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Thesis advisor Author

Martin Glavin Shane Gilroy

Detection and Characterisation of Partially Occluded

Vulnerable Road Users

Abstract
Accurate detection and classification of vulnerable road users (pedestrians, cy-

clists, and micro-mobility users) is a safety critical requirement for the deployment

of autonomous vehicles in heterogeneous tra�c. Object detection systems have im-

proved significantly in recent years with the proliferation of deep learning-based so-

lutions and the availability of larger and more diverse datasets. Despite this, many

challenges still exist before the detection capabilities required for safe autonomous

driving can be achieved. One of the most complex and persistent challenges is that of

partial occlusion, where a target object is only partially available to the sensor due to

obstruction by another foreground object. The frequency and variety of occlusion in

the automotive environment is large and diverse as pedestrians, e-scooter riders and

cyclists navigate between vehicles, buildings, tra�c infrastructure and other road

users. Vulnerable road users can be occluded by static or dynamic objects, may

inter-occlude (occlude one another) such as in crowds, and self-occlude - where parts

of a pedestrian or cyclist overlap. This thesis provides in-depth analysis into this

complex object detection challenge and makes significant contributions to the field

of research for partially occluded vulnerable road user detection.

The research identifies a number of knowledge gaps and provides advanced char-

acterisation tools to improve the analysis of state of the art pedestrian and e-scooter

rider detection models. A thorough literature review of occlusion handling techniques

for vehicle detection, vulnerable road user detection and object detection in the au-

tomotive environment is presented. A novel, objective metric and methodology for

pedestrian occlusion level classification for ground truth annotation is described that

more accurately reflects the pixel wise occlusion level than the current state of the

art. Two novel, objective test datasets are presented for benchmarking pedestrian

v



Abstract

and e-scooter rider detection performance for the complete range of occlusion levels

from 0-99%. Finally, a novel occlusion-aware method of e-scooter rider detection is

described that provides a 15.93% improvement over the current state of the art.
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Chapter 1

Introduction

1.1 Motivation

Approximately 1.3 million people die each year as a result of road tra�c inci-

dents according to the World Health Organisation [1]. Over half of all road tra�c

deaths are vulnerable road users such as pedestrians, e-scooter riders and cyclists

[1,2]. Accurate detection and classification of vulnerable road users is a safety criti-

cal requirement for the deployment of autonomous vehicles in heterogeneous tra�c.

The SAE J3016 standard [3,4] defines levels of driving automation ranging from level

0, where the vehicle contains zero automation and the human driver is in complete

control, to level 5 where the vehicle is solely responsible for all perception and driv-

ing tasks in all scenarios. Level 1 and level 2 automation provide features such as

cruise control and lane-keeping assistance to supplement the human driver in limited

1



1.1 Motivation

scenarios. The progression from automation levels 3-5 represents a significant in-

crease in assumption of responsibility by the vehicle, placing progressively increasing

demands on the performance of object detection systems. In level 3 automation, the

driver is primarily responsible for the vehicle and automated driving is used in con-

trolled circumstances only, such as highway driving. The human driver is required

to take control at any point where more complex driving tasks are encountered. For

level 4 automation, the vehicle may encounter more complex driving situations such

as suburban or urban scenes, mixing tra�c containing other vehicles and vulnerable

road users, where the occurrence of significant occlusions may be more likely. Level

5 automation puts the onus on the vehicle to resolve the detail in every scene. The

vehicle will be expected to navigate the most densely populated and complex situa-

tions, with significant numbers of moving objects (VRUs and vehicles), possibly even

in exceptional circumstances where navigation may require interpretation/bending

of the rules of the road (e.g. navigating around a road accident, road works or

emergency vehicles) to ensure safe passage.

Object detection systems have improved significantly in recent years with the

proliferation of deep learning-based solutions and the availability of larger and more

diverse datasets. Despite this, many challenges still exist before the detection ca-

pabilities required for safe autonomous driving can be achieved. One of the most

complex and persistent challenges is that of partial occlusion, where a target object

is only partially available to the sensor due to obstruction by another foreground

2



1.2 Research Opportunities Targeted

object. The frequency and variety of occlusion types in the automotive environment

is large and diverse as pedestrians, e-scooter riders and cyclists navigate between

vehicles, buildings, infrastructure and other road users. Vulnerable road users can

be occluded by static or dynamic objects, may inter-occlude (occlude one another)

such as in crowds, and self-occlude - where parts of a pedestrian or cyclist overlap.

The recent emergence of e-scooter riders further highlights the importance of precise

classification of partially occluded road users. E-scooter riders share a large percent-

age of visual characteristics with pedestrians, however, demonstrate a very di↵erent

dynamic profile and can reach speeds of up to 45 kilometres per hour. Robust de-

tection and classification is required in order to appropriately inform path planning

and accident mitigation in driver assistance and autonomous vehicle applications.

This thesis provides in-depth analysis into this complex object detection challenge

and makes significant contributions to the field of research for partially occluded

vulnerable road user detection.

1.2 Research Opportunities Targeted

The thesis identifies a number of outstanding knowledge gaps in the field of

partially occluded vulnerable road user detection. The specific research opportunities

targeted are summarised below.

1. Popular object detection benchmarks such as [5–9] indicate that recent high

performing vehicle detection algorithms are commonly able to detect approxi-

3



1.2 Research Opportunities Targeted

mately 90% of partially occluded and 80% of heavily occluded vehicles. How-

ever, only 65%-75% of vulnerable road users such as pedestrians and cyclists

are detectable under partial and heavy occlusion. A significant amount of re-

search is required to improve the detection of partially occluded pedestrians,

cyclists and e-mobility users in the automotive environment.

2. A number of current pedestrian detection benchmarks provide annotation la-

bels for partial occlusion to assess algorithm performance in these scenarios,

however each benchmark varies greatly in their definition of the occurrence and

severity of occlusion. In addition, current occlusion level annotation methods

contain a high degree of subjectivity by the human annotator. This can lead

to inaccurate or inconsistent reporting of an algorithm’s detection performance

for partially occluded pedestrians, depending on which benchmark is used. An

objective metric and methodology for pedestrian occlusion level classification

is required for ground truth annotation.

3. Current pedestrian detection benchmarks typically categorise occluded pedes-

trians into two to three broad categories such as “partially” and “heavily”

occluded. In addition, many pedestrian instances are impacted by multiple in-

hibiting factors that contribute to non-detection such as object scale, distance

from camera, lighting variations and adverse weather. A detailed, objective

benchmark specifically for partially occluded pedestrian detection is required

that can be used to objectively characterise detection performance for a com-

4
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prehensive range of occlusion levels.

4. Although similar in physical appearance to pedestrians, e-scooter riders demon-

strate distinctly di↵erent characteristics of movement and can reach speeds of

up to 45kmph. The challenge of detecting e-scooter riders is exacerbated in

urban environments where the frequency of partial occlusion is increased as

riders navigate between vehicles, infrastructure and other road users. This can

lead to the non-detection or mis-classification of e-scooter riders as pedestri-

ans, providing inaccurate information for accident mitigation and path plan-

ning in autonomous vehicle applications. Further research on the novel field

of e-scooter rider detection is required as it is currently underrepresented in

vulnerable road user detection benchmarks.

1.3 Contributions

The primary contributions of this thesis can be summarised as follows:

• A comprehensive literature review on the theme of occluded object detection in

the automotive environment as published in IEEE Transactions on Intelligent

Transportation Systems (2019) [10].

• A novel, objective metric and methodology for pedestrian occlusion level clas-

sification for ground truth annotation as published in ICCV Workshop on

5



1.4 Thesis Structure

Occluded Video Instance Segmentation (2021) [11] and Pattern Recognition

Letters (2022) [12].

• A novel, objective, test benchmark for partially occluded pedestrian detection

as published in Biomimetic Intelligence and Robotics (2023) [13].

• A novel, objective, test benchmark for partially occluded e-scooter rider detec-

tion and classification as published in Results in Engineering (2022) [14].

• A novel, occlusion-aware method of e-scooter rider detection is proposed that

provides a 15.93% improvement over the current state of the art, as published

in Results in Engineering (2022) [14].

1.4 Thesis Structure

The remainder of this thesis is structured as follows: Chapter 2 provides a

thorough literature review of the current state of the art methods for detecting par-

tially occluded pedestrians, vehicles (including two wheeled vehicles and cyclists)

and objects in the automotive environment. Chapter 3 describes an objective met-

ric and methodology for quantifying and annotating the severity of occlusion for

partially occluded pedestrians. Chapter 4 analyses the impact of partial occlusion

on pedestrian detectability and characterises the performance of popular pedestrian

detection models across a range of occlusion levels from 0-99% occluded. Chapter

5 investigates the impact of occlusion on e-scooter rider detection and proposes a

6
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novel method of e-scooter rider detection that provides a 15.93% improvement in

detection performance compared to the current state of the art. Chapter 6 out-

lines the conclusions, recommendations and further research opportunities identified

throughout this research project.

1.5 Publications to date

Four journal papers and one conference paper have been submitted for publication

from this work:

Journal Papers

• S. Gilroy, E. Jones, and M. Glavin, “Overcoming occlusion in the automo-

tive environment-a review”, IEEE Transactions on Intelligent Transportation

Systems, 2019. [10]

• S. Gilroy, M. Glavin, E. Jones, and D. Mullins, “An objective method for

pedestrian occlusion level classification”, Pattern Recognition Letters, 2022.

[12]

• S. Gilroy, D. Mullins, A. Parsi, E. Jones, and M. Glavin, “Replacing the hu-

man driver: An objective benchmark for occluded pedestrian detection”, Biomimetic

Intelligence and Robotics, 2023. [13]
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1.5 Publications to date

• S. Gilroy, D. Mullins, E. Jones, A. Parsi, and M. Glavin, “E-scooter rider

detection and classification in dense urban environments”, Results in Engi-

neering, Vol.16, 2022. [14]

Conference Papers

• S. Gilroy, M. Glavin, E. Jones, and D. Mullins, “Pedestrian occlusion level

classification using keypoint detection and 2d body surface area estimation”, in

Proceedings of the IEEE/CVF International Conference on Computer Vision,

2021, pp. 3833–3839. [11]
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Chapter 2

Literature Review

2.1 Summary

Accurate and consistent vulnerable road user detection remains one of the most

challenging perception tasks for autonomous vehicles. One of the most complex

outstanding issues is partial occlusion, where a sensor has only a partial view of

the target object due to a foreground object that partially obscures the target. A

review of occlusion detection and handling solutions for the automotive environment

is presented in this chapter. The literature review first discusses object detection by

the human visual system, provides an overview of occlusion reasoning in computer

vision, presents a summary of occlusion handling strategies in pedestrian, vehicle

and object detection applications in the automotive environment. A selection of the

remaining challenges to achieving the required level of object detection performance

9



2.2 Introduction

for safe autonomous driving are also discussed.

2.2 Introduction

Vision systems have become integral for road user detection in driver assistance

applications however many challenges still exist before the object detection capabil-

ities required for safe autonomous driving are reached. One of the most challenging

outstanding issues is occlusion, where a target object is only partially available to

the sensor due to obstruction by another foreground object. Occlusion exists in

various forms ranging from partial occlusion to heavy occlusion. In the automotive

environment, target objects can be occluded by static objects such as buildings and

lampposts, dynamic objects such as moving vehicles or other road users, may inter-

occlude (occlude one another) such as in crowds, and self-occlude where parts of a

pedestrian or cyclist overlap. The frequency and variation of occlusion in the auto-

motive environment is vast and can also be impacted by cultural and environmental

factors. Current benchmarks such as [5–7] indicate that recent high performing vehi-

cle detection algorithms are commonly able to detect approximately 90% of partially

occluded and 80% of heavily occluded vehicles, however only 65%-75% of vulnerable

road users such as pedestrians and cyclists are detectable under partial and heavy

occlusion. This research provides an overview of state-of-the-art occlusion detection

and handling methods in the automotive environment.

The remainder of this chapter is organised as follows: Section 2.3 provides an

10



2.3 Occlusion Handling by Humans

overview of analysis on the human approach to identifying and recognising partially

occluded objects. Section 2.4 provides an overview of occlusion reasoning and out-

lines multiple cues that can be used to identify cases of occlusion in computer vision.

Section 2.5 provides an overview of occlusion handling strategies for pedestrian detec-

tion applications. Section 2.6 provides an overview of occlusion handling strategies

for vehicle detection and tracking applications, including two-wheeled vehicles and

cyclists. Section 2.7 provides an overview of occlusion handling strategies for objects

and tra�c signs. Section 2.8 discusses a selection of the remaining challenges to

improving the detection of partially occluded objects.

2.3 Occlusion Handling by Humans

The human vision system (HVS) has an adept ability to recognise objects under

partial occlusion. Research suggests that humans can di↵erentiate between complex

visual categories within 150ms of been provided with the stimulus [15–17]. Stere-

opsis, the depth perception capabilities granted by the binocular nature of human

vision [18], and the process of Amodal Completion provide humans with distinct

advantages when identifying partially occluded objects. Amodal Completion allows

humans to perceive objects as a whole, despite partially occluded or missing infor-

mation, through the continuation or inference of contours in a scene [19–22]. The

identification of object parts and their known spatial relationship also inform the

presence of an object under partial occlusion. The salience of individual parts is

11



2.3 Occlusion Handling by Humans

determined by three factors: the protrusion, boundary strength and relative size of

the part [23]. A wide range of psychophysical studies have been carried out in an

attempt to understand the methods by which humans detect and recognise occluded

objects in complex scenes.

Fukushima [24] outlined an experiment to investigate human ability to recognise

objects through partial occlusion. The author challenged participants to recognise

letters of the alphabet under two forms of distortion, Figure 2.1.

Figure 2.1: Test images used by Fukushima to investigate the human approach to occlusion han-

dling. (a) Sections of each letter omitted; (b) Sections of each letter under visible occlusion.

This study observed that the participants required more time to recognise a

known pattern that was incomplete or had sections missing, than to detect the same

pattern under visible occlusion. A neural network model was constructed based

on findings from this study to emulate the human approach to this task. It was

concluded that at the recognition stage, the model can easily identify the object

features if the occluding object is visible, however it struggled to distinguish which

features belong to the original pattern if the occluded section is removed. The
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findings of this study are corroborated by Johnson and Olshausen [25] who carried

out a series of three experiments using an electroencephalography (EEG) to analyse

human recognition time of partially visible objects in the presence and absence of

their occluding patterns. Again, the author concludes that participants were able

to identify partially occluded objects faster when the occluding pattern is visible.

Meng and Potter [26] conducted a range of experiments to investigate how occlusion

impacts human object detection and recognition. The study observed that humans

are better at detecting or searching for a known target under partial occlusion, than

recognising objects that had been partially occluded in an image after the event.

The results of these experiments also indicate that contextual “gist” information

improves the human visual systems ability to tolerate noise.

Struwe [27] investigated human object recognition of occluded objects through

the use of an eye tracking device. The results of this study suggest that participants

first identify the boundary and profile of the occluding object to inform a more lo-

calised search for the occluded object. The author concludes that humans use the

presence and details of the occlusion to aid detection of occluded objects and that

a hierarchical approach of isolating easy to detect objects first, then looking for the

more di�cult ones may increase the performance of object detection in computer

vision applications. A recent neurophysiological study by Fyall et al [28] proposes

that the visual cortex, the section of the brain which carries out initial processing of

visual information from the retina, is proficient at identifying simple objects. How-

13



2.3 Occlusion Handling by Humans

ever, in more complex tasks such as identification of objects under partial occlusion,

communication occurs between the visual cortex and the prefrontal cortex, a higher

brain region involved in memory and learning. Several studies have been carried

out to develop an accurate model of how the human brain recognises visual objects.

Many proposals suggest that this may be explained through a feedforward process

[29–31] and can be represented in computer vision through the implementation of

a Feedforward Deep Neural Network [32, 33]. This feedforward approach to object

recognition becomes challenged when tasked with identifying objects under occlu-

sion however, as occluding an object can underspecify a stimulus, so that it initially

does not resemble stored patterns. The use of feedback or recurrent loops in these

cases can ultimately recover the correct pattern by reinforcing the initial weak image

representation for the duration of the stimulus. Wyatte et al [34], O’Reilly et al [35]

and Spoerer et al [36] concluded that Recurrent Convolution Neural Networks are a

more suitable model for biological recognition of occluded objects.

