the core.” (Project Manager/Pongo) 

The team also realizes that planning is a learnt ability which is improved and refined through the 

development process with the ability of a team to understand systems, situations, and problems.  

By planning in such a way and pacing development with iterations and pomodori, Pongo has 

discovered rhythm, an emergent state of working, a state difficult to reach but easy to lose: 

“It's a special condition, it's a magic condition, like in a sports team. There could be some moment, some 

situation in which every component lives in another layer, all the things are much easier.” (Project 

Manager/Pongo) 

The Pongo coach describes a similar experience of rhythm: 

“When you can maintain a rhythm you have no anxiety. You have no worry about something particularly, 

so you are not stressed. And playing an instrument is the same. I play the guitar so I know what I am 

talking about. When you reach the right rhythm, you can feel it. It is a special condition where work is 

ideal, but it is a special condition you cannot reach every day… Rhythm is something that is very close to 
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life. You are working without any anxiety, something that life does.” (Coach/Pongo) 

2-1: How is management distributed? For Pongo, management is ultimately an internal process of the 

team. Every team member is involved in management and assumes responsibilities to make decisions 

for the team, even though roles like project manager and XP coach exist in the team: 

“Project manager is kind of activity that is absorbed by all eventually, all the team has to participate in 

managing the project in all the aspects of the project.” (Coach/Pongo) 

However, when facilitating team self-management it is possible that the project manager becomes 

externalized from the team: 

“I don't live inside [the team] now. I can give them my feedback, but it isn't the same feedback… The risk 

is it becomes idiosyncratic.” (Project manager/Pongo) 

One important mechanism the team uses to implement self-management is constant observation, to be 

attentive of what happens to other team members and in the environment. To effectively observe others, 

one needs to be able to self-observe, as one developer comments: 

“Feedback comes from continuous watching the activities of the project…Before observing others, you 

must be able to observe yourself … but not in the sense of control, you have to look around, and watch 

what the others are doing, if they are focusing on the things they are doing… It's good that every team 

member can do if something goes wrong. A team is like a person, every part, member of the team must 

check if the other part works good, like the body, if one part doesn't work, the other has to help.” 

(Developer B/Pongo) 

2-2: How are the capabilities of individuals maximized? Pongo team members are involved in all 

development activities of a project, and all have to deal with customers, analyse user requirements, and 

write code. There are no dedicated traditional roles, such as system analyst, designer, programmer or 

tester, in the Pongo team. Each team member is able to assume all the roles, since comprehensive 

competences are required to work with user stories, which are self-contained and encapsulate different 

development activities including analysis, design, and coding. 

Task self-assignment is an effective way to improve the competences of each team member. During 

the steering session, the team members sign up and take ownership of tasks they would like to implement 
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in that day. Neither the project manager nor the coach assigns tasks. Generally, the developers choose 

tasks they feel confident in completing, but they also pick up tasks that they are not so good at, and then 

pair up with a more experienced member in order to acquire new skills. Through pair programming, 

learning happens naturally and in a mutual way. That is also the reason why the team always ensures that 

team members work in pairs after a spike task (a task to explore an unknown technical issue) or a study 

session (Figure 1.C) - what is learnt by a single developer can then be shared by working with another 

developer as a pair. 

2-3: How are communication and collaboration facilitated? The team works in an open working space, 

which facilitates everyone’s involvement in communication. Regular weekly and daily meetings 

(planning game, steering and feedback sessions) also facilitate and structure team communication. 

Pair programming is the main collaboration mechanism in Pongo. During development time, the 

developers always work in pairs on tasks. They physically sit together and share one desktop, one using 

the keyboard, as “driver”, the other using the mouse, as “navigator”. Generally team members are self-

pairing. Pair rotation happens frequently, sometimes to the extent of per pomodoro. Between the two 

paired developers, the owner of the task generally stays, and the other goes to pair with a different 

developer. When working in pairs, however, it is not always easy for the pair to recognize when to 

stop talking and start writing code: 

“When the pair starts long discussion, you don't communicate really… When you start this type of 

discussion which is negative, you could spend 20 minutes on discussion without writing anything.” 

(Coach/Pongo) 

Effective communication and collaboration lead to constant sharing and team learning. Pongo considers 

sharing an important aspect of team working. What is shared among the team members is not only the 

technical knowledge related to different areas of a project (which helps to distribute competences among 

the team) but it is also the knowledge about who knows what, which helps the team members self-

organize to implement tasks and facilitate learning: 

“As a team, you have to face every moment, in any case, without barriers.” (Developer B/Pongo)  
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For Pongo, learning means doing things differently, as the project manager explains: 

“What is the effect of learning? That you change something… If I learn, I don't do the same thing in the 

same mode. If I learn something, I modify, I change my behaviour. If I see that the behaviour is the same, 

I think there is no more learning there in that cycle.” (Project Manager/Pongo) 

3: How are exploitation and exploration in software development synchronized? A working day for 

