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Abstract
The reproduction number represents the average number of secondary cases
generated by a primary case. If the population is completely susceptible, it is
referred to as the basic reproduction number (<0) and theoretically determines
whether the pathogen can invade the population. Moreover, its magnitude
is proportional to the effort needed to control the disease. Conversely, if
the infection is spreading, it is referred to as the effective reproduction
number (<t). It serves as an indicator of how extrinsic and intrinsic factors
have affected transmission at any given time. Both <0 and <t can be
estimated from compartmental models fitted to time series data. However,
these estimates are sensitive to both model assumptions and calibration
methods. Here, we show that by adhering to a rigorous inference workflow
and utilising state-of-the-art algorithms and visualisation tools, one can obtain
robust estimates. Using Hamiltonian Monte Carlo in a Bayesian approach,
we found a linear relationship between the mean generation time and <0.
This discovery allowed us to formulate a parameterisation that produces
accurate <0 estimates regardless of the distribution of the epidemiological
delays. On the other hand, we demonstrated, through a complementary
workflow that spanned three Data Generating Processes (semi-deterministic
and deterministic) and both schools of thought for statistical inference, that
incorporating mobility data into the workflow can reduce the uncertainty in
<t estimates. Nevertheless, this incorporation requires caution, given that
mobility data can only be a proxy measurement of the transmission rate.
Our results emphasise the importance of envisioning model calibration as
a learning process that confronts embedded assumptions. We anticipate
these findings will serve as a reference point for modellers that fit SIR-like
structures to time-series data. These guidelines include which information
to prioritise, how to approach the inference procedure, and how to interpret
calibration results.
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Chapter 1

Introduction

Pandemics are large-scale outbreaks of an infectious disease that lead to
increases in morbidity and mortality over a wide geographic area (Morens,
Folkers, and Fauci 2009). Within the last 100 years, respiratory viruses have
caused five pandemics that killed millions of people (Monto and Webster
2013; Msemburi et al. 2023). In particular, strains of type A Influenza
are responsible for four of these seismic events (Monto and Fukuda 2019),
whereas a novel coronavirus, SARS-CoV-2 (Huang et al. 2020), is the
culprit of the recent COVID-19 pandemic that impacted virtually every
country in the world. In light of these threats, decision-makers employ
countermeasures to curtail transmission within a population so as to minimise
the occurrence of disease, severe illness, and, ultimately, death (Keeling
and Rohani 2011). These countermeasures can be pharmaceutical (e.g.,
vaccination (Daems, Del Giudice, and Rappuoli 2005)) or non-pharmaceutical
(e.g., social distancing (World Health Organization 2019)). However, the
success of these interventions hinges on an appropriate understanding of the
basic epidemiological characteristics of the invading pathogen that allows
decision-makers to design effective policies that achieve the intended target
while balancing the trade-off between benefits and harms (Hollingsworth et
al. 2011; World Health Organization 2019).

1.1 Reproduction number
Undoubtedly, one of the most crucial concepts that mathematical thinking
has contributed to understanding infectious disease dynamics is the epidemi-
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1.1. Reproduction number

ological metric known as the reproduction number or ratio (Heesterbeek and
Dietz 1996). This concept was originally developed in the field of demograph-
ics (Dublin and Lotka 1925; Kuczynski 1928) to characterise the growth and
decline of populations, and it is defined as the expected future offspring of
a new-born individual (Heesterbeek and Dietz 1996). If this value is above
one, the population will grow; otherwise, it will decline. In parallel, Ronald
Ross is credited (Heesterbeek and Dietz 1996; Heesterbeek 2002) as the first
scholar to employ rudimentarily the reproduction number in epidemiology.
Specifically, he identified a critical mosquito density below which malaria
transmission cannot be maintained in the population (Ross 1910). A decade
later, Kermack and McKendrick further advanced this work (Kermack and
McKendrick 1927) by postulating a theorem which states that, in order for an
infectious agent to be sustained in a population, the population density has
to exceed a certain critical density (Heesterbeek 2002). Then, in 1952, George
Macdonald (Macdonald 1952) linked the dynamics of infectious diseases to
the critical threshold of unity and set the foundations for developing its
current definition (Delamater et al. 2019). However, we had to wait for
another few decades to develop the concept and fully comprehend its potency
(Heesterbeek 2002), thanks to the efforts of Klaus Dietz, Roy Anderson and
Robert May.

Assuming that the population is completely susceptible, one refers to the
reproduction number as the basic reproduction number or ratio (<0), and
it corresponds to the expected number of secondary cases produced by a
typical infected individual during its entire period of infectiousness (Diek-
mann, Heesterbeek, and Metz 1990; R. Anderson and May 1992; Fine 1993;
Heffernan, Smith, and Wahl 2005). Epidemiologists employ this quantity
to determine whether the pathogen can invade the population (Heffernan,
Smith, and Wahl 2005) by way of its threshold property (Heesterbeek 2002).
If an infection is to persist, each infected individual must, on average, trans-
mit that infection to more than one other individual (<0 > 1); otherwise,
the infection will disappear progressively from the population (Fine 1993).
Furthermore, <0 serves as an indicator of a pathogen’s transmissibility, given
that its magnitude is positively correlated to the predicted number of infected
individuals at the end of an outbreak (Ma and Earn 2006; Delamater et al.
2019). This feature implies that <0 also gauges the effort needed to control
the spread of a disease (Heesterbeek and Dietz 1996; Dietz 1993). On the
other hand, decision-makers can use <0 to calculate the level of vaccination
required to eradicate an infection from a population (Keeling and Rohani
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2011).

Although <0 provides crucial insights about the epidemiological character-
istics of a disease, once an infection spreads through a population, it is
convenient to complement the analysis with a metric that forgoes the premise
of a totally susceptible population (Wallinga and Lipsitch 2007; Delamater
et al. 2019) and other static assumptions. This quantity corresponds to the
actual or effective reproduction number, denoted by <t, and it is defined as
the time-varying average number of secondary cases caused by a primary case
at a calendar time t (R. Anderson and May 1992). Given its definition, one
can interpret <t as a theoretical indicator of how policy changes, population
immunity, and other factors have affected transmission at specific points
in time (Gostic et al. 2020). Interestingly, <t generalises <0 (Eq (1.1))
by taking into consideration the susceptible fraction of the population (st),
thereby extending the threshold property at any given time t. If <t is and
remains below unity (epidemiological threshold), the outbreak will die out.
On the contrary, if <t > 1, a sustained outbreak is likely (Thompson et
al. 2019). This property entails that a decision-maker’s ultimate purpose
concerns reducing <t to a level below the epidemiological threshold to control
the disease. Moreover, its estimation helps assess whether current control
efforts are effective or additional interventions are required (Thompson et al.
2019).

<t = <0st (1.1)

Consequently, accurate estimation of the reproduction number is crucial to
planning for the control of an infection (Dietz 1993; Wallinga and Lipsitch
2007). However, it should be noted that <t summarises in a single scalar
numerous biological, sociobehavioural, and environmental factors that govern
pathogen transmission (Delamater et al. 2019) for which direct observation
is not possible. Although in specific contexts, such as certain vector-borne
infections and sexually transmitted diseases (Dietz 1993), it is possible to
measure those factors directly, it is more likely that the estimation will
rely on surrogate measurements. On the one hand, if the inference process
concerns the basic reproduction number (<0) exclusively, there exist methods
that leverage various sources of information, such as the number of cases
at the start of the outbreak and seroprevalence data, to obtain plausible
approximations if certain conditions are met. Readers are referred to Dietz
(1993) and Heffernan, Smith, and Wahl (2005) for details of these methods.
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On the other hand, if the quantity of interest is the actual reproduction
number (<t), where t > 0, another toolset is available, specifically tailored to
perform this task. This toolset stems from an inductive approach (Coulson,
Rohani, and Pascual 2004) that does not aim to capture the underlying
process governing the system behaviour but instead explicitly uses the pat-
terns in the time-series data to construct and parameterise the predictive
models. In this case, using statistical inference methods, one obtains near
real-time <t estimates from models fitted to periodic (daily or weekly) counts
of confirmed cases and reported deaths (Thompson et al. 2019; Abbott et
al. 2020; Gostic et al. 2020; Ogi-Gittins et al. 2023). This type of model
accounts for the delays between infection and the eventual reporting of a
case or death.

1.2 Compartmental models
Alternatively, one can employ compartmental models to estimate the re-
production number (basic and actual). These models describe systems in
terms of a finite number of macroscopic subsystems, called compartments or
pools, each of which is homogeneous and well mixed, and the compartments
interact by exchanging materials. There may be inputs from the environment
into one or more of the compartments, and there may be outputs from
one or more compartments into the environment (Jacquez 1972). Further-
more, compartmental models are deductive in nature (Coulson, Rohani, and
Pascual 2004), given that a scientific understanding of the system guides
their formulation process (Bretó et al. 2009). In epidemiology, modellers
subdivide the population into a number of discrete compartments accord-
ing to their infection status and describe via equations the transition of
individuals between compartments (Keeling and Rohani 2011). Moreover,
transition equations can be stochastic or deterministic. The former is pre-
ferred for addressing questions involving small populations and analysing the
persistence of infections (Vynnycky and White 2010; Keeling and Grenfell
2002). This type of model employs Continuous Time Markov Chains or
stochastic differential equations (Allen 2017) to introduce randomness into
the system. Stochastic models, nonetheless, can also be used for studying
large populations (Camacho et al. 2014).

On the other hand, deterministic structures (R. Anderson and May 1992)
formulated via ordinary differential equations (ODEs) may enable sufficient
biological understanding of the system, provided that population numbers
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never become too small (Renshaw 1993). Namely, ODE models are appro-
priate for relatively large populations (Heesterbeek and Dietz 1996), where
the average behaviour of the system can be described with high accuracy
(Keeling and Rohani 2011). Undoubtedly, the main advantage of determin-
istic models is their mathematical convenience to perform various kinds of
studies, such as stability (Krylova and Earn 2013; Strogatz 2018), sensitiv-
ity (Epstein, Hatna, and Crodelle 2021), and simulation analyses (Gostic
et al. 2020; Park and Bolker 2020), that facilitate the identification and
interpretation of cause-and-effect relationships. Likewise, these structures are
amenable to well-known inference methods such as non-linear optimisation
techniques (Brauer and Castillo-Chavez 2012) and Markov chain Monte Carlo
(Chatzilena et al. 2019). Since this work focuses on pandemics caused by
respiratory viruses, we exclusively consider deterministic transition equations.
Of note, the insights derived from deterministic models can serve as the
cornerstone for formulating more elaborated extensions that incorporate
stochastic equations.

When modelling the transmission of directly transmitted infections with
deterministic models, it is commonplace to employ the Susceptible-Infected-
Recovered (SIR) framework (Keeling and Rohani 2011), which dates back to
the early 20th century (Ross and Hudson 1917; Kermack and McKendrick
1927). This framework considers the introduction of one or more infectious
persons into a closed population (no birth nor migration flows) of susceptible
individuals who acquire infection through contact with infectious individuals.
Each infected individual runs through the course of his or her infection until
he or she recovers or dies (R. Anderson 1991). Kermack and McKendrick, in
their seminal work (Kermack and McKendrick 1927), considered the general
case in which the chance of removal (recovering or dying) increases over time
(Lloyd 2009). Furthermore, they assumed that population size would only
decline due to disease-induced mortality and that recovery conferred lasting
immunity (R. Anderson 1991; Ross and Hudson 1917). Simply put, this
framework stratifies individuals into three classes: susceptible (St), infected
(It), and recovered (Rt).

If we further assume that the recovery rate is independent of the time since
infection and that there is no disease-induced mortality, one obtains the
classical SIR model (Eq (1.2)). This structure represents the interaction
between susceptible and infectious individuals following the mass action
principle (βStIt

N
), an idea borrowed from chemical reaction kinetics. In short,

this principle states that the number of contacts between susceptible and
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infectious individuals per unit of time is proportional to the product of
the respective densities (Heesterbeek and Dietz 1996). In other words, the
number of contacts is independent of the population size. This property is
also known as the frequency-dependent transmission (Keeling and Rohani
2011). In this formulation, β corresponds to the transmission coefficient, the
average number of contagions per infectious individual per unit time, which
is given by the product of the contact rate and the transmission probability
(Lloyd 2009). Finally, the rate at which individuals transition from the
infectious to the recovered compartment is denoted by γ. Its inverse (γ−1)
characterises the average number of days an individual can transmit the
disease, namely the mean infectious period.

Ṡt = −βStIt
N

İt = βStIt
N
− γIt

Ṙt = γIt

(1.2)

Defining the SIR model leads us to the basic reproduction number (Eq
(1.3)). Recall that <0 was previously defined as the expected number of
secondary cases (β) produced by a typical infected individual during its
entire period of infectiousness (γ−1). Analytically, modellers deduce this
equation using the next-generation matrix method (Diekmann, Heesterbeek,
and Metz 1990). Nevertheless, <0 is not merely a by-product of the model. It
is the quantity that governs its dynamics. Consider the case where S0 = N ,
I0 = 0, and R0 = 0. Stability analysis (van den Driessche 2017) predicts the
existence of a disease-free equilibrium (DFE) at this coordinate. If <0 < 1,
the DFE is locally asymptotically stable. That is, the system tends to return
to the equilibrium state or fixed point after experiencing sufficiently small
disturbances (Strogatz 2018). In practical terms, this scenario implies that
introducing infectious individuals into the system will not lead to an outbreak,
and the number of infectious individuals will decrease monotonically to 0.
Conversely, when <0 > 1, the DFE is unstable, which entails that any small
perturbation will grow in time, moving the system away from the fixed point.
Namely, the introduction of infectious individuals will propagate the disease
throughout the population. Therefore, <0 acts as a sharp threshold between
the disease dying out or causing an outbreak (van den Driessche 2017). At
least in the idealised mathematical world. In reality, what seems far more
likely is that the probability of an outbreak occurring rises substantially near
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the epidemiological threshold (Renshaw 1993).

<0 = βγ−1 (1.3)

Although the classical SIR model encompasses sufficient realism to be useful
in some contexts (Renshaw 1993), its appeal stems from the flexibility that
the framework offers to incorporate more realistic features. For instance, the
SIR allows the introduction of additional compartments that reflect more
accurately the natural history of the disease, such as latent (Wearing, Rohani,
and Keeling 2005), pre-clinical (Davies et al. 2020), and sub-clinical states
(Chowell et al. 2006). One can also incorporate demographic effects (Krylova
and Earn 2013), age-specific variation in contact rates (Andrade and Duggan
2020), loss of immunity (Duggan et al. 2024), and spatial coupling (Bolker
and Grenfell 1995; Keeling and Rohani 2002). Additionally, these enhanced
models can be further enriched by including structures that account for control
strategies such as vaccination (Bubar et al. 2021) or testing, tracing, and
isolation (Sturniolo et al. 2021). Irrespective of the particular formulation,
<0 can be formulated as a function of the model parameters using the next-
generation matrix method (Diekmann, Heesterbeek, and Metz 1990; van
den Driessche 2017). Then, one estimates <t at any given t via simulation.
Of course, more complex models entail more involved calculations, but in
principle, the reproduction number can be computed from parameter values
and simulation.

1.3 Inference
In practice, though, modellers may only have access to a subset of those
values, while the remaining (unknown) parameters must be estimated through
a particular application of statistical inference. This procedure, known as
model calibration (Oliva 2003) or trajectory matching (Wearing, Rohani, and
Keeling 2005), consists of fitting the ODE model (Eq (1.4)) to available data
(~y), usually a time series of case numbers (Vynnycky and Edmunds 2008),
hospitalisations (Chowell et al. 2006), or deaths (Diaz et al. 2018). Here, Eq
(1.4) corresponds to any SIR-like system of differential equations, where ~x
indicates the vector of compartments and ~θ the unknown parameters.

d~x

dt
= ~f(~x, t, ~θ) (1.4)
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1.3. Inference

1.3.1 Frequentist approach
One approach to performing model calibration involves the formulation of a
probability density function, π(~y|~f(~θ)), that expresses how well the observed
data is compatible with a given model (Dangerfield and Duggan 2020). Since
the model and the observed data are fixed in this formulation, the probability
density function only depends on the unknown parameters. We refer to
this function as the likelihood: L(θ) (Eq (1.5)). From this point onward,
we omit the vector representation for notational convenience. Once the
likelihood function has been defined, modellers run optimisation routines to
explore its parameter space in order to identify the set of values that best
describes the available information (Dangerfield and Duggan 2020). Namely,
the Maximum Likelihood Estimate (MLE): θ̂ML. Algorithms such as the
Nelder-Mead simplex method (Nelder and Mead 1965) offered by R (R Core
Team 2021) or Powell’s conjugate direction method (Powell 1964) included
in System Dynamics software (e.g., Vensim or Stella) achieve this task.

L(θ) = π(y|f(θ)) (1.5)

If θ̂ML produces simulated behaviour that resembles the observed one, it is
fair to conclude that the model fits the data. However, this statement is about
the model, not about the MLE itself. Naturally, one wonders about the
quality of this estimate. That is, which values near θ̂ML produce simulations
consistent with the data? In other words, we are interested in the uncertainty
surrounding θ̂ML. Generally, one approaches these questions through the
estimation of uncertainty regions. From the frequentist tradition, these
regions are known as confidence intervals (CI). Box and colleagues (Box,
Hunter, and Hunter 2005) define a CI in terms of hypothesis testing, where
the sample estimate corresponds to the null hypothesis (H0 : θ̂ML) and α the
significance level. Then, a 1−α CI for H0, using a two-sided significance test,
implies that values within this neighbourhood do not produce significant
discrepancy with the data at the chosen significance level. Conversely, all the
values outside the interval do show significant discrepancies. Additionally,
a CI has the theoretical property that in repeated sampling from the same
population, a proportion 1−α of intervals constructed in this fashion contains
the true value (Box, Hunter, and Hunter 2005). We refer to this property as
coverage.

Nevertheless, estimating CIs from ODE models is far from straightforward.
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One approach concerns the computation of the standard deviation of a param-
eter estimate. Namely, the standard error (SE) (Gelman 2023). Leveraging
a classical asymptotic result in the spirit of a central limit theorem permits
the approximation of the SE. This result establishes that given a sufficient
sample size, the MLE stems from a multivariate normal sampling distribution
(Brauer and Castillo-Chavez 2012): θ̂ML ∼ N(θ,Σ). Here, θ denotes the true
value and Σ the covariance matrix, a square matrix whose size is equal to the
number of estimated parameters. Importantly, the square root of its diagonal
corresponds to each parameter’s standard error. Then, a CI is defined as
follows: θ̂ML± z×SE, where z represents the number of standard deviations
above or below the mean of a standard normal distribution.

This covariance matrix can be approximated using the second derivative
(Hessian) of the log-likelihood evaluated at the MLE. This Hessian, also known
as the observed Fisher information matrix, measures the curvature around
the MLE (Pawitan 2013) and can be interpreted as the information content
of the data corresponding to the model parameters (Banks et al. 2009). More
importantly, the inverse of the Fisher information matrix is an estimator
of the asymptotic covariance matrix (Σ). Optimisation routines, such as
optim in R, return a numerical approximation of the Hessian evaluated at the
MLE. However, the validity of these estimates rests upon certain regularity
conditions (Banks et al. 2009) and a sufficient sample size (Cintrón-Arias et
al. 2020). As regards these requirements, software packages do not verify
the former, whereas the latter is rarely met in practice. For instance, an
incidence time series of an outbreak corresponds to only one measurement.

Instead of relying on the standard error for constructing confidence regions,
an alternative approach that is likely to be more robust (better coverage)
in small samples is related to the normalised likelihood or likelihood ratio
(Royston 2007). Following this approach, a confidence interval for a single
parameter (θ) is defined as a set of parameter values with a high enough
likelihood such that L(θ)

L(θ̂ML) > c (Pawitan 2013). Notice that the threshold or
cut-off value c is a value between 0 and 1. However, determining the specific
value at which one rejects the null hypothesis requires asymptotic theory.
If the sample size is sufficiently large, 2 log L(θ̂ML)

L(θ) ∼ χ2
1,1−α, which implies

that c = e0.5χ2
1,1−α . See Pawitan (2013) for the complete details. After some

algebraic manipulation, a 1− α confidence interval is defined as the values
of θ that satisfy the inequality Eq (1.6).
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1.3. Inference

logL(θ) > logL(θ̂ML)− 0.5χ2
1,1−α (1.6)

While Eq (1.6) is defined for a single parameter, in actual applications, θ
consists of various parameters. In consequence, each parameter must be
addressed individually. To explain this procedure, we decompose θ into two
components: ψ and φ. Here, ψ is a scalar that denotes the parameter of
interest, whereas φ is a vector of one or more elements representing the
remaining parameters, treated as a nuisance (Pawitan 2013). Then, one
fixes φ to certain values and varies ψ to construct the confidence interval
at the desired significance level. For instance, System Dynamics software
employs the likelihood slice approach (Dogan 2007), which is a method that
fixes φ at the MLE and then performs a grid search over ψ to identify values
that satisfy Eq (1.6). Although this shortcut produces quick results, Bolker
(Bolker 2008) notes that: “A simple, but usually wrong, way of [constructing
confidence intervals] is to calculate a likelihood slice, fixing the values of all
but one parameter (usually at their maximum likelihood estimates) and then
calculating the likelihood for a range of values of the focal parameter”. The
reason for this assessment is that confidence regions from likelihood slices
are accurate only if the elements of θ are uncorrelated; otherwise, they are
statistically misleading (Bolker 2008).

A more robust approach to eliminate the nuisance parameter (φ), albeit
more computationally intensive, is to replace it with its MLE at each fixed
value of the parameter of interest. This method is called the profile likelihood
(Pawitan 2013). In practice, one specifies a number of points within a
plausible range for the parameter of interest. For each point in this range,
we optimise the likelihood with respect to the nuisance parameter, yielding
the vector θprof . Subsequently, we use Eq (1.6) to compute the confidence
region at the desired confidence level, where θ is replaced by θprof .

Another technique for computing confidence intervals is the Bootstrap method
(Efron and Tibshirani 1986), which uses resampling to approximate the
MLE’s sampling distribution. This resampling can be parametric or non-
parametric (Dogan 2007). In the context of compartmental models, the
parametric variant is favoured (Chowell, Nishiura, and Bettencourt 2007),
given that modellers have access to only one time series. This constraint
imposes an additional assumption to generate measurement error at each
time t if the modeller wants to avoid the assumption of equal variance across
measurements. Following this approach, first, one estimates θ̂ML using an
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optimisation routine. Then, θ̂ML is plugged into π(y|θ) to fabricate new
data sets. Here, we turn π(y|θ) into a sampling distribution by fixing θ to
θ̂ML. Finally, the simulation model is fitted, using the optimisation routine,
to each of these new sets, generating a distribution of parameter estimates.
This empirical distribution of parameters allows the estimation of confidence
intervals (Dogan 2007).

1.3.2 Bayesian approach
A competing paradigm ushered in by Bayes and Laplace stems from the
revolutionary shift in the conception of parameters as unknowns to the notion
of parameters as random variables (Robert 2007). The key contribution of
this idea is that one can formulate a probability distribution (π(θ)) on the
model parameters to quantify their uncertainty. We refer to this distribution
as the prior distribution. Moreover, a prior distribution can be updated
based on observations y that contain information about θ. In particular, the
likelihood function (π(y|θ)) is responsible for summarising this information.
Here, we omit the ODE model (f) in the notation of the likelihood function
to maintain consistency with mainstream texts. As a result, we obtain an
updated device known as the posterior distribution (π(θ|y)) (Gelman et al.
2013). In statistical terms (Eq (1.7)), the posterior distribution arises from
the Bayes theorem (Robert 2007), where π(y) =

∫
π(θ)π(y|θ)dθ denotes the

average likelihood (Gelman et al. 2013), a constant that ensures that π(θ|y)
integrates to one (McElreath 2020).

π(θ|y) = π(θ)π(y|θ)
π(y) (1.7)

In a nutshell, the technical core of Bayesian inference involves the formulation
of a model that comprises a likelihood function and a prior distribution
and then performing the appropriate computation to obtain the posterior
distribution (Gelman et al. 2013). Since π(θ|y) encapsulates information
from all parts of the Bayesian model, the answer to any statistical question
should involve the manipulation of this mathematical device. As regards the
uncertainty of parameter estimates, marginalising π(θ|y) over φ results in a
univariate distribution of the parameter of interest (ψ). From this marginal
distribution, we can estimate uncertainty regions known as credible intervals
(CrI). In this context, a 1−α CrI implies that a proportion 1−α of the values
compatible with the model and the data lies in the parameter range specified
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by the interval bounds (Lambert 2018; McElreath 2020). Furthermore, one
can marginalise π(θ|y) over a subset of φ to obtain multivariate distributions
that allow the identification of parameter interactions with ψ. Undoubtedly,
the main advantage of a Bayesian approach is that the range of inference
questions extends beyond θ. Drawing on the concept of expectations (Eq
(1.8)), π(θ|y) can answer any question properly posed in terms of a function (g)
that depends on θ. For instance, g(θ) can be the prediction of an unobserved
state in a SIR-like model, a performance metric (e.g., mean absolute scaled
error), or even the SIR-like model simulated beyond the period for which
it was fitted (forecast). In all of these cases, answers are always given in
terms of probability statements (Gelman et al. 2013), which are valid for
any sample size (McElreath 2020).

Eπ(g) =
∫
g(θ)π(θ|y)dθ (1.8)

However, the computation of π(θ|y) for non-trivial models requires the use of
simulation-based approaches such as Markov chain Monte Carlo or MCMC
(Geyer 2011). In short, this procedure consists of generating a sequence
of random variables θ1, θ2, . . ., where the probability distribution of θn only
depends on the previous one: θn−1. In other words, the Markov property
(Blitzstein and Hwang 2019). Also, the conditional probability distribution
for generating random variables, T (θn|θn−1), is called a transition kernel or
Markov kernel (Robert and Casella 2010) that, if appropriately crafted, will
induce a stationary or invariant distribution. This property entails that every
new random variable (θn) will be identically distributed to its previous state
(θn−1). Furthermore, if one makes π(θ|y) the target of the invariant T , then
generating new θn from T would be equivalent to producing samples from
the posterior distribution, and from there, the computation of expectations
or uncertainty regions is straightforward (Betancourt 2018).

Early work on this problem dates back to the development of the Metropolis-
Hastings algorithm (Metropolis et al. 1953), which experienced further
refinements over time (Betancourt 2017). Essentially, these algorithms gener-
ate new samples that are improved at each step in the simulation in the sense
of converging to the target distribution (Gelman et al. 2013). Convergence,
in this context, means that the Markov chain becomes stationary. However,
only asymptotics (infinite samples) guarantee convergence, which implies
that an infeasible number of samples may be required to reach this stationary
state when dealing with complex parameter spaces (Betancourt 2018). This
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fragility stems from the random walk behaviour embedded in their transition
kernel (Neal 1995), where the Markov chain can take a long time zigging and
zagging while exploring the target distribution (Gelman et al. 2013).

At this point, asymptotics (whether it is based on a large sample size or a
large Markov chain) is the only basis for ensuring the validity of inference
results. In contrast, the interplay between statistics and physics (Betancourt
2017) produced an enhanced transition kernel based on Hamiltonian dynamics
that all but suppresses the random behaviour in the generation of random
variables. This method, known as Hamiltonian Monte Carlo or HMC (Duane
et al. 1987; Neal 2011), not only allows the Markov chain to move much
more efficiently through the target distribution (Andrade and Duggan 2020)
but also provides information during the generation of random variables,
indicating whether they should be rejected (Betancourt 2018). Although
HMC is proficient in traversing parameter spaces, it cannot provide reliable
estimates for every model taxonomy. However, the next best job that an
algorithm can do is inform the modeller whether it failed or not so that she
or he can perform the appropriate improvements. This feature distinguishes
HMC and what makes it a powerful instrument for statistical inference.

1.4 Research questions
Therefore, the immediate question that arises is how can one employ Hamil-
tonian Monte Carlo to obtain robust estimates from SIR-like models fitted
to time-series data? Chapter 2 addresses this research question by showing
how to estimate <0 from an SEIR model (extends the SIR by including an
Exposed class) fitted to an incidence report from the 1918 flu pandemic. This
chapter serves two purposes. On the one hand, it allows us to explain the
methodology that guides the work in subsequent chapters. Even though
HMC is a powerful algorithm, it must be complemented with the appropriate
workflow and visualisation tools to harness its full potential. As we will see
in Chapter 3, a visualisation tool such as a scatter plot can provide valu-
able insights into a phenomenon. On the other hand, Chapter 2 introduces
the algorithm to System Dynamics practitioners, where the likelihood slice
method is a ubiquitous practice within this field, given that their proprietary
software of choice provides results in a matter of seconds and after a few
clicks.

Nevertheless, inferences are conditional on the model assumed (McElreath
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2020), and no algorithm, however good it may be, can redress model misspec-
ification. That is, inference methods cannot compensate for the discrepancy
between the actual data-generating process and the assumed model (James
et al. 2021). In fact, a critical limitation of compartmental models is that
structures with different embedded assumptions can fit the data equally well,
but they produce dissimilar <0 estimates (Keeling and Rohani 2011; Gostic et
al. 2020). For instance, Park and Bolker (Park and Bolker 2020) showed that
misspecifying the structure that accounts for the time at which infections are
reported can bias <0 estimates and lead to overly narrow confidence intervals.
Similarly, the work of Wearing and colleagues (Wearing, Rohani, and Keeling
2005) indicates that ignoring the latent period or formulating exponentially-
distributed latent and infectious periods results in inaccurate <0 estimates.
This result prompts us to investigate “how can we mitigate biases in <0
estimates due to uncertainty in the distribution of the epidemiological delays?”
Consequently, Chapter 3 describes a simulation study that aims to identify
a parameterisation of the SEIR model that produces accurate estimates in
view of that uncertainty. Once we find this parameterisation, we update the
estimate presented in Chapter 2.

Likewise, if the assumption of a constant transmission rate (β in Eq (1.2))
cannot be justified, it is crucial to identify a mathematical formulation that
accounts for changes in contact patterns. However, the specifics of that
formulation will play a prominent role in the inference of the reproduction
number. Broadly speaking, there are two routes: parametric and non-
parametric. In this context, parametric means that the transmission rate
follows a specific shape from a single configuration. These formulations
are relatively easy to fit because the inference process is reduced to the
estimation of only a small number of coefficients (James et al. 2021), the
type of model where HMC shines. These methods, though, make strong
assumptions about the underlying phenomenon, which implies that if the
specified functional form is far from the truth, the inference process can
produce misleading estimates. In contrast, non-parametric formulations do
not explicitly assume parametric forms, which implies that the transmission
rate can take infinite shapes from a single configuration and thereby provide
an alternative and more flexible approach. Nevertheless, estimates can be too
sensitive to the particular data provided, a phenomenon referred to as high
variance (James et al. 2021). In this context, variance entails that one may
achieve a good match between actual and simulated behaviour at the expense
of unrealistic corrections to certain elements in the model. Furthermore,
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non-parametric formulations require a different set of more computationally
intensive algorithms, such as Sequential Monte Carlo and Iterated Filtering.

We faced this conundrum during Ireland’s first COVID-19 wave, which led
us to ask: How can we improve the estimation of the reproduction number
from compartmental models when the dynamics of the transmission rate
are unknown? Chapter 4 describes the process to answer this question.
In short, we leverage existing approaches to propose three complementary
formulations of the transmission rate. We amalgamate these formulations
with an SIR-like model. These models incorporate a measurement component
that accounts for reported cases, and mobility data is assumed as a proxy
of the transmission rate. By following this complementary approach, we
assess the trade-offs associated with each formulation and reflect on the
benefits/risks of incorporating proxy data into the inference process.

Finally, Chapter 5 concludes the thesis with a summary of the main contri-
butions, as well as a discussion of the limitations of this work and an outline
of potential directions for future research.
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Chapter 2

Hamiltonian Monte Carlo in a
Bayesian workflow

The work presented in this chapter was published in:

Andrade, J., Duggan, J., 2021. A Bayesian approach to calibrate system
dynamics models using Hamiltonian Monte Carlo. System Dynamics Review,
37(4).

2.1 Introduction
From its beginnings in the mid-1950s to its modern practice, System Dynamics
(SD) has been a purpose-driven approach. Namely, it is a field interested
in problems to be solved, situations that need to be better understood, or
undesirable behaviours that need to be corrected or avoided (Forrester 1993).
To meet these goals, SD practitioners develop simulation models, formal
representations often via Ordinary Differential Equations (ODE) that capture
the dynamic complexity of the problem situation and from which behavioral
inferences can be made (Saleh et al. 2010). The validity of these inferences
hinges on the ability of the model’s internal structure to adequately represent
the aspects of the system that are relevant to the problem behaviour (Barlas
1996). Adequacy, nevertheless, is not merely related to the appropriateness
of the equations. In order for a model to be useful, it must provide an
assessment of future behavior (Duggan 2016). That is, models ought to
reasonably estimate the likely impact of interventions in a system, a process
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that cannot be achieved without a plausible quantification of the model’s
parameters. Given the continuous nature of ODE representations, there are
infinite possibilities for parameter quantification. To address this uncertainty,
analysts fit models to available data in order to obtain estimates for the
unknown quantities. This procedure, referred to as model calibration, serves
a dual purpose. In addition to reducing uncertainty around the parameters,
model calibration is a stringent validity test that assesses the causal claim
that a particular structure accounts for an observed behaviour (Oliva 2003).
It thus follows that one should reject models that fail this test.

