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Abstract

Brain disorders are collections of debilitating phenotypes that can affect cognition and general life
quality via a myriad of symptoms, including mood swings, memory loss, altered thought processes, and
psychosis. Despite their common area of action in the brain, few biomarkers have been characterised.
Further, the causal relationship between neuroimaging measures and brain disorders remains largely un-
explored. Understanding the biological manifestations of these conditions could help to inform improved
diagnostic, prognostic, and treatment systems. To this end, we identified neuroimaging biomarkers of
Alzheimer’s disease using a convolutional neural network, and found 7 genome-wide significant loci asso-
ciated with the resultant quantity. These findings were consistent with previously observed genetic results
of Alzheimer’s disease and further implicated impaired cellular homeostasis as a molecular association of
Alzheimer’s disease-related neuroanatomical variation. We also trained an autoencoder on participant
tabular neuroimaging data from the same dataset and highlighted a latent space node significantly asso-
ciated with Alzheimer’s participants, finding three genome-wide significant loci mapping to non-coding
RNA transcripts associated with its value. Across both studies, we also demonstrate evidence of tissue-
specific expression in clinically relevant brain regions, such as the substantia nigra. We finally queried the
causal relationship between neuroimaging measures and bipolar disorder using graph-based Mendelian
randomization methods, finding that white matter microstructural phenotypes exert greater effects in a
network context than gray matter structural phenotypes. Specifically, we find evidence of bidirectional
causality between bipolar disorder and the area of the lateral orbitofrontal cortex and several components
of the limbic system involved in emotional regulation. Taken together, our results provide novel avenues
of enquiry into the derivation of neuroanatomical biomarkers and the investigation of causal dynamics
between neuroimaging and brain disorders.
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Chapter 1

Introduction

Psychiatry, as defined by the American Psychiatric Association, is a “branch of medicine focused on the
diagnosis, treatment and prevention of mental, emotional and behavioral disorders” [1]. These condi-
tions can include bipolar disorder (BD), schizophrenia, major depressive disorder, and attention-deficit
hyperactivity disorder. Despite comprising multiple symptoms, all psychiatric disorders are linked by their
primary tissue of action in the brain [2]. Similarly, neurological disorders are defined as “any condition that
affects the brain, spinal cord and/or nerves”, including Alzheimer’s disease (AD) and Parkinson’s disease
[3, 4]. Psychiatric and neurological conditions can be considered brain disorders owing to this shared char-
acteristic. The public health burden of brain-based conditions is considerable, contributing significantly
to global estimates of disability-adjusted life years (DALYs) [5–7]. For example, mental and neurological
conditions accounted for 10% of global DALY estimates in 2019 [8]. As a result, understanding their
pathologies to inform their effective management has become of great importance to the field of brain
disorder research. The previous two centuries have resulted in numerous advances, such as improved
diagnostic/prognostic systems and improved therapeutic applications [9–11]. However, their modern
medical treatment is complicated by an apparent lack of biomarkers associated with disorder diagnosis
and prognosis. In particular, diagnostic criteria are often defined primarily by behavioural factors such as
cognitive symptoms, meaning that there is no guarantee there are strong biological features underlying
these phenotypes. Additionally, while certain brain disorders are marked by manifest biological changes,
such as neuroanatomical variation in AD, biomarkers are often not recognised as primary clinical factors
in practice, instead providing context in the presence of other diagnostic features [4]. Consequently,
much recent research has focused on understanding the biology of brain disorders. As such, the fields of
neuroanatomy and psychiatric/neurological genetics are of particular interest owing to observations of
brain region variation in various conditions [12, 13].
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1.1 Psychiatric/neurological genetics

Some of the most significant genetic developments over the last century have included the description
of the structure of DNA, the subsequent characterisation of a human draft genome, and the advent of
low-cost high-throughput sequencing technologies [14–16]. These factors have given rise to a wealth of
research into the genetic bases of multiple human diseases, including brain disorders, yielding unprece-
dented amounts of data. As such, new data-driven methods to describe genetic architectures have been
developed. Twin studies were initially popular for measuring the extent to which a phenotype was herita-
ble [17], but the breadth of data available facilitated direct statistical testing of genetic associations in large
populations. Most notably, genome-wide association (GWA) studies became a popular framework [18].
This methodology provided a hypothesis-free framework by which to measure the association between
single nucleotide polymorphisms (SNPs) and phenotypes at the population level. As the number of ge-
netic markers that can be tested at once is large, the discovery rate is limited by stringent multiple testing
corrections which control the false positive rate [19].

These developments allowed researchers to explore novel lines of inquiry related to brain disorders.
Previously, twin studies suggested that psychiatric and neurological conditions had high heritability [20].
Linkage studies were the primary means by which to measure estimate genetic marker cosegregation with
illnesses. For example, early studies of BD identified several genetic factors of large effects, such as areas of
chromosome 11 cosegregating in Amish pedigrees [21]. However, this result and others did not generalise
to other families. In general, linkage studies designed to capture loci of large effects appeared unsuited to
phenotypes such as BD. In contrast, linkage studies of other disorders were promising, evidenced by the
discovery of the APOe4 allele in various pedigrees [22]. This discovery informed subsequent molecular
hypotheses of AD progression, including the APOe4 cascade hypothesis [23]. Despite this, researchers
were unable to explain heritability estimates from twin studies using existing genetic results.

Brain disorders are common in the general population, with 165 million Europeans estimated to be
currently affected [24]. This fact in tandem with the lack of linkage markers of large effects cosegregating
in family pedigrees meant that such conditions likely had more complex genetic architectures. The GWAS
experimental framework was well-suited to the problem of detecting disease-associated variants of small
to moderate effect in populations [25]. Early studies of BD yielded novel genetic results, including signifi-
cant associations of SNPs near NAP5 and NTRK2 genes [26]. These genes are involved in microtubule
formation in cell differentiation respectively in brain cells. Other studies suggested a role for ANK3 and
CACNA1C genes [27], involved in axonal membrane function and calcium channel signalling respectively.
Other BD GWAS replicated the CACNA1C finding and identified several novel loci, including ODZ1 with
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larger sample sizes [28, 29]. The first late-onset AD GWAS identified significant SNPs in LD with the
APOe4 allele as well as SNPs in the GALP gene, which is involved in neuronal survival and upregulated in
AD brain tissues [30]. Subsequent studies increased the number of SNPs and samples tested, replicating
APOe4 findings and highlighting novel significant associations [31, 32].

In general, larger sample sizes lead to an increased number of discovered genetic associations as a func-
tion of study power. The advent of biobanking consortia such as the UK Biobank were instrumental in
facilitating this trend [33]. However, such consortia were not specifically designed to genotype individuals
with brain disorders. Instead, data-sharing groups like the Psychiatric Genomics Consortium carried
out large-scale GWAS using data from multiple research groups, providing public access to summary
statistic results [34]. These efforts resulted in GWAS of increasingly large sample sizes. For example, re-
cent GWAS of BD, major depressive disorder, AD, and schizophrenia have featured total sample sizes
of 413,466, 807,553, 1,126,563, and 320,404 respectively [35–38]. For BD, regulation of insulin secretion
systems and endocannabinoid signalling were identified as molecular associations [39]. More recent results
results implicated ion-channel-encoding genes as significant molecular correlates through the association
of CACNB2 and KCNB1 [38]. Additionally, significant loci identified in smaller samples were replicated
in these larger cohorts, including CACNA1C. Recent significant genetic hits were found to be enriched
in neuronal cell types, suggesting that brain development pathways are associated with BD [38]. Larger
sample sizes have also allowed researchers to better estimate the degree to which genetic variation accounts
for phenotypic variation in BD. For example, 20% of BD’s phenotypic variance can be explained by
common genetic variants [39]. Previous twin studies have suggested that BD has a heritability of .7 [20].
Additionally, fine-mapping approaches building on results from several well-powered genetic studies have
prioritised several genes for follow-up investigation, such as FURIN, establishing a further relationship
between neuronal cell type function and BD [40].

Similarly for AD, GWAS of large sample sizes in the PGC have indicated that significant genetic asso-
ciations are involved in beta-amyloid clearance pathways [35]. Additionally, APOe4 has been consistently
identified as a variant of interest as sample sizes have increased. Recent results have also suggested that
microglia and other immune cells are associated with AD pathology [41]. SNP-based heritability estimated
from the most recent large GWAS of AD was 0.03 [35].

Concurrent with molecular findings, the field of neuroanatomy has been instrumental in identifying
other biological correlates of brain disorders.
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1.2 The neuroanatomy of psychiatric and neurological disorders

The field of neuroanatomy has origins in Greek antiquity, with the first recorded experiments by Herophilus
describing the cerebrum, cerebellum, and the ventricles in detail [42]. While this event was of great general
interest, no further neuroanatomical dissections were recorded until Andreus Vesalius’ activities during
the Renaissance period [43]. Neuroanatomical measurements until the 20th century were mainly reliant
on post-mortem tissues, which are difficult to obtain and standardise across individuals. The development
of magnetic resonance imaging technologies was instrumental in transforming measurement capabilities
in the 1970s [44]. Broadly, the technology manipulates the realignment of protons to a uniform magnetic
signal after the application and subsequent removal of a radiofrequency wave to determine the character-
istics of the tissue of origin. The speed at which energy is released during the realignment process can be
used to infer the fat or water content of the area imaged, thus allowing researchers to compile structural
tissue images via transformations of the output signal.

There are multiple modalities of neuroimaging that highlight presentation of different tissue types
based on the frequency of pulse application. Broadly, these include T1-weighted and diffusion tensor
magnetic resonance imaging procedures. T1-weighted imaging schemes usually highlight fat-heavy regions
– whose protons realign quickly – as high-intensity bright regions on output images, as distinguished from
proton-heavy regions such as the cerebrospinal fluid which usually appear darker. This distinction in
brightness given by alternating pulse sequences allows us to image tissue structure. Diffusion tensor
imaging captures the directional diffusivity or movement potential of water molecules as constrained by
extra – or intra – cellular structure.

The ability to non-invasively measure the structural features of the human brain was useful to several
research disciplines. Early studies were successful in detecting neuroanatomical patterns in brain disorder
phenotypes such as bd. A review by [45] of 37 studies between 1987 and 1999 described consistent find-
ings of decreased cerebellar volume and increased white matter hyperintensities. These findings allowed
researchers to hypothesise about cognitive systems impacted by BD. A similar review by [46] found that
medial temporal lobe atrophy was consistently predictive of AD status and correlated with mental diag-
nostic tests. Despite these findings, the measurement of volumetric variation was technically limited by
issues in producing robust surface models of neuroimaging data. Frequently, patterns in MRI data relied
upon clinicians and made formal statistical testing difficult [47]. New algorithms such as those provided
by FreeSurfer provided empirical descriptions of neuroanatomical measurements [48]. This allowed re-
searchers to compare brain structural variation across various phenotypes empirically. A meta -analysis
of such studies in BD found that enlarged right lateral ventricles was a significant effect with 32 studies
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included [49]. Another review by [50] summarised the functional neuroimaging findings related to BD,
also noting increased volume of right lateral ventricles as well as abnormalities in prefrontal cortex regions.
These studies suggested that striatal–thalamic–prefrontal systems were likely important in the context
of disease progression. Further, they demonstrated the utility of neuroimaging studies in identifying
biological correlates of BD. Similarly, a review carried out by [51] of early AD neuroimaging studies found
that decreased hippocampal volumes correlated well with cognitive decline. They also underscored the
clinical potential of neuroimaging modalities for AD diagnostic and prognostic applications. A separate
review found that structural alterations in the entorhinal cortex were discriminative for early-onset AD
[52].

Concurrent with these studies, large-scale imaging consortia began to proliferate, resulting in the
formation of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and the launch of the Enhanc-
ing Neuro-Imaging Genetics through Meta-Analysis (ENIGMA) Bipolar Disorder Working Group [53,
54]. These standardised collections, combined with tools such as FreeSurfer, allowed for meta and mega
analyses of brain disorder phenotypes and studies of general neuroanatomical variation, yielding valuable
biological insights [55–57]. For example, cortical thinning was observed in BD patients [58]. Reduced
amygdala and hippocampal volumes were also described [55]. Additionally, differences in white matter
microstructure in the corpus callosum were evaluated as potential endophenotypes for BD [59]. In AD,
widespread atrophy in hippocampal regions has been consistently observed [60], in tandem with observa-
tions of increased sulcal depth [61]. Further, a progress report by ADNI described the importance of the
data resource from an exploratory standpoint [62]. The authors noted that multi-site standardised data
collection protocols had resulted in a valuable research resource that was already being utilised for clinical
studies.

Other general neuroimaging consortia of interest included the release of the UK Biobank imaging
collection [63]. While not enriched for brain disorder phenotypes specifically, it served as a similarly
valuable resource for researchers, providing large sample sizes of standardised imaging collections. Notably,
the first imaging release was used to estimate brain age from structural MRI data, with differences in
biological age and predictions correlating well with adverse health outcomes [64]. Additionally, other
studies have made use of this cohort to identify functional MRI differences associated with depression
[65]. In general, the availability of large standardised imaging collections also brought the potential the
link multiple data modalities together. For instance, individuals in the ENIGMA, UK Biobank, and
ADNI consortia were also genotyped. This allowed for studies investigating the genetic architecture of
brain imaging measures.
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1.3 Genetics of Brain Disorders and Endophenotypes

Imaging releases in the UK Biobank facilitated Elliot et al.’s GWAS of over three thousand measures of
general brain structure and function [66], which found evidence of additive genetic effects associated with
neuroanatomical variation. Their study found that structural neuroimgaing measures had high heritabil-
ities and that significant genetic associations were enriched for brain development pathways. They also
found that brain development and plasticity genes had been previously implicated in GWAS of psychiatric
disorders. Concurrently, the ENIGMA consortium also captured the genetic architectures of various
neuroimaging phenotypes including BD across different population samples [67]. These studies were re-
lated to the concept of endophenotype derivation. Endophenotypes in psychiatry are defined as ‘internal
or molecular’ features of behavioural conditions that are independent of disease state [68]. The concept
was introduced in 1972 as a means by which to better understand psychiatric conditions [69]. Theoret-
ically, their description can reframe GWAS experiments as studies of quantifiable biological features of
broader phenotypes, which are considered more direct expressions of gene effects. As the genetics of brain
structural variation became better understood, several candidate endophenotypes of BD were considered.
For instance, [70] suggested that hippocampal structural variation was consistently observed and satisfied
all qualities of a strong endophenotype. Later, [59] reviewed several other candidate endophenotypes,
including circadian rhythm disturbances and executive function decline. They further posited that white
matter abnormalities were strong candidate endophenotypes of BD.

Similarly, a review by [71] found that medial temporal lobe atrophy was a strong candidate endophe-
notype of AD. A separate review by [72] discussed the potential of other reproducible structural neu-
roimaging signatures associated with AD as endophenotypes. The advent of neuroimaing consortia has
meant that the qualities of such endophenotypes could be tested appropriately in large sample sizes. For
example, GWAS by [66] allowed the SNP heritability of neuroimaging phenotypes to be better estimated.
Endophenotypes in general are an attractive concept; their definition does not center genetic effects as
the primary causal determinant owing to the fact that such traits must occur in the population at large.
Instead, they imply a "non-hierarchical" disease model of brain disorders wherein social, environnmen-
tal, and genetic components all contribute to an outcome [73]. Data availability through large imaging
collections has lead to increased focus on defining neuroimaging endophenotypes. This includes recent re-
search into gene-environment correlates of brain structure endophenotypes of BD [74], the identification
of transcriptomic signatures associated with decreased cortical thickness in mild cognitive impairment
patients [75], and amygdala structural variation as an endophenotype of schizophrenia [76]. Efforts to
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identify neuroimaging endophenotypes are reliant in part on establishing a statistical association between
the overall phenotype and the candidate trait, which may be carried out by a variety of means.

1.4 Methodological approaches to endophenotype classification
and neural networks

Large imaging collections of neuroanatomical variation has been instrumental in the study of endophe-
notypes. Usually, the association between individual regions and brain disorders is described in a discrete
terms, such as in the case of volumetric reductions of medial frontal cortex areas in Alzheimer’s disease.
It may be the case that structural variation occurring in multiple regions – rather than just one – is an
associated endophenotype of a condition. For example, the review by [77] details several studies report-
ing widespread functional connectivity disruption in Alzheimer’s disease, suggesting that symptoms can
manifest biologically in the form of brain network changes. Similarly, disruptions in key emotional pro-
cessing networks have been previously described in BD, which can involve variation in multiple regions
[78]. Furthermore, the relationship between condition and regions may not be linear. Other modelling
strategies to capture complex data patterns include deep learning approaches such as neural networks [79].
Neural networks can model non-linear data relationships via a number of sum-weighted transformations
of input data mapped to the following layer via nodes; each layer can contain multiple nodes and this
process can be repeated. Here, the value of any node is determined by the input values multiplied by their
respective node weights, summed together, and passed through a function which can impart non-linearity
on the output signal (termed an activation function). This operation can then be repeated multiple times,
resulting in user-specified outputs depending on the problem domain. We can conceptualise this with
the following:
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In Equation 1.1, the values I1 through In define an input of rank n. The values of H1 at the subsequent
layer (often termed the hidden layer) are defined by I1 through In multiplied by their respective weights
and summed together, denoted as black lines in the above diagram. The final value of H1 is given by
applying an arbitrary function (termed an activation function) to the summed quantity, resulting in a
non-linear output (where the specified function is non-linear). Similarly, the other hidden layer node
values up to and including Hj are given by the same operation, except each node of the set H have their
own respective weights mapping I to the output value. The same procedure is then carried out in our
two-layer example to yield O1 through Ok, given by sum-multiplying H1 through Hj by their respective
weights linking them to nodes of O. Again, an activation function is applied yielding the final O value.

Owing to their general flexibility, several variants of classical neural networks exist. One such example
is the convolutional neural network, which is specifically designed to leverage spatial patterns in imaging
data types.

1.5 Convolutional Neural Networks

Convolutional neural networks were developed in the late 1980s as a generalisable, shift-invariant exten-
sion to standard neural network architectures [80]. This means that learned patterns can be present at
any coordinate position respective weight filters are multiplied by every image patch, making their rep-
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resentations pattern-specific as opposed to position-specific. In contrast, classic neural networks – or
feed-forward architectures – are spatially insensitive. These developments increased the generalisability of
image-based predictive models with fewer free parameters than fully-connected feed forward architectures.
Such approaches began gaining renewed attention with the development of efficient backpropogation
strategies to apply weight updates to large networks via gradient descent [81]. Soon after their introduc-
tion, their application became widespread in a variety of imaging domains. For example, the authors
of [80] achieved impressive testing accuracies of convolutional neural network models on handwritten
digit recognition tasks. Other studies demonstrated similarly impressive results in facial recognition [82].
Early studies of these methods applied to biomedical imaging domains found encouraging initial results
in the identification of lung nodules in chest radiographs [83]. Further, the shift invariant properties of
convolutional models proved attractive for other aspects of computer vision, such as in hand tracking
[84].

The application of such technologies to neuroimaging was a natural next step. However, this was
limited by lack of access to sufficient sample sizes. This was further compounded by the technological
constraints impacting efficient training schema, as the amount of parameters to be trained is often large.
The accessibility of standardised neuroimaging collections allowed renewed focus on this topic, and com-
puting infrastructure has become rapidly more sophisticated in recent years [85, 86]. These advances
provided the necessary conditions for novel lines of enquiry in the field of brain disorder neuroimaging.

1.6 Deep learning in brain disorder neuroimaging

With large sample sizes, standardised imaging collections, and rapid computing infrastructures, convo-
lutional neural network studies of neuroimaging data became widespread. Notable examples include
classification tasks of AD, BD, and schizophrenia [87–89]. Strikingly, these studies demonstrated higher
testing predictive performances than other linear approaches. Particularly, studies making use of ADNI
data achieved near-perfect classification accuracies in several instances [90–92]. Further examples of con-
volutional neural network applications to brain disorder phenotypes will be considered in a later chap-
ter. Additionally, the modelling framework proved useful for other diverse tasks, including brain age
estimation [93] and tumour segmentation [94]. These varied studies demonstrated the potential of the
technology. Further, the features used for predictive purposes may comprise multiple brain regions or be
non linear, which may be of interest in the context of endophenotye and biomarker derivation. The inter-
pretability of such approaches is complicated by several factors, including model depth and the fact that
model coefficients do not have the same properties as statistical coefficients. Despite this, interpretative
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efforts have been developed which allow for visual examination of regions important to model classifica-
tion. They involve taking the gradient of the output with respect to the input and overlaying this quantity
on the input image to act as an ”importance heatmap” [95]. Variants of this procedure multiply this
quantity by learned model weights [96]. Other approaches, such as the use of counterfactuals, attempt to
reverse-engineer input examples with specific properties and measure the change in model output [97].
This allows researchers to understand what features bear the most importance in the model’s learned rep-
resentation. Despite this, the reliability of interpretability methods for convolutional neural networks is
contentious, with recent studies critiquing several popular methods [98]. Convolutional neural networks
will be dealt with in greater detail in the next chapter.

1.7 Thesis statement and general outline

With these factors in mind, this work aims to derive endophenotypes of debilitating brain disorders using
deep learning methods and examine their genetic properties. We also seek to investigate formally the causal
relationship between neuroimaging and brain disorders. In Chapter 2, we begin by systematically review-
ing the literature on predictive CNNs applied to magnetic resonance imaging data of brain disorders. In
Chapter 3, we use insights from our observations to develop an experimental framework centering inter-
pretability in a custom CNN model applied to an AD dataset. We examine the neuroanatomical features
associated with AD through our derived endophenotype and carry out a GWAS, characterising its genetic
architecture. In Chapter 4, we develop an alternate deep learning approach – a custom autoencoder – to
model the same problem in the same AD dataset with several additionally useful unsupervised properties
compared to CNNs. We determine the brain imaging features driving discriminative node activity and
carry out a GWAS of its activity. We further compare our two GWAS to a GWAS of binary AD status
and simulation experiments. Finally, we use Mendelian randomization approaches to build networks of
causality between neuroimaging measures and a separate psychiatric phenotype, bipolar disorder. We
query our results at the network level to determine regions and collections of regions that are of particular
interest in the context of the overall disorder.
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Preamble to Chapter 2

This work has been published in Human Brain Mapping and is available via the following link: https://
onlinelibrary.wiley.com/doi/10.1002/hbm.26521[99]. It was jointly supervised by Dr. Pilib
Ó Broin and Prof. Dara Cannon; the candidate’s contribution included reading all papers, writing the
manuscript, making the figures, and engaging with the peer review process.
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Chapter 2

Predictive Modelling of Brain
Disorders with Magnetic

Resonance Imaging: A Systematic
Review of Modelling Practices,
Transparency, and Explanatory

Efforts in the use of
Convolutional Neural Networks

2.1 Introduction

Brain disorders, which include bipolar disorder, Alzheimer’s disease, and schizophrenia, are a collection
of debilitating neurological and psychiatric conditions characterised by a variety of features including
impaired cognition, altered mood states, psychosis, neurodegeneration, and memory loss [2]. These phe-
notypes, each with varied clinical presentations, are all associated with neuroanatomical changes, incurring
public and personal health burdens through reduced quality of life, social stigma, and increased mortality
[2, 100]. As such, these conditions are the focus of intense research across multiple disciplines. There is
significant interest in building predictive models designed to differentiate conditions and their subtypes,
which could incorporate biological information into current clinical frameworks and yield mechanistic

12



insights via the biomarkers used [101, 102]. Additionally, biomarker-informed diagnoses could offer the
potential of early intervention and management, a concept well understood in general medicine [103].
Magnetic resonance imaging (MRI) provides non-invasive measures of brain structure and the increasing
availability of large-scale collections of MRI data has enabled a wealth of predictive modelling studies [104,
105].

Previously, machine learning and classical statistical approaches have been used to highlight differential
neuroanatomical patterns across several conditions, including subcortical structure volume reduction
in bipolar disorder and Alzheimer’s disease [55, 106]. However, incorporating such information into
clinical systems is non-trivial, as the dynamics and limitations of a particular biomarker must be addressed
prior to use [107, 108]. Additionally, the methods used to identify discriminative features have their own
considerations, such as requiring preprocessing tools to derive tabular brain summary information [109,
110]. These tools can produce variable results depending on the parameters chosen, even when applied to
the same dataset, highlighting the importance of domain expertise to justify decisions [111]. Additionally,
statistical modelling often requires formal specification of expected variable relationships, and generally are
unsuited to high-dimensional imaging data structures. Traditional machine learning approaches are also
limited by their inability to consider spatial dependencies between groups of pixels, making it necessary to
use tabular summary data. With these factors in mind, deep learning algorithms – and particularly those
well-suited to imaging – have become a popular methodology. This is because of their ability to consider
arbitrarily complex relationships, providing greater model flexibility without specification of expected
variable relationships. Convolutional neural networks (CNNs) are deep learning models designed to
detect spatial patterns in imaging data and have shown impressive predictive performances in various
classification tasks. They have also been widely applied in the field of medical imaging for segmentation
and prediction, particularly in the context of aging and psychiatric/neurological disorder diagnosis [95,
112–114].

These recent developments have been enabled by access to large standardised neuroimaging data
collections, such as the Alzheimer’s Disease Neuroimaging Initiative (ADNI) [53] and the UK Biobank
[63]. The predictive capabilities of these approaches is promising in the context of potential clinical
applications; brain disorder classifications are usually based on life history information and questionnaires,
and thus leveraging models making use of neuroanatomical measures could supplement existing diagnostic
frameworks. However, there are a few caveats that bear consideration; firstly, deep learning models can
suffer from a number of limitations, such as high parameter dimensionality, lack of interpretability, weight
stochasticity, lack of uncertainty, and difficulty to train [115–118]. Secondly, clinical decision systems
require rigorous validation and reporting frameworks for more interpretable models; the use of opaque
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deep learning algorithms make validation and transparency more difficult to achieve [119, 120]. Clinical
decision systems that offer no explanation of a classification are less likely to be incorporated into patient
care frameworks. These factors combine to make the application of deep learning to clinical settings
challenging, particularly where medical imaging is concerned.

As the number of studies applying deep learning to brain disorder prediction using neuroimaging data
increases, the opportunity arises to examine factors that may limit their potential for clinical application.
In this work, we systematically review 55 papers which report on such approaches. While many of the
studies examined have been designed to demonstrate the predictive capabilities, we sought to assess the
existing literature with the aim of identifying key principles that can maximise the potential clinical value
of future work; these principles are: 1) modelling practices, 2) transparency, and 3) explanatory efforts.
Below, we first provide a brief overview of CNNs and their workflow in the context of brain disorder
imaging-based models, and subsequently detail our motivation behind these three principles; we then
analyse the selected papers in the context of these principles and suggest several recommendations for
future studies based on our results.