Pongo starts with a feedback session in which the team reflects on the previous day. The feedback is 

focused on the development process, not technical issues. The team members also talk about the feelings 

they had, anxieties felt, what the team achieved or whether something went wrong during the previous 

day. One thing the team realizes is the importance of feedback on the positive aspects of the previous day, 

which can provide them with satisfaction and help keep them motivated. Sometimes the team also 

challenges the practices that work well, as the coach explains: 

“It's important to perturb the system from time to time to see if it can survive.” (Coach/Pongo) 

The regular use and review of the practices leads to the internalization of the process in the team’s 

day to day life, becoming a part of the mental model of the team: 

 “We practice [XP] everyday, and we have to deal with these practices all the time… It's what we do 

everyday, it's real, it's something concrete.” (Developer B/Pongo) 

While the daily feedback session helps the team exploit and retain what the team is doing well, 

studying new things helps them understand what they might possibly do. Four pomodori (two hours) are 

reserved for studying everyday, generally two before lunch and two afterwards. The team members can 

freely choose the content they would like to explore in the daily study time out of their personal interests. 

New ideas that emerge from study can then be tried out in the time allocated for development. Of the two 

hours, one is dedicated to exploring issues not directly relevant to the current project, which can 

particularly benefit the team with regard to creativity: 

“We tried to experience different ways to approach the study, and we found that to split study time 

considering one part dedicated to project related issues, and the other dedicated to issues one wanted to 

explore for some reason, was better than always study the project related issues, because you could find 
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some results that seem not useful in the future for the project, but sometimes, magically, it works, that 

happens.” (Coach/Pongo) 

Allocated study time allows the team members to learn new things within working hours and helps 

to keep them motivated. Pongo believe that the productivity of the team will drop if there is no time for 

personal interests to be pursued. Further, the presence of study time in daily work serves as a break from 

intensive development activities and thus helps the team to work at a sustainable pace: 

“When sometimes we skip study time, we have to develop all the time so we have to do the same activity 

along the day, our efficiency is lower. It's very important to switch between activities of different kind … 

When we study, and to pay attention to other issues, when we begin, when we start again the 

development, we can start with more sources, more imagination.” (Coach/Pongo) 

4.2 SysCheck 

1-1: How are user requirement changes monitored and tracked? SysCheck follows a waterfall style 

lifecycle that is roughly divided into sequential stages including requirements gathering, system analysis, 

design, construction and testing (Figure 2). The business requirements are generally dictated by the 

business units of the company, who decide which projects to initiate. The business requirements are then 

broken down into product requirements and elaborated with technical details by the project manager with 

the involvement of the team members. The product requirements must be signed off by senior 

management before the work schedules can be made. 

Since the system the team develops is a command-line package with a limited user interface, the 

team does not believe there is a necessity for close interaction with customers and consequently 

customers are only involved in the early scoping phase (Figure 2) and in the testing phase toward the end 

of a project. 

1-2: How is the user requirements change rate matched or exceeded? Generally the team delivers a new 

major version of the product at the end of a 9 to 12 month period. Though the system the team is working 

on has been around for so long that the requirements are considered stable and well-defined, there are 

often changes coming from the business that impact on the project, such as organizational changes, 
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project cut or scope changes, which may require the team to deliver something quickly and bring the 

project to a close. As a response to this uncertainty, rather than have one big construction (coding) phase, 

the team breaks the development work into multiple phases of 4 to 6 weeks each. In each phase, a mini-

waterfall cycle is followed, including analysis, design, coding and unit testing (Figure 2). The most 

crucial blocks of work are put in early phases and packaged in a self-contained way such that, though the 

team does not actually deliver anything to the customer at the end of a phase, they could if they have to, 

as one developer describes: 

“Each phase will basically stand by itself, and in our case we know that we have time to finish it and we 

can finish it, so if we start a phase we will finish it… we always finish a phase.” (Developer A/SysCheck) 

 

Figure 2: The development life cycle of the SysCheck team (adapted from Wang and Vidgen 2007) 

This phased approach is seen as a way to protect the team from unexpected change: 

“It's kind of like defensive planning, we plan in such a way that if we have to go out of the door we could 

go out of the door.” (Project Manager/SysCheck) 

If any significant change needs to be made to the signed-up requirements then a change request 

must be completed and signed off and a change control mechanism is triggered. Once the request is 
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authorized the team can implement the change. 

The team has no shared routines at the daily level: 

“[Do you have any daily routine to organize your work?] No, not really, just work, work, eat, work again, 

and that's it.” (Developer A/SysCheck) 

Project planning is an important activity at the start of a project and is time consuming. The plan 

covers the entire lifespan of the project. The project manager breaks down the product requirements into 

development tasks, consults the team members for task assignment, and works out a work schedule for 

the whole project. The work schedule as a result is considered the most important document by the project 

manager and it is meant to be followed: 

“It [the work schedule] is done up in front, we’re trying to get schedule as accurate as possible to start... I 

would be very aware in my head of the schedule and what’s going to come up next week and what we 

should finish and what we should start, that kind of thing… The schedule is kind of like, if we were driving, 

for me to be the map, and if we start to go out of the map, we have to figure out how to get back on to the 

map… the schedule would be what I view as a kind of directive, so where we are going.” (Project 

Manager/SysCheck) 

The project manager tries to make the work schedule as accurate as possible. He manages to control the 

size of a task with a sub-task generally taking several days while a predictable piece of work may have an 

estimate of up to three weeks. 

