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Abstract
We investigate how two finite-amplitude, transverse, plane body waves may be
superposed to propagate in a deformed hyperelastic incompressible solid. We
find that the equations of motion reduce to a well-determined system of partial
differential equations, making the motion controllable for all solids. We find that
in deformed Mooney-Rivlin materials, they may travel along any direction and be
polarised along any transverse direction, an extension of a result by Boulanger
and Hayes [Quart. J. Mech. Appl. Math. 45 (1992) 575]. Furthermore, their
motion is governed by a linear system of partial differential equations, making
the Mooney-Rivlin special in that respect. We select another model to show that
for other materials, the equations are nonlinear. We use asymptotic equations to
reveal the onset of nonlinearity for the waves, paying particular attention to how
close the propagation direction is to the principal axes of pre-deformation.

Dedicated to the late Hui-Hui Dai, a true gentleman, always kind, sincere and
generous; greatly missed.
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2 Mathematics and Mechanics of Solids XX(X)

1 Introduction

In 1969, Currie and Hayes [4] showed that two linearly polarised finite-
amplitude transverse waves, polarised in two orthogonal directions, may
propagate along any direction in a Mooney-Rivlin material maintained in a
state of arbitrary static finite homogeneous deformation. Their results were
a generalisation, to some extent, of previous findings contained by Green
[11] and Carroll [3]. Later, beginning with a paper published in 1992 [1],
Boulanger and Hayes wrote a series of papers to investigate and extend those
results further, in a deep and elegant manner; their findings were collected
and summarised in the survey [2].
Boulanger and Hayes’s main finding is that if B denotes the left Cauchy-

Green deformation tensor of the homogeneous pre-deformation and n denotes
the direction of propagation, then the directions of polarisation of the two
possible transverse waves propagating along n must be along the principal
axes of the elliptical section of the x · B−1x = 1 ellipsoid by the x · n = 0
plane. That restriction is in place for the class of Mooney-Rivlin materials,
that is, those incompressible, homogeneous, isotropic materials with strain
energy density of the form W = C(I1 − 3) + E(I2 − 3), where I1 and I2
are the first and second principal invariants of C, the right Cauchy-Green
deformation tensor, and C, E are positive constants. Only in the special case
of a neo-Hookean material, when C2 = 0, may the directions of polarisation
be along any direction orthogonal to n.
This result is the natural consequence of the propagation condition,

a · B−1b = 0, (1)

where (n,a, b) is an orthonormal triad, with n the direction of propagation.
This condition is satisfied when the vectors a and b are aligned with the
axes of the central elliptic section of the ellipsoid by the plane n · x = 0.
Then two single transverse waves may propagate individually, one polarised
along a, the other along b. The propagation condition (1) follows from the
equations of motion: these turn out to be an overdetermined system of three
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Destrade and Saccomandi 3

partial differential equations for two unknowns functions, the pressure field
and the transverse linearly-polarized wave function. To reduce the system to
two equations for two unknowns, the propagation condition (1) must apply.

Another result established by Boulanger and Hayes [1] concerns the
superposition of two waves which propagate along the same direction n.
Indeed, they found that for any propagation direction n, two waves could
propagate and solve the equations of motion simultaneously if they were
linearly polarised along the unit vectors a and b solutions to Equation
(1). This is a remarkable result, because no assumption is made about the
magnitude of the waves, and the theory is completely non-linear and exact.

In the present note we show that if we consider two shear waves
propagating along any direction n and polarized along any orthogonal unit
vectors a and b in the n · x = 0 plane (not necessarily satisfying (1)), in
any deformed hyperelastic material (not just the Mooney-Rivlin materials),
then the equations of motion reduce to a well-determined system of partial
differential equations. It follows that this motion is controllable for any
incompressible and isotropic hyperelastic material. This is shown in the next
section.

