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Abstract

Electron-multiplied Charge Coupled Devices (EMCCDs) are used in many astro-
nomical instruments where they provide much improved signal to noise compared to
conventional CCDs. However, the gain provided by electron-multiplication may not
be known with precision, leading to errors in the measurements. Several techniques
to estimate the gain of EMCCDs are researched and investigated in this work, includ-
ing some techniques previously only used for microscopy. Investigation and analyses
were completed in a simulation environment, in a laboratory environment, and us-
ing data collected by an astronomical instrument (Galway Astronomical Stokes
Polarimeter), where accurate gain estimation of the EMCCD detectors is important
for the polarimetry results from the instrument.
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Chapter 1

Introduction

Electron-multiplied Charge Coupled Devices (EMCCDs) are used in astronomical
instruments where they provide much improved signal to noise compared to conven-
tional CCDs. EMCCDs may deliver quite different gain from their nominal gains
due to a variety of factors, so accurate calibration of the gain of such devices is
important in order for their measurements to be useful in astronomical use cases.
Accurately estimating the gain of an EMCCD is crucial for many astronomical use
cases such as photometry, comparing measurements across different viewings or
where the observation system has more than one EMCCD device in operation and
the relative gain between the two in required, such as in the case of the Galway
Astronomical Stokes Polarimeter (GASP) instrument.

In this thesis several techniques for estimating the multiplicative gain of EMC-
CDs are researched, and their applicability to astronomical use cases are explored.
The techniques are applied in a simulation environment with synthetic data and
a simulator of an EMCCD, in a laboratory environment using EMCCD devices
and controlled light source conditions, and finally applied to real astronomical data
collected by EMCCDs on the Galway Astronomical Stokes Polarimeter (GASP)
instrument.

1.1 Background
Charge Couple Devices (CCDs) are commonly used in Astronomy as a detector for
electromagnetic radiation in the visible, UV and X-ray parts of the spectrum. They
were invented in Bell Labs in the late 1960s by Willard Boyle and George Smith [1].
A CCD array was first used as a detector in a telescope by Janesick [2]) in 1970, and
these devices began to find broader use in astronomy in the late 1970s, as they had
significant advantages over alternative electronic and photographic imaging devices
including their small size, low power, linear response and excellent sensitivity over
a wide range of wavelengths and light levels. A general overview of their history in
Astronomy may be found in McLean [3].

A CCD is made up of an array of square-shaped light-sensitive regions arranged in
a checkerboard pattern, with each square termed a “pixel” (for picture elements).
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They are manufactured from a single piece of silicon. Each pixel can absorb photons
of light and utilize the energy to release electrons in the semiconductor material.
The level of charge is proportional to the light intensity. After the array has been
exposed to the image, a control circuit causes each pixel to shift is contents to its
neighbour, operating as a shift register.

CCDs have very high quantum efficiency and low dark current when operated at
suitable temperatures. Under these conditions, the dominant source of noise is the
readout noise, which is caused by the readout amplifier, which converts the signal
in electrons into a voltage. This is in turn is then converted to an ADU (Analog-to
-Digital Unit) value by an analog to digital converter. For applications where light is
faint, such as with high frames rates or faint sources, the output signal can become
drowned out by the readout noise.

Electron-multiplying Charge Coupled Devices (EMCCDs) were a new technology
developed by e2v technologies in the early 2000s as detailed in Jerram [4], and
operate in a similar manner to conventional CCDs, but with the addition of a
multi-stage serial register operating at a high-voltage that produces gains in photo-
electrons through impact ionisation, as shown in Figure 1.1. In this extended part
of the register, the voltage used for shifting the electrons from pixel to pixel is not in
the normal 5V range, but is increased to around 40 V. This increases the probability
that an electron will knock another electron out of a bound state, a so-called Impact
Ionisation event. The event will effectively multiply the electron. If a large number
of stages are added to the extended register, an amplification of several orders of
magnitude may be achieved.

This overcomes one of the main disadvantages of conventional CCD detectors,
namely read noise, by multiplying the electrons before being read out to such
a degree that single photon-generated electrons may be detected. This enables
EMCCDs to produce images at high read speeds and at low light levels, without
being overwhelmed by readout noise.

Early exploration of potential applications for the use of EMCCDs in Astronomy
were first explored in Mackay [5], and they have since been used in many astronom-
ical instruments. Some notable examples have been the QUCAM2 instrument at
the 4.2-m William Herschel Telescope [6] and ULTRASPEC instrument at the ESO
3.6m telescope at La Silla [7].

2
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Figure 1.1: Schematic showing the extended register on an
EMCCD. After exposure and parallel shifting into the storage
area, the image is read out serially. The extended high voltage
serial multiplication register generates cascade amplification
via impact ionisation (Image by author)

Modelling the Amplification Process
In order to develop or apply any gain estimation methods, a model of the multi-
plicative gain mechanism in the EMCCD device along with models for the various
noise mechanisms in the device is required. In this section, a basic model will be
outlined, as developed in the wider literature.

Due to the probabilistic nature of the gain mechanism, the number of electrons re-
sulting from one photo electron is not constant. The gain of the electron multiplying
register is random for individual input photo electrons, similar to an avalanche pho-
todiode or a photo-multiplier. The output distribution of data will not be normally
distributed, and indeed follows a more complex distribution.

According to Basden [8], assuming each individual register in the EM serial register
has a probability 𝑃𝑚 of producing an extra electron, the gain for m steps may be
given by:

𝛾 = (1 + 𝑃𝑚)𝑚 (1.1)

If we let X be a random variable representing the number of electrons resulting
from one input electron propagating through the EM register, the probability den-

3
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.

sity function of X is given by:

𝑃(𝑋 = 𝑥) = 1
𝛾
𝑒−𝑥/𝛾𝐻 (𝑥) (1.2)

where H is the Heaviside function, which is the integral of the 𝛿 function. The 𝛾

parameter is the EM amplification. If we take the scenario of 𝑛 input electrons,
the resulting output distribution of the X output electrons is given by an Erlang
distribution given in Equation 1.3 below. This is a specific version of a Gamma
distribution when 𝑛 may only take on integer values. The derivation of Equation 1.2
and Equation 1.3 may be found in Basden [8]

𝑃(𝑋 = 𝑥 |𝑛) = 𝑥𝑛−1 𝑒−𝑥/𝛾

𝛾𝑛Γ(𝑛) (1.3)

The distribution has an expectation value of 𝑛𝛾 and variance of 𝑛𝛾2. As 𝑛 gets very
large, the distribution converges to a Gaussian distribution also with an expectation
𝑛𝛾 and variance 𝑛𝛾2.
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The distributions for different 𝑛 values have large overlaps, as shown in Figure 1.2,
so using just the readout value, it is not possible to determine how many input
electrons caused it with absolute certainty

The distribution above has a mean value of 𝑛𝛾. If the EMCCD is operated like any
other CCD, after exposing the array for a certain period of time 𝑡, the output value
could be divided by 𝑛𝛾, which would provide an estimate for the number of photons.
However this introduces an additional noise on top of photon shot noise, referred to
and the Excess Noise Factor (ENF). Assuming an average of 𝑘 photons hit a pixel
in the EMCCD device, the resulting signal to noise ratio will be:

𝑆/𝑁 =
𝛾𝑘√︃

𝜎2
𝑠ℎ𝑜𝑡

+ 𝜎2
𝐸𝑀

=
𝛾𝑘√︁

𝛾2𝑘 + 𝛾2𝑘
=

𝑘
√

2𝑘
(1.4)

The Excess Noise Factor effectively lowers the Quantum Efficiency (QE) of the
EMCCD, in that twice as many photons are required to achieve a given S/N.

There is additive noise added to the output signal as a result of the readout elec-
tronics. This readout noise may be modelled by the random variable 𝑅 following a
Gaussian distribution with a bias 𝑏 and standard deviation 𝜎, given by:

𝑃(𝑅 = 𝑥) = N(𝑥 − 𝑏, 𝜎) (1.5)

where N is a normal distribution. One approach to estimating the gain is to capture
a set of calibration images, where we can be sure they are so faintly illuminated that
no more than one electron enters the multiplicative register. It this case, the random
variable S representing the number of output electrons is a sum of the two random
variables above:

𝑆 = 𝑋 + 𝑅 (1.6)

Adding two independent random variables together results in a convolution of their
respective probability distribution functions (PDFs). If we ignore the width of
the normal distribution when it is convolved with the exponential distribution,
and due to the width of the latter when the EM gain is sufficiently high, we can
rewrite the resultant distribution as in Harpsöe [9] as the following mixture model:

𝑃(𝑆 = 𝑛) ≈ 𝑝N(𝑥 − 𝑏, 𝜎) + (1 − 𝑝) (𝑥𝑛−1 𝑒−𝑥/𝛾

𝛾𝑛Γ(𝑛) )𝐻 (𝑥 − 𝑏) (1.7)
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If we make the assumption that the image is weakly illuminated, never exceeding 1
photon per pixel, this simplifies to:

𝑃(𝑆 = 𝑛) ≈ 𝑝N(𝑥 − 𝑏, 𝜎) + (1 − 𝑝) ( 1
𝛾
𝑒−𝑥/𝛾)𝐻 (𝑥 − 𝑏) (1.8)

where 𝐻 (𝑥 − 𝑏) is a Heaviside function. Equation 1.8 provides a simple model for
distribution of the EMCCD output values under faint illumination, and can be used
to estimate the gain of the device, as detailed in the next chapter. However there are
additional processes that need to be modelled in the EMCCD in order to produce a
more accurate model.

In addition to the multiplicative gain from impact ionization, there are other sources
of noise produced as part of the shift-out process. Spurious charges caused by the
clock induced charge (CIC) phenomenon will appear at the outputs, even in dark
images. Spurious electrons may be generated in three places in the EMCCD: in the
parallel register (which shifts out a row of the EMCCD charge packets in parallel),
in the serial register (responsible for transferring the charge packets one by one in a
sequential manner from the parallel register to the device’s EM register) and in the
serial electron multiplication (EM) register (purpose is described previously).

Spurious charges are not important in the context of conventional CCDs, as they
are normally not noticeable in the presence of the readout noise. However in an
EMCCD these spurious electrons will be amplified in the EM register, resulting
in a noticeable contribution to the output signal. According to Harpsöe [10] the
spurious electrons from the serial register are indistinguishable from the spurious
electrons generated in the parallel registers, and are much less frequent, so can
be ignored in the modelling. The spurious electrons in the parallel registers are
defined here as parallel clock induced charge (pCIC). The other important source of
spurious electrons are those which arise in the EM register, which are defined here
a serial clock induce charge (sCIC). While the pCIC is indistinguisable from actual
photoelectrons, this may not be the case for sCIC, as these electron may travel a
shorter length through the register depending on where they arise, which results is
a lower overall gain.