Despite significant improvements in recent years, synthetic and engineered models

still fall short of human performance for object detection in the automotive environ-

ment. Zhang et al [37,38] determined from experiments carried out using the Caltech

[6] and KITTI [7] pedestrian detection benchmarks, that there is a tenfold gap in

terms of errors to be closed between current technology and a human baseline. The

largest deficiency of current detection models is their di�culty in identifying small

scale and partially occluded targets.
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2.4 Occlusion Reasoning

2.4 Occlusion Reasoning

In order to robustly handle occlusions in the automotive environment, object

detection systems may first successfully identify cases of occlusion within the field

of view. One popular method of such occlusion reasoning is through the analysis

of motion cues such as frame comparison reasoning. Frame comparison reasoning

determines occlusion by analysing continuous image data and identifies objects by

comparing data between frames. Motion Cues are very e↵ective in detecting and

tracking objects where the level of occlusion varies with time, however, it is re-

stricted in cases of static occlusion where variation of occlusion between frames is

reduced. Many other popular methods of occlusion reasoning combine a number of

the following occlusion cues or image characteristics to assess if an object boundary

is due to an occlusion and if so, if it is more likely to be the occluding or occluded

object [39–46].

2.4.1 Region Cues

Adjacent artefacts are likely to be di↵erent objects with an occlusion boundary

between them if they have di↵erent colors, textures or are misaligned. Image position

can also be used to inform occlusion reasoning as lower regions in an image tend to

be closer to the camera or sensor [43].
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2.4.2 Boundary Cues

Long, smooth boundaries with strong color or texture gradients are more likely to

be occlusion boundaries than short boundaries with weak gradients. The geometry

of the boundary can also provide useful information about the presence and nature of

an occlusion; this is particularly the case with the convexity of a shared boundary. If

a shared boundary appears to be convex it is likely that one region occludes another

[43].

2.4.3 3D Surface Cues

3D surface characteristics can be used to identify many occlusion boundaries or

di↵erences in adjacent regions. Hoiem et al [39] illustrated this by using the example

of a pedestrian in front of a building. Analysing the 3D surface characteristics in this

example identifies a non-planar surface (the pedestrian) occluding a planar horizontal

surface (the road/footpath) and a planar vertical surface (the wall of the building).

Occlusion can also be inferred by the presence of junctions, particularly T-Junctions

at the boundaries of surfaces [39, 45, 47]. T-Junctions are formed by three regions,

one of which forms an almost flat angle of approximately 180° and two other regions

of arbitrary angles, but generally angles of more than 30-40° are required to maintain

the perception of occlusion [48].
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2.4.4 Depth Cues

A boundary is likely to be an occlusion boundary if there is a large depth discon-

tinuity between adjacent regions. Absolute depth information can be easily obtained

in lidar and stereo vision applications. Relative depth between objects can be esti-

mated in monocular vision systems by determining where each region contacts the

ground. In cases where the ground contact for a region is occluded, possible relative

depth can be estimated based on the visible portion of the region and its occlusion

relationships to surrounding objects with known depth [39]. Convexity cues can also

be used to infer the relative depth information of occluding objects i.e. convex shapes

appear to be in front of their background etc. [43, 45, 46]. Rezaeirowshan et al [46]

propose a bio-inspired method of extracting global depth order from a single image

using monocular depth cues. This method determines local depth order between

adjacent shapes by analysing the convexity of shared boundaries, then detects and

analyses T-Junctions in the image to obtain depth order between shapes. Approx-

imation of rank aggregation is then used to establish global depth order from the

local cues.

2.5 Occlusion Handling in Pedestrian Detection

Detection, classification and tracking of pedestrians in real world scenarios can

be particularly challenging due to their tendency to deform, self-occlude and inter-
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occlude. The introduction of AlexNet [32] in 2012 led to a significant improvement

in pedestrian detection systems through the use of Convolutional Neural Networks

(CNN). AlexNet achieved a top-5 error of 15.3%, more than 10.8% lower than the

next best network at the ImageNet Large Scale Visual Recognition Challenge 2012

[49]. The breakthrough triggered a renewed focus on the development and improve-

ment of deep learning-based solutions for pedestrian detection with progressively

increasing results. A thorough roadmap on the evolution of object detection models

over the past 20 years can be found in [50, 51]. Despite recent achievements in deep

learning based pedestrian detection routines, partial occlusion has been consistently

highlighted as one of the most complex outstanding pedestrian detection challenges

in research survey papers from 2009 [5] through to 2023 [10,52,53]. This section pro-

vides an overview of the occlusion handling strategies used in pedestrian detection

applications.

2.5.1 Segmentation and Parts Based Models

A popular approach to occlusion handling is to divide a target image or region of

interest into a number of cells or segments and then analyse each segment individually

to improve detection results. Parts based models divide a target object into sematic

or distinguishable parts and classify each part individually to indicate the presence

of the target object. Wang et al [54] proposed an occlusion handling technique

that merges global and parts-based detection strategies. Classification scores per
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cell in a sliding window detection system are calculated by combining a Histogram

of Oriented Gradients (HOG) based detector with Local Binary Patterns (LBP) in

order to improve detection performance under partial occlusion. Occlusion likelihood

maps are constructed using the response of each block of the HOG feature to the

global detector. The sum of the HOG block responses to the global detector indicates

possible partial occlusion. Parts-based detectors (upper body & lower body) are then

applied to the unoccluded regions to perform classification of occluded pedestrians.

This approach was evaluated further by Het Veld et al [55] which determined that

the most significant aspect of the technique is the integration of partial classifiers,

rather than the negligible impact of the cell based occlusion detection and region

merging. Gao et al [56] proposed a similar strategy in which a set of binary variables

are attached to each cell indicating if the pixels in each cell belong to the object.

This method uses a structural Support Vector Machine (SVM) to learn the values of

the binary variables. However, the technique requires the model to be trained with

features of both the occluding and occluded object. Chen et al [57] also used a similar

strategy to reduce the negative impact of sunglasses or scarves on facial recognition.

Occluded regions are identified by dividing the facial image into six symmetrical

patches and examining each patch separately. Patches containing occlusions are

then removed, and classification is carried out on the remaining area.

Parts-based methods for pedestrian detection are often more robust than holistic

models in terms of occlusion handling, as they accumulate the detection responses of
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the visible features of partially occluded pedestrians. The loss of score of a possible

object hypothesis is proportional to the severity of the occlusion [27, 55, 58]. Chan

et al [59] proposed a method for detecting partially occluded pedestrians by deter-

mining the visible parts of the object. This research uses a discriminatively trained

Deformable Part Model (DPM) containing binary visibility flags which are used to

indicate whether an image section belongs to the target object or the occluder by

solving a concave optimisation problem. Occluding sections are then removed from

the classification process so that only the visible regions of the target object are cal-

culated. Optimisation is carried out to identify occluded sections using the following

known characteristics of pedestrian occlusion in tra�c scenes: (i) partial occlusions

occur more often in the lower part of the body than the upper part of the body [6]

and (ii) occluded pixels tend to be spatially clustered and form connected regions.

Ouyang et al [60–62] similarly used a deformable part based model and hidden oc-

clusion variables in order to identify and remove the impact of the occluder from

classification, however in this case a discriminative deep model is used to learn the

visibility relationships of overlapping parts at multiple layers. Baumgartner et al [63]

used stereo images and depth maps to identify Regions of Interest (ROIs) by pro-

jecting 3D point clouds onto a ground plane. The ROIs were then segmented into

individual object areas separating the occluded from the occluding objects. This

information was then used for tracking and classification.

Enzweiler et al [44] identified the occluding object by incorporating information
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gained from motion, depth and segmentation results. Each test sample was seg-

mented with depth and motion cues to determine occlusion component weights. The

detection confidence scores for di↵erent parts were used to estimate their visibilities

and were computed as weighted means of multiple cues for di↵erent parts. The pri-

mary occlusion handling strategy of segmentation or parts-based models is often to

identify and remove an occluding object in order to increase the classification score

of the occluded object. This process reflects the human visual system’s approach to

classifying partially occluded objects as identified in [24, 25, 27].

2.5.2 Occlusion-Specific Classifiers

Another widely used approach for improving occlusion detection and handling

is to train occlusion-specific classifiers. Kwak et al [64] trained a single occlusion-

specific classifier based on observation likelihoods. The target was divided into a

regular grid and the state of occlusion of each cell was determined by the classifier.

Multiple occlusion-specific classifiers can be merged in order to increase performance

[65], particularly for the most frequent types of pedestrian occlusion, occlusions from

the bottom, the right or the left [6]. Wojek et al [66] used these trends to train a small

number of occlusion-specific classifiers, each for a di↵erent occlusion type. Objects

were identified using depth information from a monocular camera and the appropriate

classifier was applied based on the characteristics of the occlusion, i.e. from the

bottom, the left or the right. These approaches can be ine�cient as computational
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cost and test time increases in a linear fashion with the size of the classifier set [67]

and the possible variation of types of occlusion in the real world is vast. Mathias et

al [68] proposed a method known as “Franken Classifiers” to increase the e�ciency

of such techniques by reusing computations among di↵erent training stages to reduce

the time-cost of training multiple occlusion-specific classifiers. The benefits of both

of these techniques converged in Het Veld et al [55] to produce an object detection

system with 17 di↵erent classifiers, based on varying levels of occlusion, merged with

a parts based detection model derived from [54] in order to obtain real time detection.

The author claims that this solution can provide an 8% performance improvement

in detecting occluded pedestrians versus a single classifier baseline system, while

incurring only a 3.4% increase in computational cost.

2.5.3 Pedestrian Detection in Crowds

The challenges posed by occlusion in pedestrian detection can be exacerbated

when attempting to identify multiple pedestrians in a crowd. Some approaches train

models specifically to handle pedestrian-pedestrian occlusions such as Tang et al

[69] who expanded the deformable part model to develop a double person detec-

tor, trained with 1,300 synthetically generated images containing various degrees of

pedestrian-pedestrian occlusion. The author claims that this approach can outper-

form single person detectors by more than 25% when faced with images of a pedes-

trian occluded by one other pedestrian, however, performance is greatly reduced
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when identifying single pedestrians. Fusion of the double person detection model

with a single person detector can greatly improve the performance of pedestrian de-

tection in images of multiple occluding people. A similar approach is proposed in [70]

which fused a single pedestrian detector with a specifically trained multi-pedestrian

detector and used a tailored probabilistic framework to model the configuration re-

lationship between the single and multi-pedestrian detectors.

2.5.4 Tracking and Prediction

Tracking, prediction and frame comparison models can be used to handle oc-

clusions by monitoring and matching activity between frames, i.e. if an identified

object is tracked over multiple frames and then becomes occluded or disappears for

a period, prediction models can be used to estimate the proposed location of the

object until it reappears. Early work in this area [71] used an Extended Kalman

Filter (EKF) to estimate trajectory based on velocity and position. When occlusion

occurs, the filter provides the maximum likelihood estimate of the occluded region.

Occlusion can be predicted in tracking routines by monitoring the frames leading

up to the occlusion or merging of blobs/binary maps and thresholds can be set for

implementing occlusion management routines or flagging that an occlusion may have

occurred. The merged blob can then be monitored while an occlusion is flagged to

limit the area of the occlusion. It can then be expected that the tracked/identified

blob will eventually separate providing strong evidence for the end of an occlusion.
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The approximate duration of the occlusion can be predicted using the EKF estimates

of the 3D velocity and position along with the calculated area of the blob. This is

also referred to as the “merge-split” approach to occlusion handling [72]. A number

of challenges can occur when attempting to associate a tracked object following oc-

clusion in these cases. Once a split occurs and an object reappears it can be di�cult

to assess if this is the same tracked object or a new object introduced to the scene.

This can be a particular issue when tracking pedestrians or other objects that have

a similar appearance. A number of proposed solutions, known as occlusion recovery

methods are presented in [42,73, 74].

Vethamani and Diala [75] presented a spatio-temporal tracking approach to han-

dling both partial and full occlusions in tracking applications. The severity of occlu-

sion was determined using histogram matching and edge detection to calculate the

area of the tracked artefact. A threshold was then set for the area to be calculated.

The size of this threshold indicates if an artefact is partially occluded and a spatial

approach should be used, or if it is fully occluded and a temporal occlusion handling

routine is required. In the case of full occlusion, the reference frame is compared

with previous frames based on texture to identify and fill in the missing pedestrian

outline and display the result. In the case of partial occlusion, edge-based restoration

is used. Edges are detected, and features are extracted around the artefact based on

contours. The image can then be reconstructed by inventing content based on known

image properties. Sadeghian et al [76] tracked multiple targets using a structure of
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Recurrent Neural Networks (RNN) that learned to encode long term dependencies

from a combination of appearance, motion and interaction cues. Motion and inter-

action models were used to inform Long Short-Term Memory (LSTM) networks and

an appearance-based model learned similarity metrics to track targets through long

term occlusion.

In 2014 Smeulders et al [77] carried out an assessment of nineteen di↵erent track-

ing strategies and ranked their performance in terms of a calculated Object Tracking

Accuracy (OTA). This study found that a Tracking, Learning and Detection (TLD)

discriminative classification strategy was the most e↵ective approach for handling oc-

clusion in the test sequences for both static and moving camera applications. TLD,

outlined in [77, 78], merges a discriminative classifier and an optical flow tracker.

The detector learns an appearance model from the 2-bit binary patterns of the ini-

tial bounding box using a Random Fern approach [79]. The algorithm then selects

locations with the highest detector scores in each new frame. The optical flow tracker

applies a Lucas-Kanade Tracker to map locations to the previous frame in order to

propose a target window in each new frame. Normalised cross correlation is then

calculated to select the candidate window with the highest similarity to the object

model as the new object. This research has been superseded by an updated com-

parative study of tracking approaches carried out in 2018 by Fiaz et al [80]. Fiaz et

al concludes that the E�cient Convolution Operators (ECO) tracking scheme [81]

and the Channel Spatial Reliability for Discriminative Correlation Filter (CSRDCF)
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tracking algorithm [82] currently display the highest performance for occlusion han-

dling in tracking applications. It was found that the ECO approach was the highest

performing overall, however, CSRDCF is slightly more robust in noisy environments

[80].

2.5.5 Sensor Fusion and V2X

Kwon et al [83, 84] proposed a Lidar/Radar sensor fusion technique for detect-

ing partially occluded pedestrians in an attempt to reduce the heavy computational

requirements and light sensitivity constraints of camera-based systems. Multiple

regions of interest (ROIs) are identified by lidar and radar sensor measurements re-

spectively. Fusion regions of interest are then identified by superimposing the lidar

ROIs and radar ROIs. Occlusion ROIs or potential occluded targets are identified

by overlapping the occluded depth information obtained from the lidar measurement

with the radar ROI, thereby using the positional and doppler information to deter-

mine if a moving object exists within the occlusion ROI. While walking, humans

produce unique, repetitive Doppler and micro-Doppler patterns as one leg remains

fixed as the other takes a step forward [85]. This radar Doppler pattern, which dis-

tinguishes humans from other obstacles, is then used to determine if the occluded

object is a pedestrian.

The Camera/Lidar fusion based “F-PointNet” algorithm presented by Qi et al

[86] uses Frustum PointNets for 3D object detection using RGB-D data. 2D regions
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are detected and classified using a 2D CNN, before being extruded into 3D frus-

tum proposals using lidar depth data. A 3D bounding box is then generated from

the points in frustum. F-PointNet displays very strong occlusion handling abilities,

having achieved an Average Precision (AP) of 77.25% on partially occluded and

74.46% on heavily occluded test data in the KITTI Dataset for pedestrian detection.

Many similar strategies such as [87–91] proposed Camera/Lidar fusion to improve

the detection of partially occluded pedestrians.

