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Abstract

Immunoediting is a process through which the immune system plays a role in shaping

the mutational landscape of cancer and, consequently, in cancer progression. One

critical aspect of immunoediting is the phenomenon known as neoantigen depletion.

Neoantigens are mutated peptides that may arise from somatic mutations in cancer

cells presented on the cell surface by the MHC molecules. Theoretically, these

neoantigens can mark the cancer cells to be identified and consequently eliminated

by immune cells, such as cytotoxic T-cells. Accurate neoantigen predictions allow

researchers to identify which mutations generate immunogenic peptides to initiate

an effective immune response against cancer cells. This has significant implications

for the development of personalized immunotherapies and cancer vaccines.

Cancer immunoediting not only occurs during tumor progression but also in pa-

tients receiving anticancer immunotherapies. Neoantigen depletion during cancer

progression contributes to innate resistance to immunotherapies, resulting in incon-

sistent results across patients and cancer types. Patients also acquire resistance to

immunotherapy during treatment, leading to treatment ineffectiveness. Therefore,

to effectively harness the power of the immune system against cancer and to fully

understand cancer progression, a thorough understanding of cancer immunoediting

is crucial. This thesis aims to gain a deeper understanding of some of the sources of

variation in immunogenicity, as well as potential mechanisms to escape from immune

responses. Ultimately, we are to use these findings to enhance our understanding of

the impact of immunoediting on the mutational landscape of human cancers.

Two recent high profile studies have reported that recurrent driver mutations

occur in the gaps in the capacity of MHC molecules to present neoantigens. This

implies that the immune system selects against driver mutations that can potentially

give rise to neoantigens. These findings have important implications in studying can-

cer progression and the role of immune system in determining how cancers develop.

Interestingly, although depletion of driver mutations predicted to be immunogenic

has been reported the same was not observed for passenger mutations. Therefore, in

Chapter 2 we tested if the passenger mutations that are predicted to be immunogenic

occur preferentially on lowly expressed or non-expressed genes which may help to
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explain this observation. When we controlled for gene length and sequence context,

we found no evidence to support this hypothesis. Consequently, we re-evaluated

the results reported by and found that these results are based on unjustified sta-

tistical assumptions. Our analysis found no link between MHC genotype and the

occurrence of driver mutations. Consistent with this, we also found no relation-

ship between cancer risk in individuals from the UK Biobank and the coverage of

common driver mutations predicted from their MHC genotypes.

In Chapter 3, we performed an analysis to predict immunogenicity of somatic

mutations that arise from different cancer mutation signatures. The study found

that mutated peptides resulting from specific mutation signatures were more likely

to be presented by certain HLA alleles compared to peptides originating from other

mutation signatures. Notably, the median activity of the mutation signatures in a

given cancer could be used to predict the average number of mutations inferred to be

immunogenic with high accuracy (R2 = 0.87). Our results revealed that variations

in the immunogenicity of mutations in tumors can be attributed to the differences in

immunogenicity of mutation signatures and their activities. The limited variability

in mutation signature immunogenicity and activity across different types of cancer

resulted in small variation in the expected immunogenicity of various cancer types.

Our findings also highlighted that the MHC-I genotype is the major determinant

of the predicted immunogenicity of tumors. It was also discovered that mutation

signature 20 yielded the highest proportion of immunogenic mutations, based on

the HLA allele frequencies in the TCGA cohort. When comparing different types

of cancer in the TCGA cohort, CESC had the highest expected number of immuno-

genic mutations, while PRAD had the highest observed proportion of immunogenic

mutations.

Recent studies have reported that patient MHC-I genotype plays a role in deter-

mining immunotherapy responses. However, the extent of this influence appears to

be inconsistent, and the underlying reasons for this inconsistency remain unclear.

For instance, in the case of melanoma, the B44 HLA supertype has been linked to

a better response. Interestingly, non-small cell lung cancer (NSCLC) has a simi-

lar somatic mutation burden and immunotherapy response as melanoma, but the

B44 supertype has not been found to have an impact on the immunotherapy re-
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sponse in NSCLC. This divergence has been attributed to underlying differences in

mutational processes between melanoma and NSCLC. We performed mutation sig-

nature analysis for two ICB treated melanoma cohorts. The findings of this analysis

revealed a significant enrichment of C > T mutations, which is consistent with pre-

vious studies. Furthermore, we used a combination of mutation signature activity

and patient-specific HLA genotype to estimate the expected proportion of immuno-

genic mutations for these cohorts. A higher expected proportion of immunogenic

mutations was associated with a tendency towards improved overall patient survival.

To gain insights into the role of immune selection in shaping the somatic mu-

tation landscape and consequently the progression of cancer, we must consider the

types of mutations occurring in a cancer, and the underlying mutational processes

driving them. In Chapter 4, we developed a method that considers the mutational

and evolutionary processes involved in tumor growth to identify and quantify the

immunoediting signal. The MHC-I restricted immunoediting signal was weak and

inconsistent across cancer types in the TCGA cohort. Moreover, the weak immu-

noediting signal persists even when we use the randomized HLA alleles. Finally,

we estimated that fewer than 1% of mutations inferred to be immunogenic, were

removed through immunosurveillance.

In summary, firstly, we investigated the relationship between the occurrence of

driver mutations in a tumor and the MHC genotype of the patient. Then, we assessed

the predicted immunogenicity of mutations arising from different somatic mutation

signatures. We also examined the variation in tumor immunogenicity based on the

activity of mutation signatures. We used the predicted immunogenicity of samples in

the TCGA cohort to evaluate the contribution of immunoediting to the mutational

landscape in cancer. We also used this method to estimate an upperbound on

immunoediting signal.
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1 CHAPTER 1: INTRODUCTION

1 Chapter 1: Introduction

1.1 Somatic mutations

Somatic mutations are alterations to the genome that occur in somatic cells. Because

somatic cells are isolated from the germline these mutations do not get passed on to

offspring [1–4]. Somatic mutations can result from errors in DNA repair mechanisms,

exposure to environmental stressors such as smoking, radiation and some specific

chemicals, or as a direct response to cellular stress [5, 6]. Somatic mutations can be

characterised into following types:

• Single nucleotide variants (SNVs) are defined as alterations in the DNA

sequence where a single nucleotide base is changed [7].

• Indel mutations also known as insertion-deletion mutations, refer to genetic

alterations in which nucleotides are either inserted or deleted from a DNA

sequence. These mutations can cause a shift in the reading frame, leading to

changes in the amino acid sequence during protein synthesis [8].

• Copy number variations (CNVs) refer to the structural variation in the

genome where the number of copies of certain DNA segment varies among

individuals [9–12].

• Structural variations (SVs) refer to DNA rearrangements in the genome

that involve alterations in the structure and organization of genetic material

[13, 14].

These mutations can arise at any stage of life cycle of an organism and are a normal

part of aging [15–21]. However, they can also give rise to oncogenesis, contribut-

ing to the development and progression of various types of cancer [22]. Somatic

mutations can disrupt normal cellular processes, affect gene expression patterns,

and drive uncontrolled cell growth and proliferation [20, 23–25]. Somatic mutations

are important in the context of cancer as they can lead to alterations in protein

function, gene regulation, and cellular processes [20, 25–27]. The impact of somatic

mutations on cancer growth is twofold. Firstly, these genetic variations play a role in

the development and progression of cancer by affecting crucial oncogenic pathways

1



1 CHAPTER 1: INTRODUCTION

and cellular signaling networks. SNVs can lead to aberrant protein structure and

function, dysregulated cell growth, and evasion of tumor suppressor mechanisms,

thereby promoting tumorigenesis [20, 25, 26, 28–30]. Secondly, somatic mutations

play a vital role in triggering an immune response against cancer cells. Tumor-

associated mutations can generate neoantigens, which are novel protein fragments

derived from mutated genes [31]. The immune system targets these neoantigens,

enabling the recognition and elimination of cancer cells by immune effector cells,

such as cytotoxic T lymphocytes (CTLs) [31, 32].

1.2 Mechanisms of somatic mutation

Understanding the underlying mutation mechanisms is of paramount importance

in comprehending the processes contributing to somatic mutations and their impli-

cations in various biological contexts. Mutations can arise through diverse mecha-

nisms, such as errors during DNA replication and recombination, collectively referred

to as endogenous mutagenic mechanisms [33–36]. Additionally, external factors, in-

cluding environmental mutagenic agents [6, 37] can also induce alterations in DNA.

The mutation rate is influenced by the interplay between error-producing processes

and DNA repair mechanisms [37], making DNA repair a critical aspect to consider.

1.2.1 DNA replication errors

The accurate transmission of genetic information from parent cells to daughter cells

is ensured by the fundamental process of DNA replication. However, despite its

remarkable fidelity, DNA replication is not error-free, and mistakes can occur dur-

ing this process [38]. DNA polymerase enzymes, responsible for copying the DNA

template during replication, occasionally make mistakes by inserting the wrong nu-

cleotide or by inserting too many or too few nucleotides into the growing DNA strand

[38–46]. These replication errors can give rise to mutations, which are permanent

alterations in the DNA sequence. While replication errors occur infrequently, the

large number of DNA replication events taking place in an organism’s lifetime makes

them a significant source of mutations [6, 47–49].

2



1 CHAPTER 1: INTRODUCTION

1.2.2 DNA damage and repair

Maintaining the integrity of the genome is crucial for the survival and normal func-

tioning of living organisms. Organisms have developed various DNA repair mecha-

nisms to avoid the accumulation of DNA damage [45]. These repair pathways are

responsible for detecting and correcting DNA lesions, ensuring the preservation of

genetic information and the prevention of mutations [39–43, 50–56]. DNA repair

mechanisms are known for their high efficiency and ability to fix a wide variety of

DNA damage, such as single-strand and double-strand breaks, base modifications,

and bulky DNA adducts [57]. They employ a sophisticated network of proteins that

work together to recognize, excise, and replace damaged DNA segments with the

correct nucleotides [45, 48, 58]. Importantly, these repair processes are essential for

maintaining genomic stability and preventing the onset of genetic diseases, acceler-

ated aging, and cancer [49, 59] but sometimes DNA damage is irreparable [60] or

the DNA polymerases engaged in DNA repair mechanisms make mistakes and cause

mutations in the DNA sequence [57].

1.2.3 Exogenous mutagenic agents

Exogenous mutational processes refer to the factors and agents external to the or-

ganism that contribute to the generation of mutations in the DNA of cells [6, 33].

These processes are distinct from endogenous mutational processes, which arise from

normal cellular activities discussed in previous section. Exogenous mutational pro-

cesses are influenced by various environmental and external factors. Some common

examples of exogenous mutational processes include exposure to mutagens like ul-

traviolet (UV) light, ionizing radiation, certain chemicals, and carcinogens present

in tobacco smoke or industrial pollutants. Additionally, mutational processes can

be induced by therapeutic interventions, such as chemotherapy or radiation therapy

[33].

1.3 Contribution of mutations to cancer development

Cancer often originates in stem cells, and the number of stem cell divisions correlates

with the risk of cancer development in specific tissues [15, 20]. Somatic mutations
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play a crucial role in the progression of cancer. As discussed previously these mu-

tations are genetic changes that occur in non-germline cells during an individual’s

lifetime as normal part of ageing, and are not inherited from parents. However, some

specific somatic mutations in DNA of a cell provide a growth advantage to the cell,

leading to the clonal expansion of cells carrying these mutations. These mutations

are crucial in driving the development and progression of cancer and are known as

driver mutations [61]. These somatic mutations can be caused by various factors

including endogenous processes, environmental exposures, genetic predispositions,

and lifestyle choices that increase the likelihood of cancer occurrence. Somatic muta-

tions incorporated through errors in DNA replication during each stem cell division

contribute to cancer development. This makes age one of the most significant risk

factors for cancer development [62]. Similarly, several environmental exposures have

been linked to an increased risk of cancer. Exogeneous factors causing somatic muta-

tions such as smoking, alcohol consumption, exposure to ultraviolet (UV) light, and

aristolochic acid have been identified as significant risk factors in many cancers [63].

Smoking, in particular, leads to an increased mutational burden and higher lung

cancer risk for smokers [64–67]. UV exposure has been linked with the development

of skin cancers.

1.3.1 Role of somatic mutations in cancer development

Driver mutations provide a selective growth advantage to cancer cells, leading to

uncontrolled proliferation and tumor formation [68–70]. Nine driver genes contain

approximately 50% of all early clonal driver mutations, while subclonal driver mu-

tations are found in 35 different genes, indicating a diverse set of drivers in later

tumor evolution [71]. Driver genes are usually categorized into two types: oncogenes

and tumor-suppressor genes. Oncogenes before they acquire mutation are known as

proto-oncogenes and are involved in regulating cell division [72, 73]. When oncogenes

are mutated or activated, they can drive uncontrolled cell proliferation, contributing

to the development and progression of cancer [73]. On the other hand, tumor sup-

pressor genes regulate cell growth, preventing uncontrolled division, and promoting

DNA repair. In normal cells, these genes act as "brakes"to prevent the development

of cancer [74]. When tumor suppressor genes are mutated or inactivated, the brakes
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are released, leading to unrestrained cell growth and an increased risk of cancer

[72, 74–77]. The impact of mutations in oncogenes and tumor suppressor genes on

cancer development is significant.

In contrast, passenger mutations are somatic mutations that do not directly con-

tribute to cancer development. Instead, they occur randomly and are carried along

with driver mutations during tumor evolution [69]. While passenger mutations do

not individually contribute to the growth of cancer, their collective presence serves as

a vital baseline against which driver mutations are identified and evaluated. Through

comparative analyses of tumor and normal genomes, researchers can distinguish be-

tween the stochastic background of passenger mutations and the select set of driver

mutations responsible for promoting malignant transformation.

1.3.2 Role of germline mutations in cancer development

In recent studies, it has been found that germline variants not only contribute to

cancer risk but also play a role in tumor progression [78]. Germline mutations are

inherited genetic alterations present in the germ cells, which can be passed from one

generation to the next. Patients who inherit mutations in tumor suppressor genes

(TSGs) or oncogenes tend to develop cancer at a younger age compared to those

without these mutations. For instance, germline mutations in BRCA1 and BRCA2

genes raise the risk of ovarian and breast cancers in women, prostate cancer in men,

and pancreatic cancer in both genders [79]. Another example is Lynch syndrome,

an inherited disorder that significantly increases the risk of multiple cancers, partic-

ularly colorectal cancer [80, 81]. Lynch syndrome is caused by germline mutations

in genes involved in DNA mismatch repair, such as MLH1, MSH2, MSH6, or PMS2

[79–82].

1.4 Cancer progression and heterogeneity

1.4.1 Clonal expansion of cancer

The clonal expansion of cancer involves the proliferation of cancer cells with identical

mutations, forming a clone within a tumor. This expansion arises from accumulated

somatic mutations and genetic alterations in a subset of cancer cells, giving them a

growth and survival advantage within the tumor [83–85]. This concept aligns with
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the clonal theory of cancer evolution, which proposes that normal cells undergo a se-

ries of mutations, ultimately leading to the development of malignant cancerous cells

[83]. Research indicates that most tumors are monoclonal, originating from a single

transformed cell that proliferates into a mass of cells with a shared ancestor [86].

However, many of these accumulated somatic mutations lack growth advantages

and contribute to the diversity of cells within the tumor, leading to competition for

resources [87].

1.4.1.1 Clonal mutations Occasionally a mutation occurs in a gene that en-

hances cell proliferation or inhibits cell death, giving the affected cell a competitive

edge over others [25]. If this cell is allowed to proliferate without restraint, it leads to

the expansion of a cell population with identical mutations as the original founder

clone [83, 84, 88]. Such mutations are known as clonal mutations. Clonal driver

mutations are crucial in initiating tumor growth and are often associated with key

features of cancer progression [83, 85]. The identification of clonal mutations is

essential for understanding the primary drivers of tumorigenesis and identifying po-

tential therapeutic targets [85, 89].

1.4.1.2 Subclonal mutations After a cell has undergone the transformation

into a cancer cell, it can acquire additional somatic mutations called subclonal mu-

tations. These mutations are found only in a fraction of the tumor cells within a

tumor mass [71]. While the majority of these subclonal mutations do not offer any

selective advantage [73, 74], there are cases where some of these mutations can lead

to late clonal expansions, giving rise to distinct cellular populations within the tumor

[90]. These mutations can be subject to random drift and may not be consistently

maintained or propagated within the tumor [91, 92]. While subclonal mutations may

not be the primary drivers of tumorigenesis, they can have implications for cancer

treatment, as they may play a role in treatment resistance and disease progression

[91, 93–96].

1.4.2 Intra-tumor heterogeneity

Intra-tumor heterogeneity (ITH) refers to the presence of diverse genetic, pheno-

typic, and functional characteristics within a single tumor sample [97]. It means
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that different cells within the same tumor can have distinct mutations, gene ex-

pressions, and other cellular properties. Clonal evolution of cancer contributes to

ITH by forming a tumor with diverse cellular populations, each driven by differ-

ent mutations [98]. The presence of subclones adds complexity to the mutational

landscape of tumor and response to therapy. Some subclones might be more ag-

gressive, leading to tumor progression and treatment resistance, while others may

be less harmful or responsive to treatment [83–85, 92, 95, 99]. To understand the

full landscape of intra-tumor heterogeneity, it is essential to understand the role

of clonal and subclonal mutations in cancer, especially in the context of the re-

sponse of the immune system to cancer cells [100]. It helps in identifying critical

mutations that are responsible for tumor growth and drug resistance, guiding the

development of targeted therapies and personalized treatment strategies to improve

patient outcomes [101, 102]. We will explore how immune selection impacts clonal

and subclonal mutations in primary tumors in Chapter 4 of the thesis.

1.5 Mutation signatures

Mutation signatures characterise the patterns of somatic mutations found in the

genome of cancer cells [103]. Each mutation signature reflects the underlying cause

or mechanism that led to the mutations, providing insights into the molecular events

driving tumor growth and evolution [103–109]. For example, mutation signatures

may arise from exposure to carcinogens, such as tobacco smoke or ultraviolet radia-

tion, which induce specific DNA damage and mutations [5, 64, 65]. Other signatures

may result from defects in DNA repair mechanisms, errors during DNA replication,

or the activation of specific mutagenic enzymes [110].

1.5.1 Types of mutation signatures

• Single-Nucleotide Variants (SNVs) mutation signatures refer to specific

patterns of mutations in the genome where a single nucleotide (DNA base) is

substituted for another [111]. Mutation signatures associated with SNVs can

arise from various mutational processes, including exposure to environmental

carcinogens, defects in DNA repair mechanisms, or errors during DNA repli-

cation [104, 105, 111]. Each mutational process leaves a distinct mark on the
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genome, resulting in specific SNV patterns that can be analyzed and used to

infer the underlying causes of mutations in cancer cells [108]. Understanding

SNV mutation signatures is crucial for identifying the genetic alterations driv-

ing cancer development, predicting disease prognosis, and designing targeted

therapies based on the specific genetic makeup of an individual’s tumor.

• Insertion and deletion signatures Insertion and deletion signatures refer

to specific patterns of mutations in the genome where nucleotides are either

inserted or deleted from the DNA sequence. These mutations are collectively

known as indels and can vary in length, ranging from a single nucleotide inser-

tion or deletion (INDEL) to larger insertions or deletions of several nucleotides

[112]. Like other mutation signatures, insertion and deletion signatures can

result from various mutational processes, such as exposure to carcinogens, de-

fects in DNA repair pathways, or errors during DNA replication [108].

• Copy number signatures refer to characteristic patterns of genomic alter-

ations that involve changes in the number of copies of specific regions of DNA

in a cancer genome. These alterations are known as copy number variations

(CNVs) and can include amplifications (increased copy numbers) or deletions

(decreased copy numbers) of genomic segments [113].

1.5.2 Identification and classification of mutation signatures

Non-Negative Matrix Factorization (NMF) is a widely used method for extracting

mutation signatures from cancer genomic data. NMF is a linear algebra technique

that decomposes a given matrix into two non-negative matrices, aiming to find a

low-dimensional representation of the original data. In the context of mutational

signatures, NMF is applied to a mutation count matrix, where rows represent dif-

ferent mutations, columns represent different samples, and the values denote the

mutation counts in each sample for each mutation type. The core assumption of

NMF is that the input matrix can be approximated as a product of two matrices, W

and H, where both W and H are non-negative. The process of NMF involves several

steps, starting with preprocessing and normalization of the mutation count matrix.

The number of mutation signatures (k) to extract is an important consideration, and
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it can be determined based on prior knowledge or cross-validation [106, 114–118].

Bayesian Inference is a statistical approach that can be used for extracting muta-

tion signatures by incorporating prior knowledge and uncertainties into the analysis.

In this method, the mutation count matrix representing the mutational profile of

different samples is modelled as a probabilistic distribution. Prior distributions are

defined for the mutation signatures to represent their expected contributions based

on existing knowledge. The likelihood function describes the probability of observing

the mutation count matrix given the mutation signatures and their activities in each

sample. By combining the likelihood function and the prior distributions, Bayesian

methods compute the posterior distribution, representing the updated beliefs about

the mutation signatures [117]. To approximate the posterior distribution, Markov

Chain Monte Carlo (MCMC) sampling is commonly used. The MCMC samples are

then utilized to estimate the signature activities for each sample, providing insights

into the contributions of different mutational processes to individual mutation pro-

files [119]. Bayesian Inference offers a robust and flexible approach, allowing the

integration of prior knowledge and uncertainties, which is essential for analyzing

complex genomic data from cancer samples [114, 117, 120–122].

Principal Component Analysis (PCA) is a dimensionality reduction technique

used for mutation signature extraction from cancer genomic data. It identifies ma-

jor patterns of variation in the mutation count matrix and projects the data onto a

lower-dimensional space while preserving significant features. The process involves

creating a covariance matrix from the normalized mutation count matrix, perform-

ing eigenvalue decomposition to identify principal components, and selecting the top

components that explain most of the variance. Data is then transformed into the

lower-dimensional space, representing each sample’s contribution to the identified

principal components. These principal components can be interpreted as mutation

signatures, and their loadings reflect the association of each mutation type with the

corresponding signature [123–125]. PCA is valuable for understanding dominant

mutational processes in cancer samples and their potential associations with spe-

cific risk factors or DNA repair deficiencies. However, it may not capture all subtle

variations, and other methods like Non-Negative Matrix Factorization (NMF) or

Bayesian Inference can complement PCA in identifying a broader range of muta-
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tional signatures [126].

