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Abstract

Somatic mutations are mutations that arise throughout a person’s lifetime.
They contribute to ageing, cancer and other age-related disorders. Recent
technological advances led to many studies investigating somatic mutations
in normal tissues. However, somatic mutations are hard to identify in normal
tissues due to their low frequency and the difficulty distinguishing between real
mutations and errors incorporated during the experimental processes. Studies
of somatic mutations in normal tissues suggest that there is still much un-
known about how somatic mutations contribute to cancer. Somatic mutations
can be studied by analysing cancer samples. Generally, somatic mutations in
cancer samples are studied to understand cancer progression and response to
treatment. This thesis aimed to investigate somatic mutations present in all
cancer cells of a sample (clonal mutations) as a means to understand what is
happening in normal tissue.

Chapter 2 describes a method to predict the total clonal mutation load
of a cancer sample and the use of this approach to investigate the relationship
between variation in clonal somatic mutation load and differences between
tissues in the risk of developing cancer. Before predicting the total clonal
load, we first needed to distinguish between clonal mutations and mutations
present in only a subset of cells (subclonal). We adjusted variant frequency
for tumour purity and local copy number variation to classify variants as
clonal or subclonal. We used the linear relationship between clonal variants
and age to predict the total clonal burden for each tissue type. Under the
assumption that subclonal mutation accumulation does not correlate with
age, we determined what proportion of true clonal variants were classified
as clonal. By adjusting various thresholds for classifying variants as clonal
variants, we could classify, at best, 45% of the true clonal variants. We then
used the relationship between clonal mutation burden and age to estimate the
true clonal load for our samples. To investigate whether the estimated clonal
mutation burden could be used as a proxy for the number of somatic mutations
in healthy cells, we compared our results to somatic mutation burdens that
have been measured directly in normal tissues (matched for age and tissue
type with the cancer samples). We also found that the predicted clonal load
was correlated with lifetime cancer risk. Our findings suggest that we can use
predicted clonal load from cancer samples to investigate somatic mutations
in the normal tissue and has the advantage of being able to use the large
volume of cancer genomics data that has already been generated to extend
our understanding of the accumulation of somatic mutations in normal tissues.

The major histocompatibility complex (MHC) can present neoanti-
gens resulting from somatic mutations on the cell surface, potentially directing
an immune response against it. In Chapter 3, we investigated whether gene
expression explains the lack of signal of immunoediting observed among clonal
passenger mutations. This hypothesis stemmed from two publications that
reported that driver mutations arise in gaps in the capacity of the immune
system to recognize them. We investigated whether passenger mutations ca-
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pable of eliciting an immune response occur preferentially on lowly expressed
genes or if the mutant allele has a lower expression than the reference allele
through a process termed allele-specific expression (ASE). The neoantigen
must be expressed to be presented by the MHC on the cell surface, so a re-
duction in expression could be a means by which the immunogenic mutations
are tolerated. After accounting for gene length and sequence context, we
found no difference in the expression of genes harbouring immunogenic muta-
tions compared to nonimmunogenic or synonymous mutations. Additionally,
there was no evidence that the mutant allele exhibited ASE more often for
immunogenic mutations than nonimmunogenic mutations. Using simulations,
we also estimated an upper bound for the impact of immunoediting on the
mutational landscape in cancer, showing that at most 5% of missense muta-
tions could be removed by this process. To our knowledge, this was the first
attempt to quantify the proportion of missense mutations removed through
immunoediting.

Finally, in Chapter 4, we extended our analysis on the relationship
between gene expression and somatic mutation accumulation by investigating
the relationship between germline ASE and cancer risk. Here, we investigated
the hypothesis that a single score representing germline ASE in all TSGs for
an individual would be associated with an increased cancer risk because only
mutations on the expressed copy would be required to disrupt the function
of the gene. To assess this, we first tested the ability of two methods to
predict ASE using genotype data. We modified a tool called PrediXcan which
predicts overall gene expression to predict the expression of each haplotype
and generated a ratio with the predicted values. We also applied logistic
regression models using heterozygous SNP status as predictors and ASE status
as the outcome. Although the performance of ASE predictions was poor for
many genes using both methods, our results indicate that it may be possible
to generate more accurate predictions using genotype data as input as more
data becomes available. As a pilot study, we generated a single TSG ASE
score using the genes for which the predictions worked well and assessed the
relationship with breast cancer risk. We found no statistically significant
relationship between TSG ASE and cancer risk, which is likely due to our
inability to predict ASE in the TSGs that contribute to cancer risk in this
tissue type, as assessed using cancer data.