2.1.1 Convolutional Neural Networks

CNNs are a popular deep learning algorithm for many areas of research, particularly those utilising MRI
data [95, 112, 114, 121]. Their structure is designed to account for spatial data patterns; this is accomplished
through the use of filters and feature maps. A feature map is derived via convolutional operations, which are
a matrix multiplication between a weights vector of an arbitrary window size and an input image patch of
the same size. Every number in the input window is multiplied by every number in the filter and summed
together, becoming a pixel value of a new feature map at the next layer. The convolution of the same
filter over every patch of the input image generates the entire output feature map, which is usually the
same size as the input image. Multiple feature maps are used in CNN architectures, each with their own
filters, which, throughout model training, can detect distinct data patterns such as shapes and/or edges.
CNNs build increasingly abstract representations of data through iterative transformation operations
until such a time as feature maps are represented in a 1-dimensional list and fed to a fully connected neural
network. Similarly, all variables at successive layers are the sum-weighted combination of all previous layer
variables. Weight initialisation is often random and training is carried out via backpropagation. More
in-depth considerations of neural networks and their training can be found in LeCun et al., 1995 and 2012
[117, 118].
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Figure 2.1: General experimental workflow. The preprocessed input image, either in 2 or 3 dimensional
format is passed to a CNN model (or ensemble of CNN models) for training and prediction, The weights
vector w is updated via backpropagation at each epoch, minimising the error of the loss function.

2.1.2 CNN Implementations

MRI-based predictive modelling of brain conditions with deep learning models generally follows the
pipeline presented in Figure 1, or a variant thereof. Preprocessing is usually applied to skull strip, register
raw input images, crop, resize, and/or contrast normalise. The preprocessed inputs are then used as train-
ing data for a CNN (or an ensemble of CNNs). Owing to the fact that many existing CNN models have
been applied to 2D data domains, studies in the medical imaging field can adapt their data to fit existing
architectures via transfer learning or train new models in the 3D space, as structural MRI scans are usually
3D [122, 123]. Some studies also train custom architectures on 2D data [124–126]. The output is usually
presented as a probability, which is then used to calculate performance metrics such as the area under the
receiver operating characteristic curve (AUC) and accuracy.

In the following sections, we define and justify our emphasis on modelling practices, transparency, and
explanatory efforts in the context of brain disorder classification using neuroimaging data for potential
clinical benefit. We note that these principles bear domain-agnostic importance for predictive studies and
overlap with recent recommendations for improving the clinical and biological translational potential of
machine learning and deep-learning models [127].
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2.1.3 Modelling Practices

Modelling practices here refers to the reliability of the methodology used; procedures demonstrating
the reliability of experimental results by maximising reproducibility are increasing the potential clinical
value of a study. Generally, studies that can be reproduced and that have attempted to mitigate factors
that can influence the reliability of results are more likely to witness clinical integration. As previously
mentioned, deep learning models have a number of unique features that can make this task difficult, but
several procedures can be observed. We examine the presence of repeat experiments, the data splitting
procedure, the reported accuracy, and the data representation strategy to evaluate this principle.

Repeat experiments ensure that the reported performance metrics are trustworthy across multiple
random weight initialisations and that the system as a whole can be expected to perform well if retrained.
This is pertinent given that CNNs are parameter-dense, making them more prone to overfitting. A useful
type of repeat experiment includes k-fold cross validation, whereby data is split into k folds, and k − 1

folds are used to train the model and the k-th fold serves as the testing set. This procedure is repeated
k times, until every fold has served as the testing set, providing an estimate of model performance on
multiple data splits.

The reported accuracy is the final performance of the model as estimated from an evaluation strategy,
which can include k-fold cross-validation, performance estimation on a separate test split within the same
population, or estimation on a separate population. The overall capacity of a model to classify a brain
disorder with fidelity will ultimately impact its potential for clinical integration.

The data representation strategy is of specific importance for CNN models in this domain, as struc-
tural MRI data is 3D, whereby each number is represented by a pixel. Thus, modelling entire volumes can
be computationally expensive, and some studies may opt to split data into individual 2D slices. This comes
with a set of considerations: firstly, each 2D slice is treated as an individual instance during conventional
training procedures, meaning that performance metrics can either be reported per slice or combined to
derive patient-level quantities, prompting consideration of voting strategies; secondly, 2D data are more
prone to information leakage if train-test splitting is carried out after 2D slice derivation because the model
may have been exposed to data from the same patient during training and evaluation. Information leak-
age can inflate performance estimates by exposing a model to testing information during training steps.
Additionally, studies may take multiple 3D patches per patient that could result in similar issues. Together,
these issues can contribute to inflated estimates of performance.
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2.1.4 Transparency

Transparency refers to how clearly the study’s methods are reported, including code and model sharing.
This principle bears general importance, particularly for models with clinical potential [128]. Several
important advantages to code sharing having been described previously, including facilitating greater un-
derstanding of experiments and facilitating reproducibility [129, 130]. There are many hyperparameters
associated with deep learning models which can affect performance, making transparent reportage neces-
sary. Descriptions of model architectural choices and training schedules can help to increase potential for
clinical translation through increased reproducibility and understanding of studies. Furthermore, model
weight sharing can mitigate the computational overhead of model training. Additionally, explicitly stating
data sources is important for readers to understand the data demographics that yielded the reported results
and model.

2.1.5 Explanatory efforts

Explanatory efforts, otherwise known as interpretability efforts, refer to the attempts made to identify and
explain features driving model predictions [131]. Deep learning systems can be difficult to interpret, but
efforts can be made to examine image regions that are used during prediction to determine whether that
information is relevant. This is particularly important as CNNs are prone to overfitting and can make use
of any image feature, in turn making algorithmic biases more likely if not examined [132, 133]. Ensuring
CNNs are using relevant information can increase clinical potential and confidence in the system. Models
can be interpreted by saliency methods such as gradient-based class activation mapping [95, 96], which
rely on deriving the gradient of model output with respect to input and weighting that quantity by the
input – the final metric is then overlaid on the input for visualisation. This can indicate what regions are
most ‘important’, but they are not directly comparable to coefficients from classical regression models.
Another approach to understanding model behaviour is counterfactuals, which involve measuring the
changes in predictive performance of models when they are exposed to inputs with known qualities; for
example, noting the change in model output when a patient image with a thicker amygdala is used as
the input [97]. We investigate explanatory efforts via the application of methods that produce a saliency
map (such as [96] or [95]), which are gradient-based, or the visualisation of internal feature map outputs.
These steps serve to increase confidence in models and consequently its potential clinical value.
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2.2 Methods

We conducted a systematic literature review according to PRISMA guidelines [134], the details of which
are provided below.

2.2.1 Inclusion/exclusion criteria

We limited our search to consider studies making use of traditional CNN architectures exclusively, whereby
convolutional layer outputs, or other model outputs, are not used to train separate machine learning
models. This is because they are the most common architecture and as such this better enables comparisons
across studies. We also focused our attention on studies that use structural MRI data, as functional
MRI data structures can often have different modelling requirements, including the use of time series
methodologies that make them more difficult to compare.

2.2.2 Search details

We performed a Web of Science (all databases) and Pubmed search with the following keywords:

((((structural) or (T1-weighted)) AND (imaging)) AND ((MRI) OR (T1 MRI)) AND ((CNN) OR

(convolutional neural network) OR (3D-CNN))) AND (psychiatric OR depression OR autism OR
bipolar OR Alzheimer’s OR neurological) NOT (segmentation)

For Web of Science, 77 results were returned, and 114 results were returned from Pubmed. Titles and
abstracts were screened for relevance to the research question, and duplicates across both databases were
removed, leaving a total of 74 papers. Nineteen studies were excluded for using functional MRI data and
applying hybrid models where CNNs were not the primary modelling method; this resulted in a total of
55 papers remaining for review. The flowchart of this process is presented in Figure 2.
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Figure 2.2: Flowchart detailing the paper selection process.

2.2.3 Desired variables

A standardised questionnaire was designed to evaluate the methodological details of the studies considered,
including the presence or absence of repeat experiments, the overall data representation strategy, the
reported accuracy, the sample size, the data source, whether or not an explanatory method was applied,
and whether or not code was made available. For obtaining accuracy, we recorded the highest performances
in testing experiments reported by authors as the value for that study, with an aim to capture the accuracy
in the main classification test (for example, certain studies made use of 3-way classifiers for Alzheimer’s,
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cognitive impairment, and controls - we took only the Alzheimer’s vs. control performances as our value
for that study). We marked sample size as NA where patient-level data numbers were not reported. We
fit t-tests to determine whether or not accuracy statistically varied across binary categories and a linear
regression to examine the relationship between accuracy and sample size. We also fitted a linear regression
of accuracy against all measured variables (except code availability) to examine whether or not different
study attributes were predictive of reported accuracy.

2.3 Results

We organise our findings according to our three principles: modelling practices, transparency, and explana-
tory efforts. The selected papers and their attributes can be found in Table 1, and a numerical summary
of the results can be found in Table 2.

2.3.1 Modelling practices across studies

We found that 24 out of 55 papers represented data in 2D (Table 2). While this is more computationally
efficient than 3D, it can make information leakage more likely. This is because 3D-based data representa-
tions have one quantity per patient and 2D-based representations will often have multiple quantities per
patient, requiring extra care during the data splitting procedure. This is not unique to 2D-based studies as
there may be patch-based 3D approaches deriving multiple quantities per patient. Accuracy calculation
can be carried out per slice or per patient, introducing issues surrounding optimal voting strategies. Of the
24 studies making use of 2D slices, only one referred to voting methods [135]. Several studies made use of
single slices per patients [125, 136, 137]. Even with comprehensive image registration, there is no guarantee
that the same biological information is considered per patient with this approach. One paper making use
of 2D slices provided code, detailing how individual patient volumes were split into 2D images [138].
We noted that 24 out of 55 studies made use of multiple models for training and prediction, with some
papers using the output of one trained CNN as the input to another [139–143]. This may impact gener-
alisation by increasing the chances of overfitting. A number of studies used statistical tests to pre-select
informative image patches which can introduce bias by focusing the model on regions which may not be
informative in full models [136, 142, 143]. Furthermore, pre-selecting regions based on accuracy metrics
in one population may influence generalisation capacity in another. In several studies, one model was
trained on the whole dataset the weights from that model were used for transfer learning of another model
in the same dataset, leading to potential leakage or overfitting [126, 135, 136, 144, 145]. We note that while
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overfitting mitigation strategies can be employed, in cases where the weight training has been informed
by access to testing labels, no degree of post-leakage mitigation can remedy these specific effects.
Thirty out of 55 studies employed repeat experiments, ten of which reported only point estimate perfor-
mance metrics. We also found the mean accuracy across all studies was 89.36 ± 8.694% (µ ± σ, mean
and standard deviation). There was no significant relationship between reported accuracy metrics and any
study attributes, although accuracy appeared to be inversely correlated with increased sample size (Figure
2.4). Further, a regression of accuracy against all variables yielded non-significant test statistics for every
coefficient. 44 of 55 studies made use of the ADNI dataset during either training or testing. The mean
sample size of the 55 considered studies was 828± 691.

2.3.2 Transparency, interpretability, and explanatory efforts across studies

We found that 49 out of 55 papers did not provide code or model weights, meaning that the majority of
studies relied on textual methods summaries. This implies limited methodological transparency which
is an issue considering how modelling choices can impact system performance. Studies reporting code
facilitate clear, reproducible experimental practices [138, 144, 146–149]. However, we note that every study
made explicit mention of the database their studies came from and textually described a preprocessing
pipeline.
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Figure 2.3: Plots of accuracy variation across binary categories (a=interpretability, b=representation).
Studies where accuracy was not reported were excluded.
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Figure 2.4: Violin plot of accuracy variation across repeat experiment studies (a) and scatter plot of accuracy
against sample size per study (b). Studies where accuracy was not reported were excluded. The line of best
fit estimated using a linear regression is denoted in red (b).
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Question Answer

How are data represented? 2D(n=24),
3D(n=31)

Is code available? No(n=49),
Yes(n=6)

Mean Accuracy (µ± STD): 89.36±
8.694%

Is interpretability considered? No(n=38),
Yes(n=17)

Are there repeat experiments? No(n=25),
Yes(n=30)

Table 2.2: Numeric summary of study attributes from the 55 papers satisfying selection criteria.

Seventeen of 55 studies made efforts to explain models by applying a saliency method [96] or visualising
feature maps [95]. Of these 17, 4 papers discussed their interpretation of interpretability outputs in their
findings [146, 147, 166, 178]. Five of the 17 papers employing applying interpretability methods provided
code, but just three code releases contained information on saliency method implementation [146, 147,
149].

2.4 Discussion

Below, we discuss the findings summarised in Table 2 in and propose several recommendations to maximise
the potential clinical value of future studies making use of CNNs to predict brain disorders from structural
neuroimaging data collections.

2.4.1 Data representation

A majority of papers made use of 3D data representations, either by deriving multiple patches per pa-
tient of arbitrary sizes or modelling entire brain volumes (patch-based/region-of-interest-based). Using
entire brain volumes on a subject level can reduce the chances of information leakage while preserving
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one volume per patient, but is computationally expensive. Modelling multiple 3D patches per patient can
potentially lead to information leakage if patch derivation is carried out before patient-level train-test split-
ting, and testing accuracies can be represented by different voting strategies. While 3D patch modelling
can consider the spatial dependencies across 3 axes of brain data, it is unclear as to the benefits of focusing
on smaller 3D regions compared to entire 2D images along one axis. A significant minority of papers
made use of 2D data structures (24/57), which are an attractive prospect considering the high computa-
tional burden of modelling in 3D and the ability to capture all brain information along one dimension.
Workflows making use of multiple 2D images per patient can also be prone to information leakage and
may represent testing accuracies by different means, thus requiring a greater level of care. It is difficult to
declare one data representation strategy as optimal compared to another, given the limiting factors associ-
ated with every approach. Further, we found that there was no statistically significant differences between
reported accuracies across data representations (2D = 91.5 ± 6%, 3D=88 ± 9%). This suggests that if
performance inflation has occurred, it does not appear to be enriched for a specific data representation
strategy. Nevertheless, researchers should be cognizant of the individual limitations associated with each
experimental approach and proactively address issues where possible. For example, information leakage
can be mitigated by ensuring slice (or patch) conversion post-data splitting at the patient level, which can
be verified by providing well-annotated code. Additionally, where multiple slices or patches have been
used per patient, the voting strategy should be explicitly detailed.
Utilising single 2D slices may lead to performance estimation inflation owing to the fact that there is no
guarantee the same biological information is being considered per patient at the same slice index. Several
studies also made use of model stacking, whereby the input of a model is the output of another trained
model. This may impact the model’s ability to generalise to different data by increasing the chances of
overfitting. This is because the first model in stacking situations has already derived a representation
of the data informed by test labels. This is distinct from using traditional unsupervised dimensionality
reduction techniques to derive an input for a subsequent predictive model due to bias. Additionally, deep
learning systems can be opaque, making it difficult to understand the first deep learning model’s data
representation and consequently the properties of the input used for the final predictive model.

2.4.2 Repeat experiments

Most studies implemented repeat experiments via cross-validation, which can account for performance
estimation variation caused by weight initialisation stochasticity and fold splitting. A related strategy that
may be considered is nested cross-fold validation, whereby the training set every iteration undergoes its
own cross-fold validation process to determine an optimal set of hyperparameters. This has the advantage
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of reducing the chances of information leakage by allowing for hyperparameter optimisation that is not
informed by exposure to independent test sets. While studies varied in the amount of data available
for training, and consequently the number of folds they considered during cross-validation, evidence of
repeat experiments greatly increases the reliability of reported performance metrics. This is of crucial
importance for both clinical integration and scientific integrity. As underlined in [180], reproducibility is
not guaranteed even when code is provided, making repeat experiments especially important. Twenty-five
of the 55 considered papers did not employ repeat experiments, which reduces confidence in reported
results. A number of repeat experiment studies reported point estimates, which does not fully convey
the range of performance metrics, potentially leading the reader to believe the spread is not large. Code
inaccessibility exacerbates this issue, leaving the reader unclear as to the procedure followed. We again
found no significant difference between the accuracy metrics reported across repeat experiment procedures
(repeat experiment studies=87.944±10.43%, non-repeat experiment studies=91.58±5.025%), although
this does not minimise the importance of carrying out repeat experiments. It should also be noted that the
experimental designs of each study differ, making a fair statistical comparison difficult. We recommend
that researchers continue to employ repeat experiments and report their results with means and standard
deviations.

2.4.3 Code availability

Most studies did not provide code. As detailed in [181], the principles of fairness, accountability, and
transparency studies are of paramount importance for deep learning modelling studies, and code inacces-
sibility acts as an impediment to these ideals. The construction of deep learning systems requires many
algorithmic decisions which can influence performance, introduce bias, and impact reproducibility. Deep
learning models optimise an objective function over a set of arguments, meaning that any decisions taken
in preprocessing and model construction can affect the capabilities of the system as a whole, and prop-
agate subjective choices throughout ostensibly objective models [133]. For instance, several studies have
examined algorithmic biases against underrepresented and/or marginalised groups [182–184]. Aside from
domain-specific benefits to code sharing, the larger scientific community has recently shifted towards
open science frameworks, with several high-profile journals requiring methodological transparency [129,
185–187]. Therefore, code availability and transparent methodological descriptions are an important as-
pect of deep learning experiments in this domain independent of potential clinical applications. Within
a patient-care context, we underscore the importance of constructing reproducible systems to increase
trust, both from a clinician and patient perspective. Studies making code available are proactively embrac-
ing these essential principles. We further encourage that minimal Jupyter/Google Colab notebooks, and
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other literate programming tools, be explored to enhance understanding and reproducibility [129, 188,
189]. This would also have the useful properties of allowing researchers to examine pipelines and identify
potential ‘blind spots’ that the model authors may have overlooked in their modelling decisions, encour-
aging accountability [181]. Additionally, model training is often computationally intensive; having access
to models trained in similar domains could enable transfer learning approaches and allow researchers to
examine different data representation strategies. Therefore, we recommend that authors share model
weights and code to increase the potential of clinical translation ind facilitate reproducibility.

2.4.4 Saliency and explanatory efforts

We found many studies did not interrogate their presented models to ensure that relevant information is
being used. Where irrelevant information is included, such as skull thickness when examining Alzheimer’s
disease neurodegeneration, without confirmation that the model is utilising brain information, attempts
at patient care integration will have limited success. Even in cases where known irrelevant information
can be removed by preprocessing, visual maps can draw attention to previously-unknown irrelevant in-
formation. Models that are opaque are less likely to be implemented in patient care settings, making the
use of explanatory efforts of crucial importance. As previously stated, algorithmic biases in predictive
settings is concerning, and saliency methods can help researchers to identify sources of bias where they
occur. Additionally, attempting to understand the image features driving model predictions can help
to relate new models to previous findings. These methods may also be used to generate new hypotheses
for downstream experiments. Seventeen studies investigated neuroanatomical features driving model
predictions via explanatory methods, thus increasing the potential to highlight sources of bias in model
training. While there exists variability in application, especially in terms of region understanding, it is
recommended that future studies apply explanatory methods to highlight relevant brain regions being
used. Potential clinical utility can be further increased by supplementing these methods with code.
However, explanatory methods have a number of considerations that may limit their utility, prompting
a discussion around how best to understand opaque models. Most existing methods deriving a saliency
map return an ‘importance’ per pixel, which has no direct link to human-interpretable neuroanatomy.
Usually, this represents the degree of change in the output relative to a small perturbation in the input pixel,
collapsing a potentially non-linear relationship to single values. While it provides an empirical assessment
of captured patterns and is a useful visual aid, it offers little interpretative value compared to coefficients
returned by classical statistics. The deep learning field in general is focused on prediction as opposed to
inference, meaning that the mechanistic understanding of relationship dynamics is often secondary to
test accuracy. This is challenging in the context of discovery and clinical settings. Furthermore, saliency
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methods have their own limitations arising from their algorithmic derivation of ’importance’, which
can affect interpretation [98]. Similarly, counterfactuals, while promising, are difficult to empiricize and
require significant computational overhead. Nonetheless, interpretability efforts allow researchers to
visually evaluate model attention, which, for clinical translation, can serve to increase confidence and
reduce bias, a topic of concern with respect to models applied to society at large [133, 183].

2.4.5 Accuracy metrics, sample sizes, and data sources

We found that studies overall reported high predictive accuracies in their primary modelling questions
(89.36± 8.694%). This underscores the potential of deep learning models to aid clinical procedures by
leveraging a non-invasive data source. This makes the careful consideration of our outlined principles all
the more important, given the capability of deep learning models to accurately classify brain disorders.
We note that despite no significant differences in reported accuracies across questionnaire categories, the
significance of applying these principles from a qualitative framework remains undiminished, especially
when considering the information used by models to achieve reported accuracies; further, studies with
high accuracies that have applied repeat experiments and thought carefully about data representation
strategies can be considered more trustworthy. This trust can be further enhanced by making code available
so results can be reproduced, with the additional benefit of allowing researchers to apply models to their
own domains. A significant barrier to full reproducibility in this context is data privacy concerns, which
limit the release of a fully reproducible paper.
Further, sample sizes were generally high, although there was large variation from study to study. While
there was no significant relationship between sample size and accuracy, it appears that there is a weak
negative correlation between the two variables, even in spite of large database crossover between studies,
with 44 studies making use of ADNI (R2 = 0.055, p = 0.09). However, the variation in experimental
designs makes it difficult to draw conclusions based on this result.

2.4.6 Future perspectives and commentary

This systematic literature review highlights areas of focus across modelling practices, transparency, and
explanatory efforts in the context of maximising the potential for clinical utility and reproducibility. These
points underscore long-standing differences between deep learning and classical statistics, whereby the
former is usually concerned with predictive performance and the latter with making inferential statements.
The predictive imperative has led to numerous advances in image processing, with several state-of-the-art
approaches developed to address tasks not suited to classical statistics [95, 117]. Neural networks have clear
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advantages where describing data-generating parameters are not a concern, and the reported accuracies
of the considered research is further evidence of this.
However, as deep learning becomes more readily applied to medical imaging domains, with potential con-
sequences for patients, dichotomies of prediction versus inference should be retired, even where models
have clear discriminative potential. Researchers can maximise potential clinical benefit and potentially
increase the quality of patient care by embracing the principles of reproducibility, transparency, and expla-
nation for predictive models. This can increase the confidence in such methods and consequently increase
the potential for future clinical integration. We summarise our key recommendations in Table 3.

2.5 Limitations

This work reviewed studies from 2 database sources, but is not guaranteed to have evaluated all available rel-
evant research. This study also did consider studies making use of functional neuroimaging data sources,
which comprises a large corpus of research. We did not endeavour to comprehensively identify potential
information leakage – an in-depth consideration of this concept is explored in [181]. Additionally, while
we encourage the use of interpretability methods, we acknowledge the multiple drawbacks which may
limit their utility and application. We further note that it is difficult to identify a unified set of optimal
experimental parameters across every context – our commentary is designed to draw attention to the limi-
tations arising from specific procedures and encourage researchers to carry out experiments that mitigate
these issues as much as possible. We also note that fair comparison of reported accuracies across a myriad
of diverse studies is challenging. This is particularly relevant given that there may be class imbalances
between studies and different phenotypes considered. Although many studies carried out experiments
in the ADNI dataset, there is no guarantee the same patient population or preprocessing efforts were
carried out. This work did also not endavour to evaluate the variation in all preprocessing procedures of
the selected studies.
Finally, our analysis using survey results is not reflective of overall study quality. Our binary questions are
intended to serve as a vehicle to discuss important concepts that all CNN-based predictive studies should
be cognizant of.

2.6 Conclusion

In summation, we conducted a systematic literature review of 55 studies carrying out CNN-based predic-
tive modelling of brain disorders using structural brain imaging data and evaluated them in the context
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Table 2.3: Key recommendations arising from the results of this systematic literature review, their benefits,
and the risks associated with non-adherence.

Key Recommendations Benefits Risk(s) mitigated

Make well-annotated code freely available

- Improve chances
of reproducibility

– Readers can better
understand workflow

– Encourage accountability
and transparency

- Limit reproducibility efforts

– Models remain opaque

Employ repeat experiments

- Improve confidence
in model estimation

– Mitigate random
weight initialisation

- Risk reporting overfitted
results

– Performance estimation
inflation

– Diminished confidence
in system overall

Employ interpretability methods

- Validate that model is
using relevant information

– Potential biomarker
discovery

– Improve confidence in
system overall

- Models remain opaque

– Diminished confidence
in system overall

– Unsure what
information is being
used by models

Consider specifics of data representation

– Lessen chance of
information leakage

– Ensure optimal
voting strategies

– Cognizant of
strengths and weaknesses
of different representations

- Information leakage
is more likely to occur

– May not consider
multiple voting strategies

– May not consider
optimal representation
given experimental context
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of their modelling practices, transparency, and interpretability. We set forth recommendations that we
believe will increase the future potential clinical value of deep learning systems in this domain. Careful
consideration of these concepts can help to inform a clinical framework that can effectively incorporate
deep learning into diagnostic and prognostic systems, enhancing our ability to improve patient care.

2.7 Declaration of Competing Interest

All authors report no competing interests.

2.8 Acknowledgements

This work was conducted with the financial support of Science Foundation Ireland under Grant number
18/CRT/6214.

2.9 Data availability

All studies in this systematic literature review are accessible via PubMed and Web of Science.

32



Chapter 3

Genetic Association Studies of
Convolutional Neural

Network-Derived Intermediate
Phenotypes of Brain Disorders

.