2-1: How is management distributed? Project management is seen mainly as the responsibility of the 

project manager, as this developer comments: 

“The project manager sets targets, deadlines… I suppose the project manager would adjust the task 

states if something comes up or if the priority of the tasks changes, then he can have a meeting with us 

and tell us about the changes.” (Developer B/SysCheck) 

The project manager, who is also the technical lead and involved in the development tasks as the 

other developers, nevertheless tries not to micro-manage the project. He is seen as open-minded and 

giving the developers a certain amount of autonomy. 

2-2: How are the capabilities of individuals maximized? There are no specific functional roles in the 
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team. The developers are not specialized on specific tasks and everybody has the opportunity to do 

different things, as the project manager claims: 

“We don't kind of say ok you do this you do that, everybody kind of chips in.” (Project Manager/SysCheck) 

The project manager assigns tasks to the team members in such a way that everyone can get what 

they are interested in doing rather than what they are good at. The team has an open discussion on what 

work they are really interested in doing, then the project manager arranges the task assignment based on 

the collected opinions. The team members help each other in task implementation, which is self-arranged 

through informal communication. If someone runs into difficulties they ask for help from the other 

developers directly. SysCheck emphasizes the importance of people in software development, regardless 

of what software development processes they use: 

“You need to respect the fact of human being, and you need to listen to that, if you want good 

communication [and] people working together well… You need people to feel confident and comfortable 

with each other… If people are unhappy, the project falls apart.” (Developer A/SysCheck) 

2-3: How are communication and collaboration facilitated? The team relies heavily on informal, person-

to-person communication. Depending on where a project is, the team does have some formal meetings at 

different frequencies. For instance, they meet formally once every two or three weeks in the middle of a 

design phase. During an intensive testing phase, they meet formally every few days. However, the team 

members do not have positive opinions on formal team meetings: 

“The meeting is here to help people to communicate on the project, but you don't have to be at the table to 

speak about your project, you can go from your desk and go to another person… I find it’s pretty 

depressing to be at the table.” (Developer A/SysCheck) 

Though the team does not use pair programming in development, they use the idea of pairing when 

checking code in and out of the code base. Two team members work as a pair in this case to look over 

each other’s shoulders. 

3: How are exploitation and exploration in software development synchronized? There is no built-in 

practice targeting the improvement of the process during development to exploit what the team has 
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already done well or to weed out what does not work well. The team holds a formal project ‘postpartum’ 

meeting at the end of a project, at which the issues regarding the development process are discussed. But 

it is not seen as meaningful by the team members. Indeed, the team has no clear awareness of the 

development method they are using and neither do they care about it. It is seen as imposed by the 

management: 

“The project life cycle is not decided by us. There is somebody from upstairs that says ‘listen, this is the 

project life cycle that we use as a company, so you have to use it’… We don’t concern as much the 

process, maybe the project manager, I should say he knows more about the approach, me personally I 

just yeah I have a task, I implement it, that’s it.” (Developer B/SysCheck) 

Driven by a common-sense view, the team borrows and blends some agile concepts into the 

process. They believe it makes them work more efficiently, as the project manager comments: 

“I think agile is great, and I like the whole idea the way it works and the concepts and all that. But like I 

said, to me they are kind of common sense concepts. If we can use them, we should use them.” (Project 

Manager/SysCheck) 

The team does not have a built-in practice to support exploration. The team members may explore 

new ideas ad hoc, but it mainly relies on the maturity level and willingness of each individual. 

4.3 Summary of findings 

The findings from the cases are summarized in Table 4, reflecting how software development is 

enacted and organized in Pongo and in SysCheck. Although they broadly follow a waterfall lifecycle, 

SysCheck have a number of practices that would contribute to agility: project manager consults team 

members about their task preferences; project manager takes account of personal development needs 

when allocating work; functional roles are not separated; project is broken down into mini-phases to cope 

with unexpected schedule changes; and pairing to check code in and out. These practices that may 

contribute to greater agility are flagged with a “+” in Table 4. Pongo, on the other hand, faces a set of 

issues that may put the team at the risk of losing agility: striving to maintain the pace set up by 



 

 

Page 23 

 Pongo findings SysCheck findings 

1-1: How are user 
requirement changes 
monitored and 
tracked? 

- Ongoing requirements gathering throughout 
project 

- Incremental delivery at the end of each 
iteration; customer learning how to use software 
through iterative acceptance tests 

- Separating business complexity from technical 
complexity 

- Over-communication between developers and 
users to detriment of user story generation (-) 

- Upfront user requirement specification 
(dictated by the business unit); official 
sign-off by senior management 

- Formal customer involvement limited to 
early scoping and final test phases 

1-2: How is the user 
requirements change 
rate matched or 
exceeded? 