1.5.3 Reference databases and catalogues

Mutation signatures reference databases and catalogues play a crucial role in advanc-

ing our understanding of the diverse mutational processes underlying human can-

cers. These databases provide categorized reference signatures, allowing researchers

to analyze large cohorts of sequencing data and identify the contribution of different

mutational processes to specific cancer types. The COSMIC mutational signatures

database is a prominent resource in this field, curated in collaboration with Cancer

Grand Challenges, the Wellcome Sanger Institute, and other institutions. It en-

compasses a wealth of information on mutational signatures, and it is continuously

updated with the latest data from various cancer patients’ genomic profiles. The

signatures in COSMIC have been identified using sophisticated methods such as

NMF and bayesian inference, which allow for the extraction and characterization

of different mutation patterns from vast datasets. Moreover, the database provides

interactive tools and visualizations for exploring and analyzing mutational signa-

tures across different cancer types, offering a comprehensive view of their diversity

and relevance in cancer research [108]. Another recently added resource is mSigna-

tureDB, which offer valuable tools for deciphering mutational signatures in human

cancers [127].

1.5.4 Aetiology of mutation signatures

Mutation signatures provide valuable biological insights into the underlying muta-

tional processes that contribute to tumor development and progression in various

cancers. While the origins of many mutational signatures remain uncertain, the

analysis of mutational signatures can, in certain instances, reveal the external and

internal mutational processes that have contributed to the observed genetic changes

[128]. These signatures offer information about the specific mutagenic factors or

biological mechanisms that lead to the accumulation of specific mutations in cancer

genomes. Some of the well-studied mutation signatures are associated with smoking,

ultraviolet (UV) light exposure, and APOBEC cytidine deaminases [129].

• Smoking-Associated Signatures: Smoking is a major risk factor for cancer,
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and mutational signature analysis has revealed distinct patterns of mutations

associated with tobacco smoke exposure (Figure 1.1). These signatures are

characterized by specific base substitutions, such as C>A transversions, oc-

curring predominantly at cytosine bases within a specific sequence context

[130]. Smoking-associated signatures have been identified in various smoking-

associated cancers, including lung cancer and several others, providing evi-

dence of tobacco smoke-induced DNA damage and mutagenesis [131, 132].

The presence of these signatures in cancer genomes highlights the link be-

tween smoking and the mutational landscape of specific cancer types.

Figure 1.1: Mutation signature 4, associated with tobacco smoking. This figure is

retrieved from https://cancer.sanger.ac.uk/signatures/sbs/sbs4/.

• UV Light-Induced Signatures: UV light exposure is a known risk factor for

skin cancer, particularly melanoma. UV light generates specific DNA lesions,

such as cyclobutane pyrimidine dimers (CPDs) and pyrimidine-pyrimidone

[133–135] photoproducts, which lead to characteristic mutational patterns in

cancer genomes. The mutational signatures associated with UV exposure are

characterized by C>T transitions (Figure 1.2) predominantly at dipyrimidine

sequences [130, 136, 137]. These signatures are prevalent in melanoma samples

and are reflective of the DNA damage induced by UV light.

• APOBEC-Related Signatures: The APOBEC family of cytidine deaminases

can induce mutations in cancer genomes. APOBEC enzymes target cytosines

in single-stranded DNA, leading to C>G or C>T transitions, often in the con-

text of specific trinucleotide motifs (Figure 1.3). Two major APOBEC-related

signatures are commonly observed: APOBEC3A (APOBEC3A Signature) and

APOBEC3B (APOBEC3B Signature) [138]. These signatures are prevalent in

several cancer types and are associated with the activity of APOBEC enzymes
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Figure 1.2: Mutation signature 7, associated with ultraviolet exposure. This figure

is retrieved from https://cancer.sanger.ac.uk/signatures/sbs/sbs7/.

in cancer cells [108, 138, 139]. Additionally, recent studies have demonstrated

substantial temporal and spatial variability in APOBEC-related signatures in

cancer cells, providing further insights into the dynamics of mutational pro-

cesses caused by APOBEC cytidine deaminases [138, 140].

Figure 1.3: Mutation signature 2, associated with APOBEC. This figure is retrieved

from https://cancer.sanger.ac.uk/signatures/.

In summary, mutational signatures associated with smoking, UV light exposure,

and APOBEC activity provide critical biological insights into the DNA damage

processes that contribute to the development of specific cancer types. The iden-

tification and understanding of these signatures enhance our knowledge of cancer

aetiology, potential preventive measures, and personalized treatment strategies for

affected individuals. We will be using COSMIC mutation signatures catalogue for

our research.

1.6 Overview of the immune system

Humans have developed sophisticated innate and adaptive immune mechanisms by

evolution [141, 142]. There are mainly two components of our immune system,

namely innate and adaptive immune system [143]. The innate immune system acts
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as the body’s first line of defense, rapidly responding to any invading microorganism

it encounters, even those that have not been previously encountered, in a non-specific

manner [142]. On the other hand, the adaptive immune system recognizes specific

threats and possesses a memory, enabling it to recall prior exposures to pathogens

[144]. This memory aspect of the adaptive immune system allows it to mount quicker

and more effective responses upon subsequent encounters with the same pathogen

[145, 146].

When the body encounters foreign invaders, such as bacteria, viruses, or cancer

cells, immune cells are activated to recognize and eliminate these threats, thus safe-

guarding the body against infections and diseases. Immune cell activation and effec-

tor functions are essential processes in the immune system’s response to pathogens

and cancerous cells once they are recognized by immune system [147–149]. Immune

cell activation involves the recognition of specific antigens present on the surface

of pathogens or cancer cells. Different types of immune cells, including T cells, B

cells, and natural killer (NK) cells, play crucial roles in the immune response. Upon

encountering antigens, these immune cells become activated and initiate a series of

effector functions to eliminate the threat [148, 149].

1.6.1 Functions of the Immune System

Immune surveillance is a critical mechanism through which the immune system

constantly monitors the body to identify and eliminate abnormal or transformed

cells, including cancerous cells [150]. This process involves the recognition of spe-

cific antigens displayed on the surface of cancer cells, which distinguish them from

normal healthy cells. When the immune system detects these antigens, it initiates

an immune response to target and destroy the cancerous cells, thereby acting as

a primary defense against cancer development and progression [150, 151]. Numer-

ous studies have provided evidence supporting the concept of immune surveillance

against tumors. Immunodeficient mice lacking key immune effector cells have been

shown to develop spontaneous tumors at higher rates, suggesting the protective role

of the immune system in suppressing tumor growth [152]. Additionally, the presence

of inflammatory immune cells in human tumors raises questions about how cancer

cells avoid immune attack and suggests the existence of mechanisms that mimic
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peripheral immune tolerance to evade destruction [153]. T cells, a type of white

blood cell, play a central role in cell-mediated immunity. They recognize antigenic

peptides presented on the surface of infected cells or cancer cells through the major

histocompatibility complex (MHC) molecules [154]. Activated T cells can directly

kill infected or cancerous cells through the release of cytotoxic molecules, such as

perforin and granzymes, or by inducing apoptosis (programmed cell death) [155].

Cytotoxic T cells (CD8+ T cells) recognize and directly attack infected cells, cancer

cells, and cells presenting foreign antigens. Cytotoxic T cells play a crucial role in

eliminating abnormal cells from the body [156–158], whereas, helper T cells (CD4+

T cells) do not directly kill cells but orchestrate and coordinate immune responses.

They assist in activating other immune cells, such as cytotoxic T cells and B cells.

Helper T cells are essential for initiating and maintaining effective immune reactions

against various threats, including cancer [148]. Another important type of T cells

is regulatory T cells, also known as Tregs. These cells help prevent the immune

system from overreacting and causing damage to the body’s own tissues. While

they play a critical role in maintaining immune balance and preventing autoimmune

responses, their presence can also hinder anti-cancer immune responses in certain

contexts [159, 160].

B cells, another type of white blood cell, are key players in humoral immunity.

When activated by specific antigens, B cells differentiate into plasma cells that pro-

duce and release antibodies. These antibodies can bind to pathogens or cancer cells,

marking them for destruction by other components of the immune system or by

triggering complement-mediated lysis [155]. Memory B cells are long-lived cells that

"remember"previous encounters with specific antigens. They allow the immune sys-

tem to mount a faster and more effective response upon re-exposure to the same

antigen, contributing to immunological memory and enhancing the body’s ability to

fend off recurrent infections or threats [161]. Natural killer (NK) cells are part of the

innate immune system and play a vital role in immunosurveillance against infected

or transformed cells, including cancer cells. NK cells can recognize and directly kill

target cells that lack MHC class I molecules or display stress-related ligands on their

surface [162, 163]. During the initial encounter, specialized immune cells, such as

T cells and B cells, are activated and differentiate into effector cells to combat the
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invader. Once the infection is resolved, a subset of these immune cells transforms

into memory cells [145, 146]. Immunological memory is a critical aspect of the adap-

tive immune system, providing the ability to recognize and respond more effectively

to specific antigens upon subsequent encounters. This process plays a crucial role

in both protecting against infectious agents and influencing the immune response

against cancer cells [164, 165]. In the context of cancer, immunological memory

also plays a crucial role. Cancer cells often express unique antigens, which can be

recognized by the immune system. When cancerous cells are first detected, the

immune system initiates an immune response to eliminate them. Some of the acti-

vated immune cells transform into memory cells with specificity for cancer antigens

[166–168]. The formation of memory cells is characterized by three main features:

• Longevity and Independence: Memory immune cells are long-lived and persist

in the body even in the absence of continuous antigen stimulation. They can

be maintained through homeostatic turnover or stable maintenance, ensuring

a lasting immune response [169–171].

• Antigen Specificity: Memory cells are highly specific for the antigen they en-

countered during the primary response. This specificity allows them to rec-

ognize and respond rapidly to the same antigen if encountered again in the

future [172, 173].

• Enhanced Function: Memory cells undergo changes during the initial en-

counter that enhance their function. They become more effective at recog-

nizing and eliminating the pathogen, resulting in a faster and more efficient

immune response during subsequent encounters [164, 168, 171].

The immune system’s ability to activate these immune cells and orchestrate their

effector functions is critical in controlling infections and preventing cancer develop-

ment and progression. In cancer, the activation of immune cells and their effector

functions are central to the field of cancer immunotherapy [174]. Immunotherapies

aim to boost the immune response against cancer by enhancing immune cell acti-

vation or overcoming the mechanisms of immune evasion employed by cancer cells

[174, 175].
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1.6.2 Antigen Presentation Pathway

Tumor antigens play a critical role in the interaction between the immune system

and cancer cells during immune surveillance. Tumor antigens are specific molecules

expressed on the surface of cancer cells by MHC-I molecules, that differentiate them

from normal cells. MHC class I molecules are present on most nucleated cells and

present intracellular antigens These antigens can be derived from various sources,

including mutated proteins as result of SNVs, which are the primary focus of this

study. When the immune system recognizes these tumor antigens as foreign or

abnormal, it can mount an immune response to eliminate the cancer cells and prevent

tumor development [176–179]. This recognition triggers the destruction of cancer

cells through the release of cytotoxic molecules and the induction of apoptosis [144,

145, 180]. MHC-I molecules play a crucial in initiating an immune response against

cancer cells. Peptide loading and presentation by MHC-I molecules are intricate

processes that involve several steps (Figure 1.4):

• Antigen Processing: Antigenic peptides are generated through the degradation

of intracellular proteins, such as viral proteins or cellular components, by the

proteasome. These peptides are typically 8 to 11 amino acids in length [181].

• Transport into the Endoplasmic Reticulum (ER): The generated peptides are

transported into the ER by the Transporter Associated with Antigen Process-

ing (TAP) complex, which is composed of TAP1 and TAP2 subunits [182].

• Peptide Loading Complex (PLC) Formation: Inside the ER, MHC-I heavy

chains associate with chaperone proteins, including tapasin, calreticulin,

ERp57, and b2-microglobulin, forming the peptide loading complex (PLC)

[183].

• Peptide-MHC-I Complex Formation: Tapasin plays a key role in bridging the

TAP transporter and MHC-I, facilitating the loading of peptides onto MHC-I

molecules. The appropriate peptides that bind with high affinity to the MHC-I

groove are selected for presentation [183].

• Cell Surface Presentation: The Golgi apparatus, also known as the Golgi com-

plex, does additional processing of the proteins received from the endoplasmic
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reticulum (ER) [184]. The stable peptide-MHC-I complex is then transported

to the cell surface, where it is presented for recognition by CD8+ T cells

[185, 186].

Figure 1.4: MHC-I antigen processing and presentation pathway. MHC-I presents

endogenously derived peptide antigens to CD8+ T cells. The proteasome breaks

down proteins in the cytosol into peptides, which are then transported into the en-

doplasmic reticulum by TAP transporter proteins. Afterwards, the antigen peptides

are loaded onto the MHC-I a-heavy chain and beta-2-microglobulin (b2M) complex,

which is then transported to the cell surface through the Golgi. Reprinted with

permission from Taylor and Balko 2022 [187].

T cells have receptors called T cell receptors (TCRs) that can recognize anti-

genic peptides when presented by MHC molecules. Helper T cells (CD4+ T cells)

recognize antigens presented by MHC class II molecules, while CD8+ T cells rec-

ognize antigens presented by MHC class I molecules. When a T cell encounters a

cancer cell displaying a peptide derived from a tumor antigen, TCR binds to the

peptide-MHC-I complex on the cancer cell’s surface. In addition to TCR binding,

a co-stimulatory signal is required for full T-cell activation. This co-stimulation
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is typically provided by interactions between molecules on the surface of T cells

(e.g., CD28) and molecules on the cancer cell’s surface (e.g., B7). Co-stimulation

ensures that T-cell activation only occurs when there is a genuine threat, preventing

unwarranted immune responses [188].

TCR binding and co-stimulation lead to the activation of intracellular signaling

pathways within the T cell. This signaling cascade results in the production of

various signaling molecules and transcription factors that promote T-cell activation

and proliferation [189]. Once activated, the T cell undergoes clonal expansion,

where it rapidly divides to produce a population of effector T cells specific to the

tumor antigen [190]. This increases the number of T cells available to target and

eliminate cancer cells. The activated T cells, now termed effector CTLs, perform

their function. CTLs release granules that are cytotoxic in nature and contain

perforin and granzymes. These granules induce programmed cell death, or apoptosis,

in the cancer cells that they target [191–193].

1.6.2.1 Major Histocompatibility Complex Molecules (MHC-I) The

MHC-I genes present on chromosome 6, are part of a highly diverse and polymor-

phic genetic region that plays a critical role in the adaptive immune response of

vertebrates [194]. This genetic variability is particularly important at the MHC

level due to its influence on various biological traits [195]. The diversity in MHC-I

genes is believed to be maintained by pathogen-driven selection, either through het-

erozygote advantage or frequency-dependent selection [195]. Consequently, MHC-I

genes are among the best candidates for studying mechanisms and the significance

of molecular adaptation in vertebrates.

1.6.2.1.1 Genetic Diversity of MHC-I MHC-I genes exhibit extreme

polymorphism, which refers to the presence of a large number of different alleles

within a population. This high level of polymorphism is particularly evident in the

peptide-binding domains of MHC-I proteins [196]. The binding platform of MHC-I

proteins consists of two domains forming a slightly curved b-sheet base and two

a-helices on top, allowing them to accommodate a wide range of peptide antigens

[181, 183, 197]. Notably, MHC-I alleles may differ significantly in the range of

antigens they bind, and this diversity has been linked to better resistance to local
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parasites [198–200].

1.6.2.1.2 Impact of MHC-I expression levels on antigen presentation

MHC-I molecules play a crucial role in antigen presentation, where they present

peptide antigens derived from intracellular pathogens on the cell surface for recog-

nition by CD8+ T cells. The level of MHC-I expression on the cell surface is a

critical factor in determining the efficiency of antigen presentation and subsequent

T cell activation. Effective antigen presentation is essential for the immune sys-

tem to recognize and eliminate transformed or infected cells expressing abnormal

proteins [201, 202].

In the context of cancer and viral-mediated diseases, genetic variations in

antigen-processing genes of the MHC-I pathway can influence antigen presentation

and immune responses. Certain genetic variations in components of the antigen pre-

sentation machinery are risk factors for different types of cancer, highlighting their

role in cancer development and progression [203].

1.6.3 Immune evasion

One of the hallmarks of cancer is immune evasion [204]. Immune evasion is the ability

of cancer cells to avoid recognition and elimination by the immune system, enabling

them to survive and proliferate within the host [153, 204]. Multiple mechanisms are

involved in cancer immune evasion, contributing to tumor progression and resistance

to immune-based therapies.

For the immune system to effectively impact tumor growth and influence the

tumor genome, it requires a fully functional antigen presentation machinery and

the presence of immune cells capable of recognizing and eliminating cancerous cells

within the tumor microenvironment. However, cancer cells have evolved strategies

to evade detection by disrupting the antigen presentation pathway pathway [204–

206]. In many cancers, there are recurrent mutations observed in key players of the

APM, such as MHC-1 and b2-microglobulin (B2M), resulting in their downregula-

tion [207, 208]. B2M is essential for the formation and stabilization of MHC on the

cell surface. When B2M is lost, the MHC cannot properly form, leading to a form of

immune escape in cancers [209]. While mutations in the B2M gene are rare, down-
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regulation of the gene is more commonly observed in cancer cells [208]. One critical

mechanism is the downregulation of MHC-I molecules in general, which disable the

antigen presentation on the tumor cell surface, making them invisible to cytotoxic

T lymphocytes (CTLs) [210]. Furthermore, cancer cells may overexpress HLA-G, a

non-classical HLA molecule known for its immunosuppressive properties, which in-

hibits natural killer cells and cytotoxic T lymphocytes (CTLs). HLA-G is typically

expressed in immune-privileged tissues but is frequently overexpressed in tumors

[207]. Loss of heterozygosity (LOH) in HLA alleles, is suggested as another way for

tumors to evade the immune system. For example the loss of HLA-C08:02 which

has high binding capacity for KRAS G12D neoantigen was observed in tumors that

showed resistance to CD8+ T cell treatment targeting mutant KRAS [211]. Further

research revealed that HLA LOH is common in lung cancer, occurring in 40% of

early-stage NSCLCs [212]. Additionally, cancer cells downregulate TAP1, further

contributing to their escape from immune recognition [213]. The downregulation of

critical components in the antigen presentation pathway hinders the capacity of the

immune system to identify antigens on the surface of cancer cells.

Another immune evasion mechanism is blocking immune activation signals. This

can be achieved by interacting with immune checkpoints, which hinder the activa-

tion of the immune response [214]. These checkpoints act as barriers preventing T

cells from carrying out their function of killing cancer cells. Notably, cancer cells

themselves can engage these checkpoints, but they can also be activated by den-

dritic cells and macrophages [215]. The immune system has learned to dynamically

regulate its responsiveness, and maintaining a delicate balance between activation

and inhibition is crucial. This balance ensures that immune cells do not mistakenly

attack healthy normal cells. Dendritic cells play a dual role in this process: they

send signals to activate T cells for their anti-cancer functions, while also moderat-

ing the ability of T cells to respond effectively against a threat [159]. However, in

certain cases, this balance can be disrupted, and the scale tips towards excessive

inhibition. Consequently, T cells become suppressed and are unable to carry out

their task of eliminating cancer cells [216]. This phenomenon contributes to the

immune evasion strategies employed by cancer cells, enabling them to proliferate

and evade destruction by the immune system. To compound their immune evasion
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strategies, cancer cells also increase the expression of certain proteins like PDL1 and

NF-kb. These proteins act as checkpoint inhibitors, effectively blocking the immune

system’s response [217, 218].

Another immune evasion mechanism is overly active Regulatory T cells (Tregs).

Tregs typically monitor and regulate the activity of effector T cells, are found in

elevated levels in various cancer types [160, 219]. Moreover, Tregs within tumors

have been demonstrated to exhibit higher suppressive functionality compared to

Tregs in normal tissue samples [220, 221]. Additionally, tumor cells can secrete

proteins that suppress the response of effector T cells and promote the proliferation

of immunosuppressive cells within the tumor microenvironment (TME), such as

myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs),

and regulatory T cells (Tregs) [220, 222, 223]. These factors collectively contribute

to the dysfunction of T cells, hindering the immune response and facilitating tumor

progression.

It has been proposed that a low mutational burden is another strategy employed

by tumors to evade the immune system [223]. When a tumor has fewer mutations,

the likelihood of generating neoantigens that can trigger an immune response de-

creases. The underlying idea is that tumor cells possessing neoantigens capable of

provoking a strong immune response would have been eliminated by the immune

system, leaving behind cancer cells that can evade the immune system [224, 225].

In this context, the reduction in tumor immunogenicity serves as a mechanism to

escape immune surveillance. However, recent research has cast doubt on this no-

tion, as there is limited evidence supporting the depletion of neoantigens in cancer

samples [226–228].

1.6.4 Immune selection

As discussed in the previous section, immune surveillance acts as the initial line

of defense, detecting and then subsequently eliminating cancer cells that present

immunogenic antigens by activating various immune cells against them, thus pre-

venting tumor development and progression [150, 151]. However, some cancer cells

can evolve and develop strategies to evade the immune response, leading to im-

mune selection and the emergence of non-immunogenic or less immunogenic tumor
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variants [153].

Some tumor clones are thought to undergo "immune editing,"where the immune

system selects for clones that are depleted of immunogenic antigens or neoantigens.

When cancer cells display neoantigens on their surface, they become targets for

immune recognition and potential elimination by CD8+ T cells. However, in the

immune-editing process, tumors that lose these neoantigens can escape immune

detection and evade immune responses. It has been reported that the immune system

plays a significant role in shaping tumor genomes by exerting selective pressures on

cancer cells based on their antigenic characteristics [227–229]. However, this remains

a controversial topic, and recent studies have shown that there is a lack of evidence

to support these findings [70, 230].

1.6.5 Immunoediting

Immunoediting is a dynamic process wherein the immune system exerts selective

pressure on developing tumors, resulting in both tumor suppression and tumor pro-

motion [231]. It consists of three distinct phases: elimination, equilibrium, and

escape (Figure 1.5). These phases collectively shape the immunogenicity of tumors

and their ability to evade immune recognition and destruction [177, 232].

Elimination phase: In this initial phase, the immune system recognizes and

eliminates nascent tumor cells through a process called cancer immunosurveillance.

The immune response is initiated when cells of the innate immune system detect

the presence of a growing tumor, triggered in part by tissue disruption due to an-

giogenesis or tissue-invasive growth. The anti-tumor immune response, particularly

by CD8+ T cells, targets and eliminates tumor cells expressing highly immunogenic

antigens, including tumor-specific mutant neoantigens. If the immune system suc-

cessfully eliminates the tumor, the immunoediting process ends at this stage without

tumor progression [233].