3.1 Introduction

As detailed in our systematic literature review, the application of convolutional neural networks (CNNs)
to neuroimaging data of brain disorders can yield high predictive accuracies in testing datasets. This is
of great interest given the lack of reliable biomarkers available for a range of brain disorders, which could
prove useful for diagnostic/prognostic applications. However, brain disorder biomarkers are also of great
interest in the context of elucidating disorder pathology and potential underlying biological mechanisms.
For example, the diagnostic criteria of bipolar disorder and schizophrenia are informed by differences in
cognitive systems, but identifying neuroanatomical correlates of those phenotypes has remained difficult
[2]. Further, quantifiable biomarkers are used primarily to provide context in the presence of other
behavioural or cognitive features in clinical diagnostic frameworks, including for Alzheimer’s disease
(AD), where neuroanatomical differences are commonly observed in cases relative to controls [59, 77].
Nonetheless, identifying the biological manifestations of distinct psychiatric and neurological disorders
may yield insight into the biological means by which behavioural or cognitive features used in clinical
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practice may come about. In considering our previous review, the application of CNNs to brain disorders
to identify biomarkers is limited by several factors. Firstly, as a general rule, it is difficult to establish
causality from observational studies of any kind. This means that a feature associated with a phenotype by
way of its contribution to an accurate prediction may not be informative for understanding any systems
related to the disorder. Secondly, any confounding variables we can measure cannot be controlled for
in the traditional statistical sense in deep learning models; this is because regression models are designed
to facilitate inferential statements about the data generating process, whereas deep learning models are
usually designed to maximise predictive performance by leveraging relationships of any nature in the data.
This means that if we can identify input features deemed important by a predictive neural network, this
‘importance’ must be cautiously interpreted. Thirdly, neural networks and related models are designed
with primarily predictive tasks in mind, making it difficult to identify features important for classification
in the first instance. While methods exist to measure the importance of image features to CNNs, they do
not have the same interpretation as classical regression coefficients [95].

Despite these issues, the predictive capabilities of CNNs applied to brain disorders incentivises efforts
to understand their data representations. In identifying features important to classification accuracy in an
interpretable fashion, we have the potential to better understand brain disorder pathology as it relates to
differences in structural neuroimaging. Furthermore, if these features can be understood and represented
as phenotypes, we can query the genetic basis of a potentially novel biomarker associated with a particular
disorder. This is advantageous from both a confirmatory and exploratory perspective, by allowing us to
test whether or not the molecular correlates of our biomarkers make sense in the context of the disorder
in question.

To this end, we sought to train a CNN to classify Alzheimer’s disease using neuroimaging data and
carry out a genome wide association study (GWAS) on the features deemed important by the model. The
remainder of this chapter describes the neuroanatomical features and genetic architecture of Alzheimer’s
disease, interpretability in CNN models, and subsequently our methods, results, and discussion.

3.1.1 Alzheimer’s disease

Alzheimer’s disease (AD) is a debilitating progressive neurodegenerative condition characterised by im-
paired cognitive function and loss of memory [190]. It is especially prevalent in elderly populations [191].
Due to increased global life expectancy, its incidence, and subsequent disease burden, has increased signif-
icantly over the past 3 decades [192]. As such, it has been the focus of research efforts since its description
[193, 194]. Its etiology is multi-faceted, with a range of social, environmental, and genetic risk factors
contributing to its progression [195]. As medical imaging became widespread, it was observed that brain
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region atrophy was frequently observed in individuals with AD [196, 197]. As previously mentioned,
access to neuroimaging consortia such as the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and
large sample sizes for GWAS yielded several biological correlates of AD [35, 53, 60, 61]. Early genetic linkage
studies implicated mutations in the ϵ4 allele of the apolipoprotein-E (ApoE) gene as strong genetic pre-
dictors of late onset AD, a result verified by later GWAS [35, 198]. The ApoE4 isoform results in impeded
clearance of amyloid-β, thus contributing to its increased toxic accumulation in neural tissues, leading
to subsequent neurodegeneration [199]. Its characterisation spawned several theories on AD molecular
pathology. Accumulation of neurofibrillary tangles and β-amyloid plaques in the brain are thought to
be potential causal factors, leading to impaired neurotransmitter function and potential neurotoxicity
[200–202]. Additionally, atrophy in several brain regions – such as temporal lobe structures thought
to be responsible for memory formation – has been repeatedly described in AD participants [203, 204].
Its clinical diagnosis is still primarily reliant on behavioural features despite the identification of several
neuroimaging correlates [190]. As previously noted, neuroanatomical endophenotypes of AD include
medial temporal lobe and hippocampal atrophy [71].

Recent predictive studies of AD using neuroimaging data have demonstrated high predictive accu-
racies [181]. For example, our systematic literature review found that the mean predictive accuracy of 57
studies classifying brain disorders was 89.53± 8.69%, with the majority of studies using AD or cognitive
impairment as outcomes. This suggests that CNNs have the potential to classify AD with high accuracy.
This also demonstrates the potential of using such models to describe novel endophenotypes of AD. How-
ever, the use of deep learning approaches for endophenotype derivation in AD has been scarcely explored.
In [205], the authors train a classifier to identify transcriptomic signals associated with AD that may serve
as candidate endophenotypes. No studies have attempted a similar principle using neuroimaging data.
This may be due to interpretability issues in CNN models.

3.1.2 Interpretability of CNNs

CNNs are often high-dimensional models creating abstract representations of input data [117]. Since
their introduction, researchers have been concerned with means by which to understand their internal
representations. This could be accomplished by examining the makeup of feature maps while models did
not have millions of parameters [206]. More recently, models have increased exponentially in size, making
this task more difficult [95]. As such, researchers considered alternate strategies, including class activation
maps [207]. These methods offered immediate visual explanatory insight by overlaying ‘importance-
ranked’ sum-weighted feature maps over input images. While useful, its implementation required that
a specific layer be included before prediction. This lead to the introduction of a generalisable variant
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termed gradient-based class activation mapping (Grad-CAM)[96]. Such methods could be used with
pre-trained models and required only obtaining the gradient of output with respect to the input. Further,
these approaches were related to other gradient-based methods that overlayed gradients directly onto input
images [95]. These approaches were utilised for identifying features important for several classification
tasks, including tuberculosis screening from X-ray data [208] and skin lesions [209]. Further, Grad-CAM
has been used in CNN models of multiple sclerosis [210], lung cancer [211], and coronavirus [212] to
identify relevant variables. Recently, the use of counterfactuals has also been explored for brain imaging
classifiers [213].

Given the predictive potential of CNNs applied to neuroimaging collections and the recent advances
in interpretability methods, it would be of interest to attempt to derive understandable endophenotypes
of AD using brain structural information.

3.2 Methods

3.2.1 Phenotype representation

An attractive potential approach to endophenotype derivation from imaging data is Grad-CAM owing
to its widespread use and properties. However, in order to use endophenotypes in GWAS, they must be
converted to empirical phenotypes as opposed to image data types. This poses issues as the output of
Grad-CAM is a heatmap. The use of bounding boxes may be considered, whereby a summary of the pixel
values serve as the phenotype per participant. However, it would be difficult to ensure that the same brain
information is considered per individual owing to subtle differences in image registration. Additionally,
the final step of Grad-CAM usually involves resizing the output, which may cause information loss when
the final convolutional layer is small.

Alternatively, we can consider a variant of the class activation mapping approach to output a phe-
notype capturing the internal model representation. This can be accomplished through a global average
pooling layer following the final convolutional operation, the outputs of which are sum-weighted to give
an output prediction. This can be expressed as:

ŷ = α

(
k∑

k=1

wkĀk

)
, (3.1)

where Āk represents the average activation of feature map A indexed by k at the final convolutional layer,
w is its associated weights vector, α is a sigmoidal transformation that bounds the output between zero
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and one, and ŷ is the output prediction. Equation 3.1 is very similar to equation ??, and possesses some of
the same interpretable properties. For instance, wk represents the contribution of the average of feature
map Ak to the final prediction, affording us the opportunity to rank the most significant feature map of
the setk based on its value inw. This is useful for two reasons: firstly, it allows a single number that is easily
computed to be used as the phenotype in a GWAS; secondly, we can calculate the gradient of this quantity
with respect to the input pixel values to identify brain regions contributing to its value. This is similar
to standard class activation mapping in architecture, whereby the global average pooling output acts as
the final phenotype. We can also correlate this quantity with volumetric brain information variation to
better understand its properties.

3.2.2 Data demographics

We trained a custom CNN model on skull-stripped and registered MRI data from 423 participants from
the ADNI consortium, comprising 196 AD participants and 227 control individuals. In order to reduce
the amount of noise in the classification space, we only considered participants with an AD diagnosis or
a cognitively normal (CN) phenotype during training, excluding an intermediate subset of participants
with mild cognitive impairment. This is because our primary modelling objective is to train a classifier
that can distinguish clinically confirmed AD from CN participants in a binary fashion – greater sample
sizes may be required to build an efficient three-class model.

Figure 3.1 shows the demographic breakdown of the training and testing split, which contained 284
and 139 participants respectively. Linear models of age regressed against partition status (P = 0.967) and
sex (P = 0.521) revealed no significant associations, nor did logistic regressions of sex against partition
status (P = 0.779) and age (P = 0.519), suggesting no statistically significant differences between
demographic characteristics in the training and test sets. In order to relate our results back to human-
interpretable concepts, we also obtained Freesurfer-processed tabular structural neuroimaging data from
the 423 aforementioned participants, representing 249 neuroanatomical measurements per participant.
This was obtained from the aparc and aseg output files provided on the ADNI website resulting from the
recon-all command applied using FreeSurfer 4.3.

3.2.3 Data splitting

Owing to the large input sample size, we endeavoured to reduce computational overhead while still preserv-
ing important information per participant. We can preserve the majority of information per participant
by leveraging the fact that there are usually many zeros in MRI volumes, and as such, a large amount of
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Figure 3.1: Demographic information for 423 participants based on their training/test partition, sex, and
age. We found no statistically significant differences between age or sex across partitions using linear and
logistic regression models respectively.
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Figure 3.2: The distribution of S values on the y-axis for every slice of a sample participant (x-axis). Here,
the Shannon entropy value S is displayed on the y-axis and the slice index is displayed on the x-axis. The
upper quantile of the S distribution is denoted in red, and is highest towards the middle indices of the
participant’s image, indicating that there is more information in bits contained in the corresponding slices.

the input volumes can be discarded. We can formalise this by measuring the Shannon entropy (S) of every
image slice along a given axis, denoted by:

S = −
∑
x

(p(x)log2p(x)) , (3.2)

where p(x) represents the proportion of pixels of that value as a fraction of all pixels (ie., how many pixels
out of a 100× 100 image take on the value i) for every pixel value indexed by x. We can then retain slices
above an individual-specific information threshold, resulting in a set number of informative image slices
per participant (Figure 3.2).

We found that this methodology results in the same number of slices with S values above the upper
quantile per participant, resulting in 64 slices per participant representing the most informative parts
of the 3D volume along the given axis. This ensures that the same information is being considered per
participant across the 64 slices.
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3.2.4 Volume splitting

We split our MRI volumes of size 2563 into participant-level collections of 2D slices of size 64×256×256

pixels according to our S distribution. This operation was performed independently in training and test
sets after training-test set partition to prevent information leakage. We further split the training set into
separate validation sets at the subject level to monitor performance, whereby 15% of the training data
subjects were held out for independent testing during training. Finally, we concatenated every slice into a
dataset of size 241× (64× 256× 256) for the training set, 42× (64× 256× 256) for the validation
set, and 140 × (64 × 256 × 256) for the independent testing set respectively. We also implemented a
custom image augmentation algorithm which added 3000 extra images to the training set that underwent
a random amount of rotation, resulting in a ≈ 19% increase in training dataset size. Image augmentation
techniques seek to increase training dataset size by re-purposing original images using rotation or cropping
procedures. This has the advantage of potentially increasing generalisability performance owing to the
fact that augmented images are essentially noisy analogues of real inputs [214].

3.2.5 Model construction and evaluation

We constructed a model according to the schematic in Figure 3.3. Our final two layers promote a sparse
data representation, with a global average pooling layer fed directly to a prediction layer. We implemented
a rectified linear unit transformation as the activation function at every convolutional layer and a sigmoid
transformation at the last layer. We used the adaptive moment estimation optimiser (Adam) with a
learning rate of 3e−4 during training [215]. This optimisation algorithm applies an adaptive learning
rate based on the severity of previous weight updates, demonstrating stable convergence solutions in a
range of CNN training tasks [215].

We measured the accuracy and area under the receiver operating characteristic curve (AUC) in the
test population at the slice level and averaged the predictions per participant.

3.2.6 Phenotype extraction

After training and evaluation, we ranked the final weights vector to find the feature map with the greatest
effect on the output. Because the activation function used throughout the network is a rectified linear
unit (max(0, x)), every entry was positive, making our ranking task trivial. We extracted this output
feature map average for every slice in both train and test datasets and averaged the score per participant.
To boost our sample size, we applied the trained model to an additional set of mild cognitive impairment
participants to increase the power for a GWAS, yielding 744 participant feature map scores. Mild cognitive
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32 * (3,3)
Convolutional layer  
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Max Pooling (2,2)
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Convolutional layer  

Repeated 2x 

Global Average
Pooling 

Prediction (sigmoid
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Figure 3.3: Schematic of our CNN model architecture. Here, we denote the individual operations in
boxes; where we describe repeating procedures, the output of the first pass of the operation is used as the
input to the second. For example, in our first layer, the output of the 32 feature maps populated during
the first convolutional operation is passed through subsequent convolutional operations that populate
another 32 feature maps. In brackets, we denote the window size of the associated operation – for instance,
(3,3) in a convolutional layer describes a convolutional filter with a dimensionality of 3× 3; (2,2) in a max
pooling layer indicates that the maximum number in a 2 × 2 window is returned as the output of the
operation.
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impairment is an intermediate state between a cognitive control phenotype and AD. We excluded these
samples from our predictive model training to ensure that the signal considered for our CNN was based
entirely on clinically defined AD; however, we included them in our GWAS step, expecting that their
feature map output scores would fall between control and AD participants.

3.2.7 GWAS

We imputed genetic information with beagle using the 1000 Genomes project haplotype maps as a refer-
ence [216, 217]. We constructed a genetic relationship matrix using a set of 556,516 HAPMAP3 variants
pruned with the following parameters: r2 greater than 0.9 in a 100 variant sliding window of size 1000
and minor allele frequency > 0.01. We calculated principal components using linkage disequilibrium-
pruned variants with r2 > 0.05 in a sliding window of 1000 bp width and 50 bp step size. We validated
that ancestry effects were captured by principal components (Supplementary materials). We then used
fastGWA to fit a linear mixed model to the imputed variants, covarying for age, site, and sex as fixed effects,
and the top 10 ancestry principal components as random effects [218]. We further fit a separate GWAS
following the same procedure restricted to individuals of white ethnicity only. Further, we carried out a
power analysis to understand what genetic effects we were capable of detecting. Aside from imputation,
we followed the pipeline described in [219] to preprocess genotype data and carry out the GWAS.

3.2.8 Interpretation and visualisation

We applied the full suite of FUMA tools to our results to investigate the tissue enrichment profile of our
results and single nucleotide polymorphisms (SNPs) in linkage disequilibrium with significant variants
[220]. We further defined a gradient map of score values using the approach presented in ??, whereby
the expected change in score value given a change in input pixel value was overlaid on its respective input
image. We prioritised the image slices with the largest feature map score per participant for visualisation to
identify global trends driving score activity. Further, we calculated the top 40 principal components for any
participants that had tabular data available (533/744) to capture as many axes of variation as possible. We
then regressed 40 principal components of structural neuroimaging features for a subset of the participants
(533) against our CNN score and held age and sex as fixed covariates. Specifically, we fit the following
equation:

Āk = β0PCi + β1age+ β2sex+ ϵ (3.3)

whereby Āk is the averaged feature map with the largest contribution to the final layer, PCi is a principal
component indexed by i, βage is the effect of age, βsex is the effect of sex, and ϵ is random noise. We
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seek to estimate β0, which represents the magnitude change expected in Āk given a unit increase in PCi.
We accounted for multiple hypothesis testing of many principal components by setting a Bonferroni-
corrected p-value threshold of 0.05÷ 40. The resultant significant components were visualised and their
eigenvectors were examined to identify the structural variables contributing most to the axes of direction
correlated with our activation score. This is motivated by a desire to relate the variation in our output
score to human-interpretable neuroanatomical features.

Finally, we regressed our CNN-derived score against every structural variable to obtain estimates of
mediated coefficient effects. These quantities represent the expected change in CNN-derived feature map
score given a unit increase in the measured variable holding constant every other variable. We added age
and sex covariates as terms in our regression model.

3.3 Results

3.3.1 CNN performance and phenotype extraction

We obtained participant-level accuracies of 82%, 80%, and 79% on unseen test data across 3 repeat exper-
iments for our proposed model. Figure 3.4 shows the ROC curve of the highest performing model and
its AUC (0.84). We extracted feature map average scores from the feature map 47 of this model, which
had the highest weight connection at the final layer. We aggregated global average pooling outputs for
this feature map per participant and plotted them according to our three phenotype categories. Figure 3.5
shows the standardised feature map 47 score, which appears to be stratify participants continuously as
cognitive impairment increases.

3.3.2 GWAS results

Our GWAS of feature map 47 scores yielded 5 genomic risk loci on chromosome 2 (Table 3.1) and 7
significant independent lead SNPs on the same chromosome (P < 5e − 8). The overall estimated
heritability was 9.8e−16using the method presented in [221] given by estimating the phenotypic variance
explained by additive genetic effects using a genetic relationship matrix. Fourteen genes were mapped
based on the associated genomic risk loci (Table 3.2), and Figure 3.6 displays the Manhattan plot for the
associated GWAS results, with the gene closest to the most significant SNP (GPR75-ASB3) annotated.
One genomic risk locus (rs2542584, β = −1.9) is an intronic variant in high LD with 160 other SNPs
(r2 ≥ 0.6, Table 3.1) and is mapped to eight of our fourteen mapped genes (GPR75-ASB3, ASB3, CHAC2,
ERLEC1, GPR75, PSME4, ACYP2, and SPTBN1). Its raw CADD score, a measure of a variants likely
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Figure 3.4: ROC curve and AUC for the highest performing model, with the x-axis displaying the false
positive rate and the y-axis displaying the true positive rate. The red line denotes the relationship between
these quantities in a random-guess scenario.
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Figure 3.5: Standardised participant-level feature map 47 average scores across phenotypic designations.
The feature map 47 score per participant is visualised on the x-axis and the y-axis describe group categories.
The pairwise p-values between groups were not computed as the feature map in question was chosen using
a weight ranking system, meaning that the statistical differences between groupings are not necessarily
relevant to subsequent experiments.
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deleteriousness, is5.94, with a normalised value of0.32 (given by dividing every raw value by the maximum
from annotated SNPs). Another intronic genomic risk locus (rs1318672, β = 1.54) was in LD with 157
other SNPs, including an exonic nonsysnonymous single nucleotide polymorphism not tagged in our
dataset (rs3762513, r2 = 0.65, Figure 3.7). However, the exonic variant’s CADD score is lower (0.173)
than that of our intronic genomic risk locus (raw = 5.512, scaled = 0.29). Further, it was mapped to three
genes of our fourteen given by MAGMA (CCDC104,SMEK2, and PNPT1). We found that a variant in
LD with the intronic rs10194108 variant (β = 1.5) from our genomic risk loci list located in the SPTBN1
gene had a high predicted CADD score despite being intronic (rs78496188, raw = 17.23, scaled = 0.92).
Further, rs10194108 was also mapped to the EML6 gene, which codes for a microtubulin transport protein.
Both rs376336838 and rs141237032 (β = 1.52 and 1.49 respectively) were in LD with 2 and 1 SNP(s)
respectively. Both SNPs were intronic, with rs141237032 mapping to a non-coding intronic region. Hence,
only rs376336838 was mapped to protein-forming genes (STON1 and STON1-GTF2A1L).

A collection of mapped genes were shown to have literature support for involvement with neurode-
generation phenotypes, proteasome function, and cellular homeostasis in the context of AD and other
psychiatric conditions [222–224]. The majority of tagged SNPs (including those not present in the dataset
but in LD (r2 ≥ 0.6) with independent significant SNPs) were estimated to be enriched for intronic,
intergenic, and non-coding RNA intronic functional categories, with all categories reaching significance
in a Fisher’s exact test as estimated from ANNOVAR (P = 1.9e−61, 1.6e−36, 1.7e−14 respectively).
This test also included linked SNPs.

Figure 3.8 suggested the nervous system was one of the primary areas of tissue-specific expression
amongst the 14 mapped genes provided by FUMA according to average log2 genotype-tissue expression
(GTEx) results. However, this result was not significant in a hypergeometric test of enrichment (P >

0.05).
Figure 3.9 shows a SNP-wise mean test of p-values, using an aggregated p-value per gene as a test statistic

as per MAGMA methodology [225]. Several genes on chromosome 2 reached significance, including
CCDC88A, CCDC104, and SMEK2. Additionally, ITGA1 and TBC1D22A were also found to be significant
on chromosomes 5 and 22 respectively. CCDC104 and SMEK2 were also part of the set of mapped genes,
with both genes containing variants in LD (r2 > 0.6) with with CADD scores of ≈ 18.

3.3.3 Principal component correlation

We found that 5 out of the 40 principal components (PCs) of tabular neuroanatomical variation measures
had regression terms with significant p-values after Bonferroni correction (Figure 3.10). We focused on
the PC with the highest R2 value, PC2, and examined its top 10 loadings, representing their contribution
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Figure 3.6: Manhattan plot of GWAS results. Suggestive significance threshold lines were drawn at
−log10(1e − 5), and genome-wide significance threshold lines were drawn at −log10(5e − 8). The
closest mapped gene to the top independent SNP, GPR75-ASB3, is annotated.

47



Figure 3.7: Regional association plot of gene CCDC104 and its tagged variants both in and outside of the
dataset. CADD score is a measurement of the predicted deleteriousness of a given variant, with higher
scores indicating greater chance of deleterious effects based on computational and experimental evidence.
The RegulomeDB score indicates the likelihood of a difference in binding activity of a gene given the
variant in question according to functional assay experimental evidence, with larger scores indicating less
evidence of binding disruption. The dark blue point on the CADD plot denotes rs3762513, a SNP in LD
with rs13027853 (r2 = 0.65, dark red point on upper plot), an exonic non-synonymous variant in the
CCDC104 gene, with low CADD (0.173) and RegulomeDB (6) scores.
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Table 3.1: Genomic risk loci identified by FUMA. Genomic risk loci are defined as aggregations of SNPs
in LD (r2 ≥ 0.6) with independent significant SNPs identified by GWAS results. nSNPs denotes the
number of SNPs in LD (r2 ≥ 0.6) with the given SNP that may or may not be in the GWAS dataset;
nGWASSNPS denotes the number of SNPs in LD (r2 ≥ 0.6) with the given SNP that are present in
the GWAS dataset; nIndSigSNPs denotes the number of independent significant SNPs (r2 < 0.6) in the
locus; nLeadSNPs denotes the number of lead SNPs (r2 < 0.1) in the locus.

rsID chr pos p start end nSNPs nGWASSNPs nIndSigSNPs nLeadSNPs

rs376336838 2 48803637 3.5e-09 48803637 48808594 2 1 1 1
rs141237032 2 52381261 2.4e-08 52381261 52381261 1 1 1 1
rs2542584 2 54009844 7.2e-11 53654561 54386344 160 29 3 3
rs10194108 2 54964021 1.3e-08 54736382 54969379 90 7 1 1
rs1318672 2 55768883 3.4e-08 55723643 55923831 157 64 3 1

Table 3.2: Mapped genes given by MAGMA as part of FUMA.

symbol chr start end strand entrezID minGwasP IndSigSNPs

STON1 2 48756522 48826025 +ve 11037 3.5e-09 rs376336838
STON1-GTF2A1L 2 48757064 49003654 +ve 286749 3.5e-09 rs376336838
GPR75-ASB3 2 53759810 54087170 -ve 51130 7.1e-11 rs530198155;rs2542584
ASB3 2 53897430 54087297 -ve 100302652 7.1e-11 rs2542584
CHAC2 2 53994929 54002333 +ve 494143 7.1e-11 rs2542584
ERLEC1 2 54014181 54045956 +ve 27248 7.1e-11 rs2542584
GPR75 2 54080050 54087126 -ve 10936 NaN rs2542584
PSME4 2 54091204 54197977 -ve 23198 NaN rs2542584
ACYP2 2 54197975 54532437 +ve 98 4.9e-02 rs2542584
SPTBN1 2 54683422 54896812 +ve 6711 NaN rs10194108
EML6 2 54950636 55199157 +ve 400954 1.3e-08 rs10194108
CCDC104 2 55746740 55773015 +ve 112942 3.4e-08 rs13027853;rs1318672
SMEK2 2 55774428 55846015 -ve 57223 3.4e-08 rs1318672;rs13027853;rs6737995
PNPT1 2 55861400 55921045 -ve 87178 3.4e-08 rs13027853;rs1318672;rs6737995

to the final PC2 value which correlated significantly with our CNN activation score (Table 3.3). The
surface areas of both hemispheres had the highest loadings for this PC, and the total variance explained by
this component was 37.2%. Other regions in the top 10 eigenvectors included the lateral ventricles, the
choiroid plexus, and the precentral gyrus.

3.3.4 Gradient-based visualisation

We plotted the absolute gradient of the participant-average feature map 47 score to visually examine region
importance according to our model (Figure 3.11). In this plot, the colorbar represents the expected output
change (feature map activation average score) based on a perturbation in the input value of the pixel in
question. We specifically focused on brain slices from AD participants with the highest model predictions
- visual examination of these regions shows that areas of the parietal lobes and lateral ventricles appear to
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Figure 3.8: Heatmap of GtEX average log2 transcripts per million (TPM) values across tissues for the 14
genes mapped from 5 genomic risk loci. Tissues are displayed on the x-axis and the associated genes are
displayed on the y-axis, with colors corresponding to the magnitude of the average log2 expression of that
gene in the corresponding tissue.

have the greatest influence on feature map activation score. Additionally, we observe that gradient values
are particularly high around the edges of brain tissue, suggesting that our score is sensitive to changes in
boundary areas. This may suggest that overall brain size is an encoded feature owing to the fact that pixel
value changes in these regions imply volumetric differences. However, the direction of effect is unclear as
the gradient calculation does not presuppose a specific direction of perturbation, making it difficult to
interpret these gradient maps as evidence for atrophy or volumetric increase in any region.

3.3.5 Regression of CNN score against structural variables

We found that 11 terms were significant in our regression of CNN score against brain structural variables
holding constant age and sex. In Figure 3.12, we plot 2 variables with the highest R2 values from the set of
coefficients with test statistic p-values less than 0.05 (volume of left lateral ventricle and thickness of right
inferior parietal, R2 = 0.1 respectively). According to our scatter plots, high FMAP47 score is associated
with cortical thinning in the inferior parietal and increased volume of the left lateral ventricle.
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Figure 3.9: Manhattan plot of gene-based results from a SNP-wise mean model provided by MAGMA.
Significance threshold is set as 0.05 divided by the number of protein coding genes with mappings from
the summary statistics (15833).