Huang and Jiang [92] fused a color camera with a thermal imaging camera to

improve pedestrian detection and tracking through occlusion. This approach can

track pedestrians in scenarios where the target is severely occluded in the color image

however is still emitting thermal radiation. Variations in thermal emission due to

clothing can also be used to inform segmentation and tracking in cases of pedestrian

to pedestrian occlusion [93]. Bo et al [94] presented a multi-camera fusion method

for pedestrian detection and tracking which takes into account the level of occlusion

computed from the projected geometry in each viewpoint and dynamically attaches

a weighting to the viewpoint with the lowest level of target occlusion. Vehicle to

Vehicle (V2V) or Vehicle to X (V2X) communications [95, 96] allow vehicles and

intelligent infrastructure (tra�c light, tra�c sign etc.) to communicate the presence

of detected vulnerable road users to other vehicles which may not have a clear line of

sight, therefore potentially mitigating the severity of occlusions in well-instrumented

urban environments.
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2.5.6 Evaluating Detection Performance of Occluded Pedes-

trians

The KITTI Vision Benchmark Suite [7] provides an opportunity to assess how

detection models compare in terms of occlusion handling. KITTI consists of 7,481

training images and 7,518 test images containing 80,256 labelled objects, including

pedestrian, car, bicycle and occlusion-specific annotations. Images in the KITTI

Dataset are divided into three levels of di�culty for assessment purposes:

• Easy - Minimum Bounding Box Height of 40 Pixels, Maximum Occlusion Level:

Fully Visible, Maximum Truncation: 15%

• Moderate - Minimum Bounding Box Height of 25 Pixels, Maximum Occlusion

Level: Partly Occluded, Maximum Truncation: 30%

• Hard - Minimum Bounding Box Height of 25 Pixels, Maximum Occlusion Level:

Di�cult to see, Maximum Truncation: 50%

Assessing algorithm performance on the “Moderate” and “Hard” test data can

provide an indication of the comparative performance of detection models for par-

tially occluded and heavily occluded objects respectively. Results on the KITTI

benchmark suite are displayed in Average Precision (AP), Table 2.1. Average Preci-

sion is a popular object detection metric described in [97]. It is calculated by plotting

the precision-recall curve for a detection model and then detecting the area under

the curve (AUC).
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Table 2.1: KITTI High Performing Pedestrian Detection Algorithms

Performance

(Average Precision)

Algorithm
Moderate

(Partial Occlusion)

Hard

(Heavy Occlusion)
Detection Model / Strategy

F-PointNet [86] 77.25% 74.46%
Camera Lidar Fusion

RGB-D Data, CNN, 2D to 3D Image Extrusion

TuSimple [98, 99] 77.04% 72.40%

CNN

Scale-Dependent Pooling,

Layer-Wise Cascaded Rejection Classifiers

RRC [7,100] 75.33% 70.39%
CNN

Recurrent Rolling Convolution (RRC)

MS-CNN [15] 73.62% 68.28%
CNN

Adaptive CNN based on object scale

GN [101] 71.55% 64.82%
CNN

Guiding Network

SubCNN [20] 71.34% 66.36%
CNN

Sub-category aware region proposal network

Another commonly used dataset for assessing the performance of detection al-

gorithms for partially and heavily occluded pedestrians is the Caltech Pedestrian

Dataset [5, 6]. The Caltech dataset computes results for partially and heavily oc-

cluded pedestrians in terms of Log Average Miss Rate (LAMR). LAMR is calculated

by first calculating the Miss Rate for the model at a range of confidence thresholds.

The Miss Rate is defined as the ratio of false positive detections to the total number

of ground truth objects. The log of the Miss Rate is calculated for each class and the

LAMR is defined as the average of the logged Miss Rates. In contrast to the KITTI
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dataset, the lower the algorithm score on the Caltech dataset indicates the more

optimum performance, Table 2.2. Other popular pedestrian detection benchmarks

with occlusion specific annotation are KAIST [102], Multi Object Tracking (MOT)

[103], Pascal VOC [104], CityPersons [8], Multispectral Pedestrian Dataset [105] and

Daimler Multi-Cue Occluded Pedestrian Classification Benchmark [44].

Table 2.2: CALTECH High Performing Pedestrian Detection Algorithms

Performance

(Log Average Miss Rate)

Algorithm
Moderate

(Partial Occlusion)

Hard

(Heavy Occlusion)
Detection Model / Strategy

SDS-RCNN [106] 15% 59%

CNN

Simultaneous Detection and Segmentation using

Semantic Feature Information

F-DNN+SS [107] 15% 54%

CNN

Multiple Parallel Deep Neural Networks,

Pixel-wise Segmentation

F-DNN [107] 15% 55%

CNN

Multiple Parallel Neural Networks,

Soft-rejection based Fusion

PCN [108] 16% 56%
CNN

CNN + Part and Context Information

MS-CNN [15] 19% 60%
CNN

Adaptive CNN based on object scale

DeepParts [109] 20% 60%
CNN

Parts-based Model

Current popular pedestrian detection benchmarks do not di↵erentiate between
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e-scooter riders and pedestrians. This can cause significant issues in autonomous

vehicle applications as the detection output is used to inform path planning and

accident mitigation. Although partially occluded e-scooter riders can appear very

similar to pedestrians from a perception point of view, their dynamic profile and

characteristics of movement di↵er largely as e-scooters can reach speeds up to 45kmph

[110–112].

2.5.7 Quantifying Pedestrian Visibility

This section provides an overview of current occlusion level classification methods

for pedestrian detection, pedestrian analysis for flood level assessment and commonly

used methods for estimating the visibility of pedestrians.

A number of publicly available datasets provide annotation of the level of pedes-

trian occlusion in the automotive environment. Table 2.3 provides an overview of

the categories used to define the severity of occlusion in current popular datasets.

Analysis of current benchmarks demonstrate the range of inconsistency and subjec-

tivity in the definition of low, partial and heavy occlusion. The Eurocity Persons

Dataset [9] categorises occlusion into three distinct levels: low occlusion (10%-40%),

moderate occlusion (40%-80%), and strong occlusion (larger than 80%). Classifica-

tion is carried out by human annotators. The full extent of the occluded pedestrian

is estimated, and the approximate level of occlusion is then estimated to be within

one of the three defined categories. This process is also used to classify the level of
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Table 2.3: Categories of Occlusion Levels by Dataset.

Dataset
Occlusion Level

Low Partial Heavy

EuroCity Persons [9] <40% 40-80% >80%

CityPersons [8] - <35% 35-75%

KITTI [7] “Fully Visible” “Partially Occluded” “Di�cult to See”

Caltech Pedestrian [5] - 1-35% 35-80%

Multispectral Pedestrian [105],

OVIS [53]
-  50% >50%

TJU-DHD [113] -  35% >35%

Daimler Tsinghua [114] <10% 10-40% 41-80%

Li et al 2017 [115] “Fully Visible” 1-40% 41-80%

SAIL-VOS [116] - 1-25% >25-75%

truncation of pedestrians near the image border. A similar approach is undertaken

in the Caltech Pedestrian [5][38], TJU-DHD-pedestrian [113], CrowdHuman [117]

and PedHunter [118] datasets in which pedestrians are annotated with two bounding

boxes that denote the visible and full pedestrian extent. In the case of occluded

pedestrians, the location of hidden parts of the full pedestrian were estimated by

the human annotator in order to calculate the occlusion ratio. Further analysis of

the Caltech Pedestrian [5] dataset determined that the probability of occlusion in

the automotive environment is not uniform, but rather has a strong bias for the
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lower portion of the pedestrian to be occluded and for the top portion to be visible.

Classification of occluded pedestrians in the CityPersons dataset [8] is achieved by

drawing a line from the top of the head to the middle of the two feet of the occluded

pedestrian. Human annotators are required to estimate the location of the head and

feet if these are not visible. A bounding box (“BB � full”) is then generated for

the full pedestrian area using a fixed aspect ratio of 0.41 (width/height). A visible

pedestrian area bounding box (“BB � vis”) is also annotated and the occlusion ra-

tio is calculated as Area(BB � vis)/Area(BB � full). These estimates of occlusion

level are then categorised into two levels in the Citypersons benchmark, Reasonable

(<=35% occluded) and Heavy Occlusion (35%-75%). Although this approach can

yield plausible results for pedestrians who are standing upright with their arms by

their side, the use of a fixed aspect ratio can restrict e�cacy in instances with other

poses such as crouching, bending over or standing with their arms outstretched.

A more semantic approach to determining the occlusion level was taken in the KITTI

Vision Benchmark [7], where human annotators were simply asked to mark each

bounding box as “visible”, “semi-occluded”, “fully-occluded” or “truncated”. A

similar approach was used in the Multispectral Pedestrian Dataset [105] where pedes-

trians occluded to some extent up to one half are tagged as partial occlusion; and

those whose contour is perceived to be mostly occluded were tagged as heavy occlu-

sion during ground truth annotation. Occluded Video Instance Segmentation (OVIS)

[53] estimates the degree of occlusion by calculating the ratio of intersecting areas of
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overlapping bounding boxes to the total area of the respective bounding boxes. The

authors acknowledge that although this proposed “Bounding Box Occlusion Rate”

can be a rough indicator for the degree of occlusion, it can only reflect the occlusion

between objects in a partial way and it does not accurately represent the pixel-wise

occlusion level of the target objects.

Chaudhary et al [119], propose a method of flood level classification from social

media images based on the visibility of pedestrians in the image. Assuming the

average height of a human adult is estimated to be 170cm, the flood level classifier

detects pedestrians in an image and estimates how much of the pedestrian is covered

by flood water by vertically subdividing the pedestrian into 11 distinct levels. The

highest level of the pedestrian occluded by the water indicates the flood height in

the image location. Feng et al [120] estimates flood level based on the relative height

of specific human body parts which are perceived to be below the water line. The

water line in the image is hypothesized to be at the bottom line of the bounding

box of a person. A similar approach is taken by Quan et al [121] in which keypoint

detection is correlated with a binary mask output of a pedestrian detector. Analysis

is then carried out to determine if keypoints which represent the hip or knees are

outside of the detected binary mask area due to occlusion by flood water in the image,

thereby indicating a relative flood level. Noh et al [122] approximate the severity

of pedestrian occlusion by dividing a pedestrian bounding box into a 6x3 section

grid. Detection confidence values are calculated by applying a pedestrian classifier
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to grid section and a part confidence map is produced for the complete bounding

box. Zhang et al [123] assess pedestrian occlusion level by segmenting pedestrians

into 5 distinct sections. Each segment is assigned a fixed height and width relative to

the total bounding box based on the empirical ratios identified in [124]. ROI pooling

is used to detect features within each section and visibility scores are calculated to

indicate the relative pedestrian occlusion level.

Wallace [125] proposed a method of classification of body surface area for the

purposes of diagnosing the severity of burn damage of the average adult burn victim

[126]. This method, known as the “Wallace Rule of Nines”, is commonly used by

emergency medical providers and first responders to assess the total a↵ected body

surface area of burn patients [127, 128]. The Rule of Nines estimates total body

surface area by assigning percentages, in multiples of 9% to semantic body areas,

based on the relative physical dimensions of the average adult. The head is estimated

to be 9% of the total body surface area (4.5% for the front and 4.5% for the rear).

The chest, abdomen, upper back and lower back are each assigned 9%. Each leg

is assigned 18%, each arm is assigned a total of 9% and the groin is assigned the

remaining 1%. Further research such as [127, 129] validate the Rule of Nines for

use in the assessment of total body surface area for the average adult. However,

these studies also provide amendments to more accurately reflect body proportions

in specific edge cases such as obese adults and infant children.
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2.6 Occlusion Handling in Vehicle Detection and

Tracking Applications

Accurate detection, tracking and path prediction of partially occluded or emerg-

ing vehicles is potentially a significant contributor to mitigating the severity of road

accidents and reducing the number of fatal road tra�c accidents worldwide. This

section provides an overview of occlusion handling strategies used in vehicle detection

for advanced driver assistance systems (ADAS), intelligent transportation systems

(ITS) and tra�c monitoring applications.

2.6.1 Vehicle to Vehicle Occlusion

Yin and Sun [130] proposed an adaptive multi-strategy method for tracking mul-

tiple occluding or occluded vehicles. This algorithm first determines the occlusion

relationship and the degree of occlusion of each vehicle. Vehicles are then categorised

into severe occlusion, partial occlusion and non-occlusion, determined by the size of

the overlapped sub-region relative to the total occlusion ROI. Di↵erent tracking

methods are then applied for each vehicle based on the severity of occlusion. Trace

prediction, using motion features such as velocity and acceleration from a previous

frame is applied to cases of severe occlusion. Dictionary and l2 regularized col-

laborative representation is applied to partially occluded and non-occluded vehicles.

Velazquez-Pupo et al [131] correlated vehicle width and lane width to identify partial
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occlusion ROIs in static-camera tra�c monitoring applications. The proposed algo-

rithm works under the assumptions that 1.) a vehicle’s width should not be greater

than the width of one lane, apart from cases in which large vehicles are completely

inside the detection ROI, due to perspective e↵ects and 2.) any single vehicle width

cannot be larger than 2 lane widths at any time. Feature extraction is then applied

to all ROIs which contradict the above assumptions to identify occluded vehicles.

Zhang et al [132] proposed a method to handle vehicle-vehicle occlusions on mul-

tiple levels. Intraframe occlusion is detected using convexity cues to determine a

compactness ratio and an estimated interior distance of identified convex shapes.

This is used to calculate an interior distance ratio indicating the likelihood of ve-

hicle occlusion in the ROI. A cutting line is then calculated and removed in order

to separate occluded ROIs into two or more distinct vehicles. Interframe occlusion

handling is then conducted by exploiting motion cues between frames. Motion vec-

tor analysis is carried out to identify variations in motion within occlusion ROIs

indicating the presence of multiple vehicles. Subtractive Clustering is used to detect

and remove pixels at the intersecting edge of occluded vehicles in order to separate

multiple vehicles in the ROI. Bi-directional tracking level occlusion reasoning is then

implemented in order to identify the presence of severe or full occlusions. Occlusion

layer images are created consisting of estimated moving vehicle regions occluded by

other vehicles. The locations of vehicles in the occlusion layer are updated frame by

frame according to their average motion vector. Position of the vehicles in occlusion

37



2.6 Occlusion Handling in Vehicle Detection and Tracking Applications

layer images is updated using motion information. Once a vehicle re-emerges from

the occlusion and is once again visible, it is removed from the occlusion layer. If a

vehicle fails to reemerge within a preset number of frames it is removed from the

occlusion layer and it is assumed that it has moved out of frame.

Ghasemi and Safabakhsh [133] detected inter-occluding vehicles in tracking ap-

plications by monitoring the intersection of tracked boundary boxes between frames

in a similar operation to the merge-split approach used in [71]. A template of each

vehicle node is maintained to prevent losing specific vehicles within the occluded

region. This is carried out by correlating each vehicle node with the overall region

to maintain the location of each individual vehicle up to a certain threshold of oc-

clusion, after which a Kalman Filter is used to track vehicle nodes. Fang et al [134]

and Huang et al [135] used a feature tracking algorithm to identify and track the

visible corner features of each vehicle in a merged occlusion region to prevent loss of

specifically tracked vehicles under partial occlusion. Zhang et al [136] proposed a part

matching algorithm to track parts of occluded targets between frames. Galceran et al

[137] used a hybrid Gaussian Mixture Model (hGMM) to capture multiple hypothe-

ses while tracking vehicles through prolonged occlusions. When the tracked vehicle

re-emerges, sensor observations are matched with the estimated occluded states in

terms of Kullback-Leibler Divergence (KLD) to associate the tracking data. Min et

al [138] used a Support Vector Machine (SVM) combined with Local Binary Pattern

(LBP) features in addition to a Convolutional Neural Network (CNN) to reduce the
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impact of occlusion during multiple vehicle tracking.

Pham and Lee [139] focused on the appearance of a vehicle’s windscreen in order

to identify multiple occluding vehicles. Edge detection reasoning is used to identify

potential vehicle windscreens and the expected trapezoidal shape characteristics are

confirmed using a Hough Transform. A HOG-SVM based classifier is then used to

classify vehicles. The classifier is trained using a dataset including images of occluded

vehicles for identification of partially occluded vehicles in dense tra�c. Ohn-Bar et

al [140] merged monocular and stereo vision systems to enhance an appearance based

vehicle detection model with depth and motion cues in order to improve detection

of partially occluded vehicles.