In conclusion, this thesis presented a novel approach to predict the
true clonal load of cancer samples and demonstrated its similarity to the
observed somatic mutation load in normal tissue. We also provided further
insight into the role of the immune system in shaping the mutational landscape
of cancer samples and, using a novel method, generated an estimate for the
proportion of missense mutations removed through immunoediting. Finally,
we also presented a novel approach to predict germline ASE using genotype
data showing it is feasible for some genes and performance is likely to be
improved as more data becomes available.
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1 INTRODUCTION

1 Chapter 1: Introduction

1.1 Somatic mutations in normal tissues

Mutations accumulate in humans throughout their lifetime. These are somatic
mutations, that arise in a single stem cell and are only present in cells derived
from that cell [1]. They do not occur in the germline and are not passed
on to offspring [2]. These mutations can be changes in the DNA at a single
position (single nucleotide variants; SNVs), small insertions and deletions
of sequence (indels), somatic copy number alterations (SCNA) or structural
variants (SVs) [3]. However, our research was focused on investigating SNV,
the most numerous type of somatic mutations [4], and as such, they will be the
focus of this thesis. Due to the redundancy of the genetic code, which means
different codons can code for the same amino acid, SN'Vs in coding regions can
have different functional effects on the coding sequence [5]. These changes can
be synonymous (do not change the amino acid sequence) or nonsynonymous
(changes the amino acid sequence), with nonsynonymous variants classified
as missense (the amino acid is changed to a different amino acid) or nonsense
(the protein sequence is terminated prematurely) [6]. Although recently, a
third category has been proposed, “unsense”, to account for those changes
that appear synonymous but have a functional consequence, such as changing
the gene expression or impacting protein production [7].

Somatic mutations play a role in the ageing process [8, 9] as well as in
age-related disorders such as neurodegenerative diseases [10, 11] and cancer
[12-14]. As a result, they are a key focus of research in these areas. Until
recently, it has been challenging to assess somatic mutation in normal tissue.
This is due to the difficulty of detecting somatic mutations at low frequencies
using bulk sequencing techniques. When performing bulk sequencing, a large
number of cells is required from a sample. However, due to the polyclonal
nature of most tissues, somatic mutations are present in only a small number
of cells, meaning they will be only present in a small proportion of the cells
in the sample taken. Owing to inaccuracies caused by the sequencing and
bioinformatic processes, it is difficult to distinguish the true somatic mutations
from artefactual variants [15].

1.1.1 Methods to detect somatic mutations in normal tissues

Due to recent advances in technology, the following strategies are being used
to study somatic mutations in normal tissues:

1. Single-cell clonal expansions: Tissue cells are cultured in wvitro, and
single cells are sorted by flow cytometry before being clonally expanded.
Following this, a second round of clonal expansion of single cells picked
from these cultures generates enough cells to perform whole genome
sequencing [16, 17]. A limitation of this method is the introduction of
artefactual variants through the culturing process itself. However, most
of these mutations will only be present in a subset of the cells, while
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true somatic variants should be present in all cells of the culture [18].

2. Laser capture microdissection (LCM): this approach involves using a
laser under a microscope to remove unwanted cells leaving only the
area of interest [19]. This allows the retention of a clonal population of
cells, which can then be sequenced by whole exome or whole genome
sequencing. A disadvantage to this method is that it requires well-
defined clonal structures, so it is limited to large clones.

3. Deep Targeted Sequencing: For epithelial structures that do not have
well-defined structures, such as skin or oesophagus, punch biopsies are
taken, and small sections are sequenced to a very high depth [20-23].
However, this method focuses on a panel of informative genes rather
than all genes within a sample.

4. Consensus sequencing with molecular barcodes: The duplex sequenc-
ing method was designed specifically to identify variants present at
extremely low sequencing depth in a sample by labelling each strand
of double-stranded DNA molecule with a sequence tag and perform-
ing PCR amplification and sequencing of each strand [24]. The se-
quences from both strands are only kept if they match each other ex-
actly, resulting in high accuracy for variant calls. A limitation of this
method is that it requires a larger sequencing volume than standard se-
quencing to achieve appropriate sequencing depth for analysis. Another
method called bottleneck sequencing (BotSeq) was developed, which
built upon this approach using limiting dilutions prior to PCR ampli-
fication, creating a bottleneck that results in random sampling of the
double-stranded molecules resulting in a smaller library for sequencing
[25]. A more recent version of this sequencing approach, nanorate se-
quencing (NanoSeq), has a reduced error rate of 5 errors per 1 billion
base pairs [26]. However, as it randomly samples the genome not all
genes are covered, but it does give an indication of mutational bur-
den and patterns [27]. Another method called enzymatically cleaved
and optimal sequencing (EcoSeq) performs similar analyses but reduces
the number of genomic regions required to analyse a sample to reduce
sequencing costs[28]. However, it also only analyses a portion of the
genome. A similar approach creates independent copies of each strand
that have been labelled with a unique molecular identifier, using a rolling
circle amplification step before PCR, amplification [29]. It has the ad-
vantage that it only requires one strand of the DNA, so it is more
cost-effective than duplex sequencing techniques, and the results are
comparable to those obtained by single cell-based approaches.