Table 3.3: Table of top 10 highest region eigenvectors for PC2.

Region Eigenvector Value

Surface Area of Right Hemisphere 0.094
Surface Area of Left Hemisphere 0.091
Volume of Left Inferior Lateral Ventricle 0.084
Volume of Right Choroid Plexus 0.083
Surface Area of Right Precentral 0.082
Volume of Third Ventricle 0.081
Volume of Right Lateral Ventricle 0.081
Volume of Left Choroid Plexus 0.080
Volume of Right Inferior Lateral Ventricle 0.080
Surface Area of Right Postcentral 0.080
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Figure 3.10: Principal component nodes surviving Bonferroni correction significantly correlated with
our feature map activation score. PC2 (first row, second column) had the highest R2 value (0.11) and
explained 37.2% of the variation in the dataset.
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Figure 3.11: Maps of the absolute gradient of feature map 47 scores in 6 brain slices from 6 different
participants with AD. The slices with the highest returned prediction for AD were chosen for visualisation.
Here, the absolute gradient of the feature map 47 output score for that slice given a change in the input
denotes the magnitude of the color intensity. Therefore, more intense color values correspond to greater
feature map 47 score given pixel changes in those respective regions.
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3.3.6 Power analysis

Our power analysis indicated that with a sample size of 744 and a genome wide significance threshold of
5e−8, we are at 80% power to detect variants of effect size 0.318 when the minor allele frequency of those
variants is 0.5 (Figure A.3). The effect size refers to the variance explained by the SNP in question. To
maintain 80% power at lower minor allele frequencies, the effect size of the variant must be larger. For
example, our study is powered to detect 80% of variants at minor allele frequencies of 0.1 provided they
have true effect sizes of greater than 0.53, which translates to a large amount of variance explained for a
single variant.

3.3.7 Ancestrally restricted GWAS

We found that results did not differ substantially when 53 samples were removed for an ancestrally restricted
GWAS of Caucasian participants. Instead of five genomic risk loci, 3 were reported, with 5 lead SNPs
returned instead of 7. There were no differences in functional annotation results, with the same genes
reported in MAGMA tests and the same annotation enrichment categories (intergenic, intronic, and
ncRNA intronic). The removal of 53 samples meant that p-value magnitude decreased across all variants
(Figure A.5). Principal components 1 and 2 appeared to capture ancestry effects (Figure A.1).

3.4 Discussion

3.4.1 Model construction, evaluation, and performance

The principles underlying Chapter 1 influenced our architectural choices and general experimental prac-
tices. We created a parsimonious model with just 397 thousand trainable parameters. In comparison,
many popular CNN image modelling architectures (such as VGG-16), have upwards of 100 million train-
able parameters [95]. While the use of a global average pooling layer was primarily intended to facilitate
interpretability at the penultimate layer, it also has the added advantage of enforcing sparsity onto the
model’s representation of the modelling space through averaging the entire signal from a feature map into
a single number. This acts in tandem with our choice of activation function (the rectified linear unit)
which can propagate zeros throughout the network (the function returns a 0 where values are negative).
Such modelling choices that emphasize sparsity may reduce prediction bias in different data domains.

Furthermore, our model achieved competitive predictive accuracies compared to other models trained
on ADNI data, especially considering the relatively small amount of trainable parameters in our architec-
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ture. The final accuracy of our best-performing model on a hold-out test set was 82%, whereas the mean
testing accuracy reported by studies making use of the ADNI dataset was 90%. While further model tun-
ing may yield gains in predictive performance, it is worth noting that further performance evaluation on
separate datasets would first be required to measure generalisation performance. While model weights are
not directly informed by testing labels, the vast majority of deep learning applications are architecturally
informed by testing set performance – therefore, conditioning model hyperparameter choices on testing
performances in one population may limit the applicability of the model at large to other populations. It
is of interest to consider the relationship between testing accuracy and genetic signal strength – is a model
with increased testing accuracy more likely to yield a higher number of significant genetic variants? We
will expound upon this point at a later point of the discussion.

3.4.2 GWAS results

Our heritability estimate for the feature map with the largest contribution to AD classification was low and
statistically insignificant. Despite this, Figures 3.6 and 3.9 indicate several genome-wide significant results
of biological interest. For example, several genes mapped to our lead SNPs have been investigated in AD-
related molecular phenotypes. PSME4 encodes a subunit of the proteasome complex which is responsible
for maintenance of cellular homeostasis through degradation of aberrant proteins. Additionally, one of
the defining characteristics of AD is the deposition of extracellular plaques, which may be facilitated by
impaired proteasomal function. In [222], it was reported that proteasome subunit gene expression in a
population of AD mice was increased relative to age-matched controls. While the fold change of PSME4
was consistently greater in AD cortex gene expression profiles compared to controls, the authors reported
no significant test statistics. However, PSME4 contains 31 SNPs in linkage disequilibrium (r2 > 0.6)
with lead SNP rs2542584, the majority of which are intronic. One such tagged SNP, rs805309, with the
highest CADD score (CADD > 8, r2 = 0.76) is located in the first intron of the PSME4. How altered
expression of PSME4 and its effect on proteasomal activity effects AD pathology is currently unknown.
PSME4 was also found to be significantly differentially expressed in Parkinson’s disease (negative log fold
change relative to controls) and AD (positive log fold change relative to controls), suggesting that the
proteaosme in general is a biological system of interest with respect to neurodegeneration [226, 227].

Additionally, SPTBN1 is a member of the spectrin forming complex, an often-disrupted system in
neurodegenerative diseases [223]. According to Figure 3.8, this gene appears to exhibit high expression
in brain and nerve tissues. However, its observed log fold change according to gene tissue expression
signatures is non-significant in both cases. Whole-exome protein-truncating variant analyses of children
with autism spectrum disorder and attention deficit hyperactivity disorder in a Danish population showed
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that SPTBN1 variants had a significant odds ratio in a logistic regression of cases vs. controls, but this
association did not survive genome-wide Bonferroni significance testing (OR = 14.9, p = 9.90× 10−4)
[228]. Interestingly, the tagged SNP with the highest CADD score, rs78496188 (CADD=17.23) is located
in the second intron of the gene (which has 2 supported transcripts). Additionally, the variant in question
falls within a region identified as a likely transcription start site by the ENCODE consortium [229].
However, its functional consequence remains difficult to interpret - there is no evidence of any splicing
effect caused by this SNP, or indeed any understanding of the effect of splicing variants on the expression of
SPTBN1 in the context of spectrin formation. According to GTEx results, this gene is expressed the most
in nervous tissues in units of transcripts per million (Figure 3.8). Given its role in determining cell shape
in brain tissues through spectrin formation, this finding indicates that our phenotype may be associated
with a gene known to be associated with neurdegenerative and psychiatric phenotypes via associated SNPs
[223, 228].

Another gene of interest in our results, ERLEC1, has been previously implicated in the molecular
pathology of AD in mouse brains. In [224], the authors suggest that membralin is a co-precipatory
protein of ERLEC1, which forms part of the endoplasmic reticulum associated degradation (ERAD)
pathway, responsible for cellular homeostasis. Further, the authors simulate amyloid-β like pathology
in mouse AD brains by downregulating membralin, indicating that ERLEC1 and the ERAD system at
large may be involved with the molecular pathology of AD. Furthermore, analyses of human RNA-Seq
experimental datasets in [230] classified ERLEC1 as a hub gene amongst networks of AD-differential gene
sets. While these findings appear to increase the biological plausibility of our results, it is unknown how
the specifics of the ERAD system function in human brain cells, and moreover, how the system interacts
with AD molecular pathology.

Two genes reaching significance in MAGMA’s gene-based test, CCDC104 and SMEK2, had variants
in LD with rs8080, which has a CADD score of 18.03 (Figure 3.9). The variant is located in the 17th
exon of the SMEK2 gene, also known as PPP4R3B. Curiously, there is no literature support indicating
these genes and the associated high-CADD variant are involved with AD, although GTEx results suggest
SMEK2 has high expression in brain and testicular tissues. In contrast, [231] found ITGA1 was significantly
differentially expressed in APOE-ϵ4 carriers relative to controls based on blood samples. However, GTEx
results show that levels of gene expression are low in every region of the brain relative to other tissues,
suggesting limited evidence for plausible molecular association. Further, TBC1D22A, a gene showing
specifically high expression in lymphocytes, has not been reported by previous studies of AD. Overall,
this suggests there is limited prior evidence that results found to be significant in the gene-based test are
associated with AD in any meaningful way.
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However, our power analysis suggests that we are powered to detect variants of effect sizes of at least
0.32 when the minor allele frequency is 0.5. This effect size is large and by definition the minor allele
frequency cannot exceed 0.5, making common variants of these qualities implausible. As the minor allele
frequency decreases, the effect size must increase in order for our study to maintain 80% power. It is
unlikely that any variants have effect sizes of this magnitude. This means that if there are any variants of
small effect associated with our endophenotype, we are underpowered to detect them. It is also worth
noting that while the exclusion of 53 samples did not cause major differences in outcome results, the overall
magnitude of p-values decreased. This suggests that our study is sensitive to loss of samples.

It is of general interest that the only major peak in our Manhattan plot is on chromosome 2. Addi-
tionally, it is a broad peak, which may be caused by artefacts in the genotype data. This is because it is
unlikely that multiple independent significant variants of effect sizes large enough to be detected by our
study are concentrated in the same region. Further, an examination of the Manhattan plots from the
online PheWeb browser provided by [232] shows that imaging derived phenotypes (IDPs) associated with
our CNN score do not exhibit broad peaks or LD peaks on chromosome 2. Additionally, an examination
of Figure 1 from [35] shows an absence of broad peaks. The tail end of chromosome 3 also contains many
variants with similar p-values, a structure not present in any previous studies. This suggests that there
is limited variability in this genomic region, which may be further evidence of artefacts in the genotype
data. Consequently, this casts doubt on the overall validity of our GWAS results. More stringent quality
control procedures in combination with larger sample sizes may be necessary to increase confidence in the
results of future studies.

3.4.3 Feature map score correlation with structural neuroimaging measures

Our combination of gradient-based methods, PC-component regression, and standard linear models
aided our interpretative efforts by allowing us to query the visual and empirical basis of our feature map
score. Interestingly, gradient results indicated changes in collections of pixels on the edge of brain tissue
had the greatest impact on feature map score magnitude. While it is difficult to identify the exact direction
of effect in all cases, gradient values located near the edges of brain tissue are likely related to brain size
differences, because changes in either direction will influence this quantity. This conclusion appears to be
supported by our complementary PC regression results; the top-weighted loadings of our most-correlated
PC were related to overall surface area. Additionally, we visually observed lateral ventricle importance
for our CNN score which another top loading of the same PC. Results from a larger regression model
including all structural neuroimaging measures also indicated that lateral ventricle enlargement and brain
size were significant terms. In AD, pathology is often marked by overall brain size decrease, which can be
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accompanied by lateral ventricle enlargement [233]. Indeed, enlarged ventricular tissue has been hypoth-
esised to be positively correlated with dementia severity since the 1980’s, with this finding replicated in
the ADNI dataset across cognitive impairment categorisations [204, 234]. Interestingly, gradient maps of
important pixel collections appear to highlight parietal regions of the brain, which is further corroborated
by our regression results presented in Figure 3.12. Cortical thinning of the inferior parietal lobule has
been noted in AD participants, meaning that our visual and empirical results are consistent with previous
observations [235].

Together, this indicates our CNN score represents AD-related neuranatomical information, display-
ing plausible concordance with well-established structural brain results. In comparing our results to
genetic loci associated with brain features from the UK Biobank given by [232], we found that none of
our lead SNPs were significantly associated with any imaging-derived phenotypes. This may suggest that
general neuroanatomical variation has a distinct genetic architecture to AD-related neuroanatomical vari-
ation. Based on genetic results alone, this may suggest that the phenotype extracted from our trained
CNN is not capturing relevant information, but our empirical and visual results indicate that AD-specific
neuroanatomical variation is encoded in our phenotype.

3.4.4 Global trends, future perspectives, and limitations

Our methods attempt to unify several interdisciplinary fields in a coherent fashion – predictive modelling,
statistical inference, deep learning, and genomics. Our approach seeks to exploit the potential of CNN
models to leverage non-linear data patterns and understand their dynamics. We have provided a general
framework by which a usually-opaque predictive model can be trained and queried using a combination
of visual and empirical elements to understand the features inherent to its representation of the data
domain problem. Our interest in investigating the genetic correlates of psychiatry-related neuroimaging
features meant that interpretation was of primary concern. In order to meaningfully conduct a GWAS of a
quantity, we must understand its properties. However, without leveraging the field-specific phenomenon
of neuroimaging tabular measures to supplement our findings, it is difficult to envision how gradient-
based approaches alone could facilitate the same level of interpretative power. Indeed, although the focus
on interpretation is primarily borne from an interest in the genetics of this domain, our results speak to
the general crisis of interpretability in deep learning. Our understanding of CNN-derived quantities is
fundamentally limited when only considering visual components of any kind, which is the primary output
of most popular ’saliency’ methods in use today [97]. With this in mind, our results highlight the need
for straightforward and interpretable quantities derived from deep learning models that are compatible
with GWAS.
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Furthermore, while our work provides GWAS results of an interpretable deep learning phenotype, we
must be cognizant of the potential bias inherent to our approach. Effectively, we train a predictive model
on a binary classification problem and run a GWAS of its learned features. This may result in inflated
importance of features conditioned on the representation of a model that has been exposed to labels. This
bias may arise from the specific training population in question or any number of other factors influencing
model output parameters. The current experimental framework relies on computing phenotypes on the
training population that informed the model, which may be considered a specific form of statistical ‘double
dipping’ [236, 237]. Quantifying the extent of this potential bias is difficult. Mitigating its impact would
require the use of one separate training dataset to be used for model construction and evaluation, and a
separate dataset to compute phenotypes and carry out a GWAS. The sample sizes in the ADNI consortium
do not allow for this experimental design. Additionally, the derived phenotype is still difficult to interpret,
requiring regression of tabular terms and gradient visualisations to understand.

In a larger sense, it is of interest to consider our expected results in ideal experimental conditions. We
may consider that a condition is more likely to causally influence neuroimaging measure variation than
vice versa. This is because the genetic basis of brain disorders is partially determined from birth, meaning
that neuroanatomical changes arise as a result of the phenotype. This may also be plausible as brain
structural changes are often plastic compared to the lifetime status of brain disorder classification. From
this perspective, observed AD-related neuroanatomical variation may likely only genetically determined
insofar as AD is genetically determined and causes the observed changes. However, the opposite may
also be true, with neuroanatomical variation influencing cognitive systems and resulting in brain disorder
phenotypes. This will be discussed later in the thesis.

3.5 Conclusion

Overall, we report several plausible genetic findings from a GWAS of a deep learning derived phenotype
associated with AD. We further provide a framework for CNN model construction and evaluation that
centers interpretation and empirical understanding as its guiding principles. Our work serves as a useful
proof-of-concept investigation into a subject of great interdisciplinary interest, combining predictive mod-
elling, deep learning, and molecular biology to further understand the biological correlates of a debilitating
brain disorder.
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Chapter 4

Shallow De-noising Autoencoders
to Examine the Genetic

Architecture of Sub-Phenotypes
of Alzheimer’s Disease

4.1 Introduction

The derivation of meaningful and interpretable biological correlates of brain disorders is of great clinical
and research importance. Many research efforts to derive these markers have focused on the analysis of
large neuroimaging collections using a range of statistical approaches. Most recently, large neuroimag-
ing consortia and high-performance computing infrastructures have facilitated the application of deep
learning models to this problem domain, yielding high predictive performances in Alzheimer’s disease
and other conditions [156, 181]. Accordingly, the brain imaging features of these models have been studied
to ascertain their potential as biomarkers. However, interpreting the internal representations of deep
learning models is notoriously difficult, with methods often developed only after model deployment.
This immediately limits the range of methods that can be applied to understand the dynamics of neural
network representations. This is further complicated in the context of endophenotype derivation, as we
require an interpretable output quantity that can be used in a genome wide association study (GWAS).

As described in Chapter 3, we developed a custom convolutional neural network (CNN) to derive
an interpretable quantity capturing neuroanatomical features of Alzheimer’s disease. Furthermore, we
found seven significant genome-wide significant loci in a GWAS of our candidate endophenotype. While
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promising, our GWAS includes scores derived from members of the training population which was used
to train the model, which may introduce bias. As previously mentioned, the CNN-derived quantity is
also still difficult to interpret. It is therefore of interest to derive a deep-learning sub-phenotype that does
not suffer from these limitations. Namely, we seek an approach that can capture non-linear dependen-
cies between neuroimaging variables related to brain disorders that is not reliant on prior knowledge of
condition labels. Additionally, we seek a quantity with interpretative potential of the same degree as our
CNN experiments or better. In considering these desired properties, we can examine the use of shallow
unsupervised approaches, specifically, the use of de-noising autoencoders [238]. Here, shallow refers to
the depth of the model in terms of layer numbers. This can enable straightforward interpretation of the
model’s low dimensionality internal representation post-training. Further, de-noising autoencoders have
useful properties which ensure interpretative potential is not gained at the expense of modelling flexibility,
several of which we discuss in the next section.

4.1.1 De-noising Autoencoders

De-noising autoencoders (DA) are deep learning models that map a ‘noisy’ input to an output of the same
dimensionality through an arbitrary number of differentiable layers. The noisy input is usually defined by
the addition of random noise to create a corrupted input example and the model is trained to minimise
the reconstruction loss between input and output, meaning that the goal is to output a quantity as close to
the input as possible. The introduction of corrupted examples is motivated by a desire to ensure that the
latent representation learned by the model is robust to variation, an idea explored in [238]. The purpose
of the differentiable ’hidden’ layers – usually of a lower dimensionality than the input – is twofold; firstly,
they prevent an exact one-to-one mapping of input to output, and secondly, the middle layers encode an
interpretation based on their weight vectors, the values of which are informed by an objective function
that minimises the difference between input and output through a theoretical information bottleneck. As
such, a latent space embedding is encoded through a dimensionality reduction procedure, whereby inputs
are mapped to the next layer via a series of sum-weighted transformations. After an arbitrary number
of such operations, the same procedure is applied to yield an output of the same dimensionality as the
input, and the encoded latent space is decoded. This means that the latent space which encodes the input
information is embedded with information about the intrinsic properties of the modelling space. Further
details on the exact algorithmic details of autoencoders and their variants can be found in [239].

The application of autoencoders can therefore produce an interpretable latent space. An example
of this can be found in [238], where the authors apply a shallow one-layer autoencoder to a set of gene
expression profiles of the bacteria psuedomonas aeruginosa obtained from GEO, detailing bulk RNA-
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seq experiments carried out under various experimental conditions. By conditioning the latent space on
experimental labels, they identified nodes differentially associated with conditions of interest. Further,
because the model is shallow, they examined the variables which contribute the most to the activity of
nodes significantly associated with a particular test label by examining the weights vector of that node.
They identified several biologically relevant gene sets significantly associated with different experimental
conditions. For example, they identify a strain-specific node, with genes differentially expressed across
strains featuring as the highest-weight inputs for the node in question, and an anaerobic response node
that contains several members of the anaerobic stress response as important determinants of node activity.
A similar approach was taken in [240] where the authors use denoising autoencoders to identify gene sets
from RNA-seq datasets. Additionally, autoencoders have been used in singe cell RNA-seq experiments
for transcript counting [241] and batch correction [242].

4.1.2 Theoretical conception – autoencoders applied to neuroimaging

Autoencoders offer several useful properties for our desired output. In practice, the only use requirement
is an input numeric matrix of instances and features, whereby the nodes of a latent space of arbitrary
dimensionality are defined as follows:

hk = σ

(
n∑

i=1

wixi + b

)
. (4.1)

Here, hk is the node value at hidden node k (where hidden nodes are indexed 1 through l, with l equal
to the total number of hidden nodes), x are the feature variables indexed by i from 1 through n, w is the
weights vector with the same dimensionality as x, b is a constant bias term (analogous to the intercept in
a standard regression), and σ is an arbitrary activation function. The function used for σ is user-defined,
which may include a sigmoidal transformation ( 1

1+e−x ). Here, Equation 4.1 describes the derivation of a
node value as the sum-weighted transformation of input variables. Because we construct a model with
just one layer, the values of the weight vector w have a direct interpretation. As input to the model, we
provide a tabular representation of multiple neuroimaging features per participant. This can be obtained
by taking the Freesurfer outputs denoting the neuroanatomical features of an input individual [109].

As demonstrated in our CNN work, we utilised these tabular measures of brain structure to create
a matrix of participants and their associated features, which can also serve as an input for applying the
approach detailed in the work carried out by the aforementioned authors [238].
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4.1.3 General chapter motivation and phenotype selection

We construct a shallow de-noising autoencoder trained to reconstruct tabular representations of struc-
tural brain variation and identify nodes with outputs significantly associated with condition labels. This
quantity can be considered a candidate endophenotype, as it will represent the non-linear combination of
structural brain features associated with a condition of interest. We also perform a GWAS on the resultant
quantity. Given our prior work on Alzheimer’s disease (AD), we can build upon these previous findings
by considering the same phenotype. While we expect that our method will capture non-linear dependen-
cies, it is reasonable to assume that consistently observed linear relationships can also be recapitulated.
Furthermore, the common genetic architecture of AD has been previously described by well-powered
GWAS experiments, meaning we can compare the genetic properties of our endophenotype to that of
the overall condition [35]. Additionally, we simulate simplified experimental conditions under which we
expect our methods to work by generating a phenotype composed of multiple independent signals, each
with respective genetic architectures. These simulation experiments allow us to contextualise our main
GWAS results and are described below.

4.2 Methods

4.2.1 Simulation experiments

Our goal is to derive endophenotypes using a deep learning model and examine the genetics of those
endophenotypes. However, the conditions that facilitate a successful application of this experimental
framework are unknown; that is to say we seek a positive control phenotype that can be defined as a
mixture of multiple phenotypes which can be decomposed and queried at the genetic level through an
autoencoder. This is complicated by the lack of suitable real-world outcomes satisfying these properties.
Therefore, we simulated an arbitrary number of uncorrelated phenotypes and associated genetic data of
known correlation with respective phenotypes and combined the phenotypes to create features which
could be used as inputs to an autoencoder model to test our workflow.

We can simulate phenotypes using the MASS package in R to sample from a multivariate normal
distribution using a pre-imposed correlation structure. A multivariate normal random variable can be
defined by the following function:

x ∼ N (µ,Σ), (4.2)
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Where N is the normal probability density function, µ is a vector of means, and Σ is a covariance matrix.
We seek to simulate a set of uncorrelated phenotypes in the first instance to construct phenotypes that are
mixtures of distinct variables. In order to impose a specific correlation structure on the generated variables,
we can convert a synthetic correlation matrix to a covariance matrix for the above function. Recalling the
definition of Pearson’s correlation coefficient, we can see its value is given by the following:

R =
cov(Xi, Xj)√
var(Xi)var(Xj)

, (4.3)

Where X is a matrix of variables indexed by i and j in a 2 variable example. Therefore, the covariance
between two samples can be rewritten as the following:

cov(Xi, Xj) = R
√

var(Xi)var(Xj). (4.4)

If we abstract this to a general matrix solution, we can think of the relationship between the covariance
matrix and correlation matrix as:

cov(X) = DRD, (4.5)

where D is the diagnonal matrix of variable variance entries. The pre-multiplication between D and the
correlation matrix R scales the correlation matrix by the columns of the variance matrix and the post-
multiplication scales the result by the rows of the variance matrix. This can be used to yield a covariance
matrix with an arbitrary correlation structure, which can be used as the Σ input for Equation 4.2.

Therefore, we simulate 5 uncorrelated phenotypes by generating a correlation matrix following the
specified form:

R =



1 0.05 0.05 0.05 0.05

0.05 1 0.05 0.05 0.05

0.05 0.05 1 0.05 0.05

0.05 0.05 0.05 1 0.05

0.05 0.05 0.05 0.05 1


We can then derive Σ by generating the diagonal of an arbitrary variance matrix. This yields the pairs

of independent variables illustrated in Figure 4.1, where each phenotype has 1000 observations.
We can then simulate single nucleotide polymorphism (SNP) values of fixed correlation by a similar

procedure. This data does not need to be categorical as in the case of actual SNP data – it must only
be correlated with its corresponding simulated phenotype. We can then generate a vector following a
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Figure 4.1: Correlation/scatter plots for simulated phenotypes. Here, every phenotype is plotted against
the other on the x and y axes respectively; the upper right portion of the panel describes the correlation
value between respective phenotypes, identified by the top x-axis and right y-axis of each plot. The density
estimates of each individual phenotype are also provided along the diagnonals.
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specified distribution and impart a specified correlation structure given our generated phenotypes. This
can be achieved by following procedures in [243].

We generate 100 SNPs for each of our 5 phenotypes. Twenty-five SNPs per phenotype are given a com-
bined R2 value of 0.3 (analogous to a narrow-sense heritability estimate), with 75 SNPs given R2 values
of 1e− 6. The 25 SNPs per phenotype with larger additive R2 values are considered as ‘causal’. For our
simulation experiments, we created 10 features per individual given by

(
5
2

)
summed combinations. These

features are passed through an autoencoder with five latent nodes and a rectified linear unit activation
function. The choice of five latent nodes was motivated by a desire to ensure that the ten input features
would pass through an information bottleneck. The latent layer is then decoded to 10 features in an output
vector. We trained the model for 100 epochs with the adaptive moment estimator optimizer algorithm
using the mean squared loss between input and output as the objective cost function for backpropagation.
The resultant latent node activations per individual are then correlated with the underlying phenotypes
which form the mixture features that the autoencoder is trained on. A GWAS was carried out on all 500
SNPs by regressing node values against SNP values. Because all data was simulated, no covariates must
be accounted for. We rank the most significant SNPs by adjusted p-value and check if the causal SNPs
for the corresponding correlated phenotype are significantly enriched in a hypergeometric test (Fisher’s
one-tailed exact test). Additionally, we took every latent node-phenotype pair and noted the number of
causal SNPs from that phenotype present in the top 25 SNPs of the latent node association test results
ranked by adjusted p-value. We regressed absolute correlation value against this quantity, hypothesising
that pairs with stronger correlation values would consequently have more causal SNPs of that phenotype
present in the top 25 SNPs of the respective latent node.