Equilibrium phase: Some tumor cells may escape complete elimination during

the initial phase and enter a state of equilibrium with the immune system. During

this phase, tumor growth is balanced by ongoing immune surveillance and immune-

mediated control. The immune system keeps the tumor cells in check, preventing

further expansion. However, tumor cells may undergo genetic and epigenetic changes
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Figure 1.5: The three phases of immunoediting. (a) Elimination refers to the recog-

nition and elimination of the tumor cells by immune system; (b) equilibrium, during

this phase, the immune system selects and/or promotes the generation of immuno-

logically resistant tumor cell variants; and (c) escape, during this phase the expan-

sion of the tumor is now beyond the control of the immune system, and tumor cells

continue to grow. Figure drawn by Wiebke Bretting, after [232].

to adapt and evade immune detection, leading to the emergence of less immunogenic

variants [233].

Escape phase: In the escape phase, tumor cells that have acquired changes

enabling them to evade immune recognition and destruction ultimately overcome

immune control and proliferate. These tumor variants may downregulate or lose

expression of strong tumor-specific antigens, becoming less visible to the immune

system. This immune escape allows the tumor to grow and progress, leading to

clinical manifestation and the onset of cancer [233].

MHC-I molecules play a crucial role in immunoediting [232]. MHC-I molecules

are responsible for presenting antigens derived from intracellular proteins, includ-

ing tumor-specific antigens, on the surface of tumor cells [228–234]. This antigen

presentation allows CD8+ cytotoxic T cells to recognize and eliminate the tumor

cells displaying these antigens. During the elimination phase, MHC-I presentation

of tumor-specific antigens facilitates immune recognition and elimination of tumor

cells [232].

In the escape phase, tumor cells may downregulate or lose the expression of
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MHC-I molecules, which is a common immune evasion mechanism. This loss of

MHC-I molecules prevents the presentation of tumor-specific antigens to CD8+ T

cells, making the tumor cells invisible to immune surveillance. Consequently, the

immune system fails to recognize and eliminate these tumor cells effectively, en-

abling their escape from immune control and leading to tumor progression. The

downregulation of MHC-I molecules is associated with reduced responsiveness to

immunotherapies, particularly immune checkpoint inhibitors that rely on MHC-I

presentation to enhance anti-tumor T cell responses [187]. It has also been re-

ported that gaps in MHC-I genotypes shape the mutational landscape of the cancer

[227, 228]. However, this remains a controversial topic, and a lot of research is

going on in this domain [70, 230, 234]. [234] has shown that the MHC restricted

immunoediting reported by [227, 228] is caused by 13 lowly immunogenic, common

hot spot mutations in 6 cancer genes. Also recent studies have highlighted the im-

portance of considering mutational signatures [235], while estimating the impact of

immunoediting on cancer.

In summary, immunoediting is a dynamic process involving three phases that

collectively shape the interaction between the immune system and developing tu-

mors. MHC-I molecules play a critical role in this process, as their expression on

tumor cells allows for antigen presentation and effective immune recognition dur-

ing the elimination phase, while loss or downregulation of MHC-I molecules enables

immune escape and tumor progression in later phases. Understanding these mecha-

nisms is essential for developing effective cancer immunotherapies and strategies to

overcome immune evasion by tumors.

1.7 Bioinformatics methods to analyze cancer data

1.7.1 Cancer data

Several consortiums have been established with the goal to collaborate, develop and

validate methods, combine resources and expertise, and generate extensive datasets

to advance our knowledge and comprehension of cancer. One of the significant con-

tributions to cancer genomics data comes from Foundation Medicine, which released

genomic data for 18,004 adult cancers profiled using the FoundationOne assay [236].

The data has been collected from 162 tumor subtypes, primarily focusing on tho-
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racic, gastrointestinal, breast, gynaecologic, and hepato-pancreato-biliary cancers.

The American Association for Cancer Research (AACR) initiated the Genomics Ev-

idence Neoplasia Information Exchange (GENIE) to promote data sharing among

19 different institutions. The main objective is to generate sufficient data to sup-

port clinical decision-making. GENIE comprises genomic and clinical data from

an extensive cohort of 44,756 patients encompassing over 50 cancer types [237]. In

the United States, the Clinical Proteomic Tumor Analysis Consortium (CPTAC)

was established in 2011 as a nationwide endeavor to expedite cancer understanding

through genomic and proteomic data analysis. CPTAC focuses on 1527 samples

from 9 cancer types [238]. On a global scale, the International Cancer Proteoge-

nomic Consortium (ICPC) brings together scientists collaborating to share genomic

and proteomic data from cancer samples across 12 tissue types. The overarching

goal of ICPC is to utilize proteogenomic data to predict the outcomes of cancer

treatments (cpc.cancer.gov).

One of the most widely used datasets in cancer research has been generated by

The Cancer Genome Atlas (TCGA) [239], a collaborative initiative launched jointly

by the National Cancer Institute (NCI) and the National Human Genome Research

Institute (NHGRI) in December 2005. Initially beginning as a pilot program focused

on three cancer types (glioblastoma, serous cystadenocarcinoma of the ovary, and

lung squamous carcinoma), it has since expanded to encompass data from 33 cancer

types, including primary cancer and matched normal samples. The program involves

20 collaborating institutions across Canada and the US. TCGA has produced a vast

array of genomic, transcriptomic, epigenomic, and proteomic data from over 11,000

individuals, making it publicly accessible to researchers through open and controlled

access types. The data is hosted on the Genomic Data Commons (GDC) Data Portal

(https://portal.gdc.cancer.gov).

To further aggregate and analyze whole-genome analyses, the Pan-Cancer Anal-

ysis of Whole Genomes (PCAWG) project was established. It integrates data from

projects such as TCGA and the International Cancer Genome Consortium (ICGC)

[240]. The PCAWG project identifies coding and non-coding variations in the cancer

genomes of 2,834 individuals across 38 tumor types. The data, derived from pri-

mary tumor samples with matched normal tissues, is publicly accessible through the
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ICGC database (https://dcc.icgc.org/pcawg). The International Cancer Genome

Consortium (ICGC), launched in 2008, serves as a global coordinating platform for

cancer genome projects [241]. It includes prominent cancer initiatives like TCGA

and PCAWG, working collectively to advance cancer genomics research.

In the year 2000, the Welcome Trust Sanger Institute initiated The Cancer

Genome Project with the objective of detecting genetic alterations and patterns

within cancer genomes using high-throughput sequencing. The findings from this

project have been made accessible through the Catalogue of Somatic Mutations in

Cancer (COSMIC) database (cancer.sanger.ac.uk). This comprehensive database

contains thousands of somatic mutations identified in various cancers, along with a

compilation of mutational signatures discovered in human cancers [242].

1.7.2 Identification of somatic mutations

Next-generation sequencing (NGS) technologies are generally used for the identifi-

cation of somatic mutations, particularly in tumor samples, revolutionizing cancer

research and clinical practice [243]. In clinical settings, two common approaches

are utilized for mutation detection: targeted sequencing panels and whole exome

sequencing (WXS) panels. Targeted sequencing focuses on specific genes relevant to

the disease, allowing for high-depth sequencing with a substantial number of reads

obtained at each position [244]. On the other hand, WXS covers approximately

20,000 protein-coding genes in the human genome and typically achieves a depth

of 100X across the genome [245]. Although whole genome sequencing (WGS) is an

unbiased technique that covers the entire genome, its cost limitations often result

in depths of only 30-50X in cancer samples [246]. This limitation poses challenges

in identifying somatic mutations with low frequencies or in samples with low tumor

purity [245, 246].

1.7.2.1 Sample collection Samples for bulk sequencing in cancer genomics

are typically preserved using two main methods: formalin-fixed paraffin-embedded

(FFPE) and fresh frozen (FF) techniques. The FFPE method involves fixing the

tissue with formaldehyde solution, which halts cell metabolism, and then sealing it

with paraffin to reduce oxidation rates, allowing long-term storage of the samples
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[247]. On the other hand, the FF method requires freezing the sample in liquid

nitrogen shortly after surgery to preserve the DNA/RNA, as thawing causes rapid

degradation [248, 249].

Both methods have their advantages and limitations. FFPE is the most common

method due to its lower cost, ability to store at room temperature, and longer time

frame for processing after surgery [97, 250]. It also preserves tissue morphology,

making it valuable for certain analyses. However, FFPE may introduce artifacts

in the form of C > T mutations [251]. On the other hand, FF is advantageous in

terms of better preservation of DNA/RNA compared to FFPE [248]. But it requires

careful storage and handling due to its sensitivity to thawing.

To identify somatic mutations in cancer samples, matched paired tumor-normal

samples are generally taken from a patient. The normal sample is usually obtained

from blood, but sometimes normal tissue adjacent to the tumor is used [252]. This

approach allows the identification and removal of germline variants. In some cases,

a tumor sample is taken without a matched normal sample, referred to as "tumor-

only,"which makes it more challenging to identify germline mutations. In such

instances, databases of common variants or information from a panel of normal

samples are used to remove likely germline variants [245].

1.7.2.2 Sequence alignment The initial format of the files generated by the

sequencer is generally binary base call (BCL) files. However, these files are then

converted to FASTQ files during the bioinformatics pipeline. FASTQ files contain

the readout of the nucleotides called for each read, along with a quality score for each

base. It is essential to use a tool like FASTQC to check the quality of these FASTQ

files before proceeding with downstream processing. FASTQC allows researchers

to identify if the reads have sufficient quality and can be used with confidence in

subsequent analyses. This quality assessment is the first step of any bioinformatics

pipeline. To improve the accuracy of the data, the ends of the reads are often

trimmed using a tool like Trimomatic [253]. This step is necessary because the base

quality tends to drop off at the 3’ end during the sequencing by synthesis process of

Illumina sequencing.

After the quality assessment and trimming steps, the reads need to be aligned

to a reference genome to obtain positional information. There are several tools
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available for read alignment, with BWA-MEM being one of the most commonly

used tools for this purpose [254]. Once the reads are aligned, preprocessing steps

are required before variant calling. If PCR amplification is performed during library

preparation, duplicate marking is essential to identify reads generated from the same

DNA molecule. However, this step should be done with caution, as it could intro-

duce bias in the variant calling step, with some reads being over-represented in the

results. Depending on the downstream analysis, an optional local realignment step

using tools like GATK [255] or ABRA [256] can be performed. This step aims to

limit errors caused by insertions and deletions (indels) and single nucleotide poly-

morphisms (SNPs). These tools utilize information from all reads at a given location

to determine the best alignment of the reads, leading to more accurate variant calls.

Base quality recalibration is another optional but highly recommended step. It is

performed using the GATK suite of tools and helps correct inaccuracies in base

quality scores assigned by the sequencer. Accurate base quality scores are crucial

for reliable variant calling, and this step significantly improves the accuracy of the

variant calls. However, it is computationally expensive and time-consuming. With

recent improvements in sequencing technologies that have increased the accuracy of

base quality scores, some researchers may choose to skip this step to reduce analysis

turnaround time.

1.7.2.3 Somatic mutation calling Somatic variant calling is a crucial step in

cancer research and treatment. It involves identifying genetic mutations that are

present only in the tumor cells and not in the normal cells of an individual. This

is typically achieved by comparing the DNA sequences of a tumor sample and a

matched normal sample from the same individual. Two main types of variant callers

are commonly used: position-based callers and haplotype-based callers. Position-

based callers directly compare the aligned sequence of a tumor to the reference

genome, while haplotype-based callers perform a local realignment step to identify

regions of variation and use haplotype blocks to identify variants. Mutect2 which

is one of the most commonly used caller is a haplotype caller. We use the somatic

mutations identified in the TCGA data by Ellrot et al [257]. They have used a

consensus based approach, employing multiple variant calling tools, which enables

the identification of somatic variants with high confidence.

28



1 CHAPTER 1: INTRODUCTION

1.7.3 Antigen prediction methods

1.7.3.1 Somatic mutation annotation After identifying somatic mutations,

the first step to predict potential neoantigens is filtering the mutations for altered

protein sequences using annotation tools like VEP [258] and Annovar [259]. In this

study, we focus on missense mutations, which result from SNVs encoding different

amino acids at specific positions in the resulting protein and we have used VEP

annotation to assess the effect of SNVs on protein sequence.

1.7.3.2 Neoantigen prediction The prediction of putative neoantigen is gen-

erally accurate because T cell-identified neoantigens have simpler structures, com-

prising short, linear peptides (9–15 amino acids). Peptides that bind to MHC class I

are generally sized between 8 and 11 amino acids, whereas those that bind to MHC

class II are longer at 12-25 amino acids and extend beyond the MHC groove, but

have a minimum of 9 amino acids in the core [186]. However, some studies have

shown that larger peptides can also bind to MHC but with lower immunogenic po-

tential [185, 186, 260, 261]. These neoantigens are recognized by T-cell receptors

(TCRs) when presented by MHC class I or class II. During neoantigen prediction,

it is essential to consider both peptide-MHC complex and neoantigen-TCR complex

bonds.

Several methods are employed to predict T-cell recognized neoantigens, includ-

ing motif-based systems, matrices, SVM, empirical scoring, and molecular dynam-

ics (MDs) methods [186]. The motif-based system was the pioneering method for

neoantigen prediction. It involves predicting amino acid sequences that are likely to

bind to the MHC groove, referred to as motifs. These sequences are then compared

to data in a motif library, which contains previously determined binding peptide

sequences and nonbinding MHC-binding motifs. The accuracy of this method may

be limited due to the lack of known motifs for all HLA alleles [186].

Another approach of motif-based methods involves the development of machine

learning algorithms (MLAs). Using MLAs, peptide-binding motifs can be deter-

mined based on specific classifications, such as positive values for peptide binders

and negative values for nonpeptide binders. MLAs can also handle multiple classifi-

cations simultaneously. Among MLAs, artificial neural networks are widely utilized
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Tool Methods Cite

NetMHCpan Based on the binding propensity of peptides to different HLA alleles using artificial neural networks [264, 265]

EpiMatrix MHC class I and II protein binding efficiency based [266]

IEDB Proteasomal processing, TAP transport, and MHC class I and II binding based [267]

NetChop Immunoproteasome cleavage site based [268]

NetCTL Combination of proteasome, TAP transport and MHC subtype binding values [157]

nHLAPred Hybrid approach of artificial neural networks and quantitative matrices. [269]

MHCPred Binding value of MHC/peptide or TAP/peptideIC50 [270]

MMBPred By determining of high-affinity MHC binding peptide that undergoes mutations [271]

ProPred-1 Peptide binding efficiency with MHC I [272]

SYFPEITHI Motif binding to MHC class I and II [273]

TAPPred Binding affinity with TAP protein [274]

RANKPEP MHC I and MHC II binders using position specific scoring matrices (PSSMs) [275]

Epijen The immunoproteasome cleavage site and TAP binding affinity [276]

DeepNeo Immunogenic peptides with T-cell reactivity [277]

Table 1: Antigen Prediction Tools

for determining motifs for peptide presentation to MHCs [181, 262]. One important

resource for neoantigen prediction is the Immune Epitope Database (IEDB). IEDB

offers valuable tools for predicting epitopes that B cells and T cells recognize, along

with analyzing epitope characteristics to enhance prediction reliability. Researchers

frequently utilize this database and its associated tools for studying epitopes in

vaccine development, finding its user-friendly nature advantageous [262, 263]. How-

ever, it is essential to acknowledge that in silico studies, relying on computational

approaches, have their limitations and are not 100% accurate.

In addition to motif-based systems, T cell neoantigen prediction can be achieved

through molecular dynamics simulations (MDs), which calculate free binding energy

for a molecular system. MDs offer insights into the individual or collective movement

of atoms within a molecular system, providing a dynamic perspective. Unlike data-

based methods, MDs rely on de novo predictions of all parameters that constitute

the receptor-ligand complex structure, making them advantageous [260]. The tools

available for predicting T cell-recognized neoantigens are summarized below in Table

1.

1.8 Immunotherapies

Immunotherapies have emerged as a revolutionary approach in the treatment of can-

cer, enabling the body’s immune system to target and eliminate cancer cells. These
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therapies have shown promising effects in various tumor types and have significantly

improved the survival of patients with advanced malignancies [214]. Immunothera-

pies encompass a range of approaches, including immune checkpoint blockade (ICB)

and cytokine-based therapies [278]. Cytokine therapies, like IL-2 and IL-15, have

demonstrated immunomodulatory effects, contributing to enhanced antitumor re-

sponses [279]. There is a growing interest in ICB therapies [175, 214, 215, 280],

especially in exploring the association between the neoantigen load and immunother-

apies response [89, 130, 281].

The immune system employs checkpoint proteins to maintain a balanced im-

mune response and prevent excessive damage to healthy cells. However, cancer

cells can exploit these checkpoints to evade immune detection and destruction. Im-

mune checkpoint inhibitors, such as PD-1 (programmed cell death protein 1) and

CTLA-4 inhibitors, work by blocking the interactions between checkpoint proteins

and their ligands, effectively releasing the brakes on the immune response. Immune

checkpoint inhibitors, such as anti-PD-1, anti-PD-L1, and anti-CTLA-4 agents, have

shown remarkable success by targeting regulatory mechanisms that suppress immune

responses [174, 175, 214, 215, 278, 280].

For instance, PD-1 inhibitors prevent the binding of PD-1 receptors of im-

mune cells CD8+ T cells with PD-L1 (programmed death-ligand 1) or PD-

L2 (programmed death-ligand 2) of cancer cells [282]. This inhibition prevents

the "off"signal that would normally restrain T cells from attacking the cancer

cells, thereby allowing the immune system to target and eliminate the cancer

[214, 283, 284]. Similarly, CTLA-4 immunotherapies work by blocking the inhibitory

signals of CTLA-4, thereby unleashing the immune system to mount a more robust

and effective attack against cancer. Monoclonal antibodies that target CTLA-4, such

as ipilimumab, are administered to patients. By binding to CTLA-4 and preventing

its interaction with CD80 and CD86, these antibodies allow T cells to maintain their

activity and enhance their ability to recognize and eliminate cancer cells .

One important aspect of immunotherapy research is identification of biomarkers.

The efficacy of immune checkpoint inhibitor (ICI) treatments varies, with only about

20-30% of patients responding positively, and responses varying among cancer types

[285]. To optimize immunotherapy outcomes and manage costs, research seeks to
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identify biomarkers that can predict which patients are more likely to respond well

to immunotherapy. PD-L1 expression and tumor mutational burden are established

biomarkers with clinical utility for predicting immunotherapy response [286]. More-

over, microsatellite instability, DNA mismatch repair, and other genomic biomarkers

have been identified as predictive indicators [287]. Recent research has focused on

liquid biopsy-based biomarkers for noninvasive prediction and in-treatment moni-

toring of immunotherapy response. Despite advancements, there remains variability

in clinical response, highlighting the need for further exploration and identification

of robust biomarkers.

Tumor Mutational Burden (TMB) is the number of nonsynonymous mutations

per million bases (Mb) above a threshold frequency, usually 0.05 in a sample

[288, 289]. TMB is associated with neoantigen load and has been proposed as a

potential biomarker for ICI response [290]. Higher mutation loads in a sample indi-

cate more potential immune response-inducing mutations. High TMB is linked to

better responses to immunotherapy [290] and has been approved by the FDA as a

biomarker for response to pembrolizumab [286]. Studies on predictive potential of

TMB for ICI response have yielded mixed results across various cancer types [291],

emphasizing the need for tumor-specific analysis.

Besides overall mutation numbers, other factors influence immunotherapy re-

sponse prediction. Clonal load, representing the total mutations present in all can-

cer cells, affects therapy response and relapse likelihood [99, 292]. The expression

level of genes containing neoantigens is crucial, as only expressed antigens can be

presented to the immune system [293]. Neoantigen binding affinity to HLA alle-

les determines which neoantigens will be presented on the cell surface [293–297].

TMB estimates focus on SNVs, but indels can also create highly distinct neoanti-

gens [298]. Additionally, tumor purity and intra-tumor heterogeneity impact TMB

estimates and immune checkpoint blockade responses [293]. Considering all these

factors is essential for developing effective biomarkers for immunotherapy.

1.9 Thesis overview and objectives

There is a growing interest in understanding how the immune system shapes the

mutational landscape in cancer, as it has important implications in designing im-
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munotherapies. It has been reported that antigen presentation plays a vital role

in defining tumor immunogenicity [206]. In this thesis, we explore this further and

assess the role of MHC-I in shaping the mutational landscape of cancer.

In two previous studies [227, 228], it was reported that common driver mutations

in cancer are common due to the inability of common HLA alleles to present them

to the immune system. However, the same pattern did not apply to passenger

mutations. In Chapter 2, we hypothesised that the absence of a connection between

clonal passenger mutations and HLA genotype might indicate other immune evasion

mechanisms. This led us to re-evaluate the results reported by [227, 228].

In Chapter 3, we estimated the intrinsic immunogenicities for mutational signa-

tures observed in cancer using most common HLA supertypes. It has been reported

that there is a relation between HLA-B44 supertype and a mutational signature ob-

served in melanoma patients, which leads to improved responses to immunotherapy

[130]. Motivated by these results we performed an exhaustive characterization of

the relationship between mutation signatures and common HLA supertypes. We

used the activity of mutation signature and their immunogenicity to estimate the

immunogenicity of a tumor type and samples.

Studies have reported that to estimate the magnitude of immunoediting in cancer

accurately, it is crucial to consider the underlying mutational processes, which are

characterized by mutational signatures [230, 235]. In Chapter 4, we investigated the

extent to which the number of immunogenic mutations in a tumour sample can be

predicted from mutation signature activities and the HLA genotype of the patient.

We built on this approach to assess the evidence for MHC-I-mediated immunoedit-

ing. We also used simulations to estimate an upper bound on this immunoediting

signal.

The research questions of this thesis can be summarised as follows:

1. Is downregulation of genes carrying immunogenic passenger mutations a po-

tential immune evasion mechanism?

2. Do driver mutations occur in the gaps of MHC genotype?

3. How different are mutation signatures from each other in terms of immuno-

genicity?
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4. Can we use the immunogenicity of mutation signatures and their median ac-

tivity in cancer types to predict the immunogenicity of different cancer types?

5. If neoantigen depletion signal exist, what is the upper-bound of this signal?
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2 No evidence that HLA genotype influences the

driver mutations that occur in cancer patients

The results presented in this chapter motivated Kherreh N, Cleary S, Seoighe C.