Generally speaking, model calibration is the process of finding a match
between observed and simulated behaviours via statistical inference (Oliva
2003). In other words, we search for plausible parameter values or model
configurations that accurately account for the available data. Traditionally,
within the SD field, practitioners have followed a frequentist approach. Fol-
lowing this paradigm, one employs non-linear optimisation algorithms to
maximise a statistical function (often a likelihood function), which expresses
how well the model fits a time series of data pertaining to an important model
variable (Dangerfield and Duggan 2020). However, such optimisation routines
can be inefficient for finding a match in non-trivial and high-dimensional
parameter spaces (Andrade and Duggan 2020). To deal with this difficulty,
SD practitioners adopt the strategy of running the optimisation algorithm
from multiple starts and select the result with the largest likelihood. Unfortu-
nately, as the number of parameters increases, so does the risk of exhausting
computational resources before finding the optimal start. To further com-
plicate matters, the Maximum Likelihood Estimate (MLE) may not even
be located in regions of high probability mass in high-dimensional spaces
(Betancourt 2018).

Furthermore, around the MLE, one can construct uncertainty bounds using
frequentist approaches such as the likelihood ratio method (Pawitan 2013),
a technique offered by SD software (Vensim and Stella). ODE models,
nevertheless, often violate the assumptions implicit in the likelihood ratio
method, such as identically and independently distributed (IID) normal error
terms (Dogan 2007). Fortunately, the advent of powerful computational
resources has been a catalyst that enabled the development of methods
based on repeated random sampling to obtain numerical results (Robert and
Casella 2010). These statistical simulation algorithms can be oriented to
explore complex parameter spaces and lift stringent restrictions on the shape
of the uncertainty bounds. Although the SD community has not ignored
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these advances, a search on the SD literature suggests that the adoption of
these methods has been gradual. Particularly, Dogan (2007) and Struben,
Sterman, and Keith (2015) propose bootstrapping as a robust frequentist
method for confidence interval estimation and demonstrate its application on
a service quality model (Oliva and Sterman 2001). In essence, this method
creates new data sets by resampling the original data, and then parameter
values are estimated from each of these new bootstrap samples (Dogan 2007).
Similarly, Ansah et al. (2017) use bootstrapping to quantify the uncertainty
in the parameter estimates of a model that predicts the number of Chinese
elderly with some degree of cognitive impairment by 2060.

On the other hand, Pierson and Sterman (2013) report the first use of a
Markov chain Monte Carlo (MCMC) algorithm to perform inference on
a System Dynamics model: “We estimate model parameters by maximum
likelihood methods during both partial model tests and full model estimation
using Markov chain Monte Carlo methods to establish confidence intervals”.
Specifically, these authors estimated uncertainty bounds for twenty-one
parameters of an industry-level model of airline profits. Likewise, Keith,
Sterman, and Struben (2017) estimated the parameters of seven alternative
models that account for product diffusion in the hybrid electric vehicle
market. In these two case studies, the Markov chains are started from a
point estimate obtained from non-linear optimisation routines. More recently,
Ghaffarzadegan and Rahmandad (2020) inferred the value of a nine-parameter
epidemiological model that describes the early infectious process of COVID-
19 in Iran. All of these authors employed enhanced versions (Vrugt et al.
2009; Osgood and Liu 2015) of the Metropolis algorithm (Metropolis et al.
1953). Osgood and Liu (2015) provides a technical overview of the method,
accompanied by a practical example.

Despite the benefits that statistical simulation offers for parameter inference,
bottom-up implementations require from the practitioner a new mathematical
and programming skillset. Therefore, a more viable strategy is the use of
predefined routines provided by statistical packages. Even though these
tools automate the process, their use requires the practitioner to understand
what the method is trying to solve, why it works, and when and why it fails.
However, the literature of parameter inference on ODE models via statistical
simulation is sparse, and the notation can be challenging for practitioners
with non-mathematical backgrounds, which impedes adoption within the
SD community. This observation serves as the motivation for writing this
chapter. Thus, the contribution of this work is two-fold. First, we introduce
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to the SD field a state-of-the-art MCMC algorithm, known as Hamiltonian
Monte Carlo (Neal 2011) or HMC, oriented to explore non-trivial parameter
spaces such as those common to SD models. As model size and complexity
grow, this method outperforms other MCMC implementations (Monnahan,
Thorson, and Branch 2017; Beraha, Falco, and Guglielmi 2021) and, in some
instances, non-linear routines (Andrade and Duggan 2020). Second, we frame
the chapter in the context of Bayesian statistics, in which statements about
parameters and data are given in terms of probability (Gelman, Simpson, and
Betancourt 2017). Specifically, we draw on a practical workflow to illustrate
how one can think of model calibration as the result of knowledge update
in the light of new information. This workflow facilitates the interpretation
and communication of results in an intuitive fashion. It should be noted that
although the workflow is intuitive, model calibration is essentially a statistical
procedure, and as such, key concepts like random variables, continuous
probability distributions and conditional expectations are necessary (Blitzstein
and Hwang 2019). We demonstrate this workflow’s application by fitting
an epidemiological model to data using HMC. In doing so, we describe the
logical process followed in each step. The chapter concludes with an overview
of the insights obtained from the inference process. The model is built in
Stella, and all the analysis is performed in R and Stan. The code is made
freely available at https://github.com/jandraor/SDR_Bayes.

2.2 Context
As mentioned in the introduction, an SD endeavour starts with a problem.
For didactic purposes, we follow a widely-analysed case study (Vynnycky
and White 2010). In 1918, the H1N1 virus led to an influenza pandemic
that spread over the entire world in less than six months and killed tens of
millions of people (Patterson and Pyle 1991). This pandemic occurred in
three distinct waves, the second wave being the deadliest. Having learned
from data collection difficulties in the first wave, the United States Public
Health Service organised special surveys in several localities to determine
as accurately as possible the proportion of the population infected (Frost
and Sydenstricker 1919). From this information, we extract the report
of new cases detected in the city of Cumberland (Maryland) during the
autumn of 1918 (Fig 2.1). These case counts will serve as the basis to
ascertain an estimate of the disease’s degree of contagiousness, a feature
commonly measured by the basic reproduction number (<0). Simply put,
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this metric is the average number of secondary infections produced when
one infected individual is introduced into a totally susceptible population
(R. Anderson and May 1992). In addition to other techniques (Farrington,
Kanaan, and Gay 2001), one can estimate <0 by means of compartmental
models (Vynnycky and White 2010).
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Figure 2.1: Daily number of influenza cases detected by the United States Public Health
Service in Cumberland (Maryland) during the 1918 influenza pandemic, from 22 September
1918 to 30 November 1918.

A common choice for modelling the transmission dynamics of influenza is
the Susceptible-Exposed-Infectious-Removed (SEIR) framework (Chowell,
Nishiura, and Bettencourt 2007; Mills, Robins, and Lipsitch 2004). In
this formulation (Eq (2.1)-(2.5)), S(t) denotes the number of susceptible
individuals at time t. Likewise, E(t), I(t), and R(t) denote the number of
exposed, infectious, and recovered individuals at time t, respectively. C(t)
represents the number of cumulative cases at time t. Here, we assume
that the outbreak’s time-scale is much faster than the characteristic times
for demographic processes (births and deaths) so that their effects are not
included. Hence, it follows that the population is constant and whose size
N is determined by S(t) + E(t) + I(t) + R(t). Furthermore, β represents
the rate of effective contacts per infected individual, σ the rate of onset of
infectiousness, and γ the recovery rate. To reconcile the discrete nature of
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the data and the continuous nature of compartmental models, we define the
expected reported incidence (x) by Eq (2.6), where τ is restricted to non-
negative discrete values. We assume that the rate of reporting ρ scales the
true incidence (C(τ+1)−C(τ)). This rate reflects the fact that asymptomatic
and paucisymptomatic (mild symptoms) individuals may not be captured
by surveillance systems (Gamado, Streftaris, and Zachary 2014). From this
model, <0 can be estimated from the number of new infections caused by
one infected individual in the period in which the individual is contagious
(γ−1), namely βγ−1.

Ṡ = −βS(t)I(t)
N

(2.1)

Ė = βS(t)I(t)
N

− σE(t) (2.2)

İ = σE(t)− γI(t) (2.3)

Ṙ = γI(t) (2.4)

Ċ = σE(t) (2.5)

x(τ + 1) = ρ(C(τ + 1)− C(τ)) (2.6)

2.3 Bayesian inference workflow
In an SD model, the parameters to be estimated correspond to time-
independent variables and also initial conditions for stocks. To illustrate the
estimation of such quantities, we follow a simplified adaptation (Fig 2.2)
of a workflow from the statistical literature (Gelman et al. 2020; Gabry
et al. 2019). Under this approach, we view the quantities of interest as
random variables that describe our uncertainty about the actual values
in the face of incomplete knowledge (McElreath 2020). Following this
approach, it is possible to apply concepts of statistical inference. That is,
we update our knowledge about the underlying properties that generate
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the problem behaviour in light of the evidence, thus adopting a Bayesian
learning perspective. To make such a process intuitive, we also draw upon
data visualisation. This technique is an important tool that complements
the process of model calibration, as demonstrated below.

Formulate
model

Find direct
estimates for
parameters

Construct
priors for the

remaining
parameters

Prior
predictive
checking

Prior contradicts
domain knowledge

Prior is accepted Fit the model Validate via
diagnostics

Computation is not
valid

Computation is
accepted

Posterior
predictive

checks

Model is not
trustworthy

Model accepted
Estimate

quantities of
interest

Policy analysis

Tune
algorithm

Estimates are not
informative

Figure 2.2: Adaptation of a Bayesian workflow (Gelman et al., 2020) to calibrate System
Dynamics models. Shaded boxes indicate modeller decisions. Dotted lines indicate
alternative pathways.

2.3.1 Prior information
The first step in an inference process consists of the identification of the
unknown parameters in the model. In other words, whenever possible,
parameters that can be directly observed or estimated from sources at the
individual level should be treated as part of the known structure (Graham
1980) and removed from the process as unmodelled predictors. In doing so,
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we mitigate the risk of model misspecification by preventing a match between
actual and simulated behaviour based on unrealistic corrections to known
parameter values that mask errors in the model formulation (Oliva 2003).
For the remaining unknown parameters, an initial plausibility assignment
should be estimated based on domain expertise, such as educated guesses, as
recommended in the early days of the SD field (Graham 1980).

In the study of infectious diseases, it is common to find observational studies
at the individual level that report epidemiological quantities such as the
latent (σ−1) and infectious period (γ−1). In fact, R. Anderson and May (1992)
provide estimates of such quantities for ten viral and bacterial infections,
including influenza. However, measuring the average number of effective
contacts by an infected person (β) remains a challenging task inasmuch as this
variable encompasses individuals’ social nature, the propensity of infected
individuals to transmit the pathogen, and the propensity of susceptible
individuals to being infected. In the same vein, continuous and exhaustive
measuring of the infected population’s true proportion was clearly not a
viable option for the US in the early twentieth century. Consequently, we
incorporate the parameters σ and γ into the model’s structure, whereas β
and ρ are considered the unknown time-independent variables.

In relation to the initial conditions for stocks, researchers have estimated,
from serological studies in similar settings, that 70 percent of individuals
were still susceptible to infection after the first wave (Vynnycky, Trindall,
and Mangtani 2007). This implies S(0) = 0.7N − I(0) and R(0) = 0.3N . For
simplicity purposes, we assumed there were no exposed individuals at the
beginning of the second wave. Namely, E(0) = 0. These assumptions leave
as the only unknown the number of individuals that trigger the outbreak
(I(0)), which is assumed as the initial value for the stock that tracks the
number of cumulative cases.

Consequently, in this example, we focus on the estimation of the three
parameters identified above (β, ρ, I(0)) denoted by the vector θ. For each
one, we outline their plausibility before assessing the evidence (Fig 2.3). For β
and I(0), our domain knowledge indicates that they should be non-negative.
Further, we suppose that these two quantities concentrate at low values
considering the slow progression at the outbreak’s start (Fig 2.1). This
formulation does not discard values away from such concentration. However,
we assign them small plausibilities, measured by the height of the function.
This height is known as the probability density, and it is often modelled by
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standard statistical distributions that we denote by the Greek letter π. In
this case, π(β) and π(I(0)) are distributed according to the lognormal(0, 1).
We choose this distribution to reflect our belief that these parameters should
be positive and relatively small. Regarding the reporting rate ρ, although we
are unsure of its magnitude, we know that it should be between zero and one,
and by including it in the model, we tacitly assumed that it should be far
from the boundaries. If we had thought that the parameter was close to zero,
we would have discarded the reported cases (C) stock. If we had thought the
value was close to one, we would not have needed the reporting rate parameter.
We model this assumption by π(ρ) ∼ beta(2, 2). Taking into account that
no evidence suggests otherwise, we assume independence in the parameters.
That is, having information about one parameter does not provide knowledge
about the others. Mathematically, π(θ) = π(β)π(I(0))π(ρ). In statistical
language, this is known as the prior distribution. Interested readers are
referred to Gelman, Simpson, and Betancourt (2017) for philosophical and
practical considerations about the prior distribution.

0 5 10
β

0.0 0.5 1.0
ρ

0 5 10
I(0)

Figure 2.3: Prior distribution. Shaded areas indicate probability mass.

2.3.2 Observational model and probability of the data
π(y|θ) = Pois(y|x(τ)) (2.7)

π(y) =
∫
π(y|θ)π(θ)dθ (2.8)

Naturally, it is expected that prior knowledge of the parameters leads to
dynamics that capture the essence of the problem being studied. In other
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words, if we plug the vector θ into the simulation model, the latter ought to
produce outbreak-like trajectories, including the observed behaviour. Thus
far, the simulation model (Eq (2.1)-(2.6)) is deterministic. That is, the
model always produces the same smooth output from a given configuration.
Unsurprisingly, even the most perfect configuration (or any other) will yield
values that differ from the measurements as the model only approximates
the studied phenomenon. Therefore, these differences must also be formally
accounted for by a formulation, π(y|θ), which we refer to as the measurement
or observational model. Since daily reported cases are non-negative discrete
quantities, we formulate the observational model (Eq (2.7)) in terms of a
Poisson distribution (see Appendix A.1 for a discussion on the distribution
choice). Note that with the addition of Eq (2.7), a single model configuration
can yield different reported incidences. Thus, when θ is fixed to a single set
(θi), the observational model is known as the sampling distribution, π(y|θi).

In an ideal and unrealistic scenario, one would generate infinite samples (θsim)
from the prior distribution π(θ), then feed the simulation model with those
samples to produce the entire universe of possible trajectories of reported
incidences ysim. Once the complete set of ysim has been sampled, one
aggregates similar trajectories to establish which behaviours are more likely
to be observed than others. Formally, this is expressed by Eq (2.8), where
π(y) denotes the average probability of the data (McElreath 2020) or prior
predictive distribution (Gelman et al. 2013). Although generating infinite
samples is infeasible, one can draw a finite number of samples to reason
about the model’s behaviour conditioned on current knowledge. Accordingly,
we draw 500 random samples (θ1, θ2..., θ500) from the prior distribution to
generate an equal amount of trajectories (y1, y2..., y500). We present the
results in Fig 2.4). Here, we notice that large swathes of samples generate
outbreak-like behaviours, possibly the observed data (solid points). Overall,
this process is referred to as prior predictive checking, and it is a powerful
tool for understanding the structure of models (Gabry et al. 2019). Prior
predictive checking aims to answer the question “Could this prior generate
the type of data we expect to see?” (Gelman, Simpson, and Betancourt 2017).
Should none of the simulations had resulted in outbreak-like behaviours, or
should these behaviours had not captured the observed data, it would have
been an indication for reassessing the validity of the prior distribution or the
model itself (Gelman et al. 2020).
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Figure 2.4: Prior predictive checks. A) Simulation of five hundred predicted incidence
measurements (grey lines) from the proposed dynamic hypothesis and the prior distribution.
Dots denote the actual data. B) Zoom to trajectories that may resemble the actual data.
We show predicted measured incidences whose peak is lower than 200 new cases in a day.
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2.3.3 Expectation

π(θ|yc) = π(θ)π(yc|θ)
π(yc)

(2.9)

E[f(θ)] =
∫
f(θ)π(θ|yc)dθ (2.10)

Thus far, we have considered the likely behaviours over time that we could
have observed. Nonetheless, the chief interest is performing parameter
inference based on the available data set rather than on the infinite set
of possible observations. We thus shift the focus from the universe of
measurements (ysims) to the observed behaviour, Cumberland’s incidence
data (yc). In doing so, the density function π(ysims) becomes the constant
π(yc). Furthermore, when the observational model is regarded as a function
of θ, for a fixed y, it is called the likelihood function (Gelman et al. 2013).
This mathematical construct, π(yc|θ), is the target of optimisation algorithms
and a statement about the data, which quantifies the relative consistency of
each model configuration with the observed data. Simply put, if θ1 produces
a larger likelihood value than θ2, then yc is more likely to have occurred from
θ1. However, in a Bayesian setting, the plausibility of a trajectory is not
the desired outcome. On the contrary, the interest lies in establishing which
values of the vector θ are more plausible than others given the observed
trajectory (yc), or in more formal terms, the posterior distribution of the
estimated parameters, π(θ|yc). Conveniently, by Bayes theorem (Eq (2.9)),
we can express the posterior distribution in terms of the prior distribution,
the probability of the data, and the likelihood function. Given that the
posterior encodes all the information learned by our model, one could extract
inferences about the data and the parameters using expectations (Eq (2.10)).
As a matter of fact, prior predictive checking is an expectation, where f
is the observational model averaged over the prior distribution (instead of
the posterior). In the sections below, we will see that, should a solution
for Eq (2.9) be available, obtaining a model fit is nothing more than the
application of Eq (2.10). Regardless of the query, answers are always given in
probabilistic terms. Indeed, this is the main feature of the Bayesian approach,
where uncertainty is quantified with probability distributions.
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2.3.4 Markov chain Monte Carlo
Consequently, from a Bayesian perspective, one approaches parameter infer-
ence as the process of finding the posterior distribution. It is often the case
that closed-form solutions do not exist for such a type of formulation (Robert
and Casella 2005). To address this difficulty, in the late 1940s, researchers at
Los Alamos developed stochastic simulation techniques, know as Monte Carlo
Methods (Robert and Casella 2011). Early conceptualisations employed ex-
act sampling (Robert and Casella 2010), the generation of independent and
identically distributed (IID) samples to explore the extent of the parameter
space unconditionally. Regions of high probability, however, are concentrated
on specific locations rather than being scattered around (Betancourt 2018).
Thus, IID sampling would squander finite computational resources on low
probability regions until they are eventually exhausted before reaching the
target location. Aware of this, this same group of researchers enhanced
the method by generating correlated samples from a Markov chain to ap-
proximate the equilibrium distribution of a liquid (Metropolis et al. 1953).
Hence, the term Markov chain Monte Carlo (Geyer 2011). Even though
further improvements in subsequent decades, such as the Metropolis-Hastings
algorithm (Hastings 1970) and the Gibbs sampler (Geman and Geman 1984),
broadened the method’s scope, it was only until the early 1990s (Gelfand and
Smith 1990), and partly due to the growth in computational power, that the
mainstream statistical community widely noticed the method (Robert and
Casella 2011). Since then, there has been significant growth in the number
of applications to a wide range of fields, including epidemiology (Davies et
al. 2020; Chatzilena et al. 2019).

A Markov chain is a sequence of random variables Θ1,Θ2, ...,Θn, in which
each variable depends only on the previous one (Blitzstein and Hwang 2019).
To iteratively draw samples or realisations, we apply a conditional probability
distribution denoted by T (Θi+1|Θi), also referred to as the transition kernel.
The strength of this approach lies in the improvement achieved at the
generation of each new sample. Improvement in the sense of converging
to the target distribution π(θ|yc). If run long enough, the Markov chain is
expected to reach an equilibrium state - or stationary state- where the samples
describe the posterior distribution. This approximation has the advantage
that it does not impose constraints in the shape of the posterior. Under ideal
conditions, the Markov chain starts from any place in the parameter space
and gradually moves towards the target distribution. This initial phase is
known as warm-up. Once the target distribution has been found, the Markov
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chain explores high-probability regions (sampling phase), namely parameter
values that have larger contributions to the observed behaviour. To obtain
unbiased estimators, one discards the samples from the warm-up phase.

Although theoretically, the Markov chain will eventually reach the stationary
state; in practice, this result is not guaranteed, especially for high-dimensional
target distributions and distributions that exhibit non-trivial dependencies
among the parameters (Betancourt 2017). Early implementations of MCMC,
such as the Metropolis-Hastings and Gibbs samplers, become slow at exploring
complex parameter spaces to the extent that computational resources are
depleted before providing accurate estimates. This inefficiency occurs due to
these algorithms’ random walk behaviour to generate new samples, resulting
in zig-zag movements across the parameter space (Gelman et al. 2013). For
instance, Pierson and Sterman (2013) report that in the calibration of an
industry-level model of airline profits, “over 1 million MCMC runs were
needed to arrive at stable estimates for the confidence bounds”.

2.3.4.1 Hamiltonian Monte Carlo

According to Betancourt (2017), MCMC has benefited from an evolving
interplay between statistics and physics from its inception to present de-
velopments. Conceiving a statistical system as a physical one provides an
innovative way to improve computational methods. Indeed, the realisation
that molecular simulation methods -in which the motion of molecules was
deterministic, following Newton’s laws of motion-, and MCMC could be
combined, yielded a technique of wide applicable potential. In such a frame-
work, the description of molecular motion has an elegant formalization as
Hamiltonian dynamics, hence the term Hamiltonian Monte Carlo (Neal 2011).
In particular, the HMC algorithm simulates the movement of a fictitious
and frictionless particle (McElreath 2020) over a surface whose ruggedness
is determined by the likelihood function and the prior distribution. For-
mally, the Hamiltonian function- the sum of potential and kinetic energies-
describes such mechanics (Neal 2011). In turn, this function depends on the
characterisation of each parameter in terms of position and momentum. The
former is straightforward, considering that it corresponds to the fictitious
particle’s location in the parameter space; for the latter, the algorithm adds
an artificial variable per parameter. As a result of this conceptualisation, the
random-walk behaviour from early MCMC implementations is suppressed
(Gelman et al. 2013), resulting in a tool that becomes efficient at traversing
the complex parameter spaces. For an analytical treatment of the method,
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the reader is referred to Neal (2011). Likewise, Betancourt (2018) offers an
intuitive description. In the appendix A.2, we provide an example where we
compare how HMC and the Metropolis algorithm explore parameter spaces.

2.3.4.2 Stan

Although HMC is a powerful method, its geometrical foundations (Betancourt
et al. 2014) render ad hoc implementations onerous. To address this challenge,
a group of researchers developed Stan (Carpenter et al. 2017), a statistical
modelling platform. This tool provides an interface to perform Bayesian
inference via the No-U-Turn-Sampler or NUTS (Hoffman and Gelman 2011),
an HMC algorithm. NUTS takes advantage of the warm-up phase to identify
the algorithm’s configuration that best adapts to the user-supplied model
for efficient parameter space explorations, resulting in significant gains in
sampling speed. Furthermore, Stan supports gradient evaluation (Carpenter
et al. 2015) to a broad range of distribution families and ODE solvers. In
spite of this support, in some cases, SD practitioners will not be able to avail
themselves of familiar builtins (such as those offered by Vensim and Stella).
As a result, they will have to formulate equations explicitly, or in the case of
table functions, the practitioner will have to devise parametric formulations.

In practice, Stan only requires, from the practitioner, the specification (code)
of the model’s equations, the prior distribution, the likelihood function, the
data, and the number of draws. To these specifications, Stan runs the NUTS
algorithm internally and returns a set of samples for each parameter. To
run the simulation, one can directly interact with Stan through a command
interface or popular statistical software such as Python and R. In this case,
we choose the latter to draw upon the package readsdr (Andrade 2021),
which automatically converts XMILE files from Stella and Vensim to Stan
code.

2.3.4.3 Diagnostics

Bayesian inference via iterative simulation is performed by extracting insights
from the entire collection of simulated draws from the sampling phase. Specif-
ically, we estimate posterior probability densities and compute quantities
of interest that describe the calibrated parameters, such as expected values
(mean) and credible intervals. However, if the chains are not run long enough,
predicted convergence to the stationary distribution may not be achieved.
The resulting draws may describe partially, or even, inaccurately the pos-
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terior distribution, thereby producing unreliable estimates. To address this
challenge, an effective strategy consists of running at least four chains that
start from different locations in the parameter space and verify that all of
them converge to the same region. Accordingly, we run four chains of 2,000
iterations in this example: 1,000 allocated to warm-up and 1,000 to sampling.
We employ Stan’s default initialisation strategy, which starts the chains from
values drawn uniformly from the interval (-2,2). If the estimated parameters
are bounded, then Stan applies the appropriate transformation.

Graphically, one can inspect convergence via trace plots. These visualisation
tools are time-series of the draws for a particular parameter. Here, time refers
to the order in which the draws were sampled. In Fig 2.5A, we present the
sequence of the first 100 draws for each of the three calibrated parameters.
Initially, the chains traverse the parameter space before settling on a unique
location. By augmenting the time frame to the complete set of samples (Fig
2.5B), it can be seen that the chains mixed; that is to say, the draws trace
out a common distribution. Additionally, there is no obvious trend or change
in the spread in the chains. In other words, they are stationary. These
two properties suggest that the sampling procedure reached the predicted
convergence. Quantitatively, the potential scale reduction factor (Gelman
and Rubin 1992) denoted by R̂ is a useful metric to validate this assessment.
This statistic compares within-chain variance (stationarity) to between-chain
variance (mixing). At convergence, R̂ should be < 1.01 (Vehtari et al. 2021),
whereas higher values indicate that the chains describe different locations of
the parameter space or different trends within a single chain. In this example,
all chains exhibit Potential Scale Reduction factors below this threshold (see
appendix A.3 for a technical description and results).

Other diagnostics to gain confidence in the results include the Effective
Sample Size (ESS). In general, simulation inference from correlated samples
is less precise than from the same number of independent samples (Gelman
et al. 2013). If the correlation among samples is strong, chains must be
run for longer periods in order to obtain accurate estimations. To measure
this correlation, we employ ESS to determine the number of independent
simulation draws from the MCMC process. For reliability, this metric should
be above 400 (100 per chain) per parameter (Vehtari et al. 2021), as in this
example (see appendix A.3 for a technical description and result).

To conclude with MCMC diagnostics, the Hamiltonian approach also allows
us to evaluate the robustness of the results. A key feature of the Hamiltonian
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Figure 2.5: A) Early warm-up phase for our three parameters (first 100 iterations). B)
Complete sequence of iterations (2000) in the warm-up and sampling phases. The shaded
area indicates the warm-up phase. In both figures, we present four Markov chains per
calibrated parameter through sequences of points (samples obtained from Stan) joined by
lines.

function (sum of potential energy and kinetic energy) in the sampling phase is
that it remains invariant along the trajectory in which the particle moves. Any
divergence from its initial value indicates pathological behaviour (abnormal
movements) in the chains to the extent that they cannot be trusted, and the
calibration setup (SD model, prior, likelihood, algorithm’s parameter values)
must be reformulated. By default, Stan reports divergences and provides
ways to access which iterations encountered divergences 1.

Given this example’s didactic scope, all diagnostics unsurprisingly return
favourable results. In practical applications, however, the path to these
results can be significantly less straightforward. From code bugs to structural
problems, such as non-identifiability in the model (two or more parameteri-
sations that are observationally equivalent), achieving convergence can take
several iterations. To complicate matters, exploring the target distribution
of differential equation models involves expensive gradient evaluations that
slow down the HMC algorithm, limiting the number of debugging runs.
Thus, the analyst must efficiently identify the problem’s source. To this end,
Gelman et al. (2020) recommend the process of fake data (also known as
synthetic data or simulated data). That is, feeding the simulation model
with known and plausible parameter values to obtain behaviours over time
similar to the real data being analysed. Then, we should check whether the
same model and the inference method can recover the known values. In

1See Stan Manual for more details
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doing so, it is possible to identify strategies to address computational issues.
These strategies range from model simplification and more data collection
to recognising the method’s inappropriateness for the studied problem. For
instance, HMC works correctly under well-defined posterior densities, and it
is restricted to continuous parameters. Conversely, challenging geometries
with sharp corners or multiple modes (Betancourt 2015) in the posterior
distribution render the algorithm impractical, and other types of methods
should be employed (Valderrama-Bahamóndez and Fröhlich 2019). We re-
fer the reader to Gelman et al. (2020) for a comprehensive treatment of
these methodological issues. Furthermore, in Appendix A.4, we draw upon
synthetic data to illustrate the Bayesian workflow presented above (Fig 2.2)
in the context of wrong assumptions, complex parameter spaces, and the
necessity for data collection.

2.3.5 Posterior distribution
Bayesian inference is concerned with updating knowledge in the light of
new evidence (McElreath 2020). Once we have gained confidence in the
sampling procedure, we take the draws returned by Stan and construct
probability densities. By restricting the analysis to a single parameter
(marginal posterior distribution), it is possible to determine which values are
plausible for the parameters after seeing the data. We can visually portray
such a knowledge update process by comparing marginal prior and posterior
distributions (Fig 2.6). In this graph, we observe that the concentration of
probability shifted for each parameter. For instance, before the calibration,
we assumed ignorance for the reporting fraction (ρ). On the contrary, the
marginal posterior distribution indicates that 95% of the samples- or the
95% credible interval - concentrates on the region [0.74, 0.81]. In relation
to <0, we estimate its 95% credible interval between 2.53 and 2.63, a value
consistent with the estimate ([2.56-2.59]) reported by Vynnycky and White
(2010). Furthermore, Mills, Robins, and Lipsitch (2004) estimate that <0
for 1918 pandemic influenza was approximately between 2 and 3. Similarly,
Vynnycky, Trindall, and Mangtani (2007) concluded that this value was in the
range of 2.4–4.3 in community-based settings. Thus, during this pandemic,
one infected individual could potentially infect, on average, almost three
susceptible ones.

In the SD literature, it is not unusual that researchers restrict model cali-
bration results to reports of the mean and standard deviation of the fitted
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Figure 2.6: Comparison between marginal prior and marginal posterior distributions for
our three parameters. Grey lines denote prior distributions. Blue lines denote posterior
distributions

parameters. Although useful for descriptive purposes, we instead have fo-
cused our interest on the complete set of samples. The reader should bear
in mind that in Bayesian inference, we quantify uncertainty by an entire
probability distribution, which cannot be characterised by a single point
estimate (we elaborate on this issue in Appendix A.5). Through the samples
obtained from MCMC methods, for instance, we can extract rich information
about the parameter interactions. Initially, given the lack of evidence, we
assumed independence among the calibrated parameters. Nevertheless, Sys-
tem Dynamics models, by definition, depict problems as an interconnected
confluence of factors. Based on this logic, it would be surprising that a
parameter does not interact with another. To explore this property, we
draw upon pair plots. This graphical tool displays all possible pairwise
combinations (joint) of probability distributions. Moreover, we include the
correlation for each combination along with the marginal distributions to gain
a global perspective (Fig 2.7). This plot shows a strong interaction among
the parameters to the extent of an almost perfect correlation between two
parameters (I(0) and β), indicating that, relatively speaking, large values of
β are solely compatible with low values of I(0). Consequently, independence
assumptions are unwarranted. The implications of this finding are explored
in the Policy Analysis section.
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Figure 2.7: Posterior distribution for our three parameters. The diagonal shows the poste-
rior marginal distributions. In the lower triangular part, the joint posterior distribution
of each possible combination of two parameters is displayed. The upper triangular part
shows the correlation among parameters.