4.2.2 Binary AD GWAS

We also carried out a GWAS of AD status across all individuals with genetic data available in the ADNI
dataset to compare to endophenotype GWAS results. AD status was coded as 1 and every other phenotype
value was coded as 0, including mild cognitive impairment phenotypes. We then used fastGWA’s logistic
parameter to carry out logistic regressions of SNPs against AD status, controlling for sex, genotyping
centre, age, and the first 10 principal components (as a proxy for ancestry). We used FUMA to investigate
the functional enrichment of our results.
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4.2.3 MRI brain-derived data selection and preprocessing

We use Freesurfer-derived tabular summary information of 576 participants from the Alzheimer’s Disease
Neuroimaging Initiative [53]. We firstly removed any variables relating to standard deviation measures and
retained all neuroimaging measures with information on thickness, volume, or area. We standardised every
numeric variable to have mean zero and unit variance. This left us with 249 neuroanatomical variables
per participant.

4.2.4 Autoencoder construction and training

We define a shallow autoencoder architecture as presented in Figure 4.2. We set l, the number of hidden
nodes, equal to 60 and repeated training twice to assess the reproducibility of genetic results. The choice
of setting l = 60 was again motivated by a desire to ensure that the 249 variables per participant were
mapped to a lower dimensionality space; however, the choice of 60 exactly was arbitrary. We let σ equal
the rectified linear unit function.

The model was trained according to a de-noising procedure, whereby the input data has a certain
percentage of patient values ‘corrupted’ by the addition of noise drawn from a random normal distribu-
tion (N (0, 5e−3)). We trained the model for 8000 epochs and determined the input per epoch by the
following:

X ′ = Xj +Xi, (4.6)

whereby X ′ is the input data, Xj is the set of uncorrupted data, and Xi is the set of corrupted data, the
total fraction of which with respect to the entire dataset is determined by a float factor, ω. The set of data
Xi to be corrupted is given by uniformly sampling data indices at a proportion defined by ω. The data
not contained in Xi is Xj . We vary ω gradually, reducing its magnitude every 250 epochs by a constant
factor λ (0.85). Therefore,

ω =

λω, if mod (e, 250) = 0

ω otherwise,
(4.7)

where e denotes the epoch number. This means that every epoch, a certain proportion of input data
is randomly corrupted by the addition of a noise vector; further, every 250 epochs, the proportion of
noisy data in the entire set of input training data changes. This schema was applied with the intention of
ensuring that the final model latent space representation is robust to variable amounts of input data noise
and is related to the idea of learning rate decay [244]. Additionally, this training schema promotes iterative
learning of core data patterns owing to large amounts of noise initially followed by refined tuning of
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Figure 4.2: Structure of proposed autoencoder. In our application, the index of the hidden node is
represented by k and σ is the rectified linear unit function. x is the noisy input. hk is the value of node k.
yi is the reconstructed output determined by the sum-weighted combination of all hidden node values
(h1 through hl).

different data patterns imposed by less noise addition. We used the adaptive moment estimator optimizer
algorithm with default parameters to train our network [215].

4.2.5 Latent node extraction

After model training, we extracted the latent layer activations for every patient, yielding a matrix of size
576×60. We carried out a 2-sample independent t-test of activation scores in AD participants vs. controls
for each of the latent nodes. The resultant p-values were then corrected for multiple testing using the
Benjanini-Hochberg method. The most significant node was extracted and any variables with weights
≥ 2σ outside of the mean activation value were called as ’high-weight’ regions and plotted. We further
plotted the activity of the most significant node across diagnostic categories to examine whether or not
the activity of node values appeared to stratify participants.
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4.2.6 GWAS experiments

We followed the GWAS procedure as described in Chapter 3. We carried out a power analysis to explore
how well-powered our study was using the given sample size. We also carried out an ancestrally-constrained
GWAS of white ethnicity individuals, bring our sample size from 533 to 500.

4.2.7 Correlation experiments

We subset the nominally significant (P < 0.05) genetic results of our control AD GWAS, our autoencoder
latent node GWAS, and the CNN component GWAS from Chapter 3 and examined the intersections
between the three studies. We examined the set membership of the resultant intersections and visualised
the β value coefficient correlations in shared sets of nominally significant SNPs across studies.

4.3 Results

4.3.1 Simulation results

We found that autoencoder latent nodes with high absolute Pearson correlation values with underlying
phenotypes had more causal SNPs of that phenotype present in the top 25 p-value ranked SNPs resulting
from association tests (Figure 4.3). For example, latent node 3 and phenotype 1 were correlated at −0.79,
and there were 18 causal phenotype 1 SNPs present in the top 25 adjusted p-value ranked SNPs of latent
node 3 (Figure 4.3c). This finding was found to be significant in Fisher’s one-tailed test (P = 2.67e−11).
Further, we observed that correlation strength appeared to be predictive of the number of ‘true’ causal
SNPs present in the top 25 ranked SNPs of respective latent nodes. This can be seen in Figure 4.3b,
where latent node 4 and phenotype 2 have a lower magnitude correlation value (ρ = 0.59) and thus
less phenotype 2 causal SNPs are present in the top 25 ranked SNPs of latent node 4 (11). However, this
result was still significant in a Fisher’s one-tailed test (P = 3.11e−6). Nonetheless, where correlation
values are lower, as in Figure 4.3a, the observed number of strongly associated phenotype SNPs in the
respective latent node top 25 is lesser and furthermore non-significant (n = 3, P = 0.16, latent node 5 vs.
phenotype 5). Our regression of this relationship is illustrated in Figure 4.4. Here, the absolute correlation
between every latent node and real phenotype pair is plotted against the number of strongly associated
SNPs of that phenotype present in the latent node’s top 25 list. We observe that a standard deviation unit
increase in absolute correlation value is associated with an average 0.9 standard deviation unit increase in
the number of causal SNPs of that phenotype present in the latent node’s top 25 list.
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Figure 4.3: Positive simulation experiments with scatterplots of phenotypes and latent nodes on the left
panel and Manhattan plots of the latent node on the right. (a): Latent node 5 vs. output phenotype 5,
where 3 causal phenotype 5 SNPs were present in the top 25 most significant results. (b): Latent node 4 vs.
output phenotype 2, where 11 causal phenotype 2 SNPs were present in the top 25 most significant results.
(c): Latent node 3 vs. output phenotype 1, where 18 causal phenotype 1 SNPs were present in the top 25
most significant results.

4.3.2 Control AD GWAS

Interestingly, we detected no genome wide significant SNPs in a GWAS of AD status as a binary phenotype
(Figure 4.5). Further, no SNPs reached suggestive genome wide significance (P = 1e − 5). However,
a MAGMA-based gene p-value test yielded several significant genes, including LRRTM4, CTNNA2,
SORBS2 and TENM3. Further MAGMA Genotype-Tissue Expression (GTEx) enrichment analysis
revealed that CTNNA2 has been observed to be significantly upregulated in brain tissues relative to an
all-tissue background. Further, we obersved that GTEx enrichment analysis implicated nervous system
and brain tissues as the most significantly enriched tissues in a 2-sided differential expression test using
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the aforementioned genes relative to an all-gene backrgound. However, none of these enrichment results
were significant after Bonferroni correction.

4.3.3 Autoencoder results and node extraction

We trained our 60-node model to a reconstructive loss of 6.21e−9. Further, we observed that the concor-
dance between values predicted by the model and ground truth values was strong, exhibiting an overall
ρ (Pearson correlation coefficient) of 0.92 (Figure 4.6). We identified node 51 as the latent node with the
most significant association with AD after Benjanini-Hochberg testing correction of independent t-tests
for every node (adj.P = 2.47e−7). We visualised the mean activity of every node in AD and non-AD
participants in Figure 4.7, and observed that nodes with higher or lower values were generally specific
to either condition, meaning that they often did not exhibit high values (or low values) in both AD and
non-AD participants. Further, we plotted the values of node 51 across diagnostic categories and its activity
appeared to be differential with respect to AD status (Figure 4.8). We determined the regions with the
most influence on the activity of our discriminative node by examining regions with absolute first-layer
weights outside 2 standard deviations of the mean. We then plotted the raw weights of these regions
connecting the input to node 51 score in Figure 4.9. We observed patterns of widespread medial temporal
lobe atrophy, with lower surface area and/or volume in three medial temporal lobe regions observed as a
high-weigh

We observed that increase right thalamic volume, left posterior cingulate volume, left posterior Cingu-
late surface area, cerebrospinal fluid volume, and fourth venctricle volume were associated with increased
node 51 score. The remaining ‘high-weight’ regions were found to have negative weights, suggesting that
lower patient volumetric measures in those regions will increase the value of node 51 activity. This is
because standardised inputs with negative values denote lower volumes, and their multiplication with
negative weights results in a larger positive output.

4.3.4 GWAS Results for Node 51

We found 3 genome-wide significant SNPs at P < 5e − 8 associated with AD in chromosomes 6, 9,
and 11 (rs6918430, rs10814283, and rs376218601, Figure 4.10). The nearest genes to these SNPs are RP11-
239H6.2, RP11-509J21.1, and RP11-707M1.1 respectively, 3 long non-coding RNAs. These SNPs have not
been previously associated with AD or any other neuroimaging phenotype. MAGMA GTEx tissue
expression enrichment analysis indicated that the brain cerebellum and cerebellar hemisphere tissues were
significantly (P < 0.05) enriched for genes implicated by our GWAS based on overall p-value distribution.
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tion and line of best fit between true and predicted values is displayed in the legend and in red respectively.
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Figure 4.7: Heatmap of autoencoder latent nodes colored by standardised node value. The color intensity
represents the value of the node denoted by index in the x-axis; nodes are sorted from high to low based
on mean value in AD participants.
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Figure 4.9: Barplot of high weight regions in node 51 (with weights outside of 2 standard deviations of
the mean). The x-axis is coded in abbreviations, which correspond to the following - VRT: Volume of
Right Thalamus; CTALFP: Cortical Thickness Average of Left Frontal Pole; SALIT: Surface Area of
Left Inferior Temporal; VLMT: Volume of Left Middle Temporal; SALMT: Surface Area of Left Middle
Temporal; CTALMT: Cortical Thickness Average of Left Middle Temporal; VLPT: Volume of Left Pars
Triangularis; SALPT: Surface Area of Left Pars Triangularis; VLPC: Volume of Left Posterior Cingulate;
SALPC: Surface Area of Left Posterior Cingulate; VLST: Volume of Left Superior Temporal; CTALST:
Cortical Thickness Average of Left Superior Temporal; VC: Volume of Cerebrospinal fluid; VFV: Volume
of Fourth Ventricle.
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While these results were nominally significant, they did not survive Bonferroni correction across all tissue
enrichment tests. Similarly, the most significant (P = 0.03) general tissue type implicated by MAGMA
gene p-value tissue enrichment analysis was the brain, but this did not survive Bonferroni correction.

Our gene-based MAGMA analysis yielded several genes deemed significant at our threshold level,
defined by 0.05/ngene (Table 4.1, Figure 4.11). Further, we found that a MAGMA differential expression
analysis using the genes in Table 4.1 showed that the brain substantia nigra tissue was the most significantly
enriched tissue in a two-sided enrichment test based on our 12 input genes (P = 0.007). However, this
result did not survive Bonferroni correction. We noted that EIF2B5 exhibited higher log2 expression
values in this region than other genes, and that EIF2B5 also exhibited high expression values in other brain
tissues, such as the cerebellum, cerebellar hemisphere, and two temporal lobe structures – the amygdala
and hippocampus (Figure 4.12).

In our ancestrally-constrained GWAS of 500 samples, we found 15 independent significant SNPs
(Figure A.6). This was in spite of accounting for principal components that captured ancestry effects
(Figure A.2). They were mapped to seven genes, MROH8, SUV420H1, KIAA1549L, CHKA, GMDS,
CRIM1, and MBOAT1. SUV420H1 encodes a methyl transferase protein and was identified as an associated
gene of AD by a recent whole exome sequencing study of individuals of European ancestry [245]. Further,
MBOAT1 was found to be a target of a microRNA in a network analysis of AD gene expression data
[246]. A MAGMA gene property test for tissue specificity showed that the brain was the most significant
tissue, surviving Bonferroni correction.

We found that with 533 samples we have 80% power to detect variants of a minor allele frequency of 0.1
if their effect sizes are 0.6. When the minor allele frequency of variants is 0.5, we can achieve 80% power if
the effect size is at least 0.37 (Figure A.4).

4.3.5 Overlap across GWAS

We found that 2004 SNPs at P < 0.05 were shared across the 3 GWAS performed over Chapters 2 and 3
(Figure 4.13). We also found that pairwise Pearson correlations of SNP β values were high, with ρ=0.86,
0.75, and 0.71 for the pairs in Figures 4.14, 4.15, and 4.16 respectively. The largest total set of SNPs detected
at P < 0.05 were identified in the binary AD status GWAS (n=120,619), as well as the largest unique set
of SNPs (n=100,539, Figure 4.13).
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Figure 4.10: GWAS results of autoencoder node 51, which was the most significant node associated with
AD after multiple correction testing.

Table 4.1: Genes deemed significant at P < 0.05/ngenebased on a MAGMA test of SNP p-value distri-
bution. NSNPs denotes the number of SNPs present in the corresponding gene.

SYMBOL P NSNPS CHR START STOP

ERBB4 1.80e-08 972 2 212240446 213403565
SPAG16 2.22e-07 923 2 214149113 215275225
VWC2L 5.64e-07 162 2 215275789 215443683
ABCA12 2.03e-06 193 2 215796266 216003151
MREG 2.87e-06 52 2 216809213 216898819
PECR 2.98e-06 53 2 216861052 216947678
IGFBP2 2.32e-06 6 2 217497551 217529159
DIRC3 3.78e-09 414 2 218148742 218621316
EIF2B5 1.33e-10 358 3 183852826 184402546
LPP 2.28e-06 353 3 187871072 188608460
TP63 8.19e-08 187 3 189349205 189615068
FGF12 9.66e-08 332 3 191857184 192485553
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Figure 4.12: GTEx heatmap of gene expression variation across tissues for genes called as significant by a
MAGMA gene-based p-value test. Values are represented in units of log2TPM
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our trained autoencoder, and AD denotes our GWAS of binary AD status.

83



4.4 Discussion

4.4.1 Simulation experiments: decomposing simulated composite phenotypes

Our simulation experiment results indicate that our theoretical framework is empirically verifiable under
certain assumptions. Broadly, we found that composite phenotypes of multiple uncorrelated phenotypes
can be decomposed using our autoencoder architecture. Consequently, variables strongly correlated with
the true phenotypes can also be recovered by regressing the corresponding nodes against those variables.
Our regression from Figure 4.4 demonstrates the strong positive relationship between node-phenotype
correlation strength and the number of highly correlated variables (in our case, simulated SNPs) present
in the top 25 most significant associations. These results show that our proposed methodology can recover
data patterns correlated with variables that make up a composite phenotype. Therefore, we can hypoth-
esise that applying an autoencoder to a set of variables associated with a larger phenotype and finding
a latent node of sufficient correlation strength with that phenotype has the potential to also highlight
variables associated with the larger phenotype.

Interestingly, we also noted that our regression from Figure 4.4 suggests that phenotype correlation
with node activity is predictive of causal SNP inclusion in our top 25 lists across all latent node-phenotype
correlation pairs; this suggests that where a node is strongly correlated with multiple phenotypes, causal
SNPs from those phenotypes will feature at statistically significant levels in the top 25 ranked SNPs of that
node. We further note that the 25 strongly associated SNPs of each phenotype only explain 30 percent of
the variation in our phenotypes (R2 ≈ 0.012 per SNP), meaning that the correct SNPs are still present as
significant associations even when their correlation with the latent node is low.

However, it is worth noting that the full set of assumptions which provide the baseline for our simula-
tion experiments may be unrealistic. For instance, no linkage disequilibrium is assumed, and confounding
covariates are not simulated. Further, more complex combinations of phenotypes may impact our results.
In practice, the number of SNPs in a real-world GWAS is much higher. Our experiments suggest that
when correlation is high between latent nodes and their inputs, other variables correlated with those inputs
can be identified using an autoencoder. However, we do not know the properties of the larger phenotypes
in our example, and therefore cannot measure the correlation of latent nodes directly against them. Our
power analysis also suggests that true variants must have larger effect sizes than our simulations account
for.
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Figure 4.14: Correlation (ρ) between nominally significant SNP β’s from our CNN GWAS and the
nominally significant SNP β’s from our binary AD status GWAS. In the upper left and bottom right
corners of the plot, we can see certain SNPs present in both studies at the specified significance level that
had differing signs of effect. The line of best fit is denoted in red, with CNN SNP β values on the x-axis
and AD SNP β values on the y-axis.
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Figure 4.15: Correlation (ρ) between nominally significant SNP β’s from our autoencoder node 51 GWAS
and the nominally significant SNP β’s from our binary AD status GWAS. Similarly, in the upper left
and bottom right corners of the plot, we can see SNPs present in both studies with differing directions
of effect. The line of best fit is denoted in red, with node 51 SNP β values on the x-axis and AD SNP β
values on the y-axis.
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Figure 4.16: Correlation (ρ) between nominally significant SNP β’s from our CNN GWAS and the
nominally significant SNP β’s from our autoencoder node 51 GWAS. The line of best fit is denoted in
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4.4.2 Binary AD GWAS

We report no genome-wide significant SNPs in our GWAS of binary AD status. This is striking considering
the GWAS results of our CNN approach and our discriminative autoencoder node, which both found
significant associations with limited sample sizes. Additionally, while the gene-based MAGMA results
yielded several significant genes, only one has published evidence of AD association - the CTNNA2 locus
[247]. Furthermore, this study was also carried out in the ADNI population, meaning the finding may
be database-specific.

It is interesting to note that despite our inability to detect significant SNPs, the binary AD GWAS
identified the most SNPs at nominal uncorrected significance with P < 0.05 relative to other GWAS
undertaken (Figure 4.13). This may be due to the fact that the binary AD phenotype is a composite
of multiple phenotypic constructs, and as such the signal is not specific to any one of those constructs.
Instead of characterising the amount of specifically neuroanatomical phenotypic variation associated with
additive genetic effects, we are instead capturing the genetic features associated with variation at a binary
phenotype that may be comprised of multiple distinct phenotypes, which may dilute the signal.

4.4.3 High-weight autoencoder regions are biologically relevant

We find that structural measures of the inferior, middle, and superior temporal lobe gyri structures have
significant negative weights in node 51, meaning lower values result in higher output scores. This implies
that greater region atrophy contributes to higher values in a node discriminative for AD. Temporal lobe
atrophy has been observed in participants with AD in a number of previous studies in different databases
[248, 249] and longitudinal studies within the same cohort [250]. Additionally, atrophy in medial temporal
lobe structures was found to be explain a percentage of variation in clinical dementia rating score across 2
cohorts of AD participants [203]. The body of literature consistent with our findings suggests that our
approach can recapitulate a reproducibly observed biomarker of AD through examining the high-weight
regions of a discriminative autoencoder node. Further, we observed that every temporal lobe structural
measure related to the left hemisphere, which is consistent with previous observations of predominantly
left hemispheric temporal lobe atrophy [251]. Observations of asymmetrical volumetric abnormalities
have been previously noted in AD, lending further credence to our results capturing relevant pathological
features of AD neuroanatomy [163].

We also described increased volume of the fourth ventricle and cerebrospinal fluid as high-weight
regions of node 51. Enlarged ventricles (and its proxy variable, increased volume of cerebrospinal fluid
present in the ventricles) are a common observation in AD participants relative to other neuroanatomical
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structures [233]. It is of interest to note that node 51 score therefore comprises multiple measures of
temporal lobe atrophy and ventricle enlargement, two mechanistically relevant AD features with differing
directions of effect. Overall, we observed that the majority of high-weight regions had negative weights,
meaning that larger negative values, corresponding to volumetric reductions on the standardised scale,
resulted in a larger node 51 score (Figure 4.9). Interestingly, we noted that there is broad overlap amongst
the regions implicated, and that they typically have the same direction of effect - for instance, the weight
values for the surface area and volume of the left posterior cingulate are 0.15 and 0.12 respectively, and
their correlation with each other is 0.82. Generally, where multiple measures exist for specific regions,
they are often highly correlated; for example, while surface area and volume are not perfectly correlated
(and one can not be used to infer the other), they often capture similar information about the dimensions
of a region.

Interestingly, while posterior cingulate functional activity has been previously implicated as predictive
of AD progression, increased volume and surface area of the left posterior cingulate does not appear to have
been previously observed as a feature of AD [252]. Recalling our observation of strong left hemispheric
region respresentation in our high-weight lists, a recent review investigated the evidence for potential ‘left-
brain vulnerability’ in AD, citing neuroimaging studies that observe increased levels of cortical thinning
in the left hemispheres of cases relative to controls (which may be a function of accelerated brain ageing)
[253, 254]. This makes the finding of size increases in a left hemispheric structure difficult to understand;
however, our previous discussion of left temporal lobe atrophy is entirely consistent with the current
understanding of AD neuropathology.

Despite the fact that multiple descriptors relating to the same region are often highly correlated, as
in the case of the left middle temporal, the autoencoder’s representation will account for each variable’s
contribution non-redundantly. This is to say that multiple correlated variables with respectively high
weights in a particular node will still contribute to the overall output individually in the summing opera-
tion regardless of the correlation structure of the input. Where such situations occur, we can infer that
the regions in question, such as the left middle temporal gyrus or left pars triangularis structures, may be
especially important to the model’s representation of AD patient brain anatomy.

Further, we note that there is limited concordance with CNN structural results aside from an overall
finding of left hemispheric size reduction. In particular, the results of our CNN approach implicate
increased volume of the third ventricle as important as opposed to the fourth, but the correlation between
these variables is modest (ρ = 0.59).

89



4.4.4 GWAS results: the role of long non-coding RNAs in AD and other ge-
netic findings

We detected 3 genome-wide significant loci in our GWAS of discriminative node 51 (Figure 4.10). All three
SNPs are located in non-coding regions, with FUMA mapping their respective closest transcripts to long
non-coding RNAs. Long non-coding RNAs are regulatory molecules that are not translated into proteins
and can contribute to the regulatory landscape of transcript expression across the genome. They can also
act as precursors to regulatory micro RNAs, which similarly can affect gene expression. This result is
interesting in the context of an emerging body of literature investigating circulating long non-coding
RNA’s as biomarkers of AD [255]. The meta-analysis by [255] inferred from 7 studies that AD status can
be predicted with modest predictive performance based on the expression of several plasma-circulating
long non-coding RNAs. Additionally, several long non-coding RNAs have been shown to contribute
to AD-related molecular pathways; for example, elevated expression of the antisense transcript of BACE
leads to amyloid-β aggregation through post-transcriptional gene regulation of BACE [256]. The authors
of [257] posit several mechanisms by which such RNAs can regulate gene expression pathways within the
context of AD, including contribution to micro RNA gene regulation networks and generally promoting
amyloid-β aggregation. However, there is limited literature support for any associations with AD amongst
the respective transcripts highlighted by our work. For instance, amplifications at the RP11-239H6.2 locus
located at 6p22.3 (approximately 3 megabases from the beginning of the major histocompatibility complex)
have been posited as a potential biomarker of bladder cancer, correlating well with late stage cases [258].
Further, SNPs in high LD with this variant (R2 > 0.8) are variants located in the E2F3 gene, which
is known to influence cellular proliferation [259]. Similarly, RP11-509J21.1 has uncertain function and
no previous associations with AD (or any other neurological/neurodegenerative disorders). However,
variants in the RP11-707M1.1 locus have been recently identified as genome-wide significant in a GWAS
of attention-deficit hyperactivity disorder [260]. Despite this, the study in question did not identify
the variant for RP11-707M1.1 as significant, and further, our results indicate that our lead variant for this
transcript was not in LD with any variants at an R2 value greater than 0.6. Overall, it is well established
that long non-coding RNAs have important roles in regulatory networks of multiple molecular pathways –
however, how exactly they may contribute to neuroanatomical variation in the context of AD is unknown.
Given that previous work appears to indicate that amyloid-β aggregation is affected in part by long non-
coding RNA transcript activity, our results are encouraging, but the exact means by which these variants
are associated with AD remains unclear. Furthermore, our power analysis suggests that with our current
sample sizes we are underpowered to detect significant associations with small to moderate effect sizes.
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This may also indicate that any significant SNPs are false positives. Additionally, significant variants are
not associated with LD peaks, which may further decrease confidence in our results.

Our gene-set enrichment analysis based on the p-value distribution of SNPs and their associated genes
indicated 4 gene sets as significant, 2 of which were associated with breast cancer amplicons. However,
based on the same SNP p-value distribution, several genes of interest that have no immediate cancer links
were found to be statistically significant after multiple testing correction, including EIF2B5, which is
expressed at high levels across multiple brain tissues (Figure 3.8). It is encouraging to note that temporal
lobe atrophy was the main feature encoded in our autoencoder weights, and two temporal lobe structures
– the amygdala and hippocampus – have generally high expression values for this gene. Despite this gene’s
high average expression pattern across multiple tissues – including non-brain tissues – previous studies
have observed that mutations of EIF2B5 can cause features of adult-onset leukodystrophy, a disorder
often marked by white matter atrophy [261]. Indeed, leukodystrophy, despite being a distinct clinical
entity, is often mistaken for AD given a degree of symptomatic overlap. Despite its relevance, it is unclear
how best to interpret this result - we would expect larger single-association test statistics from the EIF2B5
locus in the GWAS presented in Figure 4.10. However, a recent study found EIF2B5 expression had a
significant causal effect on AD risk from Mendelian randomization experiments in a multi-ancestry cohort
(FDR P = 0.00248) [262]. However, the authors state that colocalisation signal between the loci is not
strong (R2 < 0.05), meaning the direct link is tenuous. Further, in the context of the previous results,
a positive causal effect of EIF2B5 expression on AD risk may also be explained by potential misdiagnosis
of leukodystrophy, although this hypothesis is difficult to empirically test (and further presupposes that
leukodystrophy-related mutations in the locus cause increased expression as opposed to vise versa).

Interestingly, the substantia nigra is observed as the most significantly enriched tissue in a test of
differentially expressed genes from our input set in Table 4.1. Lesions and tau phoshporylation deposits
have been a historical observation in the substantia nigra in AD participants [263]. Further, the substantia
nigra is an important brain region in the dopaminergic system [264]. Neuronal loss in this region has
historically been observed in AD participants, with more recent proteomic studies suggesting several
proteins in the region undergo expression changes in AD relative to controls [265, 266]. While neuronal
loss is not apparent in all substantia nigra AD studies, a comprehensive meta-analysis found significantly
lower dopamine levels in AD participants relative to controls, suggesting that functional alterations in
this region (which may not always manifest as atrophy) may have relevance to certain aspects of AD
pathology and/or presentation [267]. Despite these encouraging results, it is important to note that the
tissue enrichment test did not survive Bonferroni correction for multiple testing; further, recent studies of
substantia nigra functional and anatomical variation are limited, with the majority of studies cited more
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than 10 years old. In spite of these factors, our tissue results overall indicate brain-related functions are
captured by our autoencoder score.