Mathematically, if a spurious electron enters the EM register at the k’th stage it can
be modelled as a random variable 𝑋𝑘 , where:

𝑃(𝑋𝑘 = 𝑥) = 1
𝛾𝑚−𝑘

𝑒−𝑥/𝛾𝑚−𝑘𝐻 (𝑥) (1.9)
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In order to build a model of the output distribution that models the above processes, a
few terms need to be defined. In the case where no electron enters the EM multiplier
we assume there is a constant bias reading as the probability distribution of the bias
reading is:

𝑃(𝐵 = 𝑥) = 𝛿(𝑥) (1.10)

Define R as the readout noise modelled by:

𝑃(𝑅 = 𝑥) = N(𝑥, 𝜎) (1.11)

𝑝𝑠 is the probability a sCIC electron arises in one of the multiplier steps. 𝑝𝑝 is the
probability a pCIC electron arises in a parallel register. As the probability of multi-
ple pCIC or sCIC electrons is low, we can assume that the probability that multiple
sCIC and pCIC electrons and coincident pCIC and sCIC electrons is negligible.
This assumption allows the following for the total output Z of a bias reading as a
mixture distribution:

𝑍 =


B with 1 − 𝑝𝑝 − 𝑚𝑝𝑠

X with 𝑝𝑝

𝑋𝑘 with 𝑝𝑠

 + 𝑅 (1.12)

As above, if we assume a sufficiently high gain, the complex convolution can be
simplified resulting in the following expression:

𝑃(𝑍 = 𝑛) ≈ (1− 𝑝𝑝 −𝑚𝑝𝑠)𝑝N(𝑥 − 𝑏, 𝜎) + (
𝑝𝑝

𝛾
𝑒−𝑥/𝛾 +

𝑚∑︁
𝑘=1

𝑝𝑠

𝛾
𝑒−𝑥/𝛾)𝐻 (𝑛) (1.13)

While the model above was derived in Harpsöe [10] for bias readings, it could also
be used for extremely faint exposures were the pCIC levels can be considered a
proxy for real photo electrons, as they are indistinguishable, as noted above. These
output distribution models will form the basis for the estimation techniques outlined
in the next chapter.

1.2 Literature Review
A literature review was carried out to understand the state of the art in the field
of Electron-multiplied Charge Coupled Device (EMCCDs) usage for astronomical
work, and specifically gain estimation techniques and their application to astronom-
ical use cases. Techniques for post-processing EMCCD data to improve the quality
of astronomical results were also investigated, as this may be applicable to some
of the GASP data. The estimation techniques themselves will be discussed at a
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high-level in this review, and will be explored further in the relevant sections of the
thesis.

Since their introduction in the late 1990s, there has been a fair amount of research
and literature on the topic of accurately modelling the behaviour of EMCCDs, and
developing methods to accurately calibrate them. A general overview of the use of
electronic imaging devices in astronomy may be found in McLean [3]. This gives
a broad background on the evolution of electronic imaging devices in telescopes,
providing detailed explanations of the practical operation of CCDs in telescopes,
along with techniques for their characterization and calibration. While EMCCDs
are mentioned in this text, they are not a specific focus of the work.

One approach detailed in McLean [3] is to utilise the Photon Transfer Curve of
the device to estimate the gain of a CCD. This is commonly referred to as the
’Variance Method’ or ’Photon Transfer Method’ in the wider literature. A noise
model is developed for a standard CCD, and this calibration method then leverages
the relationship between the mean of the output signal to its variance to determine
the overall gain of the CCD from input photon to output digital value. This method
works by applying the photon transfer curve (PTC) to a series of data of varying
intensity levels. An example of a PTC from a CCD device may be seen in Figure 1.3,
taken from Hirsch [11], where the author collected output data points at nine different
discrete input intensity levels. At this part of the curve shown, a linear relationship
may be observed between the mean and variance. Special consideration needs to be
taken to ensure that the field is flat. Manufacturers and researchers typically make
use of this calibration method because it is easy to implement. However, as the text
details, it requires a flat input field and several fixed illumination levels. While this
may be suitable for a laboratory environment this may not be practical or possible
at a telescope.

In order to understand how to model the specific behaviour of an EMCCD, some
more foundational works specific to EMCCD modelling and operation were re-
searched. Early work on the modelling and simulation of EMCCDs, done shortly
after their invention and use in astronomy, is presented in Tubbs [12]. The author
proposed two models for the multiplicative process in the output serial register, and
also developed a simulator to test out the models and compare the resulting output
distribution with real astronomical data. The astronomical data was found to be
generally consistent with the simulations. Because of the computation and memory
required to simulate potentially millions of electrons in a Monte Carlo simulator,
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Figure 1.3: A experimental PTC taken from Hirsch [11] for 9
input light intensities. Each dot represents mean and variance
of the intensity of an individual pixel for 60 frames across
a single data set. The values of the 9 data sets are shown
which appear as “blobs” in the figure. (The author utilised two
different readout rates, which do not impact the PTC curve)

.

the author uses Discrete Fourier Transforms (DFTs) to model the convolutions in
the probability models required to simulate multiple electrons as multiplications in
the Fourier domain. It was noted that this reduced the computation requirements
considerably.

Further analysis of the performance of EMCCDs was undertaken in Basden [8],
where techniques were explored to reduce the effect of the noise introduced by the
multiplicative gain process. For high gain the signal-to-noise ratio of the output
signal in an EMCCD can be reduced by a factor of

√
2 due to a so-called Excess

Noise Factor (ENF), so post-processing techniques using thresholding are explored
to mitigate this. The work uses a similar but slightly different model to Tubbs [12]
and formally derives the output probability distribution to be a Gamma Distribution.
To validate the model and thresholding techniques, a Monte Carlo simulation of the
EMCCD is undertaken.

Tulloch [13] adopts the model from Basden [8], but additionally explores the effects
of Clock Induced Charge both before and in the EM register. As there is no
derivation of the output probability distribution that includes the effects of clock
induced charge, a Monte Carlo simulation is undertaken that incorporates this effect.
Also in this work is detailed a means to estimate the gain of the EMCCD by fitting a
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line to the log of the output histogram of the faintly illuminated detector and using
the slope to estimate the gain. Referred to in this research as the ’Exponential Slope
Method’, this method is possible because the complex Gamma distribution simplifies
to an exponential distribution at a flux rate of a maximum of one photon per frame.
This method is also detailed in Harpsöe [9], where the author applies it to calculate
per pixel parameters including gain for an EMCCD. In Harpsöe [9], the author is
able to simplify the model, which also includes Gaussian readout noise, further to a
mixture distribution, provided the EM gain is sufficiently high, allowing the standard
Expectation Maximization (EM) algorithm to be used to estimate the parameters.
The same author’s other work [10] derives an output probability distribution that
includes the effect of Clock Induced Charge, using the same mixture assumption.

A much more complete modelling of the stochastic behaviour of EMCCDs is derived
in Hirsch [11]. The domain of the authors is not astronomy but biological science
using microscopy, which is another area where EMCCDs are used widely, and where
there is more active research on their use in recent years. A model of the full noise
process, taking into account the Poisson sampling of the incident light at the input,
modeling the EM register using the same Gamma model derived in Basden [8], and
incorporating a Gaussian model for the readout noise, is derived. Also included are
techniques to estimate all the parameters of the model in a laboratory setting. For
gain estimation, these are similar to the methods outlined in McLean [3] for regular
CCDs, but incorporate the Excess Noise Factor (ENF) already mentioned above that
needs to be accounted for when using EMCCDs.

An advancement of this general technique for estimating the gain on an EMCCD
in a laboratory calibration setting has been developed in Ryan [14]. It notes that
the ’Variance Method’ requires many measurements per set-point that are time-
consuming to obtain, and states that researchers will typically make use of several
gain settings depending on experimental conditions to obtain optimal signal levels.
This can be particularly inconvenient because voltage degradation in the amplifi-
cation register requires periodic re-calibration. As the ’Variance Method’ is based
on linear regressions, its parameter estimation and uncertainty analysis reflect the
implied noise of measuring the means and variances from each dataset. Covari-
ances among parameters are not accurately addressed, potentially leading to the
mis-characterisation of parameters and their uncertainties. In Ryan [14], the author
defines a method that characterizes multiple detector parameters in fewer measure-
ments and with improved accuracy by introducing a probabilistic calibration method
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for determining the gain parameters, using an EMCCD noise model very similar
to the one in Hirsch [11]. This method develops a Maximum Likelihood Estima-
tion (MLE) technique that can be applied to an Intensity-Series of fixed intensities,
or a Gain-Series of different nominal gains set on the EMCCD. The techniques
developed were applied in the field of microscopy.

While methods that require explicit calibration data collection are useful in a labora-
tory setting, even more useful are techniques that can estimate the device parameters
from the acquired images themselves. This eliminates the need for separate cali-
bration data, and ensures that any changes in gain due to the environment are also
accounted for.

O’Connor [15] uses the ’Exponential Slope Method’ detailed above on regular
Astronomical data from the GASP instrument and notes that it is important to only
use a region of the sensor that is faintly illuminated, such as background sky, so that
the exponential distribution assumption outlined above can be made.

It was noted during the literature review that a large amount of the research into
EMCCD calibration techniques is on-going in the microscopy field, so it was in-
teresting to see if these new techniques could be applied to Astronomical data. A
unique new approach that allows estimation of the EMCCD gain without the need
for explicit calibration sets is the Calibration-On-The-Spot (COTS) method devel-
oped in Mortensen [16]. Rather that relying on faint images where the exponential
distribution assumption may be made, this approach assumes that we are observing
a source that has a flux rate high enough such that the detector output distribution is
well approximated by a Gaussian. In addition, it is assumed that the signal intensity
falling on the imaging array corresponds to a known point spread function (PSF).
The gain and other parameters may be recovered using Maximum Likelihood esti-
mation once these assumptions are valid. While the first assumption with respect
to high photon counts may be satisfied when using this method in Astronomy, the
known PSF assumption is more difficult for ground-based telescopes due to the
seeing effects of the atmosphere. While Mortensen [16] uses a 2-D Gaussian as
the point spread function, it was noted that in long-exposure Astronomy, a so-called
Moffat Distribution [17] is the commonly used model.

As it was clear that the research for this thesis would require the software develop-
ment of data processing algorithms for application to real data from the detector,
and also the requirement to write software that could simulate astronomical light
sources, the effects of atmospheric seeing, and the simulation of photo electrons get-
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ting multiplied in EM register, some research was carried out on available software
packages that could be used. As the author was familiar with the Python language,
the packages in this language were research and selected. Astropy [18], an extensive
package for Astronomy data processing was selected for general use, and it pro-
vides libraries for handling astronomical FITS files, fitting common source models
amongst other useful features. In order to simulate the atmospheric seeing effects,
the library AOTools library detailed in Townson [19] was researched. Interesting
features in this include the simulation of atmospheric turbulence phase screens.
After some research, the author was unable to find any packages or source code
from previous works that could simulate an EMCCD itself, so it became apparent
this would need to be written from scratch.
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Chapter 2

Proposed Methods

In this thesis a number of methods for estimating the gain of the EMCCD are
proposed and investigated, and they are detailed in this section. In the following
chapters, they will be explored further in a laboratory setting, in simulation, and
finally some of them are applied to estimate the gain in data obtained using the
Galway Astronomical Stokes Polarimeter (GASP) at the 8 m Gemini telescope.