5. Single-cell DNA sequencing techniques: Whole genome application
methods such as multiple displacement amplification [30], multiple an-
nealing and looping-based amplification cycles [31], and degenerate
oligonucleotide-primed PCR [32] have been used to detect somatic mu-
tations in single cells. However, each method is prone to error with
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differences in coverage of alleles and complete allelic dropout common
due to the amplification process, making it difficult to accurately call
somatic mutations using these methods [33, 34].

6. Single-cell RNA sequencing: A tool called SCmut has been developed
to successfully call somatic mutations using single-cell RNA sequenc-
ing (scRNA-seq) data [35]. However, this requires that mutations are
first identified using bulk DNA-sequencing techniques or that the user
supplies a list of somatic mutations as input [35]. Additionally, meth-
ods incorporating scRNA-seq with data from single-nucleus assay for
transposase-accessible chromatin sequencing (snATAC-seq) have also
been developed to identify somatic mutations in normal tissue [36, 37].

7. Bulk RNA-Sequencing: A recent study used bulk RNA-sequencing
data of normal samples from the Genotype-Tissue Expression (GTEx)
project to identify somatic mutations [38]. Additionally, a pipeline
called RNA-MuTect has been developed to identify somatic mutations
in RNA-seq data [39]. However this requires a matched DNA sequencing
sample which is used to identify germline mutations. Calling variants in
RNA-sequencing data, in general, is extremely difficult due to splicing
and RNA-editing events, as well as technical factors such as sequencing
errors, and mapping errors [38]. Additionally, the specificity of calling
variants decreases as coverage increases likely due to sequencing errors
passing quality control filters when more reads are present [40]. There-
fore, this method requires strict quality control screens and filtering.
It also has the disadvantage that only expressed genes can be used to
detect somatic mutations [40].

1.1.2 Somatic mutation rates in normal tissue

Somatic mutations have been shown to accumulate with age [41]. However,
the rate at which they accumulate varies depending on tissue and cell type
(Table 5.1 in Appendix A). Multiple studies of the same tissue have estimated
consistent mutation burdens, with bile ducts showing the lowest rate of 9
SNVs per year and appendix, large and small intestines showing the highest
rates of 56, 49-51 and 49 SNVs per year, respectively, over the entire genome.
A study of different cell types in kidneys showed that mutation burden differs
between cell types within a tissue due to different mutagen exposures [42]. A
subset of cells from the proximal tubule showed the highest yearly increase of
56.6 SNVs per year, while subcutaneous, visceral adipose tissue and visceral
adipose tissue had increases of 17.5 and 27.2 SNVs per year [42]. The majority
of studies have focused on mutation accumulation in stem cell tissues due to
the technical difficulties of studying differentiated cells. However, there have
been a growing number of studies investigating the differences in mutations
in non-dividing cells compared to stem cells of the same tissues. Mutations
may accumulate at a higher rate in differentiated cells compared to stem cells
because the consequences of a mutation in a stem cell are far-reaching and,
as a result, a stem cell would be under more stringent error control than
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differentiated cells [43]. However, differentiated cells would not accumulate
mutations caused by DNA replication [44] which means fewer opportunities
exist to acquire mutations. Also, differentiated cells are short-lived, meaning
there is a limited amount of time for the cells to acquire additional mutations
post-mitosis [44]. A study investigating somatic mutations in differentiated
liver hepatocytes compared to liver stem cells (LSCs) found that there is a
higher mutation frequency in the hepatocytes (21 SNVs per cell per mitosis
compared to 11 SNVs in LSCs) [45]. The higher mutation load in differenti-
ated cells could be due to mutations accumulating during the differentiation
process itself [44].