No evidence that HLA genotype influences the driver mutations that occur in

cancer patients. Cancer Immunol Immunother. 2022 Apr;71(4):819-827. doi:

10.1007/s00262-021-03028-w. Epub 2021 Aug 21. PMID: 34417841; PMCID:

PMC8921139. All results presented here are parts of the publication except for the

expression analysis of genes carrying passenger mutations. I performed all data anal-

ysis except for gene expression analysis which was carried out by Siobhan Cleary and

susceptibility to cancer based on HLA alleles which was carried out by Cathal Seoighe

initially and then reproduced by me.

2.1 Abstract

The major histocompatibility (MHC) molecules are capable of presenting neoanti-

gens resulting from somatic mutations on cell surfaces, potentially directing immune

responses against cancer. This led to the hypothesis that cancer driver mutations

may occur in gaps in the capacity to present neoantigens that are dependent on

MHC genotype. If this is correct, it has important implications for understanding

oncogenesis and may help to predict driver mutations based on genotype data. In

support of this hypothesis, it has been reported that driver mutations that occur

frequently tend to be poorly presented by common MHC alleles and that the capac-

ity of a patient’s MHC alleles to present the resulting neoantigens is predictive of

the driver mutations that are observed in their tumor. Here we show that these re-

ports of a strong relationship between driver mutation occurrence and patient MHC

alleles are a consequence of unjustified statistical assumptions. Our reanalysis of the

data provides no evidence of an effect of MHC genotype on the oncogenic mutation

landscape.

2.2 Introduction

The adaptive immune system plays a crucial role in protecting the body against

various pathogens and abnormal cells, including cancer cells [148]. This system
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relies on specialized cells and processes to recognize and eliminate threats to the host

organism. One essential component of the adaptive immune response is the major

histocompatibility complex (MHC) molecules, which are responsible for presenting

antigens to T cells and coordinating the immune response [299].

MHC molecules are a diverse group of cell surface proteins found in almost all

nucleated cells of the body. They can be classified into two major classes: MHC

class I and MHC class II [299]. MHC class I molecules are expressed on virtually

all nucleated cells and play a crucial role in presenting antigens derived from in-

tracellular pathogens, such as viruses, to cytotoxic CD8+ T cells. These antigens

are generated within the cell through protein synthesis and subsequent processing.

MHC class I molecules capture these antigenic peptides and present them on the

cell surface, allowing CD8+ T cells to recognize and eliminate infected or cancer-

ous cells [148, 299]. On the other hand, MHC class II molecules are primarily

expressed on antigen-presenting cells, including macrophages, dendritic cells, and

B cells. These molecules are responsible for presenting antigens derived from ex-

tracellular pathogens, such as bacteria and parasites, to CD4+ T cells. Antigen

presentation by MHC class II molecules triggers the activation of CD4+ T cells,

leading to the generation of an immune response against the pathogen [300].

The immune system can mount a response against cancer cells through a process

called cancer immunosurveillance. This process involves the recognition of tumor-

specific antigens presented by MHC molecules to T cells, triggering an immune

response against the cancer cells [151, 152]. The recognition of tumor antigens

by T cells is facilitated by the interaction between the T-cell receptor (TCR) and

the peptide-MHC complex on the surface of cancer cells. This recognition leads

to the activation of T cells and the subsequent elimination of cancer cells through

various mechanisms, including the release of cytotoxic molecules and the induction

of apoptosis [174, 179].

Cancer cells often develop mechanisms to evade immune recognition and destruc-

tion, allowing them to proliferate unchecked. One of those mechanisms is known as

Immunoediting [177, 231, 232, 301, 302] that describes the interaction between the

immune system and cancer cells, involving three distinct phases elimination, equilib-

rium, and escape [233]. It explains the dynamic relationship between cancer cells and
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the immune system. This interaction between the cancer and immune cells is like a

tug of war, as they influence behavior and survival of each other [303, 304]. In the

first phase, elimination, the immune system recognizes and eliminates transformed

cells that have acquired cancerous characteristics. Immune cells, such as cytotoxic

T cells and natural killer cells, target and destroy these cancer cells [233, 304, 305].

This phase represents the initial response of the immune system to eliminate can-

cerous cells, acting as a form of immunosurveillance [233, 304, 305]. However, some

tumor cells may escape elimination and progress to the next phase. During the

equilibrium phase, the remaining tumor cells coexist with the immune system in

a state of balance. Immune cells recognize and control the growth of these cancer

cells, preventing their expansion. This phase is characterized by a dynamic interplay

between the efforts of immune systems to suppress tumor growth and the ability of

tumor cells to evade immune responses. The equilibrium phase can last for an ex-

tended period, during which time the immune system exerts selective pressure on

the tumor, leading to the emergence of more aggressive and immunoresistant cancer

cell variants [233, 304, 305]. In the final phase, escape, the tumor cells acquire the

ability to evade immune recognition and elimination [233, 304, 305]. These cells

develop various mechanisms to avoid immune detection, such as downregulating the

expression of antigens that are recognized by immune cells or hijacking immune

checkpoint pathways to suppress immune responses [306].

As a result, the tumor cells can grow and progress without effective immune con-

trol, leading to disease progression and metastasis. This tug of war between cancer

cells and immune cells in immunoediting is a dynamic process influenced by multiple

factors, including the genetic and phenotypic heterogeneity of cancer cells, the plas-

ticity of immune cell populations, and the complex interplay of immunosuppressive

and immune-activating signals within the tumor microenvironment [307]. Under-

standing the phases of immunoediting and the intricate balance between cancer

cells and the immune system is crucial for developing effective cancer immunothera-

pies and personalized treatment strategies that can harness and enhance the immune

response against tumors [302].

Cancer cells employ various mechanisms to evade the immune response, and

one such mechanism involves acquiring mutations that alter antigen presentation.
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Antigen presentation is a crucial step in the immune response, where antigenic

peptides bind to major histocompatibility complex (MHC) molecules for recognition

by immune cells. Several studies have highlighted the significance of mutations in

genes associated with antigen presentation, such as the HLA genes or the B2M gene,

which affects the formation of MHC class I molecules [229, 293, 308–310]. Loss or

mutation of these genes has been found to correlate with increased tumor mutation

burden, implying their role in immune evasion [229]. Furthermore, the absence of

neoantigens capable of triggering an immune response can also contribute to cancer

cells evading immune surveillance [158, 309]. Studies have reported selection against

immunogenic somatic mutations in cancer, suggesting that cancers may actively

deplete mutations that give rise to neoantigens [227, 228, 311]. It is worth noting

that recent research has raised questions regarding the evidence for depletion of

neoantigens, indicating the need for further investigation in this area [230, 234] .

Driver mutations are genetic alterations that occur in DNA of a cell, and they

provide a growth advantage, leading to the clonal expansion of cells with that mu-

tation. They are called "driver" mutations because they are responsible for driving

the development and progression of cancer [68]. Driver mutations can occur in onco-

genes, which are genes that promote cell growth and division, or in tumor suppressor

genes, which are genes that normally inhibit cell growth and division [312]. Driver

mutations are different from "passenger" mutations, which are genetic alterations

that do not provide a growth advantage and are simply carried along as the cancer

cells divide and grow. While passenger mutations may contribute to the overall ge-

netic diversity of a tumor, they do not drive its growth [69]. Studies have reported

that driver mutations identified in cancer patients tend to occur in regions where

the MHC genotype of patient fails to present them to the immune system, hence

shaping the driver mutations landscape in cancer [227, 228] .

However, it was reported that this negative selection pressure was not acting on

immunogenic passenger mutations [228]. We hypothesize that it is because these

passenger mutations occur in lowly expressed genes, thus not recognized by the

immune system. We explore the possibility that downregulation of genes carrying

immunogenic passenger mutations is another immune evasion mechanism used by

cancer. When controlling for gene length and sequence context, we found no evidence
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of immune evasion by these mechanisms. This led us to reanalyze the data from

two high-profile studies [227, 228] that reported that the driver mutations that are

found in cancer patients can be predicted from the capacity of the patient’s MHC

molecules to bind the resulting neoantigens. The patient harmonic mean best rank

(PHBR) score was proposed in [227, 228] as a measure of whether a neoantigen

resulting from a somatic mutation can be bound by MHC molecules, given the HLA

genotype of a patient. The score is derived from predicted binding affinities of the

patient’s MHC molecules for the peptides spanning the mutation. The conclusions

of both studies are based on an analysis of 1018 cancer driver mutations in patients

from the cancer genome atlas (TCGA). The focus of the 2017 study is on MHC

class I alleles, and the primary focus of the 2018 study is on presentation of cancer

neoantigens by MHC class II molecules. The data for both comprised a binary matrix

of mutation occurrences (indicating whether the driver mutation in each column has

been observed in the patient in each row) and a matrix of PHBR scores corresponding

to 9176 and 5942 patients for MHC class I and class II alleles, respectively. We

reanalyzed these data and found that the conclusion of both papers that cancer

driver mutations emerge preferentially in gaps in the patient’s capacity to present

neoantigens on MHC molecules is not robust. We found that there is no evidence

from the data that the driver mutations seen in a patient are influenced by the

patient’s MHC class I or class II genotypes.

2.3 Results

If cancer evades the immune system by the downregulation of genes harboring im-

munogenic mutations (PHBR < 2) we would expect that the expression of these

immunogenic genes would be lower than the expression of genes harboring non-

immunogenic mutations (PHBR � 2). To test our hypothesis, we compared the

expression of genes carrying immunogenic mutations with the genes carrying non-

immunogenic mutations. We used synonymous mutations as a proxy for neutrality

since they do not alter the amino acid composition of the mutated peptide and thus,

have relatively less selection pressure acting upon them (Figure 2.1).

We hypothesized that if immunogenic mutations occur preferentially in lowly

expressed genes, there should be a higher proportion of genes with an immuno-
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Figure 2.1: Points in this plot represent the proportions of genes containing muta-

tions of the type shown on the x-axis for which the gene expression value is lower

than the median expression of all genes in the corresponding TCGA sample.

genic mutation with expression values lower than the median expression of all genes

within that sample (Figure 2.1). We compared the proportion of genes with im-

munogenic mutations with expression lower than the median expression of all genes

within the sample to the same proportion for non-immunogenic and synonymous

mutations (Figure 2.1). Our analysis revealed a significant difference (proportion

test p-value = 0.01) between the groups, with immunogenic mutations tending to

occur in genes with lower expression levels than non-immunogenic or synonymous

mutations. However, the difference was small with proportions of mutations on

genes expressed below the median level of 0.5289, 0.5269, and 0.5157 for genes with

immunogenic, non-immunogenic, and synonymous mutations, respectively. When

we controlled for the gene length and sequence context of mutations ( See figures

6.1 - 6.4 in Appendix ), we found no evidence that the immunogenic mutations are

preferentially occurring in lowly expressed as an immune evasion mechanism. This
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led us to conclude that the observed tendency for immunogenic mutations to occur

preferentially in lowly expressed genes is not caused by the immunoediting.

2.3.1 Relationship between immunogenicity and driver mutation occur-

rence across patients

Due to our inability to confirm our hypothesis originating from the Marty et al.

papers [227, 228], we conducted a re-analysis of their data. Using the predicted

immunogenicities of driver mutations derived by [227, 228] we re-investigated the re-

lationship between immunogenicity and driver mutation occurrence across patients.

In both [227, 228], the predicted capacity of the MHC to present cancer driver muta-

tions was compared between patients with and without the mutation. Higher values

of the PHBR score (corresponding to low predicted capacity to bind neoantigens re-

sulting from the mutation) in the patients in which the driver mutations occur were

presented as evidence that driver mutations preferentially arise in patients who lack

the MHC alleles that are capable of presenting them to T cells. In these comparisons

of groups of PHBR scores, one group consists of the scores of driver mutations in

patients in which the mutation is present (the Mutation group) and the other group

(the No Mutation group) consists of PHBR scores of the driver mutations in the

patients without the mutation. A given driver mutation can appear many times in

the Mutation group in these comparisons—once for each patient in which it occurs.

This is problematic, because the PHBR scores of mutations are highly correlated

(Figure 2.2A, 2.4D) and, thus, the data points are not independent. For example,

a driver mutation that occurs in 500 patients will contribute 500 PHBR scores to

the Mutation group and N – 500 scores to the No Mutation group, where N is the

total number of patients. If the PHBR score of the mutation is generally high or

generally low across patients, it will clearly have a disproportionate impact on the

distribution of PHBR scores in the Mutation group.

The correlation in PHBR scores between patients is not solely due to sharing

of HLA alleles. Even the PHBR scored using HLA alleles from different allele

groups is significantly correlated (Figure 2.4D), but the scores of driver mutations

were effectively treated as independent observations by the studies that reported an

effect of HLA alleles on driver mutations. Marty Pyke et al. [227] used a statistical
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Figure 2.2: (A) Scatterplot of log PHBR-I scores of all driver mutations, calculated

using the HLA genotypes of two randomly selected patients from TCGA. (B) Median

and interquartile range of PHBR-I score in the No Mutation (blue) and Mutation

(orange) groups for the real data and for data in which the MHC genotypes have

been randomized between patients. (C) Median and interquartile range of PHBR-I

scores in the No Mutation (blue) and Mutation (orange) groups in bins of mutation

recurrence. The number of observations corresponding to each bin is provided in

Table 2.

test (the Mann–Whitney U test) to compare the median PHBR-II score between

the Mutation and No Mutation groups and reported a higher median score in the

Mutation group with a p-value < 2.2 × 10�16. This was interpreted as evidence that
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the HLA genotype of patient influences the driver mutations that occur in cancer

patients. However, the fundamental assumption of the test is that the observations

in each group are independent, and this assumption is clearly violated. We found

that the differences between the Mutation and No Mutation groups are, in fact, just

as large when the MHC genotypes are randomized between patients, indicating that

this difference is not driven by patient genotype (Figure 2.2A). Moreover, when we

compared PHBR scores, grouped by driver mutation frequency (so that each driver

mutation contributes the same number of observations to the Mutation group in

each comparison), we saw no consistent differences (Figure 2.2C).

In 100 randomizations of the HLA class I genotypes, the median PHBR-I scores

of the Mutation group in the randomized data in fact exceeded the median of the

Mutation group in the real data 94 times (the difference was not statistically sig-

nificant; p-value = 0.12 for the two-sided randomization-based test for a difference

in PHBR-I scores between the groups). Similarly, when we shuffled the HLA class

II genotypes, the median PHBR-II score of the Mutation group in the shuffled data

exceeded that of the real data 36 times; again, there was no significant difference in

median score between groups (p-value = 0.72). Thus, comparison of PHBR scores

between the Mutation and No Mutation group does not provide any support for

the hypothesis that driver mutations occur preferentially in patients with MHC

molecules that are not capable of binding the resulting neoantigens. In [227, 228],

PHBR scores of driver mutation occurrences were also compared against scores of

occurrences for different mutation classes (e.g., germline mutations and passenger

mutations). Because they contribute many times to the Mutation group, the exis-

tence of a small number of highly recurrent cancer driver mutations with high PHBR

scores (i.e., low binding affinity) may be sufficient to skew all of these comparisons.

This problem is compounded by the fact that the 1,018 driver mutations that are

the basis of this study occur on just 168 different genes and PHBR scores are sta-

tistically significantly correlated between mutations in the same gene, particularly

for class II alleles (Figure 2.4B, C). The number of distinct genes among the most

highly recurrent cancer driver mutations is smaller still (Figure 2.3A).
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2.3.2 Regression models relating log-PHBR score to mutation probabil-

ity

In addition to comparing PHBR scores between the Mutation and No Mutation

groups, [228] proposed two mixed effects logistic regression models to relate the log

odds that a driver mutation is found in a patient to the log of the PHBR-I score for

the mutation, given patient MHC genotype. In one model (referred to as the within-

mutation model), a random effect is used to correct for differences in the frequency

with which different driver mutations occur. In the other model (referred to as the

within-patient model), the random effect models differences in the abundance of

driver mutations between patients, but there is no correction for differences in the

frequency of different driver mutations. Mathematical descriptions of both models

are reproduced in the Methods. In [228], there was no significant effect of log PHBR-

I on the log odds of driver mutations using the within-mutation model. Although

the results of the within-mutation model are not reported in [227], log PHBR-II is

not significantly associated with driver mutation occurrence with this model either.

The failure of the within-mutation model to detect an effect of log PHBR-I on

the probability of a driver mutation was explained in [227] as resulting from the

fact that the impact of immune presentation on the probability of a mutation was

captured by the random effect. In other words, the tendency for a driver mutation

not to be recognized by common HLA alleles resulted in a high driver mutation

frequency, and this was captured by the random effect in the model. This is not a

strong argument, however, because the median PHBR score does not explain much,

if any, of the variance in driver mutation frequency in cancer patients (Figure 2.3B,

C). Even if the variation in driver mutation frequency was entirely driven by the

MHC class I genotype, it should not fully capture the relationship between driver

mutation occurrence and MHC genotype. That is, the rare driver mutations should

still be found associated with the rare MHC genotypes that are not capable of

presenting them and the common driver mutations should be found associated with

the relatively more common MHC genotypes that cannot present them. This should

be detectable with the within-mutation model, even after accounting for differences

in driver mutation frequencies.

In contrast to the lack of a signal from the model that accounted for differences
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Figure 2.3: (A) The blue line shows the logarithm of the number of driver mutations

that recur across patients at least as often as the recurrence threshold on the x-axis.

The red line shows the logarithm of the number of distinct genes in which these

mutations occur. (B), (C) Hexbin plots illustrating the relationship between the

logarithm of median PHBR-I (B) and PHBR-II (C) scores and driver mutation

frequency (across patients)

in frequencies between driver mutations, Marty and colleagues [228] reported a very

strong effect of log PHBR-I on the log odds of driver mutations using the within-

patient model (which accounts for differences in driver mutation burden between

patients). Quoting a p-value of < 2.2 × 10�16, the authors estimate an increase

of 28% in the log odds of occurrence of a mutation with each unit increase in log

PHBR-I (95% CI: [25%, 31%]). However, this result is affected by the same failure

to take account of the non-independence of observations of the same driver mutation

that led to the spurious between group comparisons of PHBR scores discussed above.

This can be seen from the fact that the results are not affected by randomization of

the patient genotypes. We randomly shuffled the patient genotypes for the real data

so that, for each patient, driver mutations were scored with the HLA genotypes of a

randomly selected patient. We then fitted the within-patient model to the shuffled

data. When we did this, we found that the increase in the log odds of a driver

mutation occurrence per unit increase in log PHBR-I was 25.1% (standard error

1%), slightly higher than we obtained using the real data (we obtained an estimate

of 24.7% when we implemented the within-patient model on the PHBR-I data, a

little below the 28% reported by [228]). The difference between the real and shuffled
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data was not statistically significant (p-value = 0.69). Similarly, the relationship

between PHBR-II was just as strong using the shuffled and unshuffled data (27.0%

and 26.9% increase in the log odds of mutation occurrence per unit log PHBR-II

for the shuffled and unshuffled data, respectively). Again, these results provide no

indication of a relationship between the patient HLA genotypes and driver mutation

occurrence. We performed a simple simulation to demonstrate how the spurious

results obtained with the within-patient model can come about. We simulated the

case of a single driver mutation that occurs at high frequency and has a high PHBR

score across patients. The remaining mutations occurred at lower frequency and

had a lower PHBR score distribution (details of the simulation are provided in

Methods). Because the within-patient model of [227, 228] treats PHBR scores of a

given mutation as though they were independent observations (despite the strong

correlation in the scores of different mutations between patients seen in Figure 2.2A),

this single common driver mutation with a high PHBR score was sufficient to give a

highly significant association between PHBR score and driver mutation occurrence

(p-value = 2 × 10�52). This trivial example illustrates how failure to account for

the high degree of correlation in the immunogenicities of driver mutations across

patients can give highly misleading results.

2.3.3 No evidence that driver mutations in cancer patients are adapted

to patient MHC genotypes

Under a null model of no effect of MHC genotype on driver mutation occurrence, the

probability that the patient can present a given driver mutation can be estimated

from the proportion of all patients that can present that mutation. This provides

a straightforward means to compare the observed to the expected total number of

driver mutations with PHBR scores below the threshold for presentation. If the

driver mutation landscape is shaped by patient-specific MHC binding capacity and

if this is captured by PHBR scores, then the observed number of driver mutations

that can be presented in the patients in which they occur should be smaller than

the expected number. For MHC-I, the observed number of driver mutations with

PHBR-I scores below the threshold for presentation of 2 applied in [228] was, in

fact, slightly (but not statistically significantly) larger than the expected number
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(3,669 compared to 3,657.5 ± 68.8; p-value = 0.73 from the cumulative distribution

function of the Poisson-binomial distribution). For MHC-II, the observed number of

driver mutations with PHBR-II scores below the threshold of 10 applied in [227] was

slightly (and again not statistically significantly) below the expected number (1,119

compared to 1,142.3 ± 36.4; p-value = 0.21). Similar results were obtained when the

thresholds that were used to define strong binding (0.5 and 2 for MHC-I and MHC-II,

respectively) were applied (p-value = 0.92 and p-value = 0.71, respectively). These

results provide no evidence that driver mutations occur significantly less often in

patients with MHC alleles that are capable of binding them.

2.3.4 Prediction of driver mutation occurrence from MHC genotype

The study of [228] includes the claim that the PHBR scores derived from patient

MHC-I genotype could be used to predict the driver mutations that are observed

in cancer patients; however, this claim is never tested directly. For each driver

mutation, we fitted a logistic regression model to relate the log odds of a driver

mutation occurring to the patient specific log PHBR-I score. For example, the most

common driver mutation in the dataset, V600E in BRAF, occurs in 561 individuals.

When we fitted a logistic regression model, treating the log odds of occurrence of this

mutation as the response variable and with log PHBR-I for V600E, cancer type and

population of origin of the patient as predictor variables, there was no significant

effect of log PHBR-I on the occurrence of this mutation (P = 0.67). It could be

argued that common mutations are common because they cannot be presented by

common HLA alleles (i.e., they have generally high PHBR scores across patients).

While it is the case that V600E in BRAF has a high mean PHBR-I score, there were

still 704 patients whose MHC-I alleles were predicted to be capable of presenting this

mutation (PHBR-I < 2, the threshold used in [228] to indicate MHC class I binding).

Of these patients, 5.5% actually carried the V600E mutation in BRAF, almost

identical to the frequency of the mutation in the patients with PHBR-I � 2 (6.2%;

p-value = 0.57 from Fisher’s exact test). We fitted logistic regression models for each

driver mutation and found that no driver mutation was significantly predicted by log

PHBR-I, after correction for multiple testing (minimum p-value = 0.003; adjusted

p-value = 1, using the Holm method). We repeated this procedure using PHBR-II
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scores and again found no significant association with driver mutation occurrence

following correction for multiple testing (minimum p-value = 0.004; adjusted p-value

= 1). There is, therefore, no evidence that patient HLA alleles are predictive of the

driver mutations that occur in the patient.