- One-week iterations, frozen user requirements 
within an iteration, but varying iteration length 
according to the project context 

- Pacing a working day by 25 minute “pomodori” 
with 5 minute break per pomodoro 

- Pace set by iterations and pomodori can be 
difficult to maintain (-) 

- Planning at iteration and daily levels 

- Managing granularity of story size (should fit to 
a quarter A4 sheet) 

- Matching estimates with the velocity (la 
“cassetta dei pomodori”) of the team 

- Task prioritization and re-prioritization 

- Following waterfall stages (e.g., 
scoping, analysis, construction), but 
using self-contained internal phases, 
each 4 to 6 weeks duration, to help 
protect the team from unplanned 
change (+) 

- Change control procedure for 
substantial changes to requirements 

- Up-front planning of the whole project 

- Endeavouring to follow the entire work 
schedule faithfully 

- Large size of task (several days up to 
several weeks) 

2-1: How is 
management 
distributed? 

- All team members involved in project 
management and assume responsibility for 
making decisions 

- Team members observe each other and self-
observe 

- Project manager may become externalized to 
team (-) 

- Management centralized through the 
project manager 

- Project manager consults developers 
about their preferred tasks (+) 

2-2: How are the 
capabilities of 
individuals 
maximized? 

- All team members are involved in all aspects of 
development activity 

- Task self-assignment based on the interests of 
developers and supported by daily steering 
session and pair programming 

- Pair programming after spike or study session 
to share learning 

- Team members freely involved in all 
activities - no separation of functional 
roles (+) 

- Tasks are assigned by the project 
manager based on the interests and 
developmental needs of the team 
members (+) 

2-3: How are 
communication and 
collaboration 
facilitated? 

- Open working space 

- Regular weekly and daily meetings 

- Pair programming and pair rotation 

- Over-communication between developers to 
detriment of code production (-) 

- Relying on informal communication 
between team members  

- Pairing to check code in and out of the 
code base (+) 

3: How are 
exploitation and 
exploration in 
software 
development 
synchronized? 

- Daily feedback session on the progress of the 
previous day, focusing on positive aspects as 
well as issues arising 

- Willingness to perturb the process to test its 
robustness and to experiment 

- Reserving four pomodori (two hours) for study 
per day: one hour for project-related study and 
one for non project-related 

- Postpartum (at end of project) 

- Use of “common sense” when following 
the development process 

- Ad hoc and informal exploration 

Table 4: Summary of findings from the Pongo and SysCheck cases (“-” = potential sources of loss 

of agility for Pongo, “+” = potential sources of agility for SysCheck) 
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fixed-length iterations and pomodori in turbulent environments; over-communication between the team 

and customers; over-communication between team members; and the project manager becoming 

externalized from the team. These potential sources of loss of agility are flagged with a “-” in Table 4. 

5. Discussion: agile organizing framework 

In this section the case study findings are discussed and key themes identified, leading to the production 

of an agile organizing framework that identifies enablers and inhibitors of agility and the emergent 

capabilities of an agile team. 

5.1 Match coevolutionary change rate 

Evolving business value 

Agility in software development is not only responding to change, or even proactively creating change, it 

is the coevolutionary capability of a team and their customer. This coevolutionary capability is expressed 

through the medium of user requirements, which evolve through the evolutionary process (Aldrich, 1999) 

of variation (generating new requirements), selection (establishing the relative priority of requirements) 

and retention (implementing the chosen requirements). Janzen (1980) says coevolution is more than 

“interaction” or “mutualism” – each population must make evolutionary changes in response to a 

selection pressure from an associated species. Thus, although development is driven by business value it 

is not led blindly; the development team needs to challenge and be pro-active in its communication with 

customers, as in the Pongo case. The user requirements reflect both developer and customer 

understanding of the business domain and what constitutes a potential solution. A close relationship 

between a team and their customers is needed such that developers understand the (changing) business 

environment and customers understand the (changing) capability of technology such that each can apply 

an informed selection pressure on the other. This suggests that the up-front specification of requirements, 

as in the SysCheck case will inhibit coevolutionary potential. 

Coping with change 

For Pongo change is inevitable, routine, and expected but work is stable and fixed over short cycles. Time 

pacing is a fundamental building block for Pongo to cope with change and drive the engine of team and 
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customer coevolution. Time pacing with one-week iterations that are self-contained and ring-fenced gives 

Pongo a steady pace, a clear focus and freedom from distractions. Viewed as a contract between the team 

and the customer, short fixed-length iterations in which user stories do not change offer the team short-

term certainty to focus on work and to work without anxiety. Since iterations are short, user requirements 

are only frozen for a short while and new changes can be accommodated quickly. They deliver software 

at the end of each iteration and draw frequent satisfaction from this closure. Similarly, the daily routine 

for Pongo, time paced by pomodori, includes short and guaranteed breaks to give respite from intensive 

working. The SysCheck development process is driven by events, such as the end of scoping, the end of 

analysis, etc., and the officially signed-off documents act as tokens for the transition from one stage to the 

next. Work is fixed over long cycles but subject to unpredictable and exceptional changes requested by 

senior management at short notice, often leading to instability. The phased approach SysCheck uses can 

be seen as time-pacing of a kind but the phases are much longer than the iterations of Pongo and lack 

immediacy and responsiveness. For SysCheck, phases are seen more as a way to protect the team from 

change rather than an active desire to embrace change. 