2.1 Histogram Slope
Given a set of output pixel samples from recorded images that are faintly illuminated,
the distribution in Equation 1.8 provides a simplified output distribution model. As
the log of an exponential will be a straight line, a least squares fit of the linear part
the log of the output distribution, as seen in Figure 2.1, may be used to estimate a
slope, which in turn will provide an estimate for the 𝛾 of the exponential distribution,
which represents the EM gain of the device. This method was used by O’Connor in
[15]. Suitable values for the start output value, 𝑂𝑠, and end output value𝑂 𝑓 , need to
chosen which represent the bounds of the linear region, within which the histogram
values may be used as input to a least-squares line fit. In order to get a value for 𝑂𝑠,
a common method is to take an offset from the estimated mean, 𝜇 of the readout
noise Gaussian, where the magnitude of the offset is a multiple of the estimated 𝜎.
Typically a value of 5.5 in Daigle [20] or 6 in O’Connor [15] is used. The purpose
of the offset is to avoid the non-linearity in the log output, particularly due to sCIC
described in the previous section. There are different techniques to estimate the 𝜎

and 𝜇 parameters. While the method in O’Connor [15] to determine these is not
detailed, the approach taken in this thesis is to use the Expectation Maximisation
(ExpMax) algorithm to first estimate the Normal distribution of the mixture in
Equation 1.8, as ExpMax was already going to be implemented for the next method
detailed in Section 2.2 below. There were no obvious techniques documented in the
literature for choosing a suitable end output value 𝑂 𝑓 . Picking too large a value will
move the linear fit into a region of output values where where there are very few
counts per bin and therefore large uncertainty or other non-linearities not captured
by the model assumptions. This can be seen in real EMCCD data shown in Figure
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Figure 2.1: Sample output histogram taken from high-speed
data recorded by an EMCCD detector in the Galway Astro-
nomical Stokes Polarimeter (GASP) during observation of the
Crab Nebula.

.

2.1, where the curve appears linear between output values 500 and 1500, but non-
linear outside of this region. Techniques for choosing these values will be explored
further in the following chapters.

The accuracy of an EM gain estimate using this method is subject to a number of
key assumptions:

• The EM gain is sufficiently high to justify the mixture approximation.

• The input source is faint enough so that no more than one photon is received
per frame on any pixel also taking into account any pCIC contribution

• Other noise mechanisms in the EMCCD such as serial sCIC electrons that
cause spurious charges may be ignored or minimized with a choice of 𝑂𝑠

Along with needing to satisfy these assumptions, another drawback of this approach
is the need for a set of faint calibration images being captured in advance of the
astronomical viewing, or having to identify sufficiently faint regions to be extracted
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from astronomical images. The former limits observing time and the gain may
also drift post calibration, as the electron generation processes are highly dependant
on the voltage level applied to the serial register, the environmental temperature
of the device (as mentioned in Hirsch [11]), and the age of the device, with the
gain decaying over time (as mentioned in e2v technologies [21]. The latter may
erroneously assume regions of the image selected for use in the histogram were
subject to faint illumination, as it is not possible to uniquely determine the input
photon count from the measured output.

2.2 Fitting EMCCD noise model parameters
Given a set of output pixel samples from recorded images that are faintly illuminated,
the distribution in Equation 1.8 may be fitted to recover its parameters, one of
which is the EM gain of the device. Additionally, the more complex model that
incorporates the Clock Induced Charge phenomena represented by Equation 1.13
may also be fitted. In order to recover the parameters of either model from the
data, the Expectation Maximization algorithm is utilised (abbreviated in this text to
ExpMax to avoid confusion the Electron Multiplication). This is a standard method
for estimating the parameters of a mixture distribution. The ExpMax algorithm is
also applied to the histogram of pixel values, just like the previous algorithm.

The ExpMax algorithm is an iterative method for model parameter estimation with
the latter dependent on unobserved latent or ’hidden’ variables. In this case we
do not know which samples belong to which distribution in the mixture. The
ExpMax iteration alternates between performing an expectation (Exp) step, which
creates a function for the expectation of the log-likelihood evaluated using the
current estimate of the parameters, and a maximization (Max) step, which computes
parameters maximizing the expected log-likelihood found on the Exp step. These
parameter-estimates are then used to determine the distribution of the latent variables
in the next Exp step. For the model in Equation 1.8, the probability 𝜆𝑖 of a sample
belonging to the normal component of the mixture is estimated in the expectation
step according to this equation derived in Harpsöe [9]:

𝜆𝑖 =
𝑝N(𝑛𝑖 − 𝜇̂, 𝜎̂)

𝑝N(𝑛𝑖 − 𝜇̂, 𝜎̂) + (1 − 𝑝) (𝛾̂𝑒𝛾̂(𝑛𝑖−𝜇̂))
(2.1)

In the maximization step, the maximum likelihood estimates of all the parameters
are calculated with the following update equations:
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𝑝𝑘+1 =
1
𝑀

∑︁
𝑖

𝜆𝑖 (2.2)

𝜇̂𝑘+1 =

∑
𝑖 𝜆𝑖 (𝑛𝑖 − 𝜇𝑘 )∑

𝑖 𝜆𝑖
(2.3)

𝜎̂𝑘+1 =

√︄∑
𝑖 𝜆𝑖 (𝑛𝑖 − 𝜇𝑘 )2∑

𝑖 𝜆𝑖
(2.4)

𝛾̂𝑘+1 =

∑
𝑖 1 − 𝜆𝑖∑

𝑖 (1 − 𝜆𝑖) (𝑛𝑖 − 𝜇𝑘 )
(2.5)

where 𝜇̂, 𝜎̂, and 𝛾̂ are the parameters of the model previously defined in Equation
1.8.

The algorithm in sensitive to starting parameters and can converge to local optima
if these are not initialised correctly. The equations above were updated to accom-
modate the extra parameters of the more complex model in Equation 1.8, and while
omitted here for brevity, may be found in the source code for the algorithm im-
plementation detailed in the references. Both estimation algorithms (simple and
complex model) were implemented in Python and included in the Appendix, and
validated with sample mixture data. Using the equations above, estimates for the
model based on the output data may be found if the algorithm is executed until
convergence.

It requires the same assumptions with respect to a faint source and high gain as the
previous algorithm in order to get a good results, but since it models the sCIC of the
device, it may produce better results which will be tested later in this work.

2.3 Calibration-on-The-Spot (COTS)
An alternative approach by Mortensen [16], that eliminates the need for separate
calibration images to estimate the gain, has been applied in the microscopy domain.
This approach is referred to as "Calibration-On-The-Spot" (COTS). Rather than
relying on faint images where we can make the exponential distribution assumption,
this approach assumes that we are observing a source that has a photon rate high
enough such that the detector output distribution is Gaussian, as was shown previ-
ously in Figure 1.2 with increasing photon rates. In addition, the method assumes
that the signal intensity falling on the imaging array corresponds to a known point
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spread function (PSF). According to the COTS formulation, if we have a number
𝑛 of photons detected by a given pixel that is modelled as a Poisson distributed
random variable, we denote the expected value 𝑣 as:

𝐸 (𝑛) = 𝑣 (2.6)

As previously, for each photon detected in a given pixel, the EMCCD will output
a random number of electrons S, which can be modelled by an Erlang distribution
previously derived in Equation 1.3. In the COTS formulation, advantage is taken
of the fact that the output distribution approaches a normal distribution as the input
signal 𝑣 increases. As previously, the output also typically has a fixed bias added
that may be modelled by 𝑏. With these assumptions, the author derives the first two
central moments of S from its output distribution as:

𝐸 (𝑆) = 𝛾𝑣 + 𝑏 (2.7)

and:
𝑉𝑎𝑟 (𝑆) = 2𝛾(𝐸 (𝑆) − 𝑏) (2.8)

where 𝛾 is the gain. For each pixel in the image, we assume the measured output,
𝑆, is normally distributed around it’s mean output value with a variance given by
Equation 2.8. Since we do not know the true mean value of the output signal in
Equation 2.7, we can replace this with a value obtained by fitting the data to a known
PSF, and using the resulting model to determine the expected signal values for any
pixel. The Gain and Offset can then be recovered using Maximum Likelihood
Estimation (MLE) with respect to the parameters using Equation 2.8. Details of this
MLE formulation may be found in Mortensen [16]

While single pixels will provide poor gain estimates, the method can provide a robust
means of estimating gains if many pixels are used across many frames. While the
first assumption with respect to high photon counts may be satisfied when using this
method in Astronomy, the known PSF assumption is more difficult for ground-based
telescopes due to the effects of atmospheric turbulence (seeing).

The COTS approach in Mortensen [16], assumes diffraction-limited images where
the PSF may be approximated by a Gaussian, and a localisation algorithm is used to
fit a 2-D Gaussian to the isolated microscopic probes used in that domain. However,
in astronomy, seeing causes short-exposure images to have a complex, speckle
structure, and only long-exposures might follow a smooth PSF. For large diameter
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telescopes, a short duration integration of the source will follow a speckle pattern,
due to atmospheric turbulence. Over longer integrations, the PSF will take the form
of a ’seeing disk’, the size of which depends on the seeing condition.

While the cores of such long-exposure images have a Gaussian shape, the wings are
found to be better approximated with a Moffat [17] profile. In addition, different
effects can cause deviations from a Gaussian shape – including optical aberrations,
and telescope vibrations. The 2-D Gaussian approach was used in Mortensen [16],
and as the core of the PSF is most important for this method, being the region where
the high flux assumption holds true, the Guassian model will also be used here when
applying this method.

2.4 Photon Transfer Curve Mean-Variance (MV) Technique
The gain estimation technique using the Photon Transfer Curve is also known as
the mean-variance (MV) technique. It was originally developed to estimate the
parameters of a regular CCD. It involves taking a set of exposures of a flat field
with different illumination levels. Dark exposures are also taken and subtracted to
remove fixed pattern noise and bias. From the exposures we can estimate the mean
S and variance V of the output signal data 𝑋𝑖:

𝑆 =
1
𝑛

∑︁
𝑋𝑖 (2.9)

𝑉 =

∑(𝑆 − 𝑋𝑖)2

𝑛 − 1
(2.10)

where 𝑛 is the number of pixel samples. While CCDs do not have multiplicative
EM gain, along with EMCCDs, they do have another gain parameter g, the A/D
proportionality factor, which represents the gain of the analogue to digital process,
or more specifically the number of electrons per output value. If we turn off the EM
gain on an EMCCD, so that is behaves like a regular CCD, the output noise should
have two primary sources:

• Photon noise on the signal photoelectrons 𝜎2
𝑠ℎ𝑜𝑡

• Readout noise from the output amplifier 𝜎2
𝑟𝑒𝑎𝑑𝑜𝑢𝑡

The two noise sources are independent, and may be added together, such that the
output noise is:

𝜎2
𝑜𝑢𝑡𝑝𝑢𝑡 = 𝜎2

𝑠ℎ𝑜𝑡 + 𝜎2
𝑟𝑒𝑎𝑑𝑜𝑢𝑡 (2.11)
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The above expression applies to photo-electrons. The measured quantities above,
the mean signal S and its variance V, are in output units or Data Numbers (DN) as
it is often termed. The expression for the variance using DN is:

(
𝜎𝑜𝑢𝑡𝑝𝑢𝑡

𝑔
)2 = (𝜎𝑠ℎ𝑜𝑡

𝑔
)2 + (𝜎𝑟𝑒𝑎𝑑𝑜𝑢𝑡

𝑔
)2 (2.12)

where 𝑔 is the A/D proportionality factor mentioned above. The left-hand side is
now V, the observed variance in DN. The mean number of photoelectrons is gS, so
noise on this number from Poisson statistics give 𝜎2

𝑠ℎ𝑜𝑡
as gS. The equation therefore

simplifies to:

𝑉 =
1
𝑔
(𝑆) + (𝜎𝑟𝑒𝑎𝑑𝑜𝑢𝑡

𝑔
)2 (2.13)

This is the equation of a straight line in a signal-variance plot where x=S and y=V.
Therefore, the A/D factor, g, can be estimated as the inverse of the gradient of
the least-squares straight line fit to the mean-variance data, combining results from
multiple intensities. Ignoring the constant term, we can rewrite the estimator for 𝑔
as simply:

𝑔̂ =
𝑆

𝑉
(2.14)

The above equation does not hold for EMCCDs. At high EM gains, the readout noise
is negligible, but we need to take into account the excess noise factor previously
discussed. Hirsch [11] derives a similar expression for the estimated EM gain, 𝜆, in
terms of the estimated output mean S and variance V:

𝜆̂ = 𝑔
𝑉

2𝑆
(2.15)

Hence, we can estimate 𝜆 through a mean-variance test of stacks of images with
different intensities, fitting a straight line and using the gradient.