Further, we find in Section 3 that in the special case of a Mooney-Rivlin
material, the determining equations are linear and they possess solutions of
permanent form, similar to what was seen in [1], but here for shear waves
polarised along any orthogonal unit vectors a and b.

Finally in Section 4, we take a specific form of the strain energy density
to study an example of the nonlinear equations generated when the solid is
not as special as the one modelled by the Mooney-Rivlin material. We use
asymptotic expansions in the amplitude to reveal the onset of nonlinearity in
the equations of motion, and how great care must be taken when the direction
of propagation is close to, or along a principal axis of pre-deformation.

2 Superposition of two shear waves

Let X be the position vector of a particle in a hyperelastic body in
the reference configuration, and x be its position vector in the current
configuration. We call F = ∂x/∂X the deformation gradient andB = FF T ,
C = F TF the left and right Cauchy-Green deformation tensors, respectively.

We consider homogeneous, incompressible (detF = 1 at all times), iso-
tropic and hyperelastic materials, so that their strain-energy density W
(measured per unit volume in the undeformed state) is a function of the

Prepared using sagej.cls



4 Mathematics and Mechanics of Solids XX(X)

form
W = W (I1, I2), (2)

where I1 = trC and I2 = trC−1 are the first and second principal invariants
of C, respectively. Then the Cauchy stress T is

T = −pI + 2W1B − 2W2B
−1, (3)

where p is the Lagrange multiplier associated with the constraint of
incompressibility, and Wk = ∂W/∂Ik. The equations of motion, in the
absence of body forces, are

divT = ρ ∂2x/∂t2, (4)

where ρ is the mass density (which is constant, because of incompressibility).
First we consider that the solid is subject to a static finite homogeneous

deformation:
x = FX, (5)

where F is a constant tensor, such that detF = 1 (to accommodate the
constraint of incompressibility). Because this deformation is universal, the
stress tensor required to support it is, according to (3),

T = −pI + 2W1(I1, I2)B − 2W2(I1, I2)B
−1
. (6)

Taking the Lagrange multiplier p to be a constant ensures that the equations
of static equilibrium divT = 0 are satisfied.
Then we superimpose on this deformation two plane homogeneous body

shear waves, both propagating along the direction of the unit vector n,
with one polarised along a (a unit vector orthogonal to n) and one along
b = n× a. Hence this motion is of the form

x = x+ f(η, t)a+ g(η, t)b, p = p+ q(η, t), (7)

where (η, ξ, ζ) are the components of x in the (n,a, b) orthonormal basis,
and f, g, q are yet unknown amplitude functions.
The deformation gradient associated with this motion is

F = (I + fηa⊗ n+ gηb⊗ n)F , (8)

where the subscript denotes partial differentiation. Clearly, this is an isochoric
motion, respecting the constraint of incompressibility.
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Destrade and Saccomandi 5

Let (η, ξ, ζ) be the components of the position vector x in (n,a, b). Then
the motion (7)1 reads

η = η, ξ = ξ + f(η, t), ζ = ζ + g(η, t). (9)

We then compute the following kinematic quantities associated with the
motion,

B = (I + fηa⊗ n+ gηb⊗ n)B (I + fηn⊗ a+ gηn⊗ b) ,

B−1 = (I − fηn⊗ a− gηn⊗ b)B
−1

(I − fηa⊗ n− gηb⊗ n) ,

I1 = I1 + 2(fη n ·Ba+ gη n ·Bb) +
(
f 2
η + g2η

)
n ·Bn,

I2 = I2 − 2
(
fη n ·B−1

a+ gη n ·B−1
b
)
+ f 2

η a ·B−1
a+ g2η b ·B

−1
b.