Wang et al [141] calculated the scores of local visual cues using a trained model

to detect semantic parts of partially occluded objects. The spatial relationship of

supporting visual concepts are accumulated to infer the existence of known semantic

parts, such as wheels, in order to identify the presence of an occluded vehicle. Li

et al [142] combined a Region-based Convolutional Neural Network (R-CNN) with a

deformable parts based model (DPM) to improve the detection of multiple occluding

objects. Many similar research strategies exploit deformable parts based models

(DPM) to reduce the impact of occlusion in vehicle detection algorithms [143–146].

Xiang et al [147] trained an occlusion specific detector with 2D images and cor-

responding 3D Voxel Patterns developed from CAD models, to explicitly itemize

occlusion in each image. Proposals of 3D Voxel Patterns during testing allow the
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inference of depth in 2D images highlighting occlusion regions of interest. Li et al

[148] presented a discriminative AND-OR structure to model occlusions. A synthet-

ically generated CAD dataset representing a wide array of occlusion configurations

was used to train a latent structural SVM. Li et al [149] and Wu et al [150] expanded

upon this research to propose methods for learning AND-OR models to represent

context and occlusion configurations for vehicle detection and viewpoint estimation.

Other discriminatively trained methods such as [151, 152] used CNNs to recognise

vehicles under di↵erent occlusions without the integration of explicit occlusion han-

dling.

Ren et al [100] presented a single stage detection algorithm using a Recurrent

Rolling Convolution (RRC) architecture in which each iteration gathers and aggre-

gates relevant features for detection. In this process contextual information can be

selectively introduced to the bounding box regressor when required to boost classi-

fication performance. This approach can be correlated with the findings the human

psychophysical study conducted by Meng and Potter [26], referenced in Section 2.3

of this document which demonstrates that the integration of contextual information

can improve the human visual systems ability to tolerate noise such as occlusion.

The RRC algorithm has demonstrated consistently high performance on the KITTI

Vision Benchmark for the Pedestrian, Cyclist and Vehicle detection test datasets,

Table 2.4.
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Table 2.4: KITTI High Performing Vehicle Detection Algorithms

Performance

(Average Precision)

Algorithm
Moderate

(Partial Occlusion)

Hard

(Heavy Occlusion)
Detection Model / Strategy

TuSimple [98, 99] 90.33% 82.86%

CNN

Scale-Dependent Pooling,

Layer-Wise Cascaded Rejection Classifiers

RRC [7,100] 90.22% 87.44%
CNN

Recurrent Rolling Convolution (RRC)

Deep MANTA [7,153] 90.03% 80.62%
CNN

3D Dimension Estimation, 2D/3D Point Matching

SenseKITTI [154] 90.00% 81.83%
CNN

Cascaded Region-Proposal-Network + Fast RCNN

F-PointNet [86] 90.00% 80.80%
Camera Lidar Fusion

RGB-D Data, CNN, 2D to 3D Image Extrusion

SINet+ [21] 89.73% 77.82%

CNN

Scale Insensitive, Context aware ROI pooling,

Multi-branch Decision Network

2.6.2 Two Wheeled Vehicles and Cyclist Detection

Phan et al [155] proposed a vehicle detection algorithm for motorcycles in crowded

scenes. Background subtraction was used to model the area from which vehicles

can be detected. Geometrical characteristics and the features of object shapes are

then assessed using a trained decision tree to identify overlapping blobs of vehi-

cles. Detected occlusion ROIs undergo an iterative segmentation process informed

by the analysis of the convex and concave features within the occlusion ROI. Vehi-
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cle classification is reattempted after each segmentation cycle until both occluding

and occluded vehicles are identified. Other methods of identifying partially occluded

cyclists and motorcyclists include helmet or head detection [156–160], parts based

models [141, 161,162] and Vehicle to X (V2X) communication [163–165].

Cai et al [15] proposed a Multi-Scale CNN (MS-CNN) algorithm to increase

the detection rate of target objects which are very close to, or further away from

the ego vehicle. MS-CNN adapts a feed forward neural network based on object

size by exploiting feature maps of several resolutions to detect objects at di↵erent

scales. Detection is performed at various intermediate network layers whose receptive

fields match specific object scales and are then combined to produce multiple scale

detection. This multi-scale approach displays a high level of occlusion handling

on both the Cyclist and Pedestrian datasets on the KITTI Vision Benchmark. A

similar principle was applied in Yang et al [98], the research behind the high ranking

“TuSimple” algorithm which achieves state-of-the-art performance on the Pedestrian,

Cyclist and Vehicle datasets of the KITTI Vision Benchmark. TuSimple modifies

its CNN algorithm based on the size of the ROI using Scale-Dependent Pooling

(SDP), then uses a Cascaded Rejection Classifier (CRC) to eliminate negative object

proposals. The model is trained using Deep Residual Learning method proposed in

[99].

Li et al [114] presented the Tsinghua-Daimler Cyclist Benchmark for identifying

occluded cyclists with three degrees of di�culty:
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Table 2.5: KITTI High Performing Cyclist Detection Algorithms

Performance

(Average Precision)

Algorithm
Moderate

(Partial Occlusion)

Hard

(Heavy Occlusion)
Detection Model / Strategy

RRC [7,100] 76.47% 65.46%
CNN

Recurrent Rolling Convolution (RRC)

MS-CNN [15] 74.45% 64.91%
CNN

Adaptive CNN based on object scale

TuSimple [98, 99] 74.26% 64.88%

CNN

Scale-Dependent Pooling,

Layer-Wise Cascaded Rejection Classifiers

Deep3DBox [166] 73.48% 64.11%
CNN

3D Pose estimation from 2D bounding box

SDP+RPN [98,167] 73.08% 64.88%
CNN

Scale-Dependent Pooling, Region Proposal Networks

SenseKITTI [154] 72.50% 64.00%
CNN

Cascaded Region-Proposal-Network + Fast RCNN

• Easy - Bounding boxes higher than 60 pixels and fully visible.

• Moderate – bounding boxes higher than 45 pixels and < 40% occlusion.

• Hard – cyclists with bounding boxes higher than 30 pixels and < 80% occlusion.

The KITTI [7], KAIST [102] and Multi Object Tracking (MOT) [103] datasets

also contain occlusion-specific annotation of cyclists. Table 2.5 provides an overview

of high performing cyclist detection algorithms on the KITTI benchmark.

A small number of research projects focus on the issue of e-scooter rider detection
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[168–171]. However no known research has been carried out to date on the detection

and classification of e-scooter riders under partial occlusion.

2.7 Occluded Objects and Tra�c Signs

In order to be e↵ective in culturally diverse real-world applications, semi-autonomous

and autonomous vehicles must be able to detect and classify both known and un-

known objects. The following section provides an overview of occlusion handling

strategies used in the identification and tracking of generic and specific objects.

Hoiem et al [39] outlined an iterative segmentation process for identifying occlu-

sion boundaries from a single image. This method carries out initial segmentation,

then uses multiple occlusion cues to estimate a soft boundary map using a Con-

ditional Random Field (CRF) model which in turn is used to produce a refined

segmentation output. This process is repeated several times to further refine the

occlusion boundaries by reusing the segmentation output as an input to increase

confidence and remove weak boundaries.

Chu and Krzyzak [172] evaluated the performance of Support Vector Machines

(SVM), Convolutional Neural Networks (CNN) and Deep Belief Networks (DBN)

when tasked with identifying partially occluded objects. Each of the models were

consistently trained on datasets of non-occluded, occluded and mixed (both occluded

and non-occluded) objects and their performance in detecting partially occluded ob-

jects was compared. These experiments demonstrated that training a model exclu-
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sively on a non-occluded dataset leads to poor results when identifying occluded

objects. The authors also found that training models on a mixed dataset of both

occluded and non-occluded objects yielded the best results overall, and that when

trained exclusively on occluded objects, DBNs can still provide a high level of ac-

curacy (up to 69%) when identifying non-occluded objects. The authors concluded

that generative models such as DBNs do not exceed the performance of purely dis-

criminative models such as CNN and SVM when tasked with identifying partially

occluded objects. These findings appear to contradict the work of Susskind et al

[173] which demonstrated increased performance by exploiting the generative ability

of DBN in facial recognition under partial occlusion. However, Chu and Krzyzak

[172] indicate that such di↵erences may be primarily due to the implementation of

additional reconstructive processes rather than the architecture or training method

used.

Cavagna et al [174] proposed a Spatiotemporal Reconstruction Tracking Algo-

rithm (SpaRTA) to track featureless objects through occlusion. This approach rep-

resents each target as a cloud of 3D points. When occlusion occurs, represented

by a 3D cluster or multiple partially-separated dense point clouds, the algorithm

separates ambiguous connected components into partitions corresponding to the tra-

jectory of a single target by defining and solving an optimisation problem. A cost

function is developed to partition trajectories using attractive links connecting points

that are close enough to be related and repulsive links to separate parts over a des-
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ignated spatio-temporal threshold. Liu et al [175] presented an occlusion robust

tra�c sign classifier based on extended sparse representation classification (ESRC).

In addition to a content dictionary of known tra�c signs, this method includes an

occlusion dictionary to represent common occlusion cases of di↵erent signs to in-

crease recognition under partial occlusion. Huang et al [176] proposed a method of

detecting and analysing the degree of tra�c sign occlusion using mobile laser scan-

ner point clouds. Other strategies for tra�c sign recognition under partial occlusion

use adaboost-selected Haar-like features and SVM [177], HOG and SVM [178], fuzzy

shape recognition [179] and 3D-reconstruction from multiple views [180].

2.8 Conclusions and Remaining Challenges

Humans have a natural ability to detect, recognise and track partially occluded

objects. Many object detection strategies can be correlated back to psychophysical

studies of the human visual system referenced in Section 2.3. Although many of the

current state-of-the-art methods for partially occluded object detection are primarily

CNN based, the HVS uses prior knowledge as a guide only, also using real time

assessment of the contextual and visual characteristics of a scene to inform decision

making. Humans exploit a hierarchical and cooperative system for the identification

of objects. Information is relayed from the retina to the visual cortex where initial

processing and identification of simple objects is carried out. For more complex

scenes such as in the case of partial occlusion, communication occurs between the
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visual cortex and the prefrontal cortex where memory and learning are used to help

identify the object [28]. Despite recent breakthroughs in CNN based algorithms,

traditional computer vision based detection methods remain as relevant as ever as

the performance increases o↵ered by stand-alone deep learning algorithms for object

detection in the automotive environment have begun to plateau. The convergence of

deep learning and traditional occlusion handling methods, as well as further insight

on bioinspired occlusion handling, has the potential to inform more robust object

detection algorithms. This is reflected in the consistency of detection methods which

replicate bioinspired occlusion handling by combining visual occlusion cues and prior

contextual knowledge. Such methods utilise a multibranch approach based on the

scale of the target ROI or the level of occlusion, whether the target is under no

occlusion, partial occlusion or heavy occlusion.

The deformable nature and smaller scale of vulnerable road users such as pedestri-

ans and cyclists present an added complexity to the occlusion challenge. Current high

performing vehicle detection algorithms are commonly able to detect approximately

90% of Partial Occlusions and approximately 80% of Heavy Occlusions according to

the KITTI Vision Benchmark Suite Leader board [7]. A considerable amount of work

has yet to be carried out on Pedestrian and Cyclist detection which is still only in

the region of 65%-75% detectable under partial and heavy occlusions. A significant

knowledge gap exists for the detection of e-mobility users such as e-scooter riders

under partial occlusion.
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In order to achieve the performance required for safe autonomous driving, an

algorithm or set of algorithms, must consistently generalise to reach state of the art

performance in all benchmarks, cultures and environmental conditions. Additionally,

and perhaps most challengingly, any successful approach must also have the compu-

tational e�ciency to robustly identify objects in real time. The process of accurately

assessing algorithm performance for the detection of partially occluded objects is a

di�cult one. There are a wide variety of test datasets available for object detection

based on desired target, environmental conditions and sensing methods. Inconsis-

tency between each dataset’s definition and annotation level of occluded targets and

the metrics used, present di�culties when attempting to accurately quantify per-

formance. Although comparative datasets provide indicative performance of new

algorithms, no definitive set of metrics exists to ensure algorithm performance is re-

ported in an objective manner. Taking the KITTI Vision Benchmark and the Caltech

Pedestrian Dataset for example, both datasets can be used to compare performance

for partially occluded pedestrians as shown in Table 2.1 and Table 2.2 respectively.

However, each benchmark varies greatly in the definition of occlusion and the an-

notation methods used to apply occlusion labels. Table 2.3 shows the definition of

occlusion labels used in popular detection benchmarks. The KITTI Vision Bench-

mark defines “Heavy Occlusion” as any pedestrian instance that is perceived by the

human annotator to be “di�cult to see” whereas the Caltech Pedestrian Dataset

specifies “Heavy Occlusion” as pedestrians that are between “35%-80% Occluded”.

48



2.8 Conclusions and Remaining Challenges

In addition, each benchmark uses di↵erent but highly subjective methods for apply-

ing the occlusion labels, Section 2.5.7, leading to inconsistent reporting of algorithm

performance between benchmarks. A knowledge gap exists for a robust, repeat-

able method of occlusion level classification which provides objective, fine-grained

occlusion level annotation for pedestrian detection benchmarks.

Chapter 3 focuses on addressing this knowledge gap through the development of

an objective metric and occlusion level annotation method for the occurrence and

severity of occlusion in an image sequence.
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Chapter 3

An Objective Method for

Pedestrian Occlusion Level

Classification

3.1 Summary

Pedestrian detection is among the most safety-critical features of driver assis-

tance systems for autonomous vehicles. One of the most complex detection chal-

lenges is that of partial occlusion, where a target object is only partially available

to the sensor due to obstruction by another foreground object. A number of current

pedestrian detection benchmarks provide annotation for partial occlusion to assess

algorithm performance in these scenarios, however each benchmark varies greatly
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in their definition of the occurrence and severity of occlusion. In addition, current

occlusion level annotation methods commonly contain a high degree of subjectivity

by the human annotator. This can lead to inaccurate or inconsistent reporting of

an algorithm’s detection performance for partially occluded pedestrians, depending

on which benchmark is used. This chapter presents a novel, objective method for

pedestrian occlusion level classification for ground truth annotation. Occlusion level

classification is achieved through the identification of visible pedestrian keypoints

and through the use of a novel, e↵ective method of 2D body surface area estima-

tion. Experimental results demonstrate that the proposed method more accurately

reflects the pixel-wise occlusion level of pedestrians than the current state of the art

and is e↵ective for all forms of occlusion, including challenging edge cases such as

self-occlusion, truncation and inter-occluding pedestrians.

3.2 Introduction

Robust pedestrian detection is one of the most safety-critical features of driver

assistance systems and autonomous vehicles. Pedestrian detection is particularly

challenging due to the deformable nature and irregular profile of the human body in

motion and the inconsistency of color information due to clothing, that can enhance

or camouflage any part of a pedestrian. Pedestrian detection systems have improved

significantly in recent years with the proliferation of deep learning based solutions and

the availability of larger and more diverse datasets. Despite this, many challenges still
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exist before the detection capabilities required for safe autonomous driving is reached.

One of the most complex scenarios is that of partial occlusion, where a target object

is only partially available to the sensor due to obstruction by another foreground

object. The frequency and variety of occlusion in the automotive environment is

substantial and is impacted by both natural and man-made infrastructure as well as

the presence of other road users [181–183]. Pedestrians can be occluded by static or

dynamic objects, may inter-occlude (occlude one another) such as in crowds, and self-

occlude - where parts of a pedestrian overlap. State of the art pedestrian detection

solutions claim a detection performance of approximately 65%-75% of partially and

heavily occluded pedestrians respectively using current benchmarks [10, 184–186].