2.3.5 The association between driver mutation frequency and PHBR

scores

The strong associations previously reported between driver mutations and immune

presentation scores could be explained by a small number of driver mutations with

high frequencies that have high PHBR scores (and therefore are not well presented

by HLA alleles). The authors in [228] implies that the high frequency of some

driver mutations is caused by the fact that these mutations are not well presented

by common HLA alleles, thus enabling them to occur in many individuals. This

is illustrated by a significant correlation between the frequency of driver mutation

occurrence (within bins of driver mutation frequency) and median PHBR-I scores

in the bin (this relationship can be seen in the upward trend of the median values

from left to right in Figure 2.2C). Although 1018 driver mutations were included in

the studies of [227, 228], they are associated with just 168 different genes. Based on

an analysis of 1000 randomly sampled pairs of germline mutations from the same

genes, we found that the PHBR scores of mutations in the same gene are positively

correlated (Figure 2.4B, C), likely reflecting amino acid or domain content of the

proteins. For example, peptides of proteins with a large proportion of hydrophobic

residues may be more likely to be presented on MHC molecules [230, 313, 314]. The

driver mutations with the highest frequencies across patients are dominated by a

relatively small number of genes (Figure 2.3A). If a subset of these genes tend to

have relatively high PHBR scores this could induce a correlation between driver

mutation frequency across patients and median PHBR score. Indeed, when we

restricted to only the highest frequency driver mutation for each driver gene, the

relationship between PHBR-I score and driver mutation frequency was no longer

significant (Spearman ⇢ = 0.24; p-value = 0.28). Thus, the reported association

between driver mutation frequency and median PHBR-I score is not robust.

.
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Figure 2.4: (A) Distribution of pairwise correlations between PHBR-I (red) and

PHBR-II (blue) scores of 1,000 randomly sampled pairs of patients. (B) Scatterplot

of log PHBR-I scores for pairs of germline mutations from the same genes.(C) Scat-

terplot of log PHBR-II scores for pairs of germline mutations from the same genes.

(D) Correlations of PHBR-I scores from different HLA alleles.

2.3.6 No evidence that driver mutation coverage predicts cancer risk

If the frequency of driver mutations across cancer patients was determined to a

large extent by the binding affinities of common HLA alleles, we would expect the

number of recurrent cancer driver mutations that can be bound by a patient’s MHC

molecules to be associated with cancer risk. In [227], the driver mutation coverage

is defined as the number of driver mutations that can be presented by the patient’s

MHC molecules. This can be calculated for MHC-I (for which a threshold of PHBR-

I < 2 was used to indicate binding) and for MHC-II (for which the threshold was

PHBR-II < 10). MHC-I (but not MHC-II) coverage was found to be correlated

with age of diagnosis for TCGA patients [227, 228]. Interestingly, the strongest

correlations between PHBRI coverage and age at diagnosis are for cervical and liver

cancers, two cancers that are strongly associated with viral infections [315–317],

suggesting that the relationship between coverage and age at diagnosis may reflect

HLA-dependent differences in susceptibility to these viral infections. To test, more
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generally, whether there is any relationship between PHBR-I coverage and cancer

risk we fitted a logistic regression model to the log odds of cancer status (a binary

variable to indicate whether the individual has self-reported a diagnosis of cancer

of any type) to PHBR-I coverage for 377,790 participants from the UK Biobank.

Treating age and sex as covariates, we found no significant association between

PHBR-I coverage and cancer risk (p-value = 0.15). The lack of an association

between cancer risk and driver mutation coverage does not support a model in

which cancer driver mutations occur in gaps in the capacity of the individual’s

MHC molecules to bind the associated neoantigens.

2.4 Discussion

The relationship between MHC genotype and the driver mutations that are found

in cancer patients, reported by [227, 228], is unchanged when the MHC genotypes of

patients are shuffled. This includes the effect of log PHBR score on the occurrence

of a driver mutation, as inferred from the within patient model, as well as the

difference in median PHBR scores between the Mutation and No Mutation groups.

It is therefore clear that any effect of PHBR scores on the driver mutation landscape

is not dependent on individual level MHC genotypes.

It is still conceivable that MHC genotype affects the driver mutation landscape

at the population level, such that poorly presented driver mutations are relatively

common; however, it is implausible that the population level effect could arise in

the absence of any association between PHBR score and driver mutation occurrence

within individual patients. If immune responses cause driver mutations that can be

recognized by common MHC alleles to be rare, we would expect these driver muta-

tions to be more frequent among individuals with MHC alleles that are incapable of

presenting them. No such effect of MHC genotype on driver mutation occurrence

within individuals was apparent from the data.

Furthermore, the relationship that was reported between driver mutation fre-

quency and median PHBR score might be accomplished without affecting cancer

cell proliferation, the requirement of the cancer cells for continued expression of

genes carrying driver mutations may prevent downregulation of these genes. One

difficulty in attempting to reconcile these findings in this way is that the effect of
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MHC genotype on the driver mutation landscape was reported for both oncogenes

and tumor suppressor genes (and was stronger for the latter group in [227]). It

is not clear that the requirement for expression of the gene that carries the driver

mutation should apply to driver mutations in tumor suppressor genes, where loss of

function is the expected mode of action.

Our reanalysis of cancer driver mutations from the TCGA indicates that there

is no evidence that selection exerted by the immune response influences the driver

mutations observed in cancer. This result complements the recently reported lack

of overall depletion of neoantigens among somatic mutations observed in cancer

[230, 234]. It remains possible, however, that the capacity of the MHC to present

neoantigens at the cell surface does have an appreciable influence on the driver

mutations observed in cancer, but that this capacity is not sufficiently well captured

by the PHBR score. Given the experimental evidence for the capacity of PHBR-I

and PHBR-II scores to predict MHC-I and MHC-II binding affinity [227, 228], this

seems unlikely. Alternatively, it is possible that the availability of immunogenic

non-synonymous mutations is not what limits the capacity of the immune response

to prevent cancer development. The wide range of mutation burdens in human

cancers [318] and the relationship between mutation burden and the efficacy of

immune checkpoint inhibitors [88, 319, 320] argue against this suggestion, unless

the immune response to the developing cancer is distinct to the response following

immune checkpoint inhibitor therapy. The lack of a relationship between MHC

genotype and driver mutation content suggests that if the immune system plays

a major role in cancer prevention, this does not involve the prevention of specific

driver mutations in a way that depends strongly on MHC genotype. of the mutation

is weak and no longer significant when we restricted to a single driver mutation per

driver gene. This restriction is necessary, given the correlation we observed between

PHBR scores derived from the same gene, even for germline mutations.

If, as [228] suggests, cancer arises in gaps in an individual’s capacity to present

driver mutations, then we would expect the number of such gaps that an individual

has for cancer driver mutations to be a strong risk factor for cancer development.

Indeed, [228] reports effect MHC-I driver mutation coverage on age at cancer diagno-

sis, where coverage was defined as the number of driver mutations in the study that

51



2 NO EVIDENCE THAT HLA GENOTYPE INFLUENCES THE DRIVER
MUTATIONS THAT OCCUR IN CANCER PATIENTS

were predicted to be bound by the patient’s MHC class I molecules. We tested this

using data from the UK Biobank. Given the size of the data set (377,790 individu-

als, including 32,802 with a self-reported cancer diagnosis) even a weak relationship

between MHC-I coverage and cancer risk should be detectable; however, we found

no significant effect of coverage on cancer status when we fitted a logistic regression

model that included sex and age as covariates. If the reported effect of MHC geno-

type on driver mutation landscape was robust, this would be an important negative

result, as it addresses the proposal by [228] that PHBR-I scores of driver mutations

may prove useful for assessing risk of development of certain cancers. This negative

result has not previously been reported to the best of our knowledge.

The reported depletion of cancer neoantigens [158, 309, 321] applies to all non-

synonymous immunogenic mutations and not specifically to driver mutations. How-

ever, [227, 228] reported no evidence of an influence of patient MHC on passenger

mutations. This finding is surprising, given that both driver and passenger mu-

tations (particularly clonal, non-synonymous, immunogenic passenger mutations)

should have the capacity to elicit immune responses. In principle, this could be

explained by downregulation of genes carrying immunogenic mutations. Indeed, a

recent study [322] suggested that the extent of depletion of neoantigens depends

on the expression level of the gene. While for neoantigens resulting from passenger

mutations, this downregulation might be accomplished without affecting cancer cell

proliferation, the requirement of the cancer cells for continued expression of genes

carrying driver mutations may prevent downregulation of these genes. But when we

investigated this possibility, we found there was lack of evidence of downregulation

of genes carrying immunogenic passenger mutations. Another difficulty in attempt-

ing to reconcile these findings in this way is that the effect of MHC genotype on the

driver mutation landscape was reported for both oncogenes and tumor suppressor

genes (and was stronger for the latter group in [227]). It is not clear that the re-

quirement for expression of the gene that carries the driver mutation should apply

to driver mutations in tumor suppressor genes, where loss of function is the expected

mode of action.

In conclusion, our reanalysis of cancer driver mutations from the TCGA in-

dicates that there is no evidence that selection exerted by the immune response
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influences the driver mutations observed in cancer. This result complements the

recently reported lack of overall depletion of neoantigens among somatic mutations

observed in cancer [230, 234]. It remains possible, however, that the capacity of

the MHC to present neoantigens at the cell surface does have an appreciable in-

fluence on the driver mutations observed in cancer, but that this capacity is not

sufficiently well captured by the PHBR score. Given the experimental evidence for

the capacity of PHBR-I and PHBR-II scores to predict MHC-I and MHC-II binding

affinity [227, 228], this seems unlikely. Alternatively, it is possible that the avail-

ability of immunogenic non-synonymous mutations is not what limits the capacity

of the immune response to prevent cancer development. The wide range of muta-

tion burdens in human cancers [318] and the relationship between mutation burden

and the efficacy of immune checkpoint inhibitors [319, 320, 323] argue against this

suggestion, unless the immune response to the developing cancer is distinct to the

response following immune checkpoint inhibitor therapy. The lack of a relationship

between MHC genotype and driver mutation content suggests that if the immune

system plays a major role in cancer prevention, this does not involve the prevention

of specific driver mutations in a way that depends strongly on MHC genotype.

Studies [230, 235, 324, 325] have shown that to understand how natural selection

operates in cancer cells, we need to consider the types of mutations that are occurring

and the processes that are driving them. It is currently unclear whether and how

mutational processes, which are characterized by mutational signatures and their

sequence context preferences (the specific DNA sequences where mutations are more

likely to occur) affect signals of neoantigen depletion. [230] has focused on mutations

arising from different mutational processes. The study used HLA affinity predictions

to annotate the human genome for its translatability to HLA binding peptides. They

reported that the apparent neoantigen depletion signals became negligible when

considering the background mutational processes [230]. However, their annotation

of the HLA binding region in human genome is very conservative and may lead

to biased results. In the next chapter we estimate intrinsic immunogenicities of

different mutational signatures and their impact on the immunogenicity of different

cancer types.
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2.5 Methods

2.5.1 Data

We performed a reanalysis of cancer driver mutations in TCGA and their predicted

immunogenicities, reported in [227, 228]. Both papers calculate a score that is used

to predict the extent to which neoantigens are presented on MHC-I or MHC-II

molecules, given the patient genotype. The score is calculated by considering all

peptides of a specific length or range of lengths that contain the mutation. A rank-

based presentation score was obtained for each peptide using NetMHCpan3.0 [265],

and for each of the patient’s HLA alleles the best rank value was retained. The

PHBR score is then the harmonic mean (across the patient’s HLA alleles) of these

best-rank scores (see [227, 228] for details). This score was calculated for class I

MHC alleles in [228] where it was based on peptides with lengths ranging from 8

to 11 amino acids and for class II alleles in [227], where it was based on peptides

of length 15 amino acids. We applied the methodology as described to the TCGA

data to obtain a binary matrix of driver mutation occurrences across patients and

matrices of PHBR-I and PHBR-II scores across patients for each driver mutation.

In order to ensure our results were precisely comparable to the published results, we

also requested the data matrices that were the basis of the original studies and these

were kindly provided by the authors (following confirmation of the appropriate data

access permissions).

2.5.2 Logistic regression models relating mutation occurrences to PHBR

scores

Following the notation of [228], consider a mutation matrix, with entries yij 2 {0, 1},

indicating the presence/absence of driver mutation j in patient i and a matrix of

PHBR-I or PHBR-II scores with real-valued entries, xij, corresponding to the score

of mutationj, given the MHC alleles of individual i. Two mixed effects logistic

regression models were used in [228] to relate the log-odds of yij = 1 to the log

of xij. The first model, referred to as the within-mutation model, has a normally

distributed random effect,�j, that models differences in the frequencies of different
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driver mutations:

logit(P (yij = 1|xij)) = �j + �log(xij) (1)

The second model, referred to as the within-patient model, uses a random effect,

⌘i, to model differences in the abundance of driver mutations between patients, but

does not model differences in the frequencies with which different driver mutations

occur:

logit(P (yij = 1|xij)) = ⌘i + �log(xij) (2)

2.5.3 Simulation

We designed a simple simulation scenario to illustrate how spurious results can

be obtained from the within-patient model due to a failure to account for non-

independence of the PHBR scores across patients (some driver mutations tend to

have higher scores across patients, while others have lower scores, leading to the

high degree of correlation in the scores of driver mutations between patients seen in

Figure 2.1A). The simulation consisted of 100 driver mutations, one of which had a

high frequency (20% of 500 patients) and a relatively high PHBR score (normally

distributed across patients with mean 10 and standard deviation 2). The remaining

mutations occurred at low frequency (1%) and had normally distributed PHBR

scores with mean 5 and standard deviation 2. We then fitted the within-patient

model to this simulated dataset.

2.5.4 Relationship between MHC-I coverage and cancer risk in UK

Biobank

We retrieved HLA class I alleles from participants in the UK Biobank. These alleles

were inferred using HLA*IMP:02 [326]. Only alleles that were called with imputation

posterior probability greater than 0.5 and only participants with six HLA class

I alleles called were retained. This left a total of 377,790 individuals. For each

individual, we determined the driver mutation coverage as the number of driver

mutations with PHBR-I scores < 2, given the individual’s HLA genotype. We

retrieved the self-reported cancer status (data field 20001) for these individuals.

Treating the self-report of any cancer type as a case, we fitted a logistic regression

model to case status as a function of age, sex and PHBR-I coverage.
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3 Chapter 3: Variation in the predicted immuno-

genicity of mutation types

3.1 Abstract

The presentation of intracellular antigens on the cell surface by Major Histocom-

patibility Complex class-I (MHC-I) molecules is one of the major determinants for

CD8+ T cell activation. Research has shown that patient MHC-I genotype influ-

ences immunotherapy responses; however, this influence appears to be inconsistent,

and it is not clear why this is the case. For example, the B44 HLA supertype is as-

sociated with a better response in melanoma. Non-small cell lung cancer (NSCLC)

has a similar somatic mutation burden and immunotherapy response to melanoma;

however, the B44 supertype has not been found to influence immunotherapy re-

sponse in NSCLC. This difference has been attributed to underlying differences in

mutational processes active in melanoma compared to NSCLC.

To generalize these findings, we performed an exhaustive characterization of the

predicted immunogenicity of mutations arising from all cancer mutation signatures

for the common HLA supertypes. We observed that mutations resulting from some

mutation signatures were more likely to be presented by specific HLA alleles than

mutations from other signatures. The average number of mutations inferred to be

immunogenic in a cancer type could be predicted with high accuracy (R2 = 0.87)

using the median activity of the mutation signatures in that cancer. Mutation

signature 20 resulted in the highest proportion of immunogenic mutations, given

the HLA allele frequencies in the TCGA cohort. The highest proportion of somatic

mutations and immunogenic somatic mutations in the TCGA cohort was contributed

by mutation signature 5. When comparing different types of cancer in the TCGA

cohort, CESC had the highest expected number of immunogenic mutations, while

PRAD had the highest observed proportion of immunogenic mutations. We used

our method to predict expected immunogenicity in two ICB-treated cohorts and

observed that in both cohorts, higher expected immunogenicity was associated with

improved immunotherapy response and overall survival.
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3.2 Introduction

Cancer frequently develops through an evolutionary process, in which cancer genes

accumulate somatic mutations that confer a fitness advantage to the affected cells,

resulting in positive selection on these somatic mutations [25]. Recent studies have

reported that neoantigens resulting from somatic mutations play a crucial role in

shaping the immune response to cancer [158, 311, 327, 328]. Neoantigens are im-

munogenic peptides, resulting from somatic mutations, that are presented on cell

surface by MHC-I molecules. MHC-I molecules play a key role in initiating an im-

mune response against cancer cells. These molecules are responsible for presenting

peptide fragments derived from intracellular proteins on the surface of cells [329].

Somatic mutations arise through distinct mutational processes and the activities

of these processes play a critical role in shaping how cancer develops and progresses.

The distribution and characteristics of somatic mutations in cancer vary consider-

ably and are influenced by various factors [330]. These different mutational processes

are characterized by mutational signatures that have been identified using mathe-

matical methods [106, 126, 331, 332]. Mutational signatures are specific patterns

of mutations that provide insights into the mutational processes that have occurred

throughout the development of the disease. By characterizing mutational signatures

in the genome of a cancer patient we can gain valuable information about these un-

derlying mechanisms. Alexandrov et al. have made available a curated census of

signatures, known as the COSMIC mutation signatures and provide the mutational

profile, proposed aetiology and tissue distribution of each signature [108]. COSMIC

mutation signatures were identified using 96 triplet mutation contexts, consisting of

the mutated nucleotide and the adjacent nucleotides (5’ and 3’). and the adjacent

nucleotides (5’ and 3’).

MHC-I alleles are polymorphic, meaning they have multiple variants within the

population. This polymorphism results in differences in the amino acid sequences

of the peptide-binding cleft of MHC-I molecules [196]. These differences contribute

to variations in the binding capability and preferences of MHC-I alleles for different

peptides. The polymorphic nature of MHC-I alleles enables the presentation of

a diverse range of antigens and plays a crucial role in immune recognition and

response. The difference in MHC-I genotype can lead to differences in neoantigen
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load among patients, and neoantigen load has been reported to be associated with

the clinical benefits of immunotherapy treatment in melanoma and NSCLC cohorts

[319, 320, 333].

Chowell el al. [137] showed that germline HLA-I genotypes influence ICB re-

sponses, and heterozygosity at HLA-I loci was associated with better survival than

homozygosity for one or more HLA-I genes. In two independent melanoma cohorts,

patients carrying the HLA-B44 supertype exhibited extended survival, while pa-

tients with the HLA-B62 supertype or somatic loss of heterozygosity at HLA-I were

associated with poor outcomes [137]. However, a recently published study reported

that this association is not present in patients of European ancestry [334]. Cum-

ming et al. showed that this beneficial effect of the B44 supertype in melanoma

patients is caused by the mutational pattern of this cancer type [130]. Melanoma

patients having mutated peptides that include radical glutamic acid substitutions

in the anchor position have enhanced B44 binding [130, 137]. Therefore, mutational

processes that enrich these mutations, such as sun exposure in melanoma, benefit

patients with the B44 allele. In contrast, cancers with less favourable mutation pat-

terns may lack or show an opposite association with the B44 supertype, as seen in

NSCLC [130, 281].

Understanding the association between mutational signatures and MHC

molecules can provide insights into the mechanisms of immune evasion by cancer

cells and also inform the development of personalized cancer therapies. By con-

sidering mutational signatures and MHC molecules, we can better understand the

interplay between the mutational landscape of cancer cells and the immune response

and ultimately develop more effective strategies for diagnosing and treating cancer.

Although previous studies [130, 137, 281] have reported a relationship between the

particular background mutational processes and HLA-I supertypes and their impor-

tance in predicting ICB efficacy, the general relationship between the two factors

is understudied. To generalize these findings, we set out to perform an exhaustive

characterization of the predicted immunogenicity of mutations arising from different

mutation processes for all the major HLA supertypes.

We used COSMIC mutation signatures [108] in our study and predicted their im-

munogenicity for the major HLA supertypes. HLA Supertypes are groups of HLA
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alleles that bind common sets of peptides due to sharing specific residues at the

anchor position [335]. We also predicted the expected immunogenicity of various

cancer types based on the median activity of the mutational signatures, i.e. the

median number of mutations contributed by each mutation signature in that cancer

type. Further, we predict expected immunogenicity for the TCGA cohort [318] by

analyzing the activity of various mutation signatures in individual samples together

with HLA genotype. We validated our results by assessing the correlations of ex-

pected immunogenicity (immunogenicity estimated based on mutational signature

activities) with empirical immunogenicity (immunogenicity estimated directly from

the observed mutations).

3.3 Results

The extent of variation in immunogenicity of each mutation type was estimated for

the most common HLA supertypes (see Table 1). We observed that trinucleotide

contexts of mutations influence their immunogenicity, but the differences in the pro-

portion of immunogenic mutations for each mutation type were smaller compared to

HLA supertypes. Specifically, the analysis showed that HLA-C supertypes exhibited

the highest proportion of mutations that were predicted to be immunogenic, followed

by HLA-B supertypes (Figure 3.1). On the other hand, HLA-A and HLA-B alleles

displayed similar proportions of immunogenic mutations. This finding aligns with

previous studies that have reported similar functional diversity between HLA-A and

HLA-B alleles [320] while highlighting the distinct binding pattern of HLA-C [336].

3.3.1 Mutation signatures MHC-I affinities

The relationship between MHC-I supertype allele affinities and COSMIC mutation

signatures was investigated to gain insights into how mutational signatures vary

from each other in terms of immunogenicities. The results demonstrated that the

variation in expected immunogenicity was greater across the HLA supertypes than

between the mutation signatures within a specific HLA supertype (see Figure 3.2a,

b), consistent with the findings observed for different mutation types (Figure 3.1).

Two different binding thresholds were employed to determine the proportion of

immunogenic mutations, as described in the Methods section. The stricter threshold
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Figure 3.1: Heatmap showing the expected proportion of immunogenic mutations

of each mutation type and HLA supertype, using the rank < 2 threshold
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of percentage rank < 0.5 estimated by using NetMHCPAN 4.0 [264](see Methods for

details) allowed for the consideration of only strong binders (see Figure 3.2b) whereas

percentage rank < 2 includes weak binders too (Figure 3.2a). Notably, the overall

patterns observed in each analysis mirrored those observed for different mutation

types. Specifically, HLA-C supertypes exhibited the highest binding proportions,

followed by HLA-B supertypes, reaffirming the distinctive binding characteristics

associated with HLA-C supertypes.