The findings of the study show that time pacing, or temporal pacing, is a way of combining 

flexibility and control in turbulent environments. Gersick (1994) suggests that temporal pacing is a 

prominent mechanism for keeping organizations adaptive in the face of uncertainty. Brown and 

Eisenhardt (1998) define time pacing as an internal metronome that drives organizations according to the 

calendar, e.g., “creating a new product every nine months, generating 20% of annual sales from new 

services” (p. 167). This is opposed to event pacing, in which change happens as a response to events in 

the environment such as competitor moves or the discovery of a new technology. Time pacing in software 

development means that the development cycles are triggered by the elapse of time allowing a team to 

change frequently but stopping them from changing too often or too quickly, thereby providing stability 

for development activities. Time pacing based on short timeframes, therefore, reduces the risk and cost of 

responding to change and keeps a team focused on work. The findings of this study suggest that several 

aspects need to be considered when setting the pace. First of all, the team should consider the coevolution 
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rate with customers, which will vary from team to team and project to project. Each team needs to find its 

own pace in each specific context. Secondly, a team needs to understand what pace can be sustained over 

time. A suitable pace strikes a balance such that the iteration cycle is long enough to get some meaningful 

work done but short enough not to lose momentum and responsiveness to change. Once a pace is set it is 

important to stick to it as regular pacing brings stability to a team and small, frequent closures at the end 

of each boxed time period help keep team members satisfied and motivated. 

Time pacing provides a basis for accurate planning. Pongo plans in detail for the short term through 

weekly iterations and re-plans as needed at the start of each day. Although the team recognizes that 

planning is an uncertain process, frequent planning for short time periods in fine-grain detail helps them 

improve their planning capability leading to accurate estimates of what can be delivered in an iteration. 

Planning in SysCheck is done at the beginning of a project and covers the whole lifespan of the project. 

The project manager develops the work schedules that the developers are to follow and for SysCheck “the 

plan is the plan” - it should be followed faithfully with change being dealt with on an exception basis. The 

change control mechanism that SysCheck is mandated to use is peripheral to its development process 

rather than a core component. 

The Pongo case suggests that planning is of central and fundamental importance in an agile process, 

but takes a different form than in traditional plan-driven approaches. An agile process is not plan-driven, 

but planning-driven. Frequent planning is a natural consequence of frequent feedback loops in an agile 

process due to close relationships between a team and their customers as well as among team members. 

Both high-level, sketchy, long-term plans and detailed, accurate, short-term plans are necessary in an 

agile process. Time pacing provides a team with a given amount of certainty which makes frequent and 

accurate short-term planning possible and meaningful. To achieve accurate estimates in planning, a team 

should be able to break down their work at a fine granularity level, which enables a bottom-up planning 

process that leads to reliable plans for the short term. This is in contrast to the traditional top-down 

planning at the project level, which generally results in coarse-grained tasks even for the short term. 

Regardless, a team needs constantly to adjust the plans according to what happens in its environment. 
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Baskerville (2006) uses the term “artful planning”: planning for creativity and innovation, planning for 

serendipity, and planning not-to-plan. Artful planning is a “paradox of planning and not planning that 

unfolds as a practice required by settings in which large degrees of uncertainty and ambiguity are 

inevitable” (ibid., p. 115). Agile planning can provide software development teams with an ability to 

work with stability whilst embracing uncertainty, providing developers with a sense of security and 

control over their work. However, uncertainty is inevitable and is also a source of novelty in an agile 

process where ongoing change arises from close relationships with customers and evolving user 

requirements. A truly agile process is a delicate balance of stability and uncertainty which enables a 

software development team to work adaptively at a fast yet sustainable pace. 

Working with a sustainable pace and leveraging both stability and uncertainty, a working rhythm 

can emerge. This is a special condition where work is ideal, the team is not anxious or stressed about the 

work, and there is a synergy of the team that brings the team members to a level transcending the 

individual. It provides a relief against anxiety and a guard against over-working. Rhythm is different from 

the mechanical metronome or heartbeat metaphor by which organizations synchronize their clock with the 

marketplace and their environment. Instead, rhythm is a subtler state related to the flow and feel of work 

that can emerge from a time-paced agile process. It is difficult for a team to reach such a state but easy to 

lose it. 

5.2 Optimize self-organizing 

Self-management and team-discipline 

The developers of Pongo have a large degree of autonomy and carry out their activities in a self-managed 

manner. Total team involvement in all development activities with no separation of functional roles gives 

everyone a chance to develop different competences and for these competences to be distributed among 

the developers, leading to an autonomous team that can work on any aspect of the development. Pongo 

endorses self-management but this does not mean that there are no rules or that the rules can be broken; 

team members are autonomous but disciplined, which is achieved through the simultaneous presence of 

peer-discipline and self-discipline. Observation and self-observation keep the team members aware of 
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what state the team is in and stimulate self-responsibility, which is necessary for resolving management 

into an internal process. The project manager of Pongo is more like a peer in terms of team interactions 

and all team members are encouraged to interact directly with other team members. For SysCheck project 

management is something external to the developers and is primarily the responsibility of the project 

manager. Although the team members have a certain degree of autonomy, it is not an inherent 

characteristic of the process and depends greatly on the open-mindedness and experience of the individual 

project manager. The project manager is the hub of the formal communication and collaboration of the 

team, even though the team members interact with each other directly in an informal manner. Sharing 

thus depends on informal relationships between team members and the communication skills of the 

project manager, who is in a sense external to and separate from the project team. 