Additionally, we note that ERBB4 has been shown to mediate amyloid-β neurotoxicity in AD mouse
models, but its precise molecular mechanism in human tissues remains to be verified [268]. ERBB4 is a
receptor of neuregulin-1, an important transcription factor influencing early brain development and the
development of oligodendrocytes. One study found elevated levels of neuregulin-1 in the cerebrospinal
fluid of AD participants, but it is difficult to determine the precise dynamics of the neuregulin-ERBB4
complex; for instance, it is unknown how variants in this gene can impact neuregulin activity, and its exact
relationship with AD [269].

In our ancestrally-constrained GWAS, we find diverging results from that of the main analysis. While
results had tissue specificity for the brain based on a MAGMA gene property model, we note that of
seven identified mapped genes, only two have previous AD-related literature support [245, 246]. This is
interesting given that ancestry appears to be captured in our principal components and accounted for in
our regression (Supplementary materials). The degree to which results differ based on the exclusion of
33 samples indicates that sample sizes may be too small. This is further supported by our power analysis
which suggests that identified significant SNPs may be false positives. These results also contrast from
the ancestrally-constrained GWAS carried out in Chapter 3, whereby the exclusion of samples only meant
that certain SNPs were not found significant in a smaller cohort. This may call into question the stability
of this phenotype given that results differed so drastically.

4.4.5 Method agreements, disagreements, and perspectives

We note that there is little overlap amongst the three GWAS carried out in the same dataset for nominally
significant SNPs, with (Figure 4.13). If our results are to be trusted, this may suggest that each method is
representing relatively distinct elements of AD presentation, and hence, returning different genetic results.
However, our lack of power across all GWAS means that a large portion of SNPs nominally significant may
be false positives. The fact that different methods may capture different elements of disorder pathology
may be unsurprising in the context of our theoretical framing of the problem space; binary AD status
captures a broad range of symptoms, and both CNN and autoencoder methods respectively capture
specific elements relating primarly to AD neuroanatomy. This would be of interest to investigate in
cohorts of larger sample size.

Interestingly, our CNN nominally significant β’s had the highest correlation with its shared SNPs in
our binary AD GWAS (Figure 4.14). The interpretation of this observation is non-trivial. If we assume
our binary AD GWAS is our ‘gold standard’, this implies that our CNN GWAS captures more signal
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traditionally associated with AD, albeit with the subphenotype derivation resulting in specific feature
encoding, thus resulting in significant GWAS hits where they are not present in the baseline. However, we
can regard the binary AD GWAS in a more critical fashion, with the absence of previous AD associations
implying the dataset is underpowered to act as a comprehensive baseline. Framing our results as a false
dichotomy of which method is ‘best’ ignores the fact that the purpose of using our respective methods is to
capture features distinct from binary categorisation; positing that a successful subphenotype is constituted
by a near-complete reconstruction of the main phenotype renders our theoretical and practical arguments
circular. Rather, we should judge the quality of our derived sub-phenotypes by their consistencies (or
lack thereof) with prior results and use them to inform novel investigative studies.

For instance, in the case of our autoencoder GWAS, while our hits mapping directly to long non-
coding RNA transcripts are initially confusing, the supposed contradiction relative to the AD literature
may inform us as to the properties of a quantity whose activity is robustly correlated with AD status.
This raises a further point related to the specificity of our conditioned variable; while we condition on
correlation to AD status, we have no guarantee that an interesting sub-phenotype for AD will always
be given by statistically significant node values. In practice, it may be interesting to examine nodes with
different characteristics – our approach is primarily designed to ensure that we are investigating an au-
toencoder node with a clear and statistically verifiable relationship to phenotypic categories. From this
perspective, we may also consider that combinations of multiple nodes ranked by test statistic may yield
more informative phenotypes. However, while optimal node selection strategies remain unknown in this
novel field of research, our selection strategy follows a simple and statistically rigorous heuristic – examine
the node with the most significant test statistic for phenotype status.

4.4.6 Limitations

While we present results that have molecular concordance with the available body of scientific literature,
some of our tissue expression enrichment estimates are based on post-mortem brain tissues which may
not accurately reflect tissue expression patterns in the living brain [270]. We acknowledge that a more
comprehensive understanding of what characterises gene expression profiles in vivo may alter the nature
of a portion of our results. Further, we note that our sample size is small compared to other GWAS
experiments which leaves us underpowered to detect variants with small effects on our endophenotype.
As previously mentioned, our GWAS results also differ significantly when constrained to individuals of
one ancestry, meaning it is difficult to have confidence in our results.
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4.5 Conclusions

In summation, our autoencoder-derived phenotype captured neuroanatomical features relevant to aspects
of AD pathology. Signficant genetic loci associated with our phenotype were long ncRNAs, whose role
in neurodegenerative disorders is becoming better understood. However, our current sample size leaves
us underpowered to detect true genetic effects of small to moderate effect sizes and our GWAS results vary
greatly based on the exclusion of a small number of samples. While our method is of theoretical interest,
further experiments in larger samples are required to test its utility.
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Preamble to Chapter 5

This work was jointly supervised by Dr. Niamh Mullins and Dr. David Knowles and is currently in
preparation for manuscript submission. All work was carried out by the candidate at the Icahn Scool of
Medicine at Mount Sinai, New York.
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Chapter 5

Deriving Causal Networks of
Brain Imaging Phenotypes and

Bipolar Disorder using Mendelian
Randomization

5.1 Introduction

Our previous analyses were primarily concerned with investigating the genetics of sub-phenotypes of a
brain disorder. However, our results do not allow us to investigate the causal relationship between brain
disorders and neuroimaging phenotypes. This is pertinent given that reconciling our genetic analyses with
current bodies of literature are contingent upon the assumption that there is a causal link between our
extracted biomarkers and the overall conditions considered. Aside from our investigations which seek to
establish frameworks by which to extract intermediate phenotypes from neuroimaging modalities, several
candidate biomarkers for psychiatric conditions already exist [59, 71]. For example, the UK Biobank (UKB)
is a large prospective epidemiological study of nearly 500 thousand patients. Recent efforts to expand the
variables available for each patient have included a retrospective imaging collection strategy, which has so far
resulted in just over 42 thousand patients having multi-modal imaging carried out [271]. Additionally, the
UKB contains genetic information for every participant, affording researchers the potential to investigate
the genetic basis of multiple traits. The linking of these distinct data sources gave rise to a study carrying out
genome wide association studies (GWAS) of over 3 thousand imaging-derived-phenotypes (IDPs) across
33 thousand individuals with imaging data in the UKB [232]. The summary statistics for these GWAS
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are publicly available, facilitating a host of post-GWAS analyses that can make use of single nucleotide
polymorphism (SNP) β values.

Historically, it has been difficult to describe causality in common disorders using observational data
due to physical and ethical barriers preventing randomised controlled trial environments. A branch of
epidemiological methods, termed Mendelian randomization (MR), can help to facilitate causal reasoning
from observational data sources using genetic information [272]. This can afford us the opportunity to
estimate the causal relationships between multiple IDPs and a psychiatric outcome.

5.1.1 Mendelian Randomization

Modelling the causal relationship between two variables can be conceptualised as evaluating β in the
following equation:

Y = Xβ + γ, (5.1)

where X is a trait of interest, Y is the outcome, β is the effect of X on Y , and γ is a set of covariates that
can confound the relationship between X and Y . In observational data, the set of variables in γ cannot
be measured and controlled for in its entirety, which is one factor that can complicate causal inference.

Mendelian randomization attempts to bypass this limitation by leveraging the fact that alleles are
randomly segregated at birth, are fixed at conception, and can be causal for certain traits. By this intuition,
a SNP causal for trait X can remove certain types of unmeasured confounding from the set of variables
γ. The classic example of this approach is a case study of populations of East-Asian ancestry that are
heterozygous or homozygous for the minor allele of the ALDH2 gene [273]. This mutation causes adverse
reactions to alcohol consumption, meaning carriers are likely to consume less alcohol. This causal relation-
ship between SNP and exposure, the phenotype whose causal effect we are interested in capturing, allows
us to quantify the effect of alcohol consumption on a separate phenotype – in this case, blood pressure.
As such, we can stratify individuals by their variant status and estimate the effect of alcohol consumption
on their blood pressure, with the knowledge that their alcohol consumption values are causally influenced
by the variant in question. This means that observing a relationship between a variant that causes lower
alcohol consumption and high blood pressure implies a causal effect of alcohol on blood pressure val-
ues. Because we understand the genetic determinants of alcohol consumption in this cohort, a host of
unmeasured lifestyle factors that would usually need to be controlled for do not need to be considered.

Mendelian randomization relies on a set of key assumptions to support this casual reasoning – firstly,
the SNP cannot be associated with any confounding factors that may influenceX andY jointly; secondly,
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the SNP must be predictive of X ; thirdly, the SNP must be independent of Y when conditioning on X

[274].
Mendelian randomization approaches have been extended to allow for the effect of multiple genetic

variants and differing sample sources for exposures and outcomes. Most methods rely on combining
SNP-outcome/SNP-exposure ratios. In a single-variant example, the following can be used to obtain a
ratio estimate:

β̂XY =
βYj

βXj

(5.2)

For a causal variant indexed by j. This quantity represents the degree of change expected in the outcome
Y per unit increase in the exposure X , expressed here as the degree of change expected in Y per unit
increase in SNP j scaled by the degree of change expected in X per unit increase in SNP j. This can also
be applied where SNP effects have been measured in different samples, meaning separate sets of summary
statistics can be considered. Additionally, multiple ratio estimates can be combined to obtain one causal
estimate [275].

5.1.2 Mendelian randomization of brain phenotypes

The availability of summary statistics from GWAS of over 3 thousand brain IDPs and numerous psy-
chiatric conditions presents a unique opportunity to combine these data sources. The authors in [276]
examined the causal effect of 587 IDPs on a panel of 10 psychiatric disorders and described several signifi-
cant associations that survived rigorous multiple testing corrections. For example, decreased volume of
the left accumbens was found to have a statistically significant positive causal effect on a bipolar disorder
(BD). Other findings of interest include schizophrenia diagnosis causing decreased volume and surface
area of the right pars orbalis.

While individual factors can have causal effects, it is unlikely that they work in isolation. Complex
conditions such as BD are influenced by genetic risk factors, environmental stressors, and random chance.
To model part of this complexity, we may consider using multiple individual causal relationships to build
networks for better understanding BD.

5.1.3 Building causal networks using inspre

Creating causal networks from Mendelian randomization estimates is non-trivial for several reasons. The
β values estimated using Mendelian randomization approaches are intended to capture the total causal
effect (TCE) of an exposure on an outcome. This means that building a network from βTCE values
will capture the total effect of X on Y , including any mediators of that relationship. We instead seek to
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capture the likely topology of a network of exposures and outcomes, meaning we seek the direct causal
effect (DCE) matrix. This differs in the sense that we want to capture the causal effect of exposure X on
outcome Y independent of any mediating factors, and we also seek to capture the effect of X and Y on
their respective mediators.

Calculating a DCE matrix from TCE entries is a complex task – in effect, we seek the inverse of a partial-
correlation-like matrix. The inverse in this context will yield estimates of the direct unmediated causal
effect of one variable on another. Because we may have zero entries in the TCE matrix, calculating the exact
inverse may not be possible as the determinant of the causal matrix may be zero, or the computation may
be computationally intractable. To address this problem and generalise the derivation of the DCE matrix
from a set of TCE entries, the authors of [277] developed inspre, a sparse-inverse regression algorithm that
leverages the assumption that the underlying DCE matrix has many zeroes. Broadly, it applies a graphical
lasso approach to calculate direct unmediated causal effects from a matrix of total causal effects. The full
derivation of this method can be found in the supplemental note of [277].

Therefore, using inspre and the associated bimmer package [277], we seek to derive the DCE of a TCE
input matrix of BD and a set of IDPs. We focus on BD given that its pathology is not thought to be marked
by obvious neuroanatomical structural differences, making it of great interest to consider from a network-
level approach. Examining the resultant network could offer the potential to understand individual causal
relationships independent of included mediating factors and better understand the significance of graph
topology in the context of a complex psychiatric disorder.

5.2 Methods

Initially, we sought to utilise the data provided from [276], but encountered several complicating factors
which limited inference of a direct TCE matrix. Firstly, the set of 587 IDPs from [276] were chosen based
on phenotypes that satisfiedα < 0.05, where α is the p-value of the genetic correlation (rg) test provided
by the ldsc package between psychiatric disorder and IDP [278]. Genetic correlation seeks to capture
how similar the genetic architectures of two traits are based on two sets of GWAS summary statistics.
More details on this method can be found in [278]. Significant test statistics imply that there is high
correlation between traits based on their summary statistics. This filtering strategy produced near-private
sets of IDPs per respective psychiatric disorder, meaning that the same brain regions were not considered
across disorders. Secondly, the inclusion threshold of α < 0.05 was not corrected for multiple testing,
which may introduce bias in phenotype inclusion. Thirdly, there is no guarantee that phenotypes with
significantly overlapping genetic architectures are likely to have causal relationships with the outcome, so
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it may not make sense to condition phenotype inclusion based on this quantity. For these reasons, we
sought to follow [277]’s methodologies to derive a novel TCE using a subset of 3929 IDPs given by [232].

5.2.1 Filtering

We downloaded 3929 sets of summary statistics from https://open.win.ox.ac.uk/ukbiobank/

big40/ and kept the phenotypes with more than 5 genome significant loci, leaving a set of 630 IDPs. We
plotted the heritabilities of the remaining phenotypes to verify that significant amounts of phenotypic
variation were explained by additive genetic effects, finding the median heritability to be 0.27 (Figure
5.1a). We next used ldsc to measure the rg values for every phenotype against each other and yielded a
matrix of rg values per pair (Figure 5.1b). We filtered the set of 630 IDPs based on rg values, whereby
rg > 0.85 caused a pair to be flagged for removal. The phenotype in the offending pair with less genome
wide significant loci was removed. This was performed to mitigate the risk of phenotypic redundancy,
and is akin to multicollinearity check, resulting in a final set of 159 phenotypes plus bipolar disorder.
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(a) Heritability estimates of 630 IDPs with greater than 5
genome wide significant loci estimated using ldsc. The esti-
mate is plotted on the y-axis.

(b) rg estimates for every phenotype
against each other and bipolar disorder.
Magnitude is denoted by the intensity of
the color, whereby pairs of phenotypes
constitute the entries of the matrix.

Figure 5.1

5.2.2 MR experiments

Next, we used the protocol outlined in [276] to carry out bidirectional MR tests of every pair of phenotypes.
Firstly, we clumped SNPs in every phenotype with an r2 threshold of 0.05, a clump window of 500kb,
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and a p-value threshold of 5e − 6. We next applied the RadialMR package to remove SNPs violating
MR assumptions in every phenotype, followed by pruning of SNPs based on the p-value of the intercept
term in an Egger regression test of pleioptropy [279, 280]. With our pruned SNPs for each phenotype,
we carried out MR experiments using the TwoSampleMR package for every pair of phenotypes in the
forward and reverse direction, yielding

(
160
2

)
· 2 MR tests [281]. We applied 5 MR methods: simple mode,

weighted mode, weighted median, inverse variance weighted approach, and MR Egger. Each method varies
in their details, but they broadly follow a procedure similar to 5.2. Briefly, the simple mode procedure
estimates the modal causal effect for a group of SNPs; weighted mode scales this modal causal effect by the
inverse variance of the weights used to compute the mode; the weighted median takes the median causal
effect weighted by the inverse variance of the weights; the inverse variance weighted procedure combines
ratio estimates weighted by the inverse of the variance of the estimate; finally, Egger regression combines
ratio estimates of multiple SNPs using a meta-regression framework including an intercept parameter for
estimates of pleiotropy. We corrected every MR estimate p-value for multiple testing using the Benjamini-
Hochberg method and visualised significant pair overlap using an UpSet plot. 9 Exposure-outcome pairs
containing BD with FDR-corrected p-values < 0.01 in at least 2 methods were visualised in forest plots.
For DCE derivation, we used the estimates from the weighted mode estimator, owing to its low false
positive rate and theoretical ability to handle correlated horizontal pleiotropy by taking the mode of β
values [277].

5.2.3 Network experiments

We constructed a TCE matrix of every phenotype’s causal effect on each other in two MR methods,
yielding a 160×160matrix. We applied inspre through the bimmer package with a 10-fold cross validation
schema, retaining the network with optimal graph stability under resampling. This is motivated by the
intuition that stable graphs are usually yielded for smaller values ofλ, the penalty parameter, under random
resamplings of input data. For more details on this this metric, see the supplemental note of the bimmer
paper [277]. We developed a diagnostic plot to visualise the differences between the derived DCE and the
input TCE. Specifically, we sought to ensure that input zero values were not significantly inflated by the
graphical lasso regression and given large values by inspre. A degree of inflation is expected owing to the
bias terms in iterative graphical lasso operations, but offending input zero-value TCE entries outside of
1.5 standard deviations in the DCE matrix were set to zero for subsequent experiments.

We visualised networks from both tools using Cytoscape, and retained the weighted mode estimator
values for further testing owing to its diagnostic plots [282]. We stratified phenotypes on their designation
as either describing gray matter structural features or describing diffusion tensor features. Gray matter
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structural features include measures such as volume or surface area, whereas diffusion features include
metrics relating to white matter microstructural hindrances on molecule motion in specific regions. We
fit the following models to examine if the BD DCE coefficients were significantly different in structural
and diffusion phenotypes: ∣∣βi

BD

∣∣ = βD + ϵ (5.3)

whereD is the phenotype designation and |βBD| is the absolute BD coefficient for that phenotype indexed
as either an exposure or outcome by i.

By setting all elements within 1 standard deviation of the mean to zero, we obtained the degree of
each phenotype in the network. We ran the following linear models using statsmodels to examine the
differences in outcome/exposure degree between structural and diffusion phenotypes:

Y = βD : i+ ϵ (5.4)

where Y is the degree and D is the phenotype designation (coded as 0 or 1) stratified by i, denoting the
phenotype as either outcome or exposure. Because every phenotype can be an exposure or outcome in
the network it was desirable to understand how status as a diffusion phenotype affected the number of
connections in both directions (ie., row-wise sum for exposure degree and column-wise sum for outcome
degree).

Next, we fit the following models:

Yi = β |βBD| : D + ϵ (5.5)

where Yi is the exposure/outcome degree indexed by i and |βBD| is the absolute centered DCE BD esti-
mate across phenotype designation category status D. This model examined if differences in exposure or
outcome degree were correlated with the absolute magnitude of DCE BD coefficients (in the forward or
reverse direction) in diffusion and structural phenotypes.

We examined whether or not diffusion phenotypes were enriched in the top 20 exposures with the
greatest absolute effect on bipolar disorder, calculating the probability mass function of a hypergeometric
distribution parameterised by our inputs. This gave us the p-value for the probability of observing a
specific number of diffusion phenotypes from a selection of 20 against a background of 159 phenotypes
total (107 of which were diffusion-based). We also plotted networks of the top 20 exposures acting on
BD and the top 20 outcomes causally affected by BD, where we ordered graph orientation by degree. For
calculating the degree of a node, we set all entries within one standard deviation of the mean βDCE value
to zero, and ordered our network from highest degree to lowest from left to right starting at the BD node.
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For every phenotype in the network, we sought to trace its most influential causal path to a certain
depth and examine the phenotypic designations of its members. We recursively extracted the most influ-
ential exposure for every phenotype to a depth of 5 nodes, noting the phenotype’s categorisation as either
structural or diffusion-based. We summed the number of occurrences of diffusion phenotypes and ran
a 1-sample proportion test with continuity correction to test the null hypothesis that the proportion of
structural and diffusion phenotypes in respective significant causal paths was equal to 0.5. We compared
the real counts of diffusion phenotypes to 160 randomly generated lists of binomial random variables of
length 5 and conducted a t-test to examine if the real count distribution differed significantly from the
null.

Further, for every pair of phenotypes in the network, we plotted its βexposure against its βoutcome to
test for the presence of feedback loops. Pairs containing phenotypes with differing signs > 1σ outside
the global mean that feature in the top 20 absolute interactions with BD were investigated by plotting
subnetworks. Similarly, the βexposure effect of BD on every phenotype was plotted against the same
phenotype’s βexposure effect on BD and pairs of interest were plotted using Cytoscape.

5.3 Results

5.3.1 Genetic correlation matrix of IDPs and BD

Our
(
630
2

)
rg tests yielded a matrix of every phenotype against each other using ldsc (Figure 5.1). This

revealed widespread patterns of positive genetic correlation between brain regions and was used to inform
subsequent filtering of imaging-derived phenotypes.

5.3.2 Causal relationships between BD and brain regions

We found ≈ 2000 exposure-outcome pairs identified by all 5 considered methods as significant after FDR
correction of over 25 thousand MR tests (FDR < 0.01, Figure 5.2). We found 9 exposure-outcome pairs
containing BD as a term that were found to be FDR significant at P < 0.01 in at least 2 MR methods,
including the three pairs highlighted in Figures 5.3, 5.4, and 5.5. These pairs include the effect of BD on
the area of the lateral orbitofrontal cortex in the left hemisphere (β̂ = −0.0897± 0.03), the effect of the
surface area of the left hemispheric anterior transverse sulcus on BD (ÔR = 1.24±0.05), and the effect of
the mean intracellular volume fraction (ICVF) in the pontine crossing tract’s on BD (ÔR = 1.25±0.12)
(Figures 5.3, 5.4, and 5.5). Here, β̂ is the averageβ value across the five methods with the standard deviation
of this mean denoted after the ± sign. Each of the five methods have their own associated standard errors
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Figure 5.2: UpSet plot of all method total set size and intersection size for FDR-corrected pair p-values less
than 0.01. Here, the bottom panel dotplot represents the set in question, and the barplot in the top panel
represents the size. Individual dots refer to private sets, ie, the number of p-values identified by only the
inverse variance weighted method is 3831, and the overall set size is larger. The total set sizes are denoted
on the left barplot.
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attached to the β values which were used to derive confidence intervals in Figures 5.3, 5.4, and 5.5. Five
of these 9 FDR-significant exposure-outcome pairs feature BD as an outcome, including one significant
bidirectional relationship with the mean orientation dispersion (OD) index in the left cerebral peduncle.
The only association of the 9 FDR-significant pairs whose confidence intervals do not overlap with 0 (β)
or 1 (OR) in all methods is the effect of BD on the surface area of the lateral orbitofrontal cortex in the
left hemisphere (Figure 5.4), although not all method p-values reached our FDR-corrected significance
threshold.

0.8 1.0 1.2 1.4 1.6 1.8

OR estimate

MR Egger

Weighted median

Inverse variance weighted

Simple mode

Weighted mode

Mean intracellular volume fraction in pontine crossing tract vs. BD
FDR P < 0.01

FDR P > 0.01

P=0.75

P=0.0018

P=6.3e-06

P=0.016

P=0.047

Figure 5.3: Forest plot of the effect of increased mean intracellular volume fraction in the pontine crossing
tract on BD.

5.3.3 Network dynamics of IDPs and BD

We considered the weighted mode DCE for further network investigation owing to its competitive false
positive rate in simulations [277] and its custom diagnostic plot performances (Figure 5.6). We observed
that zero values in the TCE matrix mostly remained zero in the DCE matrix, which can be seen by
examining Figure 5.6. Figure 5.8 shows the top 20 exposures with the greatest absolute effect on BD with
edge bundling applied. Edge bundling attempts to reduce visual clutter by bending edges together where
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Figure 5.4: Forest plot of the effect of BD on lateral orbitofrontal surface area.
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Figure 5.5: Forest plot of the effect of increased left hemispheric sulcal surface area on BD.
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Figure 5.6: Scatterplot of the TCE (x-axis) and the inspre-transformed output DCE y-axis. Standard
deviation lines are drawn at 1.5× σ and 2× σ in green and blue dashed lines respectively.
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Figure 5.7: Visualisation of the TCE (left) and the inspre-transformed output DCE (right).

exposures affect similar outcomes, creating parsimonious visual representations of paths. Amongst these
exposures, 12 were diffusion tensor phenotypes (P = 0.67, hypergeometric test of enrichment). Figure
5.9 shows BD’s top 20 highest absolute weight outcomes with edge bundling; that is, the IDPs BD exerts
the strongest absolute causal effects on in the network. This subset contained 15 diffusion phenotypes
(P = 0.13, hypergeometric test of enrichment).

We found no significant relationships from the regression detailed in 5.3 (P = 0.73, p = 0.232

respectively), meaning that BD was not observed to have significantly differing effects on diffusion tensor
or gray matter structural phenotypes in absolute magnitude. Conversely, diffusion tensor phenotypes
do not have a significantly different absolute effect on BD when compared to gray matter structural
phenotypes (Figure 5.10).

We found diffusion tensor outcomes were on average affected by 3 more phenotypes than gray matter
structural outcomes (P = 0.0171, Figure 5.11), while the same effect was not found for diffusion exposures
(P = 0.4157). There were no significant differences in global degree between gray matter structural and
diffusion tensor phenotypes (P = 0.283). We found that structural outcomes affected with greater
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Top 20 |pheno=>BD| interactions

Structural

Diffusion

BD

-0.15                         0.15

Beta magnitude

Figure 5.8: The top 20 IDPs with the largest absolute effect on BD ordered by degree from left to right
starting at BD (high to low). This is to say that the IDP immediately to the right of BD has the highest
degree apart from BD; the IDP immediately to its right has the next highest degree, etc. Color intensity
denotes the magnitude of the β effect.
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Top 20 |BD=>pheno| interactions
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-0.15                         0.15
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Figure 5.9: The top 20 IDPs that BD affects ranked by absolute β. Entries are sorted from left to right
based on degree starting at the BD node (high to low) in the same manner as Figure 5.8. Color intensity
denotes the magnitude of the effect.
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Figure 5.10: Boxplots of |β| values of exposures and outcomes stratified by phenotype categorisation.

magnitude by BD are affected by 3 more phenotypes on average compared to other structural phenotypes
(P = 0.008, Figure 5.12), while the same effect was not observed within diffusion outcomes (P = 0.07) .
However, an interactions effect model of outcome degree against absolute BD effect on the phenotype
multiplied by phenotypic category yielded a non-significant p-value (0.244), suggesting that this result
does not hold when considering all phenotypes affected by BD. We found no significant correlations
between node degree and larger phenotype effects on BD in stratified models or interaction models (Figure
5.12).
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β in units of node degree

Exposure degree ∼ diffusion

Outcome degree ∼ diffusion

Coefficients for regressions of node degree against phenotype categorisation

P = 0.0171**

P = 0.456

Figure 5.11: Coefficients from a regression of node degree against phenotype categorisation in exposures
and outcomes. The β coefficient and aassociated 95 % confidence intervals are displayed on the x-axis,
with the y-axis denoting the relationship tested.
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OD ∼ |β| BD → pheno (S)
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P = 0.1076

P = 0.008874***
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Figure 5.12: Coefficients from regressions of node degree against absoluteβBD
DCE (|β|) in exposures and out-

comes stratified by phenotype categorisation. Here, ED stands for exposure degree (number of outgoing
causal effects outside of one standard deviation in magnitude), OD stands for outcome degree (number
of incoming causal effects outside of one standard deviation in magnitude), (S) stands for structural (gray
matter structural phenotypes), and (D) stands for diffusion (white matter microstructural phenotypes).