It is interesting to note that although mutational signatures have the highest

immunogenicity for HLA-C supertypes, HLA-C is usually expressed at much lower

levels than HLA-A and HLA-B [337]. This suggests that another immune eva-

sion mechanism is the downregulation of HLA molecules with a higher capacity of

neoantigen presentation. Downregulation of HLA molecules in general for immune

evasion is a well-documented mechanism, but the observed higher presentation ca-

pacity of HLA-C could explain why it has lower expression levels than HLA-A and

HLA-B [338].

3.3.2 Estimating MHC-I affinities across different cancers using their

mutational landscape

In this study, we defined intrinsic immunogenicity of a tumor type as the propor-

tion of somatic mutations within a tumor that generate putative neoantigens. To

estimate the median number of mutations contributed by each mutation signature

in the TCGA cohort, we utilized the attribution matrix of mutation signatures re-

ported by [108]. By combining the median activity of mutation signatures and the

expected immunogenicity from the previous section, we estimated the intrinsic im-

munogenicity of different tumor types for various HLA supertypes. This approach

provides a comprehensive understanding of the potential of a tumor to induce an

immune response through the presentation of neoantigens.

Consistent with previous studies [130, 137], we observed that certain HLA super-

types, such as B44, have a higher proportion of immunogenic mutations in specific

tumor types, such as SKCM (skin cutaneous melanoma), than in other tumor types,

such as LUAD (lung adenocarcinoma)() and LUSC (lung squamous cell carcinoma)

(Figure 3.3,3.4) (0.236, 0.215 and 0.216 proportion of immunogenic mutations re-

61



3 CHAPTER 3: VARIATION IN THE PREDICTED IMMUNOGENICITY OF
MUTATION TYPES

C
1

C
4

B27

B62

A01.A03

B07

A24

A02

A01.A24

B58

A01

B08

A03

B44

MS9
MS7
MS28
MS4
MS30
MS10
MS17
MS12
MS8
MS15
MS5
MS1
MS6
MS13
MS25
MS3
MS11
MS2
MS19
MS14
MS26
MS22
MS24
MS16
MS29
MS21
MS20
MS23
MS18
MS27

0.15

0.2

0.25

0.3

0.35

0.4

C
1

C
4

A24

B27

A01.A03

B07

A01.A24

A02

B08

B58

A03

A01

B62

B44

MS11
MS27
MS13
MS14
MS22
MS4
MS24
MS7
MS9
MS26
MS18
MS19
MS16
MS21
MS20
MS23
MS25
MS28
MS6
MS10
MS2
MS17
MS30
MS1
MS12
MS29
MS3
MS5
MS8
MS15

0.04

0.06

0.08

0.1

0.12

0.14

A

B

Figure 3.2: (a) Heatmap showing the expected proportion of immunogenic muta-

tions of each mutation signature for common HLA supertypes, using the percentage

rank < 2 threshold. (b) Heatmap showing the expected proportion of immunogenic

mutations of each mutation signature for common HLA supertypes, using the per-

centage rank < 0.5 threshold.
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spectively). Interestingly, we also found that when only strong binders are consid-

ered, B44 had a higher proportion of immunogenic mutations in CESC (cervical

squamous cell carcinoma and endocervical adenocarcinoma) and TCC (transitional

cell carcinoma) (0.0699 and 0.0720 respectively) (Figure 3.4a), which preferentially

exhibit transition mutations, particularly C>T, similar to melanoma [108, 339],

which showed 0.0723 proportion of immunogenic mutations. This suggests that the

underlying mutational processes and genetic variation in MHC-I alleles can play a

crucial role in determining its immunogenicity.

We compared the expected immunogenic proportions with the empirical propor-

tions obtained from the TCGA cohort (Methods). We found a strong correlation

between the two estimates of immunogenicity of cancer types (r = 0.96 and r =

0.87 for percentage rank less than 2 and 0.5, respectively; p-value < 2.2 ⇤ 10�16 for

both analyses; Figure 3.3b, 3.4b). These results suggest that our method accurately

predicts the intrinsic immunogenicity of various tumor types for different HLA su-

pertypes. However, it is important to note that this correlation is influenced by the

variations in HLA alleles. As shown in Figure 3.3a,3.4a; the differences between

HLA alleles had a much greater effect on the variation in predicted immunogenicity

than the differences in mutational patterns within cancers.

Next, we used patient level mutation signature activity and patient-specific HLA

genotypes within the TCGA cohort to determine the expected immunogenicity of a

cancer type (Methods). We compared the median expected proportion of immuno-

genic mutations among samples within a specific tumor type with the correspond-

ing median observed proportion of such mutations across the same set of samples

(Figure 3.5). We did not find correlation between the two estimates using patient-

specific HLA genotype and mutation signatures. This can be explained by the lack

of variation in mutation signature activity across cancer types in the TCGA cohort

(Figure 3.6a) and also by the low variation in the expected immunogenicity of mu-

tation signatures (Figure 3.6b) which results in marginal variation in the expected

immunogenicities of cancer types (Figure 3.6c).

To further test the robustness of the relationship between the expected and

empirical immunogenicity, we controlled the confounding effect of HLA genotype

variation. We randomly selected two HLA alleles from the set of unique HLA alleles
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R = 0.95, p < 2.2e−16
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Figure 3.3: (a) Heatmap showing the expected proportion of immunogenic muta-

tions of each cancer type for most common HLA supertypes, using the rank < 2

threshold. (b) Scatterplot showing the relationship between the expected and em-

pirical proportion of immunogenic mutations in a cancer type, using the percentage

rank < 2. Each point represents the proportion of immunogenic mutations for a

cancer type, and they are grouped by HLA supertypes.
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R = 0.87, p < 2.2e−16
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Figure 3.4: (a) Heatmap showing the expected proportion of immunogenic muta-

tions of each cancer type for most common HLA supertypes, using the rank < 0.5

threshold. (b) Scatterplot showing the relationship between the expected and em-

pirical proportion of immunogenic mutations in a cancer type, using the percentage

rank < 0.5. Each point represents the proportion of immunogenic mutations for a

cancer type, and they are grouped by HLA supertypes.
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Figure 3.5: Scatterplot showing the relationship between the median expected and

empirical immunogenicity of cancer types across samples in the TCGA cohort using

patient-specific HLA genotype

found in the TCGA samples. We estimated the expected and empirical proportion of

immunogenic mutations in various cancer types using the median mutation signature

activity and randomly sampled HLA alleles (Figure 3.7a, b). Our results showed

there is a positive correlation between the expected and empirical proportion of

immunogenic mutations for both alleles. This indicates we can predict the variation

in immunogenicity of various cancer types to some extent using specific HLA alleles

and mutation signature activity. Figure 3.7a, b).

66



3 CHAPTER 3: VARIATION IN THE PREDICTED IMMUNOGENICITY OF
MUTATION TYPES

MS1
MS2
MS3
MS4
MS5
MS6
MS7
MS8
MS9

MS10
MS11
MS12
MS13
MS14
MS15
MS16
MS17
MS18
MS19
MS20
MS21
MS22
MS23
MS24
MS25
MS26
MS27
MS28
MS29
MS30

AC
C

BR
C

A
C

ES
C

C
O

AD
D

LB
C

ES
C

A
G

BM
H

N
SC

KI
C

H
KI

R
C

KI
R

P
LI

H
C

LU
AD

LU
SC

M
ES

O O
V

PA
AD

PC
PG

PR
AD

SA
R

C
SK

C
M

ST
AD

TG
C

T
TH

C
A

TH
YM

U
C

EC
U

C
S

U
VM

Cancers

Si
gn

at
ur

es

0

100

200

300

Median

Sample Proportion
0.00
0.25
0.50
0.75
1.00

C
1

C
4

B27

B62

A01.A03

B07

A24

A02

A01.A24

B58

A01

B08

A03

B44

MS9
MS7
MS28
MS4
MS30
MS10
MS17
MS12
MS8
MS15
MS5
MS1
MS6
MS13
MS25
MS3
MS11
MS2
MS19
MS14
MS26
MS22
MS24
MS16
MS29
MS21
MS20
MS23
MS18
MS27

0.15

0.2

0.25

0.3

0.35

0.4

A24

A02

A01.A24

A01

B58

A03

B62

B08

B44

B27

A01.A03

B07

C
1

C
4

SKCM
MESO
KIRC
UCS
ESCA
PCPG
UVM
KICH
BRCA
HNSC
KIRP
TGCT
LUAD
LUSC
LIHC
OV
THCA
ACC
SARC
THYM
GBM
CESC
COAD
PAAD
DLBC
UCEC
PRAD
STAD

0.15

0.2

0.25

0.3

0.35

A

B

C

Figure 3.6: (a) Dot heatmap showing the median activity of mutation signatures

in the TCGA cohort. The color of each dot represents the median value, whereas

the size of the dots represents the proportion of samples in which a given mutation

signature is present. (b) The expected proportion of immunogenic mutations for

each mutation signature (row) for each HLA supertype (column). (c) The product

of matrix multiplication of (a) and (b), showing the expected proportion of immuno-

genic mutations in each cancer type

3.3.3 Estimating MHC-I affinities of TCGA cohort using their muta-

tional landscape

We calculated the expected immunogenicity of each mutation signature in the TCGA

cohort using patient-specific HLA genotypes (Methods). We observed that the mu-

tation signatures differ from each other in immunogenicity but the differences were

small (Figure 3.8a), as we observed in (Figure 3.2). Overall, mutation signature

MS20 had the highest predicted immunogenicity in the TCGA cohort, while MS1
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Figure 3.7: Scatterplots showing the relationship between the expected and empiri-

cal proportion of immunogenic mutations using the randomly sampled HLA alleles.

had the lowest predicted immunogenicity. When we restricted this analysis to the

activity of each signature in TCGA samples, we observed that the number of im-
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munogenic mutations contributed by each signature was directly proportional to the

number of somatic mutations contributed by that signature (Figure 3.8b). This is

consistent with previous reports [340, 341] suggesting that the higher the TMB the

higher the neoantigen load and the better the response to immunotherapy. Inter-

estingly, mutation signature 5 had the highest activity and second lowest immuno-

genicity. Mutation signature 1, with the lowest immunogenicity, was the third most

active signature.

We extended our method to estimate the expected immunogenicity of each

TCGA sample, using the six HLA alleles of each patient and the mutation burden

contributed by each mutation signature in their tumour (Methods). To evaluate the

potential of our results, we compared the expected immunogenicity of each sample

with its empirical immunogenicity, which was calculated by using the PHBR score

method [227, 228]. We compared the expected and empirical proportion of immuno-

genic mutations; in this case, the correlation dropped drastically, with a rho value

of 0.09 and a p-value of 1x10�4. This drop was expected as the expected immuno-

genicity at the individual patient level was highly stochastic relative to the expected

immunogenicities for cancer types. This difference is because, in the case of cancer

types, we sampled 1000 mutations for each cancer type reducing the stochasticity,

whereas individual patients had much smaller numbers of mutations.

3.3.4 Can mutational landscapes shape immunotherapy outcomes?

Studies have shown that neoantigen load can play a role in predicting the efficacy

of immunotherapy. Higher neoantigen load has been associated with improved re-

sponses to immunotherapy in some cancer types (Hutchinson 2016). We tested

whether the expected proportion of immunogenic mutations in a tumor sample, has

the same association with immunotherapy outcomes. We carried out mutational sig-

nature analysis for the Dana Farber (DF) [333] and the Memorial Sloan (MSKCC)

[319] melanoma cohorts and observed that both cohorts were enriched for C>T mu-

tations (58.32% and 82% respectively) (Figure 8), similar to the UCLA melanoma

cohort as reported by Cumming et al [130].

We used these mutation signatures and predicted the expected proportion of

immunogenic mutations for each sample using their HLA genotype and the activity
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Figure 3.8: (a) Expected proportions of immunogenic mutations for each mutation

signature across the TCGA cohort. (b) Grouped barplots, showing the proportion

of somatic mutations and immunogenic mutations contributed by each signature in

the TCGA cohort.

of these signatures. We then tested if it can be used to predict the efficacy of

immunotherapy treatment. Our goal was to establish whether the relationships

found between different mutation signatures and HLA supertypes are useful and

reflective of observed data.

In the present study, we analyzed two separate cohorts, namely the DFCI cohort

consisting of 110 patients and the MSKCC cohort comprising 60 patients. In the

DFCI cohort, 32% of patients exhibited at least one B44 supertype allele, while in the
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Figure 3.9: Extracted mutational signatures for two melanoma cohorts. These sig-

natures showed that these melanoma cohorts are enriched with C>T mutations.

MSKCC cohort, this proportion was 28%. To further investigate the impact of HLA

alleles, we also examined the presence of B27 supertype alleles due to their similar

binding pocket characteristics to B44. Within the DFCI cohort, approximately 23%

of patients carried at least one B27 supertype allele, whereas in the MSKCC cohort,

the proportion was approximately 18%. Notably, there were 7 overlapping patients

between the B44 and B27 groups in the DFCI cohort and 4 patients in the MSKCC

cohort. We categorized our data based on the estimated immunogenicity of the

patients, into low and high expected immunogenicity groups after estimating the

optimal cut points for survival analysis (Methods).

The median survival for the high expected immunogenicity group was 10.6

months and 6.74 months for the low expected immunogenicity group in the DFCI

cohort. Whereas in the MSKCC cohort, the median survival for the group with high

expected immunogenicity was 94.6 months and 15 months for the low immunogenic-

ity group. In both cohorts, we found that the expected proportion of immunogenic
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mutations was predictive of immunotherapy efficacy (p-value 0.042 and 0.022 for the

DFCI and the MSKCC cohorts, respectively) (Figure 3.10a, b). It is important to

note that 69% of the patients with higher expected immunogenicity had B44 or B27

alleles in the MSKCC cohort, whereas in the DFCI cohort this measure was 57%.

Previously it had been shown that these two supertypes have beneficial effects in

melanoma patients [130, 137, 281]

+

+

+ ++
+++

+ + ++
+ ++++++ +++ + ++ + ++

+ +

+
p = 0.022

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100
Time

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Strata + +Expected Immunogenicity = High Expected Immunogenicity = Low

51 30 16 4 0

13 5 1 0 0Expected Immunogenicity=Low

Expected Immunogenicity=High

0 25 50 75 100
Time

St
ra

ta

Number at risk

A

+
++++ + +++ + + +++++++++ +

+ +
+ +

+

p = 0.042

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50
Time

Su
rv

iv
al

 p
ro

ba
bi

lit
y

96 49 37 19 6 2

14 3 1 1 0 0Expected Immunogenicity=Low

Expected Immunogenicity=High

0 10 20 30 40 50
Time

St
ra

ta

Number at risk

B

Figure 3.10: Survival estimated using the Kaplan–Meier method. (a) In the MSKCC

cohort patients with high expected immunogenicity had a median OS of 94.6 months

versus 15 months in the low expected immunogenicity group, P= 0.022. (b) In the

DFCI cohort patients with high expected immunogenicity had a median OS of 10.6

months versus 6.74 months in the low expected immunogenicity group, P=0.042.
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3.4 Discussion

In this chapter, we investigated the relationship between different HLA supertypes

and mutational signatures in the context of immunogenicity. Our analysis revealed

variations in the immunogenicity of mutational signatures, although these differences

were relatively smaller compared to the divergences observed for different HLA su-

pertypes. We found that HLA-C supertypes have the highest immunogenicity for

mutational signatures, suggesting that the reported downregulation of HLA-C [338]

as compared to HLA-A and HLA-B in cancer patients could be another mechanism

of immune evasion.

The beneficial effect of HLA B44 supertype in melanoma patients is associated

with an enrichment of C>T mutations due to underlying mutational processes [130].

To investigate this further, we performed signature analysis on two ICB treated

melanoma cohorts, namely the Dana Farber (DF) and MSKCC cohorts. Both co-

horts exhibited an enrichment of C>T mutations, consistent with previous reports

in melanoma patients. We then explored whether the expected proportion of im-

munogenic mutations could predict immunotherapy efficacy, similar to the observed

neoantigen load. Our analysis revealed a positive relationship between the expected

proportion of immunogenic mutations and immunotherapy efficacy. This finding has

important implications for predicting the efficacy of immunotherapy.

Recent studies have shown that tumor mutation burden (TMB) may not be a

reliable universal biomarker for predicting immunotherapy response across all can-

cer types [291, 342, 343]. It has been previously proposed that for samples with low

tumor purity, where it is difficult to accurately measure TMB, mutation signature

analysis can be used as a proxy for TMB [344]. We propose that one potential

proxy for TMB is the assessment of intrinsic immunogenicities of mutational signa-

tures or mutational patterns in the tumor. Our results suggest that this may have

potential for the prediction of immunotherapy efficacy. However, it is important to

note that we employed the maximally selected rank statistic method to determine

an optimal cutoff point for dividing our data into high and low expected immuno-

genicity groups. This method provides a value of a cutoff point that corresponds

to the most significant relationship with the outcome, survival in this case. The

statistical tests are biased due to the same data being used to define the threshold
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and to assess the significance of the difference between the samples above and be-

low the threshold. Nonetheless, our results suggest a positive trend, with patients

with higher expected proportions of immunogenic mutations exhibiting better sur-

vival. Notably, we established a correlation between expected immunogenicities of

various tumor types, which were estimated using mutational signature activity, and

observed immunogenicities. This correlation supports the existence of a relationship

between the probability of mutation occurrence in specific nucleotide sequences and

the predicted HLA affinities for corresponding peptides. Our findings are consistent

with a previous study by [230], who observed a similar association; however, their

study employed a more conservative approach that encompassed only six HLA al-

leles. In contrast, our analysis was exhaustive, considering a broader range of HLA

alleles, which enhances the robustness of our results.

The observed correlation between the expected and empirical proportion of im-

munogenic mutations, indicates that underlying mutational processes can play a role

in defining the immunogenicity of a cancer type. This observation has implications

for investigations of neoantigen depletion, as we would expect that in the presence of

negative selection, the expected immunogenicity will be greater than the empirical

immunogenicity of tumor (i.e., there will be fewer immunogenic mutations than you

would expect, given the mutation signature activity profile).

Negative selection is thought to eliminate cells carrying mutations that elicit an

immune reaction [177, 232, 233, 301, 304, 307, 321], but its effects on cancer genomes

are not fully understood. Studies have provided clear evidence that mutational

signatures - patterns of mutations in DNA - need to be considered when detecting

selection signals in cancer [230, 234, 235], as they can bias metrics used for the

detection of immunoediting signals. [230] showed that the apparent neoantigen

depletion signal disappears when mutation signatures are considered. Another study

reported that in melanoma cancer ultraviolet light dimerization gives rise to C>T

mutations resulting in an increased rate of synonymous mutations in hydrophobic

amino acid codons [235]. This increased rate of synonymous mutations creates a

bias in the dN/dS metric, incorrectly suggesting that negative selection is acting on

somatic mutations in cancer.

The same mutational pattern (C>T) is associated with increased immunother-
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apy efficacy in patients with HLA-B44 supertype, suggesting mutation signatures

also influence immunotherapy responses [136, 137]. This effect is associated with

the presence of radical glutamic acid substitutions at the anchor position, result-

ing in neoepitopes for B44 [130]. Another analysis revealed that the expression of

genes encoding non-motif neoepitopes was higher compared to the expression of

genes encoding motif neoepitopes [281]. This observation suggests the possibility of

tumors having an evolutionary advantage in evading immunosurveillance through a

decreased availability of motif neoepitopes. Nonetheless, the precise impact of mu-

tational signatures and their sequence context preferences on signals of neoantigen

depletion and immunotherapies remains uncertain.

Overall, the study demonstrated that the affinities of MHC-I supertype alleles

and the mutational landscape of a tumor can play a crucial role in determining its

immunogenicity. We estimated the intrinsic immunogenicity of mutation signatures

and tumor types. This method can be applied to detect immunoediting signals by

comparing the estimated intrinsic immunogenicity and observed immunogenicity of

a sample. This study laid the foundation for the analysis we performed in the next

chapter, where we test and quantify the immunoediting signal.

3.5 Methods

3.5.1 Data acquisition

We used version 2 of COSMIC mutational signatures [108] to predict the intrinsic

immunogenicity for HLA supertypes. The classification of HLA supertypes was

gathered from [345]. To acquire the variant annotation of the TCGA cohort, we

accessed the TCGA portal and utilized the variant annotated files generated by

Multi-Center Mutation Calling in Multiple Cancers project [346]. To ensure high

quality variant calls, we further refined the annotations by using only those variants

that passed all filters and were called by at least two variant callers. We used the

HLA typing of the TCGA cohort provided by [228] in our analysis. The data of

cohorts used for the prediction of ICB treatment efficacy was taken from previously

published studies [319, 320].
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3.5.2 Peptide binding

Most of all known MHC-I ligands are of length nine, so we only considered peptides

of length 9 (ninemers) containing the residue (mutated amino acid) for binding

prediction. Peptide binding affinity predictions for ninemers were obtained for var-

ious HLA alleles using the NetMHCPan-4.0 tool. NetMHCPan-4.0 returns IC 50

scores and corresponding allele-based ranks. Peptides with rank < 2 and < 0.5 were

considered weak and strong binders respectively [264].

3.5.3 Empirical Immunogenicity

We defined empirical immunogenicity as the proportion of immunogenic mutations

among observed missense mutations in a sample. We calculated the empirical im-

munogenicity of a cancer type for an HLA supertype by first randomly sampling

mutations observed in samples of that cancer type and estimating their binding

affinity for the HLA supertype. To determine the empirical immunogenicity of a pa-

tient, we used the PHBR scoring method described in [227, 228]. This method gives

an aggregated binding score to each mutation observed in that patient, considering

all six HLA-I alleles of the patient.

3.5.4 Expected Immunogenicity of Mutation Signatures

To estimate the immunogenicity of a mutation signature, we first randomly sam-

pled genomic positions having the same trinucleotide context as mutations in the

probability vector of the mutation signature, which consists of probabilities of a

mutation occurring in these trinucleotide contexts. We then simulated single nu-

cleotide substitutions corresponding to the mutation types in the probability vector

of a mutation signature in these sampled genomic positions. In the next step, we

calculated the binding affinity for these simulated mutations with HLA supertypes

reported in [345] using the method described above. Finally, an immunogenicity

scores i.e., proportion of immunogenic mutations, were assigned to each mutation

signature and HLA supertype pair, which was calculated by dividing the number of

immunogenic mutations by the total number of missense mutations. We also esti-

mated the expected variation in the immunogenicity of various mutation signatures

in the TCGA cohort using patient specific HLA genotype. For this purpose, we
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simulated one mutation for each mutation signature for all the TCGA samples, and

then used PHBR method to check if simulated mutation is immunogenic using HLA

genotype of a given patient. Then, we calculated the proportion of immunogenic

mutations for each mutation signature across all TCGA samples.