2.3.5.1 Posterior predictive checks

π(y|yc) =
∫
π(y|θ)π(θ|yc)dθ (2.11)

The ultimate purpose of model calibration is to search for a match between
observed and simulated behaviour that builds confidence in the proposed
dynamic hypothesis. Following this Bayesian workflow, we frame this purpose
as: “if a model is a good fit we should be able to use it to generate data that
resemble the data that we observed” (Gabry et al. 2019). Notice that this
statement is similar to Oliva’s quote (Oliva 2003): “Confidence that a par-
ticular structure, with reasonable parameter values, is a valid representation
increases if the structure is capable of generating the observed behavior”. To
provide an answer, we can use the posterior distribution to obtain predic-
tions for the measured quantities and compare them to the observed data
(Gelman and Hill 2007). Thus, in this case, f(θ) (see Eq (2.10)) corresponds
to the observational model. This process is analogous to prior predictive
checking, with the difference that we average over the posterior distribution.
Unsurprisingly, this process is called posterior predictive checking (Eq (2.11)).
In consequence, obtaining a model’s fit under this Bayesian paradigm is
equivalent to solving Eq (2.11).
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Accordingly, we generate 500 draws from π(θ|yc) and insert them into the
observational model to obtain predictions for the measured incidences (Fig
2.8). Qualitatively, the simulated trajectories appear to be reasonable ap-
proximations to the reference behaviour. To verify this appraisal, for each
trajectory, we calculate the mean absolute scaled error or MASE, a metric
of forecast accuracy (Hyndman and Koehler 2006). In practice, this pro-
cedure entails to define f(θ) as the MASE of each trajectory and average
the results over π(θ|yc). Considering that values lower than one indicate
adequate predictive performance, and all simulated behaviours concentrate
below such a threshold (see Appendix A.6), we gain support to the claim
that the simulation model explored in this chapter is an adequate structure
to account for Cumberland’s incidence data.
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Figure 2.8: A) 500 predicted incidence measurements (grey lines) from the posterior
predictive distribution (model’s fit). To obtain a single predicted measurement, we draw
a sample from the posterior distribution and use it to generate a trajectory from the
observational model (Eq 2.7). Three different predicted incidence measurements are
highlighted in Viridis colours. Dots denote the actual data. B) Posterior predictive
distribution described in terms of the mean (dashed line) and 95% credible intervals
(contour).
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2.3.5.2 Policy analysis

As we have seen, the usefulness of estimating π(θ|yc) is not exclusively
confined to find a match between observed and simulated behaviours (model
calibration). Once we have gained confidence in these results, we can employ
this distribution to evaluate the future dynamics in similar settings where
the model is relevant. To illustrate this procedure, we simulate the model
in a hypothetical situation. In particular, we are interested in predicting
the dynamics of an outbreak in a city of 10,000 people under two scenarios:
unmitigated and intervention. The former corresponds to the scenario where
the virus is let to run unchecked until the disease runs its course. The
latter describes the implementation of social distancing measures aimed
at reducing the number of contacts among the population. To do so, we
consider the sampling procedure. Stan returns a collection of draws for each
calibrated parameter. In this case, the output forms a matrix of three columns
(parameters) and four thousand rows (samples). Since the parameters exhibit
correlation (Fig 2.7), we sample entire rows {βi, ρi, I(0)i}, where i denotes
a specific row. Should the parameters be independent, we would sample
separately from each column, yielding sets {βj, ρk, I(0)l}. We follow this
procedure in situations where we cannot infer correlations from the data
(e.g., report of marginal distributions).

Having established the sampling procedure, for the no intervention scenario,
we feed the SEIR model with the samples and run the simulation; whereas for
the intervention scenario, we multiply all βi by a factor of 40% to describe the
effect of social distancing measures implemented before the occurrence of the
first case. As expected, decreasing the population’s contact rate (β) translates
into a slower transmission process with fewer cases. Undoubtedly, the added
value of performing policy analysis from this Bayesian perspective stems
from the fact that we simultaneously gauge the uncertainty in the predicted
behaviours, offering a broader picture to decision-makers. Nevertheless, in
this case, such uncertainty is tempered by the correlation among parameters.
To visualise this, we also run the model with independently sampled draws.
In Fig 2.9, it can be seen the extra uncertainty added by the independence
assumption, evidenced by the excess of blue contour in comparison with that
of the grey one. Notice that this application is also an instance of Eq (2.10),
namely an expectation.
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Figure 2.9: Forecast of scenarios (unmitigated and intervention) under two parameter
interaction assumptions. These assumptions correspond to the correlations revealed by
the calibration process and perfect independence. We simulated 500 trajectories per
experiment in this two-by-two design. For each experiment, we plot a silhouette of the
predicted measured incidence. The width of these silhouettes corresponds to 95 % credible
intervals. Two silhouettes are superimposed per scenario.
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2.4 Performance comparison
SD practitioners certainly require a clear indication that investing time and
resources in applying a novel method is worth the effort. In the SD literature,
we find two enhanced versions of the Metropolis algorithm: the DREAM
sampler (Vrugt et al. 2009) implemented in Vensim, and a Random-Walk
Metropolis -RWM- algorithm (MCMCmetrop1R) offered by the MCMCPack,
the method used by Osgood and Liu (2015). We select the latter for the
comparison analysis, given that it is open-source and a similar approach
adopted throughout this work.

Specifically, we fit the SEIR model (presented in the Context section), under
the conditions (priors and unknowns) described in the Prior information
section, to Cumberland’s incidence data. This calibration is performed in six
different scenarios, which differ in the number of iterations (100, 200, 500,
1000, 1500, 2000) allocated to both MCMC algorithms. The results show that
HMC is computationally faster than RWM for obtaining an equal amount of
samples (Appendix A.9). However, given technological implementations, it is
not possible to definitively determine whether the performance differences are
due to the algorithms themselves. For this reason, we compare technologically-
independent metrics of convergence (R̂) and efficiency (ESS). In Fig 2.10A,
we observe that RWM requires at least 2000 burn-in samples so that all
parameters reach convergence (R̂ < 1.01), a value significantly higher than
the equivalent number of samples (500) required by HMC. On the other hand,
the effective sample size (ESS) is a measure of efficiency. This metric helps us
answer: Are X samples from RWM equivalent to X samples from HMC? The
reader should recall that the ESS approximates the number of independent
samples. We present two types of ESS : bulk and tail. Both metrics should
be at least 400 (Vehtari et al. 2021). In Fig 2.10B, it is observed that HMC
produces a higher number of ESS and does so more efficiently (Fig 2.10C)
than RWM in all scenarios. Furthermore, HMC exceeds the 400-threshold
from 500 iterations per chain, a third of the iterations required by RWM. In
a nutshell, HMC converges faster, and its samples provide more information
than those of RMW.

In terms of performance, we corroborate previous theoretical (Betancourt
2018) and practical studies that suggest HMC as the method of choice. For
instance, Monnahan, Thorson, and Branch (2017) found that HMC outper-
forms the Gibbs sampler (a random-walk MCMC algorithm) in estimating
the parameters of population ecology models (hierarchical and state-space)
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Figure 2.10: A) Potential scale reduction factor by scenario and calibration algorithm for
our three parameters. Red dashed line denote the acceptance threshold (1.01). B) Effective
sample size (bulk and tail) by scenario and calibration algorithm for our three parameters.
Red dashed line denote the acceptance threshold (400) C) Clock time (seconds) per
effective sample by scenario and calibration algorithm.
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across a range of dimensions and complexity. This performance gap grew to
the extent that HMC was 63 times more efficient when fitting a logistic model.
Likewise, Beraha, Falco, and Guglielmi (2021) conducted a systematic study
on probabilistic programming languages (PPL). The authors evaluated three
PPLs on four classes of models: linear, logistic regression, mixture models,
and accelerated failure time. The results from this study indicate that Stan
(using the NUTS algorithm) is the “default go-to software” over the other
two random-walk-based platforms. To the best of our knowledge, the most
recent benchmark analysis on ODE models was carried out a decade ago
(Girolami and Calderhead 2011), a time where the NUTS algorithm had not
been developed. This observation suggests that future research endeavours
should systematically explore the variations in the performance of MCMC
algorithms across various ODE models.

2.5 Conclusion
In his reflection on the sixty-year history of the SD field, Sterman (2018)
encouraged practitioners to “master the state of the art and modern methods
to develop, test, communicate, and implement rigorous, reliable and effective
insights into the dynamics of complex systems”. In that context, we introduce
Hamiltonian Monte Carlo to the SD community to perform robust model
calibration using a state-of-the-art statistical package (Stan). In doing so, we
notice that valuable information about the results and the method itself is
often missing in model calibration reports. Due to the established tradition
of using non-linear optimisation techniques, we often find that authors limit
the calibration report to the mean and standard deviation of parameter
estimates. This information is complete only in the case of symmetric and
independent distributions, a set of assumptions that do not hold for this
simple case study. On the contrary, MCMC-based methods provide richer
information about the calibrated parameters and allow the practitioner to
evaluate the robustness of the estimates. In the same fashion that a model’s
behaviour must be obtained from the right reasons, parameter estimates
must be obtained for the right reasons as well. To communicate this process,
we suggest a workflow grounded on logic and visualisation. Such a workflow
is possible due to the combination of SD Software, R, and Stan. This synergy
produces robust results, facilitates reproducibility, and, more importantly,
enhances the comprehension of the process undertaken.
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Chapter 3

The basic reproduction number
and the mean generation time

The work presented in this chapter was published in:

Andrade, J., Duggan, J., 2023. Anchoring the mean generation time in the
SEIR to mitigate biases in <0 estimates due to uncertainty in the distribution
of the epidemiological delays. Royal Society Open Science, 10(8).

3.1 Introduction
The analysis of any infectious disease’s dynamics will inevitably lead to the
basic reproduction number (<0). Initially developed in the study of demo-
graphics (Dublin and Lotka 1925), this quantity has been interpreted in the
epidemiological context as the average number of secondary infections arising
from the introduction of one infected individual into a totally susceptible
population (R. Anderson and May 1992). The usefulness and importance of
<0 lie primarily in its threshold phenomenon (Heffernan, Smith, and Wahl
2005). That is, a pathogen can invade a totally susceptible population only
if <0 > 1 (Keeling and Rohani 2011). Furthermore, the magnitude of <0
gauges the transmission potential of an emerging infectious disease (Heffer-
nan, Smith, and Wahl 2005) and the effort required to control the invading
pathogen (Wallinga and Lipsitch 2007). Thus, accurate estimation of <0 is
crucial for understanding and managing infectious diseases.

Another reason for the popularity of <0 is that one can estimate it from
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epidemiological data (Kucharski 2020) using a number of methods. For
diseases that allow the assumption of endemic equilibrium and homogeneous
mixing, one can follow Mollison’s method (Mollison 1995) or Dietz’s approach
(Dietz 1975). The former requires prevalence data, whereas the latter lever-
ages readily available information such as age at infection and average life
expectancy. On the other hand, if an infection leads to either immunity or
death in a closed population, seroprevalence studies can inform the fraction
of the population that acquired the disease during an epidemic, i.e. the final
epidemic size. In their seminal paper, Kermack and McKendrick (Kermack
and McKendrick 1927; Diekmann, Heesterbeek, and Britton 2013) formulated
a relationship between the final epidemic size and <0, from which the latter
can be calculated.

Unlike the previous methods, which require the epidemic to reach a steady
state, <0 may be determined from the intrinsic growth rate of the infected
population (Heffernan, Smith, and Wahl 2005; Wallinga and Lipsitch 2007)
using incidence data of the early stages of the epidemic, as long as the growth
of new cases exhibits pure exponential behaviour. Alternatively, we can
employ the entire report of daily case notifications if <0 is formulated as a
function of a compartmental model’s parameters (Lloyd 2009; Vynnycky and
White 2010; Brouwer 2022). These models can be stochastic (He, Ionides,
and King 2010), semi-deterministic (Dureau, Kalogeropoulos, and Baguelin
2013; Andrade and Duggan 2022) or deterministic (Kermack and McKendrick
1927; Andrade and Duggan 2020).

These compartmental models are said to be mechanistic (Bretó et al. 2009),
namely, structures based on a scientific understanding of infectious disease
dynamics (Bretó 2018). The relevance of that mechanistic property lies in
the role of the model. Rather than being a merely mathematical artefact to
produce a desired output, the model also embeds a dynamic hypothesis of the
underlying process that generates the observed data. Hence, the parameters,
states and interactions that comprise a particular formulation represent
their counterparts in the real world. If the model accurately captures the
properties of the actual phenomenon, finding an adequate configuration
(assign values to parameters) should yield a behaviour over time of infections
that resembles the observed trajectory. The values of such parameters can
be obtained from individual-level observations (Keeling and Rohani 2011) or
via statistical inference (Bolker 2008; Andrade and Duggan 2021; Bjørnstad
2023), a process also known as trajectory matching or model fitting.
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Furthermore, matching simulated and observed behaviour can be regarded as
a validation test on the dynamic hypothesis that links structure to behaviour
(Barlas 1996). Nevertheless, one should understand this validation step as a
falsification test (Oliva 2003). That is, if the model fails to reproduce the
observed behaviour, it can certainly be rejected. On the contrary, obtaining an
accurate match (or fit) does not immediately validate the dynamic hypothesis
inasmuch as there may be other competing hypotheses that fit the data
equally well. Indeed, this circumstance impacts the estimation of <0 from
compartmental models (and the intrinsic growth rate method), where different
assumptions can yield accurate fits (Wearing, Rohani, and Keeling 2005).
However, estimates vary according to the specific assumptions embedded in
each fitting model (Heffernan, Smith, and Wahl 2005; Gostic et al. 2020).

For instance, the choice of the distributions of the latent and infectious
periods (epidemiological delays) in the deterministic Susceptible-Exposed-
Infectious-Recovered (SEIR) framework plays an essential role in the inference
of <0 (Wearing, Rohani, and Keeling 2005). Briefly put, misspecifying
the structure of such delays leads to biases in the estimates. That is, a
systematic difference between true and estimated parameters. Although
there are techniques (Hurtado and Kirosingh 2019; Greenhalgh and Rozins
2021) to construct models with realistic distributions, modellers do not
know exactly which distribution to incorporate in their formulation. In view
of this drawback, Wearing and colleagues (Wearing, Rohani, and Keeling
2005) fitted various SEIR models (with different delay distributions) to a
single incidence dataset to select the best structure based on a goodness-of-fit
measure. Nevertheless, the results appear inconclusive. Notwithstanding that
Krylova & Earn (Krylova and Earn 2013) assume their validity, no further
research establishes the reliability of such an approach. This assessment
immediately warrants the need for the work presented here: a systematic
study oriented to determine whether it is possible to infer <0 accurately
from SEIR models fitted to incidence data in light of the uncertainty in the
distributions of the epidemiological delays. We describe the steps of this
study in the sections below. All the analysis is performed in R. The code is
freely available at https://github.com/jandraor/delays.

3.2 Data Generating Process
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3.2. Data Generating Process

3.2.1 The system (latent) component
In order to undertake a systematic study, experimenters must have access
to a sizeable set of observations. In this case, multiple time series of daily
case notifications of a particular disease under various conditions. Equally
important, such conditions need to be known a priori. To meet these
conditions, we leverage the mechanistic property of compartmental models
and employ the SEIR framework as a synthetic data generator (Gelman et
al. 2020; King et al. 2015). This framework has been widely applied to
studying various infectious diseases, such as measles (Lloyd 2001a; Keeling
and Grenfell 2002; Krylova and Earn 2013), COVID-19 (Davies et al. 2020;
Gleeson et al. 2022; Andrade and Duggan 2022), and influenza (Chowell et
al. 2006; Chowell, Nishiura, and Bettencourt 2007; Vynnycky and Edmunds
2008; Vynnycky and White 2010; Andrade and Duggan 2020, 2021). In this
work, we restrict our attention to the simplest version of this family of models.
The rationale for this decision is straightforward; conceptual models entail
efficiency inasmuch as they facilitate the understanding and identification
of the underlying causes of a particular result. Moreover, it is often the
case that principles that stem from basic models apply to more elaborated
extensions.

Ṡt = −βSt
∑j
k=1 I

k
t

N

Ė1
t = βSt

∑j
k=1 I

k
t

N
− iσE1

t

Ė2
t = iσE1

t − iσE2
t

...
Ėi
t = iσEi−1

t − iσEi
t

İ1
t = iσEi

t − jγI1
t

İ2
t = jγI1

t − jγI2
t

...

İjt = jγIj−1
t − jγIjt

Ṙt = jγIjt

(3.1)

Specifically, the SEIR (Eq (3.1)) stratifies individuals as susceptible (St),
exposed (Et), infectious (It), and recovered (Rt) and describes the transitions
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between states (St → Et → It → Rt) in terms of differential equations.
Susceptible individuals acquire infection, St → Et, through contact with
infectious individuals, where the number of contacts is independent of the
population size (N). Formally, one refers to this assumption as the frequency-
dependent (or mass action) transmission: βStIt/N . Here, β corresponds
to the effective contact rate or transmission parameter. The movement of
individuals from the class Et to class Rt is modelled using a well-known
mathematical procedure (D. Anderson and Watson 1980) to achieve realistic
distributions (Bailey 1954; Sartwell 1995) of the time that individuals spend
in states Et and It, otherwise known as the latent and infectious periods,
respectively. Such a procedure corresponds to the subdivision of a class into
stages arranged in series. For instance, one can divide the exposed class
into i stages. Newly infected individuals enter the first exposed stage, E1

t ,
pass through each in turn and become infectious upon leaving the ith stage
(Ei

t). The progression between stages is assumed to occur at a constant
per-capita rate (iσ), leading to an exponential waiting time with mean 1

iσ
in

each stage (Lloyd 2009). This formulation implies that the lapse between
infection and becoming infectious is described by the sum of i independent
exponential random variables with equal rates, a convolution resulting in a
gamma-distributed random variable (Blitzstein and Hwang 2019). Therefore,
the subdivision of the exposed class into various stages is equivalent to
formulating the latent period in terms of a gamma distribution with mean
σ−1 and shape i. Similarly, one can divide the infectious class into j stages
to formulating a gamma-distributed infectious period.

<0 = βγ−1 (3.2)

Overall, we refer to Eq (3.1) as the SEiIjR framework. Notice that the
standard SEIR corresponds to the SE1I1R instance. Moreover, as the
parameter i increases, the distribution becomes more closely centred on its
mean (tighter), to the extent that if i→∞, the variance is removed. That
is, in the limit, all individuals have the same latent period. An equivalent
argument applies to the infectious period. No less important, as indicated by
Lloyd (2009), irrespective of the values of i and j that the SEiIjR may take,
the basic reproduction number depends exclusively on the transmission rate
and the mean infectious period (Eq (3.2)). Furthermore, it is noteworthy to
mention that subdividing a class is a mathematical device that allows the
incorporation of additional distributions in a system of differential equations,
and the number of stages may not correspond to biological features of the
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infection process (Lloyd 2001a). Lastly, we assume that the disease leads
to permanent immunity and that the outbreak’s time scale is much faster
than the characteristic times for demographic processes (births and deaths),
therefore their effects are not included. This last assumption implies that
the population remains constant over the simulation period.

Ċt = ρiσEi
t

xt∗ = Ct∗+1 − Ct∗ , t∗ ∈ N0
(3.3)

Subsequently, we define the link between the SEiIjR and incidence data (Eq
(3.3)). Based on the literature (Chowell et al. 2006; Dureau, Kalogeropoulos,
and Baguelin 2013; Andrade and Duggan 2021, 2022), we posit that incidence
(Ċ) is proportional to the rate at which individuals become infectious (Ei

t →
I1
t ). Such proportional effect or reporting rate (ρ) stems from the fact
that individuals experience various degrees of symptom severity (Gamado,
Streftaris, and Zachary 2014). In particular, individuals with low severity
levels (asymptomatic and mild symptoms) may not seek health care attention,
resulting in case reports that most likely miss a significant fraction of infected
individuals. As opposed to the continuous nature of differential equation
models, case notifications occur at discrete times. To reconcile this tension,
we define the report of new cases (xt∗) as the change in the total number of
cases (Ct) in one-day intervals.

Furthermore, we tailor the synthetic data generator towards influenza given
that this virus causes unpredictable but recurring pandemics that can have
significant global consequences (WHO 2017). As a matter of fact, there
have been four influenza pandemics over the past 100 years, including the
H1N1 pandemic in 1918, with 50 estimated million deaths (Monto and
Webster 2013). Adapting the SEiIjR framework to this choice involves the
selection of plausible parameter values or ground truths (Talts et al. 2018).
For simplicity, we restrict the synthetic data generator to eight instances:
i = {1, 3} × j = {1, 2, 3, 4}. These instances share constants σ, γ, β, ρ, and
N , which are configured identically. In particular, we configure parameters
σ and γ from the assumed values (1

2 for both) in the Cumberland case
study (Vynnycky and White 2010; Andrade and Duggan 2021). Following
this choice, we select a value of β that yields a basic reproduction number
(2.5 ) within a plausible range (2-4 ) of pandemic influenza (Mills, Robins,
and Lipsitch 2004). Regarding ρ, we choose a value (0.75 ) consistent with
reported estimates in the literature (Vynnycky and White 2010; Andrade
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and Duggan 2021). The remaining constant, N , has only a scaling effect, and
any particular value (10,000 in this case) does not alter the model dynamics
provided that N = S0 +E0 + I0 +R0, where E0 = ∑i

k=1 E
k
0 and I0 = ∑j

k=1 I
k
0 .

In relation to initial conditions, we assume that a patient zero triggers the
outbreak of a novel influenza pathogen. In mathematical terms, S0 = N − 1
and I1

0 = 1. The remaining initial conditions of the within-host profile are
set to zero.

Having delimited the SEiIjR framework and configured its instances, we run
simulations (Fig 3.1) that illustrate the impact of the delay structure on the
incidence dynamics. In agreement with the literature (Keeling and Rohani
2011; Wearing, Rohani, and Keeling 2005), note in Fig 3.1 that if we fix
the latent period distribution (i) and vary that for the infectious period (j),
incidence reports that stem from more tightly distributed infectious periods
(larger j) reach the incidence peak earlier and end more abruptly. This
difference in behaviour over time occurs despite the fact that these instances
share identical <0 and equal average latent and infectious periods. On the
other hand, if we fix the infectious period (compare two lines of the same
colour across panels), decreasing the latent period’s variance (increasing i
from 1 to 3 ) produces the opposite effect. Namely, tighter latent period
distributions (larger i) push forward the peak time and extend the outbreak’s
duration.

3.2.2 Measurement component
Yt∗ ∼ Nbin(xt∗ , φ) (3.4)

Borrowing terminology from the state-space literature (Arulampalam et
al. 2002; Bretó et al. 2009), one can frame the output produced by the
SEiIjR framework as predictions obtained from a system or latent com-
ponent. In practice, though, continous and smooth predictions from ODE
models differ from noisy and discrete incidence reports collected by public
health surveillance. Moreover, given that a system component is merely a
partial representation of a more complex reality, some elements are necessarily
omitted. Consequently, it is required to equip the data generating process
with a structure that accounts for the discrepancies between model prediction
and actual data. We refer to this structure as the measurement component.
In epidemiology, one can formulate the measurement of new infections via
the Negative Binomial distribution, considering that this function does not
tie the observation mean to the variance, offering the flexibility to account for
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Figure 3.1: Incidence reports generated by various instances of the SEiIjR framework.
In this plot, we present two distributions of the latent period and four distributions of the
infectious period. The colour of a line corresponds to a particular value of j (infectious
period distribution). Solid lines indicate that the incidence report stems from an SEIR
model with an exponentially-distributed latent period (i = 1). Dashed lines indicate that
the incidence report stems from an SEIR model with a gamma-distributed latent period
(i = 3).
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overdispersion (Bretó 2018). Accordingly, we define the observation of new
cases (Yt∗) in terms of a Negative Binomial distribution (Eq (3.4)) specified
by location (mean) and diffusion parameters. The former corresponds to
the predicted incidence by the system component (xt∗), whereas the latter
(φ) modulates the concentration of measurements. Note that the inverse of
the concentration parameter (φ−1) represents overdispersion inasmuch as an
increase in its magnitude leads to greater diffusion in the data.

Defining a measurement component completes the formulation of the data
generating process. Consequently, we draw samples from Eq (3.4) using
statistical simulation (rnbinom in R). For each SEiIjR instance, we generate
40 noisy time series. We perform this process for two levels (high and low)
of data fidelity, a feature measured by φ−1. High-fidelity data (φ−1 = 0)
implies that the measurement component applies only a slight distortion on
the original signal (incidence). Notice that this configuration of the Negative
Binomial (with no overdispersion) is equivalent to the Poisson distribution.
Conversely, a positive value (overdispersion) of φ−1 (such as 1/3 ) distorts the
original signal to such an extent that one cannot easily discern the underlying
incidence dynamics (low-fidelity data). We generated a total of 320 incidence
reports, of which Fig 3.2 presents a sample of four representative reports
(see Appendix B.1 for the complete set of synthetic data). To facilitate the
communication of results, we introduce the notation Dij, which indicates
the origin of a given set of time series. For example, D14 indicates that the
observed incidence was obtained from the SE1I4R instance.

3.3 Inference
The synthetic incidence reports described in the previous section allow us
to assess the performance of various candidate models in recovering ground
truths, particularly <0, our quantity of interest. Specifically, we fit model
candidates to incidence data following a Bayesian approach (Gelman et
al. 2013; Andrade and Duggan 2021). That is, each candidate’s unknown
parameters are treated as random variables, which describe the knowledge (or
uncertainty) about their actual values (McElreath 2020), expressed in terms
of a probability distribution. This distribution is updated in light of new
information summarised by a likelihood function. This function evaluates the
compatibility between a given incidence report and multiple configurations of
a model candidate (Lambert 2018). Such updating process yields the target
or posterior distribution, an information device whereby we derive answers

51



3.3. Inference

j = 1

j = 4

j = 1

j = 4

φ−1 = 0 (High−fidelity) φ−1 = 1/3 (Low−fidelity)

0 20 40 60 0 20 40 60

0

200

400

600

0

200

400

600

Day

M
ea

su
re

d 
in

ci
de

nc
e 

[N
ew

 c
as

es
/d

ay
]

Points: Synthetic data

The basis for this data stems from simulating SEIR instances with
one stage in the exposed class (E) and j stages in the infectious class (I).

Figure 3.2: Sample of synthetic data. This plot shows four representative incidence reports
(dots) obtained from the simulation of two SE1IjR instances (lines). To obtain each
report, we sample from the negative binomial distribution.

52



Chapter 3. The basic reproduction number and the mean generation time

for our inferential questions. We approximate the posterior distribution
via sampling using Hamiltonian Monte Carlo or HMC (Betancourt 2018),
an algorithm successfully employed to perform statistical inference from
epidemiological models (Andrade and Duggan 2020, 2021, 2022; Chatzilena
et al. 2019; Grinsztajn et al. 2021). This algorithm is provided by the
statistical package Stan (Carpenter et al. 2017).

3.3.1 Three unknowns (traditional): β, ρ, I0

For simplicity, we initially restrict the inference analysis to D1j high-fidelity
observations. To fit each incidence report, we postulate four instances,
j = {1, 2, 3, 4}, from the SE1IjR framework, which share identical mean
latent and infectious periods. We refer to the approach of fixing the means of
the epidemiological delays to values obtained from the literature, regardless of
their distribution, as the traditional parameterisation. Moreover, it is assumed
that the measurement component is fully known. Consequently, discrepancies
between estimated and actual values are ascribed to misspecification in the
infectious period distribution. To avoid confusion between the origin of data
and the fitting model, we denote the latter as M ij. As a consequence, this
design requires the estimation of 320 posterior distributions. Given this
process’s computational burden, we limit the number of random variables in
each model to three: the transmission rate (β), the reporting rate (ρ) and
the initial number of infected individuals in stage one (I1

0 ). The remaining
parameters and initial conditions are considered to be known, i.e. they are
fixed to their actual values. Based on this setup, we fit each candidate
to a given dataset using HMC sampling, with four Markov chains and
1000 iterations (plus 1000 for warm-up) each, checking for convergence
and effective sample sizes. The complete set of results can be found in the
Appendix B.2.1.

The results presented in Fig 3.3 replicate a finding previously reported
in the literature (Wearing, Rohani, and Keeling 2005; Lloyd 2001b): the
existence of a subtle yet fundamental interaction between the assumed model
structure and estimated <0. Misspecifying the infectious period distribution
with a tighter distribution (higher j) generates lower <0 estimates (Fig
3.3A). Furthermore, regardless of the assumed distribution of the infectious
period, all candidate models fit the data equally well. To emphasise the
importance and implications of this observation, we compare inferred and
actual latent incidences in Fig 3.3B. Recall that fitting a candidate model to
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a given incidence (yt) produces a set of samples that describes the posterior
distribution. Then, we use those samples to simulate the candidate’s system
component, thereby generating inferred latent incidences (lines in Fig 3.3B).
Then, those lines are compared to xt∗ , the true latent incidence (Fig 3.1).
Notice that by definition, we do not have access to xt∗ in practical applications,
but by virtue of this simulation study, such an impediment is overcome. The
comparison reveals a symmetry shared among the candidate models. That
is, any of these formulations can match the true latent incidence provided
that β, ρ and I1

0 are configured appropriately. It is important to remark
that this symmetry is restricted to the latent incidence and does not extend
to the dynamics of other states. For instance, candidates with different
delay distributions that yield equivalent incidences will not reach the same
long-term equilibrium, given the differences in their <0.

Logically, such symmetry should render the approach of comparing fit scores
impractical. A fit score, such as the Maximum Likelihood Estimate (MLE),
measures the consistency between a dataset and the output generated by a
model. Since candidates produce equivalent output, differences among MLEs
will solely reflect the stochasticity (noise) of the measurement component.
We empirically verify this conjecture by selecting the candidate with the
largest MLE for each incidence report (see Appendix B.2.1.1.6). We observe
that M11 candidates attain the largest MLE in only 12 out of 20 times
when matching D11 incidence reports. Even worse, M13 instances are always
outperformed in fitting D13 datasets. Overall, no candidate passes the 60%
mark. Similarly, the mean absolute scaled error (MASE), a metric specifically
designed for evaluating the accuracy of time-series forecasts (Hyndman and
Koehler 2006), indicates that candidates produce virtually identical scores
when fitting any given incidence report. In light of this evidence, one can
safely conclude that score comparison is not a reliable approach to determining
the correct distribution of epidemiological delays from incidence data. To
further complicate matters, information criteria (such as AIC and BIC )
and cross-validation methods cannot assist in this task, considering that the
evaluated structures produce equivalent output and share an equal number
of unknown parameters.

3.3.2 Four unknowns: β, ρ, I0, γ

The reason for such inherent symmetry is the generation time, the time
between the infection of a primary case and one of its secondary cases
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Figure 3.3: Inference results obtained from the three-unknown parameterisation. This
plot shows the results of fitting model candidates to incidence reports. A) Comparison of
estimates for the basic reproduction number obtained from fitting four candidate models
to four incidence reports. Error bars correspond to 95% credible intervals, and the vertical
line denotes the true value. B) Comparison between inferred incidence (lines) obtained
from two candidate models fitted to two incidence reports (dots). Twenty time series
represent inferred incidence. Given the high-fidelity data, all inferred incidences are nearly
identical, giving the impression of only one line in each panel.
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(Svensson 2007). This quantity’s shape, in tandem with <0, determines
the initial dynamics of an infectious disease (Wallinga and Lipsitch 2007).
Interestingly, these elements also characterise long-term behaviour. Krylova
& Earn (Krylova and Earn 2013) found that SEIR models that account for
demographic processes with different delay distributions produce equivalent
dynamics of epidemiological transitions (e.g. from annual to biennial epidemic
cycles) if they share identical <0 and mean generation time (τ). An analytical
expression for this last quantity can obtained using the method described by
Svensson (Svensson 2007). In particular, for the SEiIjR framework , τ can
be expressed (Eq (3.5)) as a function of the average delays (σ−1, γ−1) and
the infectious period distribution (j).

τ = σ−1 + j + 1
2j γ−1 (3.5)

In this analysis, we have, until now, fixed the mean generation time on
each candidate model by excluding σ and γ from the inference process.
Taking note of the effects on short and long-term dynamics that produce the
interaction between τ and <0, we now promote γ to the category of estimated
parameter in order to explore the impact of a variable mean generation time.
The reason for choosing γ as the extra parameter is based on the fact that
it interacts with both quantities of interest (Eq (3.2) and Eq (3.5)). This
choice implies the need for estimating four parameters per model instance.
To do so, we follow the approach described in the previous section. The
reader can find the full set of results in the Appendix B.2.2. Unsurprisingly,
given the extra degree of freedom, all candidates fit any of the incidence data
equally well. In this design, though, the match between synthetic data and
fitting model’s output is achieved at the expense of less precision, although
greater accuracy. Precision refers to the width of uncertainty intervals, and
accuracy to whether the interval captures the actual value. To illustrate
this phenomenon, in Fig 3.4, we present the results of fitting four candidate
models (M1j) to four incidence reports that stem from different distributions
of the infectious period (D1j). Here, we see that the range of <0 widened
(Fig 3.4A) compared to that presented in the previous section (Fig 3.3A).

Undoubtedly, the primary insight from allowing γ to vary is the unravelled
interaction between <0 and τ . We visualise this interaction by plugging
samples of β and γ into Eq (3.2) and Eq (3.5) to obtain an approximation
of the expected values of <0 and τ . When these two quantities are displayed
on a scatter plot (Fig 3.4B), a linear relationship appears, regardless of the
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Figure 3.4: Four-unknown parameterisation. A) Comparison of <0 estimates obtained
from four candidates fitted to four incidence reports. Error bars correspond to 95% CrI,
and the vertical line denotes the true value. B) Linear relationship between <0 and
τ estimated from posterior distributions (represented via samples) obtained from four
candidates fitted to four incidence reports. For each sample, we compute the predicted <0
and τ (dots). C) This plot collapses the second column in B into a single panel.
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data’s origin or the fitting model’s structure. The interpretation of such
linear association indicates that for a given fitting model, infinite pairs of
<0 and τ yield equivalent incidence dynamics. However, by virtue of their
linear relationship, each value of τ corresponds to exactly one value of <0.

3.3.3 Three unknowns (alternative): <−1
0 , ρ, I0

More importantly, the linear relationships shown in Fig 3.4B reveal an
intriguing insight. Notice that irrespective of the structure (M1j) fitting data
of any origin (D1j), the true values of <0 and τ as a pair (the intersection
between the dotted and dashed lines) are subsumed into any of the linear
associations. This observation implies that the true <0 can correspond only
to the right τ . Therefore, it could be possible to accurately estimate <0
from a model whose mean generation time is fixed to the true underlying
value, but the shape of the epidemiological delays may differ from that
of the data generating process. To test this hypothesis, we reformulate
the SEiIjR framework so that τ becomes a parameter of every model
instance. Consequently, we combine Eq (3.2) and Eq (3.5) into Eq (3.6),
which expresses β as a dependent variable of four parameters: j, σ, τ , and
<0.