2.5 Maximum Likelihood Intensity Series and Gain Series
Ryan [14] proposes a method that use Maximum Likelihood Estimation (MLE) to
estimate the parameters of the output noise model, based on the observed data. The
author uses the Poisson-Gamma-Normal (PGN) noise model derived in Hirsch et
al. [11]. While the full expression may be found in Hirsch, it can be represented in
terms of its parameters as:
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Figure 2.2: These figures taken from Ryan [14] show what
sample datasets for the IS and GS MLE methods would look
like. (a) The first shows a simulated set of IS calibration sam-
ples for multiple intensity values, where the EM gain remains
constant across each set. Histograms of simulated samples
at 25× gain (colored markers) and their corresponding PDFs
(dashed lines) for four intensity levels are depicted. (b) Shows
the simulated histograms and PDFs for four gain levels repre-
senting a common intensity of 10 photoelectrons. The IS and
GS depicted were simulations of 5000 samples, with 𝜎 = 10, 𝑏
= 100 counts, and ADU = 3.5 e/count

.

𝑝(𝑆 |𝐸, 𝑔, 𝜆, 𝑏, 𝜎) = 𝑞(𝑆 |𝐸, 𝑔, 𝜆) ∗ 𝑁 (𝑆 |𝑏, 𝜎) (2.16)

where * is the convolution operator, 𝑞(𝑆) represents the Poisson-Gamma noise
distribution and 𝑁 (𝑆) represents the normally distribution readout noise. The
parameter 𝑆 is the output signal, 𝑏 is the bias, 𝐸 is the number of input photo
electrons, 𝑔 the ADU gain, and 𝜆 the EM gain, with 𝜎 the standard deviation of the
readout noise.

The Intensity Series (IS) and Gain Series (GS) probabilistic calibration methods
use MLE to group multiple intensity datasets (for ADU or EM gain calibration) or
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multiple gain datasets (for gain calibration only) together with shared parameters
using a global log-likelihood function:

𝑙𝑛L𝑔𝑙𝑜𝑏𝑎𝑙 =

𝑀𝑚𝑎𝑥∑︁
𝑖=1

𝑁𝑚𝑎𝑥∑︁
𝑖=1

𝑙𝑛L(𝑆𝑖𝑗 |𝑝 (𝑖)) (2.17)

where 𝑀𝑚𝑎𝑥 is the number of individual datasets in the series, 𝑁𝑚𝑎𝑥 is the number
of samples (frames) in an individual series, and 𝑝 (𝑖) represents the combined set
of common parameters and unique parameters for a given dataset in a series. The
model parameters for each probabilistic calibration method are summarized here:

𝑝(𝑖) = {𝐸 (𝑖), 𝜆 = 1, 𝑔, 𝑏, 𝜎} For IS MLE calibration to estimate 𝑔

𝑝(𝑖) = {𝐸 (𝑖), 𝜆, 𝑔, 𝑏, 𝜎} For IS MLE calibration to estimate 𝜆
𝑝(𝑖) = {𝐸, 𝜆(𝑖), 𝑔, 𝑏(𝑖), 𝜎(𝑖)} For GS MLE for gain calibration to estimate 𝜆

Optimization is used to find parameter estimates that maximize the global log-
likelihood function. The author used the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) optimization algorithm in their implementation, but others could also be
used. As there is no analytical solution for Equation 2.16, the author uses the Fast
Fourier Transform (FFT) to compute the convolution as part of evaluating the like-
lihoods. A simulation of the type of calibration data that would be used in the IS
MLE and GS MLE algorithms may be seen in Figure 2.2
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Chapter 3

Simulation Results

In order to test out and validate the different methods before applying them to
real data, a simulation environment was developed. This included simulating the
astronomical sources, the seeing processes occuring in the atmosphere before the
light reaches the detectors, and then the various processes on the EMCCD device,
including the electron multiplication and noise processes modelled in the previous
chapters.

3.1 Astronomical Source Simulation Set-up
Sample images representing the flux incident on the EMCCD detector caused by
point sources were generated using different numerical simulations. All the code to
generate the input is detailed in Appendix A

Flat field simulation
Flat fields were generated by setting a fixed number of photons to each pixel of the
input array. Individual photon counts for each pixel of each simulated flat input
frame could also be Poisson sampled independently, in order to simulate the shot
noise.

Sources Using Gaussian and Moffat PDFs
Simple Gaussian and Moffat sources, which can serve as simple models for point
astronomical sources after a long exposure, were generated using the analytical
probability density functions (PDFs) for those 2-D distributions. The Gaussian
model represents a good first-order approximation for a diffraction limited scenario,
whereas the Moffat distribution more accurately reflects the effects of atmospheric
seeing after a long-exposure. The latter distribution has the following probability
distribution function (PDF):

𝑝(𝑥, 𝑦;𝛼, 𝛽) = 𝛽 − 1
𝜋𝛼2

[
1 +

(
𝑥2 + 𝑦2

𝛼2

)]−𝛽
(3.1)

where 𝛼 and 𝛽 are the seeing dependent parameters which determine the width and



shape of the distribution respectively

Images generated from the PDFs could then be weighted for an overall target photon
number per frame. Individual photon counts for each pixel of each simulated input
frame could also be Poisson sampled independently, in order to simulate the shot
noise.

Simulating Atmospheric Seeing

A more complex simulation was undertaken to simulate the astronomical seeing
process with more accuracy than using the simple PDF models of the previous
section. Without seeing effects, observed images are typically diffraction limited.
This results in the images of point sources following an Airy pattern, whose core can
be further simplified and modelled as a simple 2-D Gaussian, as described already
in this chapter.

However, atmospheric turbulence causes the images to break up into speckle pat-
terns, which change very rapidly with time. An extended exposure of these speckle
patterns will result is a blurred image of the point source, which is known as a
seeing disc. This seeing disc can be approximated with a Moffatt distribution, as
mentioned above. A common model used in astronomy to model the effects of the
atmosphere is the Komologorov turbulence model, an overview of which can be
found in McLean [3], and further detail in Quirrenbach [22]. A detailed explanation
may be found in those texts and is beyond the scope of this thesis, but some key
points are summarized here.

In a turbulent atmosphere using this model, different parts of the air have different
indices of refraction, and cause different phase delays across wavefronts passing
through it. When the light finally arrives at a telescope, the wave-front is not flat,
and the rays are no longer parallel. The spatial structure of the atmosphere in
this model is described statistically in terms of a structure function 𝐷 (𝑟), which
gives the difference in refractive index squared between two points separated by a
distance 𝑟 = (𝑟1 − 𝑟2), whose formulation described in McLean [3] for Komolgorov
turbulence is given by:

𝐷𝑛 (𝑟) = ⟨|𝑛(𝑟1) − 𝑛(𝑟2) |2⟩ = 𝐶2
𝑛𝑟

2/3 (3.2)

The factor 𝐶2
𝑛 measures the strength of the turbulence. The stellar wavefront in-

cident on the telescope has spatial variations in both amplitude and phase. The
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Figure 3.1: Process used to simulate input images for sources
undergoing atomospheric seeing effects

Figure 3.2: An example phase screen generated using the AO-
Tools library. In this case, the configuration is screen size =
512, D (telescope diameter) = 8 metres, 𝑟0 (Fried Parameter) =
0.164 metres, L0 (Outer scale) = 50 metres, wavelength = 500
nanometres

amplitude variations cause scintillation ( more commonly observed as ’twinkling’)
and contribute much less to image quality degradation than the phase variations. By
finding the effect of the thin turbulent layer on an incident plane wave, it is possible
to derive a structure function for phase variations and then integrate this through
the atmosphere. By doing this integration, the phase structure function 𝐷𝜙 over the
entrance of a telescope for Kolmogorov turbulence is derived in Quirrenbach [22]
to be:

𝐷𝜙 (𝑟) = 6.88(𝑟/𝑟𝑜)5/3 (3.3)

The important parameter in this equation is the Fried parameter 𝑟0, which is the
length over which the wavefront is not significantly perturbed.
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The AOtools library described in Townson [19] was used to simulate Kolmogorov
Phase Screens. An individual phase screen can be shifted for each frame to simulate
wind-driven motion of the turbulence during observation, and then for each frame,
the phase screen may be converted into an image on the detector by multiplying the
phase screen by the telescope aperture mask, and then transforming it to the focal
plane using a Fourier transform. Images could be subsequently binned spatially to
represent different pixel scales. Multiple images could be integrated to represent
different integration periods. This process is summarized in Figure 3.1

In order to ensure that the AOTools library was generating phase screens in line
with the Komologorov theory, an analysis was completed to see if the phase screens
obeyed Equation 3.3. Firstly, to estimate the structure function, 1000 phase screen
were generated, and radial rings from the center were used to estimate phase differ-
ences at different distances from the center. The results may be found in Figure 3.4.
While the structure function does follow the expected power law from Equation 3.3,
it does so for a larger 𝑟𝑂 than the one simulated.

Another means of validating if the screens follow the Komologorov theory was to
utilize the work of Noll [23], where the turbulence is decomposed in a series of
Zernike polynomials. Taking the first component of this series, it is derived that
Δ1, the variance of the mean-subtracted phase values in the phase screen within
the telescope aperture should be related to the telescope diameter (D) and Fried
parameters (𝑟𝑂) according to the following equation:

Δ1 = 1.0299(𝐷/𝑟𝑜)5/3 (3.4)

Generating a series of phase screens for several values of 𝑟𝑂 , the value of Δ1

calculated from the screens is compared with the analytical values calculated from
Equation 3.4, with the results seen in Figure 3.5(a). While the calculated values for
the screens do indeed follow a similar power law, they are scaled lower. This appears
to be due to the outer scale factor in the AOTools library. For the set-up documented,
a pixel screen of 512 width, with a telescope diameter of 8 metres, the maximum
setting possible for L0, the outer scale factor, is 40 metres. Any setting above is not
supported by the library. In Goncharov [24], a compensation factor for the variance
reduction due to finite outer scale is derived. Applying this compensation to the
values calculated from the screen, a good fit is found with the model, as can be seen
in Figure 3.5(b). The outer scale may also be the cause of the lower than expected
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(a) (b)

(c)
(d)

Figure 3.3: PSF functions produced by the Seeing simulation
method described in the text. (a) Diffraction PSF showing a
sharp PSF (b) Zooming into the Diffraction PSF, where the
Airy pattern may be seen (c) Seeing PSF resulting from a
single phase screen shown in Figure. 3.2. The speckle pattern
is clearly seen, with a far greater spread than the diffraction PSF
(d) Average Seeing PSF after integrating over 100 individual
PSFs resulting from 100 phase screens, where the Seeing Disk
can be seen emerging
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Figure 3.4: Estimates of structure function from AOTools gen-
erated phase screen (blue) where 𝑟𝑂=0.164m, and the theo-
retical values from Equation 3.3 for 𝑟𝑂=0.164m (orange) and
𝑟𝑂=0.24m (green). In order to calculate the estimates, 1000
screens were generated, and radial rings from the centers were
used to estimate phase differences at different distances from
the center.

structure function values in Figure 3.4.