(10)

Now the equations of motion (4), written in the basis (n,a, b), reduce to

0 =
∂Tηη
∂η

, ρftt =
∂Tξη
∂η

, ρgtt =
∂Tζη
∂η

. (11)

The first of these is satisfied by an appropriate choice of the Lagrange
multiplier q, which then can be forgotten about, as it does not play any
role in the other two equations.
Introducing the notation W = W (I1, I2) where I1 and I2 are now given by

(10), we compute the remaining non-zero components of the stress tensor as

Tξη = 2W1

(
n ·Ba+ fη n ·Bn

)
− 2W2

(
n ·B−1

a− fη a ·B−1
a− gη a ·B−1

b
)
, (12)

and

Tζη = 2W1

(
n ·Bb+ gη n ·Bn

)
− 2W2

(
n ·B−1

b− fη b ·B
−1
a− gη b ·B

−1
b
)
, (13)

where Wk = ∂W/∂Ik.
It is now clear that the remaining equations of motion (11)2,3 are a

nonlinear system of two coupled differential equations for the two unknown
functions f and g and thus, that the motion is controllable for any
incompressible, isotropic, hyperelastic material.
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6 Mathematics and Mechanics of Solids XX(X)

3 The special case of Mooney-Rivlin materials

Consider now the special case of Mooney-Rivlin materials, with strain energy
density

W = C(I1 − 3) + E(I2 − 3), (14)

where C,E are material constants such that C > 0 and E ≥ 0.
For these materials the system of equations (11)2,3, is linear, as the

equations read

ρftt =
(
C n ·Bn+ E a ·B−1

a
)
fηη + E

(
a ·B−1

b
)
gηη,

ρgtt =
(
C n ·Bn+ E b ·B−1

b
)
gηη + E

(
a ·B−1

b
)
fηη. (15)

As noted by Boulanger and Hayes [1], these equations decouple when

a ·B−1
b = 0. But because (15) is a linear system, we may in fact solve it in

any case, by writing it as

ρ

[
f
g

]
tt

=

[
C n ·Bn+ E a ·B−1

a E a ·B−1
b

E a ·B−1
b C n ·Bn+ E b ·B−1

b

] [
f
g

]
ηη

, (16)

and diagonalising the matrix. We then arrive at the decoupled equations

ρutt = λ1uηη, ρvtt = λ2vηη, (17)

where the (real) eigenvalues are

λ1,2 =
1
2

[
2C n ·Bn+ E

(
a ·B−1

a+ b ·B−1
b
)

±E

√(
a ·B−1

a− b ·B−1
b
)2

+ 4
(
a ·B−1

b
)2
]
. (18)

and the functions u, v are defined by[
u
v

]
=

[
cos θ sin θ
− sin θ cos θ

] [
f
g

]
, with tan 2θ =

2 a ·B−1
b

a ·B−1
a− b ·B−1

b
. (19)

Note that both eigenvalues are positive, because λ1 is the sum of positive
quantities, and writing that λ2 > 0 is equivalent to

C2
(
n ·Bn

)2
+ CE

(
n ·Bn

) (
a ·B−1

a+ b ·B−1
b
)

+ E2

[(
a ·B−1

a
)(

b ·B−1
b
)
−

(
a ·B−1

b
)2
]
> 0, (20)
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which is always true, because the last bracketed term is |V −1a× V −1b|2,
where V is the square root of B.
Both u and v satisfy the wave equation (17), with general solution

u = u−(η − c1t) + u+(η + c1t), v = v−(η − c2t) + v+(η + c2t), (21)

where u±, v± are arbitrary functions, and the speeds are ci =
√
λi/ρ.

Hence we have established that we may use Boulanger and Hayes’s solution
(where a and b satisfy (1)) to generate a solution with any direction of
polarization. Morevover, the motion thus generated has components which
travel at different speeds c1 and c2.
To conclude this section, we note that for Mooney-Rivlin materials, the

determining equations for transverse waves are a completely exceptional
hyperbolic system, once the strong ellipticity condition is ensured, see [20].
The possibility of wave motion as solution to linear partial differential
equations for the Mooney-Rivlin and neo-Hookean materials is not restricted
to the case of transverse waves, as has been noticed by several authors,
including Lei and Hung [14], Rajagopal [18], and Hill and Dai [12].