However, the definition of the occurrence and severity of occlusion varies greatly, and

a high degree of subjectivity is used to categorise pedestrian occlusion level in each

benchmark as shown in Table 2.3. In addition, occurrences of self occlusion, where

one part of the body occludes another, has typically been overlooked entirely when

categorizing occlusion level. This can lead to inaccurate or inconsistent reporting of

a pedestrian detection algorithm’s performance, depending on which dataset is used

to verify detection performance [10, 187]. In order to address this issue, a universal

metric and an objective, repeatable method of occlusion level classification is required

for ground truth annotation so that algorithms can be evaluated and compared on

an equal scale.

This research proposes a novel, objective and consistent method for pedestrian
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occlusion level classification for ground truth annotation of partially occluded pedes-

trians. The proposed method more accurately represents the pixel-wise occlusion

level than the current state of the art and works for all forms of occlusion including

challenging edge cases such as self-occlusion, inter-occluding pedestrians and trun-

cation.

The contributions of this research are threefold: 1. A novel, objective method

for pedestrian occlusion level classification for ground truth annotation is presented.

2. A novel method for estimating the visible 2D body surface area of pedestrians

in images. 3. The proposed method is the first occlusion level classifier to infer the

level of pedestrian self-occlusion.

3.3 Related Work

Section 2.5.7 provides an overview of current occlusion level classification methods

for pedestrian detection, pedestrian analysis for flood level assessment and commonly

used methods for estimating total body surface area.

3.4 Methodology

An objective method for occlusion level classification is proposed, which removes

the subjectivity of the human annotator and more accurately reflects the pixel wise

occlusion level than the current state of the art [5, 7–9, 53, 105, 114]. Occlusion level
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classification consists of the following steps: 1. Keypoint detection is applied to

the input image in order to identify the presence and visibility of specific semantic

parts for each pedestrian instance. 2. A visibility threshold is applied to identify

occluded keypoints. 3. MaskRCNN is applied to define the pedestrian mask area and

results are cross-referenced with detected keypoints to confirm which keypoints are

occluded within the image. 4. Visible keypoints are then grouped into larger semantic

parts and the total visible surface area is calculated using the 2D body surface area

estimation method outlined in Section 3.4.2 and Figure 3.3. The proposed method

classifies occlusion level for all forms of pedestrian occlusion, including challenging

edge cases such as self occlusion, inter-occluding pedestrians and truncation. An

overview of the classification pipeline is shown in Figure 3.1 and qualitative examples

of the classifier output for multiple scenarios can be seen in Figure 3.4.

Figure 3.1: Occlusion level classification overview. (a) Input image (b) Apply keypoint detection to

each pedestrian instance and assess keypoint visibility to identify occluded keypoints (c) Correlate

visible keypoints with the pedestrian mask to confirm visibility and occlusion type (d) Calculate

total visible surface area (e) Output occlusion level classification.
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Figure 3.2: Occlusion Level Classification Pipeline.
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3.4.1 Occluded Keypoint Detection

Keypoint detection is carried out by a Faster RCNN based keypoint detector

using pretrained weights from Detectron2 [188]. The model uses a ResNet-50-FPN

backbone and is trained using the COCO keypoints dataset [189]. The keypoint

detector outputs 17 keypoints on the human body in addition to a visibility score

for each predicted keypoint. Predicted keypoints include shoulders, elbows, wrists,

hips, knees and ankles as well as facial characteristics such as nose, eyes and ears. A

two-step process is then applied to determine the visibility of keypoints in an image.

First, a threshold is applied to the keypoint visibility score returned from the keypoint

detector. The coordinates of each visible keypoint are then cross-referenced with the

pedestrian mask generated by MaskRCNN [190] to confirm the keypoint location

is within the pedestrian mask region in the image. This two-step process increases

the identification of occluded keypoints in complex cases such as self-occlusion and

inter-occluding pedestrians where the keypoint visibility score is low however the

estimated keypoint location may be masked due to the occluding pedestrian region.

The presence of specific grouped keypoints indicates the presence of semantic body

parts as outlined in Table 3.1.

3.4.2 2D Body Surface Area Estimation

The “Wallace Rule of Nines” [125] is a time-tested method for determining total

body surface area of the average adult. Although e↵ective in the assessment of
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the body surface area of physical pedestrians, the Rule of Nines is not suitable for

assessing the visible surface area of pedestrians in 2D images due to the 3D nature

of the human body. An adapted version of the Rule of Nines is proposed for use

in determining the visible body surface area of 2D pedestrian images for occlusion

level classification. The original proportions of the Rule of Nines have been adjusted

respectively to compensate for only one side of the body being visible at any one

time, as in the case of 2D images. The proposed method for 2D body surface area

estimation is shown in Figure 3.3. Detected keypoints are related to the semantic

body areas using the lookup table shown in Table 3.1. Examples of the classification

output are shown in Figure 3.4.

3.5 Validation

Qualitative Validation was carried out by applying the proposed method to a wide

range of images containing various pedestrian poses, backgrounds and multiple forms

of occlusion, including cases of self-occlusion, inter-occluding pedestrians, and trun-

cation. Occlusion level and the occluded semantic parts of each pedestrian instance

was deduced using the proposed occlusion level classification method. Human visual

inspection was then used to verify the performance of the occlusion level classifier in

each case. A custom dataset of 320 images, compiled from multiple publicly available

sources including [8, 9, 191, 192], was used in this validation step to ensure a wide

diversity of pedestrian occlusion scenarios. Examples of the qualitative validation
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Figure 3.3: 2D Body Surface Area.

are provided in Figure 3.4.

3.5.1 Quantitative Validation

Quantitative validation was carried out by comparing the proposed method with

the calculated pixel-wise occlusion level, derived using MaskRCNN [190], and the
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Table 3.1: Percentage of visible body surface area (BSA) and related keypoints for each semantic

body part.

Body Part (% BSA) Related Keypoints

Head (9%) Nose or Eyes or Ears

Upper Torso (18%) Left Shoulder and Right Shoulder

Upper Left Arm (4.5%) Left Shoulder and Left Elbow

Lower Left Arm (4.5%) Left Elbow and Left Wrist

Upper Right Arm (4.5%) Right Shoulder and Right Elbow

Lower Right Arm (4.5%) Right Elbow and Right Wrist

Lower Torso (18%) Left Hip and Right Hip

Upper Left Leg (9%) Left Hip and Left Knee

Lower Left Leg (9%) Left Knee and Left Ankle

Upper Right Leg (9%) Right Hip and Right Knee

Lower Right Leg (9%) Right Knee and Right Ankle

current state of the art as described in CityPersons [8] for both visible and pro-

gressively occluded pedestrians. In order to determine the pixel-wise occlusion, the

total pixel area must be calculated for both the fully visible pedestrian and the same

pedestrian under occlusion. To achieve this, a custom dataset of 200 images was cre-

ated, including a wide range of occlusion scenarios and challenging pedestrian poses

such as walking, running and cycling. MaskRCNN [190] was applied to a fully visible

reference image and the masked pixel area (MaskAreafull) was calculated for each

pedestrian instance. Occlusions were then superimposed on the reference image and
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Custom Test Dataset

Amodal Human Perception Test Dataset

Figure 3.5: Quantitative validation dataset sample images. The custom dataset consists of 200

images covering a wide range of pedestrian poses and superimposed occlusions designed to test

extreme occlusion cases from 0% to 99% occluded. The Amodal Human Perception Test Dataset

[193] contains 56 images across multiple domains. All images are compiled from publicly available

sources.
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the remaining visible pedestrian pixel area (MaskAreaocc) is calculated in order to

determine the pixel-wise occlusion ratio, Equation 3.1.

Occpixel =
MaskAreaocc

MaskAreafull
(3.1)

The proposed method was then compared with the pixel-wise occlusion level and

the method described in CityPersons [8] to determine the pixel-wise accuracy of

the proposed occlusion level classifier. More subjective occlusion level classification

methods such as those used in [5,7,9,105] are omitted for the purposes of this testing.

Quantitative validation results on the custom dataset are provided in Figure 3.6.

Further validation is carried out on the Amodal Human Perception (AHP) test

dataset [193] to assess classification performance on an independent multi-domain

dataset. The AHP dataset contains 56 images of partially occluded persons across

a wide range of activities and poses as well as the modal and amodal mask for each

pedestrian instance. Quantitative validation results on the AHP dataset are provided

in Figure 3.7.

3.6 Discussion and Analysis

An objective method for occlusion level classification is proposed. The qualita-

tive validation results shown in Figure 3.4 demonstrate the capability of the proposed

method for classifying occlusion level for all forms of occlusion, including challenging

edge cases such as self-occlusion, truncation, and inter-occluding pedestrians. By
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Figure 3.6: Quantitative Evaluation Results 1. The proposed method is compared with the pixel-

wise occlusion level as produced by MaskRCNN [190] and the current state of the art as described in

CityPersons [8] for a dataset of 200 images, designed to test extreme occlusion cases from 0%-99%

occluded. Results demonstrate that the proposed method (RMSE=4.68) is a significant improve-

ment over the state of the art (RMSE=18.09) when plotted against the pixel-wise occlusion level.

removing the subjectivity of a human annotator, the proposed method is more ro-

bust and repeatable than the current state of the art and is suitable for the objective

comparison of pedestrian detection algorithms, regardless of the benchmark used.

Classification of pedestrian self-occlusion, heretofore ignored in the assessment of

partially occluded pedestrians, may have a large impact on assessing the detectabil-

ity of pedestrians using modern techniques. This is especially relevant in scenarios

where detection confidence is linked to the presence of key salient features which

may be self-occluded by the target pedestrian in the image. More detailed analysis

of detection performance in cases of self-occlusion will increase our understanding of
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3.6 Discussion and Analysis

Figure 3.7: Quantitative Evaluation Results 2. The proposed method is compared with the pixel-

wise occlusion level for the Amodal Human Perception Test Dataset [193]. Results demonstrate

that the proposed method closely reflects the pixel-wise occlusion level for challenging images across

multiple domains.

the behaviour of deep learning-based detection routines. Characterisation of detec-

tion performance for what were previously considered “visible” pedestrians, in cases

where the algorithm specific informative value of a pedestrian is occluded can help

to identify potential failure modes of current state of the art pedestrian detection

systems.

The quantitative validation results shown in Figure 3.6 and Figure 3.7, demon-

strate the proposed method’s capability in representing the “real world” or pixel-wise

occlusion value for challenging pedestrian poses, regardless of the severity or form

of occlusion. The proposed method of 2D body surface area estimation shown in
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Figure 3.3, derived from the “Wallace Rule of Nines”, has proven e↵ective in calcu-

lating the visible area of partially occluded pedestrians for a wide range of pedestrian

poses and occlusion scenarios. Further analysis of the quantitative validation results

clearly displays an improvement over the current state of the art [8] when compared

to the pixel-wise occlusion value.

3.6.1 Challenging Image Frames

Figure 3.8 provides a sample of the classifier performance for challenging detection

scenarios as well as highlighting classification errors that can occur for indistinct

pedestrian instances in particular frames. Missed detections or false negatives can

occur as a result of low detection confidence of the keypoint detector or MaskRCNN

due to excessive motion blur, camera artifacts or low images resolution. Detection

confidence is reduced in scenarios where the pedestrian outline closely matches that

of the image background. Figure 3.8 (a), (b) and (c) successfully classify pedestrian

occlusion level in cases of heavy occlusion, image glare and low resolution respectively,

demonstrating that the occlusion level annotation method is not impacted by image

quality once the pedestrian instance has been accurately detected. In each case, the

pedestrian outline distinctly di↵ers from the image background. In similar scenarios

where the pedestrian outline and the image background are less diverse, such as

in Figure 3.8 (h), (j) and (k), detection confidence is reduced resulting in a false

negative. Keypoint errors can occur in complex detection scenarios which can result
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Figure 3.8: Examples of challenging image frames, false negatives and false positives. The top row

provides examples of challenging detection scenarios and displays the occlusion level below each

image. The middle row provides examples of false negatives and the bottom row provides examples

of false positives and other classification errors.

in incorrect classification for a particular frame. Occurrences of these have been noted

in cases where a pedestrian instance is highly segmented by the occluder, prompting

the algorithm to propose multiple pedestrian instances or omitting sections of a

pedestrian that appear to be unconnected to the primary pedestrian instance due

to intersecting occlusion. Examples of these occurrences can be seen in Figure 3.8
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(o), (p) and (s). Similarly, pedestrian mask errors can also occur in particularly

challenging frames. Mask errors can include mask leakage, which can falsely indicate

the presence of occluded keypoints, Figure 3.8 (u), and incomplete or imprecise masks

which can lead to the false omission of specific keypoints or pedestrian instances as

shown in Figure 3.8 (m), (n) and (t). Although the proposed method is designed to

focus on pedestrians, other road users such as cyclists, motorcyclists and children in

strollers may be classified as occluded pedestrians. In addition, person depictions in

advertising images and other media may be classified as pedestrians by the algorithm.

Many of the misclassification errors presented can be reduced by further improvement

in keypoint and pedestrian mask detection models which can be integrated into the

detection pipeline as technology progresses.

3.7 Conclusions

This research proposes an objective method of pedestrian occlusion level classi-

fication for ground truth annotation. The proposed method uses keypoint detection

and mask segmentation to identify and determine the visibility of the semantic parts

of partially occluded pedestrians and calculates the percentage occluded body sur-

face area using a novel, e↵ective method for 2D body surface area estimation. The

proposed method removes the subjectivity of the human annotator used by the cur-

rent state of the art, in turn increasing the robustness and repeatability of pedestrian

occlusion level classification. Qualitative and quantitative validation demonstrates
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the e↵ectiveness of the proposed method for all forms of occlusion including challeng-

ing edge cases such as self-occlusion and inter-occluding pedestrians. Experimental

results show a significant improvement in Root Mean Squared Error (4.68) and Vari-

ance (21.88) over the current state of the art (RMSE = 18.09, VAR = 249.21) when

plotted against the pixel-wise pedestrian occlusion level.

Table 2.3 displays the categories of occlusion level annotation for a number of

popular pedestrian detection benchmarks. Current benchmarks are inconsistent in

their definition of the occurrence and severity of occlusion, use subjective methods

for annotation and group occlusion instances into two to three broad categories such

as low, partial and heavy occlusion. A knowledge gap remains for the provision of

a fine-grained, objective dataset for the benchmarking of detection performance for

partially occluded pedestrians.

Chapter 4 progresses the research carried out in Chapter 3 by using the proposed

methodology to create an objective test dataset for the characterisation of detection

performance for partially occluded pedestrians. Performance characterisation is car-

ried out for a number of popular pedestrian detection routines in order to provide

detailed analysis of the impact of partial occlusion on pedestrian detectability.
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Chapter 4

The Impact of Partial Occlusion

on Pedestrian Detectability

4.1 Summary

Robust detection of vulnerable road users is a safety critical requirement for

the deployment of autonomous vehicles in heterogeneous tra�c. One of the most

complex outstanding challenges is that of partial occlusion where a target object

is only partially available to the sensor due to obstruction by another foreground

object. A number of leading pedestrian detection benchmarks provide annotation

for partial occlusion, however each benchmark varies greatly in their definition of

the occurrence and severity of occlusion. Recent research demonstrates that a high

degree of subjectivity is used to classify occlusion level in these cases and occlusion
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is typically categorised into 2-3 broad categories such as “partially” and “heavily”

occluded. In addition, many pedestrian instances are impacted by multiple inhibiting

factors which contribute to non-detection such as object scale, distance from camera,

lighting variations and adverse weather. This can lead to inaccurate or inconsistent

reporting of detection performance for partially occluded pedestrians depending on

which benchmark is used. This chapter introduces a novel, objective benchmark for

partially occluded pedestrian detection to facilitate the objective characterisation

of pedestrian detection models. Characterisation is carried out on seven popular

pedestrian detection models for a range of occlusion levels from 0-99%. Results

demonstrate that pedestrian detection performance degrades, and the number of

false negative detections increase as pedestrian occlusion level increases. Of the

seven popular pedestrian detection routines characterised, CenterNet has the greatest

overall performance, followed by SSDlite. RetinaNet has the lowest overall detection

performance across the range of occlusion levels.