A library was developed to enable the generation of input images using all the above
techniques and the details may be found in Appendix A for further use.

3.2 EMCCD Simulation Process
The next stage of the simulator propagates the image plane photons through the
EMCCD shift register. In the register, multiplicative gain through impact ionisation
and clock-induced charge(CIC) were modelled. In order to model multiplicative
gain, a Bernoulli trial using probability 𝑃𝑚 was conducted for each electron en-
tering a register in the shift register to see if a second electron is produced. This
was repeated for the remaining 𝑚 − 1 registers. To model the CIC process, an
additional Bernoulli experiment using probability 𝑃𝑐 was conducted for each of the
𝑚 registers. Finally, when this simulated shift through the 𝑚 registers is completed,
Gaussian noise is added to the output value to model the readout noise process.

An example of a simulated Gaussian source input image and the resulting out-
put image after being shifted through the EMCCD simulator is shown in Figure 3.6,
along with the associated histograms.
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(a) (b)

Figure 3.5: (a) Values of Δ1 in turquoise are from the simulated
phase screens generated using AOTools for a variety of different
𝑟𝑂 (Fried parameter) values, where D (telescope diameter) was
8 m and the screen sizes were 512x512. 100 different phase
screens were used for each 𝑟𝑂 value. In red are the theoretical
Δ1 values. In blue are theoretical Δ1 values when taking into
account the finite 𝐿𝑂 outer scale value in the simulations (40
m) (b) Showing the same but with Log values

The EMCCD simulator code was developed in Python and may be found in the
Appendix A. High gain significantly slows down the simulation process due the
the large number of electrons that need to be simulated. As the simulation process
is independent for each simulated input photo-electron, it is possible to parallelize
the code so a large number of input photo electrons could be simulated. In theory
this can scale as 𝑂 (𝑛). However, as Python is not easy to parallelize to multiple
threads that can run simultaneously due the Global Interpreter Lock (GIL) in the
standard implementation, a version of the simulator code was also written using the
Apache Spark framework, which allows horizontal scalability across threads, CPUs
and even computers. This easily enabled on the order of millions of photo electrons
to be simulated within several hours on an 8-core PC.

3.3 Validating methods using simulation
Using the source and EMCCD simulation, the calibration methods outlined pre-
viously may be validated. In particular, the histogram Slope, fitting EMCCD
noise model parameters and Calibration-on-The-Spot (COTS) methods were tested
through simulation.
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Figure 3.6: Examples from the simulation environment (a)
A frame from the Poisson sampled Gaussian source (b) The
simulated output frame after passing through the simulated
EMCCD (c) The input histogram for several input frames (d)
The output histogram for several frames after passing through
the simulated EMCCD with a gain of 30. Both the readout
noise and tail due to the EM register may be seen

.

Histogram Slope
To test and validate the general simulation set-up, initially a flat field input containing
1-photon per pixel was generated for 500K pixels and simulated through the EMCCD
simulator. This is the ideal photon level for this method, where the log of the output
histogram should contain a linear slope. The Histogram slope method was then
applied to this output data to recover the gain. The fitting region started at the 5.5
𝜎 offset, but a heuristic was chosen for selecting the outer fitting point, namely a
fraction of the maximum end output value 𝑂 𝑓 . For the results shown in Figure 3.7
(a)(b), 𝑂 𝑓 was set to 0.7. The estimated gains match the nominal gains quite well,
but there is a bias at higher gain level. The cause of this is not clear. It was suspected
this might be due to numerical sensitivity due to low sampling at the higher output
counts in the histogram. In order to investigate if this was the case, first the sampling
was increased and second the fitting region were changed.

Increasing to pixel sample count 5 million pixels did not reduce the bias. In order
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(a)
(b)

Figure 3.7: (a) Histograms slope fits of output images of the
flat field simulation (EM Gain = 100) and (b) the estimated EM
gains versus nominal EM gains for a range of EM Gain values.
For each simulation, 500k input pixels were simulated, the
readout bias 𝜇 = 100 ADU and readout noise of 𝜎 = 10. Input
is flat field of 500k input pixels each with exactly 1-photon

the investigate if the selection of the fitting region could improve the result, the outer
and inner fitting points were modified.

A series of different end output value𝑂 𝑓 were tried, with the results shown in Figure
3.8. After varying bias due to the small fitting range for low value, the bias reduces
for larger values of 𝑂 𝑓 and does not appear to be significantly affected by fitting
in the part of the histogram with low sample counts. So the source of the bias at
higher EM gain values in the gain estimation of this method is not understood in the
context of this simulation setup.

Next, a simulation was run that simulated some parallel clock induced charge (pCIC).
In this case, the input pixels were Poisson sampled where 𝜆 = [0.5, 1.0, 1.5],
simulating increasing levels of pCIC. This is modelling a scenario where the source
is faint at <1 photon per frame but pCIC causes some pixels to have more than
1-photon per frame when they enter the EM register. The results may be seen in
Figure 3.9(a)(b)(c). The non-linear neck is due to the pCIC effect. The accuracy of
the estimations for three different levels of pCIC may be seen in Figure 3.9(d).

In order to model the serial clock induced charge (sCIC), a simulation of this
phenomenon was added to the EMCCD simulation run. The output may be seen
in Figure 3.10(a)(b). In this run, sCIC was simulated with a 𝑃𝑐 = 0.02, which is
a typical value from the literature (for example ([20]), and 𝑃𝑐 = 0.05 to show the
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Figure 3.8: Estimated gains for a variety of end output values
𝑂 𝑓 for 500k input pixels, 1-photon input counts, EMCCD gain
100, the readout bias of 𝜇 = 100 ADU and readout noise of 𝜎
= 10

.

effect of elevation sCIC on the gain estimation, where 𝑃𝑐 is the probability of a clock
induced charge during each serial shift. A bias may clearly be seen in the estimates
in Figure 3.10(c). Finally, the combined effects of pCIC and sCIC were simulated,
and the results may be seen in Figure 3.11(a)(b)

The simulations show the histogram slope methods is relatively robust in the pres-
ence of some levels of sCIC and pCIC, once an appropriate fitting range is selected.
While flat fields with less than 1-photon might be realistic for faint sources or very
high speed frame rates, for point sources, the high flux rates near the center of the
source, will heavily bias the estimation for the Histogram slope technique. This
topic will be addressed further in Chapter 5.

Fitting EMCCD noise model parameters
The same set of flat-field simulations as in the previous section were undertaken
again, but this time using the methods that fit the EMCCD noise model parameters to

31



(a) pCIC (𝜆=0.5) (b) pCIC (𝜆=1.0)

(c) pCIC (𝜆=1.5) (d) Estimated vs Nominal, with different
pCIC levels

Figure 3.9: (a)(b)(c) Histograms slope fits of output images
of the flat field simulation (EM Gain = 100) for three different
level of pCIC (d) Estimated EM gains versus nominal EM gains
for a range of EM Gain values. For each simulation, 500k input
pixels were simulated, the readout bias was 𝜇 = 100 ADU and
readout noise 𝜎 = 10. Input is 500k with Poisson sampled
values

the output data. Both the simple Gaussian-Exponential mixture model and the more
complex mixture model that incorporates clock induced charge were simulated. The
results may be seen in Figure 3.12 . Neither method suffers the bias at higher gains
seen in the histogram slope method, and they both perform similarly given there is
no clock induced charge in this initial simulation.

Next, clock induced charge was added to the simulation, both in the form of pCIC
and sCIC as previously described.

For the simulation with pCIC only, seen in Figure 3.13 , the two model methods
perform similarly to the histogram slope method. When pCIC and sCIC are both
present, seen in Figure 3.14 , both methods are closer to the histogram slope method.
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(a) sCIC, 𝑃𝑐 = 0.02 (b) sCIC, 𝑃𝑐 = 0.05

(c) Estimated versus nominal, different sCIC
levels

Figure 3.10: (a)(b) Histograms slope fits of output images of
the flat field simulation (EM Gain = 100) for two different levels
of sCIC (b) Estimated EM gains versus nominal EM gains for
a range of EM Gain values at different sCIC levels. For each
simulation, 500k input pixels were simulated, the readout bias
was 𝜇 = 100 ADU and readout noise was 𝜎 = 10. Input is 500k
pixels with 1 photon counts

In this latter scenario, which the more complex model attempts to model, it begins
to out perform the simpler model.

Calibration-on-The-Spot (COTS)
The COTs alogorithm was also used to estimate the gain using the simulation setup.
In this case, Gaussian and Moffat shaped sources were simulated. An example of
an input and output image may be a seen in Figure 3.15 for a Gaussian source, along
with the estimated gains. Accurate recovery of the gain is noted for a range of gain
values. As mentioned in the description of the method, the individual estimates
exhibit high variance, but when averaged over multiple single-frame estimates, this
is reduced.
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(a) sCIC, 𝑃𝑐 = 0.02 (b) Estimated versus nominal, with sCIC and
pCIC levels

Figure 3.11: (a) Histogram slope fit of output images of the
flat field simulation (EM Gain = 100) for with sCIC 𝑃𝑐 = 0.05
and pCIC (𝜆=0.5) is present (b) Estimated EM gains versus
nominal EM gains for a range of EM Gain values. For each
simulation, 500k input pixels were simulated, the readout bias
was 𝜇 = 100 ADU and readout noise was 𝜎 = 10. Input is 500k
pixels with 1 photon counts

(a)
(b)

Figure 3.12: (a)Applying the noise model fit techniques for
a variety of EM nominal gains. Both the simple and more
complex models that incorporate clock-induced charges are
shown. 500K pixel were simulated, 1-photon each, with no
pCIC or sCIC simulated (b) The log of the PDF function of the
resulting model fits for EM gain of 175, for the same simulation
as in Figure 3.14

As the Moffat Distribution is a better approximation for a seeing disc of an astro-
nomical source, the simulation was repeated with a Moffat shaped source. The
result may be seen in Figure 3.16 , where a slight bias is seen. The most important
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(a) pCIC, 𝜆 = 1.0
(b)

Figure 3.13: (a) Applying to model fit techniques for a variety of
EM nominal gains. Both the simple and more complex model
that incorporate clock-induced charge are shown. 500K pixel
were simulated, 1-photon each, with input pCIC simulated with
Poisson sampled values where 𝜆=1.0 (b) The log of the PDF
function of the resulting model fits for EM gain of 175

(a)
(b)

Figure 3.14: (a)Applying to model fit techniques for a variety of
EM nominal gains. Both the simple and more complex model
that incorporate clock-induced charge are shown. 500K pixel
were simulated, 1-photon each, with input pCIC simulated with
Poisson sampled values where lambda=0.5 and sCIC simulated
where 𝑃𝑐 = 0.02 (b) The log of the PDF function of the result-
ing model fits for EM gain of 175

parameter to make this method effective for this type of source was the amount of
data used.