Agility is, therefore, closely linked to the ability of a team to be autonomous and self-managing. 

Team self-management not only needs team autonomy, but also requires team discipline, which is self-

generated and from peers, not simply imposed by managers. There is no lack of discipline in a truly agile 

team, yet the team can work with ease and satisfaction, where agility is “intimately related to the relaxed, 

competent atmosphere that pervaded the developer group” (Sharp and Robinson 2004, p.373). This is in 

contrast to mindlessness, which Butler and Gray (2006) define as the mechanical use of cognitive and 

emotionally rigid, rule-based behaviours (p. 215), whereas mindfulness involves openness to novelty, 

alertness to distinction, sensitivity to different contexts, awareness of multiple perspectives, and an 

orientation in the present (ibid.). Drawing on an analogy with individual and collective learning, Butler 

and Gray go on to define collective mindfulness, providing examples of organizational entities such as 

hospitals providing life-and-death services and aircraft carriers coordinating resources in hostile 

environments. Collective mindfulness is more than the sum of individual mindfulness and “ultimately 

relates as much to the distribution of decision-making rights (i.e., power) as it does to the capabilities of 

any particular individual.” (p. 216). In a self-managed team, a manager’s role is more of a facilitator, 

creating an environment that fosters the emergence of self-organization. In such an environment managers 

need to take a subtler approach than command and control and should nudge, remind, and reinforce agile 
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behaviours through communication with team members. They must work with the paradox of control - 

they are simultaneously in control and not in control (Streatfield 2001). 

Supportive structures for communication and collaboration 

Interactions among team members, in the form of communication and collaboration, are an indispensable 

component of a self-managing team. In Pongo, spontaneous interactions happen all the time in the open 

work space. They are fostered by interconnected practices, such as task self-assignment facilitated by 

daily steering meetings, pair programming and pair rotation, which help to create the supporting 

structures that in turn create a favourable environment for interactions to happen. Learning emerges from 

the interactions of the team members and no one is left to their own devices in the learning process. In 

SysCheck team interactions happen mainly informally, on a one-to-one basis, and knowledge sharing 

depends largely on people’s willingness to share and their personal interests. There are no evident 

structures to support team interaction and the learning process. Note that these supportive structures are 

different from the channelled communication which Brown and Eisenhardt (1998) take as a sign of an 

overly structured bureaucratic organization. The supporting structures are not rules of how to interact, 

rather they provide an enabling context to sustain team self-organized activities and facilitate sharing and 

learning among team members. Multi-skilling of the developers (no separation of functional roles), as 

reported in both cases, also supports interactions among team members. 

Through effective communication and collaboration, a team shares not only knowledge about the 

project but also their understanding of the working context. Context sharing is a precondition for a team 

to provide effective feedback, interpret that feedback in a sensible way, and take appropriate action. 

Further, team learning emerges as a result of close interactions among team members. Team learning is a 

prerequisite for organizational evolution and coevolution (Mitleton-Kelly 2003). It is different from 

individual learning, though closely related and dependent on it. Team learning is a collective result 

whereby a team as a whole acquires new knowledge and competences as a result of individual learning 

being shared among team members. 

5.3 Synchronize exploitation and exploration 
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Process adaptation and improvement 

SysCheck emphasizes the importance of “common sense”, which they believe is needed in addition 

to simply following a mandated method. However, Pongo goes a step further: as well as having time for 

the formalised process review to let people’s common sense speak there is an opportunity for the team to 

reflect on and criticise “common sense” practices that would otherwise be taken for granted. 

The findings of the study suggest that a process needs continuous adjustment and adaptation in 

order to avoid rigidity and deterioration. Firstly, the agile team must be able to adapt the process to the 

development context taking account of factors such as the type of application and the customer. Where a 

one-week iteration might work for one customer, for another customer (or for the same customer with a 

different business application) a different iteration length may be appropriate. Regularly reviewing 

process allows a team to take gradual steps to change and improve the process rather than leaving it to a 

stage where no effective action can be taken. It is not merely a passive responding to change - it is an 

active seeking of opportunities for change. Secondly, regularly reviewing process makes the practices 

meaningful to developers, infused into a team’s life and internalized as a part of the mental model that 

guides the behavior of team members. Zmud and Apple (1992) suggest that routinization and infusion are 

important aspects of capturing and retaining innovative organizational behavior. Teams using agile 

practices as a routine part of their development work may be in a good position to discover innovative 

ways of using them, and thus have the potential to improve the development process. 