4.2 Introduction

Accurate and robust pedestrian detection systems are an essential requirement for

the safe navigation of autonomous vehicles in heterogeneous tra�c. Leading pedes-

trian detection systems claim a detection performance of approximately 65%-75%

of partially and heavily occluded pedestrians respectively using current benchmarks

[10, 184–186]. However, recent research as described in Chapter 3 [12] demonstrates
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that the definition of occurrence and severity of occlusion varies greatly, and a high

degree of subjectivity is used to categorise pedestrian occlusion level in each bench-

mark. Occlusion is typically split into 2-3 broad, loosely defined, categories such

as “partially” or “heavily” occluded [7–9]. In addition, many pedestrian instances

are impacted by multiple inhibiting factors that contribute to non-detection such as

object scale, distance from camera, lighting variations and adverse weather. This

makes it di�cult to determine if the primary factor for non-detection is the severity

of occlusion alone, and can lead to inaccurate or inconsistent reporting of detection

performance for partially occluded pedestrians depending on which benchmark is

used. A knowledge gap exists for a methodology for objective, detailed occlusion

level analysis for pedestrian detection across the complete spectrum of occlusion

levels. Use of an objective, fine grained occlusion specific benchmark will result in

more reliable, consistent and detailed analysis of pedestrian detection algorithms for

partially occluded pedestrians.

This chapter presents a novel, objective benchmark for partially occluded pedes-

trian detection to facilitate the objective characterisation of pedestrian detection

models. Objective characterisation of occluded pedestrian detection performance is

carried out for seven popular pedestrian detection routines for a range of occlusion

levels from 0-99%. The contributions of this chapter are as follows: 1. A novel,

objective, test benchmark for partially occluded pedestrian detection is presented.

2. Objective characterisation of pedestrian detection performance is carried out for
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seven popular pedestrian detection routines.

4.3 Related Work

A number of popular pedestrian detection benchmarks provide annotation of

pedestrian occlusion level to determine the relative detection performance for par-

tially occluded pedestrians, however, benchmarks can be inconsistent in their defini-

tion of the occurrence and severity of occlusion as discussed in Chapter 3. Dollar et al

[6] provides analysis on occluded pedestrians based on the Caltech Pedestrian Dataset

[5]. Caltech Pedestrian estimates the occlusion ratio of pedestrians by annotating

two bounding boxes, one for the visible pedestrian area and one for the annotators’

estimate of the total pedestrian area. Pedestrians are categorised into two occlusion

categories, “partially occluded”, defined as 1-35% occluded and “heavily occluded”,

defined as 35-80% occluded. Any pedestrians suspected to be more than 80% oc-

cluded are labelled as fully occluded. Analysis of the frequency of occlusion on the

Caltech Pedestrian Dataset demonstrated that over 70% of pedestrians were occluded

in at least one frame, highlighting the frequency of occurrence of pedestrian occlu-

sion in the automotive environment. The Eurocity Persons [9] Dataset categorises

pedestrians according to three occlusion levels: low occlusion (10%-40%), moderate

occlusion (40%-80%), and strong occlusion (larger than 80%). Classification is car-

ried out by human annotators in a similar manner to the Caltech Pedestrian Dataset.

The full extent of the occluded pedestrian is estimated, and the approximate level of
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occlusion is then estimated to be within one of the three defined categories. Cityper-

sons [8] calculate occlusion levels by drawing a line from the top of the head to the

middle of the two feet of the occluded pedestrian. Human annotators are required to

estimate the location of the head and feet if these are not visible. A bounding box

is then generated for the estimated full pedestrian area using a fixed aspect ratio of

0.41(width/height). This is then compared to the visible area bounding box to de-

note occlusion level. These estimates of occlusion level are then categorised into two

levels, “reasonable” (<=35% occluded) and “heavy occlusion” (35%-75%). Similar

approaches are taken in [38,113,117,118,194]. The KITTI Vision Benchmark [7] and

Multispectral Pedestrian Dataset [105] tasked human annotators with marking each

pedestrian bounding box as “visible”, “semi-occluded”, “fully-occluded”.

Although these methods are useful for the relative comparison of detection per-

formance on specific datasets, the occlusion categories used are broad (usually 2 to 3

categories), are inconsistent from benchmark to benchmark, and involve a high degree

of subjectivity by the human annotator, Chapter 3 [11, 12]. A knowledge gap exists

for a detailed, objective benchmark to compare pedestrian detection performance for

partially occluded pedestrians in a more repeatable and robust manner. Many pedes-

trian detection analysis papers [6, 37, 38, 187, 195–200] and occlusion-specific survey

papers [10,184,186,201,202] highlight the outstanding challenges posed by occluded

pedestrians, however, no known objective characterisation of pedestrian detection

performance spanning the spectrum of occlusion levels has been carried out to date.
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Chapter 3 [12] proposes an objective method of occlusion level annotation and

visible body surface area estimation of partially occluded pedestrians. Keypoint

detection is applied to identify semantic body parts and findings are cross-referenced

with a visibility score and the pedestrian mask in order to confirm the presence or

occlusion of each semantic part. A novel method of 2D body surface area estimation

based on the “Wallace rule of Nines” [11, 125] is then used to quantify the total

occlusion level of pedestrians.

4.4 Methodology

A novel occluded pedestrian test dataset, containing 820 person instances in 724

images, has been created in order to characterise pedestrian detection performance

across a range of occlusion levels from 0-99%. A diverse mix of images are used

ensure that a wide variety of target pedestrians, pedestrian poses, backgrounds,

and occluding objects are represented. The dataset is sourced from three main

categories of images: 1) The “occluded body” subset of the partial re-identification

dataset “Partial ReID” provided by Zheng et al [203], 2) The Partial ReID “whole

body” subset [203] with custom superimposed occlusions and 3) Images collated from

publicly available sources including [8,9,11,191]. All images are annotated using the

objective occlusion level classification method described in Chapter 3 [12]. Complex

cases at very high occlusion rates were manually verified using the method of 2D body

surface area estimation presented in Chapter 3 [12]. Each occlusion level contains
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a minimum of 55 pedestrian instances. Dataset statistics by occlusion level and a

sample of the test dataset can be seen in Figure 4.1 and Figure 4.2 respectively.

Figure 4.1: Dataset Statistics. The number of pedestrian instances per occlusion level. The custom

dataset contains 820 pedestrian instances under progressive levels of occlusion from 0-99%.

4.4.1 Pedestrian Detection Models

Performance characterisation was carried out on seven popular pedestrian detec-

tion models. All models use publicly available pretrained weights from two popular

model zoos [204,205] and are trained using the COCO “train 2017” dataset [189]. An

overview of the pedestrian detection models and their performance on the proposed

dataset can be seen in Table 4.1.

The pedestrian detection models chosen for characterisation can be divided into

3 categories: Two-Stage Frameworks, One-Stage Frameworks and Keypoint Esti-
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Figure 4.2: Dataset Sample. An example of dataset images for each level of occlusion. The custom

dataset contains 820 pedestrian instances containing a wide range of pedestrian poses and occluding

objects. All images are compiled from publicly available sources.

mation. Two-stage frameworks such as FasterRCNN [206], MaskRCNN [190] and

R-FCN [207] apply two separate networks to perform classification. One network

is used to propose regions of interest and a dedicated second network performs ob-

ject detection [213]. One-stage frameworks such as RetinaNet [211], SSD [208] and

SSDLite [209, 210] attempt to reduce computation and increase speed by perform-

ing object detection using a single feed forward convolutional network that does
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Table 4.1: Overview of Pedestrian Detection Models.

Model Classifier Training Data Weights Source No. Parameters Performance (mAP)

FasterRCNN [206] ResNet-50 FPN COCO Voxel51 [205] 41.8 Million 0.398

MaskRCNN [190] ResNet-50 FPN COCO Voxel51 [205] 44.4 Million 0.411

R-FCN [207] ResNet-101 COCO Voxel51 [205] 171.9 Million 0.411

SSD [208] VGG16 COCO Torchvision [204] 35.6 Million 0.412

SSDlite [209] [210] MobileNetV3 Large COCO Torchvision [204] 3.4 Million 0.464

RetinaNet [211] ResNet-50 FPN COCO Voxel51 [205] 34.0 Million 0.361

CenterNet [212] Hourglass-104 COCO Voxel51 [205] 189.3 Million 0.533

not interact with a region proposal module. RetinaNet also implements a novel

method of “focal loss” which is used to reduce the imbalance between foreground

and background classes during training with a view to increasing detection preci-

sion. CenterNet [212] takes an alternative approach based on keypoint estimation.

Objects are represented as a single point at their bounding box center identified by

a heat map generated using a fully convolutional network. Other object features

such as object size, orientation and pose are then regressed directly from the image

features at the center location. CenterNet has been shown to outperform a number

of state of the art one-stage and two-stage algorithms in terms of a speed-accuracy

trade o↵ by maintaining an e�cient network architecture. Further details of these

experiments can be found in [212].
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4.4.2 Experiments

Detection performance is analysed for the complete test dataset, and for each

occlusion range from 0-9% to 90-99%, for pedestrian detection models to assess the

impact of progressive levels of occlusion on the detectability of pedestrians. Analysis

is carried out using Voxel51 [214] and the COCO style evaluation metric Mean Av-

erage Precision (mAP). Mean Average Precision is a popular and rigorous metric for

object detection that calculates the Average Precision (AP) for a range of Intersec-

tion over Union (IoU) values from 0.5 to 0.95 with a step size of 0.5 and produces the

mean value [189]. A summary of the results are shown in Figure 4.3, Figure 4.4 and

Figure 4.5. All models are also characterised using the KITTI Vision Benchmark

[7] in order to compare and demonstrate the advanced analysis capabilities provided

by the proposed benchmark. Results on the KITTI Vision Benchmark are shown in

Figure 4.8.

4.5 Results and Analysis

Results demonstrate that pedestrian detection performance (mAP) declines as

the level of pedestrian occlusion increases, Figure 4.3. The number of false negative

detections increase as occlusion level increases, Figure 4.4(c) and in general, the

number of true positive detections begin to significantly decrease as occlusion level

increases for pedestrians more than 50% occluded, Figure 4.4(a).
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Figure 4.3: Detection Performance by Occlusion Level. Pedestrian detection performance of seven

popular pedestrian detection models is displayed for images containing progressive levels of oc-

clusion. Pedestrian detection performance (mAP) declines as the level of pedestrian occlusion is

increased. CenterNet [212] is the highest performing detection model for pedestrians up to 80%

occluded.

As shown in Figure 4.5, of the seven popular pedestrian detection models anal-

ysed, CenterNet [212] has the greatest overall detection performance for partially

occluded pedestrians with an overall mAP of 0.533, followed by SSDLite [209, 210]

with a total dataset mAP of 0.464. The strategy employed by CenterNet of first

identifying the bounding box centre using a keypoint heatmap and then predicting

object size and bounding box dimensions relative to the centre point has demon-

strated the highest precision bounding boxes for both fully visible pedestrians and

for pedestrians up to 80% occluded, Figure 4.3. MaskRCNN [190] has the greatest
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(a)

(b)

(c)

Figure 4.4: True Positives, False Positives and False Negatives. (a) displays the percentage of true

positive detections by occlusion level for seven popular pedestrian detection models. (b) displays

the number of false positives per occlusion level for each model. Note the logarithmic scale on the

Y-axis. (c) displays the number of false negatives by occlusion level.
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Figure 4.5: Overall Detection Performance. CenterNet has the greatest overall performance with a

mAP of 0.533, followed by SSDlite (mAP = 0.464). RetinaNet has the lowest overall performance

on the test dataset with a mAP of 0.361.

detection performance for pedestrians occluded more than 80%, Figure 4.3. Reti-

naNet [211] is the lowest performing overall on the test data with a mAP of 0.361.

RetinaNet’s true positive detections begin to degrade in a linear fashion once pedes-

trians are more than 30% occluded and this model has the highest number of false

negatives for pedestrians more than 30% occluded, Figure 4.4(a) and 4.4(c). Single

Shot Detectors, SSD [208] and SSDLite [209, 210] have the highest number of true

positive detections at high levels of occlusion, Figure 4.4(a), and maintain a very high

level of true positive detections up to 60% occlusion, however their false positive rate

is in the region of 100 times larger than popular two stage detectors such as Faster-

RCNN [206] and RFCN [207] and approximately 16 times larger than MaskRCNN
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[190], Figure 4.4(b). Unlike false negatives, the number of false positives per image

does not appear to be significantly impacted by the occlusion level as these are not

typically related to the target pedestrian in an image. SSDlite [209,210] outperforms

SSD [208] for almost all levels of occlusion despite having a higher number of false

positive detections. MaskRCNN [190] has a higher percentage of true positives than

Faster RCNN [206] for pedestrians over 40% occluded, however, it has around 4 times

more false positive detections for the same data, Figure 4.4. Mask RCNN, RFCN

and SSD all have similar overall performance on the test dataset, however, MaskR-

CNN and RFCN have a higher detection performance than SSD for pedestrians that

are more than 60% occluded, Figure 4.3.

Figure 4.6 compares the output from a two stage detector, FasterRCNN, with

a one stage detector, SSD, for an occluded pedestrian. Two stage detectors first

generate key regions of interest before applying object detection, one stage detectors

directly apply object detection to the entire image. Figure 4.6 demonstrates that for

the same image, FasterRCNN produces 4 detection outputs (1 true positive with 88%

confidence and 3 false positives), Figures 4.6(b) and 4.6(c), whereas SSD produces 84

detection outputs (1 true positive with 20% confidence and 83 false positives), Figures

4.6(d) and 4.6(e). These figures confirm that the characteristics and weaknesses of

each detection model identified through robust performance characterisation, must

be taken into account further downstream in a pedestrian detection system, as some

model outputs may be less reliable than others for safety critical systems.
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Figure 4.6: FasterRCNN vs. SSD. Detection performance is compared for a two stage network,

FasterRCNN vs. a one stage network, SSD for an occluded pedestrian. The ground truth is shown

in (a). FasterRCNN generates 4 proposals (b), 1 true positive detection with 88% confidence (c),

and 3 false positives. SSD generates 84 detections (d), 1 true positive with 22% confidence (e), and

83 false positives.

4.5.1 Benchmark Comparison

Although a number of datasets contain occlusion labels to indicate the level of

occlusion, current benchmarks are not designed for thorough characterisation of par-

tially occluded pedestrian detection performance. Each benchmark varies greatly
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in their definition of the occurrence and severity of occlusion and each benchmark

uses di↵erent subjective methods of occlusion level annotation, Chapter 3, Table

2.3 [12]. In addition, many pedestrian instances are impacted by multiple addi-

tional inhibiting factors, making it di�cult to determine if the contributing factor to

non-detection is occlusion level alone. Algorithm performance can still be compared

using the current state of the art, however users are unable to determine with any

certainty if non-detection is the result of occlusion or one of many other inhibiting

factors such as object scale, distance from camera, blur/focus, adverse weather and

lighting variations. This also makes it very di�cult to accurately compare algorithm

performance across multiple benchmarks.

Taking the popular KITTI Vision Benchmark as an example. Images are anno-

tated for three levels of occlusion: “Fully Visible”, “Partially Occluded”, “Di�cult

to See”. Images are captured using a wide angle lens and contain many contributing

factors to non-detection in addition to occlusion as shown in Figure 4.7.

The dataset is split into three test subsets in order to characterise pedestrian

detection models by occlusion label:

1. Images that only contain pedestrians tagged as “Fully Visible” (1669 In-

stances in 1242 Images)

2. Images that only contain pedestrians tagged as “Partially Occluded” (236

Instances in 216 Images)

3. Images that only contain pedestrians tagged as “Di�cult to See” (208 In-
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Figure 4.7: Example Images from the KITTI Vision Benchmark. Although pedestrians are tagged

with occlusion level information, pedestrian instances are impacted by a range of inhibiting factors

in addition to partial occlusion such as object scale and lighting variations. As a result it is di�cult

to ascertain the explicit impact of occlusion alone.

stances in 158 Images)

Note: sitting persons and persons on bicycles were included for test purposes in cases

where they have a suitable occlusion label.