The simulation shown uses 7-pixel square area centred on the the source as data for
the algorithm. Using data deep into the tails does cause a bias that over estimates gain
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(a) Input Gaussian Source (b) Output Gaussian Source

(c) Estimated gain using COTS method for Gaussian source

Figure 3.15: (a) Input Gaussian Source 𝜎 = 2.4 (b) Output
Data after passing through EMCCD simulator with EM Gain =
50 (c) Estimated gains using COTS method for a range of gain
values, averaged over 50 frames
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(a) Input Moffat Source (b) Output Image

(c) Estimated gain using COTS method for Moffat Source

Figure 3.16: (a) Input Moffat Source where 𝛼 = 4, 𝛽 = 4(b)
Output Data after passing through EMCCD simulator with EM
Gain = 50 (c) Estimated gains using COTS method for a range
of gain values, averaged over 50 individual frame estimates
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(a) Varying pixel areas (b) Optimal pixel area

Figure 3.17: (a) Estimated gains for different pixel areas used
(b) 7-pixel box

to occur, so in applying this techniques without adopting a Moffat-fitting algorithm
might require staying away form the tails using a suitable heuristic. Some increasing
pixel areas and their associated bias may be seen in Figure 3.17.

The next step was to understand how astronomical seeing would potentially affect
this technique. Using the speckle generation technique previously described, input
speckle images were generated. The results of these parameters on the gain estima-
tion may be seen in Figure 3.18 (a). Accurate gain estimation may be achieved with
sufficient integration and photon rate. Another advantage of this technique is that
it should be insensitive to CIC. In order to understand how the presence of clocked
induced charge affects the accuracy of this estimation technique, similar amounts of
serial CIC were injected into the simulation as in the previous section (𝑃𝑐 = 0.05),
and it can be seen to not bias the estimation. Parallel CIC was not simulated, as
this would be dwarfed by the high photon counts present in the point source input
images.

In order for the techniques to produce the accurate results in simulation, a certain
threshold of integration, photon level and binning were required. Figure 3.19 show
to impact of insufficient integration or flux levels on the gain estimation.

Summary and comparison of Simulation results
Several of the methods were tried in a simulation environment, with different
amounts of gain and clock-induced-charge effects, to understand their performance
better in different scenarios.

Simulating faint sources, it was found the histogram slope method could recover the
gain in the presence of some levels of sCIC and pCIC, once an appropriate fitting
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(a) Estimated EM using COTs for simulated
seeing limited source (b) with serial clock induced charge

(c) Sample output frame of seeing limited
source integrated for 50 frames

Figure 3.18: (a) Estimated gains using COTS for a variety
EM gains, for a simulated seeing input source (b) Same simu-
lation with the presence of high serial clock induced charge (
𝑃𝑐 = 0.05 ) (c) Sample output frame of seeing source simulated.
Source simulation parameter were: Screen size = 256, D (tele-
scope diameter) = 8 metres, 𝑟0 (Fried Parameter) = 0.2 metres,
L0 (Outer scale) = 100 metres, wavelength = 500 nanometres,
integration = 100 frames, peak flux rate = 2000 photons

range was selected. There was a bias at higher gains, but the cause could not be
determined.

The EMCCD noise model parameters method performed comparably for faint
sources, once the gain was sufficiently high for the mixture-model approximations
to be valid, with the more complex model outperforming the simpler model when
both pCIC and sCIC were simulated.

While simulating a seeing limited source, it was shown the COTs method could
recover the gain when sufficiently high photon rate and integration level. Is was also
shown using a 2-D Gaussian approximation was sufficient for the PSF model in this
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Figure 3.19: (a) EM Gain estimates when integration is varied
(b)EM Gain estimates when the per frame photon count is
varied

scenario, as only the inner core needs to be used for the estimation.
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Chapter 4

Laboratory Results

In order to further test the gain calibration methods, data was collected in a laboratory
setting using EMCCD detectors. This would allow some of the standard gain
calibration techniques to be explored, and values derived of nominal versus estimated
gains could be compared to results from the astronomical estimation results.

4.1 Laboratory Set-up
An iXon Ultra 897 EMCCD camera manufactured by Andor was set-up in the
laboratory along with a light source. This camera, which is one of the two cameras
taken from the same GASP instrument [15] set-up described in Chapter 5, has a
512x512 pixel array, and can achieve overall gains of up to 1000x according to the
manufacturer.

A Thorlabs stabilised light source, the SLS201L/M, was employed. In this device
a tungsten-halogen bulb provides constant intensity blackbody radiation over a
wavelength range 360-2600 nm. Internal feedback is used to stabilise the output
to 0.01% per hour, and 0.1% per ◦𝐶. The source included a variable Dovetail
attenuator to adjust the light output level. A piece of white perspex was placed
between the source and detector to scatter the light and remove any structure in the
beam i.e. producing a flat field.

4.2 Details of Data Collection
Several different data sets were collected in the laboratory in order to be used with
the different methods. All datasets were collected with the same detector and set-up
described above.

(a) Increasing Exposure Series: A dataset recorded where the light source inten-
sity remained constant, but the exposure time was increased for each frame
recorded by the EMCCD detector. The data was collected for three different
nominal EM gain level set-points, [0, 20, 30], with both dark and flat fields
recorded. Each series consisted of 80 frames, with the exposure time increas-
ing from one frame to the next, resulting in each series having 1 sample of



data for each recorded intensity level. The purpose of collecting darks for
both this and the subsequent datasets is to be able to subtract the darks from
the flat fields, so that the bias does not have an impact on the Mean Variance
technique. The purpose of the 0 EM gain dataset is to be able to determine
the ADU factor.

(b) Discrete Intensity Series: A dataset where the total source flux for each frame
was set at one of four discrete levels1. This was achieved by keeping the frame
exposure time fixed, but using using different attenuator settings. Dark and
flat data was collected for the same three nominal EM gain set-points of [0,
20, 30], like the previous data set. For each intensity level, 80 frames were
recorded, this time resulting in 80 samples for each intensity level.

(c) Discrete Gain Series: A dataset where the source intensity level remained fixed,
but the nominal EM gain was varied across gain set-points of [0, 20, 30, 50,
100, 500, 1000] where at each set-point, dark and flat data was collected. For
each gain set-point 80 frames were collected.

4.3 Results
The standard Mean Variance (MV) technique was applied to the (a) varying exposure
and (b) discrete intensity series datasets. The MLE intensity series (MLE IS)
technique was additionally applied to the (b) discrete intensity dataset. Finally, the
MLE gain series (MLE GS) technique was applied to the (c) discrete gain series.
Due to both the computational complexity of the MLE methods with the associated
algorithm run-time, and the fact that the center of the recorded laboratory images
appears flatter than the extremities, only the central 40x40 array of pixels were used
in calculating the results presented in this chapter.

Mean-Variance (MV) Technique
The MV technique was applied to both datasets (a, b) described in the section above.

(a) Increasing Exposure Series Data Set

Scatter plots for the Mean-Variance relationships at the 3 nominal EM gain levels
are presented in Figure 4.1(a), where the relationship between variance and mean
signal appears to be linear as the exposure time increases for the frames. Upon

1For the EM gain=30 series, an additional 3 intensity levels were used. Additionally one of the
intensity levels recorded for EM gain=20 series had to be discarded due to files getting corrupted
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(a) (b)

Figure 4.1: (a) Mean-Variance plots for the increasing exposure
series dataset for Nominal EM gains of 0 (blue), 20 (orange)
and and 30 (green) (b) SNR versus mean Signal. It can be seen
that the photon shot noise does not dominate until a certain
threshold.

further examination of the signal to noise ratio (SNR, defined as the mean/variance
here) versus mean signal in Figure 4.1(b), it can be seen that the photon shot noise
does not dominate until a certain threshold is reached. Before this point the readout
noise dominates, as mentioned in McLean [3]. Similarly at high intensities, the
device will saturate, resulting in another non-linearity in the photon transfer curve,
although the level of flux was not sufficiently large in this dataset for that to occur.

Because of the non-linearity, least squares fitting was applied after the non-linearity
was excluded, using Figure 4.1b to determine a suitable cut-off point. The resulting
least-squares fitted lines may be seen in Figure 4.2 for the three different nominal
gain levels. First, equation (2.14) is used to provide an estimate for the ADU factor
using the data when the EM gain was turned off. This estimated value was then
utilised along with the recovered slope for the data with the EM gain turned on to
estimate the EM gain using equation (2.15). The results of these calculations may
be seen in Table 4.1.

Nominal Fitted Slope ADU Factor EM Gain
EM Gain Estimate Estimate
0 0.275 3.635 N/A
20 6.476 N/A 11.773
30 9.200 N/A 16.724

Table 4.1: Estimated Gain for increasing exposure series data
set using MV Method
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(a) Nominal EM Gain = 0 (b) Nominal EM Gain = 20

(c) Nominal EM Gain = 30

Figure 4.2: Increasing exposure data set least-squares fitted
lines for the set of nominal EM Gains

(b) Discrete Intensity Series Data Set

The Mean Variance Technique was also applied to the discrete intensity series data
set. The different discrete intensity levels can clearly be seen in the scatter plots in
Figure 4.3 as separate clusters, where the mean and variance is calculated for each
pixel across the 80 frames in the sequence. Firstly, a least squares line fit using
all the data points was undertaken, shown by the blue lines in Figure 4.3 and the
ADU factor and EM Gains were estimated, using the same method described in the
previous section. The results may be found in Table 4.2.

Nominal Fitted Slope Standard ADU Factor EM Gain EM Gain
EM Gain Error Slope estimate estimate error
0 0.215 0.0029 4.633 N/A N/A
20 5.954 0.0407 N/A 13.795 0.0942
30 9.330 0.0200 N/A 21.617 0.0463

Table 4.2: Estimated Gain for Discrete Intensity Series using
MV Method

Ryan [14] also used the MV method to estimate gain from a discrete intensity series,
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(a) Nominal EM Gain = 0 (b) Nominal EM Gain = 20

(c) Nominal EM Gain = 30

Figure 4.3: Mean-Variance plot for the discrete intensity series
dataset for each of the nominal gains. Least-square line fits are
shown in blue

but instead of using all the data for a single line fit, the author obtained line fits for
each pixel and in turn gain estimates for each pixel. Then they used the mode of the
resulting distribution of pixel level estimates to obtain a gain estimate.

This method of calculating per-pixel estimates was applied to this data set, using
a square of 1600 pixels around the center. The resulting distributions of ADU
and EM Gain estimates may be found in Figure 4.5. Retrieving the mode of these
distributions, the estimates using his per-pixel MV technique may be found in Table
4.3

Nominal ADU Factor EM Gain
EM Gain Estimate Estimate
0 3.260 N/A
20 N/A 9.566
30 N/A 14.684

Table 4.3: Estimated Gain for Discrete Intensity Series using
MV Method (per pixel)
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(a) Nominal EM Gain = 0 (b) Nominal EM Gain = 20

(c) Nominal EM Gain = 30

Figure 4.4: Distribution of per-pixel estimate using MV method
for the ADU factor and EM Gain for the discrete intensity
dataset for the set of nominal gains

Maximum Likelihood Estimation Intensity Series Method (MLE IS)
Due the complexity of the algorithm, the Python code library developed by Ryan
[14] found at [25] was used. This algorithm is particularly computationally intensive
compared to the previous MV methods, with much longer running times, taking
several hours to run on a 4-core desktop computer for the 40x40 pixel area outlined
previously.