β = j + 1
<−1

0 2j(τ − σ−1)
γ = β<−1

0

(3.6)

Parameter j is based on the fitting model’s structure, whereas σ and τ are
fixed to the true values that produced the incidence reports. For instance, a
D12 report stems from a structure whose σ and τ are equal to 0.5 and 3.5
(applying Eq (3.5)), respectively. Therefore, an M14 candidate fitting this
report has j, σ, and τ fixed to 4, 0.5, and 3.5, respectively. An immediate
consequence of this procedure is the need to constrain γ in order to maintain
logical consistency. Accordingly, we define γ as a function of β and <0
(Eq (3.6)). This approach is analogous to fixing γ to an arbitrary value
that yields the desired τ . Such a value may not correspond to that of the
data generating process. Lastly, the remaining parameter, <0, is subject to
inference. We opt to estimate its inverse for a practical reason. Taking into
account the threshold phenomenon and the fact that all incidence reports
exhibit outbreak-like behaviour, any estimated value of <0 must fall within
the interval (1,∞). It then logically follows that its inverse (<−1

0 ) spans
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Chapter 3. The basic reproduction number and the mean generation time

over the range (0, 1). This transformation permits the inference algorithm
to operate in a much smaller parameter space, which enhances sampling
efficiency.

We subsequently incorporate the redefined components (β and γ) into the
SEiIjR framework to produce an alternative set of four candidate models
with three unknowns: <−1

0 , ρ and I1
0 . Similarly as before, we estimate the

posterior distribution for each candidate fitted to an incidence report. The
reader can find the complete set results in Appendix B.2.3. These results once
more highlight the intrinsic symmetry of SEIR formulations. Specifically,
provided there is an adequate configuration, any candidate structure can
accurately match the observed incidence despite differences in the infectious
period distribution. Nevertheless, this alternative parameterisation exhibits
a distinctive and crucial feature: the estimation of <0 is less sensitive to
the assumed distribution of the infectious delay. To support this claim, we
present in Fig 3.5 the results of fitting the four alternative candidates to four
incidence reports of dissimilar origin. Here, it can be seen that all candidates
recover (via 95% credible intervals) the underlying true <0, notwithstanding
the origin of the data or the fitting model.
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Figure 3.5: Inference results obtained from the three-unknown alternative parameterisation.
This plot compares estimates for the basic reproduction number obtained from fitting
four candidate models to four incidence reports. Error bars correspond to 95% credible
intervals, and the vertical line denotes the true value.

Recovering the underlying <0 is not exclusive to this sample of four datasets
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but is generalised across the 80 high-fidelity D1j datasets. To summarise
this insight, we borrow a concept from the frequentist tradition. Such a
concept known as coverage (Freedman, Pisani, and Purves 2007) means
that if one collects a large number of samples from the same process and
constructs the corresponding confidence intervals, then a certain percentage
of the intervals will contain or cover the true parameter. This percentage is
given by the confidence level. For instance, if one fits a model to 100 datasets
and estimates an equal number of confidence intervals at the 95% significance
level, then 95 of those intervals will cover the true value. Admittedly, it is
implicitly assumed that our 95% credible intervals (obtained from posterior
distributions) are proportional to 95% confidence intervals. Indeed, estimated
intervals for <0 and ρ conform to this concept (see Table B.3 in Appendix
B), where minor deviance is justified by the fact that coverage is defined
asymptotically (infinite measurements). However, asymptotics does not
account for the large deviance observed in the estimates of I0. We explain
this inconsistency in the section below where I0 becomes more prominent.

To conclude this section, we report the analysis of the low-fidelity datasets
(right column in Fig 3.2). The reader can find the results in Appendix
B.3. Overall, we obtain similar insights in comparison to those derived
from the high-fidelity datasets. In the absence of structural differences, it
is unsurprising that the effect of larger noise in the signal (overdispersion)
results in greater uncertainty in parameter estimates. This decrease in
precision (wider credible intervals) can obscure or accentuate features of the
inference process. On the one hand, overdispersion masks biases in estimates.
For instance, noisier measurements cause I0 estimates from the alternative
parameterisation to conform to the expected coverage, which should not
occur based on the results obtained from the high-fidelity datasets. On the
other hand, overdispersion exacerbates identifiability issues. Under the four-
unknown parameterisation, some <0 estimates reach values up to 40. This
result is a reminder that choosing an adequate number of unknowns is not a
trivial decision. Setting more unknowns than the data can tolerate renders
models unidentifiable. In this context, unidentifiability occurs because the
incidence data does not provide enough information to update the prior
distribution of γ. As discussed above, many values of γ are consistent with
the observed incidence, an insight that holds for both levels of data fidelity.
Finally, we note that overdispersion estimates are robust to the choice of the
infectious period distribution.
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3.3.4 Misspecifying the latent period distribution
Thus far, we have conducted the inference process assuming that the la-
tent period distribution (i) is known. Lifting this constraint would strain
our computational resources, producing a four-fold increase in the pool of
candidates fitting a single report (assuming i, j ∈ {1, 2, 3, 4}). Instead of
undertaking such costly exploration, one could leverage the fact that the
mean generation time depends solely on the mean latent period rather than
its particular distribution (Eq (3.5)). To test this idea, we compare the
estimates obtained from candidate models with the right and wrong latent
period distribution. We illustrate this process with the 80 D3j low-fidelity
(φ−1 = 1/3) datasets. For each dataset, we fit eight candidates M ij from
the traditional three-unknown parameterisation, where the latent period
distribution can take the wrong (i = 1) and the right (i = 3) values, and the
infectious period distribution varies as before, namely, j ∈ {1, 2, 3, 4}. The
reader can find the complete results in Appendix B.4.

To facilitate the presentation of the results, we first focus on candidates M13

and M33 fitting one D33 incidence report. Fig 3.6A shows that both models
predict similar, although not identical, latent incidence dynamics. Further
inspection reveals that the slight difference in the predicted incidence due
to dissimilar latent period distributions does not lead to variation in <0
estimates. To corroborate this assessment, we expand the analysis to the
eight candidates matching the same incidence report. The right-hand side of
Fig 3.6B shows that <0 estimates are sensitive to variation in the structure
of the infectious period but are indifferent to the latent period distribution.
In compliance with the literature, the more dispersed latent period (i = 1)
leads to an earlier incidence peak compared to the tighter distribution (i = 3)
in the context of identical <0.

Nevertheless, the mechanism that enables models with heterogeneous distri-
butions to produce analogous incidence dynamics remains unexplained. The
left-hand side of Fig 3.6B, which displays I0 estimates, provides the first hint.
This plot shows that instances with the wrong latent period distribution
(M1j) systematically underestimate (via 95% credible intervals) the actual
value (vertical line). To explain this phenomenon, we draw on a broader
view of the posterior distribution. It is commonplace to restrict inference
analyses to one parameter at a time (i.e. marginal distributions), neglecting
the information provided by the full posterior distribution. To redress this
shortcoming, we visualise the full distribution via pair plots. Specifically, Fig
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3.6C corresponds to the summary of the posterior distribution obtained from
fitting M13 to one D33 incidence report. The upper triangular elements of
this plot indicate that the three estimated parameters are strongly correlated.
Especially β and I0, or more compellingly, <0 and I0. Recall that the basic
reproduction number is directly proportional to β. Therefore, although the
mean generation time determines which <0 corresponds to the observed
incidence, I0 (and ρ to a lesser extent) regulates the flexibility of <0 to reach
such a desired value. Interestingly, I0 provides such a degree of flexibility that
unrealistic adjustments in its estimates allow us to equate dissimilar model
structures. Notice that the only discernible difference between Fig 3.6C and
Fig 3.6D (M33 fitted to D33) is seen in the marginal distributions of I0. In
fact, this phenomenon explains the failure of the alternative parameterisation
to recover the true value of I0.

In view of these symmetries, it is not unreasonable to expect that candi-
dates from the four-unknown and the alternative parameterisations, too, are
indifferent to the latent period distribution once I0 and ρ correct for any mis-
specification. To verify this premise, we fit the parameterisations mentioned
above to the D3j low-fidelity incidence reports. As anticipated, the inference
results indicate that the four-unknown parameterisation (Appendix B.4.3)
uncover the linear association between τ and ρ due to the unidentifiability
of γ. Likewise, the alternative parameterisation (Appendix B.4.4) recovers
the true <0 irrespective of the formulation of the epidemiological delays.
Furthermore, we replicate these results using the D3j high-fidelity datasets
(see Appendix B.5).

3.3.5 Sensitivity analysis
So far, model candidates have been amalgamated with the appropriate
measurement component. In this section, we explore the implications that
can arise from ignoring overdispersion. That is, equipping model candidates
with a Poisson measurement component. We perform such exploration by
inferring <0 from M1j candidates (alternative parameterisation) fitted to the
D3j low-fidelity datasets discussed in the previous section. As expected, the
results indicate that employing the Poisson distribution (see Appendix B.4.5)
leads to overconfident (too precise) and biased (inaccurate) estimates in the
context of overdispersion. We observe these features with narrow uncertainty
intervals that do not cover the true value. This result implies that the wrong
choice of the measurement component can offset any gains in accuracy due
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Table 3.1: Scenarios

Scenario <0 τe <0 recovered? (Hf) <0 recovered? (Lf)
1 2.5 4 Yes Yes
2 2.5 8 Yes Yes
3 2.5 13 Yes Yes
4 9.0 4 No Yes
5 15.0 4 No Yes

Note: Hf: High-fidelity. Lf: Low-fidelity

to the alternative parameterisation.

On the other hand, the synthetic data used for the analysis presented in the
previous sections stems from models configured to identical <0 and similar
mean generation times (variation due to the infectious period distribution).
Naturally, one wonders whether the usefulness of the alternative parame-
terisation holds in other conditions. To answer this question, we repeat
the workflow described in this chapter for additional scenarios of τ and <0.
For simplicity, we restrict this sensitivity analysis to datasets derived from
models with an exponentially-distributed latent period (D1j). Additionally,
we equip the fitting candidates with the appropriate measurement compo-
nent. The complete set of results is presented in Appendix B.6. We present
these results in terms of scenarios (Table 3.1). For instance, the base case
scenario, Scenario 1, corresponds to data generated from SEiIjR configured
to <0 = 2.5 and τe = 4 (results presented in Section 3.3), where τe serves as
a scenario identifier and denotes the mean generation time obtained from an
exponentially-distributed infectious period (j = 1).

For Scenario 2, we increase the reference mean generation time (τe = 8),
while keeping <0 at 2.5. First, we focus on the high-fidelity datasets. Overall,
the greater the divergence between the fitting model’s infectious period
distribution and the distribution that generated the data, the greater the
loss in accuracy (lower coverage). To provide an example, the 95% credible
intervals constructed from M14 candidates fitting D11 incidence reports only
attain coverage of 30% for <0. Closer inspection, though, reveals that such
accuracy loss is more statistical than practical. To support this statement,
we calculate the average relative difference between the actual and estimated
<0, finding that misspecification of the infectious period distribution leads
to a maximum average relative error of 2%. In contrast, we would obtain
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discrepancies up to 15 % if we adopted the traditional approach. Simply
put, it is costlier to misspecify the mean generation time than the mean
infectious period. Furthermore, such slight differences in the alternative
parameterisation are erased by overdispersion. That is, overdispersion masks
minor misspecification in the process component. Moreover, in Scenario 3
(<0 = 2.5, τe = 13), we observe that further increasing of the mean generation
time does not lead to significant drops in the coverage of <0 under both levels
of data fidelity. In a nutshell, it is reasonable to suggest that the alternative
parameterisation is robust to various levels of the mean generation time.

Conversely, we cannot maintain the same assertion for various values of <0.
Indeed, Fig 3.4C provided the first hint. This plot shows that the straight
lines do not overlap as <0 reaches relatively high values. Consequently, in
scenarios 4 (<0 = 9, τe = 4) and 5 (<0 = 17, τe = 4), we test the implications
of larger transmissibility levels. The results indicate that as we increase
the underlying <0 for generating the data, the equivalency among fitting
models dissipates and misspecification in the infectious period distribution
leads to biased estimates of <0. The size of such bias is proportional to
the misspecification of the infectious period and the underlying <0. This
feature is primarily seen in the estimates derived from high-fidelity datasets,
where coverage levels are low, and the average relative error between actual
and estimated values cannot be overlooked. However, when we examine
the posterior distributions obtained from fitting the low-fidelity data, it is
seen that, once again, overdispersion masks misspecification in the process
component, as evidenced by the high coverage levels. This is not to say
that overdispersion is a desired feature in the data, but rather to emphasise
that its presence hinders the attainment of precise estimates. Undoubtedly,
having this understanding is of practical importance, given that it allows us
to discern the necessary effort in data collection and model improvement.

3.4 Application to Influenza A
Leveraging the knowledge gained from the synthetic data, the last step in
this work consists of exploiting the relationship between the basic repro-
duction number and the mean generation time to update the <0 estimate
of an outbreak of the 1918 influenza pandemic. The reader can find the
full set of results in Appendix B.7. In particular, we focus on an outbreak
that occurred in the city of Cumberland (Maryland) during the autumn of
1918, for which the U.S. Public Health Service organised special surveys
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(Frost and Sydenstricker 1919) to determine the proportion of the population
infected. Previous studies (Vynnycky and White 2010; Andrade and Duggan
2021) employed the default heuristic of adopting an SEIR with exponentially-
distributed epidemiological delays whose means were configured to values
reported in the literature. Moreover, in these studies, the SEIR was coupled
with the Poisson distribution resulting in a 95% CI [2.5–2.6] for <0. However,
adopting a more realistic measurement component, such as the Negative
Binomial distribution, produces lower and wider estimates: 95% CI [2.2,
2.4]. Further, if we jettison the assumption of an exponentially-distributed
infectious period for a more realistic distribution, such as the gamma distri-
bution, we obtain even lower estimates. For instance, a gamma-distributed
infectious period with four stages (SEI4R) returns a 95% CI of [2.0, 2.2].
As noted earlier, the estimates obtained from this default heuristic or tra-
ditional approach are sensitive to the uncertainty in the infectious period
distribution. On the contrary, when we fix the mean generation time in
the SEIjR (alternative parameterisation) to a value (2.85 days) obtained
from the literature (Wallinga and Lipsitch 2007; Hirotsu et al. 2004), we
derive nearly identical <0 estimates (95% CI [2.0, 2.1]) regardless of the
infectious period distribution (Fig 3.7). Notice that this estimate is similar to
that obtained from the SEI4R, bolstering the fact that the actual infectious
period is far from being exponentially distributed.

3.5 Conclusion
The misspecification of various assumptions within the SEIR framework can
negatively impact the estimation of <0. In recognition of this risk, we ran a
simulation study comprised of approximately 1000 synthetic datasets and
8000 model fits, whereby we identified the relative influence of some of those
assumptions. Specifically, we found that fixing the mean generation time
to a reliable estimate is of paramount importance. In contrast, one can be
more lenient on the specification of the latent period distribution and the
mean infectious period provided that other estimated parameters (I0 and
ρ) redress the misspecification. We leveraged this knowledge to formulate
an alternative parameterisation that is more robust to the uncertainty of
the epidemiological delays. However, there is a caveat with this alternative
formulation. Although it exploits a local symmetry (incidence dynamics) of
the SEIR framework, such symmetry does not extend to the other states
of the system. Therefore, the usefulness of the alternative parameterisation
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Figure 3.7: Application of the three-unknown alternative parameterisation. This plot
shows the estimates obtained from fitting four candidates (M1j) to the daily number
of influenza cases (rhombi) detected by the U.S. Public Health Service in Cumberland
(Maryland) during the 1918 influenza pandemic, from 22 September 1918 to 30 November
1918. Ribbons correspond to 95% credible intervals of the predicted reported cases by two
candidate models. The solid line denotes the median. The box inside the plot shows the
estimates for the basic reproduction number by fitting model. Error bars correspond to
95% credible intervals.
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is confined to the estimation of <0, and it is not a substitute for other
kinds of analyses. For instance, if, on the contrary, our variable of interest
were I0, we would obtain unreliable estimates. Furthermore, the alternative
SEIR with exponentially-distributed delays will be as overoptimistic as its
traditional counterpart in predicting the critical vaccination proportion or
the effectiveness of an imperfect VIH treatment in the context of within-host
dynamics (Lloyd 2001b). Therefore, the alternative parameterisation is a
mitigation strategy in the absence of complete information. Furthermore,
its usefulness is abated by highly transmissible pathogens (Section 3.5).
Nevertheless, biases in the estimates due to large <0 are only detected with
high-fidelity data. That is, data with little or no overdispersion.

Despite the significant computational effort of simulation analyses, a single
study cannot offer overarching statements. Further work is required to
test the validity of these insights in stricter or more elaborated contexts.
For instance, we assumed the complete availability of the incidence time-
series throughout this study. This assumption restricts the validity of the
approach to retrospective analyses. However, other situations exist where
only fewer incidence measurements are available to the modellers, such
as the early phase of a pandemic response. Hence, it remains to be seen
the effect of various levels of data availability on the performance of the
suggested approach. Furthermore, for simplicity, we ignored age-related
effects in the dynamics of the infectious disease as well as process stochasticity
(demographic and environmental) and time-varying contact rates. We expect
that future research builds on the findings provided by this study and
addresses the aforementioned challenges to construct ever more reliable
inference approaches.
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Chapter 4

Time-varying transmission rate

The work presented in this chapter was published in:

Andrade, J., Duggan, J., 2022. Inferring the effective reproductive num-
ber from deterministic and semi-deterministic compartmental models using
incidence and mobility data. PLOS Computational Biology, 18(6).

4.1 Introduction
Since early 2020, SARS coronavirus 2 (SARS-CoV-2) has spread through-
out the seven continents, causing a COVID-19 pandemic of catastrophic
consequences, including the loss of millions of lives and jobs. In the early
days of the pandemic, given the absence of vaccines and the lack of ef-
fective therapeutics, governments primarily relied on non-pharmaceutical
interventions (NPIs) to reduce the transmission of SARS-CoV-2, thereby
lowering the death toll. Although effective in preventing deaths (Flaxman et
al. 2020), NPIs such as mobility restrictions and stay-at-home orders impose
a burden on society with economic and psychological costs (Douglas et al.
2020). In addition to this, the effectiveness of these interventions wanes over
time as compliance progressively diminishes. Following these considerations,
policymakers strive to find an adequate balance between the interventions’
severity and acceptable transmission levels. In this decision-making process,
the effective reproduction number plays a crucial role. Briefly, the effective
reproduction number, <t, is the time-varying average number of secondary
cases caused by a primary case at a calendar time t (R. Anderson and May
1992; Nishiura and Chowell 2009), and it is a theoretical indicator of the
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course of an infectious process (Vynnycky and White 2010). Above the
epidemic threshold (<t > 1), each infectious person leads to more than one
secondary infectious person, and the disease is (re)emerging (Brett et al.
2020); below that threshold, there is limited secondary transmission. In
practice, policymakers can use <t in two ways. First, as a guide to assess in
near real-time whether the interventions are succeeding (<t < 1) or whether it
is required to increment the response’s strength (Nishiura and Chowell 2009).
Second, in retrospective analyses to assess how policy decisions, population
immunity, and other factors have impacted transmission at specific points in
time (Gostic et al. 2020).

Generally speaking, <t is the result of a combination of intrinsic (decline in
susceptible individuals) and extrinsic (change in contact patterns due to the
implementation of control measures) factors (Nishiura and Chowell 2009),
for which there are no readily available measurements. One, therefore, must
resort to statistical methods to obtain an approximation of this epidemic
indicator. On one end of the spectrum, we find widely applicable and context-
independent empirical methods such as the two-step Bayesian procedure
proposed by Cori and colleagues (Cori et al. 2013; Thompson et al. 2019)
and the likelihood-based estimation procedure proposed by Wallinga and
Teunis (Wallinga and Teunis 2004). At the other end of the spectrum, we can
infer <t from compartmental models calibrated to incidence data (Andrade
and Duggan 2020), which is the focus of this chapter. In addition to serving
as vehicles to obtain estimates, these mechanistic models are based on a
scientific understanding of infectious disease dynamics (Bretó 2018), which
one can interpret as a dynamic hypothesis of the underlying process that
produces the observable behaviour patterns. This feature implies that fitting
a compartmental model to data also tests a hypothesis that links structure to
behaviour (Oliva 2003). It thus follows that parameter estimates derived from
this procedure have an interpretation in the real world. Notwithstanding
these advantages, <t estimates from compartmental models are sensitive to
data availability and assumptions in the model structure (Gostic et al. 2020).

One such assumption is the transmission rate’s dynamics. In the context of
the COVID-19 pandemic, the assumption of a constant transmission rate is
rendered unrealistic, apart from a few days in the initial phase of the outbreak
(Dehning et al. 2020; Davies et al. 2020). The rationale is that under the
imminent surge of cases, governments implemented NPIs at early stages
to reduce the number of contacts among the population. Modellers thus
are required to describe formally the changes in the transmission rate over
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time. For instance, in measles studies (Bretó et al. 2009; He, Ionides, and
King 2010; Keeling, Rohani, and Grenfell 2001), it is not unusual to assume
term-time forcing structures (X. Liu and Stechlinski 2012), where the contact
rate experiences sudden changes in time (e.g., because of school holidays).
Other approaches have adopted smoothly-varying functions (X. Liu and
Stechlinski 2012) to model the transmission rate in tuberculosis outbreaks
(L. Liu, Zhao, and Zhou 2010). In COVID-19 analyses, the transmission rate
has been described as episodes of constant contact rates separated by change
points where a transition occurs (Dehning et al. 2020; Linka, Peirlinck, and
Kuhl 2020; Duggan et al. 2024). These are likely once-off models, more
appropriate for retrospective analyses, whose formulations are not designed
to incorporate new data that account for policy changes (unless the structure
is modified).

Nevertheless, ascertaining which deterministic formulation is the most ade-
quate is far from straightforward. Its search involves several trial-and-error
iterations and model comparisons until a satisfactory structure is found.
If one aims for near real-time estimates, random-walk formulations offer a
flexible device to uncover the underlying transmission rate dynamics (Endo,
van Leeuwen, and Baguelin 2019). This type of structure does not impose
stringent constraints on the transmission’s rate shape, facilitating the incorpo-
ration of new data without structural modifications. This approach has been
applied to studying an influenza pandemic (Dureau, Kalogeropoulos, and
Baguelin 2013; Endo, van Leeuwen, and Baguelin 2019) and Ebola outbreaks
(Funk et al. 2018; Camacho et al. 2015). Although random-walk models yield
fits to incidence data, the match between observed and simulated data may
be achieved at the expense of large uncertainty bounds. Moreover, under this
framework, the inference of time-independent parameters requires burden-
some computational efforts. More recently, the extensive research provoked
by the COVID-19 pandemic prompted researchers to use non-traditional
sources of data to infer the transmission rate. In particular, mobility data has
been assumed as a proxy for the changes in the transmission rate (Davies et
al. 2021). In doing so, the dynamics exhibited by the transmission rate have
an inherently plausible explanation (changes in human behaviour measured
by mobile devices) so that models can more easily incorporate new incidence
measurements. However, it should be mentioned that this approach entails
a stringent assumption wherein one tacitly assumes a perfect correlation
between changes in mobility data and effective contact patterns. Thus,
discrepancies between actual and assumed transmission rates may result in
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unnecessary corrections to the estimates of other unknown parameters.

Consequently, this chapter aims to draw upon the strengths of the approaches
described above to formulate a complementary process for estimating <t
from compartmental models. Specifically, we build three structures or Data
Generating Processes (DGP) that accounts for Ireland’s first COVID-19
wave. Two DGPs incorporate stochastic features in the transmission rate,
whereas the other formulation is exclusively deterministic. These structures
are complementary in the sense that the results obtained from one DGP
inform the subsequent one. Below, we describe each DGP in detail, the
inference process to obtain estimates for <t and other unknown quantities
(Fig 4.1), and finally, discuss the results. All the analysis is performed in
R, mainly supported by the statistical packages pomp (King, Nguyen, and
Ionides 2016) and Stan (Carpenter et al. 2017). The code is freely available
at https://github.com/jandraor/time_varying_beta/tree/thesis.

4.2 Results

4.2.1 Context
By the end of February 2020, more than sixty countries had detected at least
one case of COVID-19 (Ritchie et al. 2020), including Ireland, where the first
confirmed case was announced on the 29th of February. Twelve days after this
event, the Irish Government ordered the closure of all schools, colleges, and
childcare facilities, followed by a stricter stay-at-home mandate implemented
on the 27th of March. These interventions resulted in low incidence and
mortality rates, which allowed easing the restrictions from mid-May. In Fig
4.2A and 4.2B, respectively, we present the number of daily (y1

d) and weekly
cases (y1

w) detected from the first report up to the point where the restrictions
began to be lifted, a period that we refer to as the first wave.

In a nutshell, stay-at-home orders and similar measures aim to restrict the
movements of a population so that the risk of exposure to a transmissible
pathogen is reduced. Impractical several years ago, the advent of smartphones
has permitted us to gauge patterns in population mobility in real-time. For
instance, since the 13th of January, 2020, Apple has provided an index that
quantifies the level of mobility by transportation type (driving, transit, and
walking). Apple generates this data by counting the number of requests
made to Apple Maps for directions. Fig 4.2C shows Ireland’s daily driving
mobility levels during the first wave (y2

d), and Fig 4.2D, the value at the
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DGP1 DGP2 DGP3

OM1 OM2

GBM
NTH-SM

PM2

SEI3R

INFERENCE METHOD

Iterated Filtering + Particle Filter Hamiltonian Monte Carlo

PM1 PM3

CIR

Figure 4.1: Schematic diagram of the data generating processes (DGPs) explored in this
chapter. This diagram aims to portray the DGPs as the ensemble of two components: a
measurement or observational model (ellipse) and a process model (rounded rectangle).
For instance, DGP1 is the amalgamation of the measurement model OM1 and the process
model PM1. The process model is in turn the ensamble of two structures: a within-host
profile (hexagon) and a time-dependent transmission rate (rhombus). Whereas all process
models share a common within-host profile (SEI3R), they differ in the formulation of the
transmission rate: Geometric Brownian Motion (GBM), Cox-Ingersoll-Ross (CIR), and
nth-order exponential smoothing (NTH-SM). The inference method employed on each
DGP depends upon the nature of the process model (Iterated Filtering + Particle Filter
for stochastic structures and Hamiltonian Monte Carlo for deterministic ones).
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Figure 4.2: Incidence and mobility data. (A) Daily number (rhombus-shaped points) of
COVID-19 cases detected during Ireland’s first wave, from the 29th of February 2020 to
the 17th of May 2020. The x-axis indicates the date in which the infected individuals were
swabbed. The line represents the smoothed trend (via LOESS method) from the data (B)
Weekly number of COVID-19 cases detected in during Ireland’s first wave. The x-axis
indicates the number of weeks since the first case was detected. (C) Apple data for Ireland
from the 29th of February 2020 to the 17th of May 2020. Points represent the normalised
amount of daily requests for driving directions. These indexes are normalised to the value
on the 28th of February 2020. We highlight points every 7 days. These highlighted points
are used to calibrate DGP1 and DGP2. The line represents the smoothed trend (via
LOESS method) from the data. (D) Normalised amount of daily requests for driving
directions at the end of each week starting from the 29th of February 2020. These bars
correspond to the highlighted points in C.
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end of each week (y2
w) from the 29th of February 2020. This dataset, along

with the incidence reports, will serve as the basis to calibrate the proposed
compartmental models below.

4.3 State-Space Models
Xt ∼ pθX,t(xt|xt−1) (4.1)

Yt ∼ pθY,t(yt|xt) (4.2)

One can frame the inference process for compartmental structures follow-
ing the terminology provided by state-space models (SSM) (Chopin and
Papaspiliopoulos 2020), also known as Partially observed Markov process
models (Ionides, Bretó, and King 2006). Through an SSM, one conceives
a DGP as a generative probabilistic model that consists of two discrete-
time Markovian mechanisms. The first mechanism (Eq (4.1)) describes the
evolution over time of the system’s latent states (X), where Xt is drawn
conditionally on the previous state of the latent process (Xt−1) according to
the density pθX,t(xt|xt−1). Therefore, the DGP is a Markov chain (Blitzstein
and Hwang 2019), as the state of the latent variable at time t depends only on
its previous state and the distribution from which it comes. In the literature,
Eq (4.1) is often referred to as the latent process model (Bretó et al. 2009)
or the system model (Arulampalam et al. 2002). Intuitively, this formu-
lation corresponds to the set of causal assumptions (dynamic hypothesis)
that explains a phenomenon of interest in terms of states and transitions
(rates). The process model may be defined in continuous or discrete time
(Ionides, Bretó, and King 2006), but only its distribution at discrete times is
considered (Xt, Xt+1, Xt+2, . . . , Xt+h), where t ≥ 1 and h is an integer. For
simplicity, we assume that X0 is known.

In epidemiology, it is commonplace to represent the process model via com-
partmental structures in which individuals are categorised according to their
infection status (Keeling and Rohani 2011). We refer to this categorisation
as the within-host profile. Formally, one can employ a system of differential
equations to build such compartmental models. The reader should recall that
any system of ordinary differential equations dx

dt
= f(x) is Markovian. Here,

we adopt the SEI3R profile (Davies et al. 2020; Gleeson et al. 2022), an
extension of the SEIR framework. Under this profile, we stratify individuals
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as susceptible (St), exposed (Et), infectious, and recovered (Rt). We further
disaggregate the infectious class by medical status, resulting in three compart-
ments: preclinical (Pt), clinical (It), and subclinical (At) (see Materials and
Methods section for the complete description). The three DGPs presented in
this chapter share the SEI3R profile (Fig 4.1).

On the other hand, the exact state of the population at any given time
is generally not observable and must be inferred from available data via
statistical inference (Rasmussen, Ratmann, and Koelle 2011). It is thus
necessary to formally relate (Eq (4.2)), at each discrete time (t ≥ 0), latent
states to noisy measurements via a measurement or observational model
(Arulampalam et al. 2002), where each Yt is drawn conditionally on the most
recent state of the latent variable, according to the density pθY,t(yt|xt). This
work draws on incidence and mobility data to formulate such measurement
models.

4.3.1 DGP1 - Geometric Brownian Motion
βt = ζZt (4.3)

dZ

dt
= αZtdW (4.4)

dW ∼ Normal(0,
√
dt) (4.5)

Thus far, we have not yet defined the time-varying effective contact rate or
transmission rate (βt). When defined, this component is integrated with the
SEI3R profile to form a process model (Fig 4.1). For this and the other two
DGPs, we formulate βt as the product of two components (Eq (4.3)). Here,
ζ denotes the transmission rate’s initial value. Namely, β0 = ζ. From this
definition, it follows that Zt represents the transmissions rate’s change over
time relative to its initial value, where Z0 = 1. In relation to Zt dynamics, we
initially opt for a flexible approach to build this first process model (PM1).
Specifically, we define dZ

dt
in terms of Geometric Brownian Motion (GBM) with

no drift (Eq (4.4)-(4.5)), an approach adopted in previous studies of influenza
and Ebola (Dureau, Kalogeropoulos, and Baguelin 2013; Endo, van Leeuwen,
and Baguelin 2019; Funk et al. 2018; Camacho et al. 2015). This stochastic
structure is a model for the change in a random process, dZt, in relation to
the current value, Zt, where the proportional change dZ

Zt
follows Brownian
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motion (Wiersema 2008). That is, normal distributed random jumps (dW )
moderated by a volatility parameter (α). We do not imply that the actual
transmission rate follows a random walk. In fact, the expected value of Zt is
constant over time (Z0); strictly speaking, a martingale (Wiersema 2008). In
practice, however, we use this structure as a scaffold to obtain some idea of
the non-linear structure of the process without committing to a particular
form of non-linear model (Priestley 1980). This procedure resembles the
use of smoothing splines to estimate coefficients that are allowed to vary as
smooth functions of other variables (Hastie and Tibshirani 1993). Although
not a requirement for this work, smoothing splines also have a Bayesian
interpretation under certain conditions (Kimeldorf and Wahba 1970). In
particular, we use the GBM structure to generate non-negative random walks
from an initial value (Fig 4.3A displays a set of possible trajectories). The
main benefit from random walks is that at each time t, we propose several
possible paths that the transmission rate may take and then use the available
data to determine their plausibility (Endo, van Leeuwen, and Baguelin
2019). In doing so, we unravel the dynamics of the effective contact rate.
Formally put, we approximate p(xt|y0:t), the filtering distribution (Chopin
and Papaspiliopoulos 2020) (see Materials and methods).

As noted above, the measurement model is the link between the process
model and the data whereby one quantifies (through likelihood densities) the
relative consistency of each set of parameter values, or model configuration,
with observations. This quantification allows us to perform inference on
time-varying and time-independent parameters. Thus, any misspecification
in the measurement formulation can lead to overly confident conclusions
(Bretó 2018) or biased estimations. In light of its importance, we prevent
the consequences of model misspecification by proposing and testing six
candidates that account for the incidence data (y1). Moreover, a subset of
these candidates incorporate mobility data (y2), assuming that this dataset
is a proxy observation of the relative contact rate (Zt).