Pedestrian detection performance is then assessed on each of the three subsets as

shown in Figure 4.8. Results demonstrate that performance declines for each data

subset and MaskRCNN [190] has the greatest overall performance on the KITTI

Vision Benchmark data. However, partial occlusion can not be concluded as the only
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Figure 4.8: Detection Performance by Occlusion Level KITTI Vision Benchmark

contributing factor to non-detection as many pedestrian instances have a number of

additional inhibiting factors.

In contrast to this, the proposed benchmark facilitates detailed, objective and

repeatable characterisation of pedestrian detection performance specifically for par-

tially occluded pedestrians across the complete range of occlusion levels from 0-99%,

Figure 4.3.

4.5.2 Key Semantic Parts

Further analysis has been carried out to determine the impact that visibility of

a pedestrian’s head has on detection of occluded pedestrians. The dataset was split

into two subsets: 1) Only images where the target pedestrian’s head is visible and 2)

Only images where the target pedestrian’s head is occluded. Of the 820 pedestrian
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instances, the target pedestrian’s head is visible in 582 instances and is occluded

in 252 instances. Figure 4.9(a) displays the percentage of pedestrian instances with

their head visible across each of the occlusion levels. Three pedestrian detection

models, FasterRCNN, RetinaNet and SSD were then tested on both data subsets

across the occlusion range.

(a) (b)

(c) (d)

Figure 4.9: Analysis of data based on head visibility. (a) Dataset statistics based on head visibility.

820 total instances, 568 instances with head visible, 252 instances with head occluded. (b) Detection

performance for FasterRCNN, SSD and RetinaNet for all data. (c) Detection performance for only

images with head visible. (Note, no occlusion level of more than 90% possible with head visible.)

(d) Detection performance for only images with head occluded.

Experiments demonstrate that, regardless of whether a pedestrian’s head is visi-

87



4.6 Conclusion

ble, a distinct declining profile in detection performance is observed as pedestrian oc-

clusion level increases, Figures 4.9(b), 4.9(c) and 4.9(d). Figure 4.9 demonstrates the

fine-grained analysis capability provided by the occlusion level classification method

proposed in Chapter 3. Results indicate that the detection models under test contain

a bias towards head visibility with a 0.27 reduction of mAP for FasterRCNN and

0.25 reduction of mAP for RetinaNet in the 10-19% occluded range for instances

where the head is occluded compared to the same range where the head is visible.

Further analysis of algorithm performance for the occlusion of specific semantic parts

can provide insight into the impact of self occlusion on detection performance on a

model-by-model basis.

4.6 Conclusion

Detection of partially occluded pedestrians remains a persistent challenge for

driver assistance systems and autonomous vehicles. Current methods of charac-

terising detection performance for partially occluded pedestrians have been broad,

subjective, and inconsistent in their definition of the level of occlusion. This chapter

presents a novel test benchmark for the detailed, objective analysis of pedestrian

detection models for partially occluded pedestrians. Detection performance is char-

acterised for seven popular pedestrian detection models across a range of occlusion

levels from 0-99%. The proposed benchmark focuses specifically on the complex is-

sue of partial occlusion and facilitates more objective, repeatable and fine grained
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analysis than the current state of the art. Results demonstrate that pedestrian de-

tection performance declines as the occlusion level increases and the visibility of a

pedestrian is reduced. An increase in the number of false negative detections is

observed as occlusion level increases and the percentage of true positive detections

significantly degrade for pedestrians who are more than 50% occluded. Further anal-

ysis demonstrates that not all pedestrian detection models should be treated equally

within an object detection system. The speed vs. accuracy trade-o↵, encouraged

by the time sensitive detection requirements of autonomous vehicles, can result in

high levels of false positive detections and lower detection confidence at progressive

levels of pedestrian occlusion, particularly when using single stage detection models.

Thorough objective characterisation of pedestrian detection models at the design

stage will improve the performance of object detection systems by calibrating the

priority of detections in scenarios where known weaknesses can occur. System im-

provements may be gained through the use of an occlusion-aware step in the object

detection pipeline to inform the priority of camera-based detections in sensor fusion

networks for SAE level 4 and level 5 autonomous vehicles. In this manner, any re-

duction in performance at high occlusion levels can be mitigated in the design of

the overall system to increase the safety of vulnerable road users and improve the

e�ciency of path planning based on environment detection. Widespread use of the

proposed benchmark can result in more objective, consistent and detailed analysis

of pedestrian detection models for partially occluded pedestrians.
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Chapter 5 further progresses this research theme by synthesising and applying the

learning outcomes and research contributions of Chapter 2, Chapter 3 and Chapter

4 to develop an objective benchmark for e-scooter rider detection and to inform the

development of a novel, occlusion-aware method of e-scooter rider detection.
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Chapter 5

E-Scooter Rider Detection and

Classification in Dense Urban

Environments

5.1 Summary

Accurate detection and classification of vulnerable road users is a safety criti-

cal requirement for the deployment of autonomous vehicles in heterogeneous tra�c.

Although similar in physical appearance to pedestrians, e-scooter riders follow dis-

tinctly di↵erent characteristics of movement and can reach speeds of up to 45kmph.

The challenge of detecting e-scooter riders increases in urban environments where

the frequency of partial occlusion is increased. This can lead to non-detection or
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mis-classification of e-scooter riders as pedestrians, providing inaccurate information

for accident mitigation and path planning in autonomous vehicle applications. This

chapter introduces a novel benchmark for partially occluded e-scooter rider detection

to facilitate the objective characterisation of detection models. A novel, occlusion-

aware method of e-scooter rider detection is presented that achieves a 15.93% im-

provement in detection performance over the current state of the art.

5.2 Introduction

Micro-mobility solutions such as e-scooters have seen a rapid rise in popularity

in recent years as many cities seek modern solutions to ease tra�c, emissions and

parking di�culties in built up areas [215]. The intuitive operation of e-scooters, and

the growing number of service providers o↵ering short term rentals, have prompted

market predictions that shared e-scooter usage may ultimately capture 8-15% of all

trips shorter than 5 miles, worldwide [215]. The proliferation of e-scooters adds an

additional level of complexity to the detection and classification of vulnerable road

users. Although very similar in physical appearance, e-scooter riders and pedestrians

behave very di↵erently in the automotive environment. E-scooter riders can reach

speeds of up to 45 kilometres per hour [110–112] and follow distinctly di↵erent move-

ment characteristics than pedestrians. The challenge of accurately detecting and

classifying e-scooter riders is more complex in urban environments as the frequency

and severity of partial occlusion is increased. This can lead to the non-detection or
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mis-classification of e-scooter riders as pedestrians or other road users, providing in-

accurate information for accident mitigation and path planning. In addition, recent

research indicates that e-scooter usage is currently one of the most dangerous forms

of transportation with 115 injuries per million trips [216], substantially higher than

motorcycles (104 injuries per million trips), bicycles (15 injuries per million trips)

and walking (2 injuries per million trips) [217].

Leading pedestrian and cyclist detection systems claim a detection performance

of approximately 65%-75% of partially and heavily occluded instances respectively

using current benchmarks, Chapter 2 [10, 11, 184–186]. However, very few research

articles exist on the safety critical challenge of e-scooter rider detection to date and

to the best of the authors knowledge, no known research has been carried out on the

detection and classification of e-scooter riders under partial occlusion. A knowledge

gap exists for an objective benchmark for e-scooter rider detection performance in

urban areas where the frequency and severity of partial occlusion is increased.

This chapter presents a novel, objective benchmark for partially occluded e-

scooter riders to facilitate the characterisation of vulnerable road user detection and

classification models. A novel, occlusion-aware method of e-scooter rider detection

is presented and objective performance characterisation is carried out for a range of

popular classifiers for the complete spectrum of occlusion levels from 0-99%. The

contributions of this research are: 1. A novel, objective, test benchmark for par-

tially occluded e-scooter rider detection and classification is presented. 2. A novel,
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occlusion-aware method of e-scooter rider detection is described which provides a

15.93% improvement on the current state of the art e-scooter rider detection network

as described in [168]. 3. Objective characterisation of e-scooter rider classification is

carried out for a number of popular, publicly available classifiers.

5.3 Related Work

Limited research exists on e-scooter rider detection to date. Apurv et al [168]

present a baseline algorithm for e-scooter rider detection. Candidate selection is

carried out using YoloV3 with pre-trained weights [218] on the COCO dataset [189].

The bounding box dimensions for each person instance are then enlarged on three

sides (left, bottom and right) using the formula outlined in Equation 5.1, to incorpo-

rate the surrounding area where an e-scooter is normally located in instances where

the detected person is an e-scooter rider.

(x, y, w, h) => ((x� w), y, 3w, (h+ h/4)) (5.1)

Where ”x” and ”y” represent the x-axis and y-axis coordinates of the top left

corner of the bounding box; ”w” = bounding box width and ”h” = bounding box

height.

The extended bounding box regions are then fed into a MobileNetV2 classifier

[210], trained on the “IUPUI CSRC E-Scooter Rider Detection Benchmark Dataset”

[168]. The IUPUI E-Scooter Rider Dataset contains 21,454 images for binary classi-
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fication including 10,749 images containing e-scooter riders and 10,705 images which

do not contain an e-scooter rider. The authors claim a validation accuracy of more

than 0.9, however very few instances of occluded e-scooter riders are included in the

validation data and no reference is made as to the ability of the network to generalise

to new data.

Nguyen et al [169] also utilise YoloV3 to implement an e-scooter rider detection

system, however this approach focuses on detecting an e-scooter and its rider as

two separate classes. The methodology separates the image into a grid and relates

adjacent bounding boxes of the target classes in order to identify e-scooter riders.

The network is trained using 140 training images and 60 validation images obtained

through searches on Baidu and Google Images using the keyword “rider and scooter”.

Transfer learning is then used to fine tune the YoloV3 model to the target classes.

The authors expand this research by exploiting the detection of two separate classes

to identify cases where the detected person is horizontal to the e-scooter, indicating a

potential fall. The authors also claim a validation accuracy of over 0.9, however only

60 validation images are used, no instances of occluded e-scooter riders are included

and no reference is made to more thorough evaluation indicating the networks’ ability

to generalise to new data.

Researchers at the Digital Transformation Hub at California Polytechnic State

University collaborated with the City of Santa Monica in 2018 to implement a ma-

chine learning based e-scooter detection and counting system, in order to help mon-
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itor and enforce the prevention of e-scooter riding on sidewalks [171]. E-scooter

rider detection was achieved through transfer learning of a pre-trained RetinaNet

object detection algorithm using an in-house custom dataset. A parallel Resnet50

semantic segmentation branch was also used to di↵erentiate between the sidewalk

and the road surface. Overlapping e-scooter rider and sidewalk detections indicate

an infringement and the instance is counted and tracked for enforcement purposes

[170].

Many popular pedestrian detection benchmarks provide occlusion level annota-

tion to determine the relative detection performance for partially occluded pedestri-

ans [6–9,38,102,105,113,114,117,118,194]. Although less represented, there are also

a significant number of cyclist detection benchmarks with occlusion specific annota-

tion [7,9,102,194], however, no known e-scooter detection benchmark with occlusion

labels exists to date.

Chapter 4 [13] presents an objective benchmark for partially occluded pedestrian

detection, containing 820 pedestrian instances under progressive levels of occlusion

from 0-99%. Images are annotated using the objective method of occlusion level

annotation described in Chapter 3 [12]. Keypoint detection is used to identify se-

mantic body parts and findings are cross-referenced with a visibility score and the

pedestrian mask in order to confirm the presence or occlusion of each semantic part.

A novel method of 2D body surface area estimation based on the “Wallace rule of

Nines” [11,125] is then used to calculate the total occlusion level of each pedestrian
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instance. Inspired by the research described in Chapter 3 [11, 12] and Chapter 4

[13], this research uses a novel objective benchmark for e-scooter rider detection. In

contrast to prior works [168, 169] the proposed benchmark itemises algorithm per-

formance for partially occluded e-scooter riders for the complete range of occlusion

levels from 0%-99%. In addition, a novel, occlusion-aware e-scooter rider detection

network is described to improve upon the current state of the art.

5.4 Methodology

A novel e-scooter rider test dataset, containing 1,130 images including 543 e-

scooter rider instances and 587 other vulnerable road user instances, has been created

in order to characterise e-scooter rider detection and classification across a range of

occlusion levels from 0 to 99% occluded. A diverse mix of images are used to ensure

that a wide variety of e-scooter riders, orientations, backgrounds, and occluding

objects are represented.

The dataset is compiled from publicly available, web crawled sources. Occluding

objects are superimposed on to e-scooter riders with progressive levels of occlusion.

This dataset is then complemented by 587 instances of pedestrians and cyclists across

an identical range of occlusion levels. Non e-scooter rider images are sourced from the

occluded pedestrian detection dataset presented in Chapter 4. All images are anno-

tated using the objective occlusion level classification method described in Chapter

3 [12]. Complex cases at very high occlusion rates were manually verified using the
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method of 2D body surface area estimation presented in Chapter 3. Dataset statis-

tics by occlusion level and a sample of the test dataset can be seen in Figure 5.1 and

Figure 5.2 respectively.

Figure 5.1: Test Dataset Statistics. The number of target instances per occlusion level. The custom

dataset contains 1,130 images under progressive levels of occlusion from 0-99%.
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Figure 5.2: Test Dataset Sample. An example of dataset images for each level of occlusion. The

custom dataset consists of 1,130 images, including 543 e-scooter rider images and 587 non e-scooter

rider images.
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5.4.1 E-Scooter Rider Classification

Classifier performance is evaluated using the total test dataset for the current

state of the art, as outlined in [168], and for five popular, publicly available classi-

fiers in order to compare performance across the complete range of occlusion levels.

Each classifier, AlexNet [219], SqueezNet1.0 [220], VGG16 with Batch Normalisation

(VGG16 bn) [221], ResNet34 and ResNet101 [99] is trained on the IUPUI E-Scooter

Rider Dataset [168] using Pytorch [222] and Fast AI [223]. The detection and classifi-

cation pipeline proposed in [168] is used to maintain consistency and provide baseline

results for comparison. Analysis is carried out using Voxel51 [214] and COCO style

evaluation metrics. Accuracy is calculated using the formula highlighted in Equation

5.2, where TP = Number of true positives, TN = Number of true negatives, FP =

Number of false positives and FN = Number of false negatives.

Accuracy =
TP + TN

TP + TN + FP + FN
(5.2)

A comparison of classifier performance using the methodology outlined in [168]

can be seen in Figure 5.5.

5.4.2 Occlusion-Aware E-Scooter Rider Detection

A novel, occlusion-aware method of e-scooter rider detection is proposed to in-

crease the performance of e-scooter detection in heterogeneous tra�c.

100



5.4 Methodology

1. Potential e-scooter rider instances are detected using a CenterNet-Hourglass104

[212] based, COCO trained person detector. CenterNet-Hg104 has been se-

lected for region of interest generation due to the model’s high detection per-

formance for occluded pedestrians in the research and experiments carried out

in Chapter 4.

2. The aspect ratio of each bounding box is then analysed to determine if the

detected instance is likely to be occluded. Detected bounding boxes of all

potential candidates are then expanded on 3 sides as outlined in Figure 5.4.

The extent to which the bounding boxes are expanded is based on the aspect

ratio of the initial detection. If the bounding box height is less than 2.5 times

the bounding box width, the height of the bounding box is increased by a

higher magnitude to incorporate the pixel area where an e-scooter would be

located in normal operation.

3. Modified bounding boxes are then processed by a custom trained ResNet101

classifier to classify instances of e-scooter riders. The classifier is trained using

the e-scooter rider dataset presented in [168]. The dataset contains 21,454

training images for binary classification, consisting of 10,749 “e-scooter rider”

images and 10,705 “non e-scooter rider” images.

An example of the e�cacy of this method for partially occluded e-scooter users,

compared to the current state of the art, can be seen in Figure 5.3. A flowchart of
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the proposed occlusion-aware detection pipeline can be seen in Figure 5.4.