To use the MLE algorithm on both the intensity series and gain series for EM gain
estimation, the ADU factor must be estimated first using the Intensity Series MLE
algorithm. This is done using the intensity series data with the EM gain turned
off. The MLE algorithm is used, and the results for the 1600 pixels are shown in
Figure 4.5(a). The resulting estimate, the mode of the distribution, is very close the
nominal value of 4 given by the manufacturer.

Once the ADU value is estimated, it can be be used in the MLE Intensity Series al-
gorithm to calculate the EM Gain. Once again, individual estimates were computed
at a pixel level, and may be found in Figure 4.5(b). The resulting estimates can be
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(a) (b)

Figure 4.5: (a) Results from estimating the ADU factor for
1600 pixels using the IS MLE method. The fitted PDF from
the histogram of per-pixel estimated is plotted. (b) Results
from estimating the EM Gain for 1600 pixels using the MLE IS
method, where the nominal gain was 30. The fitted PDF from
the histogram of per-pixel estimates is plotted

Nominal ADU Factor EM Gain
EM Gain Estimate Estimate
0 3.7387 N/A
20 N/A 10.8768
30 N/A 16.4320

Table 4.4: Estimated Gain for Discrete Intensity Series using
MLE IS Method

found in Table 4.4

Maximum Likelihood Estimation Intensity Series Method (MLE GS)
The MLE Gain Series algorithm was applied to the gain series data. This provided
estimates of the EM Gain for each of the gain points in the series. The ADU estimate
from the IS MLE is used as an input here, as the ADU factor may not be estimated
from gain series data. Again, per-pixel estimates were computed for each pixel,
and the distribution of these resulting gain estimates are shown in Figure 4.6 for the
second set-point, which had a nominal gain of 30, with the results for all the gain
point common to the previous series in Table 4.5

In order to see if the relationship between nominal and estimated gain remains
consistent into high EM gains, the comparison of all the nominal gain set points and
their estimates values can be seen in Figure 4.7, and in Table 4.6
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Figure 4.6: Results from estimating the EM Gain for 400 pixels
using the MLE Gain Series method, showing estimates when
the nominal gain was 30. The fitted PDF from the histogram
of per-pixel estimated is plotted

.

Nominal ADU Factor EM Gain
EM Gain Estimate Estimate
0 3.7387 N/A
20 N/A 12.0795
30 N/A 17.0550

Table 4.5: Estimated Gain for Discrete Gain Series using MLE
GS Method

Nominal EM Gain
EM Gain Estimate
20 12.0795
30 17.0550
50 26.9023
100 50.0388
500 222.7485

Table 4.6: Gain series dataset nominal EM gain and EM gain
estimates using MLE Gain Series Algorithm
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Figure 4.7: Comparing the estimate EM Gains with their cor-
responding Nominal values for all the gain set points in the
series.

.

Summary and comparison of Laboratory results
The three methods (MV, MLE IS and MLE GS) delivered broadly similar and
consistent results. A summary of the estimates may be found in Table 4.7. Using
the MV approach on the discrete intensity series with an overall linear fit is a notable
outlier, but when the per-pixel fits are done, it’s estimates are in line with the other
techniques. In all cases, the estimated EM gain values were significantly lower
than the nominal values set on the detector, corresponding to approximately half the
expected gain. Data was also collected on a second detector to ensure the particular
detector was not defective, but similar results were found.

As the relative values between the different gain values shows a linear trend versus
the nominal values, this indicates these methods would be useful for calculating the
relative gain (the relevance of this is detailed in the next chapter), even if the true
gain levels are not correct or at least inconsistent with the manufacturer’s nominal
gain.
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Method Data set ADU Nominal EM Nominal EM
Estimate Gain 20 Gain 30

MV Increasing Exposure Series 3.635 11.773 16.724
MV Discrete Intensity Series 4.633 13.795 21.617
MV (per-pixel) Discrete Intensity Series 3.260 9.566 14.684
MLE IS Discrete Intensity Series 3.739 10.877 16.432
MLE GS Discrete Gain Series 3.739 12.080 17.055

Table 4.7: Summary of calibration estimates for the different
lab methods
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Chapter 5

Astronomical Observation Results with GASP

5.1 GASP Instrument Details
Some of the techniques in the previous sections were applied to data obtained using
the Galway Astronomical Stokes Polarimeter (GASP) at the 8 m Gemini South
telescope. During this observation series, a variety of data was collected. This
included data from standard sources, along with high speed data from the Crab
Nebula. The standard sources were observed as they had previously measured
polarisation that could be compared to the result obtained using GASP to validate
the calibration of the instrument.

Details of the GASP instrument are presented in O’Connor [15], where the hardware
is described along with how the instrument measures the four components of the
Stokes vector simultaneously. The GASP instrument uses two Andor iXon 897 Ultra
EMCCDs as the imaging detectors and enables full-FOV slow speed imaging at a
frame rate of 56 frames per second (fps), and also limited FOV high speed imaging
(>1000 fps).

Within the instrument (illustrated in Figure 5.1), the beam at the telescope focus is
first collimated to a suitable pupil size, producing the main optical path S, which is
then split at a prism face to give two optical paths: R-path - reflected, and T-path
- transmitted. Both optical paths R-path and T-path are individually divided into
two optical paths rpath_1 and rpath_2, and tpath_1 and tpath_2, respectively, by a
Wollaston prism on each of the paths. The Stokes vector can then be determined
from the intensities of the 4 different paths, using a transformation described in
O’Connor [15]. The instrument uses one EMCCD detector for the R-path, and
another for the T-path. Due to the fact that the individual detectors may have
different effective gains, an important part of the calibration procedure is to estimate
the gain ratio 𝐺𝑠𝑇/𝑅 between the two detectors, as this is used to compensate the
intensities of the two channels before recovering the Stokes vector. This is given by:

𝐺𝑠𝑇/𝑅 =
𝐺𝑠𝑟 𝑝𝑎𝑡ℎ

𝐺𝑠𝑡 𝑝𝑎𝑡ℎ
(5.1)

where 𝐺𝑠𝑡 𝑝𝑎𝑡ℎ is the system gain of the T-Path detector, and 𝐺𝑠𝑟 𝑝𝑎𝑡ℎis the system
gain of the R-Path detector.



Figure 5.1: The GASP instrument from a top-down view (im-
age sourced from O’Connor [15]). The main optical and detec-
tor components are numbered: 1. Optical Mask and Field Stop
at the telescope focal plane. 2. Collimating Lens Assembly. 3.
Retarding Beamsplitting Prism. 4. Wollaston Prism. 5. Re-
Imaging Lenses. Camera. 6. Reflection Path Camera (R-path).
7. Transmisson Path Camera (T-path) 8. Flange Adapter Plate
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5.2 Observation Details
Observations were taken using the GASP instrument at the 8 m Gemini South
telescope in February 2019. Both the Crab Pulsar and several polarisation standards
sources were observed.

5.3 Standard source results
The polarisation standard GSC 08169-00417 was recorded for 100 frames at a
nominal gain of 200. An example of the output images for each of the 4 channels
described above may be seen in Figure 5.2.
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Figure 5.2: Output images from GASP instrument for 1-frame
from the observation sequence of GSC 08169-00417

Histogram Slope
The Histogram slope method was applied to the standard source data. In order to
apply this method, it is necessary to find which part of the output data corresponds to
faint pixels that had less that one input photon per frame, in order for the exponential
slope assumption to be valid. One approach is to select an annular region around
the source in the output images as a basis for constructing the histogram. In order to
select the correct annulus, we need to estimate a minimum radius where the single
photon assumption should hold true. By starting with a reasonable estimate 𝛾𝑛𝑜𝑚𝑖𝑛𝑎𝑙
for the nominal gain of the EMCCD, we can obtain the estimated peak number of
photons at the centre of the source. The peak number of photons, 𝑁𝑝𝑒𝑎𝑘 is given
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by:
𝑁𝑝𝑒𝑎𝑘 = 𝑜𝑢𝑡𝑝𝑢𝑡𝑝𝑒𝑎𝑘/𝛾𝑛𝑜𝑚𝑖𝑛𝑎𝑙 (5.2)

The 𝑜𝑢𝑡𝑝𝑢𝑡𝑝𝑒𝑎𝑘 should be averaged over several frames given the stochastic nature
of the output peak value. If we can then make an assumption on the PSF of the
source, we can fit the image to a PSF model, and use the parameters of the model
combined with the 𝑁𝑝𝑒𝑎𝑘 value to estimate the radius 𝑅 outside which there is less
than 1-photon per pixel per frame. For a source modelled as a Gaussian this is given
by:

𝑅 =

√︃
2(𝑙𝑜𝑔𝑁𝑝𝑒𝑎𝑘 )𝜎 (5.3)

where 𝜎 is the estimated variance of the PSF from a 2-D Gaussian fit. For a Moffat
PSF, the formula is:

𝑅 = 𝛼

√︃
𝑁

(1/𝛽)−1
𝑝𝑒𝑎𝑘

(5.4)

where 𝛼 and 𝛽 are the parameters of the Moffat distribution

This approach was applied to the data. Figure 5.3 shows fitted Moffat and Gaussian
PDFs versus a cross section of pixel data. It can be clearly seen that the Moffat PDF
fits the tails of the data more closely. Using the equations above, the optimal inner
annulus radii were 9.23 pixels for Gaussian fit, and 19.86 pixels for the Moffat fit.

Figure 5.3: Left is example output input, with red line indi-
cating cross-section show on right. Right is a plot the fitted
Gaussian and Moffat PDF fitted against the output data for a
data cross section

In order to see if these estimated optimal radii were a reasonable starting point for the
inner annulus radius to use, the gain was estimated using the histogram fit method
for a variety of inner annulus radii, whilst keeping the outer radius constant, with
the result seen in Figure 5.4. For flux of greater that 1-photon per pixel, it would be
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expected that the gain would be overestimated. It can been seen that the radius from
Equation 5.4 is in the start of the area where the gain estimate stabilises.

Figure 5.4: The effect of the inner annulus radius of the esti-
mated gain for the four GASP channels. Nominal gain = 200

The other sensitive parameter for this technique is the outer fitting point on the
histogram, namely a fraction of the maximum end output value 𝑂 𝑓 , as mentioned
previously. The effect on the gain of varying this parameter may be seen in Figure
5.5(a) along with the line fits for two different values in Figure 5.5(b)(c). In all cases
the inner fit point was set at 5𝜎, where 𝜎 is the readnoise standard deviation

In order to see if the estimated gains were consistent across the hundred frames, the
frames were subdivided into sets of 10, and the gain calculated for each. The gains
remain consistent over the time series, as can be seen in Figure 5.6.