Before defining each candidate, we clarify certain assumptions regarding the
available datasets. On the one hand, for the incidence data (y1), we posit that
actual periodic (daily or weekly) symptomatic COVID-19 cases (Ct) stem
from the transition Pt → It. Our assumption implies that individuals seek
the healthcare system for a diagnostic test as soon as they develop symptoms.
Furthermore, under this formulation, it is implicit that underreporting is
due to the non-identification of asymptomatic cases. On the other hand, for
mobility data (y2), we emphasise its proxy nature. Contrary to the incidence
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Figure 4.3: Brownian motion trajectories. (A) 200 simulations from a transmission rate
described by GBM. We generate these simulations from DGP1’s Maximum Likelihood
Estimate (MLE) using the Euler-Maruyama (EM) algorithm. (B) 200 simulations from
a transmission rate described by the CIR model. We generate these simulations from
DGP2’s MLE using the EM algorithm. In both plots, highlighted trends corresponds to
the mean trajectory.
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time series, it is not anticipated that models yield faithful replications of
Apple’s mobility indexes. Should that be the case, we would have included
this data (directly or parametrically) in the process model. However, we
refrain from doing so as we deem there may be instances where the two
elements are not strongly correlated. To illustrate this point, we consider
the case in which the government relaxes social distancing mandates and
individuals adopt a mask-wearing behaviour. Under these circumstances, the
resulting increase in mobility and social contacts due to relaxed rules do not
necessarily entail an equivalent effect on the effective contact rate given that
individuals properly wear face coverings during their interactions. Hence,
rigid structures in the process model may lead to unrealistic corrections
in other parameters. As opposed to such inflexibility, we expect that the
mobility data acts as a nudge on the transmission rate, guiding the latter
towards the former only when plausible. In light of these considerations,
for candidates 1 and 2, we formulate the observation of daily symptomatic
COVID-19 cases (y1

d) as independent Poisson and Negative Binomial counts,
respectively. Then, we add an observational mechanism that relates Apple’s
daily driving data (y2

d) to the transmission rate’s relative level (Zt), yielding
candidates 3 and 4. Finally, even though King and colleagues (King et
al. 2015) recommend that “models should be fit to raw, disaggregated data
whenever possible and never to temporally accumulated data”, on candidates
1 and 3, we modify their periodicity from daily to weekly measurements,
resulting in candidates 5 and 6. It should be noted that the use of weekly
measurements has been performed previously in similar studies (Dureau,
Kalogeropoulos, and Baguelin 2013; Endo, van Leeuwen, and Baguelin 2019;
Funk et al. 2018; Camacho et al. 2015). We refer the reader to Appendix
C.2 for the complete set of equations.

Having defined process and measurement structures, we proceed to the infer-
ence stage (Table 4.1 summarises the results). Since non-linear SSM do not
allow closed-form solutions (Chopin and Papaspiliopoulos 2020) to calculate
likelihood values, we must resort to simulation-based approaches such as
Sequential Monte Carlo, also known as the Particle Filter. Naturally, these
estimates must be robust so as to guide the inference process. By robustness,
we refer to the quality that the Particle Filter returns similar likelihood
values for various runs from a single model configuration. Furthermore, as
with any Monte Carlo approach, it is expected that as the number of samples
tends to infinity, the likelihood error (among various runs) converges to zero.
To test this feature, we run the Particle Filter using the R package pomp,
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Table 4.1: Measurement model candidates

Id Frequency Incidence Mobility Converges Fits incidence
1 Daily Pois No No N/A
2 Daily Nbin No Yes Yes
3 Daily Pois Yes No N/A
4 Daily Nbin Yes Yes No
5 Weekly Pois No Yes Yes
6 Weekly Pois Yes Yes Yes

which implements the Sequential Importance Sampling algorithm (Gordon,
Smith, and Salmond 1993). In particular, through these runs, we evaluate
likelihood estimates for each model candidate by varying the number of
particles (samples), the integration step size, and the model configuration
(see Appendix C.3). The results indicate that measurement models that
account for daily incidence observations as Poisson counts lead to unstable
estimates. This finding suggests model misspecification in candidates 1 and
3, which are discarded from the pool.

To the remaining candidates, we estimate their latent states. Given its
strength to infer time-varying random variables in the state space, the Particle
Filter is also appropriate to numerically approximate (via samples) filtering
distributions (Arulampalam et al. 2002). Nevertheless, drawing relevant
samples requires plausible fixed-parameter values. Here, we assume that three
parameters in PM1 are unknown: the effective contact rate at time 0 (ζ),
the initial value of preclinical individuals (P0), and the volatility parameter
(α). Moreover, additional parameters may be required depending upon the
specific measurement model. To infer such parameters, we employ the Iterated
Filtering algorithm (Ionides, Bretó, and King 2006; Ionides et al. 2011).
This Maximum Likelihood estimation method has been designed to perform
statistical inference on SSM and has been widely used to study infectious
disease models (Ionides, Bretó, and King 2006; Bretó et al. 2009; He, Ionides,
and King 2010; King et al. 2015; Wale et al. 2019). Briefly, Maximum
likelihood via Iterated Filtering (MIF) is a modified version of the Particle
Filter, in which a sequence of filtering operations converges to the Maximum
Likelihood Estimate (MLE). The key feature in this procedure is the set
of stochastic perturbations applied to the unknown parameters in between
the sequence of filtering operations, resulting in the selection of plausible
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parameter values in the light of the available data. Furthermore, the synergy
between MIF and the Particle Filter permits us to calculate uncertainty
bounds around the MLE. In particular, we use the Profile Likelihood method
(Pawitan 2013) and its refined version, the Monte Carlo-adjusted profile
(Ionides et al. 2017). Ultimately, all of this information facilitates the
construction of the parameters’ likelihood surface.

For each model, we leverage its likelihood surface to draw sets of point
estimates from the neighbourhood surrounding the MLE (King et al. 2015).
These draws are subsequently plugged into the Particle Filter. In addition to
likelihood estimates, pomp returns, for every run, a set of samples representing
the filtering distribution at each time t. Then, we assign a weight to each
run based on its relative likelihood. In doing so, we account for parameter
uncertainty in the results. Finally, we summarise the results by computing
weighted averages on the samples. This procedure allows us to calculate the
uncertainty in the predicted latent states by the filtering distribution. The
reader can find the complete set of results in Appendix C.4-C.7.

dC

dt
= ηPt − Ctδ(tmod 7) (4.6)

y1
w ∼ Pois(Ct) (4.7)

y2
w ∼ Normal(Zt, τ) (4.8)

The inference process on Candidate 2 (see Appendix C.4) reveals that this
model yields a filtering distribution that fits the observed daily incidence.
Interestingly, although Candidate 2 ’s measurement model does not incor-
porate mobility data in its structure, the predicted relative contact rate
captures the observed mobility indexes, albeit with a large degree of uncer-
tainty. This finding supports the argument that such a dataset could be
an adequate proxy for the relative contact rate. Then, one would logically
expect that incorporating Apple’s data into the measurement model (as
we did for Candidate 4 ) would diminish the resulting uncertainty in the
filtering distribution. However, the results (see Appendix C.5) show that the
enhanced fit on the effective contact rate stems from unrealistic corrections
to the predicted incidence, rendering Candidate 4 unreliable. On the other
hand, we notice that Candidate 5 ’s filtering distribution and parameter
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estimates convey similar insights to those of Candidate 2. Therefore, the
change in periodicity does not result in severe loss of information. Yet more
important, the crucial feature of the weekly formulation is that it allows
integrating mobility data seamlessly into the measurement model (Candidate
6 ). This integration is accomplished without compromising the prediction on
incidence counts and simultaneously reducing the uncertainty in the relative
contact rate’s fit. This behaviour differs from the unrealistic fit achieved by
Candidate 4. We ascribe the resulting harmony between the two datasets
to the stringency imposed by the Poisson distribution, which implicitly pri-
oritises incidence counts over mobility indexes. In consequence, we select
Candidate 6 ’s measurement model (Eq (4.6)-(4.8)) as the structure (OM1)
that completes DGP1’s formulation (Fig 4.1).

Fig 4.4A presents a comparison between the predicted number of weekly
symptomatic cases from DGP1 and observed incidence. Notice that this is a
contrast between measurements (y1

w) and a latent state (Ct). Although this
approach is not generally applicable (comparing measurements to predicted
latent states), in this case it is valid given that Ct corresponds to the mean
of the measurement model (Eq (4.7)). In Fig 4.4A, it can be seen that
this model’s filtering distribution captures the actual values in regions of
high plausibility, thus yielding an accurate fit. This result helps us gain
confidence in the model’s structure as an adequate dynamic hypothesis to
the studied phenomenon, considering that it can reproduce the observed
behaviour (Oliva 2003). Similarly, the estimated relative effective contact rate
replicates to a large extent its assumed measurement values (Fig 4.4B). As
expected, the filtering distribution does not capture all of the measurements
(Weeks 9-11), given the proxy nature of the data. However, these results
allow us to elucidate the trajectory of the effective contact rate, and in
turn, the effective reproductive number (see Material and methods for the
estimation of this quantity). It must be remarked that in the early stages of
this outbreak, the dynamics of the transmission rate determined the level
of <t. This characteristic occurs when the susceptible fraction is close to
one, as was the case during the first wave (HPSC 2020). In Fig 4.4C, we
present the estimated <t, where it can be observed that the behaviour change
(presumably caused by mobility restrictions and people’s awareness) led to
an <t close to or below the epidemic threshold, bringing about a lowering of
the incidence rate.
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Figure 4.4: Inference on DGP1. Predicted values stem from DGP1’s filtering distribution.
In the LHS, the solid line indicates the median, and the darker and lighter ribbons represent
the 50% and 95% CI, respectively. (A) Predicted incidence (solid line and ribbons in the
LHS; violin plots in the RHS) against actual cases (rhombi in the LHS; horizontal dotted
lines in the RHS). (B) Predicted relative transmission rate (solid line and ribbons in the
LHS; violin plots in the RHS) compared to mobility index (points in the LHS; horizontal
dotted lines in the RHS). (C) Predicted reproduction number (solid line and ribbons in
the LHS; violin plots in the RHS). Horizontal dashed lines denote <t = 1.
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4.3.2 DPG2 - Cox-Ingersoll-Ross
dZ

dt
= ν(υ − Zt) +

√
αZtdW (4.9)

The dynamics of the transmission rate (Fig 4.4B) uncovered by DGP1 exhibit
a compelling pattern. The transmission rate gradually decays for several
weeks from its initial value until it levels off around a determined value.
In other words, a pattern that resembles goal-seeking behaviour (Barlas
and Yasarcan 2008). Based on this recognition, we formulate the relative
transmission rate in terms of the Cox-Ingersoll-Ross (CIR) model (Cox,
Ingersoll, and Ross 1985). This formulation (Eq (4.9)) is a compromise
between the rigidity of a deterministic structure and the flexibility offered
by random walks. Under this structure, the randomly-moving quantity of
interest (Zt) is elastically pulled toward a central location or long-term goal,
υ. The strictly positive parameter ν determines the speed of adjustment. In
practice, we can interpret the long-term goal as the minimum level of mobility
that the restrictions can achieve and the adjustment parameter as the rate at
which individuals adopt such mandates. Hence, inferring these parameters
permit the characterisation of the implemented interventions, a piece of
information that cannot be estimated from DGP1. The randomness in this
process stems from the diffusion process (second term). That is, stochastic
variations from the deterministic trend. More importantly, unlike those
in the Vasicek and Ornstein-Uhlenbeck structures, this particular diffusion
process precludes negative values (Wiersema 2008), a sine qua non to describe
transmission rates. Logically, we ensemble this structure with the SEI3R
profile to build the process model (PM2 ). As with DGP1, we assess the
convergence of likelihood estimates obtained from the amalgamation of PM2
and the previously defined six measurement model candidates (see Appendix
C.3.7). The results reveal an identical pattern to that observed in DGP1.
Therefore, it is warranted to integrate PM2 and OM1 (Fig 4.1) to form a
DGP that we refer to as DGP2. In Fig 4.3B, we present simulated trajectories
from this DGP, obtained from a single set of parameters (MLE).

The main objective for building DGP2 is to estimate its latent states con-
ditional on the available data. To do so, we repeat the process applied
to DGP1. Specifically, we first perform parameter inference and construct
DGP2’s likelihood surface using MIF and the Particle Filter. The next step
consists of drawing samples from the MLE’s neighbourhood to plug them
into the Particle Filter. There is a slight alteration in this process, however.
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Chapter 4. Time-varying transmission rate

Previously, we selected parameter combinations that yielded likelihood values
near the MLE to construct DGP1’s neighbourhood. We then identified the
bounds of these parameters to construct a four-dimensional hypercube. From
this object, we obtained independent and uniformly distributed samples for
each parameter. In light of DGP2’s complex parameter space, we opt for a
copula (Sklar 1996) instead of a hypercube. The copula is a multivariate
cumulative distribution for which the marginal probability distribution of
each variable is uniform, but there is dependence (correlation) among the
random variables (unknown parameters). By using the copula, we mitigate
biases caused by point estimates that yield abnormal likelihood values. The
reader can find the complete set of results in Appendix C.8.

Fig 4.5 displays the results obtained from the inference process carried out
on DGP2. Qualitatively, the uncovered values match those obtained from
DGP1. Namely, DGP2 produces an accurate fit of the incidence data (Fig
4.5A), and the inferred relative contact rate captures most of the mobility
data (Fig 4.5B), resulting in a similar prediction of the effective reproduction
number (Fig 4.5C). This outcome provides reassurance on the estimated
transmission rate as an adequate account of the observed time series. That
is, from two DGPs that differ in the transmission rate’s formulation, we
estimate equivalent trajectories. DGP2, though, does not reduce significantly
the uncertainty (see Appendix C.8.1.2) in the parameters (ν and υ) that
characterise the implemented NPIs.

4.3.3 DGP3 - Adaptive expectations
βt = ζZ1

t (4.10)

dZi

dt
=


(υ−Zit)
(ν−1/n) for i = n

(Zi+1
t −Zit)

(ν−1/n) for i < n

(4.11)

The trajectories derived from the two previous DGPs (DGP1 and DGP2)
suggest that it is reasonable to assume that the transmission rate’s dynamics
indeed follow a goal-seeking pattern (Eq (4.10)). This conjecture is in
agreement with the economic theory of adaptive expectations. First applied by
Irving Fisher (Fisher 2006), this hypothesis posits that individuals gradually
adjust their beliefs, and hence behaviour, in order to eliminate the discrepancy

85



4.3. State-Space Models

0

1,000

2,000

3,000

4,000

0 1 2 3 4 5 6 7 8 9 10 11 12

Week

C
t

A) Incidence

5 6 7 8

1 2 3 4
2700
2800
2900
3000
3100

3800
4000
4200

600

700

800

3200

3400

950
1050

60
80

100
120

3400
3500
3600
3700
3800

1300
1400
1500

9 10 11

10
20
30

4200
4400
4600

2500
2600
2700
2800

Week

C
t

0.00

0.25

0.50

0.75

1.00

1.25

0 1 2 3 4 5 6 7 8 9 10 11 12

Week

Z t

B) Relative transmission rate

5 6 7 8

1 2 3 4
0.0

0.5

1.0

0.00
0.25
0.50
0.75

0.0
0.4
0.8

0.0
0.3
0.6

0.00
0.25
0.50
0.75

0.5
1.0

0.00
0.25
0.50

0.00
0.25
0.50

9 10 11

0.5
1.0
1.5

0.00
0.25
0.50
0.75

0.00
0.25
0.50
0.75

Week

Z t

Delay phase

Stay at home

0

2

4

6

0 1 2 3 4 5 6 7 8 9 10 11 12

Week

ℜ
t

C) Effective reproductive number

5 6 7 8

1 2 3 4
0
2
4

0
1
2
3
4
5

2
4
6

0
1
2
3
4

0
1
2
3
4

2
4
6

0
1
2
3

0
1
2
3

9 10 11

5

0
1
2
3

0

2

4

Week

ℜ
t

Figure 4.5: Inference on DGP2. Predicted values stem from DGP2’s filtering distribution.
In the LHS, the solid line indicates the median, and the darker and lighter ribbons represent
the 50% and 95% CI, respectively. (A) Predicted incidence (solid line and ribbons in the
LHS; violin plots in the RHS) against actual cases (rhombi in the LHS; horizontal dotted
lines in the RHS). (B) Predicted relative transmission rate (solid line and ribbons in the
LHS; violin plots in the RHS) compared to mobility index (points in the LHS; horizontal
dotted lines in the RHS). (C) Predicted effective reproduction number (solid line and
ribbons in the LHS; violin plots in the RHS). Horizontal dashed lines denote <t = 1.
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Chapter 4. Time-varying transmission rate

between the current state and a desired one (Sterman 2000). In this case,
such a discrepancy is the gap between individuals’ behaviour at a given time
t and the level of mobility that the restrictions (implicitly) aim to achieve.
Mathematically, the nth-order information delay or exponential smoothing
(Eq (4.11)) provides a formal description of such an adjustment. This
deterministic formulation describes the changes in current behaviour (Z1

t ) as
the result of a series of intermediate exponential adjustments (dZi

dt
), which one

can interpret as the multiple stages intervening since the Government decrees
mobility restrictions to the point where individuals alter their behaviour in
accordance with the new rules. The delay order (n) represents the number of
stages, where the most simple case (n = 1), the 1st-order information delay,
is equivalent to the deterministic term in Eq (4.9). On the other hand, when
n→∞, the dynamics follow a term-time forcing pattern.

dC

dt
= ηPt − Ctδ(tmod 1) (4.12)

yd1 ∼ Pois(Ct) (4.13)

To establish the exact number of stages, we evaluate the performance of
nine candidate structures (n = 1, . . . , 9) in explaining the available data
(incidence and mobility). From this evaluation, we ensemble the selected
candidate with the SEI3R profile to generate the process model (PM3) of the
third DPG (DPG3) presented in this chapter (Fig 4.1). To complete DGP3’s
description, we formulate a measurement model (OM2) for the observed
daily reported cases (y1

d). As with DGP1 and DGP2, we assume these counts
result from a Poisson distribution (Eq (4.12)-(4.13)). Moreover, OM2 does
not include a structure relating mobility data to the relative transmission
rate. We base this decision on the results shown in the previous sections.
Since the mobility data is an imperfect predictor of the transmission rate, its
inclusion in the inference process of a rigid deterministic structure may lead
to forced model fits, resulting in undesired biases in parameter estimations.
In relation to the inference process, since PM3 is deterministic, the inference
of the filtering distribution becomes the estimation of DGP3’s expected value.
We approximate such expected value from a Bayesian perspective (Andrade
and Duggan 2021; Grinsztajn et al. 2021) using Hamiltonian Monte Carlo
(Betancourt 2018) via Stan. The complete set of results can be found in
Appendix C.9.
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To illustrate the selection of DGP3’s process model, we present the estimated
expected values (fits) for each of the nine candidate structures (Fig 4.6). We
depict expected values through simulated trajectories generated from one
hundred draws from each model’s posterior distribution. The results indicate
that all of these structures yield similar fits to the incidence data. Using
the mean absolute scaled error (MASE), a metric designed to measure the
accuracy of time-series predictions (Hyndman and Koehler 2006), we notice
diminishing marginal gains in accuracy as the order (of the number of stages)
increases. These gains, though, are so tenuous that they do not provide
clear guidance about which model to choose. To further complicate matters,
the lower the delay order, the higher the likelihood value. Nevertheless,
when we compare the expected relative transmission rate to mobility data, it
can be seen that some structures approximate better the latter than others.
If we accept the premise that mobility data is a proxy (supported by the
results from DGP1 and DGP2), yet imperfect, measurement of the relative
transmission rate, we can then lean towards the delay order that yields
the lowest MASE (n = 4). From this structure’s posterior distribution, we
estimate, among others, the adjustment rate (ν; mean = 0.05, sd = 0.001),
the minimum level of mobility (υ; mean = 0.11, sd = 0.005), and the effective
reproduction number (discussed below). Notice that the particular form of
the non-linear contact rate restricts the marginal distributions of ν and υ to
such an extent that most of the probability mass concentrates on extremely
narrow neighbourhoods. Despite this, those estimates resemble DPG2’s MLE
(ν = 0.05, υ = 0.19), which help us gain confidence in the overall process.

Acknowledging that the performance metrics above (MASE and likelihood
values) do not lead to an unambiguous choice, we explore the implications of
selecting an alternative measurement model. As it is widely known, the Pois-
son distribution is a discrete probability distribution in which the observation
mean equals the variance (Blitzstein and Hwang 2019). Hence, using this
distribution as a measurement model imposes a stringent assumption on the
observational process of incidence counts. By contrast, the Negative Binomial
distribution offers a more flexible framework to account for overdispersion in
daily incidence. Moreover, the Negative Binomial converges to the Poisson
distribution under a specific configuration. For this reason, we test the
implications of this alternative formulation. See the complete set of results in
Appendix C.9.3. Indeed, the posterior distribution suggests the presence of
a small amount of overdispersion in the incidence data. However, such gain
in realism is achieved at the expense of a degenerate posterior distribution.
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Figure 4.6: Inference on DGP3. Comparison between expected values and data. On the
LHS, for each model, we show 100 overlapped simulations of the predicted incidence against
daily case counts. On the RHS, for each model, we show 100 overlapped simulations of
the predicted relative transmission rate against Apple’s mobility data. In this plot, we
estimate the predicted values from the posterior distribution of each of the DGP3’s nine
candidate process models.
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Succinctly, any of the model candidates coupled with the Negative binomial
distribution yields a posterior distribution of two distinct modes, even from
a single unknown parameter. This kind of behaviour is not unusual in Or-
dinary Differential Equation models. For instance, Gelman and colleagues
(Gelman et al. 2020) report a similar experience in the calibration of a simple
mechanistic model of planetary motion.

In the set of bimodal distributions returned by Stan, we recognise two types
of modes. One that corresponds to a region of unrealistic parameter values
for which the HMC algorithm reveals pathological behaviour (divergences
and low E-BFMI) (Betancourt 2018) in the sampling procedure, rendering
the inference from these samples unreliable. Conversely, the Markov chains
that land in the other type of mode do not trigger any warnings from Stan.
Furthermore, these well-behaved modes are located in regions similar to those
found using the Poisson distribution. Following an exploratory analysis, we
find that well-behaved modes and the set of posterior distributions obtained
from the Poisson model provide similar (although not identical) information.
Overall, the choice of the Poisson distribution and the delay order (4th)
is the outcome of considering as a whole the information provided by the
previous DGPs, and the two explored measurement models. This assessment,
therefore, implies that we envision the Poisson measurement model as an
approximation that does not compromise the insights from the inference
process. However, one cannot generalise this result to other applications.
That is, taking the Poisson distribution as a default. On the contrary, it is
imperative to test the assumptions embedded in any proposed measurement
model and evaluate the trade-offs entailed by each alternative.

4.4 Discussion
Novel datasets that may assist modellers in gaining deeper insight into the
dynamics of an infectious disease deserve a thorough examination. This
task entails establishing adequate links between the data and a dynamical
hypothesis. Far from trivial, one may derail the entire inference process by
adopting a misspecified structure. For this reason, a robust approach involves
the assessment of various levels of model complexity that account for the
available data, which inevitably involves trade-offs (Funk and King 2020).
This work highlighted the implications of committing to a particular model
formulation. As seen above, DGP1 and DGP2 (DGPs with a stochastic
process model) can only incorporate the mobility data if they are formulated
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in terms of weekly observations. Notwithstanding that this requirement
reduces the number of data points available for the inference process, the
loss of information is negligible. In contrast, a rigid structure such as DGP3
(whose process model is deterministic) restricts the use of mobility data only
as a discriminant criterion.

With regard to the inference of fixed parameters, DGP1’s well-behaved
parameter space yields smooth profiles with positive curvature at the MLE
from which parameter uncertainty can be seamlessly calculated. Interestingly,
when we amalgamate all the likelihood estimates, we obtain surfaces that
resemble likelihood profiles. As a result, from three approaches (MCAP,
profile, surface), we estimate similar confidence intervals. DGP2’s parameter
space is, on the other hand, challenging to explore. In fact, the volume of
high plausibility is so tightly concentrated that some regions in the MLE’s
neighbourhood yield vast negative log-likelihood values. To address this
issue, we iterated over several hypercube sizes and densities until obtaining
profiles with positive curvature at the MLE, although not as smooth as
those obtained from DGP1. Despite this hurdle, we obtain similar confidence
intervals from the three quantification approaches. Regarding DGP3, given
the Bayesian approach used to estimate its parameters, we refer to such
uncertainty bounds as credible intervals. We obtain well-behaved posterior
distributions for the nine candidate process models whose inference is backed
by successful diagnostics unique to HMC. However, parameter estimates
(posteriors) vary by the delay order, requiring a subjective assessment to
determine which structure is more appropriate. Lastly, we consider the
differences in computational burden between the inference methods (MIF
+ Particle Filter and HMC). Whereas performing parameter inference on
DGP1 and DGP2 took roughly 14 and 20 hours, respectively; fitting DGP3’s
nine candidate models required 6 hours of computational time.

Likewise, the inference of the time-varying quantities deserves close inspection.
DGP1 and DGP2 are more flexible than DGP3 in quantifying uncertainty.
We illustrate this point with Fig 4.7B and 4.7C. Here, we notice that DGP3
generates an estimate of the relative transmission rate and the effective
reproduction number with narrow uncertainty intervals in comparison with
those generated by the other DGPs. This apparent precision is the result
of committing to a particular form of non-linear model, which imposes a
stringent constraint in the shape of the transmission rate. By choosing the
4th-order information delay structure, we implicitly discard the possibility for
the other formulations to be true, reducing the uncertainty in the estimations.
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However, we demonstrated that the nine delay orders account similarly for
the incidence data, and to various degrees of accuracy, for the mobility data.
Thus, we interpret the wide intervals generated by DGP1 and DGP2 as the
uncertainty in the delay order plus the measurement error. This interpretation
suggests that DGP3’s plausible model candidates are subsumed under DGP1
and DGP2.

To conclude with this comparative analysis, we reflect on the role of DGPs
presented in this chapter. Owing to its flexible formulation, we can employ
DGP1 for both retrospective and near real-time analysis (at least for the
period where demographic processes do not significantly impact the dynamics
of the pandemic). In contrast, DGP2 and DGP3 formulations are context-
dependent, restricted to retrospective analyses. Under this last role, we
note that common patterns emerge from the three DGPs. Notwithstanding
structural differences, all of them produce accurate fits to the incidence data
(Fig 4.7A). Naturally, the stochastic process models replicate every feature
in the data, whereas the deterministic one captures the underlying trend.
Furthermore, the estimated medians for the relative transmission and the
effective reproduction number (Fig 4.7B and 4.7C) tell similar stories. That
is, individuals gradually decreased their movements following public health
advice, which led to a decline in the transmission rate. This reduction pulled
<t below the epidemics threshold, causing the incidence rate to subside. It
should be noted that this mobility reduction levels off later in Ireland’s first
wave, suggesting a limit on the effectiveness of the implemented policies. We
interpret this limit as the minimum mobility required for running essential
services.

Finally, even though the primary interest of this work has been on estimating
the effective reproduction number (<t), a by-product from this inference
process is the approximation of the basic reproductive number (<0). This
widely accepted metric (Delamater et al. 2019) is defined as the average
number of secondary infections produced when one infected individual is
introduced into a totally susceptible population (R. Anderson and May 1992).
In the context of Ireland’s COVID-19 epidemic, we derive similar <0 estimates
from the three DGPs (DGP1: 95% CI[4.0 - 6.1], DGP2: 95% CI[3.9 - 6.0],
DGP3: 95% CI[5.8 - 7.1]). These estimates are in close agreement with a
previous modelling study on the COVID-19 pandemic in Ireland (Gleeson et
al. 2022), albeit well above the initially reported <0 = 2.2 value from Wuhan
(Li et al. 2020); a value that has been adopted as the reference point by the
World Health Organization and other research groups (Davies et al. 2020;
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Figure 4.7: Comparison of predicted states. These values stem from the filtering distribu-
tion (DGP1 and DGP2) and the posterior distribution (DGP3). Here, DGP3’s process
model is the 4th-order delay. Further, solid lines indicates the median, and the ribbons
represent the 95% CI. (A) Predicted incidence by DGP and weekly cases (rhombi). (B)
Predicted relative transmission rates by DGP and mobility data (points). (C) Predicted
reproductive numbers by DGP. The horizontal line denotes the epidemics threshold.
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Petersen et al. 2020). Other streams of research, however, argue that the
initial estimate was low (Katul et al. 2020), and instead, advocate for higher
values (4.5 (Katul et al. 2020); 4.7 - 6.6 (Sanche et al. 2020)). Moreover, the
reader should recall that <0 is a context-dependent metric, and variations
are expected due to population heterogeneity (e.g., age, spatial location,
host genetics). In any case, we acknowledge the limitations that stem from
the calibration of homogeneous population models, which require high <0
values to achieve accurate fits (He, Ionides, and King 2010). To address such
limitations, future research should test the impact of disaggregating (by age
or location) the structures presented in this chapter. Another research avenue
could explore the effect of replacing the deterministic rates in the within-host
profile of these DGPs with stochastic ones that account for demographic and
environmental effects.

4.5 Materials and methods
dS

dt
= −Stλt (4.14)

dE

dt
= Stλt − σEt (4.15)

dP

dt
= ωσEt − ηPt (4.16)

dI

dt
= ηPt − γIt (4.17)

dA

dt
= (1− ω)σEt − κAt (4.18)

dR

dt
= κAt + γIt (4.19)

λt = βt(Pt + It + µAt)
Nt

(4.20)
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4.5.1 SEI3R profile
This within-host profile (Eq (4.14)-(4.20)) is formulated based on the work
from Davies and colleagues (Davies et al. 2020). Here, we assume that
individuals are initially susceptible (S) and become exposed (E), at a rate
λ, after effective contact with an infectious person (I, P , A). After a latent
period (σ−1), exposed individuals follow one of two paths. With probability
ω, following a period (η−1) of preclinical infectiousness (P ), individuals
develop full symptoms while transmitting the pathogen. This stage is known
as the clinical infection state and lasts for γ−1 days. On the second path,
with probability 1− ω, individuals enter a subclinical state (A) with none
(asymptomatic) or mild symptoms (paucisymptomatic), and are not captured
by the healthcare system. Individuals on this path recover after κ−1 days and
are relatively (µ) less infectious than their counterparts on the clinical path.
Finally, individuals from both paths eventually converge to the recovered
state (R), in which they are no longer infectious and are immune to re-
infection. In Appendix C.1, we provide the values for fixed parameters and
initial states and their respective sources.

4.5.2 Basic and effective reproductive number
<0 = ζZ0[ω(γ−1 + η−1) + (1− ω)µκ−1] (4.21)

<t = <0
St
Nt

(4.22)

To derive an analytical expression for the basic reproduction number (<0)
from the SEI3R profile, we employ the next-generation matrix method
(Diekmann, Heesterbeek, and Metz 1990). That is, we rewrite the infected
states’ transitions (rates) in the form of two matrices. The first matrix F
corresponds to the rate of appearance of new infections in each compartment
of infected individuals, and the second matrix V corresponds to the rate
of other transitions between compartments of infected individuals. From
these matrices, we define the next generation matrix as FV−1, whose largest
eigenvalue (spectral radius) corresponds to <0 (van den Driessche 2017). We
obtain the spectral radius’s analytical solution (Eq (4.21)) using the software
system Mathematica (see Github repository). Following this expression, we
can define (Eq (4.22)) the effective reproductive number (<t) as the product
between <0 and the susceptible fraction ( St

Nt
).
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4.5.3 Filtering distribution
The essence of the state-space approach is to estimate the state of a dynam-
ical system using a sequence of noisy measurements made on the system.
We formulate this problem in terms of a recursive filter whose purpose is to
construct the state’s posterior probability density function (pdf) based on all
available information, including the set of received measurements (Arulam-
palam et al. 2002). Formally, p(xt|y1:t). We refer to this pdf as the filtering
distribution, whose inference process consists of two stages: prediction and
update.

p(xt|y1:t−1) =
∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1 (4.23)

p(xt|y1:t) = p(yt|xt)p(xt|y1:t−1)
p(yt|y1:t−1) (4.24)

The prediction stage (Eq (4.23)) draws on the plug-and-play property (He,
Ionides, and King 2010) to generate, from simulations of the process model
p(xt|xt−1), a vector of predictions that describe the state at time t (xt),
which are conditional on the previously estimated state (xt−1|yt−1). Then,
the update operation (Eq (4.24)) uses the latest measurement to modify the
prediction pdf (p(xt|y1:t−1)). In practice, we assign weights to the prediction
vector based on its plausibility, which is estimated from the measurement
model p(yt|xt). With these weights, we use the Sequential Importance
Sampling algorithm (Gordon, Smith, and Salmond 1993) to produce samples
that describe the filtering distribution. It is important to remark that this is a
sequential process (hence the name Sequential Monte Carlo), executed every
time a measurement is received. Moreover, in this simplified formulation, it
is assumed that X0 and θ (Eq (4.1)-(4.2)) are known. We refer the interested
reader to (Arulampalam et al. 2002; Chopin and Papaspiliopoulos 2020) for
a complete treatment of this approach.
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Conclusion

5.1 Research findings
Fitting compartmental models of infectious diseases to incidence data not
only serves to estimate the reproduction number but also allows modellers
to infer other crucial elements that contribute to the spread of a disease.
This knowledge, summarised by parameter estimates and predictions of
latent states, can be further employed to devise cost-effective policies that
mitigate the impact of pandemic pathogens on a population. However, model
calibration is a delicate procedure, and an inadequate assumption, either in
the inference algorithm or model structure, can derail the entire endeavour.