Routinizing exploration 

Development of the product through the iterative delivery of user stories should be balanced with 

routinized exploration, in which team members can research new ideas and new areas. Pongo 

routinizes exploration through the allocation of study time whereas in SysCheck no resources are 

allocated formally for exploratory activities. In SysCheck time needs to be accounted for against 

project plan activities and the project manager is constrained by the need to report full utilization of 

developers. In practice, the developers are given leeway to explore areas they are interested in as and 

when they can. 
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The Pongo case study suggests that exploration can facilitate innovation, which the UK Department 

of Trade and Industry defines simply but succinctly as the “successful exploitation of new ideas” (DTI, 

2003, p.18). The “vast majority of authors” dichotomize innovations as ‘incremental/minor’ or 

‘radical/major’ (Freeman, 1994, p. 474), although these classifications can also be thought as defining a 

continuum of innovation types (Abernathy and Clark, 1985). Regardless, the ‘magic’ of exploration is not 

guaranteed. Exploration needs to be organized and slack resource is needed to nourish the emergence of 

new ideas. Organized exploration explicitly acknowledges and encourages team members’ desire to learn 

but at the same time it decouples learning from development activities so that team members can focus 

and separate exploitation from exploration. 

5.4 Agile organizing framework 

The discussion is summarized in Table 5 in which the enablers and inhibitors of agility, and the emergent 

capabilities of agile teams are presented. The enablers, when deployed properly, should help teams find  -  

and remain in - the region of emergent complexity (“edge of chaos”). The inhibitors will make it difficult 

to achieve the region of emergent complexity, whether it be through contributing to stasis (e.g., over-

communication between developers) or to chaos (e.g., over-responding to unplanned disturbances). The 

agile inhibitors suggest that traditional development methods, far from having too much structure, often 

lack structure in key areas, leading to the use of local organizing practices (see Table 4). While agile 

teams embrace change and uncertainty by constant planning to achieve stability, traditional teams, by 

contrast, are plan-driven and see unforeseen events as disturbances to be managed on an exceptional 

basis. In a volatile environment it seems reasonable to conjecture that traditional projects may display 

chaotic behaviour, rather than order, as they seek to cope with unexpected and unwelcomed events. But 

being agile is not easy. Firstly, Pongo find the continual team and individual effort can be difficult to 

maintain. As Brown and Eisenhardt (1998) point out, time-pacing is relentless and if a business is not 

setting its own pace then it will be driven by the actions of its competitors resulting in greater uncertainty 

and the increasing likelihood of “death-marches” to catch up (p. 188). Secondly, although effective 

communication with customers and between team members is essential to being agile, over-long 
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Coevolving, self-renewing 
principles 

Agile team capabilities Agile enablers Agile inhibitors 

Driven by evolving business value:  

Coevolution of IT team 
and customer to create 

business value 

• Continuous gathering of requirements 

• Frequent, iterative delivery of business value 

• Close, effective customer interaction 

• Management dictating and signing off requirements 

• Requirements identified up-front of the project 

• Weak IT/business relationship 

• Over-communication between team and customer 
Change is embedded in and core to development:  

Principle 1: Match 
coevolutionary change rate 

Sustainable working 
with rhythm 

• Time-pacing through short, fixed-length iterations 
(e.g., one week) 

• Regular and frequent breaks and closure 

• Planning using small units of time (e.g., 30 
minutes) 

• Multi-level planning and re-planning (daily, 
iteration, release) 

• Small granularity of requirements 

• Event-pacing by planned events (e.g., end of scoping, 
end of analysis) and unplanned disturbances (e.g., major 
change to user requirements mid-project) 

• Elaborate change control procedures peripheral to the 
development process 

• Unsustainable time-pacing 

• Up-front planning for the whole project and following the 
plan rigidly 

• Large granularity of requirements, deliverables, plans 
Self-management and team-discipline:  

Collective 
mindfulness 

• Shared responsibility for project management 

• Team discipline through peer and self-observation 

• Centralized project management which is external to the 
team members 

• Project manager becomes a bottleneck 

• Project manager externalized from team 
Supportive structures for communication and 
collaboration visible to the team: 

 
Principle 2: Optimize self-
organizing 

Sharing and team 
learning 

• Formed by interconnected practices (e.g., 
learning-oriented task self-assignment supported 
by daily meeting, pair programming, and pair 
rotation) 

• Fostered by open working spaces 

• Multi-skilling (e.g., no separation of functional 
roles) 

• Over-reliance on informal communication and 
collaboration 

• Tasks allocated centrally by project manager with little 
consultation of team 

• Isolated communication and collaboration depending on 
the willingness and attitudes of individual developers 

• Over-communication between team members 
Reviewing and improving process regularly:  

Process adaptation and 
improvement 

• Adapt process to development context (e.g., 
different iteration lengths for different projects) 

• Remove redundant activities 

• Test the process by challenging effective practices 

• Development process not internalized by team members 

• Process is imposed by management and perceived as 
external to the team 

• Over-reliance on “common sense” 

Routinizing exploration:  

Principle 3: Synchronize 
exploitation and exploration 

Product 
innovation 

• Formalize study as a part of the development 
process 

• Allocate study time for both project and non-
project investigations 

• Resource not specifically allocated to exploration 

• Focus on timesheets and billable project time 

• Exploration is not shared by the team 

Table 5: Agile organizing framework – enablers, inhibitors, and emergent capabilities 
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communication and extensive discussion can lead to stasis and a consequent deterioration in the 

coevolutionary process. Thirdly, the project manager has an on-going struggle to not be externalized from 

the project team; the project manager needs to continue to live inside the team at the same time as 

fulfilling the role as a facilitator of a self-organizing team. Consequently, the effectiveness of agile 

methods use, as Maruping et al. (2009) argue, is contingent. We need to examine closely how practices 

are implemented rather than relying on the simple classifications such as agile vs. non agile (traditional) 

practices (Conboy 2009). 