4 Nonlinear waves

Finite amplitude plane waves propagating in a deformed Mooney-Rivlin
material lead to an exceptional hyperbolic system, as the motion is
determined by a linear system of partial differential equations. Here we turn
our attention to materials which are not special in that respect. It leads
us to a nonlinear hyperbolic system, which we approach using asymptotic
expansions.
First we consider the case of no pre-strain, so that B ≡ I and

Tξη = 2(W1 +W2)fη, Tζη = 2(W1 +W2)gη. (22)

Introducing the unknown functions F̂ = fη, Ĝ = gη, we have I1 = I2 =
F 2 +G2 + 3, and the remaining two determining equations in (11) may be
rewritten as

ρF̂tt = (QF̂ )ηη, ρĜtt = (QĜ)ηη, (23)

where Q = 2(W1 +W2) is the generalized shear modulus. Clearly Q =
Q(F̂ 2 + Ĝ2). Then considering that the amplitudes are small, we write
F̂ = ϵF and Ĝ = ϵG where |ϵ| ≪ 1 and expand Q as Q = µ0 + µ1ϵ

2(F 2 +
G2) + . . .. For the Mooney-Rivlin material, µ0 = 2(C + E) and µ1 = µ2 =
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8 Mathematics and Mechanics of Solids XX(X)

. . . = 0, but in general, µ1 ̸= 0 (although there are materials other than the
Mooney-Rivlin material such that µ1 = µ2 = . . . = 0, see [16].) In that case
we introduce the scaled time and space variables

τ = ϵ2t, x = α−1η − ct, (24)

where c =
√
µ0/ρ is the speed of sound in the solid, and α is a suitable

constant to be determined later. It is then possible to derive an O(ϵ3)
asymptotic reduction of (23), as

Fτ + β[(F 2 +G2)F ]x = 0, Gτ + β[(F 2 +G2)C]x = 0, (25)

where β is a constant expressed in terms of ρ, µ0 and µ1. Vitolo
and Saccomandi [20] discuss in detail the mathematical and geometrical
structures of the system (23) and of the corresponding asymptotic system
(25). Note in particular that (25) is a Temple system, for which a general
solution can be found using a generalized hodograph transformation [19].
Next we derive the asymptotic system of governing equations in the case of

a pre-strain applied to a specific class of materials. Here we restrict attention
to materials with a strain-energy density of the form [15, 8]

W =
µ0

2

[
I1 − 3 +

κ

2
(I21 − 32)

]
, (26)

where µ0 > 0 is the infinitesimal shear modulus and κ > 0 is a measure of
the departure from the new-Hookean model, in other words, a nonlinearity
parameter with respect to wave propagation. Then with F̂ = ϵF and Ĝ = ϵG
where |ϵ| ≪ 1, we differentiate the equations of motion (11) with respect to
η to obtain the determining equations as

ρϵFtt = [2W1

(
n ·Ba+ ϵF n ·Bn

)
]ηη,

ρϵGtt = [2W1

(
n ·Bb+ ϵG n ·Bn

)
]ηη, (27)

where

2W1 = µ0

[
1 + κI1 + 2ϵκ(F n ·Ba+G n ·Bb) + ϵ2κ

(
F 2 +G2

)
n ·Bn

]
.