3.5.5 Expected immunogenicity of a cancer type

We predicted the expected immunogenicity of a cancer type for an HLA supertype

by using the expected immunogenicity of mutation signatures with that HLA su-

pertype, and the median activity of that mutation signature in cancers of that type

in the TCGA cohort. We performed a dot product calculation between two vectors:

one representing the immunogenicity of mutation signatures, and the other repre-

senting the median number of mutations attributed to each mutation signature in

a specific cancer type. We used the attribution matrix reported by [108] for the

TCGA cohort to estimate the medians. This attribution matrix was obtained using

the (SigProfilerAttribution) function of the SigProfiler package.

3.5.6 Expected Immunogenicity of TCGA cohort

To calculate the expected immunogenicity of a TCGA sample, we used the attri-

bution matrix of mutation signatures in the TCGA cohort reported by [108]. This

attribution matrix presents the number of mutations contributed by each signature

in a sample. We sampled mutations corresponding to each signature based on the

number of mutations attributed to that signature in each sample. This resulted in a

simulated mutation dataset with the same size as the observed mutations dataset in

that sample. We again used the PHBR method and threshold of PHBR < 2 to pre-

dict whether a mutation will be presented on the cell surface in the sample. Finally,

using the number of presented mutations in a sample, we predicted the proportion

of immunogenic mutations in a sample. To estimate the expected immunogenicity

of mutation signatures across the TCGA cohort we sampled one mutation for each

signature in each TCGA sample. We determined if that mutation was a putative

neoantigen given the HLA genotype of the patients. We used a PHBR < 2 threshold

for a mutation to be considered immunogenic.
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3.5.7 Mutational Signature and Survival Analysis

We used the SigProfiler R package [108] to extract mutational signatures of the

DF and MSKCC cohorts. We first extracted trinucleotide contexts of mutations

observed in the samples. The matrix consisting of trinucleotide contexts of mutations

is passed to sigprofilerextractor function, which extracts mutation signatures from

the given set of samples. For survival analysis we used R packages survminer and

survival to perform survival analysis for both cohorts. We first divided our data

based on the expected proportion of immunogenic mutations into two groups (high

and low) using the surv_cutpoint function to find the optimal cutpoint for survival

analysis.
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4 Chapter 4: Assessment and quantification of im-

munoediting in human cancers

4.1 Abstract

Neoantigens arising from somatic mutations potentially initiate immune responses

against tumors. Neoantigens are mutated peptides presented on the cancer cell

surface. It has been reported that these putative immunogenic mutations are re-

moved by selection, in a process known as immunoediting. Because patient MHC-I

genotype plays a vital role in initiating the immune response, it has been studied

widely in the immunoediting context, and studies have claimed that it restricts the

mutational landscape of tumors. However, this remains controversial, and rigorous

research is ongoing to determine the strength of this immunoediting signal. Here,

we present a method incorporating the mutational and evolutionary processes ac-

tive during tumor development to detect and quantify the immunoediting signal.

We estimate that fewer than 1% of mutations are removed through immune surveil-

lance, and the immunoediting signal is weak to absent in most tumor types. These

results could have significant implications in predicting immunotherapy responses

and studying the role of immune surveillance in cancer prevention.

4.2 Introduction

Understanding the effects of the immune system on cancer development has been

challenging. The idea that the immune system can influence cancer growth, espe-

cially that it can prevent cancer growth, has been debated for more than a century

[347, 348]. Ehrlich et al. argued that cancer would be much more common in

long-lived organisms if there was no protective system, such as the immune system

[349]. This argument was further strengthened by Burnet et al. in 1957, and the

term "immune surveillance" was coined by them in their paper [350]. The immune

surveillance theory postulated that adaptive immunity plays a role in protecting

the immunocompetent host from cancer . However, this hypothesis was abandoned

when studies published in 1974 and 1975 by Stutman et al. did not support it and

showed by experiments that tumor susceptibility was similar in both immunocom-
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petent and immunodeficient mice models [351, 352]. This debate continued until

the 1990s, when it was settled with the help of improved mice models and advanced

technologies that the immune system does act as a tumor suppressor in immuno-

competent mice [353, 354].

In the early 2000s, studies showed that the immune system not only controls

cancer growth, i.e., tumor quantity but also plays a role in defining tumor immuno-

genicity, i.e., tumor quality [355]. Shankaran et al. showed that tumors in an

immune-deficient mice model were more immunogenic than similar tumors grown in

an immunocompetent mouse [356]. This observation that the tumor was unedited

in a host lacking a competent immune system led to the formation of the immu-

noediting hypothesis [204], which proposed that negative selection pressure acts to

remove somatic mutations that have the potential to initiate an immune response in

a tumor [177]. This immune response is initiated when the MHC-I molecule presents

neoantigens resulting from somatic mutations on the surface of the cancer cells [299].

CD8+ killer T cells then recognize these neoantigen-presenting cancer cells, and, if

sufficient co-stimulatory signals are present, these cancer cells are eliminated by

the immune system [156]. We call such somatic mutations putative immunogenic

mutations, and the negative selection acting on them is called immunoediting.

Although immunoediting is considered to be confirmed in mice models [357], it

still lacks convincing evidence in humans. Several studies have explored immunoedit-

ing and its extent in humans in the past few years. Hannah Carter and colleagues at

UCSD reported that MHC-I genotypes restrict the oncogenic mutational landscape

in humans[228]; however, the findings of this study were not supported by [230].

Their study did not find a strongly detectable neoantigen depletion signal. Two

other studies argued the reported signals of immunoediting were the result of low

immunogenicity of common driver mutations [70, 234]. We have already discussed

[70] in Chapter 2 of this thesis.

Various mutational processes can cause somatic mutations in cancer during tu-

mor evolution [86, 106, 108]. The properties of mutational processes in cancer have

been characterized by trinucleotide-based mutation signatures [86, 106, 108]. This

method assumes that the occurrence probability of a single nucleotide mutation at

a locus depends on the upstream and downstream nucleotide and on the active mu-
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tational processes. Van Den Eyden et al. reported that the immunoediting signal

becomes negligible when mutation signatures are taken into consideration, but their

method had some limitations [230], such as a very conservative but general estimate

of the HLA binding region [358].

More recent studies, such as Marta et al., have suggested that neoantigen qual-

ity rather than quantity is a better predictor of immunoediting signal [294]. Marta,

L. et al. showed that an immunoediting signal exists by studying the evolution

of a cohort of pancreatic cancers over ten years [294]. They found that long-term

survivors with a more robust immune response in the primary tumor have fewer

immunogenic mutations in the recurrent tumors, despite having more time to accu-

mulate mutations. They use the mutation quality to quantify the immunoediting

signal in this cohort. Another study used K-S statistics to estimate the difference

between the cumulative distributions of cancer cell fraction of antigenic mutations

and non-antigenic mutations in each sample of the TCGA cohort to quantify the

immunoediting signal. They reported a strong immunoediting signal in many cancer

types [358] and argued that the method of immunoediting signal detection used in

the paper [230] was problematic. They did not find the neoantigen depletion sig-

nal because the actual neoantigens did not exist in the region they defined as the

HLA-binding region [230, 358] .

Immunotherapies have shown very promising results for specific cancer types;

however, they do not work for all patients because of the heterogeneous nature

of cancer, its evolutionary potential, and the diversity of the human immune sys-

tem. Cancer grows by a repeating process of cell multiplication, genetic changes,

and selection, happening in the body’s natural environment [359]. Studies have

shown that immune system intervention may deplete cancer clones and erode their

habitats, but this may also result in selection pressure for the elimination of im-

munogenic mutations or expansion of resistant variants [226]. Given the importance

of immunotherapy in cancer treatment and the need to predict clinical responses

accurately [175] the extent to which immunoediting shapes the landscape of somatic

mutations in cancer is a critical question.

Many previous studies have tested for the effect of immunoediting on the so-

matic mutations that are observed in cancer, with conflicting results, as described
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above. Here, we present a novel method to quantify the extent of immunoediting

using patient MHC-I profiles and mutation signature activities. This method al-

lows us to place an upper bound on the number of mutations removed by immune

surveillance during cancer development. We observed a weak immunoediting signal

in a pan-cancer analysis, but this immunoediting signal was lacking in many individ-

ual cancer types. Furthermore this apparent purifying selection does not disappear

when we use random HLA alleles rather than patient-specific ones, indicating that

HLA binding affinity mainly depends on protein sequence composition, which is in

line with previous reports [230, 235]. Our analysis provides no substantial evidence

to support the notion that the mutational landscape of a tumor is influenced by

patient HLA genotype.

4.3 Results

In this study, we developed a patient-specific method to estimate the expected and

empirical immunogenicity scores of tumors in the TCGA cohort. Expected immuno-

genicity refers to the hypothetical proportion of immunogenic mutations that would

be present in the absence of negative selection pressure. To estimate expected im-

munogenicity, we simulated a random mutation with the same mutational signature

for each mutation observed in the patient’s tumor sample. This generated a sim-

ulated tumor sample with a similar mutational background and the same number

of somatic mutations as the original sample. The empirical proportion of immuno-

genic mutations in the patient’s original tumor sample reflects the proportion of

immunogenic mutations that were able to escape negative selection pressure and are

present in the tumor. We calculated the empirical immunogenicity using a similar

approach as the expected immunogenicity, with the difference that it considers the

actual mutations found in the tumor sample.

Our hypothesis was that if negative selection pressure is acting on immunogenic

mutations in a tumor sample, then the expected proportion of immunogenic muta-

tions in the simulated tumor sample would be greater than the empirical proportion

of immunogenic mutations. Our results showed that the mean expected empirical

proportion of immunogenic mutations in the TCGA cohort were 0.158 and 0.148,

respectively. We interpreted the difference in mean immunogenicity as evidence of
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immunoediting, as the expected immunogenicity was significantly higher than the

empirical immunogenicity (mean difference = 0.010, pairwise t-test, p = 2.22 x 10�12

; see Figure 4.1).
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Figure 4.1: Boxplots comparing expected and empirical proportions of immunogenic

mutations.

We next inspected the strength of the immunoediting signal in individual cancer

types. Interestingly, we observed that most cancer types did not show a significant

immunoediting signal when comparing the expected and empirical immunogenicity

of tumor samples within each cancer type, contrary to what was observed in the

pan-cancer analysis (16 out of 27 cancer types lacked a significant signal of immu-

noediting; see Figure 4.2). Among the cancer types that did show a significant

signal, Transitional Cell Carcinoma (TCC) exhibited the strongest immunoediting

signal with a mean difference of 0.02 (p-value = 1.15 x 10�8). On the other hand,

we observed a negative mean difference of -0.01 (p-value = 0.04) in Lung Squamous

cell carcinoma (LUSC). A previous study [230] reported a negative signal of immu-

noediting in 8 out of the 11 cancers where we found evidence of immunoediting,

specifically in HNSC, LUAD, LUSC, BRCA, SKCM, BLCA, CESC, and UCEC.
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Figure 4.2: Boxplots comparing expected and empirical proportions of immunogenic

mutations for individual cancer types.

4.3.1 Immunogenicity of clonal and subclonal mutations

To incorporate diverse evolutionary processes and selection pressures evident during

different stages of cancer development into our analysis, we categorized the somatic

mutations observed in tumor samples as clonal or subclonal mutations (Methods).

As tumors progress, certain clones may acquire the ability to evade immune surveil-

lance by downregulating or eliminating the expression of immunogenic markers,

thereby creating a selective pressure favoring the expansion of less immunogenic or

immune-resistant tumor clones [92, 99, 307].

In the early stages of cancer, we anticipate a stronger negative selection pres-

sure by the adaptive immune system on immunogenic clonal mutations. This can

be attributed to the limited development of immune evasion mechanisms during

this phase, making these mutations more vulnerable to elimination. A recent study
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conducted by Rosenthal et al. has also reported the presence of stronger negative se-

lection pressure acting upon clonal mutations [293]. Consequently, we hypothesized

that, under immunoediting pressure, lower proportion of clonal mutations would

result in putative neoantigens as compared to subclonal mutations. However, our

pan-cancer analysis revealed a minimal mean difference in immunogenicity between

clonal and subclonal mutations (mean difference = 0.006, paired t-test p-value =

3.33 x 10�2, Figure 4.3). Intriguingly, the mean clonal immunogenicity across the

TCGA cohort was slightly higher (0.149) than the mean subclonal immunogenicity

(0.143), contradicting this hypothesis.

0.0

0.1

0.2

0.3

0.4

0.5

Clonal Subclonal
Type

Im
m

un
og

en
ic

 P
ro

po
rti

on

variable

Clonal

Subclonal

p = 3.33 x 10
-2

Figure 4.3: Boxplots comparing the proportion of immunogenic mutations between

clonal and subclonal mutations.

To further investigate this phenomenon, we explored the variation in this signal

among individual cancer types (Figure 4.4). The significance level of boxplots shows

if there is a significant difference between the mean of the groups. Among the 27

cancer types analyzed, only four—AML, LUAD, SKCM, and UVM exhibited a sig-

nificant difference in mean immunogenicity between clonal and subclonal mutations.

In these cancer types, the proportion of immunogenic mutations was statistically sig-

nificantly higher among clonal mutations, except for AML where the mean difference
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was -0.052 (paired t-test p-value 0.055). Overall our findings was contrary to the

hypothesis that in the case of immunoediting, the proportion of immunogenic mu-

tation would be lower in clonal mutations because in that phase advanced immune

evasion mechanisms are absent but in line with our previous results for pan-cancer

analysis.
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Figure 4.4: Boxplots comparing empirical proportions of immunogenic mutations in

clonal and subclonal mutations for individual cancer types.

To further test our hypothesis, we compared the expected proportion of im-

munogenic mutations with the empirical proportion for both clonal and subclonal

mutations (Figure 4.5). Our analysis revealed that both clonal and subclonal mu-

tations exhibited higher expected immunogenicity compared to their empirical im-

munogenicity, indicating the presence of immunoediting in both mutation subsets.

The mean difference between expected and empirical proportions of immunogenic

mutations for clonal mutations was 0.01 (paired t-test p-value = 9.19 x 10�7 ), while
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for subclonal mutations, it was 0.017 (paired t-test p-value = 4.52 x 10�6). These

results are consistent with our previous findings suggesting that neoantigens have

been eliminated by the immune system, resulting in lower empirical immunogenicity

compared to expected immunogenicity for both clonal and subclonal mutations.
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Figure 4.5: Boxplots comparing expected and empirical proportions of immunogenic

mutations among clonal and subclonal mutations in the TCGA cohort.

We anticipated that if immunoediting were occurring, the difference between ex-

pected and empirical immunogenic proportions would be higher for clonal mutations

compared to subclonal mutations. This expectation is based on the notion that neg-

ative selection is likely stronger on clonal mutations due to the higher expression

levels of genes carrying these mutations, their essentiality for tumor growth, and

the absence of advanced immune evasion mechanisms. To ascertain this, we com-

pared the expected and empirical proportion of immunogenic mutations between

both these subsets of somatic mutations. We observed that the difference between

the expected and empirical immunogenic proportions of subclonal mutations was

slightly higher than that of clonal mutations, although the magnitude was very

small and statistically non-significant (0.007, paired t-test p-value = 0.12) (Figure

4.5). These findings suggest a lack of a neoantigen depletion signal. While our re-
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sults indicate a weak immunoediting signal, we note that our analysis was limited

by the use of the immunogenicity score as a proxy for immune recognition. Other

factors, such as expression levels of genes carrying these mutations, the presence of

antigen specific TCRs or the activity of immune cells in the tumor microenviron-

ment, may also contribute to the immune response to cancer cells. Furthermore,

our results may be influenced by sample size limitations, as the number of subclonal

mutations in our dataset varied widely between cancer types.

We extended this comparison to both clonal and subclonal mutations separately

for individual cancer types too. We observed a trend of higher expected proportions

of immunogenic mutations in both clonal (Figure 4.6) and subclonal (Figure 4.7)

subset of mutations. Although this difference was significant in more cancer types

in clonal subset as compared to subclonal.
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Figure 4.6: Boxplots comparing expected and empirical proportions of clonal im-

munogenic mutations in individual cancer types.
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Overall, our results indicate at most weak evidence of immunoediting in both

clonal and subclonal mutations. Although certain cancer types may exhibit stronger

immunoediting signals, the overall impact of immunoediting on the genetic land-

scape of tumors appears to be relatively weak. This observation aligns with pre-

vious reports highlighting the overall limited signals of negative selection in cancer

[[70, 230, 234, 235].
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Figure 4.7: Boxplots comparing expected and empirical proportions of subclonal

immunogenic mutations in individual cancer types.

4.3.2 Immunoediting signal persists even with random HLA alleles

In this section, we investigated the possibility that the weak immunoediting signal

observed in our analysis may be due to differences in sequence composition on longer

length scales between the observed mutations and random mutations with the same

triplet context. MHC-I binding is dependent on peptides of length 8-11 amino
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acids. When we select a mutation at random with the same nucleotide triplet

context as an observed mutation the peptides in which it occurs would typically be

different and systematic differences between the amino acid sequence contexts in

which the somatic mutations and the randomly sampled mutations are found could

cause differences in the immunogenicity between the two groups. Factors such as the

presence of specific epitopes, the abundance of rare codons, and the overall structure

of the sequence can all impact the immunogenicity of a given mutation. Therefore,

it is crucial to consider the sequence composition when assessing the immunogenic

potential of somatic mutations. We repeated our analysis using random MHC-I

alleles instead of patient-specific alleles. The primary objective of this analysis was

to determine whether negative selection on immunogenic mutations inferred using

a patient’s HLA alleles would still be present or significantly reduced when using

random HLA alleles sampled from the population to assess the immunogenicity of

the mutation.

Firstly, we evaluated the empirical proportions of immunogenic clonal and sub-

clonal mutations using random HLA alleles (Figure 4.8). We expected that if the

immunoediting signal observed in Figure 4.3 is driven by patient MHC-I genotypes,

then this will diminish in the case of the randomized HLA alleles. But our results

showed that the magnitude of difference between the clonal and subclonal empirical

immunogenicity was similar to what we observed using the patient’s own HLA alle-

les 4.3. We inferred from this finding that the observed neoantigen depletion signal

is not driven by patient MHC-I genotype (Figure 4.8).

Next, we compared the expected and empirical immunogenicity of clonal and

sub-clonal mutations using randomized HLA alleles (Figure 4.9). Again we expected

that the differences between expected and empirical proportions of immunogenic

mutations, which we interpret as the signal of negative selection, will be smaller

or insignificant in case of randomized HLA alleles. But similar to our previous

findings, the magnitude of the differences was very close to the mean immunogenicity

differences we observed in the case of patients specific HLA alleles (Figure 4.5). The

fact that immunogenicity inferred using the HLA alleles of the patient did not yield

stronger immunoediting signals than randomly sampled alleles casts doubt on the

existence of immunoediting signal. These results again are consistent with a lack
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Figure 4.8: Boxplots comparing the proportion of immunogenic mutations between

clonal and subclonal mutations using randomized HLA alleles.

of MHC-I restricted immunoediting signal in human, in keeping with our previous

findings discussed in Chapter 2 of a lack of evidence for a role of MHC-I in shaping

mutational landscape in cancers [70]. This could also imply that very few mutations

are removed by immune surveillance.

We compared the empirical immunogenicity of clonal and sub-clonal mutations

estimated using patients’ MHC-I genotype with that estimated using random MHC-I

alleles, sampled at random from the population (Figure 4.10). Our results revealed

no significant difference between the two, indicating that immunogenicity is not

primarily dependent on MHC-I genotype (Figure 4.11,4.12). It also indicates the

important role of sequence composition of the mutated peptide in potential immuno-

genicity. Our results also highlight the limitation of triplet context of a mutation in

fully covering the sequence composition of resultant mutated peptide.

Our finding is consistent with previous research studies that have also reported a

strong association between sequence composition and the immunogenicity of somatic

mutations, including the studies by [327] and [230]. These studies emphasized the

significance of assessing sequence composition to evaluate the immunogenic potential
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Figure 4.9: Boxplots comparing expected and empirical proportions of immuno-

genic mutations among clonal and subclonal mutations in the TCGA cohort using

randomized HLA alleles.

of somatic mutations.

4.3.3 Determination of an upper bound on the contribution of immu-

noediting

The magnitude of the differences in predicted immunogenicity between observed

somatic mutations and randomly sampled mutations was very small. This is consis-

tent with the presence of a weak immunoediting signal; however, the fact that this

signal persists when immunogenicity was predicted using random HLA alleles rather

than the patient’s own HLA alleles suggests that the signal may result from failure

of the mutation signatures to fully capture the sequence context-dependence of the

observed somatic mutations. Even if we assume that the weak signal does indeed

reflect immunoediting, the weakness of the signal is not consistent with a major role

for immunoediting in shaping the observed somatic mutations. To investigate this

further we designed a simulation to infer an upper bound for the number of mu-

tations that are removed by immunosurveillance during cancer development. The
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Figure 4.10: Boxplots comparing proportions of immunogenic mutations estimated

using Patient MHC-I genotype and randomized MCH-I genotype.

method involved determining how many immunogenic mutations must be removed

until a difference is observed between the real and shuffled data (see Methods). Our

results suggest that fewer than 1% of the immunogenic mutations have been removed

by immunosurveillance during cancer development.

4.4 Discussion

In this study we compared the proportion of somatic mutations inferred to be im-

munogenic in TCGA patients to the expected proportion, based on random sampling

of somatic mutations from the patient-specific mutation signature activity profile.