The overall gain results for this method on the standard source data, including the
gain ratio, may be seen in Table 5.1

Nominal RPath 1 RPath 2 TPath 1 TPath 2 Gain
EM Gain EM Gain EM Gain EM Gain EM Gain Ratio
200 44.88 43.99 36.05 35.65 1.27

Table 5.1: Estimated Gains for GASP channels using His-
togram slope method

EMCCD Model Parameters
Using the same data, the EMCCD model parameter methods we used. Using the
same set of annular data described above, the resulting PDFs may be found in Figure
5.7. The overall gain results for these methods on the standard source may be seen
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Figure 5.5: (a) The effect the outer fitting point 𝑂 𝑓 on the
estimated gain for the four GASP channels (b) Line fit for
𝑂 𝑓 =0.2 (c) Line fit for 𝑂 𝑓 =0.8

Figure 5.6: The estimated gains over the 100-frame time series,
using data from sets of 10 frames
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Figure 5.7: PDF fits for both EMCCD models for (a) RPath
and (b) TPath GASP channels

in Table 5.2. It can been seen that the more complex model that accounts for clock
induced charge, fails to fit distribution at the relatively low nominal gain level, and
overestimates the gain versus the other methods.

Model Nominal RPath 1 RPath 2 TPath 1 TPath 1 Gain
EM Gain EM Gain EM Gain EM Gain EM Gain Ratio

Simple Model 200 47.00 46.32 33.87 35.10 1.35
Model w/ CIC 200 53.74 64.24 51.30 45.49 1.21

Table 5.2: Estimated Gains for GASP Channels using EMCCD
model fit

COTS
The COTs method (using a 2D Gaussian PDF model for the PSF) was applied to the
same data set, producing per-frame estimates. As explained in the theory section,
individual frames will generate estimates with high error, but once aggregated over
several frames, this error reduces. The results may be seen Figure 5.8(a) in sets
of 10 frames. It is apparent that the estimated gains are time-varying, and much
higher than those estimated with the previous methods on the same data. In order to
understand if this may be underlying variation in the true gain or caused by seeing,
an analysis of the seeing condition over time may be seen in 5.8(b), namely the 𝜎 of
the fitted 2D Gaussian. (The approximate level of seeing as indicated by the FWHM
for the sequence is approximately 6 pixels, corresponding to 1.3 arcseconds. This
is similar in range to the simulated seeing in Chapter 3, as can be seen in Figure
3.18(c)). It can be seen that there is a strong negative correlation between the sigma
(or width of the source), and the estimated gain, which should be largely constant.
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Figure 5.8: (a) COTs EM Gain estimates for 100 frames (aver-
aged over 10 frame) (b) Sigma of fitted 2D Gaussian PSF

This correlation with the changing sigma appears to indicate that seeing is having
a significant effect on the accuracy of this method. In addition, both R-Paths and
T-Paths should produce consistent results as they belong to the same detector, but
this is not the case. The overall gain estimates for each channel may be found in
Table 5.3.

Method Nominal RPath 1 RPath 2 TPath 1 TPath 1 Gain
EM Gain EM Gain EM Gain EM Gain EM Gain Ratio

COTs 200 114.3 153.0 150.5 106.2 1.04

Table 5.3: Estimated Gains for Gasp Channels using COTs
method
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5.4 Crab Nebula results
High speed data was captured from the Crab Nebula, with exposure times for each
frame of 0.5 ms. Here the high speed mode of the device, with a very small exposure
time, ensures there should be less than one photon of flux per pixel in each frame.
The pixel field of data is much smaller in this high-speed configuration, with only
an array 13x128 pixels being read out, but with a much larger number of frames
(300000). As there is no point spread function to fit, the COTs method cannot
be applied to this data. This dataset also has a significantly higher gain than the
previous sets, with a nominal EM gain of 1000.

Histogram Slope
A sample histogram from this data set from the RPath channel may be seen in
Figure 5.9(a), along with a fitted line. Even without using all the data (10000 frames
shown), there is much more data available to produce a robust histogram. The
resulting estimated gain using this method is sensitive to both the offset from the
bias peak, and the outer range ratio 𝑂 𝑓 , as can be seen in Figure 5.9(b) and 5.9(d).
It can be seen that 5.5 𝜎 is not sufficient starting offset to get out of the non-linear
region of the log histogram, with 10 𝜎 being used in the fit shown in 5.9(a). The
resulting values for this method may be found in Table 5.4

Method Nominal RPath 1 RPath 2 TPath 1 TPath 1 Gain
EM Gain EM Gain EM Gain EM Gain EM Gain Ratio

Histogram Slope 1000 240.44 240.35 216.23 216.44 1.11

Table 5.4: Estimated Gains for Gasp Channels using Histogram
slope method

EMCCD Model Parameters
The EMCCD parameter modelling techniques to estimate EM gain were applied,
and the results are shown in Figure 5.10 and table 5.5.

Method Nominal RPath 1 RPath 2 TPath 1 TPath 1 Gain
EM Gain EM Gain EM Gain EM Gain EM Gain Ratio

Simple Noise Model 1000 241.00 241.12 223.55 224.53 1.075
Noise Model w/ CIC 1000 240.77 246.70 225.47 224.92 1.08

Table 5.5: Estimated Gains for Gasp Channels using EMCCD
model parameters method
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(a)
(b)

(c)
(d)

Figure 5.9: (a) Output log histogram of rpath 1 channel and
fitted line in red. Fitting point sets at 10 𝜎 offset and𝑂 𝑓 = 0.35
(c) The residuals along the line fit (b) Sensitivity of estimated
gain to the offset in estimated noise sigma from the output bias
(d) Sensitivity of estimated gain to the outer range ratio 𝑂 𝑓
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Figure 5.10: (a) Output histogram for TPath Channel with the
PDFs for each model shown (b) The same but with the log
histogram.
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Implication of gain error on GASP polarisation measurements
While the estimation of polarisation parameters from the GASP instrument is not
dependant on the individual estimate gains, it is dependant on the ratio between
the estimated gain for each channel, as detailed in Equation 5.1. Further details
on the relationship between this ratio and polarisation estimates may be found in
O’Connor [15]. For the same NGC 08169-00417 standard source data used in this
chapter, an analysis of the relationship between the estimated gain ratio and the
Linear Polarisation may be found in Figure 5.11, which is taken from Shearer [in
preparation]. In this case the histogram slope method was used.

(a)

Figure 5.11: Relationship between the Polarisation estimates
from from GASP and the gain ratio estimates. Purple is the
linear polarisation and turquoise is the polarisation angle. The
standard error of the gain ratio is show by the dashed lines.
The horizontal line represents the previously estimated linear
polarisation of this standard. Gain ratio is inverted versus ratio
estimated in text.
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Summary of Astronomical results
Comparing the histogram slope method to the EMCCD noise model methods, it can
be seen that the results are very consistent at high gain levels (high speed Crab Data),
but for data with lower gain (low speed Standard Sources), the more complex noise
model with the clock induced charge model fails to fit the histogram and produces
inconsistent results. One advantage with using the noise model methods is that they
require less tuning of the start and end fitting points, which were observed to have
a big impact on the accuracy of the results when fitting a line to the histogram.
While there was variation in the seeing during the image sequence, these methods
appeared to be unaffected by the seeing level provided the annulus was chosen to
adapt to the seeing level.

The COTS method did not produce results consistent with the other methods for the
low speed standard source data. This was clear in both the absolute estimated gain
values, but also in the time varying estimates that were not seen in the other methods.
It is possible that due to the short exposure time, there was not enough integration to
produce a stable seeing disc upon which the method rests. As longer integrated data
from the instrument was not available, whether longer integration could make this
a viable method for application to astronomy remains an open question. What was
clear is that the variation in estimated gains across across the sequence of images
was correlated with the seeing conditions.

Similar to the lab results, the estimated EM gain values for all methods for both
types of astronomical data was significantly lower than the nominal values set on the
detector, at approximately a quarter the nominal value. As mentioned in the previous
chapter, provided this is difference is linear across different gain values, it should
not be a problem for the accuracy of the relative gains between the two detectors,
which is what is needed for the GASP instruments polarimetry calculations.
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Chapter 6

Discussion and Conclusions

A variety of techniques to estimate the multiplicative gain in EMCCDs were re-
searched and experimented in this work including several new techniques developed
in fields outside of Astronomy, to investigate their potential use.

The histogram slope technique, while the most commonly used in astronomical
settings (and previously the standard technique for gain calibration of the GASP
instrument), was found to be sensitive to a number of parameters, including the area
of the source image used (i.e. inner annulus radius), and the start and end fitting
points. Techniques to formalize the selection of these parameters were explored and
tested.

The EMCCD noise model approaches were shown to work better at higher gains,
and have the advantage of having to configure less parameters during their use. The
more complex model showed potentially less bias in the face of higher clock induced
charge in simulation, but produced similar results on the high gain astronomical data
to the simpler model. It was also noted that higher gain levels are also required for
these model methods to start fitting correctly.

The Calibration-On-The-Spot technique was applied to the astronomical domain
from microscopy, and has numerous advantages if it could be made work. While
through simulation, it appeared the method could work for astronomical sources in
the presence of seeing effects, if there was sufficient integration, it failed to produce
consistent results on the data from the GASP instrument. It could be explored in the
future after capturing longer exposures of sources if it could be viable alternative in
some scenarios for gain calibration.

More traditional techniques for estimating the gain of EMCCDs, namely the mean
variance techniques have been used in laboratory environments, when it is possible to
collect a more detailed set of intensity series calibration points. These were tested in
the laboratory alongside a new gain series methods, where the input intensity levels
do not need to be varied, which was found to produce the similar results. The latter
might be more practical to implement at a telescope where different intensity levels
might not be possible.



All the techniques applied in the lab and on real data, showed a large discrepancy
from the manufacturers nominal gain, between 2x and 4x less. It is not clear what
the cause of this discrepancy is or if this is normal for the particular devices used.
Another possibility is that the detectors used may have aged.

The ability to explore the effect of seeing in a simulation environment was explored,
and a full end to end simulation flow was built. As part of this, the AOTools package
was also analyzed, to the see if it produced outputs in line with the Komologorov
theory, which it was found to. Also a software library to simulate essentially an
unlimited amount of photo-electrons through and EMCCD register processes was
developed, which may be of use to future researchers in this area.
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Appendix A

Source Code

Several libraries were developed during the course of this work, and they have been
made available in public github repositories. In addition to the code, examples of
use and tests are provided where relevant.

A.1 Photon Generator
Library to generator synthetic input data of sources described in the simulation
chapter:

https://github.com/fatmac78/photon_generator

A.2 EMCCD simulator
Library to simulate the EMCCD detector, including the multiplicative process in
the serial register, clock induced charge in the serial register, and output bias and
readout noise

https://github.com/fatmac78/emccd_simulator

A.3 Calibration-on-the-Spot Estimator
Library to estimate the EMCCD parameters using the Calibration-on-the-spot tech-
nique. Modified version of code supplementary to Mortensen [16]

https://github.com/fatmac78/calibration_on_the_spot

A.4 EMCCD Mixture Model Estimator
Library that was used to estimate EMCCD parameters using mixture model deailed
in equation 1.13

https://github.com/fatmac78/emccd-mixture-model

A.5 Guassian Exponential Mixture Model Estimator
Library to estimate EMCCD parameters using simple Gaussian and Exponential
mixture details in equation 1.8

https://github.com/fatmac78/gaussian-exponential-mixture
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