(28)
We first consider that n ·Ba and n ·Bb are of order O(1) (for a detailed

discussion about this point, see Pucci et al. [17]). In this case the first
nonlinearity arises at order ϵ2. We introduce the scaled time and space
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variables
τ = ϵt, x = α−1η − ct, (29)

where c =
√
µ0/ρ is the speed of infinitesimal shear waves in the undeformed

material and the non-dimensional constant α is to be determined soon. We
then obtain the following equations,

(M − α2I)

[
F
G

]
xx

= 2ϵc−1

[
F
G

]
τx

+ 2ϵκ(n ·Bn)

{
N

[
F
G

]
x

}
x

+ . . . , (30)

where M is a constant matrix,

M =

[
(1 + κI1)(n ·Bn) + 2κ(n ·Ba)2 2κ(n ·Ba)(n ·Bb)

2κ(n ·Ba)(n ·Bb) (1 + κI1)(n ·Bn) + 2κ(n ·Bb)2

]
,

(31)
and N depends on F and G,

N =

[
3(n ·Ba)F + (n ·Bb)G (n ·Bb)F + (n ·Ba)G
(n ·Bb)F + (n ·Ba)G (n ·Ba)F + 3(n ·Bb)G

]
. (32)

Expanding now F and G as

F = F0(τ, x) + ϵF1(τ, x) + . . . , G = G0(τ, x) + ϵG1(τ, x) + . . . , (33)

we then find the following equations at order ϵ0:

(M − α2I)

[
F0

G0

]
xx

= 0, (34)

and at order ϵ1:

(M − α2I)

[
F1

G1

]
xx

= 2

{
c−1

[
F0

G0

]
τ

+ κ(n ·Bn)N 0

[
F0

G0

]
x

}
x

, (35)

where N 0 is N in (32) when F , G are replaced by F0, G0, respectively.
The system (34) is an eigen-problem, with M symmetric. The eigenvalues

are both positive:

α2
1 = (1 + κI1)(n ·Bn),

α2
2 = (1 + κI1)(n ·Bn) + 2κ[(n ·Ba)2 + (n ·Bb)2], (36)
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10 Mathematics and Mechanics of Solids XX(X)

with corresponding eigenvectors parallel to

v1 =

[
n ·Bb

− n ·Ba

]
, v2 =

[
n ·Ba
n ·Bb

]
, (37)

respectively. It follows upon integration that F0, G0 are found as[
F0

G0

]
= ϕ(τ, x)v1 with x = α−1

1 η − ct, (38)

or [
F0

G0

]
= ψ(τ, x)v2 with x = α−1

2 η − ct, (39)

depending on which value is chosen for α in the scaling (29), where ϕ, ψ are
arbitrary functions.
Taking now the dot product of (35) with vi (i = 1, 2), we arrive at[

(v1·v1)ϕτ + κc(n ·Bn)(v1 ·N 0v1)ϕx

]
x
= 0,[

(v2·v2)ψτ + κc(n ·Bn)(v2 ·N 0v2)ψx

]
x
= 0, (40)

which we integrate with respect to x. Simple calculations show that v1 ·
N 0v1 = 0, so that taking α = α1 in the scaling (29) leads to a linearly
degenerate wave [13]. On the other hand, v2 ·N 0v2 ̸= 0, and in that case
we find a genuinely nonlinear wave [13], governed by the equation

ψτ + 3κc(n ·Bn)[(n ·Ba)2 + (n ·Bb)2]ψψx = 0. (41)

Using the function ψ̄ = 3κc(n ·Bn)[(n ·Ba)2 + (n ·Bb)2]ψ, we see that this
is the inviscid Burgers equation,

ψ̄τ +
(
1
2
ψ̄2

)
x
= 0. (42)

Finally, we consider the case where the direction of propagation of the
wave is close to a principal direction, in the sense that n ·Ba and n ·Bb are
of order O(ϵ), say n ·Ba = ϵa and n ·Bb = ϵb, where a, b are constants of
order ϵ0.
Then the scaling (29) does not lead to a consistent expansion. As pointed

out by Pucci et al. [17] for the case of a single shear wave, the first nonlinearity
arises at order ϵ3, as we must now use the variables

τ = ϵ2t, x = α−1η − ct. (43)
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Then we find that
2W1 = µ0(1 + κI1 + κϵ2Λ), (44)

where
Λ = 2aF + 2bG+ (n ·Bn)

(
F 2 +G2

)
. (45)

At order ϵ we obtain the decoupled system

α2Fxx = (1 + κI1)(n ·Bn)Fxx, α2Gxx = (1 + κI1)(n ·Bn)Gxx (46)

which fixes α as α =
√

(1 + κI1)(n ·Bn).