For every phenotype, we identified its highest weight exposure. We repeated this operation 5 times to
create lists of phenotypes and their highest weight exposures. For example, phenotype 1’s highest weight
exposure may be phenotype 2, and phenotype 2’s highest weight exposure may be phenotype 3, and so
on. This was carried out non-redundantly to ensure that causal path lists contained unique entries. We
took note of the phenotypic designation of each member of the causal path. We found that diffusion
phenotypes were over-represented in the 160× 5 ranked paths, occurring 515 times out of 800, reaching
significance in a test of equal proportions with continuity correction (P = 5.6e− 16). When compared
to 160 simulated causal paths, a t-test indicated significant differences between the observed causal paths
and simulations (P = 9e− 4, Figure 5.13).
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Figure 5.13: Real recursive causal path sums for all phenotypes (left) vs. simulated list sums (right) with
associated p-value of test statistic from t-test.

We plotted the effect of every phenotype on every other phenotype for all exposure-outcome pairs
(Figure 5.14a). We noted that half of all pairs (50.97%) had the same direction of effect, while the other
half had differing signs when exposure/outcome status was swapped. We observed that 3% of pairs had
differing directions of effect with magnitudes outside 1σ of the mean. In investigating this subset, we
found that 185 out of 383 pairs with differing directions of effect > 1σ were diffusion-diffusion pairs
(two white matter microstructural phenotypes), 152 were mixed pairs, and 46 were structural-structural
pairs (two gray matter structural phenotypes). Further, we found 16 pairs of this subset where both
phenotypes were in the top 20 highest absolute weight outcomes of BD (BD=>pheno) or the top 20
highest absolute weight exposures on BD (pheno=>BD). We visualised 1 pair and their relationships with
BD in subnetworks. Figure 5.16 shows the mean intracellular volume in the right tapetum and the mean
FA in the right anterior corona radiata.

We observed that half of direct BD interactions were characterised by bidirectional relationships of
consistent effect direction, meaning that sign(βij) = sign(βji) (Figure 5.14b, 80/160 pairs). Three pairs
of BD interactions had differing signs > 1σ outside the mean. We investigated these interactions by
visualising their relationships with BD and each other in subnetworks (Figure 5.17). Briefly, we visualised
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the effect of the intensity of the right hemispheric cerebellum cortex, the mean diffusivity in the right
external capsule, and the mean ICVF in the fornix. We also found that the absolute effect of phenotypes on
BD was greater than the absolute effect of BD on phenotypes in a two-sided t-test of means (P = 0.0047,
Figure 5.15). However, this difference was non-significant when considering non-absolute β values.
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Figure 5.15: Boxplot of absolute β values with BD as an exposure vs. absolute β values of phenotypes effect
on BD (where BD is an outcome). P-values were calculated using a two-sided related samples t-test.
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Figure 5.16: DCE subnetwork of BD, the mean ICVF in the right tapetum, and FA in the anterior corona
radiata in the right hemisphere. Edge values are β values following the same schema as previous network
figures, where red denotes positive and blue denotes negative.
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Table 5.1: Summary table of exposures and outcomes with the highest absolute DCEβ values where BD
is a term (top 20); βxy refers to the effect of BD on the phenotype and βyx refers to the effect of the phe-
notype on BD in both the TCE and DCE matrices respectively, status refers to whether or not the IDP
is a top exposure or outcome of BD. Bold values denote the highest values in respective columns with
the exception of the mean ICVF of pontine crossing tract for |TCEβyx|, which was not a top 20 expo-
sure/outcome for BD in the DCE. The abbreviations correspond to the following codes: MSOCC: Mean
diffusivity in splenium of corpus callosum, RCI4: rfMRI connectivity ICA-features 4, ARIC: aseg rh
intensity Cerebellum-Cortex, ITFRLT: IDP T1 FAST ROIs L thalamus, FACRR: FA Anterior corona
radiata R, ITFRLCI: IDP T1 FAST ROIs L cerebellum IX, AGV4: aseg global volume 4th-Ventricle,
ARAS: a2009s rh area S-parieto-occipital, TRVL: ThalamNuclei rh volume LP, ALAS: a2009s lh area
S-collat-transv-ant, HRVH: HippSubfield rh volume Hippocampal-tail, OCPL: OD Cerebral peduncle
L, MCPL: MO Cerebral peduncle L, DRAI: DKTatlas rh area insula, PRAT: pial rh area TotalSur-
face, IDPIIR: IDP dMRI ProbtrackX ISOVF ilf r, IMCP: ICVF Middle cerebellar peduncle, IICPR:
ICVF Inferior cerebellar peduncle R, WLIT: wg lh intensity-contrast transversetemporal, MPLOICL:
MD Posterior limb of internal capsule L, PLAS: pial lh area superiortemporal, OSLFL: OD Superior
longitudinal fasciculus L, FMCP: FA Middle cerebellar peduncle, ITFRVCV: IDP T1 FAST ROIs V
cerebellum VI, LSLFL: L1 Superior longitudinal fasciculus L, ITFRLCV: IDP T1 FAST ROIs L cere-
bellum V, AGVB: aseg global volume-ratio BrainSegVol-to-eTIV, MECR: MD External capsule R, IF:
ICVF Fornix, ITR: ICVF Tapetum R, FF: FA Fornix, IDPFSL: IDP dMRI ProbtrackX FA str l

5.4 Discussion

5.4.1 Bidirectional effects of BD on IDPs in the TCE space

We performed over 25 thousand tests of the causal relationship between 159 brain phenotypes and bipolar
disorder. After strict FDR corrections, we found that a diagnosis of BD had a negative effect on the
standardised surface area of the lateral orbitofrontal cortex in the left hemisphere, a result identified by
all MR methods (Figure 5.4). This finding is consistent with the meta analysis performed in [58], which
detailed widespread frontal cortex thinning in BD cases versus controls. Additionally, cortical thinning
of areas of the prefrontal cortex have been consistently observed in BD patients across multiple studies
[283, 284]. The left lateral orbitofrontal cortex is thought to be involved in reward systems and emotional
regulation, a core system thought to be disrupted in BD patients [285]. While widespread frontal cortex
thinning has long been observed in BD patients, we report causal estimates of BD affecting gray matter
structure. Because our causal estimation captures ‘all-cause’ effects of one phenotype on another, it is
possible that the mechanism by which BD affects cortical structure is via another unmeasured mediating
factor. For example, it is possible that a diagnosis of BD accompanied by subsequent therapeutic treatment
could be a cause of this effect, especially given that certain antipsychotic medications can cause changes in
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brain structural volumes [286]. However, the primary treatment of BD, lithium, has not been observed
to be correlated with cortical thinning in the left lateral orbitofrontal cortex, and moreover has been
correlated with cortical thickening [287]. However, it is difficult to understand how exactly BD may cause
cortical thinning.
Further, we found that increased surface area of the left hemispheric anterior transverse collateral sulcus
had a significant positive causal effect on the diagnosis of BD, increasing the odds ratio by ≈ 1.2 on
average. This region is encompassed by the ventricles, whose increased volume sizes have been previously
observed in BD patients [55]. Further, this region delineates the boundaries of the larger hippocampal
complex, which is thought to be responsible for learning and memory development tasks, an executive
system of great interest to BD pathology [288]. Interestingly, patients with major depressive disorder in
smaller studies have been described as having reduced sulcal depth in this region, which may correlate
with lower surface area [289]. While depression is a clinically distinct entity to BD, we expect a degree
of neuroanatomical overlap, making these results difficult to reconcile. Secondly, how such a structural
difference in practice may have a causal effect on BD diagnosis is a point of contention. As previously
mentioned, it is possible this causal effect may be mediated by an unmeasured factor. However, it is also
possible that aspects of ventricle structure have some impact on cognitive systems related to BD, thus
meaning that changes to a feature effecting that system may increase the chances of developing BD.
We also described the positive causal effect of the mean ICVF in the pontine crossing tract on BD, finding
that a unit increase in this quantity resulted in an average odds ratio greater than 1 in 4 methods. Higher
ICVF values correspond to greater concentrations of water between axonal and dendritic boundaries. The
pontine crossing tract is a series of nerve fibres involved with the pons, a key component of motor and
sensory function. However, the MR Egger estimates of this effect have very large confidence intervals that
overlap with 1, meaning this effect may be less robust than the previously mentioned pairs. A previous
study also observed white matter abnormalities along the pontine crossing tract in BD patients, with
lower fractional anisotropy (FA) reported vs. control subjects (which corresponds to less constrained
water molecule flow in a region) [290]. However, this effect was described in a sample size of 68 and it is
not known whether increased ICVF is correlated with lower FA in all cases. Intuitively, we may expect that
the quantities should instead be positively correlated, with increased amounts of intracellular volume in a
region acting as hindrances upon isotropic molecule motion, thus corresponding to increased FA values.
However, the interpretation of this finding is difficult as this reasoning will not always hold for complex
white matter fibers [291]. This is because FA is a global measure of hindrances to small molecule motion
in a region, and the degree of anisotropic molecule motion may not be an accurate reflection of localised
microstructural pattern differences. Nevertheless, this result implicates white matter microstructural
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differences as causal factors increasing the chances of BD diagnosis, specifically the average amount of
intracellular fluid in the pontine crossing tract. Microstructural alterations impeding molecule motion
between regions through white matter tracts may have downstream implications for the function of
executive systems overall, which may be of particular note in the context of BD pathology.

5.4.2 inspre-derived direct causal matrix: BD effects on IDPs

Using the bimmer and inspre packages, we calculated an approximate sparse inverse of our input TCE,
yielding a DCE of unmediated direct causal effects. The top 20 highest weight pairs where BD was the
exposure term contained 15 diffusion phenotypes (P = 0.13, Table 5.1), with the largest affected IDP
being the mean diffusivity in the splenium of the corpus callosum (βDCE = −0.11). Differences in
white matter mircostructure in the corpus callosum have been previously investigated as a potential en-
dophenotype of BD [59] The mean diffusivity of a region represents the degree to which small molecules
can move without hindrance in any direction, and is thus distinct from FA, which captures the amount
of directional molecule motion hindrance in the primary direction relative to orthogonal direction axes.
Broadly, higher mean diffusivity captures the amount of directed and undirected molecule motion within
a region, whereas FA speaks to the amount of directional diffusivity. As such, this result suggests BD di-
rectly causes microstructural alterations in the splenium of the corpus callosum which result in restricted
molecule motion in every direction. What exactly we can infer about the properties of the corpus callo-
sum in BD patients from this result is contentious; theoretically, increased hindrance in every direction of
possible molecule motion may imply increased white matter density in this region, a result contradictory
to findings of reduced volume in the corpus callosum of BD patients [292]. However, decreased mean
diffusivity only captures the amount of restricted molecular movement in a region, which may not always
correspond to increased white matter density - rather, it may capture a reorganisation of existing white
matter that affects the diffusivity of molecules in that space.
The second highest weight BD outcome is the weighted mean FA in superior thalamic radiations (βDCE =

0.109), a nerve fiber involved in transmitting information from the thalamus to the cerebral cortex and
thus an important part of the sensory-motor system. Interestingly, decreased FA in the anterior thalamic
radiations has been previously described in BD and schizophrenia [293, 294]. Our results indicate the op-
posite direction of effect, with BD causing an increased amount of FA corresponding to more anisotropic
molecule motion constrained by white matter microstructural differences. It is worth noting that previ-
ous literature is concerned with the anterior thalamic radiations as opposed to the superior part of the
structure.
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Further, most BD-outcome pair coefficients were given lower values in the DCE relative to the TCE.
This implies that BD’s causal effects as described by TCE coefficients may have been mediated by other
nodes included in the network, thus resulting in downweighting in the DCE, an estimate of the direct
unmediated causal effect. Given the strong effects of certain IDPs on each other, and the relatedness
of certain phenotype constructs, this is unsurprising. However, most of the TCE top 20 outcomes of
BD are present in the DCE top 20 outcomes of BD (13), albeit with coefficients of a lesser magnitude,
suggesting that most targets of BD do not have especially strong included mediators in their BD-outcome
relationships.
Interestingly, the phenotype with the second largest negative causal effect from BD in the DCE is an inde-
pendent components analysis summary feature for resting state functional networks (βDCE = −0.10).
This phenotype was estimated by applying independent components analysis to all resting state func-
tional network measures to derive 6 components representing the activity of multiple networks in a
more parsimonious fashion [232]. Further details on the derivation of these features can be found in
[232]. Briefly, this phenotype captures the functional correlations of multiple independent resting state
functional networks. An examination of the high-weight components of feature 4 reveals a landscape
of inter-related brain regions, including the relationship between the posterior cerebellar regions and
frontal/dorsal parietal lobules. The overall relationship observed in resting state networks is a net negative
correlation between the blood oxygenation levels in these regions; this implies BD may cause negative
correlation between brain regions in terms of blood oxygenation levels, a result consistent with literature
that observes the same effect in limbic regions [295]. However, the authors in [295] posit that the func-
tional network disruptions have a theoretical causal effect on BD as opposed to vise versa; here, we report
evidence that BD may also cause disrupted connectivity in resting state networks involving the limbic
system.
Interestingly, the top gray matter structural target of BD in the TCE, the volume of the 4th ventricle, is
transformed from βTCE = −0.11 to βDCE = −0.07, suggesting that BD’s all-cause effect on reduced
volume in this region is mediated by effects through other brain regions. Lateral ventricle volume increase
has been previously described in BD by multiple studies [55], meaning this direction of effect runs contrary
to the literature. However, the volume of the 4th ventricle, involved in the production of cerebrospinal
fluid, has not been investigated or reported individually.

5.4.3 inspre-derived direct causal matrix: Exposures acting on BD

While diffusion tensor imaging phenotypes are frequent targets of BD in our network, the phenotype
exerting the greatest absolute effect on BD is the right hemispheric volume of the hippocampal tail
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(βDCE = −0.12, OR = 0.88, Table 5.1). This indicates that increased volume of this region decreases
the chances of BD diagnosis. Volumetric reductions in the hippocampuses of BD patients have been de-
scribed by [58], but its causal effect has been previously unreported. The hippocampus is a key component
of the limbic system, which has important roles in emotional regulation from a functional standpoint
[296, 297]. A unit increase in the standardised hippocampal tail volume has a larger negative effect on
BD than the reverse association (βDCE = −0.047), meaning that while this relationship has evidence of
bidirectional causality, there is a clear magnitude difference in favour of a phenotype affecting BD. It is
possible that this causal effect is mediated by other nodes in the network, but tracing the most influential
causes of increased hippocampal tail volumes is difficult given that every phenotype has a path to another
phenotype in the network. Our causal paths analysis for this phenotype highlighted 3 other gray matter
structural phenotypes as its most influential variables. This can be explained given that the size of brain
regions can inform the size of other neighbouring brain regions. This finding is interesting given that
white matter microstructural variation is thought to be a candidate endophenotype of BD [59].
We also observe that this phenotype primarily effects other gray matter structural phenotypes - the top 5
IDPs affected by right hemispheric tail volume contain 3 T1-weighted structural phenotypes, the amygdala
lateral nucleus volume, left hemispheric volume of whole hippocampus, and the right thalamic nuclei
volume. These regions are all considered important to limbic system function [297]. Furthermore, the
lone diffusion tensor phenotype in the top 5 targets affected by this IDP - the FA in the right cingulum
cingulate gyrus - is also known to be involved in the limbic system and has been previously characterised
as structurally abnormal in BD patients [298]. These results describe a network of interactions involving
converging cognitive systems and different phenotypes with moderate causal effects on BD diagnosis.
These results indicate that information on the effect of variables on other phenotypes in a network can
contextualise results, as in the example of the limbic system.
The highest weight positive causal effector of BD in the DCE is the FA in the middle cerebellar peduncle
(βDCE = 0.10, OR = 1.1). This indicates that increased directional hindrance informed by white matter
microstructural constraints in a white mattter fiber connecting the cerebellum to the brain stem has a
positive causal effect on BD diagnosis. As previously mentioned, we must be cautious in interpreting this
result as a finding of increased white matter density, although this may still be the case in this specific region
[291]. The major causal effectors of this phenotype are proximally close in location, with 2 diffusivity
measurements of the pontine crossing tract featuring in its most significant causal path. The middle
cerebellar peduncle is a large set of fibers connecting the pons and the cerebellum, and as such plays a
role in sensory and motor function. A review carried out by [299] of neuroimaging studies of major
depressive disorder and BD indicates that the cerebellum appears to interact with areas of the limbic
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system to regulate mood. However, it is unknown what the significance of this phenotype is in relation
to the pathology of BD, although areas of the cerebellum have been previously described as functionally
disrupted in BD [300, 301]. Despite this, differences in functional connectivity are not explicitly correlated
with FA values in all cases, meaning it is difficult to relate this finding to the existing literature. While
certain regions associated with the cerebellum were tested in MR experiments from [276], the causal
effects of BD acting on those IDPs were either non-significant or not performed owing to the phenotype
selection strategy employed by the authors. We also found no previous studies reporting FA differences
in cerebellar fibers, making this result of particular interest for its novelty.
Interestingly, we found that the absolute effects of phenotypes on BD were statistically larger than the
absolute effect of BD on phenotypes. Of note when interpreting this result is the fact that most phenotypes
have bidirectional causality even when exact magnitudes differ. Furthermore, the unmediated causal effect
of BD may differ from its all-cause effect. However, this result is not supported by a t-test of TCE BD
exposures and outcomes which finds the same effect (P < 0.001). It is possible that BD influences
on brain phenotypes are lesser in magnitude and not necessarily specific to the phenotypes presented in
this analysis. Additionally, the causal estimates of certain exposures’ effects on BD may be influenced by
weaker instruments owing to differences in sample size and ancestry effects.

5.4.4 The role of diffusion phenotypes and network trends

While the regression of 5.10 for coefficient differences between diffusion tensor and T1-weighted structural
phenotypes did not yield significant results, we found that diffusion phenotypes may play important
roles in our DCE networks by less direct means. For example, diffusion tensor outcomes were found
to have on average 3 more exposure effects from different phenotypes with β > 1σ compared to gray
matter structural phenotypes (Figure 5.11, P = 0.0171). While higher degree is not a direct proxy of
overall node importance, this result suggests that white matter microstructural phenotypes can be affected
more often, and as such contribute to more causal paths. This is especially pertinent given the fact that
every node is reachable by another, meaning nodes affected more often are likely to mediate more causal
interactions. Interestingly, we noted that the same effect is not observed in exposures, meaning that
phenotype categorisation is not correlated with an increased number of phenotype targets.
Interestingly, we found that gray matter structural phenotypes affected in greater magnitudes by BD were
more likely to be significantly affected by other phenotypes relative to gray matter structural phenotypes
with lower BD causality estimates (Figure 5.12, P = 0.008). This suggests that, similar to the overall
trend of higher diffusion node outcome degree, gray matter structural outcomes affected with greater
BD β values are likely involved in more causal paths relative to other structural outcomes affected by
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BD. However, these results were non-significant in an interaction model of all phenotypes, meaning that
absolute BD causal effects in either direction are not predictive of the number of phenotypes affecting a
node. Given that brain regions appear more likely to causally influence each other than to be influenced
by BD, this is not entirely surprising, and further suggests that not all IDPs have strong relationships with
BD.
The importance of diffusion tensor phenotypes overall was underscored by the non-redundant causal
paths analysis in Figure 5.13, occurring as recursive top exposures 515 times out of a possible 800 in paths
of length 5 for every phenotype. This means that diffusion IDPs appear to be overrepresented in causal
paths in the network. This speaks to the general importance of white matter microstructural alterations in
the context of bipolar disorder. White matter fiber tracts, primarily captured by diffusion tensor imaging
modalities, are less neuron-heavy than gray matter brain regions, and as such these regions are primarily
involved in information transfer from one region to another. This result overall recalls aspects of the
dysconnectivity hypothesis, which implies that functional connectivity disruptions are a central feature
of BD and other psychiatric conditions [78]. However, microstructral differences in white matter fiber
tracts do not strictly speak to connectivity disruptions between regions; rather, they describe the local
constraints on molecule motion by multiple metrics that are informed by white matter microstructural
organisation. However, our results indicate that metrics describing microstructural white matter integrity
are of importance at a network level due to their occurrence in causal paths. This is especially interesting
from a gray matter/white matter perspective, with gray matter structural features having greater magnitude
direct effects on BD and white matter microstructural features having overrepresented in causal paths.

5.4.5 Feedback loops and bidirectional causality

In examining every causal pair in the network and its reverse association, we found that just half of interac-
tions have the same direction of effect in both cases (Figure 5.14a). These relationships can be thought of
as feedback loops, but these results nevertheless underscore the difficulty of definitively resolving a single
causal actor in a pair of phenotypes. Our understanding of causality suggests that single causal factors with
large effects are unlikely. Instead we construct a network of complex bidirectional causal relationships
of differing magnitudes and effect directions. This complexity is further highlighted when considering
pairs of phenotypes with differing signs of effects in the forward and reverse direction with significantly
different magnitudes (Figures 5.16,5.17). In considering the visualised examples, we can attempt to reason
with their causal structure.
For example, in Figure 5.16, we can see the relationship between FA in the corona radiata, the mean ICVF
in the tapetum, and BD. Coefficients represent the effect of a standardised unit increase on the value of
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another phenotype. If we assume that a unit decrease in a phenotype causes the same magnitude of effect in
the opposite direction, we can see that from every starting node, there appears to be a feedback inhibition-
like loop. Starting from BD, a diagnosis causes higher mean ICVF in the tapetum, which in turn causes
increased FA in the corona radiata. However, increased FA in the corona radiata has a negative effect on
BD diagnosis, leading to an apparently inconsistent empirical estimate. This effect is repeated no matter
the starting point in the subnetwork, ultimately resulting in a decreased causal effect on the input. This is
initially difficult to resolve but there are several factors to consider. Firstly, BD is usually diagnosed once
throughout a person’s life and no factors can cause a decrease in its odds once the phenotype is present.
Therefore, in considering causal paths beginning with BD, we must be conscious that signal returning the
BD node cannot meaningfully effect diagnosis odds in any tangible sense. Secondly, we can consider the
possibility of non-symmetry about the coefficient estimates, meaning that the magnitude effect of a unit
increase is not exactly equal to the magnitude effect of a unit decrease on another phenotype. This may be
an example of Simpson’s paradox, whereby certain stratum of the data may describe the opposite effect
to the same variables in a different strata. However, we must also consider that not all causal estimates
are true due to potential violations of MR assumptions. The inclusion of weak instruments or ancestry
effects may lead to an imprecise causal estimate with differing directions of effect.
Figure 5.17 visualises the three pairs of BD associations with differing signs of significant magnitude from
Figure 5.14b. Again, we see that BD diagnosis results in decreased odds of a BD diagnosis through every
node in the subnetwork. Of note is the biological significance of these phenotypes, with the fornix and
the cerebellar cortex involved directly or indirectly with the limbic system, and the external capsule acting
as a route for cholinergic fibers, an important focus of recent BD research efforts [302]. The fornix is a
major output tract of the hippocampus and its structural alterations have also been previously described
in BD compared to controls [303]. The exact interpretation of these contradictory β effects is difficult to
determine, but we note the occurrence of another limbic system subnetwork in our results. We further
note that the three phenotypes in question relate to white matter microstructure - intensity increase can be
a proxy for increased white matter density or fat density, and ICVF/mean diffusivity have been previously
explained.

5.4.6 Global trends

These results indicate that both diffusion tensor and gray matter structural phenotypes are important
in the derived DCE network. Moreover, their effects can manifest as differences in node degree and
over-representation in causal paths. Applying a graphical lasso framework in this domain grants us two
advantages – firstly, we can estimate approximate unmediated causal effects conditional on other included
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nodes in the graph; secondly, we can derive networks of unmediated causal estimates that can facilitate
reasoning on a larger scale using degree and path metrics. It is of particular note that the highest weight
effectors and targets of BD are not over-represented for any category of phenotypes (Figures 5.8,5.9). A
possible explanation is that certain mediators of BD’s causal effect may not be included in the graph, such
as medication usage post-diagnosis, meaning that macro/microstructural changes as a result of BD may
be represented as all-cause coefficients. However, the regions in question do not have strong literature
support as candidates affected by BD treatment drugs, suggesting that other mediators may be involved in
this interaction. Our results may indicate that certain structural changes, such as reduced volume of the
hippocampal right tail, may be involved in influencing systems that contribute to BD pathology. We also
report several strains of evidence across imaging modalities implicating disruptions to the limbic system
as a causal effector of BD.
However, we note that interpreting how brain imaging phenotypes may affect BD is difficult. This is
made especially challenging given the difficulty in ensuring that all MR assumptions are satisfied. For
example, an estimate of BD causally effecting increased FA in an arbitrary white matter tract is reliant
on ensuring that associated variants are causal for BD, that there are no ancestry effects between the two
phenotypes, and also that there is no pleiotropy whereby the variants are associated with the outcome as
well as the exposure. Even when all assumptions are met, MR captures the all-cause effect of an exposure
on an outcome, making it difficult to resolve how exactly one phenotype may affect another. Deriving
direct causal effect estimates is dependent on the variables included.