Simulation-based algorithms, such as Hamiltonian Monte Carlo, are becoming
the method of choice to prevent biases and overconfidence in estimates, given
that their results are less reliant on asymptotic considerations. However, its
mere use does not immediately grant reliable estimates. It is thus imperative
to comprehend the implications of the formulated model on the inference
process and, equally important, interpret correctly the algorithm’s output.
For this reason and in the context of this thesis, we first asked: How can
one employ Hamiltonian Monte Carlo to obtain robust estimates from SIR-
like models fitted to time-series data? This question motivated Chapter 2,
which shows that extracting Hamiltonian Monte Carlo’s potential requires a
comprehensive workflow. In particular, a Bayesian workflow of formulation,
exploration, estimation, and interpretation. These stages, in turn, can be
visited more than once, depending on the proposed model and the available
data.
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Furthermore, each step in this workflow contributes distinctly to validating
the inference procedure. Prior predictive checks allow modellers to verify
whether the dynamics of the simulation model are relatively similar to those
observed in the data. For instance, a SIR-like model that does not produce
any outbreak-like behaviour must be reformulated immediately without
running the inference algorithm. In fact, we employed this insight (Chapter
3) in formulating the alternative SEIR, which depends on the inverse of
<0. This formulation allows the definition of a prior, in terms of the beta
distribution, that assigns zero probability to scenarios where the pathogen
fails to invade the susceptible population.

Likewise, diagnostics play a prominent role, especially in HMC. Unsatisfactory
results, such as divergences or large potential scale reduction factors, render
the sampling process unreliable to the extent that the inference analysis can
only proceed after a reformulated model complies with the required diagnostic
standards. In Chapter 4, the deterministic candidates did not converge if
coupled with the Negative Binomial distribution. As a compromise, we
employed the Poisson distribution to properly quantify uncertainty at the
expense of acknowledging that a slight bias may have been introduced in
parameter estimates.

Nevertheless, satisfactory diagnostics are insufficient to accept the output
of an inference algorithm. Posterior samples must also lead to simulations
that match the observed behaviour while providing a substantial update on
previous beliefs. In other words, there should be a decrease in the uncertainty.
This stage was instrumental in Chapter 3 in discovering the relationship
between the mean generation time and the basic reproduction number. Trace
plots, scatter plots and correlation estimates enabled this discovery. In short,
the model must undergo additional revisions if the inference process does not
produce an accurate fit or fails to provide new information to the modellers.

Interestingly, robustness is not an exclusive characteristic of Bayesian ap-
proaches. In Chapter 4, we obtained estimates from two Data Generating
Processes calibrated to incidence and mobility data following the frequentist
tradition. However, before predicting the reproduction number, we verified
the reliability of likelihood estimates from the Particle Filter by checking its
convergence. This step discarded candidates with a Poisson measurement
component for the observation of daily case counts. Furthermore, validating
the match between actual and simulated behaviour eliminated from the pool
a candidate that accounted for daily incidence and mobility. Lastly, we
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obtained a large number of estimates along the workflow to construct the
likelihood surface, which allowed us to gain enough confidence to apply the
profile likelihood method in the estimation of uncertainty bounds. All in all,
robustness is a quality that stems from workflow employed rather than a
particular school of thought.

Nevertheless, certain weaknesses in model formulation are more challenging
to detect. One that has troubled mathematical modellers over the years
is formulating the appropriate distribution of the epidemiological delays.
This formulation is problematic because if modellers followed the parsimony
principle, which suggests choosing the simplest scientific explanation that
fits the evidence, modellers would have to use the exponential distribution.
However, it has been thoroughly demonstrated that this assumption is
unrealistic and leads to systematic biases. Consequently, we asked: “How
can we mitigate biases in <0 estimates due to uncertainty in the distribution
of the epidemiological delays?” According to the answer provided in Chapter
3, modellers must configure the SEIR model such that the mean generation
time remains fixed at its true value. This value can be directly inserted into
the model as a parameter or function of other parameters.

We offer this recommendation based on the results of our simulation study.
In this work, we generated synthetic data from several instances of the SEIR
model, where each instance differs in the distribution of the epidemiological
delays. Then, we fitted candidates from three SEIR parameterisations to
this synthetic data. The first parameterisation (traditional) fixes the mean
of the infectious and latent periods to their true values regardless of their
distribution. Estimates from this parameterisation conform to the findings
reported in the literature, which states that misspecifying the distribution
of the epidemiological delays produces inaccurate predictions. The next
parameterisation (four-unknown) also fixes the mean latent period but treats
the mean infectious period as a random variable. The inference results
reveal the linear relationship between the mean generation time and the
basic reproduction number, a finding that led to the formulation of the
alternative parameterisation. This parameterisation attains high coverage
levels when recovering <0 but loses accuracy in estimating other parameters,
such as the initial number of infectious individuals. We further assessed
the alternative parameterisation against various transmissibility levels (<0)
and mean generation times, finding that it is robust to changes in the mean
generation time but sensitive to high <0 values. Of note, this sensitivity can
be detected only in high-fidelity data. That is, data with little overdispersion.
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In a nutshell, the alternative parameterisation is a mitigation strategy in the
context of incomplete information.

However, there are no mitigation strategies in the formulation of time-
varying contact rates. Instead, modellers must follow either a parametric
or non-parametric route, each with its own advantages and limitations.
Contemplating these choices, we posed the question: “How can we improve
the estimation of the reproduction number from compartmental models when
the dynamics of the transmission rate are unknown?” In Chapter 4, we
demonstrated that incorporating mobility data into the workflow can reduce
the uncertainty in the estimates. Nonetheless, this incorporation is far from
trivial, given that mobility is a proxy measurement of the transmission rate,
which implies that its dynamics may not always mimic those of the actual
transmission rate. Therefore, integrating this additional dataset with the
rest of the model requires caution.

This answer (and caveat) results from a complementary workflow that
spanned three Data Generating Processes (DGPs) and both schools of
thought for statistical inference. As regards the DGPs, they share the
within-host profile but differ in the formulation of the transmission rate. Two
of these structures were formulated in stochastic terms. First, we proposed
Geometric Brownian Motion (GBM) as a non-parametric mechanism to
uncover the dynamics of the transmission rate. Integrating mobility data
into this DGP reduces the uncertainty in the predicted reproduction number
while maintaining an accurate fit on the incidence data. Nevertheless, this
integration necessitates a differentiation in the importance assigned to each
measurement component, considering that adding mobility data should not
have a detrimental effect on the incidence fit. For this reason, we formulated
the measurement of case counts in terms of the Poisson distribution, whose
stringency implicitly prioritises incidence over mobility.

Notwithstanding GBM allows the estimation of the reproduction number,
its non-parametric nature does not offer further insights into the dynamics
of the transmission rate. Consequently, the second DGP’s transmission rate
was formulated in terms of the Cox-Ingersoll-Ross (CIR) model, a structure
comprising a mixture of deterministic (parametric) and random-walk (non-
parametric) components. In addition to providing similar <t estimates to
those obtained from the first DPG, fitting this DGP to incidence and mobility
data provides insights into the minimum level the mobility restrictions can
achieve and the rate at which individuals adopt such mandates. However,
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the calculated confidence intervals for these features are imprecise (too wide),
which motivated an additional formulation.

The third DGP presented in Chapter 4 corresponds to a structure whose
transmission rate is described by exponential smoothing, a fully parametric
formulation. Exponential smoothing, though, rather than denoting a specific
formula, encompasses a family of equations known as the nth-order informa-
tion delay. As in Chapter 3, committing to a particular order (distribution)
produces different estimates without impacting the quality of the incidence
fit. Unlike the previous two DGPs, this DGP does not include a measurement
component for the mobility data, given the rigidity imposed by deterministic
formulations. Even though varying the delay order produces equivalent
incidence fits, it predicts different dynamics for the transmission rate. If we
accept the premise that mobility data provides information, albeit imper-
fect, on the relative transmission rate, we can then employ this additional
dataset as a discriminant criterion. It is worth mentioning that uncertainty
regions calculated from these deterministic models are substantially narrower
than those produced by the semi-deterministic formulations, confirming the
trade-offs between parametric and non-parametric approaches.

5.2 Contribution
Beyond any particular estimate or proposed formulation, this thesis empha-
sises the importance of adopting a systematic approach to fit compartmental
models of infectious diseases to time series data. Irrespective of the partic-
ular school of thought, model calibration is not a box-ticking exercise that
validates a structure merely because it matches the data. Instead, model
calibration becomes a learning process that leverages statistical methods to
confront embedded assumptions in the proposed formulations with the data
if performed rigorously. Namely, through a comprehensive workflow that
validates each component of the inference process, including the calibration al-
gorithm. Since SIR-like models are commonly employed for decision-making,
a misleading insight from an inappropriate assumption can result in adverse
consequences for a substantial portion of the population.

More concretely, a major contribution of this thesis (Chapter 3) is the
discovery of the linear relationship between the mean generation time and <0,
which occurs irrespective of the particular distribution of the epidemiological
delays. In practice, this relationship implies that early in a pandemic, studies
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should prioritise the estimation of the mean generation time to enable the use
of compartmental models as a reliable estimator of the reproduction number.
This finding suggests that precise estimation of the latent and infectious
periods, in terms of their mean and distribution, may not be strictly required
as long as their approximations add up to the estimated mean generation
time.

Furthermore, Chapters 2 and 3 stress the relevance of visualising and inter-
preting parameter interactions. These interactions measured by parameter
correlations (multicollinearity) can occur due to linear dependence among
parameters (mathematical artefact caused by creating parameters from other
parameters) or dynamic interconnection. Since SIR-like models comprise an
interconnected network of variables (feedback loops), it is essentially unreal-
istic to expect independence among parameters. In certain cases, parameters
interact to such an extent that mask errors in model formulation. Chapter 3
describes various instances where this situation occurs. For example, mis-
specifying the infectious period distribution leads to biases in the reporting
rate (ρ), the effective contact rate (β), and ultimately, the basic reproduction
number (<0). Similarly, misspecifying the latent period distribution produces
biases in the estimation of the initial number of infectious individuals, albeit
it does not impact <0. In both cases, modellers may accept the fitted models
precisely because the biases in the parameters generate simulations that are
indistinguishable from those produced by the true model.

While parameter interactions can sometimes conceal errors in model for-
mulation, they can also create a complex parameter space, resulting in
unidentifiable variables. For instance, when we treated both the effective con-
tact rate (β) and the mean infectious period (γ−1) as random variables, the
posterior distribution’s trace plot showed that these parameters were perfectly
correlated. To further complicate matters, this correlation stretched across
the entire space of the mean infectious period, rendering it unidentifiable,
as evidenced by the similarity between its prior and posterior distributions.
However, strong parameter interactions do not immediately imply unidentifi-
ability if this interaction is confined to a small region of the parameter space,
such as the correlation between the initial number of infectious individuals
and the effective contact rate.

On the other hand, Chapter 4 shows that mobility data is not a perfect
predictor of the transmission rate, and its incorporation into the inference
workflow can lead to unrealistic estimates if not properly treated. Given the
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simplicity of the model employed, we were able to detect these shortcomings,
but in more elaborated models, that may not be the case. Moreover, this
work also presented a weakness in the Negative Binomial distribution as
a measurement component of incidence reports. While this distribution is
more flexible than the Poisson distribution in cases where the data exhibits
overdispersion, the extra parameter added by the Negative Binomial dis-
tribution can create undesired parameter spaces or give too much weight
to proxy measurements. In both cases, we had to revert to the Poisson
distribution while verifying that it did not introduce significant biases. In
short, adding one extra parameter to the inference procedure, especially in
the context of compartmental models, substantially increases the complexity
of the inference procedure. Therefore, the trade-offs of this decision must be
thoroughly assessed.

We anticipate these findings will serve as a reference point for modellers
that fit SIR-like models to time-series data. These guidelines include which
information to collect, how to approach the inference procedure, and how to
interpret calibration results. In doing so, the epidemiology field will benefit
from reliable estimates that improve the understanding of the dynamics of
infectious diseases.

Lastly, this work also produced readsdr, a package that translates models
built in System Dynamics software into R objects and Stan code. The
use of readsdr substantially improved the productivity of the formulation-
fitting-interpretation cycle to the extent that without this package, it would
have been infeasible to conduct this research, given the enormous amount
of time that coding Stan scripts imposes. We anticipate this package will
be a valuable resource for performing rigorous inference on compartmental
models.

5.3 Limitations and future work
Whereas the recommendation of following a thorough workflow has no miti-
gation factors, given the scope of this research, we limited ourselves to simple
models. This choice implied an exchange of realism for mathematical and
computational convenience. Admittedly, the assumption of homogeneous
mixing, which means everyone interacts with equal probability with everyone
else (Keeling and Rohani 2011), is unrealistic inasmuch as empirical evi-
dence has shown that mixing patterns are highly assortative (i.e., ‘with-like’)
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(Mossong et al. 2008). More importantly, the reproduction number estimated
from disaggregated models is generally larger than if estimated from aggre-
gated structures (Keeling and Rohani 2011). Therefore, discarding possible
heterogeneities arising from age, space, or behavioural aspects introduces
biases in estimates. Consequently, future work should study the relationship
between the mean generation time and the basic reproduction number in
more intricate extensions of the SIR model. These elaborated models will
inevitably increase the number of estimated parameters. Consequently, mod-
ellers should also devise mechanisms to analyse and understand much larger
parameter spaces (mainly correlations).

In the same vein, we favoured compartmental models with deterministic
transitions for computational convenience. As we saw in Chapter 4, fitting
a deterministic model takes much less time than fitting a stochastic one.
Nevertheless, it has been demonstrated that stochasticity can play a signifi-
cant role in the dynamics of an infectious disease, even in large populations
(Rohani, Keeling, and Grenfell 2002). Thus, subsequent work should study
the relationship between the basic reproduction number and the mean gen-
eration time in models that account for demographic and environmental
stochasticity.

As regards the inference of time-varying transmission rates, it remains to
be determined which approach should be preferred and under which circum-
stances. For instance, one of the formulations in Chapter 4 was in terms of
Geometric Brownian Motion merely because it was adopted in prior studies.
However, these studies do not provide any guidelines as to what type of
trajectory GBM can recover and when it should be precluded.

5.4 Final remarks
In 1976, the renowned statistician George Box quipped, all models are
wrong, but some are useful. While it is undeniable that no model, however
elaborated it may be, can capture all the features of a phenomenon, we, as
modellers, cannot take this aphorism as a justification to overlook problematic
assumptions in certain structures or inference methods. Thankfully, the
advent of computational power has enabled the development of more efficient
algorithms that expose weaknesses in model formulation. This exposure
allows us to pinpoint areas for improvement, resulting in robust structures
that yield reliable estimates for decision-making. It is hoped that this thesis
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will usher in research that reveals further insights into the dynamics of
infectious diseases.
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Appendix A

Supplementary Information
(Ch. 2)

A.1 Measurement model
In this section, we discuss the choice of the measurement model and how
we use prior predictive checks to guide such a decision. Initially, we opt for
the default choice, i.e., the normal distribution. This choice implies that, at
every time step, the difference between the measurement and the true value
(error) follows a normal distribution. Additionally, this distribution entails
that the error across all time steps is similar (homoscedasticity). In other
words, the magnitude of the error is indifferent to the magnitude of the true
value, an assumption that may seem unrealistic. As could be expected, the
normal distribution adds a new unknown, the standard deviation (δ). To
test this model, we assume δ ∼ Cauchy(0, 1), and simulate 500 trajectories.
We notice that this configuration yields continuous unconstrained values,
in contrast to Cumberland’s discrete non-negative measurements. These
dissimilitudes hint that more suitable specifications should be found.

Next, we consider the Poisson distribution given that it has been used in the
empirical treatment of count data, particularly concerning counts of events
per unit of time. This distribution lifts the constraint of equal variance across
measurements as the error magnitude is proportional to the true number of
reported individuals at each time step. As with the normal distribution, we
generate 500 simulations. As we saw above, the Poisson model adequately
captures the given data.
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Finally, to count data, the Negative Binomial distribution is an alternative to
the Poisson should there be overdispersion in the data. We model such overdis-
persion in the Negative Binomial’s scale parameter (φ ∼ Half-normal(0, 1)).
We can see that the trajectories generated by the Negative Binomial are
more dispersed than the ones produced by the Poisson distribution (Fig A.1).
Nevertheless, in this case, they do not provide a more accurate representa-
tion of the data. Consequently, we adopt the Poisson distribution as the
measurement model.
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Figure A.1: Prior predictive checks by measurement component
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A.2 Parameter space exploration by MCMC
algorithm

xi ∼ Normal(µx, 1) (A.1)

yi ∼ Normal(µy, 1) (A.2)

µx ∼ Normal(0, 0.5) (A.3)

µy ∼ Normal(0, 0.5) (A.4)

With the purpose of presenting an intuitive comparison between the Metropo-
lis algorithm (RWM) and Hamiltonian Monte Carlo (HMC), we replicate
a simple example provided by McElreath (2020). We assume that we have
received bi-dimensional data (Fig A.2). To model this data, we propose a
formulation (Eq (A.1)-(A.4)) in which we assume that the measurements
in each dimension are independent. For each dimension, we hypothesise
that the measurements follow a normal distribution from a common mean
and one standard deviation. Therefore, our goal is to estimate the posterior
distribution of parameters µx and µy. Our prior knowledge about these
parameters is represented by a normal distribution (Eq (A.3)-(A.4)). The
estimation is achieved via RWM and HMC.
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Figure A.2: Toy example data
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A.3. Potential scale reduction factor (R̂) & Effective Sample Size (n̂eff)

In Fig A.3, we depict the process of finding and exploring the posterior
distribution (the dashed line represents the target distribution’s 99% bounds).
In the left-hand side panels, we present the first ten samples generated by
the MCMC algorithms from the starting point (red dot). Here, we can
notice Metropolis’ random-walk behaviour. In spite of the samples get closer
progressively to the target distribution, they follow a haphazard trajectory.
In addition to this, five proposals were rejected by Metropolis’ acceptance
criterion so that various samples overlap, and we can only distinguish half
of them. In stark contrast, HMC samples move directly to the target
distribution. Once the chain finds the target, it uses information from
parameter space’s landscape to construct trajectories. Intuitively, we can
conceive the target distribution as a bowl whose bottom represents areas
of high plausibility. Here, sample generation corresponds to the process of
throwing a marble inside the bowl with some momentum and let that marble
explore the bowl’s curvature to record the position where the marble loses
speed. Recall that the marble loses speed when it reaches the bowl’s bottom.
Hamiltonian mechanics play its role by describing, in terms of kinetic and
potential energies, the trajectories that the frictionless particle is following.
We refer the reader to McElreath (2020) to complement this intuition.

Further, in the right-hand side panels, we present the first 500 draws from
each method. Interestingly, they both find the target, but HMC draws
spreads more evenly across the posterior distribution. In other words, HMC
samples provide a more accurate description of the explored space than
RWM.

A.3 Potential scale reduction factor (R̂) &
Effective Sample Size (n̂eff)

R̂ is a convergence diagnostic, which compares the between- and within-chain
estimates for model parameters and other univariate quantities of interest.
If chains have not mixed well, R̂ is larger than 1. It is recommended to
run at least four chains by default and only using the sample if R̂ is less
than 1.01 (Vehtari et al. 2021). Stan reports R̂, which is the maximum of
rank normalized split-R̂ and rank normalized folded-split-R̂, which works for
thick-tailed distributions and is sensitive also to differences in scale.

For each parameter θ, we split each chain from the sampling phase in two
halves. That is, from four chains of 1000 draws each, we obtain eight
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Figure A.3: Parameter space exploration

split chains of 500 draws each. Then, we label the simulations as θij(i =
1, ..., N ; j = 1, ...,M), where N is the number of samples per split chain, M is
the number of split chains, and S = NM is the total number of draws from all
chains. We subsequently transform these simulations to their corresponding
rank normalized values zij. According to Vehtari et al. (2021), we replace
each value θij by its rank rij within the pooled draws from all chains. Second,
we transform ranks to normal scores using the inverse normal transformation
and a fractional offset via Eq (A.5):

zij = Φ−1
(
rij − 3/8
S − 1/4

)
(A.5)

Using these normal scores, we calculate R̂ following the formulation proposed
by Gelman et al. (2013). Initially, we compute B and W , the between- and
within-sequence variances, respectively:
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B = N

M − 1

M∑
j=1

(z̄.j − z̄..)2, where z̄.j = 1
n

n∑
i=1

zij, z̄.. = 1
M

M∑
j=1

z̄.j (A.6)

W = 1
M

M∑
j=1

s2
j , where s

2
j = 1

N − 1

n∑
i=1

(zij − z̄.j)2 (A.7)

Then, we can estimate v̂ar+(θ|y), the marginal posterior variance of the
parameter, by a weighted average of W and B:

v̂ar+(θ|y) = N − 1
N

W + 1
N
B (A.8)

From Eq (A.7) and (A.8), we obtain the rank normalized split R̂:

R̂ =
√
v̂ar+(θ|y)

W
(A.9)

To obtain the rank normalized folded-split R̂, we simply transform the
simulations (Eq (A.10)) and then apply the procedure described above (Eq
(A.5)-(A.9)).

ζij = |θij −median(θ)| (A.10)

For MCMC draws, we define the estimated effective sample size as

n̂eff = MN

1 + 2∑T
t=1 ρ̂t

(A.11)

This quantity requires an estimate of the sum of the correlations ρ up to
lag T (the first odd positive integer for which ρ̂T+1 + ρ̂T+2 is negative). The
correlation at any specific lag t (Eq (A.12)) depends upon the estimate v̂ar+

and the Variogram at each t (Eq (A.13)).

ρ̂t = 1− Vt
2v̂ar+ (A.12)
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Table A.1: Diagnostics

Parameter n̂eff R̂

β 1412.859 1.003264
ρ 1713.404 1.001340
I(0) 1460.322 1.004549

Vt = 1
M(N − t)

M∑
j=1

N∑
i=t+1

(zi,j − zi−t,j)2 (A.13)

We use the term bulk effective sample size to refer to the effective sample
size based on the rank normalized draws. To ensure reliable estimates of
variances and autocorrelations needed for R̂ and n̂eff, Vehtari et al. (2021)
recommend that the rank-normalized effective sample size must be greater
than 400 (100 per chain), conditions that hold for our estimated parameters
(Table A.1).

A.4 Synthetic data
This section illustrates the Bayesian workflow described in the main text
using synthetic data. First, we generate incidence data (Fig A.4) via the SEIR
model and a Poisson measurement component. To generate this data, we
assume a population size (N) of 5234, of which 30% have previous immunity
(R(0) = 0.3N). Both the epidemiological delays (σ−1 and γ−1) are set to 2
and the reporting fraction (ρ) to 77%. Furthermore, it is assumed that the
outbreak is triggered by two infectious individuals (I(0) = 2). Lastly, the
underlying basic reproduction number (<0) governing these dynamics is set
to 2.58.

A.4.1 Case 1
The purpose of this example concerns the recovery of <0 from the calibration
of the SEIR model to the synthetic data. To begin with, we classify each
parameter in the model as assumed (fixed) or estimated. The latter class
will be subject to inference via MCMC sampling. Initially, we consider the
effective contact rate (β) and the number of initial infectious individuals
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Figure A.4: Synthetic incidence

(I(0)) as estimated. Further, we assume no underreporting (ρ = 1) and no
previous immunity (R(0) = 0). For the two estimated parameters, we adopt
the priors described in the main text. The remaining parameters are fixed to
their true values.

A.4.1.1 Prior predictive checks

Then, we check that our prior information captures the data (Fig A.5). Based
on the results below, we accept the prior.
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Figure A.5: Case 1.Prior predictive checks
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A.4.1.2 Diagnostics

After checking the prior, we perform the inference process with four Markov
chains and 1000 iterations (plus 1000 for warm-up) each, checking for conver-
gence and effective sample sizes. These checks are satisfactory and suggest
no pathological behaviour.

## Checking sampler transitions treedepth.
## Treedepth satisfactory for all transitions.
##
## Checking sampler transitions for divergences.
## No divergent transitions found.
##
## Checking E-BFMI - sampler transitions HMC potential energy.
## E-BFMI satisfactory.
##
## Effective sample size satisfactory.
##
## Split R-hat values satisfactory all parameters.
##
## Processing complete, no problems detected.

A.4.1.3 Posterior predictive checks

However, when we compare the model’s fit against the data (Fig A.6), we
note that the estimated trajectories (grey contour denotes 95% credible
intervals and solid line denotes the mean) tend to overestimate the observed
data (blue dots). Therefore, assuming no underreporting and no previous
immunity produce an inadequate explanation of the observed data. For this
reason, we deem the model not trustworthy.

A.4.2 Case 2

Since the specification in Case 1 does not yield satisfactory results, we
consider a more complex model. Specifically, R(0) and ρ are no longer
assumed as fixed parameters, resulting in a four-unknowns model. We adopt
the priors described in the main text. For R(0), we choose a normal prior.
The remaining parameters are fixed to their true values.
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Figure A.6: Case 1 fit

A.4.2.1 Prior predictive checks

Again, we check that our prior information captures the data (Fig A.7).
Based on the results below, we accept the prior.
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Figure A.7: Case 2. Prior predictive checks

A.4.2.2 Diagnostics (first attempt)

Following prior checks, we run four chains of 1000 iterations (plus 1000 for
warm-up) each, checking for convergence and effective sample sizes. Stan
diagnostics inform the presence of divergent iterations and R̂ values above
the recommended threshold, an indication of pathological behaviour that
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may lead to biased estimations.

## Checking sampler transitions treedepth.
## 33 of 4000 (0.82%) transitions hit the maximum treedepth
## limit of 10, or 2^10 leapfrog steps. Trajectories that
## are prematurely terminated due to this limit will result
## in slow exploration. For optimal performance, increase
## this limit.
##
## Checking sampler transitions for divergences.
## 178 of 4000 (4.45%) transitions ended with a divergence.
## These divergent transitions indicate that HMC is not
## fully able to explore the posterior distribution. Try
## increasing adapt delta closer to 1. If this doesn't
## remove all divergences, try to reparameterize the model.
##
## Checking E-BFMI - sampler transitions HMC potential energy.
## E-BFMI satisfactory.
##
## Effective sample size satisfactory.
##
## The following parameters had split R-hat greater than 1.05:
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## Such high values indicate incomplete mixing and biased
## estimation. You should consider regularizating your model
## with additional prior information or a more effective
## parameterization.

Additionally, using the bayesplot package, we pinpoint the divergent iterations
(red crosses) in the parameter space (Fig A.8).

A.4.2.3 Diagnostics (second attempt)

One strategy to address divergent transitions consists of increasing the
adapt_delta parameter. This parameters corresponds to the target average
proposal acceptance probability during Stan’s adaptation period, and in-
creasing it will force Stan to take smaller steps. Consequently, we increase
adapt_delta from its default value (0.8) to 0.99 and re-run the sampling
process. This adjustment eliminated the divergent transitions at the cost of
hitting the maximum treedepth threshold. Unlike divergent transitions, this
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Figure A.8: Case 2.1. Pairs-plot
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warning is not a validity concern but an efficiency indicator. Despite the fact
that this indicator informs us about the complexity of the posterior explored,
we could still use the samples for further analysis should the convergence and
efficiency metrics are satisfactory. Moreover, an updated pairs-plot (Fig A.9)
highlights the iterations where the algorithm hit the maximum treedepth.

## Checking sampler transitions treedepth.
## 323 of 4000 (8.07%) transitions hit the maximum treedepth
## limit of 10, or 2^10 leapfrog steps. Trajectories that
## are prematurely terminated due to this limit will result
## in slow exploration. For optimal performance, increase
## this limit.
##
## Checking sampler transitions for divergences.
## No divergent transitions found.
##
## Checking E-BFMI - sampler transitions HMC potential energy.
## E-BFMI satisfactory.
##
## Effective sample size satisfactory.
##
## Split R-hat values satisfactory all parameters.
##
## Processing complete.

A.4.2.4 Diagnostics (third attempt)

However, it is possible to remove this warning by increasing the maximum
number of steps allowed per iteration. We also increase the number of itera-
tions. This time the diagnostics are satisfactory and indicate no pathological
behaviour.

## Checking sampler transitions treedepth.
## Treedepth satisfactory for all transitions.
##
## Checking sampler transitions for divergences.
## No divergent transitions found.
##
## Checking E-BFMI - sampler transitions HMC potential energy.
## E-BFMI satisfactory.
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Figure A.9: Case 2.2. Pairs-plot from second attempt
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##
## Effective sample size satisfactory.
##
## Split R-hat values satisfactory all parameters.
##
## Processing complete, no problems detected.

A.4.2.5 Posterior predictive checks

Then, we compare simulated trajectories against the data (Fig A.10). This
comparison suggests that the updated specification allows the SEIR model
to capture the dynamics of the observed incidence. Therefore, we accept the
model for parameter estimation.
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Figure A.10: Case 2. Fit

A.4.2.6 Parameter estimation

Before calculation marginal posterior uncertainty intervals, it is recommended
to check for the correlations among parameters (Fig A.11). Here, we can
observe this model’s complexity given the large degree of correlations occur-
ring in this parameter space. Subsequently, we estimate credible intervals for
each parameters, including <0 (Table A.2).
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Figure A.11: Case 2. Marginal and joint distributions

Table A.2: Case 2 estimates

Parameter Mean 2.5% 97.5%
I(0) 2.25 1.50 3.09
R(0) 1162.41 89.03 2269.57
<0 2.38 1.83 3.19
β 1.19 0.92 1.60
ρ 0.70 0.54 0.94
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A.4.3 Case 3
Although Case 2 is computationally satisfactory, the uncertainty around the
estimates could be improved with more data. In this context, we assume
that new evidence regarding population immunity becomes available. In
particular, this new data suggests that around 30% of the population has
antibodies against this virus. In light of this information, we repeat the
inference process with three estimated parameters (β, ρ, I(0)), whereas R(0)
becomes an assumed parameter. The remaining parameters are set to their
true values.

A.4.3.1 Prior predictive checks

As with Cases 1 & 2, we check that our prior information captures the data.
Based on the results (Fig A.12), we accept the prior.
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Figure A.12: Case 3. Prior predictive checks

A.4.3.2 Diagnostics

After checking the prior, we perform the inference process with four Markov
chains and 1000 iterations (plus 1000 for warm-up) each, checking for conver-
gence and effective sample sizes. These checks are satisfactory and suggest
no pathological behaviour.

## Checking sampler transitions treedepth.
## Treedepth satisfactory for all transitions.
##
## Checking sampler transitions for divergences.
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## No divergent transitions found.
##
## Checking E-BFMI - sampler transitions HMC potential energy.
## E-BFMI satisfactory.
##
## Effective sample size satisfactory.
##
## Split R-hat values satisfactory all parameters.
##
## Processing complete, no problems detected.

A.4.3.3 Posterior predictive checks

Comparing simulated trajectories to actual data (Fig A.13) shows that the
SEIR model explains adequately the observed incidence.
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Figure A.13: Case 3 fit

A.4.3.4 Parameter estimates

As with Case 2, we check for the correlations among parameters (Fig A.14).
Even though the correlation between I(0) and β slightly increases, correlations
between ρ-I(0), and ρ-β significantly decrease in this revised specification.
Finally, we estimate credible intervals, which we deem as useful information
(Table A.3). Notice that these narrow intervals recover the true values.
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Figure A.14: Case 3. Marginal and joint distributions

Table A.3: Case 3 estimates

Parameter Mean 2.5% 97.5%
I(0) 2.02 1.63 2.48
<0 2.58 2.53 2.63
β 1.29 1.26 1.31
ρ 0.76 0.73 0.80
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A.5 Point estimates vs neighbourhoods
Throughout this work, we intentionally focused on probability distributions
rather than point estimates. Here, we provide the rationale for such a choice.
The reader should recall that one can also approach model calibration via
optimisation. That is, using non-linear optimisation routines, one finds the
maximum or mode of a likelihood function π(y|θ), which is a point estimate.
Around this estimate, we can construct confidence intervals, which are defined
in terms of significance and coverage. For instance, a 95% confidence interval
means that 95 out of 100 intervals constructed from 100 measurements
obtained from an identical process will capture the actual value. In this
context, a single measurement corresponds to the entire time series of case
counts reported in Cumberland. Using the samples obtained from fitting
the SEIR model to this dataset, we display the likelihood function for each
parameter (Fig A.15), where the dashed line indicates the mode or Maximum
Likelihood Estimate (MLE).