The next terms are at order ϵ3, giving, upon integration, the system

α2Fτ + κc[(a+ n ·Bn F )Λ]x = 0,

α2Gτ + κc[(b+ n ·Bn G)Λ]x = 0. (47)

This coupled system contains both second- and third-order non-linearities.
It is consistent with the system (25) when a and b are aligned with the
principal axes of B. It can be written in the form

α2

[
F
G

]
x

+ κc A

[
F
G

]
τ

= 0, (48)

where

A =

[
(n ·Bn)Λ + 2[a+ (n ·Bb)F ]2 2[a+ (n ·Bn)F ][b+ (n ·Bn)G]
2[a+ (n ·Bn)F ][b+ (n ·Bn)G] (n ·Bn)Λ + 2[b+ (n ·Bb)G]2

]
,

(49)
is symmetric and easy to diagonalise. We find that the eigenvalues are

λ1 = (n ·Bn)Λ, λ2 = 2(a2 + b2) + 3(n ·Bn)Λ, (50)

with corresponding eigenvectors parallel to[
b+ (n ·Bn)G
−a− (n ·Bn)F

]
,

[
a+ (n ·Bn)F
b+ (n ·Bn)G

]
, (51)

respectively. We find the Riemann invariants as

R =
a+ (n ·Bn)F

b+ (n ·Bn)G
, S = 2aF + 2bG+ (n ·Bn)

(
F 2 +G2

)
. (52)

Therefore, bringing together (45), (50) and (52), we conclude that the
eigenvalues are written in terms of the Riemann invariants as

λ1 = (n ·Bn)S, λ2 = 2(a2 + b2) + 3(n ·Bn)S, (53)

and that the system is easily integrable in the hodograph plane.
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5 Concluding remarks

Boulanger and Hayes were interested in the propagation of finite-amplitude
shear waves in homogeneously deformed Mooney-Rivlin materials. They
found that their motion is governed by linear differential equations and that,
for a given propagation direction n, only two directions of polarization are
possible, those aligned with the principal axes of the elliptical section of the
x · B̄x = 1 ellipsoid by the n · x = 0 plane. Then they turned their attention
to the linear superposition of such two shear waves, in the process missing the
generality that it is always possible to superpose two shear waves polarized
in any direction a ⊥ n (and b = n× a).

In fact, we found here that this result is valid for any isotropic strain-
energy density function, not just the Mooney-Rivlin class. Moreover, we
also complemented the results of the recent paper by Pucci et al. [17]. The
important findings in the full nonlinear setting are that the first nonlinearity
that matters in pre-strained materials for shear waves is of second order,
and that when the waves propagate and are polarized along, or close to,
principal axes, (including the case B = I), the first nonlinearity encountered
is of third order.

The advantage of using the asymptotic first-order equations (42) and (47)
as compared to the full second-order equations is that they lend themselves
to be solved using a plethora of analytical methods [5]. We did not pursue this
avenue here, as it was beyond the scope of this short note. We nonetheless
point out that adding a dissipative term to our constitutive equations, as in
[6], would lead to a dissipative Burgers equation for (42) and a system of
modified Burgers equations for (47). On the other hand, adding a dispersive
term, as in [7], would turn (42) into a KdV equation and the system (47)
into a set of coupled Gardner equations [9, 10]. This is a remarkable fact,
because Gardner’s equation was introduced as a sort of mathematical ‘toy’,
and it is quite rare to encounter such an esoteric equation in the modelling
of physics phenomena such as wave propagation.
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