5.5 Conclusion

We performed over 25 thousand bidirectional MR tests and applied a graphical lasso framework to derive
estimates of unmediated causal effects between BD and brain phenotypes. Our results implicated several
previously described brain systems and individual regions as important causal actors in the network, which
may provide future insight for studying the overall neuroanatomical pathology of BD.
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Chapter 6

Discussion

6.1 Research Findings

The field of brain disorder imaging and genetics research is predominantly focused on understanding the
biological bases of a myriad of debilitating conditions. Our work attempts to contribute to this goal via
several distinct and interdisciplinary methodologies. In sum, we sought to characterise the genetic archi-
tecture of neuroimaging biomarkers discriminative for psychiatric phenotypes identified using flexible
and interpretable deep learning approaches and investigate the causal relationship between neuroimaging
and psychiatric conditions. Below, we summarise our main findings.

In Chapter 2, we systematically reviewed the literature of convolutional neural network models ap-
plied to neuroimaging collections of patients with brain disorders. We found that predictive performances
were high in testing sets, with an average reported accuracy of 89.36±8.694% (µ±STD). However, we
also observed several methodological practices which may limit the clinical utility of such models, includ-
ing a lack of code availability, variable application of repeat experiments, and interpretability issues. This
study marked the first time to date that studies in this problem domain were assessed through the lens of
modelling practices, transparency, and interpretability. In the context of our overall goal, our results were
encouraging – structural neuroimaging data can be used to classify brain disorders. These data modalities
therefore have potential as endophenotype sources. Despite this, the aforementioned limiting factors
made it difficult to make use of existing model architectures. Specifically, six studies made code available,
and seventeen studies considered interpretability via a variable range of methods. From a code-sharing
perspective, none of the considered studies made their full models available, which complicates our general
task. Concurrently, while there exist drawbacks in the usage of certain interpretability methods, examina-
tion of these approaches in the seventeen studies applying interpretative methods for CNNs informed a
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careful consideration of the best means by which to empirically express an understandable quantity rep-
resenting region importance. In a larger sense, we found that repeat experiments were applied in over half
of all studies, and interpretability in some form was considered in seventeen of our 55 considered papers.
These trends are encouraging and will no doubt increase the clinical potential of such models moving
forward. While interpretability has historically remained of less importance than predictive outputs in
the field of deep learning [304], it is important to bear in mind the scope of our presented studies. For
instance, our ultimate goal of biomarker derivation necessitates a different set of experimental conditions
that must be fulfilled; because we are concerned with capturing the genetic architecture of deep-learning
derived features, we must understand their constituent elements and express those features numerically.
When the study goal is to examine the predictive capabilities of modelling approach, a different set of con-
ditions become important, including a focus on model tuning and optimisation. Despite our aspirations
to better understand brain disorders using these approaches, we should not imply that one goal is more
important than the other. Indeed, the motivation for our research goal was informed by an observation
that various brain disorder phenotypes can be predicted with high accuracies using deep learning models.
Here, our interest in inferential dynamics was reliant on an emphasis on predictive performance.

Subsequently, we attempted to use the knowledge gained in our systematic literature review to guide
model construction in Chapter 3. Using data from the ADNI consortium, we trained a CNN predictive
model on structural neuroimaging data from participants with and without AD with the aim of extracting
an interpretable quantity whose genetic architecture can be queried. We obtained a mean accuracy across
three repeat experiments of 80.3%±1.24. Examining Table 2.1 shows that our highest performing model
(82%) is in the bottom 7 of studies considered. However, our model construction was motivated by a
desire for interpretation, meaning our architecture may not have been optimal for prediction. Future
studies could investigate how best to balance these two motivations.

Our parsimonious modelling approach informed an architecture with a penultimate global average
pooling operation followed by a final sigmoid layer. Our global average pooling layer took the mean of
the output from multiple feature maps and our sigmoid layer returned the sum-weighted combination
of those averages. This allowed us to directly examine the final layer weights to determine which feature
map average had the highest contribution to a classification of Alzheimer’s disease. This had the useful
property of providing a single number summarising the importance of a particular feature map to the
output. Furthermore, this allowed us to apply several straightforward interpretability methods to better
understand the features encoded in the feature map score. For instance, we regressed 40 principal compo-
nents derived from tabular summary information of participants against our score, finding that principal
component 2 was significantly associated with score after multiple testing corrections. Examining the
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loadings of this component revealed that multiple ventricle measures (Table 3.3) were top loadings in our
correlated principal component. Additionally, we found that eleven brain variables had p-values less than
0.05 in full regression models of every variable against our CNN score; the two with the highestR2 values
were visualised in Figure 3.12 (volume of left lateral ventricle and thickness of right inferior parietal gyrus).
These results indicated consistency with previous literature noting ventricular enlargement in AD [204]
and atrophy in parietal lobe regions [235]. Additionally, these findings were consistent with those of the
authors in [305], which we considered for our systematic literature review. This is encouraging, as our
model can recapitulate associations previously reported in the literature despite using an entirely different
approach.

Furthermore, we also obtained the gradient of score output with respect to small changes in the input
image to yield a visual map of feature importance in Figure 3.11. This confirmed our empirical findings
by implicating parietal and ventricular regions as important to model representation. Our visual gradient
experiments coupled with our regression analyses provided substantial evidence that the aforementioned
regions were important to model representation.

Our multi-method approach to understanding model representation built upon our findings in the
review of Chapter 2, where we identified the potential of simple regression models for adding an extra
layer of depth to our interpretability considerations. This result underscored the importance of empirical
grounding in interpretability considerations, as we manipulated patient tabular information to supple-
ment our gradient-based findings.

Further, our GWAS of this phenotype yielded several plausible genetic associations with AD, identify-
ing several genome-wide significant findings related to molecular pathways previously associated with the
disorder, including PSME4. This gene encodes a subunit of the proteasomal complex which is responsible
for cellular homeostasis. The primary molecular feature of AD is the deposition of amyloid-β plaques,
meaning that impeded proteasomal recycling activity may be a factor contributing to this cellular pheno-
type. Adding to this evidence is the observation that differential expression of PSME4 is observed in AD
individuals relative to controls [227]. Additionally, lowered PSME4 mRNA levels have been previously de-
scribed in patients with Parkninson’s disease, a separate neurodegenerative disorder [226]. This disrupted
cellular homeostasis finding is given further weight by ERLEC1, which forms part of the endoplasmic
reticulum degradation pathway. In mouse brains, AD-like features can be simulated by downregulating
membralin, a protein involved with the endoplasmic reticulum degradation pathway; further, ERLEC1
was found to be a hub gene in differentially expressed human AD gene sets in the brain [224, 230]. These
results suggest that disrupted cellular homeostasis via perturbed degradation of extracellular compounds
is a key molecular system associated with our CNN score.
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In general, we found that most of our identified genetic variants fell in intronic or intergenic regions,
which is of particular interest when considering the analyses of Chapter 4 (which will be discussed shortly).
In understanding these findings, it is important to note the phenotype encoding; these variants are as-
sociated with global neuroanatomical changes associated with AD, specifically in certain parietal and
ventricular regions. Therefore, we can posit that our molecular results are associated with these specific
neuroanatomical changes which are observed in AD patients. However, even with an endophenotype, it
is still difficult to directly link our molecular results to the larger phenotype.

While these results are encouraging, we faced a limitation in the application of this method. Namely,
we trained a supervised predictive model to extract our phenotypes, meaning that our genetic results are
dependent on the representation of a model trained on an arbitrary data split, which may introduce bias or
inflated test statistic association scores. Additionally, our CNN method requires intensive preprocessing
owing to the data splitting procedure, meaning it may be difficult to apply this approach to new domains.
Therefore, in Chapter 4, we sought to derive endophenotypes using an interpretable deep learning model
with a different approach that could mitigate some of the aforementioned issues. We trained an unsuper-
vised shallow de-noising autoencoder on tabular brain summary information from AD participants and
controls in the same dataset. Specifically, we trained a single-layer de-noising autoencoder with 60 latent
nodes on corrupted input data with the aim of creating a robust information embedding in our encoding
layer. We achieved a reconstructive loss of 6.21e−9 after an iterative noise reduction schema (whereby
the amount of noise added to the data was reduced by a constant factor every 250 epochs). After training,
we found nodes with differential scores in AD participants and controls using an independent t-test; we
then corrected the resultant p-values using a Benjanini-Hochberg procedure and examined the node with
the most significant p-value (node 51, adj.P = 2.47e−07). This procedure was motivated primarily by a
desire for statistical rigor, despite the fact that other nodes may contain relevant information. However, if
we decide to examine other nodes, or even combinations of nodes, we must be conscious of how to select
relevant nodes. As such, focusing on just one node with stringent statistical thresholds ensures that our
analysis is specific for one signal associated with AD.

Interestingly, we found that the variables with the greatest impact on node output score had little
overlap with those identified in our CNN analysis. This may be due to different methodologies capturing
different neuroanatomical relationships. Namely, we found that atrophy of several temporal lobe regions
was found to influence node output (Figure 4.9). This was in agreement with several studies of AD
neuroanatomy describing volumetric loss in temporal lobe structures, and an encouraging confirmatory
finding [203, 248, 251]. Further, we found agreement with our CNN results in a finding of increased
ventricle size driving node 51 activity. We then carried out a GWAS of our autoencoder-derived quantity
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and found that our three significant variants were mapped to long non-coding RNA transcripts (RP11-
239H6.2, RP11-509J21.1, and RP11-707M1.1). This is of particular interest in the context of the quantity they
are correlated with – global neuroanatomical changes in AD participants, with a focus on pronounced
temporal lobe structural atrophy. The role of long non-coding RNAs in mediating gene expression in
brain tissues is a topic of growing relevance [306]. In particular, the expression of certain long non-coding
RNA transcripts has been posited as candidate biomarker for AD [255]. These molecules are thought to
affect regulation of gene expression via various means, including through acting as precursors to other
regulatory molecules (micro RNA), ‘sponges’ for other gene transcripts via sequestration of transcription
factors, and direct gene silencing via binding and degradation [306]. However, the correlation of these
loci with gene expression levels of long non-coding RNAs was not investigated in these studies, which
may add further plausibility to our findings. Additionally, our gene-based results implicated EIF2B5 as a
statistically significant gene; this was encouraging in light of a recent Mendelian randomization study of
AD, which found that its expression had a significant causal effect on AD risk in a multi-ancestry cohort
[262]. This gene is a eukaryotic translation initiation factor essential for translatory regulation; mutations
in this gene can also result in leukodystrophy, a neurodegenerative condition marked by widespread white
matter atrophy [261]. Our non-coding transcript findings in combination with EIF2B significance at the
gene level present a set of molecular results distinct from that of our CNN analyses. We will discuss the
implications of this further in later sections.

We also observed that genes found to be statistically significant in our MAGMA gene-based test had
tissue-specific expression for the substantia nigra (Figure 4.12). Although this result did not survive Bon-
ferroni correction for multiple testing, this tissue in particular is of interest for AD; previous studies have
described β-amyloid and tau phosphorylation accumulation in this brain region [263]. Of particular note
is the substantia nigra’s role in the dopaminergic system, posing a possible link between AD and dopamine;
indeed, neuronal loss has been observed in this region in AD participants [264, 266]. In summation, we
find that genes significant in a gene-based test for neuroanatomical variation associated with AD have
tissue-specific expression for a brain region involved in the dopaminergic system. Concurrently, long non-
coding RNA transcripts and translation regulation machinery components are implicated by variants
found to be significantly associated with the same node quantity. This speaks to a range of diverse molecu-
lar findings arising from an association study of a latent space component summarising neuroanatomical
variation across multiple brain regions.

However, our power analyses indicated that both of our studies were underpowered to detect small to
moderate genetic effects. It is unknown what effect sizes we expect for these derived endophenotypes, but
larger sample sizes are required to have more confidence in results. Furthermore, ancestrally-constrained
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GWAS of our autoencoder score introduced 12 more significant independent genetic loci. These results
are in spite of controlling for ancestry at the principal component level, which may suggest that our autoen-
coder endophenotype is unstable. There also exist issues with Manhattan plot outputs, with the presence
of broad peaks and significant variants not associated with LD peaks, which may decrease confidence in
our results owing to possible artefacts at the genotype level. Larger sample sizes in a different cohort and
more stringent quality control procedures may be required in future studies. Overall, these issues mean
we should be cautious in the interpretation of the full analysis results.

The implicit assumption underlying our endophenotype analyses is that there is a causal relation-
ship between neuroimaging measures and brain disorders. In Chapter 5, we sought to investigate this
assumption in greater detail for a separate psychiatric disorder with subtle neuroanatomical correlates –
BD. We obtained summary statistics from multiple GWAS of imaging phenotypes from the UK Biobank
and the latest PGC BD GWAS to carry out bidirectional MR experiments and construct causal networks
using inverse sparse regression [38, 232, 277]. Briefly, we filtered a set of 3929 brain imaging phenotypes
by the number of genome-wide significant loci in their association results, retaining those with greater
than 5 variants. This resulted in a candidate set of 630 phenotypes which were further filtered for a
multicollinearity-like quantity – genetic correlation (rg). We flagged pairs with rg values greater than
0.85 as potentially redundant, and removed the entry from the pair with less significant genetic instru-
ments. This resulted in 159 brain imaging phenotypes plus BD. We carried out instrument quality control
for pleiotropy or violations of MR assumptions and carried out over 25 thousand bidirectional MR ex-
periments to obtain a matrix of total causal effects, whereby the causal effect of every phenotype on every
other phenotype is estimated. We found that 9 BD-imaging phenotype pairs remained significant after
Benjanini-Hochberg multiple testing correction in at least two of the five considered MR methods. These
included the effect of BD on the surface area of the lateral orbitofrontal cortex, the effect of the surface
area of the left hemispheric anterior transverse sulcus on BD, and the effect of the mean ICVF in the
pontine crossing tract’s on BD (Figures 5.3-5.5). These findings suggest that BD may have a causal effect
on decreased brain region volume. In particular, the lateral orbitofrontal cortex is thought to be involved
in reward systems and emotional regulation, with previous studies describing cortical thinning in pre-
frontal regions of individuals with BD [283–285]. Our work suggests that BD may affect neuroanatomical
variation in prefrontal cortex regions. Further, we also estimate that certain neuroanatomical measures
may have a causal effect on BD diagnosis, including decreased mean ICVF in the pontine crossing tract
and increased surface area of the left anterior transverse sulcus. To our knowledge, the causal effect of
neuroanatomical variation on BD has not been estimated previously. In relation to our previous results
implicating EIF2B as an associated gene of AD and the work of the authors in [262] describing that its
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expression has a causal effect on AD risk, we provide evidence of a factor causally influencing the risk of
a brain disorder. Indeed, our network analysis allowed us to derive a matrix of unmediated direct causal
effects of every phenotype against each other; this allowed us to examine the nature of multiple causal
relationships between BD and neuroanatomy. Specifically, we found suggestive evidence that white matter
microstructural abnormalities constraining the direction of molecular movement were of importance,
featuring as the most influential causal factors in causal paths (Figure 5.13). This result overall is consistent
with previous findings of white matter abnormalities observed in BD [303]. Strikingly, we also found
that the absolute effect of other imaging phenotypes on BD was on average larger than that of the abso-
lute effect of BD on other phenotypes (P = 0.0047, Figure 5.15). While we may be able to understand
how individual IDPs have larger effects on BD than vice versa, this result on an average level is surprising,
especially considering that the brain imaging phenotypes used in this study were not selected based on
any BD-specific inclusion criteria. Furthermore, our graphical lasso procedure allowed us to construct
a network of unmediated causal effects, meaning that we can identify the direct causal relationship in
several BD-IDP pairs, including the effect of BD on the mean diffusivity in the splenium of the corpus
callosum (β = −0.11) and the effect of right hemispheric tail volume on BD (OR = 0.88).

6.2 Novel lines of enquiry: an integrated overview of results

Our results in totality provide several contributions to the study of brain disorders using neuroimaging. In
the context of AD, we provide confirmatory results of temporal lobe atrophy and ventricular enlargement
across both CNN and autoencoder approaches. Interestingly, these methodologies appear to capture
different elements of AD neuroanatomical variation; our CNN method implicated parietal region volu-
metric reduction and overall brain size differences, whereas our autoencoder results indicated atrophy of
temporal lobe regions as the main contributing factor to node 51 output. Both methods converge on ven-
tricular enlargement as an important neuroanatomical feature of AD. This overlap is interesting given the
differences in both modelling strategies, with one relying on the representation of a supervised predictive
model trained on raw neuroimaging collections and the other trained on unsupervised tabular summary
information. Thus, increased ventricle size in AD can therefore be thought of as a method-invariant
important feature. The magnitude of difference in methodological approaches is apparent in the results
of our respective GWAS experiments; we report no overlapping genome-wide significant variants and no
overlapping significant MAGMA-based genes. However, these findings may suggest a role for disrupted
cellular homeostasis as an important molecular phenotype of AD [307]. This is because we find that
ERLEC1 of the endoplasmic reticulum degradation complex and EIF2B of the eukaryotic translation ini-
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tiation complex are significant in our CNN and autoencoder studies respectively. Concurrently, we also
find that there is modest tissue specific expression in the substantia nigra for our autoencoder-based genes,
an area of β-amyloid plaque accumulation. Such accumulations can be attenuated by efficient cellular
recycling which can be coordinated by the endoplasmic reticulum and faithful translation control machin-
ery. In a larger sense, while the specifics of genetic association results differ across our AD-based analyses,
we find that in both studies, SNPs were enriched for intergenic and intronic functional categories in terms
of effects on genes. This may suggest that neuroanatomical variation related to AD is associated with
regulatory genomic regions via non-coding transcripts and cellular homeostasis machinery [308]. This is
the first such result linking AD-related neuroanatomical variation to cellular homeostasis phenotypes. We
believe this may be a promising avenue of future research, perhaps by examining the correlation between
brain imaging measures and features of decreased autophagic fidelity.

However, this may be inconsequential owing to the fact that the majority of the genome is intergenic
or intronic. Furthermore, larger sample sizes would be required to validate that the results presented here
are not false positives.

The results of Chapter 5 indicate that there are multiple possible causal relationships between IDPs
and BD. In the context of the overall thesis goal, this is an important extension of our biomarker derivation
approaches. In particular, our results also suggest that BD may have direct causal influence on brain struc-
tural variation. For example, BD causing a volumetric decrease in the left hemispheric lateral orbitofrontal
cortex provides evidence that a long-standing observational association of BD neuroanatomy is in fact a
result of BD. This can aid our interpretation of the systems which volumetric loss in these region may
give rise to. Importantly, this finding can help to inform our reasoning about these cognitive systems;
for instance, we may next consider investigating the mechanism by which BD causes this effect, either
through independent experiments or through the mediating factors included in our analysis. This is a
subtle re-framing of the research question informed by our network analysis. Additionally, our network-
based approach allowed us to understand how white matter microstructural variables differ from gray
matter structural variables in a causal context. Namely, we provide novel indications that white matter
microstructure may be causally influential in the context of BD through differing means to gray matter
structural variables; this is evidenced by our causal paths analysis where diffusion-tensor imaging out-
comes are overrepresented among the top exposures acting on phenotypes. In the context of our overall
thesis goal, these network-based approaches are of great relevance; derived biomarkers are unlikely to act
or be acted on in isolation, and our work can help to understand those dynamics in relation to other
phenotype-disorder relationships. Furthermore, we demonstrate that the absolute causal effect of IDPs
on BD is larger than that of BD on IDPs. Our findings suggest for the first time that causal estimates of
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neuroanatomical variation on BD are on average greater than vice versa in BD. This may inform revised
hypothesis formulation for future experiments to refute or confirm these results.

However, given the difficulty in ensuring that MR assumptions are met, these results should be
cautiously interpreted. Even if assumptions are met, it is worth considering if any statements concerning
the effect of a brain region on BD are possibly falsifiable or testable in practice. It would be exceedingly
difficult to design any experiment that could test the results of any MR study on complex disorders.
However, our results may point to lines of inquiry that may help to shed light on the molecular and
neuroanatomical correlates of BD. Even if causality cannot be proven, these findings may help to build a
more complete picture of BD.

Generally, we seek to define novel biomarkers of brain disorders and investigate causal links between
neuroanatomy and conditions, and we may be tempted to judge their quality by the concordance with
the overall body of literature. However, this reasoning immediately limits the discovery potential of
this approach owing to an over-dependence on assumptions of ‘similarity’. As previously noted, we are
capturing different quantities using distinct approaches, a fact which also applies when attempting to
compare our genetic results across studies. An awareness of the explicit question being asked will facilitate
a more reasonable interpretation of the results, which is to say we should bear in mind what our biomarkers
represent and what their associated genetic results are associated with. This can help us to generate new
lines of enquiry into the relationships between neuroimaging, genetics, and brain disorders.

6.3 Concluding remarks

Hannah Arendt’s seminal work of political theory, The Human Condition, draws attention to an impor-
tant characteristic of modern science that sets it apart altogether from antiquated scientific thought - the
importance of process [309]. Various social and technologicial factors in centuries prior to the enlighten-
ment facilitated a consideration of the world’s natural phenomenon as mostly inscrutable, or ends to be
regarded in their own right. Modern science, in contrast, is marked indelibly by a focus on describing the
means by which products of the world arise. Arendt’s lengthy treatise on the historical circumstances that
gave rise to this ontological shift are not of direct relevance to our research interests, but her observation
is correct - the process character of phenomena is of primary scientific concern in the modern age. This
imperative makes interpretability of opaque models and systems of particular importance. The applica-
tion of deep learning predictive models to brain disorder neuroimaging gives rise to end products whose
constituent elements may be illuminating as to the processes by which those conditions progress. We
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should therefore endeavour to not treat the internal representations of such models as inscrutable, and
continue centering the process character at the outset in our experimental efforts.

However, modern research has conceived of algorithms whose mathematical properties are often
inexpressible in human terms, making this seemingly untenable to fully realise. Our research demonstrates
that these conflicting forces can be reconciled, thus enabling us to take advantage of complex and usually
opaque models. As deep learning approaches become increasingly widespread and sophisticated, we
envision that embracing the principles of interpretability will yield novel insights across a range of domains.

Our results estimated bidirectional causality between every pair, and every node was connected to
each other via paths of different magnitude. Crucial to this discussion, and conspicuously absent from
empirical measurement, is the context in which a causal agent acts upon another. We derive point esti-
mates with confidence intervals (at the total causal effects level) describing an overall causal effect of one
phenotype on another. However, what this means in practice can be difficult to understand. For instance,
it may be difficult to conceive of a coherent hypothesis in which a highly plastic brain measurement, which
varies throughout life and is impacted by several other factors, can increase the lifetime odds for the di-
agnosis of BD. We may posit that the function of certain cognitive systems related to this disorder are
affected by neuroanatomical variation, but it is unlikely that any causal factor acts in isolation divorced
from context. Rather, it is more likely that neuroanatomical variation in the correct context may affect the
odds of BD diagnosis, and conversely that BD presentation given the necessary circumstances may affect
neuroanatomical variation. The significance of statements speaking to average trends is underscored by
[310], in which the importance of causal context is explored. In future work, it would be interesting to
consider how best to resolve causal context in our domain, with a potential approach being the use of
longitudinal brain imaging data.

Coupled with this fact is the fidelity of the genetic instruments used to anchor causal reasoning. For
example, while the UK biobank imaging resource is a useful data source, it reflects approximately 42
thousand volunteers aged between 40 and 69 years old of mostly European ancestry. This means that
our genetic instruments are associated with neuroanatomical variation in a relatively narrow subset of
one population of European ancestry. Additionally, we must expect that a certain proportion of genetic
variants will not replicate across populations, meaning that our findings may not generalise in different
ancestral contexts.

With this in mind, we suggest a cautious interpretation of our results in a network context. While the
significance of individual phenotypes in relation to BD may vary based on context, there are likely higher-
order systems that are as important as individual factors. For example, the limbic system is comprised
of multiple constituent brain elements, and our findings implicate disruption to multiple aspects of this
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system. While we expect that results at the element level differ, the system at large should theoretically
still be associated with the phenotype. This recalls our finding that cellular homeostasis factors are geneti-
cally associated with distinct neuroanatomical biomarkers of AD identified using different deep learning
approaches.

6.4 Final thoughts

Sean Eddy discussed the discipline-agnostic origins of computational biology and what it means for the
future of the field in his 2005 essay, “Antedisciplinary” Science [311]. We too, in the field of brain disor-
der neuroimaging, must consider what the discipline of the future will look like. This requires careful
examination of our research goals, an idea of where we are going, and a willingness to embrace the poten-
tially useful elements of seemingly disparate research disciplines. By its nature, this work has drawn from
multiple disciplinary standards, without specific expertise in any one area. However, as demonstrated in
this work, a scientific approach to integrating multiple approaches can yield interesting novel findings.
The ‘antedisciplinary’ character of scientific progress demands a needs-must attitude whereby we do not
relegate branches of research to those with the ‘correct’ credentials. Furthermore, we as computational
researchers must think carefully about what comes next if we are successful in fully characterising the
genetic basis of brain disorders and identifying their associated neuroanatomical profiles. The computa-
tional biologist of the future must be ready to defy credentialism and embrace the “coherence, clarity, and
glorious idiosyncrasy that can only come from a single mind” [311].
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Appendix A

A.1 A note on tools

Python and R programming languages were used for analyses [312, 313]. Schematic diagrams were made
using draw.io. Analyses relied heavily on the usage of NumPy [314] and pandas [315]. Visualisation of
results throughout this work was carried out using matplotlib [316] and ggplot [317].

A.2 Supplementary methods and figures

Power was calculated using base R functions. It can be obtained with the following code:

N = N #sample size

alpha = 5e-8 # detection threshold

ES = 0.1 # effect size

threshold = qchisq(alpha, df = 1, lower.tail = FALSE)

power = pchisq(threshold, df = 1, lower.tail = FALSE, ncp = N * ES)
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Figure A.1: Scatterplot of PC1 and PC2 colored by ancestry. Individuals colored red were taken forward
for an ancestrally-constrained GWAS.
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Figure A.2: Scatterplot of PC1 and PC2 colored by ancestry. Individuals colored red were taken forward
for ancestrally-constrained GWAS.
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Figure A.3: Power curves for N=744 and genome wide significance at P = 5e−8. Effect size is denoted
on the x-axis and power on the y-axis. Different minor allele frequencies are colored lines.
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Figure A.4: Power curves for N=533 and genome wide significance at P = 5e−8. Effect size is denoted
on the x-axis and power on the y-axis. Different minor allele frequencies are colored lines.
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Figure A.5: Manhattan plot of GWAS results of CNN score in white ethnicity samples only.
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Figure A.6: Manhattan plot of GWAS results of autoencoder score in white ethnicity samples only.
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