There was a slightly lower proportion of immunogenic mutations among the ob-

served compared to the randomly sampled somatic mutations, suggesting a weak

immunoediting signal. This result aligned with previous studies that have reported

similar observations of a little or no impact of negative selection on the mutational

landscape in cancer [70, 230, 234, 235]. Van Den Eynden et al. demonstrated that

accounting for mutational patterns substantially reduces the immunoediting signal,

although their method had certain limitations, also highlighted by [120]. The au-
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Figure 4.11: Correlation between proportions of immunogenic mutations estimated

using Patient MHC-I genotype and randomized MCH-I genotype in clonal and sub-

clonal mutations.

thors in [120] argued that although [230] annotated the whole coding genome, they

only used six HLA alleles for the annotation of the HLA binding region, leading to

a conservative yet broad estimate of the HLA binding region [120]. The presence of

a weak immunoediting signal implies that immune surveillance may have a limited

role in eliminating immunogenic mutations during cancer development. We ex-

tended this analysis to individual cancer types, and we observed a similar pattern in

individual cancer types, but this signal was not statistically significant in most can-

cer types. The cancer types with statistically significant neoantigen depletion signal

are reported to have higher mutational burden relatively, and studies have provided

evidence that higher mutational burden is associated with increased neoantigen pro-

duction, supporting the argument that higher mutational burden contributes to the

apparent signal of immunoediting [212, 319, 323, 327]

Previous studies have highlighted the crucial role of clonal architecture in de-

termining immunogenicity, emphasizing that neoantigens originating from clonal

mutations are more likely to elicit an immune response compared to those arising
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Figure 4.12: Correlation between proportions of immunogenic mutations estimated

using Patient MHC-I genotype and randomized MCH-I genotype in clonal and sub-

clonal mutations.

from subclonal mutations [212, 293, 327, 360]. This led us to hypothesize that neg-

ative selection pressure would be stronger on clonal mutations and result into lower

proportion of immunogenic mutations in clonal mutations as compared to subclonal

mutations. We observed an opposite trend in pan-cancer analysis, although the dif-

ference between the proportion of immunogenic mutations was minimal. A similar

pattern was observed by [311], which suggests that negative selection mechanisms

in the immune system act to prevent subclonal neoantigens from becoming highly

prevalent within a tumor. This effect is more prominent in tumors with higher mu-

tation rates, where the immune system can effectively eliminate or suppress cells

displaying subclonal neoantigens. The lack of statistical significance in the observed

results may be attributed to the lesser statistical power resulting from the smaller

dataset size of each cancer type. The absence of an immunoediting signal may in-

dicate effective immune escape mechanisms acquired by the tumor over time, and

this finding is in line with the previously reported studies [212, 293, 327, 360].

To evaluate the proportion of immunogenic somatic mutations in both clonal
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and subclonal populations, we compared them to the expected proportion. The

expected proportion was determined by randomly sampling somatic mutations from

the patient-specific mutation signature activity profile at both clonal and subclonal

levels. Our analysis yielded results consistent with our previous findings, indicating

slightly lower proportions of immunogenic mutations among the observed somatic

mutations compared to the randomly sampled mutations in both clonal and sub-

clonal subsets. These results suggest a weak immunoediting signal. We hypothesized

that there would be a greater difference between clonal and subclonal mutations,

with stronger negative selection acting on clonal mutations. However, contrary to

our expectations in the pan-cancer analysis, we found that the difference in expected

and observed immunogenic proportions was slightly larger for subclonal mutations.

Nonetheless, this difference was not significantly larger than the difference observed

in clonal mutations. Furthermore, when we performed the same analysis for indi-

vidual cancer types, this signal was not significantly present in most cancer types

for either the clonal or subclonal subsets of mutations. These results suggest that

immunoediting signal is weak and inconsistent across different cancer types.

We further evaluated the strength of this apparent immunoediting signal by redo-

ing our analysis using random HLA alleles rather than patient-specific HLA alleles.

Our results showed that the immunoediting signal persists even with random HLA

alleles. This suggests that the immunoediting signal observed in the study is not

entirely dependent on patient-specific HLA alleles. The differences we observed in

the proportion of immunogenic mutations and expected proportion could be be-

cause of the differences in the sequence compositions of the observed and randomly

sampled mutations. This may lead to systematic differences between the amino

acid sequences of the peptides within which the observed and randomly sampled

mutations occur. Indeed, HLA binding is influenced not only by the amino acid

sequence of the peptide itself but also by the surrounding residues [230, 361]. These

amino acid sequence context effects are, of course, not captured by the triplet mu-

tation context. This results in the observed differences in expected and empirical

proportion of immunogenic mutations in both cases when we use MHC-I genotype

of patients and randomized MHC-I genotype. This indicates that these differences

are not mainly driven by MHC-I genotype. This can be implied from this observa-
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tion that the mutations with the same trinucleotide context may occur in regions

with different sequence composition resulting in, on average, different effects on the

peptide sequence or, more importantly, in the anchor position, which heavily influ-

ences the HLA binding affinity. Thus leading to the observed differences between

the immunogenicity of the two groups.

The observation that similar proportions of immunogenic mutations are pre-

dicted in cancer samples when we use patient-specific HLA data and shuffled HLA

data suggests that either immunoediting does not make a substantial contribution

to the mutation landscape in cancer or that the immunogenicity of somatic muta-

tions cannot be predicted accurately from HLA data. These findings have important

implications for cancer immunotherapy, particularly the development of personal-

ized cancer vaccines. Personalized vaccines are designed to target patient-specific

neoantigens and HLA typing is a crucial step in identifying these neoantigens. How-

ever, the results of this study question whether the HLA type data is sufficient to

predict neoantigen immunogenicity. If immunoediting does indeed make a substan-

tial contribution to the somatic mutation landscape in cancer, then personalized

vaccine design may require factors beyond just HLA typing for the accurate predic-

tion immunogenic neoantigens.

The lack of significant immunoediting signal in most cancer types observed in

our study is consistent with previous studies reporting the small overall impact of

negative selection on cancer evolution [70, 230, 234]. However, a comprehensive

method for quantifying the strength of this phenomenon is lacking in the literature.

Recently some studies have presented methods to quantify the immunoediting sig-

nal [120, 294]. In this study, we aimed to contribute to the field by proposing a

novel approach to estimating an upper bound on the immunoediting signal. We

found that the immune system removes fewer than 1% of mutations. This finding

is consistent with previous studies that have reported a high level of tolerance for

somatic mutations in cancer cells [85, 235, 362, 363]. One possible explanation for

this tolerance is that the immune system has difficulty distinguishing between can-

cerous and normal cells [364]. This also suggests that most tumors have developed

efficient immune escape mechanisms, which enable them to evade the immune sys-

tem and grow unchecked. This is a cause for concern, as it highlights the challenges
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that must be overcome to develop effective immunotherapeutic strategies for cancer

treatment.

It is important to note that the study has limitations, such as the use of compu-

tationally predicted, rather than experimentally measured, HLA binding affinities.

Many factors can influence the accuracy of neoantigen predictions, including the

quality of the sequencing data and the accuracy of the HLA typing. As a result,

the predicted neoantigens may not always reflect the true immunogenicity of the tu-

mor. One recent study reported that only 6% of predicted neoantigens are actually

immunogenic [365]. Beyond the presence of neoantigens, tumor immunogenicity is

influenced by multiple factors, such as the quality of neoantigens, accessibility to T

cells, and potential for T cell recognition. The tumor microenvironment also plays

a crucial role in elimination of cells carrying immunogenic mutations. Although

MHC-I binding has been widely used in studies as a proxy for the immunogenicity

of a tumor [130, 230, 234, 313, 366] , it is also important to consider the T cell re-

activity of predicted neoantigens while estimating a signal of neoantigen depletion.

One recently published paper has addressed this issue, and has introduced a tool,

DeepNeo which considers both neoantigen presentation and T cell reactivity [277].

In conclusion, to determine the prevalence and strength of the immunoediting

signal in tumors, we developed a method that takes account of mutation signature

activities. Our analysis indicates that the immunoediting signal is weak to absent

in most tumor types. This implies that either only a small portion of the predicted

neoantigens are actually recognized by the immune system, or developing tumors

have developed effective ways to evade immune system, such as through HLA loss or

PDL1 amplification, such that the presence of immunogenic neoantigens is not a key

determinant of whether a cell clone can develop into a tumor. This study also pro-

posed a novel approach to estimating an upper bound on the immunoediting signal

and found that the immune system removes at most 1% of mutations as a result of

their inferred immunogenicity, suggesting the presence of effective immune evasion

mechanisms. We also emphasize the limitations of neoantigen prediction methods

and encourage further validation studies. By providing insight into the prevalence

and strength of the immunoediting signal in various tumor types, our study advances

the understanding of the relationship between tumor evolution and the immune sys-
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tem and lays the groundwork for future research in cancer immunotherapy.

4.5 Methods

4.5.1 Data Acquisition

To acquire the variant annotation of TCGA cohort, we accessed the TCGA portal

and utilized the variant annotated files generated by [257]. To ensure high quality

variant calls, we further refined the annotations by using only those variants that

passed all filters and were called by at least two variant callers. This filtering step

was crucial to ensure accuracy and reduce false positives in our subsequent analysis.

We used the HLA typing provided by [366] in our analysis.

4.5.2 Mutation Signature Analysis

We used the R package SigProfiler to analyze mutation signatures in the TCGA

cohort. First, we obtained mutation data from the TCGA portal, using the variant

annotated files generated by MC3 [257]. We then refined the data by selecting

only variants that passed all filters and were called by at least two variant callers.

To identify mutation signatures, we applied the non-negative matrix factorization

(NMF) algorithm implemented in SigProfiler. NMF is a computational method that

identifies the underlying mutational processes contributing to a set of mutations. We

used the recommended settings for NMF analysis in SigProfiler, including a range

of signatures from 1 to 30, and a minimum cosine similarity of 0.75 for signature

robustness. The output of the analysis included a matrix of signature activities

for each sample, representing the contribution of each signature to the mutational

burden of that sample. This allowed us to perform a comprehensive analysis of

mutational signatures in the TCGA cohort and to identify the contribution of each

mutational signature to the clonal and subclonal mutations.

4.5.3 Clonal & Subclonal Mutation Calling

The clonality of variants was determined by Siobhan Cleary based on the methods

defined by [367]. Variant frequency was adjusted to take account of tumor purity and

ploidy, and the cancer cell fraction (CCF) was calculated (the cancer cell fraction is
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defined as the proportion of cells in the tumor that have the variant). Clopper and

Pearson’s method was used to calculate 99% confidence intervals for the CFF [368].

After calculating the CCF confidence intervals, variants were classified as clonal or

subclonal based on their upper and lower CCF confidence intervals. Variants were

considered clonal if the upper confidence interval for the CFF greater than 0.8, and

the lower confidence interval was greater than 0.4. These thresholds were found

to be optimal for defining clonal variants in unpublished work by Siobhan Cleary.

Variants were considered subclonal if the upper confidence interval on the CCF was

less than 0.5.

4.5.4 Peptide Binding

In our study, we focused on predicting the immunogenicity of mutated peptides

using computational tools. It is important to note that the majority of known major

histocompatibility complex class I (MHC-I) ligands are of length nine. Therefore,

we only considered peptides containing the mutated amino acid of length nine,

also known as ninemers, for binding prediction. We used NetMHCPan-4.0 [264], a

widely used computational tool for peptide binding affinity predictions, to predict

the binding affinity of ninemers for various HLA alleles NetMHCPan-4.0 returns

IC50 scores and corresponding allele-based ranks for each peptide. Peptides with a

rank less than 2 are considered weak binders, while peptides with a rank less than

0.5 are considered strong binders. To identify potential immunogenic mutations, we

only considered mutations with a predicted PHBR less than 0.5. The PHBR method,

defined by [366], is used to calculate the likelihood of a peptide being presented on

the cell surface in a patient sample. By applying this stringent threshold, we ensured

that only peptides with a high likelihood of being presented on the cell surface were

considered as potential immunogenic mutations.

4.5.5 Empirical and expected proportions of Immunogenic mutations

We defined the empirical proportion of immunogenic mutations as the proportion

of the missense mutations in a given patient sample for which the inferred immuno-

genicity passes a defined threshold. In order to calculate the expected immunogenic-

ity of a TCGA sample, we utilized a simulation-based approach. We divide human
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genome GRch38 into lists of loci for each triplet context, then we sampled genomic

positions from these lists based on the triplet contexts of each mutation type and its

occurrence probability in a given mutation signature. These occurrence probabili-

ties of different mutation types were defined by [108]. This enabled us to simulate

a set of mutations for each mutation signature. To determine the expected propor-

tion of immunogenic mutations, we utilize the estimates provided by Alexandrov et

al., which indicate the contributions of each mutation signature to individual sam-

ples using the SigProfilerAttribution function of their SigProfiler package [108]. To

perform this calculation, we randomly select the number of mutations contributed

by each signature from the simulated mutations specific to that signature, for each

TCGA sample. This allowed us to create a set of random mutations with similar

mutational profile and same mutation numbers as of observed mutations in a sam-

ple. Because of the reduced data size of clonal and subclonal mutations subsets

which limits an accurate signature analysis, we used a slightly different approach.

We simulated mutations with same triplet context as of observed mutations in these

subsets. Once we had the simulated mutation dataset, we used the PHBR method

to predict whether a mutation would be presented on the cell surface. Finally, by

counting the number of mutations that were predicted to be immunogenic in the

simulated dataset, we were able to predict the proportion of immunogenic mutations

in the sample. We refer to this proportion as the expected immunogenicity of the

sample.

4.5.6 Determination of an upper bound on the contribution of immu-

noediting

To estimate an upper bound on the immunoediting signal, we assigned a ran-

dom probability to each observed immunogenic mutation in the observed mutations

dataset using the runif function in R. Then, we applied a series of thresholds, starting

from 0.01 (indicating 1% chance of removal by immune system), to remove muta-

tions with a probability lower than the threshold. The aim was to keep increasing

the threshold until we see a statistically significant difference between the mean of

the real data and the randomized data. We used paired t-test to determine this

difference between the two groups.
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5 Conclusions

5.1 Overview

The main focus of this thesis was to study the role of the immune system in shap-

ing the mutational landscape of cancer. Somatic mutations occurring within genes

responsible for encoding self-proteins can lead to alterations in the amino acid se-

quence, consequently giving rise to neoantigens. These neoantigens hold the po-

tential to trigger an immune response when they are presented to T cells by the

Major Histocompatibility Complex (MHC) [181]. The immune system, plays a piv-

otal role in the immunosurveillance of cancers [150], and also has the power to shape

the genetic makeup of cancer by targeting cells carrying immunogenic neoantigens,

thus contributing to the evolution of the cancer genome. Recent high-profile pa-

pers have indicated that driver mutations prevalent among cancer patients tend to

arise in regions that the patient fails to effectively present to the immune system

[227, 228]. Interestingly, this negative selection pressure was not observed for im-

munogenic passenger mutations [228]. We hypothesised that this disparity might be

explained by passenger mutations that are predicted to be immunogenic occurring

on lowly expressed or non-expressed genes. This could arise from the occurrence of

these passenger mutations in genes with low expression levels (due to cancers that

contain immunogenic mutations on highly expressed genes having been eliminated

by the immune response) or through escape from immune recognition through the

downregulation of genes carrying immunogenic mutations. Our analysis, rigorously

accounting for factors such as gene length and sequence context, showed no substan-

tiated evidence of immune editing or immune evasion through these mechanisms.

In light of these results, in Chapter 2, our focus shifted towards re-evaluating two

earlier studies that had claimed that driver mutations occur preferentially in HLA

genotype-dependent gaps in the capacity of the patient to present them [227, 228].

These studies reported a connection between the prevalence of specific driver muta-

tions in cancer and the gaps within the MHC genotype of patients. Our reanalysis

showed that these findings resulted from unjustified statistical assumptions. De-

constructing the observed relationship between MHC genotype and the occurrence

of driver mutations, we found that it originated from the coexistence of numerous
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high-frequency mutations, each possessing closely correlated MHC binding affinity

scores. Upon controlling for these factors, we found no evidence to support the

presence of the signal initially highlighted by [227, 228].

Moreover, if the prevalence of driver mutations among individuals with cancer

were substantially influenced by the binding affinities exhibited by prevalent HLA

alleles, a logical expectation would be a correlation between the number of recurring

driver mutations, capable of binding to a patient’s MHC molecules, and the level

of associated cancer risk. However, the absence of any detectable link between the

extent of cancer risk and the coverage of driver mutations offers a counter argument

against the hypothesis suggesting that cancer driver mutations primarily arise within

the gaps of MHC-I genotypes of patient.

In Chapter 3, our focus was on assessing the intrinsic immunogenicities of the

mutational signatures found in cancer. This was achieved by using the common

HLA supertypes. Our results revealed that mutated peptides resulting from spe-

cific mutation signatures had a greater probability of being presented by particular

HLA alleles compared to peptides originating from other mutation signatures. Fur-

thermore, we demonstrated that differences in the immunogenicity of mutations

arising from different mutation signatures and variation in mutation signature ac-

tivities can explain some of the variation in immunogenicity between tumor types

and across individual samples. Notably, our findings indicated that due to the lim-

ited variation in mutation signature activity across different cancer types and the

predicted immunogenicity of these mutation signatures, the overall variance in ex-

pected immunogenicity across cancer types remained relatively small. These results

also demonstrated that patient MHC-I genotype is the most important determinant

of the predicted immunogenicity of tumors. This is consistent with the reported loss

of MHC molecules and the downregulation of MHC molecules as immune evasion

mechanisms (Dhatchinamoorthy, Colbert, and Rock 2021). Moreover, our results

showed, HLA-C which usually has lower expression level than HLA-A and HLA-

B [338] has higher predicted immunogenicity, suggesting down regulation of specific

MHC molecules capable of presenting neoantigens as another immune evasion mech-

anism.

We also performed a mutation signature analysis of two melanoma cohorts and
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showed that they are enriched with C >T mutations, as previously reported [130].

We estimated the expected proportion of immunogenic mutations using the muta-

tion signature activity and patient-specific HLA genotype for these two cohorts and

performed a survival analysis. Our results indicated a positive trend, where patients

with higher expected proportions of immunogenic mutations exhibit better survival.

Recent studies emphasized the need to analyze the types of mutations occur-

ring and the underlying processes driving them to fully understand the impact of

negative selection pressure acting on immunogenic mutations [230, 235]. In chap-

ter 4, we aimed to estimate the expected proportion of immunogenic mutations in

TCGA samples, comparing it against the actual empirical proportion. This analysis

revealed a marginal difference between these two proportions, indicating a subtle

neoantigen depletion signal. Notably, this weak neoantigen signal persisted even

when we used randomized HLA alleles. It was deduced that the observed differences

were not caused by negative selection, but instead resulted from inherent differences

in sequence composition. This discrepancy is attributed to the fact that a MHC-I

binding peptide typically consists of nine amino acids, leading to dissimilar sequence

compositions for mutations sharing the same triplet context.

We also developed a randomization approach to estimate an upper bound for

the proportion of immunogenic mutations that have been eliminated through immu-

noediting. The method involved iteratively removing immunogenic mutations until

observable differences between the actual and shuffled data emerged. Our findings

indicate that immunosurveillance likely eliminates at most 1% of immunogenic mu-

tations. This outcome aligns with prior investigations demonstrating a significant

tolerance for somatic mutations in cancer cells and indication negative selection is

generally weak in cancers [85, 235, 362, 363, 369]. Additionally, our results are in

line with the absence of strong immunoediting-driven loss in the cancer mutation

landscape, or the potential effect of immunoediting being too subtle to be detected

[230, 234].

5.2 Future perspectives

The scope of this thesis has been limited to neoantigens originating from SNVs.

However, growing attention is being directed towards alternative sources of neoanti-
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gens, including frame-shift and splicing mutations, as well as those arising from

non-coding regions. Encompassing a comprehensive analysis of the immunogenicity

of tumors by considering all potential neoantigen sources could significantly enhance

our understanding of the role of the immune system in eliminating cancer. Such an

approach might have implications for the development of immunotherapies and the

identification of biomarkers.

While we found no evidence supporting the substantial elimination of cancerous

cells carrying immunogenic mutations by the immune system, it is noteworthy that

instances of natural regression in certain cancer cases have been reported [370]. Al-

though rarely reported, these observations hint at the presence of effective immuno-

surveillance. A compelling question for further exploration could be an assessment

of the prevalence of successful cancer elimination through immunosurveillance if, in-

deed, the immune system plays a role in spontaneous cancer removal. In particular,

a key research goal should be to quantify the contribution of immune surveillance

to cancer prevention. Investigating the association of different cancer types with

various immunodeficiencies in large cohorts should provide one approach to tack-

ling this question. The theory of immunosurveillance implies a higher incidence of

cancer in immunodeficient than in immunocompetent individuals, but the magni-

tude of the increased prevalence of specific cancers associated with specific classes

of immunodeficiencies should prove informative.
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Bin N (No Mutation) N (Mutation)

3 4008601 1311

4 1550068 676

5 907929 495

6 541030 354

7 357591 273

8 348384 304

9 100837 99

10 174154 190

11 146640 176

12 100804 132

13 100793 143

14 137430 210

15 119093 195

16 64120 112

17 45795 85

18 36632 72

19 64099 133

20 36624 80

21 64085 147

22 27462 66

23 36612 92

24 27456 72

25 9151 25

26 18300 52

29 18294 58

31 9145 31

32 18288 64

34 9142 34
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35 9141 35

36 9140 36

37 9139 37

39 18274 78

40 18272 80

45 9131 45

50 18252 100

62 9114 62

69 18214 138

79 9097 79

80 9096 80

88 9088 88

98 9078 98

107 18138 214

115 9061 115

137 9039 137

139 9037 139

170 9006 170

188 8988 188

215 8961 215

217 8959 217

384 8972 384

561 8615 561

Table 2: Number of mutations corresponding to each bin

in Figure 2.2C
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Figure 6.1: Workflow describing the creation of a random dataset of mutations with

the same mutational context as observed mutations. (A) Mutation contexts are

assigned to each observed mutation, and the total number of observed mutations of

each context type is counted for each gene. (B) A list of all possible positions that

could be mutated for each context for each gene. (C and D) The exact number of

positions as observed in the real dataset were randomly sampled from the list of all

possible positions for that context in that gene. (E) The gene was removed from the

analysis if all possible positions were present in the observed data. (F) The random

position was mutated to the same allele as in the observed data, and the variant

consequence was annotated using VEP online tool. (G) The proportion of missense

mutations for each gene was calculated for the observed and random datasets. (H)

A paired Wilcoxon rank sum test was performed to assess whether the two datasets

varied. This simulation and corresponding figures 6.2,6.3,6.4 were contributed by

Siobhan Cleary.
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Figure 6.2: Comparison of the proportion of missense mutations per gene for the

observed versus random dataset. Overlapping density plots showing the proportion

of mutations classified as missense for each gene in the observed data (blue) and in

the randomly assigned mutations for the same mutational context (yellow).
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Figure 6.3: Schematic to illustrate the process of randomly removing different pro-

portions of missense mutations from the data. Randomly removed 1, 5, 10, 15, and

20% of the missense mutations from the random dataset created in Figure 6.1
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Figure 6.4: Comparison of the proportion of missense mutations per gene for the

simulated datasets with a proportion of missense mutations re- moved versus the

corresponding random dataset. Boxplot P-values are from paired Wilcoxon rank

sum tests.
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