By drawing on a theoretical framework that is grounded in CAS, the agile capabilities reported in 

Table 5 go beyond the advocational literature found in the agile field (Baskerville and Pries-Heje 2004) 

and point to new and promising directions for future investigation. In this study, we have enriched the 

three coevolving systems principles of Volberda and Lewin (2003) by explicitly establishing a link 

between the three principles and emergent agile capabilities, namely: coevolution for business value, 

sustainable working with rhythm, collective mindfulness, sharing of learning, process adaptation and 

improvement, and product innovation. Although many of the agile enablers are known from the literature, 

the research identifies a particular and under-developed theme in agile software development – 

metronomic time-pacing versus emergent rhythm - that has hitherto been given little attention. Given that 

the three principles identified by Volberda and Lewin are a coherent and mutually self-reinforcing set of 

ideas, it seems reasonable to expect that all of the six capabilities will need to be present in some mix for 

a team to be truly agile. For example, the coevolution of business value will likely require the 

development team to be innovative while process adaptation and improvement will likely require 

collective mindfulness. The resulting theoretical framework and its application to this empirical study on 

software development processes has demonstrated a concrete and feasible way to apply CAS-grounded 

theory in IS research, the importance of which has been emphasized by Anderson (1999), Jacucci et al. 

(2006) and Merali and McKelvey (2006). 

The detailed analysis should be useful to practitioners through the identification of development 

practices and agile enablers and inhibitors. These practices should not be seen as a pick and mix menu 
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from which managers can select only those they feel comfortable with; our research suggests that the 

agile capabilities are interdependent and are built through interdependent practices (and the inhibitors 

serve as a useful reminder of where agility might be lost). For example, the relentlessness of time-paced 

iterative delivery to the customer is mitigated by developers having daily study time. Of further value to 

practitioners is the identification of agile capabilities, which will help managers assess the extent to which 

a team is truly agile (and is therefore in the emergent region of complexity) through a focus on project 

outcomes and collaborative achievement (Maruping et al., 2009). Since agile capabilities are emergent 

properties of agile teams they could be used as the basis of an agility assessment method that treats the 

development team as a black box thus allowing managers to assess the agile capability of a team rather 

than its adoption and use of agile methods. 

The research reported here, of course, has limitations. It relies to a large extent on observation and 

self-reporting of agility. Further work is therefore needed in the assessment of agility to allow informed 

judgements to be made concerning the effectiveness, or otherwise, of agile practices. For the organization 

as a whole to be agile, i.e., not just the software development team, then the customer must also have the 

space to evolve their business practices such that the business and technology can indeed be said to 

coevolve. The coevolution of business and IT suggests that our work on agile development may help us 

understand the larger business/IT alignment issue (Luftman 2005). However, to study coevolution in this 

way will require research designs that take greater account of the relationships between developers and 

business users and other stakeholders. The framework needs to be refined and tested with further cases, 

especially more work is needed to further validate the three organizing principles proposed by Volberda 

and Lewin (2003). From a research methodology perspective, while case study allows the capture of 

detail and the analysis of many variables, the method is criticized for difficulties of generalization and is 

subject to questions of external validity because of the unique characteristics of each case (Kitchenham et 

al. 2002). Although this is a valid criticism, we follow Walsham (1995), who argues that when using case 

study, researchers are not necessarily looking for generalization from a sample to a population, but rather 

they are looking for the plausibility and logical reasoning through developing concepts and theory, 
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drawing specific implications, and contributing rich insight. 

6. Summary 

In this paper we have built an organizing framework for agile software development that gives a deeper 

understanding of agile practices, identifies enablers and inhibitors of agility, and shows what capabilities 

an agile team would be expected to possess. The framework is rooted in the empirical evidence drawn 

from the two software teams, one espousing a traditional waterfall model (SysCheck) and the other an 

agile method (Pongo). Volberda and Lewin’s (2003) three principles of coevolving systems – match 

coevolutionary change rates, optimize self-organization, and synchronize concurrent exploration and 

exploitation – are used to inform the empirical investigation in the agile domain. Agile teams can be 

recognized by their ability to: work with customers to coevolve business value, work sustainably with 

rhythm, be collectively mindful, create team learning, adapt and improve the development process, and to 

create product innovations. A further implication of the work is that traditional projects may often lack 

appropriate structures which they then compensate for through informal mechanisms. Rather than being 

bastions of order in an uncertain world, traditional teams may indeed become chaotic should their plan-

driven organization be overwhelmed by events. Future work will involve conducting more case studies of 

software development teams and developing methods for assessing the agility of teams based around the 

agile capabilities identified in the agile organizing framework. 
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