β I0 ρ

1.25 1.30 1.35 2 3 0.70 0.75 0.80

−460.0

−457.5

−455.0

−452.5

Parameter value

Lo
g 

lik

Likelihood function

Figure A.15: Likelihood function by parameter

However, we consider whether a point close to the MLE is less important
than the MLE itself. For instance, the MLE for β is 1.288. . . (please note
that since this is a point estimate on the real line, after the last digit -8-, there
is an additional infinite number of digits). Does this imply that 1.2881. . . is
less useful given that this other point estimate yields a lower likelihood value?
Certainly, this is a value judgement. To elaborate on this issue, we explore
three point estimates: the mode, the mean of each marginal posterior, and a
random point from the posterior distribution (Table A.4). We show these
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Table A.4: Point estimates

β ρ I(0) Estimate
1.289201 0.7746664 2.003492 Mean
1.288000 0.7763670 2.014230 Mode
1.265660 0.7794390 2.262070 Random

estimates as lines superimposed over the posterior distribution (Fig A.16).
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Figure A.16: Point estimates

We then use such point estimates to simulate the SD model and compare the
output against the incidence data (Fig A.17). It thus follows that usefulness in
this context is defined as how accurately the simulated behaviour matches the
observed data. To measure this accuracy, we employ three different metrics:
the mean absolute scaled error (MASE), the Mean Square Error (MSE),
and R2. For the MASE and MSE, lower values indicate better performance.
Conversely, high values of R2 indicate more accurate predictions. These
metrics, though, tell a contradictory story. On the one hand, the mean
produces the most precise estimate according to the MASE and the MSE.
On the other hand, the random point results in the most precise estimate
according to R2. Interestingly, the mode underperforms under the three
metrics (Table A.5).

On the contrary, from a Bayesian perspective, ascertaining which point
estimate stands out above the others is uninteresting. The critical feature
lies in their location. That is, they form a common neighbourhood, which
we refer to as the posterior distribution π(θ|y). In this case, this distribution
is continuous, so the probability of any given point is zero. Thus, from a
Bayesian viewpoint, we are interested in finding which regions (collections of
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points) within the parameter space are consistent with the data. This feature
highlights a key difference between optimisation algorithms and MCMC
methods: their targets. Whereas the former aims for the point of highest
density, the latter aims for concentration of probability mass, also known as
the “typical set”. In lower dimensions, they tend to agree, but as the number
of parameter increases, the difference becomes evident. Colloquially, this is
known as the Curse of dimensionality. To complement this argument, we
refer the reader to Betancourt’s paper (Betancourt 2018) and Carpenter’s
case study1 to build intuition about this complex issue.

Consequently, statistics such as means, medians, standard deviations, and
quantiles are merely used for descriptive purposes. Specifically, quantiles
describe where in the parameter space the collection of plausible point
estimates concentrate. These quantiles known as credible intervals quantify
the uncertainty of the unobserved parameter values. For instance, a 95%
credible interval implies that we believe that there is a 95% chance of finding
the actual value within those bounds. Nevertheless, given that we have
defined model calibration as a Bayesian inference process, which quantifies
inferences by an entire distribution, no point estimate or interval characterises
that distribution.
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Figure A.17: Fit comparison by point estimate

1https://mc-stan.org/users/documentation/case-studies/curse-dims.html

128

https://mc-stan.org/users/documentation/case-studies/curse-dims.html


Appendix A. Supplementary Information (Ch. 2)

Table A.5: Performance metrics

Estimate MASE MSE R2

Mean 0.7283700 220.1650 0.8030856
Mode 0.7301842 220.7375 0.8025443
Random 0.7615599 236.3105 0.7920332

A.6 Mean Absolute Scaled Error
Hyndman offers the following definition2:

The MASE was proposed by Hyndman and Koehler (2006) as a generally
applicable measurement of forecast accuracy. They proposed scaling the errors
based on the in-sample Mean Absolute Error (MAE) from the naïve forecast
method. Using the naïve method, we generate one-period-ahead forecasts from
each data point in the sample. Accordingly, a scaled error is defined as:

qt = et
1

n−1

n∑
i=2
|yi − yi−1|

(A.14)

where the numerator et is the absolute forecast error (|ŷt − yt|) for a specific
time. Here, ŷt denotes the predicted data from the fitted model and yt
the actual data. Further, n represents the number of data points. The
denominator is the MAE from the one-step “naive forecast method”, defined
as the actual value (yt) minus the forecast value (yt−1) for t > 1.

Thus, the mean absolute scaled error is:

MASE = mean(|qt|) (A.15)

MASE is a scale-independent metric defined if there are zero values. A scaled
error is less than one if it arises from a better forecast than the naïve forecast.
Conversely, it is greater than one if the forecasts worse than the average
one-step, naïve forecast computed in-sample.

Consequently, we estimate the MASE for each simulated trajectory from the
SEIR model fitted to Cumberland’s data and present its distribution (Fig

2https://robjhyndman.com/papers/foresight.pdf
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A.18).
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Figure A.18: MASE distribution

A.7 Performance comparison between HMC
and RWM

This section complements the main text by showing differences in computa-
tional time and trace plots when fitting the SEIR model to Cumberland’s
incidence data using two MCMC methods: RWM and HMC. We perform
the calibration process under six scenarios, which differ in the number of iter-
ations (100, 200, 500, 1000, 1500 and, 2000). For instance, the 100-iterations
scenario indicates that we allocate 100 iterations to the burn-in/warm-up
phase and 100 iterations to the sampling phase. It should be noted that we
only use the draws from the sampling phase in trace plots. Conversely, we
take into account the burn-in/warm-up phase to measure execution times.

A.7.1 Computational time
This metric refers to the time the practitioner awaits the results. This
evaluation ignores whether the Markov chains converge to the posterior
distribution. The results (Fig A.19) indicate that, in all scenarios, HMC
takes less time to produce an equal amount of samples than RWM does.
Nevertheless, this metric is not free of confounders. It is not known whether
these differences are due to the methods per se or if, on the contrary, the
observed gap stems from performance discrepancies in the technological
implementations.
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Figure A.19: Computational time by MCMC method

A.7.2 Trace plots
Before estimating diagnostic quantities (shown in the main text), it is always
recommended to check trace plots so as to detect convergence issues. The
trace plots in this section show the draws obtained in the sampling phase.
As mentioned above, we allocate an equal number of iterations for the burn-
in/warm-up and sampling phases. In the first scenario, MCMC samplers
return 400 samples (4 chains * 100 samples from the sampling phase) that
describe the target (posterior) distribution. In these graphs (Fig A.20-A.25),
we observe that even from 100 warm-up samples, HMC apparently reaches
convergence. Conversely, RWM seems to require at least 1500 burn-in draws
for the chains to converge.
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Figure A.20: Trace plots of the 100-iterations scenario by method
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Figure A.21: Trace plots of the 200-iterations scenario by method
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Figure A.22: Trace plots of the 500-iterations scenario by method
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Figure A.23: Trace plots of the 1000-iterations scenario by method
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Figure A.24: Trace plots of the 1500-iterations scenario by method
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Figure A.25: Trace plots of the 1500-iterations scenario by method
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B.1 Synthetic data
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Figure B.1: Synthetic incidence data by measurement component and delay distribution.
There are 80 time series per panel.
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B.2 Fitting high-fidelity D1j

This section illustrates the process of fitting various parameterisations of
the SE1IjR model (M1j) to high-fidelity D1j incidence reports. We mean
by parameterisation the decision of categorising model parameters as either
unknown or assumed. For the unknown parameters, we construct prior
distributions, which will be eventually updated in light of the data via HMC
sampling, resulting in a posterior distribution. On the other hand, assumed
parameters are fixed at their true values.

B.2.1 Three-unknown parameterisation (traditional)
We assume that candidates from this parameterisation have three unknowns:
β, ρ, and I1

0 . Fig B.2 shows their prior distributions.

β ~ lognormal(0,1) I0 ~ lognormal(0,1) ρ ~ beta(2, 2)

0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0 0.00 0.25 0.50 0.75 1.00
Value

Figure B.2: Prior distribution

B.2.1.1 Inference

We fit four candidate models (M11, M12, M13, and M14) to each of the 80
high-fidelity D1j incidence reports.

B.2.1.1.1 Incidence fit

Fig B.3 compares actual (points) and simulated (lines) latent incidence. For
brevity reasons, we only show two candidate models (M11 andM14) matching
two incidence time-series of different origin (D11 and D14).
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Figure B.3: Incidence fit

B.2.1.1.2 MASE

To persuade the reader that all models fit the data equally well, we draw on
the mean absolute scaled error (MASE). This quantity is a measure of the
accuracy of forecasts, well-suited for time-series. Therefore, we employ the
MASE to compare each of the 4000 simulated latent incidences against its true
counterpart (x) and observed incidence (y). By simulated latent incidences,
we refer to the process of plugging the samples of a posterior distribution into
an ODE model to obtain incidence trajectories via simulation. We summarise
the results via histograms (Fig B.4). The left column (of panels) contains
the comparison between simulated and actual latent incidences. The right
column of panels displays the comparison between simulated latent incidence
and the observed incidence. Overall, there is no noticeable variation in the
histograms as the fitting model changes (increasing j).

B.2.1.1.3 Parameter estimates

Fig B.5 shows parameter estimates (error bars) calculated from posterior
distributions (samples). These samples were obtained from four model
candidates fitted to two incidence reports of different origin (D11 and D14).
Error bars correspond to 95% credible intervals. We show <0 instead of β,
given that they are directly proportional and the former is our quantity of
interest.

B.2.1.1.4 Joint distribution

Fig B.6 presents an example of a joint posterior distribution. Specifically,
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Figure B.4: Fit scores by candidate model and type of data. x denotes latent incidence,
whereas y indicates observed incidence. Vertical line denotes the mean.
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Figure B.5: Parameter estimates. Panel headings on the right-hand side indicate the
data’s origin.
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this posterior distribution was derived from fitting the M13 candidate to one
D13 incidence report. Notice the correlation among parameters.
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Figure B.6: Joint distribution

B.2.1.1.5 Coverage

Table B.1 summarises the accuracy of estimates by model candidate and data
origin. For instance, the first row corresponds to the accuracy of candidate
M11 when fitting 20 D11 incidence reports. In particular, the third column
of this row indicates that 19 out of the 20 95% credible intervals cover the
true <0 value. Namely, 95% coverage.

B.2.1.1.6 MLE criterion

Each bar (column) in Fig B.7 represents the number of times that a particular
model candidate attains the largest likelihood score for a given set of incidence
reports. Recall that each set of reports comprises 20 time-series. For instance,
the first column (left to right) in the first panel (top-left) indicates that M11

outperforms its competitors 12 out of 20 times (60%) in fitting D11 incidence
reports.

B.2.2 Four-unknown parameterisation
We assume γ as an additional unknown with respect to the previous parame-
terisation. Fig B.8 correspond to its prior distribution.
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Table B.1: Traditional parameterisation’s coverage table

Dij M ij <0 ρ I0

11 11 95% 100% 95%
11 12 0% 30% 95%
11 13 0% 0% 95%
11 14 0% 0% 90%
12 11 0% 15% 90%
12 12 90% 100% 95%
12 13 5% 95% 95%
12 14 0% 75% 95%
13 11 0% 5% 85%
13 12 0% 95% 90%
13 13 95% 100% 100%
13 14 35% 100% 100%
14 11 0% 0% 85%
14 12 0% 60% 90%
14 13 25% 90% 95%
14 14 85% 95% 95%
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Figure B.7: Score summary
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γ ~ beta(2, 2)
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Figure B.8: Recovery rate’s prior distribution

B.2.2.1 Inference

We fit four candidate models (M11, M12, M13, and M14) from this parame-
terisation to each of the 80 high-fidelity D1j incidence reports.

B.2.2.1.1 Incidence fit

Fig B.9 compares actual (points) and simulated (lines) latent incidence. For
brevity reasons, we only show two candidate models (M11 andM14) matching
two incidence time-series of different origin (D11 and D14).
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Figure B.9: Incidence fit

B.2.2.1.2 Parameter estimates

Fig B.10 shows parameter estimates (error bars) calculated from posterior
distributions (samples). These samples were obtained from four model
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candidates fitted to two incidence reports of different origin (D11 and D14).
Error bars correspond to 95% credible intervals.
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Figure B.10: Parameter estimates. Panel headings on the right-hand side indicate the
data’s origin.

B.2.2.1.3 Joint distribution

Fig B.11 presents an example of a joint posterior distribution. Specifically,
this posterior distribution was derived from fitting the M12 candidate to one
D12 incidence report. Notice the perfect correlation between β and γ.
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Figure B.11: Joint distribution
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B.2.2.1.4 Recovery rate (γ) estimates

We argue that the four-unknown parameterisation is unidentifiable. To
support this claim, we compare the recovery’s rate prior against the posterior
(Fig B.12) distributions obtained from four candidates fitted to one D33

report. Notice that the prior and the posterior are remarkably similar. In
other words, the data does not provide enough information to update the
recovery rate’s prior distribution.
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Figure B.12: Comparison between the recovery rate’s prior distribution (grey histograms)
against four marginal posterior distributions obtained from each candidate (coloured
histograms).

B.2.2.1.5 Coverage

Table B.2 summarises the four-unknown parameterisation’s coverage.

B.2.2.1.6 <0 vs τ

Fig B.13 shows the unravelled linear relationship between the basic repro-
duction number and the mean generation time.

B.2.3 Three-unknown parameterisation (alternative)
The alternative parameterisation refers to the algebraic manipulation of
the SEiIjR framework so as to obtain a set equations wherein the basic
reproduction number (<0) and the mean generation time (τ) are explicit
parameters of the model. In doing so, β and γ become functions of other

143



B.2. Fitting high-fidelity D1j

Table B.2: Four-unknown parameterisation’s coverage table

Dij M ij <0 ρ γ−1 I0

11 11 100% 100% 100% 100%
11 12 95% 100% 100% 100%
11 13 65% 100% 70% 100%
11 14 50% 100% 60% 95%
12 11 95% 100% 95% 100%
12 12 100% 100% 100% 100%
12 13 95% 100% 95% 100%
12 14 95% 100% 90% 100%
13 11 95% 100% 95% 95%
13 12 95% 100% 95% 95%
13 13 100% 100% 100% 95%
13 14 100% 100% 100% 95%
14 11 70% 95% 80% 95%
14 12 95% 100% 90% 90%
14 13 100% 100% 95% 100%
14 14 100% 100% 100% 100%
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Figure B.13: Scatter plot

variables rather than parameters. In these parameterisation, we assume
the basic reproduction number’s inverse (<−1

0 ), the reporting rate (ρ) and
initial number of infectious individuals (I1

0 ) as unknowns. Since model
candidates are fitting outbreak-like incidence data, it is warranted to assume
that the basic reproduction number is higher than one (<0 > 1). This
observation implies that the magnitude of its inverse (<−1

0 ) between 0 and 1.
Consequently, we formulate a prior that is consistent with such a constraint
(Fig B.14).
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Figure B.14: Basic reproduction number’s prior distribution
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B.2.3.1 Inference

We fit four candidate models (M11, M12, M13, and M14) from this parame-
terisation to each of the 80 high-fidelity D1j incidence reports.

B.2.3.1.1 Incidence fit

Fig B.15 compares actual (points) and simulated (lines) latent incidence.
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Figure B.15: Incidence fit

B.2.3.1.2 Parameter estimates

Fig B.16 shows parameter estimates (error bars) from four model candidates
from this alternative parameterisation fitted to two incidence reports of
different origin (D11 and D14).

B.2.3.1.3 Joint posterior distribution

Fig B.17 presents an example of a joint posterior distribution. Specifically,
this posterior distribution was derived from fitting M11 to one D11 incidence
report.

B.2.3.1.4 Coverage

Table B.3 summarises the alternative parameterisation’s coverage.
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Figure B.16: Parameter estimates. Panel headings on the right-hand side indicate the
data’s origin.
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Figure B.17: Joint distribution
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Table B.3: Alternative parameterisation’s coverage table

Dij M ij <0 ρ I0

11 11 95% 100% 95%
11 12 95% 95% 45%
11 13 90% 95% 10%
11 14 85% 95% 5%
12 11 90% 100% 65%
12 12 90% 100% 95%
12 13 95% 100% 85%
12 14 95% 100% 75%
13 11 75% 100% 50%
13 12 95% 100% 95%
13 13 95% 100% 95%
13 14 100% 100% 90%
14 11 90% 100% 20%
14 12 90% 100% 60%
14 13 85% 100% 80%
14 14 85% 95% 95%
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B.3 Fitting low-fidelity D1j

This section describes the process of fitting various parameterisations of
the SE1IjR model (M1j) to low-fidelity D1j incidence reports. The key
difference between this section and the previous one lies in the presence of
overdispersion in the data and fitting models. In particular, the latter are
equipped with a Negative Binomial measurement component, which imposes
the estimation of an additional parameter: (φ). Other than this difference,
there is a large degree of redundancy between the two sections. Therefore, we
assume that the reader is familiar with the content presented in the previous
section.

B.3.1 Three-unknown parameterisation (traditional)
Candidates from this parameterisation have three unknowns (β, ρ, and I1

0 )
in the system component and an additional one (φ−1) in the measurement
component. Fig B.18 shows the prior distribution for the latter.

φ−1

0.00 0.25 0.50 0.75 1.00
Value

Figure B.18: Overdispersion’s prior distribution

B.3.1.1 Inference

We fit four candidate models (M11, M12, M13, and M14) to each of the 80
low-fidelity D1j incidence reports.

B.3.1.1.1 Incidence fit

Fig B.19 compares actual (points) and simulated (lines) latent incidence.
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Figure B.19: Incidence fit

B.3.1.1.2 MASE

We employ the MASE to compare each of the 4000 simulated latent incidences
against its true counterpart (x) and observed incidence (y). We summarise
the results via histograms (Fig B.20). The left column (of panels) contains
the comparison between simulated and actual latent incidences. The right
column of panels displays the comparison between simulated latent incidence
and the observed incidence. Overall, there is no substantial variation in the
histograms as the fitting model changes (increasing j).

B.3.1.1.3 Parameter estimates

Fig B.21 shows parameter estimates (error bars) from four model candidates
from this alternative parameterisation fitted to two incidence reports of
different origin (D11 and D14).

B.3.1.1.4 Joint distribution

Fig B.22 presents an example of a joint posterior distribution. Specifically,
this posterior distribution was derived from fitting the M11 candidate to one
D11 incidence report.

B.3.1.1.5 Coverage

Table B.4 summarises the traditional parameterisation’s coverage.
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Figure B.20: Fit scores by candidate model and type of data. x denotes latent incidence,
whereas y indicates observed incidence. Vertical line denotes the mean.
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Figure B.21: Parameter estimates. Panel headings on the right-hand side indicate the
data’s origin.

0.59*** -0.91***

-0.54***

0.06***

-0.01

-0.03

β ρ I0 φ−1

β
ρ

I0
φ
−
1

1.10 1.15 1.20 1.25 1.30 1.35 0.6 0.7 0.8 0.9 1.0 1 2 3 0.2 0.4 0.6

0
100
200
300
400

0.6
0.7
0.8
0.9
1.0

1

2

3

0.2
0.3
0.4
0.5
0.6
0.7

Figure B.22: Joint distribution

152



Appendix B. Supplementary Information (Ch. 3)

Table B.4: Traditional parameterisation’s coverage table

Dij M ij <0 ρ I0 φ−1

11 11 90% 90% 100% 100%
11 12 5% 85% 100% 100%
11 13 0% 80% 100% 100%
11 14 0% 80% 95% 100%
12 11 30% 100% 90% 100%
12 12 90% 100% 90% 100%
12 13 65% 100% 90% 100%
12 14 35% 100% 95% 100%
13 11 0% 95% 95% 95%
13 12 80% 95% 95% 95%
13 13 95% 90% 95% 95%
13 14 90% 90% 95% 95%
14 11 0% 95% 95% 95%
14 12 55% 90% 95% 95%
14 13 90% 90% 100% 95%
14 14 100% 90% 100% 95%
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B.3.1.1.6 MLE criterion

Each bar (column) in in Fig B.23 represents the number of times that
particular model candidate attained the largest likelihood score for a given
set of incidence reports. Recall that each set of reports comprises 20 time-
series. For instance, the first column (left to right) in the first panel (top-left)
indicates that M11 outperforms its competitors 10 out of 20 times (50%) in
fitting D11 incidence reports.
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Figure B.23: Score summary

B.3.2 Four-unknown parameterisation
B.3.2.1 Inference

We fit four candidate models (M11, M12, M13, and M14) from this parame-
terisation to each of the 80 low-fidelity D1j incidence reports.

B.3.2.1.1 Incidence fit

Fig B.24 compares actual (points) and simulated (lines) latent incidence.

B.3.2.1.2 Parameter estimates
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Figure B.24: Incidence fit

Fig B.25 shows parameter estimates (error bars) from four model candidates
from this alternative parameterisation fitted to two incidence reports of
different origin (D11 and D14).
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Figure B.25: Parameter estimates. Panel headings on the right-hand side indicate the
data’s origin.

B.3.2.1.3 Joint distribution

Fig B.26 presents an example of a joint posterior distribution. Specifically,
this posterior distribution was derived from fitting the M12 candidate to one
D12 incidence report.

B.3.2.1.4 Coverage
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Figure B.26: Joint distribution

Table B.5 summarises the summarises the four-unknown parameterisation’s
coverage.

B.3.2.1.5 <0 vs τ

Fig B.27 shows the linear relationship between the basic reproduction number
and the mean generation time.

B.3.3 Three-unknown parameterisation (alternative)
B.3.3.1 Inference

We fit four candidate models (M11, M12, M13, and M14) to each of the 80
low-fidelity D1j incidence reports.

B.3.3.1.1 Incidence fit

Fig B.28 compares actual (points) and simulated (lines) latent incidence.

B.3.3.1.2 Parameter estimates

Fig B.29 shows parameter estimates (error bars) from four model candidates
from this alternative parameterisation fitted to two incidence reports of
different origin (D11 and D14).
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Table B.5: Four-unknown parameterisation’s coverage table

Dij M ij <0 ρ γ−1 I0 φ−1

11 11 100% 100% 95% 100% 100%
11 12 100% 100% 90% 100% 100%
11 13 100% 100% 90% 100% 100%
11 14 95% 100% 90% 100% 100%
12 11 100% 100% 100% 95% 100%
12 12 100% 100% 100% 100% 100%
12 13 100% 100% 100% 100% 100%
12 14 100% 100% 100% 100% 100%
13 11 95% 100% 90% 95% 95%
13 12 100% 100% 95% 95% 95%
13 13 100% 100% 95% 100% 95%
13 14 100% 100% 95% 100% 95%
14 11 95% 100% 95% 100% 95%
14 12 100% 100% 95% 100% 90%
14 13 100% 100% 90% 100% 95%
14 14 100% 100% 90% 100% 95%
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Figure B.27: Scatter plot
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Figure B.28: Incidence fit
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Figure B.29: Parameter estimates. Panel headings on the right-hand side indicate the
data’s origin.

B.3.3.1.3 Joint posterior distribution

Fig B.30 presents an example of a joint posterior distribution. Specifically,
this posterior distribution was derived from fitting M14 to one D14 incidence
report.
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Figure B.30: Joint distribution

B.3.3.1.4 Coverage

Table B.6 summarises the alternative parameterisation’s coverage.
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Table B.6: Alternative parameterisation’s coverage table

Dij M ij <0 ρ I0 φ−1

11 11 95% 80% 100% 100%
11 12 95% 85% 85% 100%
11 13 95% 85% 80% 100%
11 14 95% 80% 75% 100%
12 11 90% 100% 100% 100%
12 12 90% 100% 90% 100%
12 13 90% 100% 90% 100%
12 14 90% 100% 85% 100%
13 11 90% 95% 95% 95%
13 12 95% 95% 95% 95%
13 13 95% 95% 95% 95%
13 14 95% 95% 95% 90%
14 11 90% 90% 90% 90%
14 12 95% 90% 100% 95%
14 13 95% 90% 100% 90%
14 14 100% 90% 100% 95%
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B.4 Fitting low-fidelity D3j

This section illustrates the process of fitting various parameterisations of
the SEiIjR model (M1j & M3j) to low-fidelity D3j incidence reports. In
particular, this section expands on the work presented in the preceding
sections by exploring the consequences of misspecifying the latent period
distribution. Thus, we assume the reader is familiar with the previous sections
so as to avoid redundancy in the documentation.

B.4.1 Three-unknown parameterisation (traditional)
Candidates from this parameterisation have three unknowns (β, ρ, and I1

0 )
in the system component and an additional one (φ−1) in the measurement
component.

B.4.1.1 Inference

We fit eight candidate models (M11, M12, M13, M14, M31, M32, M33, and
M34) to each of the 80 low-fidelity D3j incidence reports.

B.4.1.1.1 Incidence fit

Fig B.31 compares actual (points) and simulated (lines) latent incidence.
Specifically, this comparison shows four candidates models from this parame-
terisation fitting one D33 report. Notice that misspecifying the latent period
distribution leads to a less accurate fit.

B.4.1.1.2 MASE

Fig B.32 corroborates the previous observation. Notice that candidates with
a gamma-distributed latent period (M31 and M33) attain lower scores than
their counterparts with an exponentially-distributed latent period. On the
other hand, MASE scores are far less sensitive to changes in the infectious
period distribution.

B.4.1.1.3 Parameter estimates

Fig B.33 shows parameter estimates (error bars) from eight model candidates
from this traditional parameterisation fitted to one incidence report (D33).
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Figure B.31: Incidence fit
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Figure B.33: Parameter estimates.

B.4.1.1.4 Joint posterior distribution

Fig B.34 presents an example of a joint posterior distribution. Specifically,
this posterior distribution was derived from fitting M13 to one D13 incidence
report.

B.4.1.1.5 Coverage

Table B.7 summarises this parameterisation’s coverage.

B.4.2 Four-unknown parameterisation
B.4.2.1 Inference

We fit four candidate models (M11, M12, M13, and M14) from this parame-
terisation to each of the 80 low-fidelity D3j incidence reports. As mentioned
in the main text, misspecifying the latent period distribution merely produces
slight biases in the estimates of the initial number of infectious individuals
(I0) and incidence over time. Therefore, we restrict ourselves to reporting
relationship between the basic reproduction number and the mean generation
time and estimated coverage, given that the results are equivalent to those
presented in the previous sections.
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Table B.7: Traditional parameterisation’s coverage table

Dij M ij <0 ρ I0 φ−1

31 31 95% 95% 95% 95%
31 32 0% 95% 95% 95%
31 33 0% 90% 95% 95%
31 34 0% 90% 95% 95%
31 11 90% 95% 65% 95%
31 12 0% 95% 60% 95%
31 13 0% 95% 55% 95%
31 14 0% 95% 55% 95%
32 31 5% 100% 95% 100%
32 32 100% 100% 100% 100%
32 33 80% 100% 100% 100%
32 34 45% 100% 100% 100%
32 11 10% 95% 45% 95%
32 12 100% 100% 40% 95%
32 13 85% 100% 30% 95%
32 14 60% 100% 30% 95%
33 31 0% 95% 80% 85%
33 32 80% 95% 90% 85%
33 33 85% 95% 90% 85%
33 34 75% 95% 90% 85%
33 11 0% 85% 70% 90%
33 12 80% 90% 60% 90%
33 13 90% 95% 60% 90%
33 14 85% 95% 60% 85%
34 31 0% 95% 90% 95%
34 32 55% 95% 90% 95%
34 33 90% 100% 85% 90%
34 34 90% 100% 85% 90%
34 11 0% 90% 60% 95%
34 12 55% 95% 45% 100%
34 13 90% 95% 45% 100%
34 14 95% 100% 45% 95%
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Figure B.34: Joint distribution

B.4.2.1.1 Coverage

Table B.8 summarises this parameterisation’s coverage.

B.4.2.1.2 <0 vs τ

Fig B.35 shows the linear relationship between the basic reproduction number
and the mean generation time.

B.4.3 Three-unknown parameterisation (alternative)
We fit four candidate models (M11, M12, M13, andM14) from the alternative
parameterisation to each of the 80 low-fidelity D3j incidence reports.

B.4.3.1 Coverage

We summarise the results in Table B.9.

B.4.4 Three-unknown (Alternative) - Poisson
In this section, we test the implications of amalgamating the alternative
parameterisation with a Poisson measurement model (likelihood function) to
fit overdispersed incidence data. We fit four candidate models (M11, M12,
M13, and M14) to each of the 80 low-fidelity D3j incidence reports.
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Table B.8: Four-unknown parameterisation’s coverage table

Dij M ij <0 ρ γ−1 I0 φ−1

31 11 95% 95% 95% 95% 95%
31 12 95% 100% 95% 100% 95%
31 13 100% 100% 90% 100% 95%
31 14 100% 100% 90% 100% 95%
32 11 100% 95% 100% 100% 100%
32 12 100% 100% 100% 100% 100%
32 13 100% 95% 100% 100% 100%
32 14 100% 100% 100% 100% 100%
33 11 65% 90% 90% 95% 80%
33 12 85% 90% 90% 95% 80%
33 13 85% 90% 90% 95% 80%
33 14 90% 95% 80% 95% 85%
34 11 65% 90% 95% 90% 95%
34 12 80% 90% 95% 90% 100%
34 13 80% 90% 80% 90% 95%
34 14 80% 90% 80% 90% 95%
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Figure B.35: Scatter plot
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Table B.9: Alternative parameterisation’s coverage table

Dij M ij <0 ρ I0 φ−1

31 11 95% 95% 70% 95%
31 12 95% 95% 80% 95%
31 13 95% 95% 85% 95%
31 14 95% 95% 90% 95%
32 11 100% 100% 25% 95%
32 12 100% 95% 35% 95%
32 13 100% 95% 45% 95%
32 14 100% 100% 45% 95%
33 11 85% 95% 60% 90%
33 12 90% 95% 60% 90%
33 13 85% 95% 60% 85%
33 14 90% 95% 70% 90%
34 11 85% 95% 40% 85%
34 12 95% 95% 45% 95%
34 13 100% 95% 50% 100%
34 14 95% 95% 45% 95%
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Table B.10: Alternative parameterisation’s coverage table

Dij M ij <0 ρ I0

31 11 15% 30% 20%
31 12 15% 30% 15%
31 13 15% 30% 15%
31 14 15% 25% 10%
32 11 25% 20% 5%
32 12 30% 20% 0%
32 13 30% 20% 0%
32 14 30% 20% 0%
33 11 5% 10% 15%
33 12 5% 10% 20%
33 13 10% 10% 25%
33 14 10% 10% 25%
34 11 5% 0% 5%
34 12 10% 0% 5%
34 13 10% 0% 5%
34 14 10% 5% 5%

B.4.4.1 Coverage

We summarise the results in Table B.10.

B.5 Fitting high-fidelity D3j

This section illustrates the process of fitting various parameterisations of the
SEiIjR model (M1j) to high-fidelity D3j incidence reports. These results
verify the insights obtained in the previous section. That is, misspecifying the
latent period distribution does not have a detrimental effect on the estimation
of <0. Consequently, we restrict the presentation of results to coverage tables
and the linear relationship between the basic reproduction number and the
mean generation time obtained from the four-unknown parameterisation.
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Table B.11: Traditional parameterisation’s coverage table

Dij M ij <0 ρ I0

31 11 95% 90% 0%
31 12 0% 15% 0%
31 13 0% 5% 0%
31 14 0% 5% 0%
32 11 0% 35% 0%
32 12 100% 95% 0%
32 13 0% 90% 0%
32 14 0% 65% 0%
33 11 0% 10% 0%
33 12 0% 85% 0%
33 13 90% 95% 0%
33 14 55% 85% 0%
34 11 0% 5% 0%
34 12 0% 75% 0%
34 13 30% 90% 0%
34 14 85% 95% 0%

B.5.1 Three-unknown parameterisation (traditional)
We fit four candidate models (M11, M12, M13, and M14) from the traditional
parameterisation to each of the 80 high-fidelity D3j incidence reports.

B.5.1.1 Coverage

We summarise the results in Table B.11.

B.5.2 Four-unknown parameterisation
We fit four candidate models (M11, M12, M13, and M14) from the four-
unknown parameterisation to each of the 80 high-fidelity D3j incidence
reports.

B.5.2.1 Coverage

We summarise the results in Table B.12.
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Table B.12: Four-unknown parameterisation’s coverage table

Dij M ij <0 ρ γ−1 I0

31 11 15% 10% 15% 40%
31 12 25% 25% 5% 80%
31 13 30% 25% 0% 95%
31 14 40% 25% 0% 95%
32 11 0% 0% 0% 30%
32 12 0% 0% 0% 30%
32 13 0% 0% 0% 35%
32 14 0% 0% 0% 40%
33 11 0% 0% 0% 15%
33 12 0% 0% 0% 15%
33 13 0% 0% 0% 40%
33 14 0% 0% 0% 40%
34 11 0% 0% 0% 15%
34 12 0% 0% 0% 10%
34 13 0% 0% 0% 15%
34 14 0% 0% 0% 25%
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B.5.2.2 <0 vs τ

Fig B.36 shows the linear relationship between the basic reproduction number
and the mean generation time.
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Figure B.36: Scatter plot

B.5.3 Three-unknown parameterisation (alternative)
We fit four candidate models (M11, M12, M13, andM14) from the alternative
parameterisation to each of the 80 high-fidelity D3j incidence reports.

B.5.3.1 Coverage

We summarise the results in Table B.13.