Figure 5.3: Candidate Selection Output Comparison. Example of the e�cacy of the proposed

candidate selection output for partially occluded e-scooter riders. The input image is displayed in

(a). The cropped bounding box area from the initial detection algorithm is shown in (b). The

cropped bounding box from the current state of the art as presented in [168], is shown in (c).

The cropped bounding box area for the proposed novel, occlusion-aware e-scooter rider detection

method is displayed in (d). The proposed method more comprehensively incorporates the e-scooter

for partially occluded instances than the prior state of the art.
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Figure 5.4: Occlusion-Aware E-Scooter Detection Flowchart.
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5.4.3 Performance Characterisation

Detection and classification performance is characterised for e-scooter riders and

other vulnerable road users for the complete test dataset and for each level of oc-

clusion from 0-9% to 90-99%. The detection method proposed in Section 5.4.2

is compared to the current state of the art [168], and to four additional classi-

fier configurations based on the proposed pipeline. All classifiers, AlexNet [219],

SqueezeNet1.0 [220], VGG16 with Batch Normalisation (VGG16 bn) [221], ResNet34

and ResNet101 [99], are trained using the e-scooter rider dataset presented in [168].

The overall detection performance of each network is shown in Figure 5.5 and Figure

5.6. Detailed characterisation of the detection performance for each level of occlusion

is presented in Figure 5.7 and Figure 5.8.

5.5 Results and Analysis

Figure 5.5 compares the performance of five popular classification networks based

on the methodology outlined by the current state of the art [168]. Results demon-

strate that for a mixed occlusion dataset, ResNet101 and ResNet34 [99] achieve a

2.1% improvement over the MobileNetV2 classifier [210] used by Apurv et al [168],

using the same training data, backbone detection network, and classification pipeline.

A novel occlusion-aware method of e-scooter rider detection is described in Sec-

tion 5.4.2. Experiments show that the proposed methodology is more proficient at
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Figure 5.5: Detection and Classification Performance. Detection and Classification performance

for the total test dataset using the methodology outlined by the current state of the art [168].

ResNet101 and ResNet34 are the highest performing classifiers, each with an test accuracy of

0.460. The baseline method proposed by Apurv et al [168] has a test accuracy of 0.439. Results

demonstrate that the proposed detection network achieves an accuracy improvement of 15.93% over

the current state of the art.

detecting partially occluded e-scooter riders with an overall accuracy of 0.599, a

15.93% improvement over the current state of the art [168], Figure 5.5. Detailed

results of the detection accuracy and the percentage of true positives for each occlu-

sion level are shown in Figure 5.7a and Figure 5.7b respectively. The number of false

negatives by occlusion level is shown in Figure 5.8. Characterisation results show

that for each level of occlusion, the proposed method provides a superior detection

accuracy, a higher percentage of true positives and a lower percentage of false nega-

tives than the current state of the art [168], Figure 5.7 and Figure 5.8. Results also

demonstrate that, in general, e-scooter detection accuracy, and the percentage of true
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positives decline as occlusion level increases, and the percentage of false negatives

increase with occlusion level. This reflects the findings of Chapter 4 [13] and presents

a significant challenge when detecting and classifying e-scooter riders in dense urban

environments where the frequency and severity of partial occlusion is increased.

Figure 5.6: Classifier Comparison using the Proposed Occlusion-Aware Pipeline. The proposed

e-scooter rider detection network is compared to four alternative classifier configurations using the

proposed pipeline. The ResNet101 classifier specified by the proposed method achieves the highest

classification performance with an accuracy of 0.599.

Thorough characterisation of a detection algorithm at the system development

stage can help identify the suitability of specific classification models for particular

scenarios and applications. For example, further analysis demonstrates that Vgg16 -

bn [221] has a below average true positive rate, and an above average false negative

rate, Figure 5.7b and Figure 5.8 respectively. However, VGG16 bn also maintains

a relatively low number of false positive detections across the range of occlusion

levels, resulting in the third most accurate classification performance overall, Figure

106



5.5 Results and Analysis

(a)

(b)

Figure 5.7: Detection Performance by Occlusion Level. The detection accuracy by occlusion level,

(a), and the percentage of true positives per occlusion level, (b), is shown for the current state of

the art, the proposed method and for a number of alternative classifier configurations using the

proposed pipeline.
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Figure 5.8: False Negatives by Occlusion Level. The percentage of false negatives per occlusion

level is shown for the current state of the art, the proposed method and for a number of alterna-

tive classifier configurations using the proposed pipeline. The proposed method (red) consistently

achieves a lower percentage of false negatives than the current state of the art (black) [168].

Figure 5.9: Number of False Positives by Occlusion Level. SqueezeNet1.0 [220] detects the highest

number of false positives across the range of occlusion levels (87 total false positives), followed by

AlexNet [219] (57 total false positives).
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5.6. This provides insight into the selectivity of the network and the relatively lower

confidence assigned to borderline detection instances. SqueezeNet1.0 [220] has a

higher number of true positive detections for e-scooter riders who are between 40%

and 60% occluded. AlexNet [219] achieves a higher percentage of true positives for

instances that are more than 60% occluded, Figure 5.7b. However, both networks

incur a significantly higher false positive rate across the range of occlusion levels,

Figure 5.9. This is an important distinction as the mis-classification of e-scooter

riders as pedestrians or vice versa, can result in dangerous scenarios in autonomous

vehicle applications, such as the inappropriate application of emergency braking,

potentially resulting in collisions from behind, erratic swerving or the unnecessary

triggering of other accident mitigation routines.

5.6 Conclusion

The non-detection, or mis-classification of e-scooter users as pedestrians or other

road users will have a significant impact on the accident mitigation capabilities and

the safe navigation of smart, connected and autonomous vehicles. This research

presents an objective test benchmark for the characterisation of detection models for

partially occluded e-scooter riders. The novel, occlusion-aware e-scooter rider detec-

tion method described in this article achieves a 15.93% improvement in detection

accuracy over the current state of the art as presented in [168], Figure 5.5. Detailed

characterisation of the proposed method, and the current state of the art, is provided
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for the complete range of occlusion levels from 0-99% occluded, Figure 5.7.

Chapter 6 concludes the thesis by providing a summary of the work carried out

throughout the PhD project, an overview of the key conclusions from the research and

discussing the future research opportunities available through further development

of the concepts described in the thesis.
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Chapter 6

Conclusions and Future Work

6.1 Project Summary and Conclusions

Accurate and robust detection of vulnerable road users is a safety critical require-

ment for the deployment of autonomous vehicles in heterogeneous tra�c. One of the

most complex outstanding challenges is that of partial occlusion where a target ob-

ject is only partially available to the sensor due to obstruction by another foreground

object. The frequency and variety of occlusion in the automotive environment is large

and diverse as pedestrians, e-scooter riders and cyclists navigate between vehicles,

buildings, infrastructure and other road users. This thesis focuses on the detection of

partially occluded pedestrians and e-scooter riders in the automotive environment.

Chapter 2 provides a thorough literature review of occlusion handling for vehicle

detection, vulnerable road user detection and object detection in the automotive
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environment. The literature review identifies a number of shortfalls and knowledge

gaps in the current state of the art for partially occluded VRU detection in the

automotive environment, including:

• A considerable amount of work has yet to be carried out on pedestrian and

cyclist detection which is still only in the region of 65% to 75% detectable

under partial occlusion using current benchmarks.

• No definitive metric or annotation methodology exists for the occurrence and

severity of partial occlusion. As a result there is a large amount of inconsistency

between current benchmarks.

• A significant knowledge gap exists for the detection of e-mobility users such as

e-scooter riders under partial occlusion.

Chapter 3 begins to address these knowledge gaps through the development of

an objective metric and methodology for pedestrian occlusion level classification for

ground truth annotation. The proposed method uses keypoint detection and mask

segmentation to identify and determine the visibility of the semantic parts of par-

tially occluded pedestrians and calculates the percentage occluded body surface area

using a novel, e↵ective method for 2D body surface area estimation. The proposed

method removes the subjectivity of the human annotator used by the current state

of the art, in turn increasing the robustness and repeatability of pedestrian occlu-

sion level classification. Qualitative and quantitative validation demonstrates the
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e↵ectiveness of the proposed method for all forms of occlusion including challenging

edge cases such as self-occlusion and inter-occluding pedestrians. Experiments show

a significant improvement over the current state of the art when plotted against the

pixel-wise pedestrian occlusion level. Results demonstrate that the proposed method

more closely reflects the pixel-wise occlusion level with a Root Mean Squared Error

(RMSE) of 4.68 and Variance (VAR) of 21.88, compared to the current state of the

art (RMSE = 18.09, VAR = 249.21).

Chapter 4 further develops this research through the production of an objec-

tive test dataset for benchmarking pedestrian detection performance for the com-

plete spectrum of occlusion levels from 0-99%. The proposed benchmark provides

fine-grained occlusion level characterisation for for ten objectively defined occlusion

ranges in contrast to the 2-3 broad categories used by the current state of the art.

Performance characterisation is carried out for seven popular pedestrian detection

routines to determine the impact of progressive levels of occlusion on pedestrian de-

tectability. Additional experiments are conducted to determine the saliency of head

visibility on detectability and to compare performance with a current state of the

art pedestrian detection benchmark. Results demonstrate that the proposed bench-

mark provides more objective, detailed analysis capabilities for detection networks

for partially occluded pedestrians than the current state of the art.

Chapter 5 synthesizes and applies the knowledge gained throughout the PhD

research to improve upon the current state of the art for a modern, increasingly
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popular category of vulnerable road user, the e-scooter rider. A novel objective

benchmark for e-scooter rider detection is created using the principles gained in

Chapter 3 and Chapter 4. Performance characterisation is carried out for the leading

state of the art e-scooter detection algorithm. A novel, occlusion-aware method of e-

scooter rider detection is described that achieves a 15.93% improvement in detection

performance over the current state of the art.

The thesis draws a number of conclusions from the research on partially occluded

vulnerable road user detection, including:

1. The detection of partially occluded pedestrians remains a persistent and un-

derdeveloped challenge for driver assistance systems and autonomous vehicles.

Partial occlusion is a frequent occurrence in the automotive environment and

the occlusion ratio is demonstrated to have a direct impact on the detectabil-

ity of pedestrians. Results of experiments described in Chapter 4 demonstrate

that pedestrian detection performance declines as the occlusion level increases

and the visibility of a pedestrian is reduced. An increase in the number of false

negative detections is observed as the occlusion level increases and the percent-

age of true positive detections significantly decreases for pedestrians who are

more than 50% occluded.

2. Current methods of characterising detection performance for partially occluded

pedestrians have been broad, subjective, and inconsistent in their definition of

the level of occlusion. The objective metric and method of occlusion level an-
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notation proposed in this thesis can provide detailed, objective characterisation

of detection performance for the complete range of occlusion levels from 0-99%.

3. Current pedestrian detection benchmarks do not di↵erentiate between par-

tially occluded e-scooter riders and pedestrians. This can present significant

challenges in autonomous vehicle applications as the detection output is used

to inform path planning and accident mitigation. Although partially occluded

e-scooter riders appear similar to pedestrians from a perception point of view,

e-scooters can reach speeds of up to 45kmph and demonstrate very di↵erent

characteristics of movement in the automotive environment. Accurate classi-

fication, in addition to detection, is of increased importance in cases where

road user classes share similar visual characteristics. Modern vulnerable road

user detection benchmarks must have the flexibility to evolve and more readily

incorporate new mobility solutions.

4. Considerable progress has been made in recent years using deep learning based

detection networks due to the contrasting characteristics of the traditional road

user classes: vehicle, pedestrian, motorcycle etc. However, the recent popular-

ity of e-scooters presents a distinct challenge to partially occluded VRU detec-

tion systems based on deep learning alone. The convergence of deep learning

and traditional computer vision based processing can provide significant gains

in cases where detection classes share a large percentage of visual and pose

characteristics such as pedestrians and e-scooter riders.
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6.2 Primary Contributions

The primary contributions of this thesis can be summarised as follows:

• A comprehensive literature review on the theme of occluded object detection

in the automotive environment as published in S. Gilroy, E. Jones, and M.

Glavin, “Overcoming occlusion in the automotive environment-a review”, IEEE

Transactions on Intelligent Transportation Systems, 2019. [10].

• A novel, objective metric and methodology for pedestrian occlusion level clas-

sification for ground truth annotation as published in S. Gilroy, M. Glavin,

E. Jones, and D. Mullins, “Pedestrian occlusion level classification using key-

point detection and 2d body surface area estimation”, in Proceedings of the

IEEE/CVF International Conference on Computer Vision, 2021, pp. 3833–3839

[11] and S. Gilroy, M. Glavin, E. Jones, and D. Mullins, “An objective method

for pedestrian occlusion level classification”, Pattern Recognition Letters, 2022.

[12].

• A novel, objective, test benchmark for partially occluded pedestrian detection

as published in S. Gilroy, D. Mullins, A. Parsi, E. Jones, and M. Glavin,

“Replacing the human driver: An objective benchmark for occluded pedestrian

detection” Biomimetic Intelligence and Robotics, 2023. [13].

• A novel, objective, test benchmark for partially occluded e-scooter rider de-

tection and classification as published in S. Gilroy, D. Mullins, E. Jones, A.
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Parsi, and M. Glavin, “E-scooter rider detection and classification in dense

urban environments”, Results in Engineering, Vol.16, 2022. [14].

• A novel, occlusion-aware method of e-scooter rider detection that provides a

significant improvement over the current state of the art, as published in S.

Gilroy, D. Mullins, E. Jones, A. Parsi, and M. Glavin, “E-scooter rider detec-

tion and classification in dense urban environments”, Results in Engineering,

Vol.16, 2022. [14].

6.3 Future Work

There are a number of future research opportunities available through further

development of the concepts described in this thesis.

1. The research conducted in this thesis focuses on partially occluded pedestrians

and e-scooter riders in the automotive environment. However, a knowledge

gap remains for the provision of an objective metric for cyclist detection that

incorporates both the rider and the bicycle. Cyclists follow a very di↵erent

dynamic profile than pedestrians and early detection and classification is re-

quired to ensure safe and e�cient path planning for autonomous vehicles in

heterogeneous tra�c.

2. There is scope for further analysis on the saliency of individual semantic parts

on detection confidence for pedestrian detection algorithms and for a com-
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prehensive study on the impact of self-occlusion (where parts of a pedestrian

overlap or occlude itself due to pedestrian pose) on detectability. This will help

to identify scenarios that are currently underrepresented in training datasets

and to improve the robustness of future pedestrian detection algorithms.

3. Additional future work will apply the occlusion level classification method de-

scribed in Chapter 3 to current popular pedestrian detection benchmarks such

as the KITTI Vision Benchmark [7], Caltech Pedestrian Detection Benchmark

[5], CityPersons Dataset [8] and EuroCity Persons Dataset [9] to provide fine-

grained occlusion level annotations and facilitate objective occlusion level anal-

ysis using these benchmarks.

4. There is large scope for future work in the field of e-scooter rider detection as

this particularly vulnerable class of road user remains largely unrepresented

in VRU detection benchmarks. New mobility solutions must be adequately

incorporated into future iterations of vulnerable road user detection algorithms

as their use becomes more prevalent in society.

5. The method of occlusion level classification and 2D body surface area estima-

tion described in this thesis could be used to improve occlusion-aware pedes-

trian detection networks through more precise identification of the severity of

occlusion and to improve the performance of amodal perception algorithms

through more accurate identification of occluded semantic parts and occluded
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surface area.

6. Images captured in the automotive environment often contain multiple inhibit-

ing factors to detection such as occlusion, small scale or far away instances,

adverse weather and shadows or low light. Although the ideal solution is to

have a single detection algorithm for all scenarios, future performance gains

may be achieved through the development of more advanced multibranch de-

tection networks. Such networks will first classify the scene for each region

of interest and then apply the most appropriate detection algorithm for each

scenario, in addition to a priority score based on the relevance of the net-

work for the specific scenario. Although this form of fusion network will incur

additional processing costs, if e�ciently designed it may yield significant per-

formance improvements that will help to close the gap between the current

state of the art and the vulnerable road user detection capabilities required for

safe autonomous driving.
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