B.6 Sensitivity analysis
This section aims to illustrate the performance of the alternative parame-
terisation under various transmissibility levels (<0) and mean generation
times. For simplicity, we restrict the SEiIjR to four instances (i = 1, and
j = {1, 2, 3, 4}) for data generation and fitting. In particular, we test the al-
ternative parameterisation under four additional scenarios (Table B.14). The
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Table B.13: Alternative parameterisation’s coverage table

Dij M ij <0 ρ I0

31 11 95% 90% 0%
31 12 90% 90% 0%
31 13 70% 90% 0%
31 14 55% 95% 0%
32 11 85% 90% 0%
32 12 100% 90% 0%
32 13 85% 95% 0%
32 14 85% 95% 0%
33 11 95% 90% 0%
33 12 90% 95% 0%
33 13 90% 95% 0%
33 14 85% 95% 0%
34 11 90% 90% 0%
34 12 95% 95% 0%
34 13 90% 95% 0%
34 14 85% 95% 0%
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Table B.14: Sensitivity analysis scenarios

Scenario <0 τe

1 2.5 4
2 2.5 8
3 2.5 13
4 9.0 4
5 17.0 4

first scenario corresponds to Appendix B.3. The term scenario refers to a par-
ticular configuration of <0 and the mean generation time (τ) in the SEiIjR
framework to produce the synthetic data. Since τ varies with the infectious
period distribution (j), we identify each scenario by the mean generation
time obtained from an exponentially-distributed infectious period (denoted
by τe). For each instance and data-fidelity level, we generate 20 synthetic
incidence reports. Recall that fidelity levels correspond to two configurations
of the Negative Binomial measurement component: high (φ−1 = 0) and low
fidelity (φ−1 = 1

3). As a result, we produce 160 synthetic incidence reports
per scenario. Then, we fit four candidates per incidence report, assuming
appropriate measurement components.

B.6.1 Scenario 2
In comparison to Scenario 1, we increase the reference mean generation time
(τe) from 4 to 8 to produce the synthetic data (Fig B.37).

B.6.1.1 Inference (high-fidelity data)

We fit four candidate models (M11, M12, M13, andM14) from the alternative
parameterisation to each incidence report.

B.6.1.1.1 Coverage

We summarise the results in Table B.15.

B.6.1.1.2 <0 estimates

Fig B.38 displays parameter estimates from fitting four candidates (two
from the traditional and two from the alternative parameterisation) to one
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Figure B.37: Scenario 2’s simulated incidence reports. Measurement noise from the
Poisson (no overdispersion) and Negative Binomial distributions was added to the smooth
trajectories obtained from SEIR instances with an exponential-distributed latent period.
There are 20 incidence reports overlapped in each panel.
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Table B.15: Scenario 2’s coverage table. Poisson noise

Dij M ij <0 ρ I0

11 11 95% 90% 95%
11 12 80% 95% 35%
11 13 35% 95% 10%
11 14 30% 90% 0%
12 11 80% 80% 45%
12 12 95% 80% 95%
12 13 90% 80% 80%
12 14 75% 80% 65%
13 11 60% 85% 25%
13 12 95% 85% 85%
13 13 95% 90% 95%
13 14 100% 95% 85%
14 11 60% 100% 25%
14 12 75% 100% 70%
14 13 75% 95% 85%
14 14 90% 95% 85%
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D11 incidence report. Although both M14 candidates miss the actual value,
the estimate from the alternative parameterisation is much closer than that
one of the traditional parameterisation. The value in the middle of error
indicate the percentage difference between the actual value and posterior
distribution’s mean.
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Figure B.38: Estimates of the basic reproduction number by model candidate.

B.6.1.2 Inference (low-fidelity data)

We fit four candidate models (M11, M12, M13, andM14) from the alternative
parameterisation to each incidence report.

B.6.1.2.1 Coverage

We summarise the results in Table B.16.

B.6.2 Scenario 3
In comparison to Scenario 2, we increase the reference mean generation time
(τe) from 8 to 13 to produce the synthetic data (Fig B.39).
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Table B.16: Scenario 2’s coverage table. Overdispersion

Dij M ij <0 ρ I0 φ−1

11 11 95% 95% 95% 95%
11 12 90% 90% 80% 95%
11 13 85% 90% 75% 95%
11 14 85% 95% 75% 95%
12 11 100% 90% 95% 85%
12 12 100% 90% 95% 90%
12 13 100% 90% 100% 90%
12 14 100% 90% 100% 90%
13 11 85% 95% 95% 95%
13 12 90% 100% 95% 95%
13 13 90% 95% 90% 95%
13 14 90% 100% 85% 95%
14 11 90% 95% 80% 95%
14 12 90% 95% 90% 95%
14 13 95% 95% 95% 95%
14 14 95% 95% 95% 95%
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Figure B.39: Scenario 3’s simulated incidence reports. Measurement noise from the
Poisson (no overdispersion) and Negative Binomial distributions was added to the smooth
trajectories obtained from SEIR instances with an exponential-distributed latent period.
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Table B.17: Scenario 3’s coverage table. Poisson noise

Dij M ij <0 ρ I0

11 11 100% 100% 100%
11 12 95% 100% 75%
11 13 90% 100% 55%
11 14 90% 100% 45%
12 11 95% 90% 85%
12 12 90% 90% 100%
12 13 90% 95% 90%
12 14 90% 95% 85%
13 11 95% 100% 65%
13 12 100% 95% 95%
13 13 100% 90% 95%
13 14 95% 90% 100%
14 11 90% 100% 75%
14 12 95% 100% 90%
14 13 90% 100% 90%
14 14 90% 100% 90%

B.6.2.1 Inference (high-fidelity data)

We fit four candidate models (M11, M12, M13, andM14) from the alternative
parameterisation to each incidence report.

B.6.2.1.1 Coverage

We summarise the results in Table B.17.

B.6.2.2 Inference (low-fidelity data)

We fit four candidate models (M11, M12, M13, andM14) from the alternative
parameterisation to each incidence report.

B.6.2.2.1 Coverage

We summarise the results in Table B.18.
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Table B.18: Scenario 3’s coverage table. Overdispersion

Dij M ij <0 ρ I0 φ−1

11 11 95% 100% 95% 90%
11 12 100% 95% 95% 95%
11 13 90% 100% 95% 95%
11 14 90% 100% 90% 95%
12 11 90% 100% 100% 85%
12 12 95% 100% 100% 90%
12 13 95% 100% 90% 80%
12 14 95% 100% 90% 80%
13 11 100% 95% 95% 90%
13 12 100% 95% 100% 90%
13 13 100% 95% 100% 90%
13 14 100% 95% 100% 85%
14 11 85% 95% 90% 85%
14 12 90% 95% 90% 85%
14 13 90% 90% 90% 85%
14 14 90% 95% 90% 85%
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B.6. Sensitivity analysis

B.6.3 Scenario 4
In comparison to Scenario 1, we increase <0 from 2.5 to 9 to produce the
synthetic data (Fig B.40).
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Figure B.40: Scenario 4’s simulated incidence reports. Measurement noise from the
Poisson (no overdispersion) and Negative Binomial distributions was added to the smooth
trajectories obtained from SEIR instances with an exponential-distributed latent period.

B.6.3.1 Inference (high-fidelity data)

We fit four candidate models (M11, M12, M13, andM14) from the alternative
parameterisation to each incidence report.

B.6.3.1.1 Coverage

We summarise the results in Table B.19.

B.6.3.2 Inference (low-fidelity data)

We fit four candidate models (M11, M12, M13, andM14) from the alternative
parameterisation to each incidence report.
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Table B.19: Scenario 4’s coverage table. Poisson noise

Dij M ij <0 ρ I0

11 11 95% 80% 95%
11 12 10% 80% 90%
11 13 0% 80% 80%
11 14 0% 80% 65%
12 11 45% 95% 70%
12 12 90% 95% 85%
12 13 55% 95% 90%
12 14 35% 95% 85%
13 11 10% 100% 75%
13 12 80% 100% 90%
13 13 95% 100% 90%
13 14 90% 100% 95%
14 11 0% 85% 50%
14 12 60% 90% 85%
14 13 100% 90% 95%
14 14 100% 80% 100%

183



B.6. Sensitivity analysis

Table B.20: Scenario 4’s coverage table. Overdispersion

Dij M ij <0 ρ I0 φ−1

11 11 95% 100% 95% 80%
11 12 95% 100% 95% 90%
11 13 90% 100% 95% 80%
11 14 80% 100% 95% 90%
12 11 85% 85% 100% 90%
12 12 90% 95% 95% 90%
12 13 95% 90% 95% 90%
12 14 95% 90% 95% 90%
13 11 75% 100% 100% 95%
13 12 90% 100% 100% 95%
13 13 95% 100% 100% 95%
13 14 100% 100% 100% 95%
14 11 85% 100% 100% 100%
14 12 100% 100% 100% 100%
14 13 100% 100% 100% 100%
14 14 100% 100% 100% 95%

B.6.3.2.1 Coverage

We summarise the results in Table B.20.

B.6.4 Scenario 5
In comparison to Scenario 4, we increase <0 from 9 to 17 to produce the
synthetic data (Fig B.41).

B.6.4.1 Inference (high-fidelity data)

We fit four candidate models (M11, M12, M13, andM14) from the alternative
parameterisation to each incidence report.

B.6.4.1.1 Coverage

We summarise the results in Table B.21.
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Figure B.41: Scenario 5’s simulated incidence reports. Measurement noise from the
Poisson (no overdispersion) and Negative Binomial distributions was added to the smooth
trajectories obtained from SEIR instances with an exponential-distributed latent period.
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B.6. Sensitivity analysis

Table B.21: Scenario 5’s coverage table. Poisson noise

Dij M ij <0 ρ I0

11 11 100% 95% 100%
11 12 0% 95% 100%
11 13 0% 95% 100%
11 14 0% 95% 100%
12 11 25% 95% 90%
12 12 95% 95% 95%
12 13 60% 95% 100%
12 14 30% 95% 95%
13 11 0% 100% 95%
13 12 60% 100% 100%
13 13 95% 100% 100%
13 14 95% 100% 90%
14 11 0% 100% 100%
14 12 25% 100% 100%
14 13 85% 100% 95%
14 14 95% 100% 95%
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Table B.22: Scenario 5’s coverage table. Overdispersion

Dij M ij <0 ρ I0 φ−1

11 11 100% 100% 100% 100%
11 12 100% 100% 100% 100%
11 13 95% 100% 100% 100%
11 14 80% 100% 100% 100%
12 11 80% 100% 95% 95%
12 12 100% 100% 95% 100%
12 13 100% 100% 90% 95%
12 14 95% 100% 90% 95%
13 11 70% 100% 100% 90%
13 12 95% 95% 100% 90%
13 13 95% 100% 100% 90%
13 14 100% 95% 100% 90%
14 11 65% 100% 95% 100%
14 12 90% 100% 95% 100%
14 13 90% 100% 95% 100%
14 14 95% 100% 95% 100%

B.6.4.2 Inference (low-fidelity data)

We fit four candidate models (M11, M12, M13, andM14) from the alternative
parameterisation to each incidence report.

B.6.4.2.1 Coverage

We summarise the results in Table B.22.

B.7 Fitting Cumberland’s data
In this section, we illustrate the procedure to infer the basic reproduction
number (<0) of influenza during the second wave of the 1918 pandemic
in Cumberland (Maryland). Specifically, we fit four model candidates from
the alternative parameterisation to incidence data. The inference pro-
cess yields almost identical <0 estimates, regardless of the infectious period
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B.7. Fitting Cumberland’s data

distribution. Furthermore, we compare the results of the alternative parame-
terisation to those of the traditional one.

B.7.1 Incidence report
After enduring a wave of influenza infections during the spring of 1918, the
U.S. Public Health Service organised special surveys in several localities to
determine as accurately as possible the proportion of the population infected
during the second wave of infections in the autumn of 1918. Fig B.42 shows
the report of new cases detected in the city of Cumberland (Maryland) over
that period.
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Figure B.42: Cumberland’s incidence data

B.7.2 Inference
We employ four candidates per parameterisation (traditional and alternative).
On the one hand, the traditional parameterisation refers to the approach of
fixing the mean of the epidemiological delays (latent and infectious periods) to
values obtained from the literature, irrespective of their particular distribution.
On the other hand, the proposed alternative parameterisation refers to
the special emphasis placed on mean generation time of the SEIR, while
flexibilising the mean and distribution of the epidemiological delays. Namely,
the epidemiological delays can take any mean or shape provided that as
a whole conform to the observed mean generation time. Furthermore, we
assume an exponentially-distributed latent period (SE1IjR), where j =
{1, 2, 3, 4}.
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B.7.2.1 Incidence fit

Fig B.43 compares observed data (points) and against simulations from the
full observational model. We stratify results by candidate and parameter-
isation. The solid line indicates the predicted mean and ribbons the 95%
credible interval.
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Figure B.43: Posterior predictive checks

B.7.2.2 Basic reproduction number (<0)

Fig B.44 compares estimates of basic reproduction number by model candi-
date and parameterisation
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Traditional Alternative
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Figure B.44: <0 estimates
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C.1 Assumed parameters
Table C.1 shows the parameter values assumed for the within-host profile.

C.2 Formulation of semi-deterministic candi-
dates

Model candidates comprise the amalgamation of process and measurement
components. These candidates are semi-deterministic whose stochastic com-
ponent corresponds to the formulation of the effective contact rate. This rate
can have one of two formulations: Geometric Brownian Motion (GBM) or
Cox-Ingersoll-Ross (CIR). Moreover, each process component can also be cou-
pled with one of six measurement components, yielding 12 semi-deterministic
structures (Table C.2).

C.2.1 Measurement components
dC

dt
= ηPt − Ctδ(tmod 1)

y1
d ∼ Pois(Ct)

(C.1)
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C.2. Formulation of semi-deterministic candidates

Table C.1: Parameter values

Name Symbol Value Units Source

Incubation period σ−1 3 Days Davies (2020)
Duration of preclinical infectiousness η−1 2.1 Days Davies (2020)
Duration of clinical infectiousness γ−1 2.9 Days Davies (2020)
Clinical fraction ω 0.7 Unitless HPSC (2020)
Asymptomatic infectious period κ−1 5 Days Davies (2020)

Population N0 4937796 People United Nations (2019)
Relative infectiousness µ 0.5 Unitless Davies (2020)
Initial susceptible S0 N0 − P0 People Assumption
Initial exposed E0 0 People Assumption
Initial clinical infectious I0 0 People Assumption

Initial recovered R0 0 People Assumption
Initial subclinical infectious A0 0 People Assumption
Initial reported cases C0 0 People By definition
Initial mobility effect Z0 1 Unitless By definition

Table C.2: Semi-deterministic model candidates

Candidate Process Measurement
1 GBM Eq C.1
2 GBM Eq C.2
3 GBM Eq C.3
4 GBM Eq C.4
5 GBM Eq C.5
6 GBM Eq C.6
7 CIR Eq C.1
8 CIR Eq C.2
9 CIR Eq C.3
10 CIR Eq C.4
11 CIR Eq C.5
12 CIR Eq C.6
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dC

dt
= ηPt − Ctδ(tmod 1)

y1
d ∼ Nbin(Ct, φ−1)

(C.2)

dC

dt
= ηPt − Ctδ(tmod 1)

y1
d ∼ Pois(Ct)
y2
d ∼ Normal(Zt, τ)

(C.3)

dC

dt
= ηPt − Ctδ(tmod 1)

y1
d ∼ Nbin(Ct, φ−1)
y2
d ∼ Normal(Zt, τ)

(C.4)

dC

dt
= ηPt − Ctδ(tmod 7)

y1
w ∼ Pois(Ct)

(C.5)

dC

dt
= ηPt − Ctδ(tmod 7)

y1
w ∼ Pois(Ct)
y2
w ∼ Normal(Zt, τ)

(C.6)

C.3 Convergence tests
A critical requirement for performing inference on State-Space Models con-
cerns the robustness of likelihood estimates. Namely, different runs must
yield similar log-likelihood values from a single set of parameters (model
configuration). To validate this requirement, we use five point estimates
per group of candidates (Table C.3) as probes to assess the reliability of
likelihood estimates. Depending on the specific measurement component
of a candidate model, certain values of a probe are ignored. For instance,
Candidate 1 ignores φ and τ values of all probes given that its measurement
component does not require such parameters. Also, these point estimates
correspond to plausible values obtained in an earlier iteration of this analysis.
For the final version, we assume such values as given, and conduct the
analysis from the start. Considering that these tests are not intended to be
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C.3. Convergence tests

Table C.3: Probes

Candidates Probe ID ζ P0 τ α φ ν υ

1 to 6 1 1.179 2.392 0.165 0.181 0.168 NA NA
1 to 6 2 1.109 2.774 0.156 0.183 0.069 NA NA
1 to 6 3 1.179 2.521 0.154 0.201 0.468 NA NA
1 to 6 4 1.128 2.392 0.154 0.198 0.021 NA NA
1 to 6 5 1.203 2.392 0.163 0.200 0.039 NA NA
7 to 12 1 1.158 2.410 0.156 0.054 0.511 0.061 0.245
7 to 12 2 1.146 2.182 0.145 0.057 0.214 0.084 0.235
7 to 12 3 1.079 3.396 0.166 0.059 0.083 0.052 0.287
7 to 12 4 1.151 3.876 0.136 0.047 0.036 0.076 0.184
7 to 12 5 1.278 2.587 0.164 0.043 0.037 0.041 0.146

exhaustive but rather of exploratory nature, any arbitrary point is valid as
a probe. For each probe and model candidate, we run the particle filter 16
times. We repeat the process for various particle and integration step sizes.
For each batch of 16 runs, we estimate the log-likelihood mean and standard
error.

In a nutshell, the results indicate that when one models daily incidence with
the Poisson distribution, the particle filter does not converge as the number of
particles increases. This finding suggests model misspecification under such
an assumption. Furthermore, the accuracy of log-likelihood estimates is not
compromised by relative large integration steps (e.g., 1

8), which diminishes
the burden on computational resources. On the contrary, and as expected
in Monte Carlo simulation, the accuracy relies on the number of samples
(particles). In the following subsections, we disaggregate the results by model
candidate.

C.3.1 Candidate 1

This convergence test (Fig C.1) shows that the likelihood standard error
does NOT tend to zero as the number of particles increases. We ascribe
this result to model misspecification and exclude this candidate from further
analyses.
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Figure C.1: Candidate 1’s convergence test
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C.3. Convergence tests

C.3.2 Candidate 2

Fig C.2 suggests that the likelihood standard error approximates zero as the
number of particles increases.
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Figure C.2: Candidate 2’s convergence test
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C.3.3 Candidate 3

Fig C.3 suggests that mobility data does not redress convergence issues in the
assumption that daily incidence measurements are distributed according to
the Poisson distribution. Therefore, we exclude this candidate from further
analyses.
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Figure C.3: Candidate 3’s convergence test
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C.3. Convergence tests

C.3.4 Candidate 4

Fig C.4 suggests that the likelihood standard error approximates zero as the
number of particles increases.
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Figure C.4: Candidate 4’s convergence test
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C.3.5 Candidate 5

Fig C.5 suggests that the likelihood standard error approximates zero as the
number of particles increases.
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Figure C.5: Candidate 5’s convergence test
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C.3.6 Candidate 6

Fig C.6 suggests that the likelihood standard error approximates zero as the
number of particles increases.
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Figure C.6: Candidate 6’s convergence test
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C.3.7 Candidates 7-12
Candidates 7-12 exhibit the same pattern as that observed in Candidates
1-6. For brevity reasons, we only show one probe and one integration step
per candidate in Fig C.7.
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Figure C.7: Candidates 7-12 convergence test

C.4 Inference on DGP1’s Candidate 2
This section illustrates the inference process performed on Candidate 2. This
candidate’s process model consists of an SEIR-type formulation whose relative
effective contact rate is described by Geometric Brownian Motion. Moreover,
the measurement model assumes that daily incidence counts are distributed
according to the Negative binomial distribution. In particular, we apply
Iterated Filtering and the Particle Filter to obtain estimates (via samples)
for the effective reproductive number and other parameters that explain
Ireland’s first wave of COVID-19 in 2020.

C.4.1 Parameter inference
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Table C.4: Candidate 2’s estimated parameters

Name Symbol Units
Initial effective contact rate ζ People / day
Volatility of effective contact rate α Unitless
Variance of the measured transmission rate τ Unitless
Dispersion parameter φ Unitless
Initial preclinical infectious P0 People

C.4.1.1 Unknown parameters

Table C.4 indicates the parameters that will be subject to inference.

C.4.1.2 Local search

We start the inference process with a preliminary test. Specifically, we verify
that Iterated Filtering algorithm converges to regions of high likelihood.
Therefore, we search for the Maximum Likelihood Estimate (MLE) using
Iterated Filtering from a single point in the parameter space. We repeat this
process twenty times (Fig C.8).
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Figure C.8: Local search
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C.4.1.3 Global search

In this step, we increase the number of starting points (300) and filtering
iterations. Also, there is only one run for each starting point. We refer to
this step as a global search (Fig C.9), which aims to construct a likelihood
surface that allows us to identify regions of high plausibility.
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Figure C.9: Global search

C.4.1.4 Likelihood estimates

The likelihood estimates obtained from the Iterated Filtering algorithm
are merely an approximation to the actual values at those points. This
difference occurs for two reasons1: the Iterated Filtering algorithm is run
with fewer particles than are needed for a good likelihood evaluation; 2)
the stochastic perturbations applied to the inferred parameters at each
iteration. Consequently, it is necessary to run the Particle Filter to obtain
reliable likelihood estimates. Specifically, we use the values from each run’s
final filtering iteration as inputs to the Particle Filter. In Fig C.10, grey
dots denote starting points, whereas the other dots are the point estimates
obtained from the Iterated Filtering algorithm. We notice that the estimates
tend to converge to certain regions of the parameter space.

1https://kingaa.github.io/sbied/mif/slides.pdf
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C.4.1.5 Profile likelihood

We employ the Profile Likelihood method to estimate confidence intervals.
To illustrate the mechanics of this method, we illustrate each step followed
to calculate the initial effective contact rate’s (ζ) uncertainty bounds. We
repeat this process for the remaining parameters. To begin with, we plot
the initial effective contact rate’s likelihood surface (Fig C.11) using the
information from the global search to gain insight into the curvature of ζ.
We subsequently define a region near the MLE (hypercube) from which we
draw several hundreds of samples. The specific number of samples varies
according to the complexity of exploring each parameter’s space. For ζ, we
draw 1,000 samples (Fig C.12).
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Figure C.11: Raw likelihood

For each sample, we run the Iterated Filtering algorithm, holding ζ constant,
while the remaining parameters are perturbed (Fig C.13). As with local and
global searches, we estimate, via the Particle Filter, the likelihood for each
point estimate obtained from the Iterated Filtering algorithm. From this
calculation, we construct the confidence intervals using the Profile Likelihood
method and its refined version, the Monte Carlo-adjusted profile. The red
dashed line indicates the cut-off at the 95% confidence level (Fig C.14).

Furthermore, after repeating the above process for each unknown parameter,
we collate all likelihood estimates from the previous steps into a single
database. The resulting likelihood surfaces exhibit quadratic shapes (Fig
C.15). We, therefore, assume that these surfaces are approximations of the
likelihood profiles. Following this assumption, we estimate each parameter’s
95% confidence intervals. Overall, we employed three methods to calculate
these quantities (Fig C.16).
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Figure C.13: MLE estimation while holding ζ constant
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Figure C.16: 95% confidence intervals by method

C.4.2 Hidden states
We employ the filtering distribution to obtain predictions for the latent states.
Since this distribution is intractable, we approximate it through simulation.
To do so, first, we define a hypercube near the MLE (neighbourhood), from
which we draw 200 samples to feed the Particle Filter. This method returns
a set of draws weighted by its corresponding likelihood to approximate the
filtering distribution at each time step (Fig C.17).

C.5 Inference on DGP1’s Candidate 4
In this section, we illustrate the inference process performed on DGP1’s
Candidate 4. This candidate’s process model consists of an SEIR-type
formulation with a relative effective contact rate described by Geometric
Brownian Motion. Furthermore, this candidate’s measurement model assumes
that daily incidence counts follow a Negative Binomial distribution and that
mobility data serves as a proxy for the relative effective contact rate. As we
replicate the inference process described in the previous section, we present
the results succinctly.

C.5.1 Parameter inference
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Figure C.17: Candidate 2’s hidden states

C.5.1.1 Unknown parameters

Table C.5 shows the parameters we will infer.

C.5.1.2 Profile likelihood

Fig C.18 shows Candidate 4’s parameter estimates.

Table C.5: Candidate 4’s estimated parameters

Name Symbol Units
Initial effective contact rate ζ People / day
Volatility of effective contact rate α Unitless
Variance of the measured transmission rate τ Unitless
Dispersion parameter φ Unitless
Initial preclinical infectious P0 People
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Figure C.18: 95% confidence intervals by method

C.5.2 Hidden states
Fig C.19 displays Candidate 4’s filtering distribution.

C.6 Inference on DGP1’s Candidate 5
This section illustrates the inference process performed on Candidate 5. This
candidate’s process model consists of an SEIR-type formulation whose relative
effective contact rate is described by Geometric Brownian Motion. Moreover,
this candidate’s measurement model assumes that weekly incidence counts
are distributed according to the Poisson distribution.

C.6.1 Parameter inference
C.6.1.1 Unknown parameters

Table C.6 shows the parameters we will infer.

C.6.1.2 Profile likelihood

Fig C.20 shows Candidate 5’s parameter estimates.
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Figure C.19: Candidate 4’s hidden states

Table C.6: Candidate 5’s estimated parameters

Name Symbol Units
Initial effective contact rate ζ People / day
Volatility of effective contact rate α Unitless
Initial preclinical infectious P0 People
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Figure C.20: 95% confidence intervals by method

C.6.2 Hidden states
Fig C.21 displays Candidate 6’s filtering distribution.

C.7 Inference on DGP1’s Candidate 6
This sections illustrates the inference process performed on Candidate 6.
This candidate’s process model consists of an SEIR-type formulation whose
relative effective contact rate is described by Geometric Brownian Motion.
Moreover, this candidate’s measurement model assumes that weekly incidence
counts are distributed according to the Poisson distribution, and that
mobility data is a proxy measurement for the relative effective contact
rate.

C.7.1 Parameter inference
C.7.1.1 Unknown parameters

Table C.7 shows the parameters we will infer.

C.7.1.2 Profile likelihood

Fig C.22 shows Candidate 6’s parameter estimates.
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Figure C.21: Candidate 5’s hidden states

Table C.7: Candidate 6’s estimated parameters

Name Symbol Units
Initial effective contact rate ζ People / day
Volatility of effective contact rate α Unitless
Variance of the measured transmission rate τ Unitless
Initial preclinical infectious P0 People
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Figure C.22: 95% confidence intervals by method

C.7.2 Hidden states
Fig C.23 displays Candidate 5’s filtering distribution.

C.8 Inference on DGP2
This section illustrates the inference process performed on DGP2. Its process
model consists of an SEIR-type formulation whose relative effective contact
rate is described by a Cox-Ingersoll-Ross structure. Moreover, DGP2’s
measurement model assumes that weekly incidence counts are distributed
according to the Poisson distribution, and that mobility data is a proxy
measurement for the relative effective contact rate.

C.8.1 Parameter inference
C.8.1.1 Unknown parameters

Table C.8 shows the parameters we will infer.

C.8.1.2 Profile likelihood

Fig C.24 shows Candidate 6’s parameter estimates.
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Figure C.23: Candidate 6’s hidden states

Table C.8: DGP2’s estimated parameters

Name Symbol Units
Initial effective contact rate ζ People / day
Volatility of effective contact rate α Unitless
Variance of the measured transmission rate τ Unitless
Initial preclinical infectious P0 People
Long-term goal υ Unitless
Adjustment speed ν day−1
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Figure C.24: 95% confidence intervals by method
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C.8.2 Hidden states
We model the MLE’s neighbourhood as a copula from which 200 samples are
drawn. Then, we run the particle filter and estimate their likelihood. Even
though the copula prevents, to some extent, the exploration of undesired
regions of the parameter space that may bias the results, some runs yield
abnormal likelihood values. Fig C.25 shows likelihood values in a violin plot
at different cut-offs. Here, we notice that the likelihood concentrates on a
common region, but several outliers skew the results. This outcome suggests
that using all the samples may bias the estimates towards low probability
regions, or even worse, produce computational overflows. Thus, we opt for a
cut-off of 20 log-likelihood units (or 485× 106 likelihood units) given that it
contains 67 % of all the starting points and appears to include only a few
outliers. Such outliers are concentrated at the edges of the likelihood surface
(high values of υ and ν). These results highlight the complex surface created
by this particular high-dimensional DGP. Fig C.26 below compares included
(light colour) and excluded (dark colour) parameter values. After excluding
outliers, we estimate the filtering distribution (Fig C.27).
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Figure C.25: Likelihood estimates

C.9 Inference on DGP3
This section aims to illustrate the inference process performed on DGP3. The
formulation of this structure involves nine candidate deterministic process
components (PM3) and the assumption that the observation of daily cases
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Figure C.26: Analysis of outliers
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follows the Poisson distribution. We approach the inference process from a
Bayesian perspective, which entails the estimation of posterior distributions.
We estimate these distributions using Hamiltonian Monte Carlo (HMC).

C.9.1 Prior distributions
For the nine candidate models, we formulate the priors presented in Fig C.28.
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Figure C.28: Prior distributions

C.9.2 Posterior distributions
For each candidate fitted to the incidence data, Stan indicates that no
pathological behaviour was present during the sampling process. Additionally,
the sampled draws yield adequate Effective Sample Sizes and potential scale
reduction factors. These outcomes suggest that the Markov chains converged.

C.9.2.1 Likelihood by delay order

Fig C.29 shows the 95% credible intervals of likelihood estimates by model
candidate.

C.9.2.2 Fit accuracy

In the main text, we present a plot that compares predicted incidences and
relative contact rates against incidence and mobility data, respectively. Here,
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Figure C.29: Log-likelihood estimates by model candidate

we provide a quantitative assessment (Fig C.30) of how well the predicted
values capture the data using the mean absolute scale error (MASE). Values
below one (dotted line) indicate good performance.
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Figure C.30: MASE by indicator. Error bars indicate 95% credible intervals.

C.9.2.3 Parameter estimates

Fig C.31 shows parameter estimates by delay order. Here, we notice that
the standard deviations of ν and υ are noticeably small. In other words, the
probability mass is located in a low-volume and high-density region of the
parameter space.
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Figure C.31: Parameter estimates. Error bars indicate 95% credible intervals.

222



Appendix C. Supplementary Information (Ch. 4)

C.9.3 Alternative measurement component
y1
d ∼ NBin(Ct, φ) (C.7)

Misspecification in the measurement component, such as unaccounted overdis-
persion and unmodelled variability, can lead to overly confident conclusions
(Bretó 2018) or biased estimates. Above, we employed a stringent mea-
surement model (Poisson), which ties the observation mean and variance.
In this section, we replace the Poisson model with the Negative Binomial
distribution (Eq (C.7)), denoted by Nbin, a structure that allows the DGP
to handle overdispersion (if present) in the observations. Although the Nbin
is more flexible, it also increases the DGP’s complexity by adding a new
parameter: φ. The reader should recall that as φ→∞, NBin converges to
the Poisson distribution.

In order to understand these new parameter spaces, we fit the daily incidence
data to the nine process model candidates, which are coupled with the
NBin observational model. Here, we assume ζ, ν, υ, φ and P0 as unknown
parameters. For each model, we run eight Markov chains from different
starting points. The results indicate that this alternative measurement
component yields a complex bimodal posterior distribution (Fig C.32). That
is, chains reach either of two equilibrium regions.

To elaborate on this bimodality feature, we focus on candidate 4’s trace
plot (Fig C.33). Here, we notice a distinctive pattern. Chains settle either
on high-density (log-likelihood)/low-volume (narrow-band chains) or low-
density/high-volume regions. Furthermore, Stan diagnostics (see Github
repository) confirm such pathological behaviour in this parameter space
by signalling the occurrence of divergent transitions and abnormal energies.
Interestingly, Stan only detects divergences and abnormal energy values in the
low-density/high-volume region. We thus refer to chains in the high-density
region as well-behaved chains.

Further, we consider incidence fit as a more immediate appraisal. That is, we
compare the predicted incidence against the actual data, discriminating by
chain type (Fig C.34). Here, it can be seen that only the well-behaved chains
fit the data. On the other hand, parameter estimates from these chains
(Table C.9) provide similar insights to those obtained from the Poisson
distribution. For instance, both distributions yield notably narrow estimates
for ν & υ, which determine the dynamics of the relative effective contact rate.
Admittedly, there is a slight bias in estimates from the Poisson distribution,
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the Nbin distribution.
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Table C.9: Parameter estimates from the well-behaved chains

Parameter Mean SD 2.5% 97.5%
P0 1.712 0.678 0.714 3.346
<0 5.686 0.559 4.716 6.912
ν 0.049 0.003 0.043 0.056
υ 0.115 0.010 0.097 0.135
ζ 1.315 0.129 1.091 1.598

which overestimates <0. However, it should be remarked that ignoring
pathological chains is not a sound approach. Namely, we cannot assume that
the parameter space is well-behaved when the evidence tells otherwise. Thus,
we employ such estimated values for comparison and exploration purposes
rather than for a inference one.
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Figure C.34: Incidence fit region

To provide further evidence of the complexity generated by the Nbin distri-
bution, we identify that bimodality persists even with only one unknown
parameter in the 1st-order delay model (Fig C.35). To illustrate this finding,
we assume as unmodelled predictors or known values, the mean values of the
well-behaved chains. We do so for parameters P0, υ, ν, and φ, leaving ζ as
the only unknown.
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