1.1.3 Mutational processes that contribute to somatic mutation

As well as assessing the mutation rate of somatic mutations in normal tissues,
mutational signatures within samples have also been investigated. Different
mutational processes leave a characteristic mark on the type and frequency
of mutations found in a cell. These “signatures” have been characterised in
cancer samples with 94 single base substitution signatures recorded in the
catalogue of somatic mutations in cancer (COSMIC) [46]. These were iden-
tified by considering each of the six possible mutation types (C >A, C >G,
C>T, T>A, T >C, and T >G) and the nucleotide on its 5 and 3’ sides
which gives a total of 96 trinucleotide contexts. The frequencies of these 96
mutation types are assessed, and the signatures that contribute the most to
the observed mutation pattern are identified. While the aetiology of many
mutational signatures remains unknown, mutational signature analysis can,
in some cases, identify exogenous and endogenous mutational processes that
have contributed to the observed mutations. Two signatures, SBS1 and SBS5,
which are associated with ageing, have been consistently found in all tissue
types (Table 5.1 in Appendix A). SBS1 is caused by spontaneous deamination
of 5-methylcytosine [47]. The rates of mutations from this process correlate
with estimated rates of stem cell divisions and this signature is, therefore,
thought to be a cell division or mitotic clock. SBS5 is another clock-like sig-
nature [48]. Although the actiology is unknown, the number of mutations
attributed to this signature correlates with an individual’s age [48]. SBS18
is common across tissue types and has been shown to correlate with alcohol
consumption [49]. SBS7 is thought to be associated with UV exposure [50]
and has been found in skin, skeletal muscle, lymphocytes and kidney. SBS18
is common in colorectal tissues and small intestine. Several signatures have
been identified in normal tissues that have not been found in cancer sam-
ples. These may correspond to mutational processes that have been masked
in cancer samples but are associated with clonal expansion rather than cancer
progression [18].

1.1.4 Positive selection of driver mutations in normal tissue

Studies of somatic mutations in normal tissues have provided evidence that
clonal expansions are not exclusive to cancer (Table 5.1 in Appendix A), and
there is positive selection of mutations in common cancer-associated genes
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in morphologically non-cancerous tissue. In fact, some of the driver genes
were found to be more frequently mutated in normal tissue than in the cor-
responding cancer type [51]. Studies of inflammatory tissue have also shown
that positive selection of cancer-associated genes is frequent but rarely de-
velops into cancer. Interestingly the number of drivers undergoing positive
selection varies between tissue types with colon tissue having a low number
of positively selected drivers. These findings in normal tissues indicate that
mutations in these driver genes may not be sufficient to drive tumourigenesis
and that more needs to be learned about the role of clonal expansion in cancer
progression [52]. It is possible that driver genes found in cancer do not play a
role in cancer progression but are present because they were in the normal cell
[53]. Tt is worth noting that the screens used in the studies to identify positive
selection in normal tissues generally focused on cancer associated genes and it
is possible that non-driver genes could have greater positive selection in nor-
mal tissues compared to cancer associated genes [51]. It is clear from studies
of normal tissue that there is still a lot to be discovered about the transition
from normal cells into cancer cells. It is likely that clonal expansion is still
important for cancer initiation but that more driver events may be required
than initially thought [51]. It is also likely that increased genomic instability
as well as clonal expansion is required because genomic instability is common
in cancer but not common in normal cells [51]. Additionally, driver muta-
tions may need to occur in the correct order and in the correct combination
for cancer to develop [51].

1.2 Contribution of somatic mutations to cancer trans-
formation

As we have seen in the previous section, somatic mutations are common in
normal cells, but they also contribute to carcinogenesis. Cancer is charac-
terised by the unregulated growth of cells which form a mass of cells which
can be benign or malignant [54]. This is caused by disrupting the processes
that control cell division and cell death so that the cells can continue to grow
indefinitely and evade normal inhibitory signals [54]. Somatic mutations oc-
cur randomly in the genome, and the majority of somatic mutations that
accumulate throughout a lifetime are neutral, generally causing changes in
the DNA sequence that do not impact fitness [55]. These are termed “passen-
ger” mutations. It is only when a cell acquires mutations that impact genes
that are vital for growth and survival that cancer can arise. These mutations
occur in tumour suppressor genes and oncogenes and are called “driver” mu-
tations [56]. Tumour suppressor genes (TSGs) normally function to suppress
cell growth and proliferation [54]. As a result, these genes can stop cancer
from forming and they are often inactivated in tumour cells. Both copies of
the gene need to be inactivated in order to inhibit its normal function [54].
Oncogenes are genes whose normal function is to promote cell growth and
proliferation and are important for cancer transformation [57-59]. Loss of
function of TSGs and gain of function of oncogenes are important for cancer
growth and proliferation [60]. The more somatic mutations that arise, the
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greater the chance of a mutation occurring in one of these cancer-associated
genes.

1.2.1 Factors that affect the accumulation of somatic mutations

There are a number of risk factors that increase the likelihood of cancer oc-
curring, both due to endogenous processes as well as exposure to certain
environmental factors such as ultraviolet light and smoke that increase so-
matic mutation accumulation. Age is one of the most significant risk factors
for developing cancer because as we get older, there are more opportunities
for somatic mutations to accumulate [61]. Sex plays a role in cancer risk,
with males having a higher incidence of cancer compared to women, which is
thought to be due to differences in environmental exposure and hormones [62].
Race and ethnicity are also risk factors, but this may be due to socioeconomic
factors [62]. Environmental exposures, including smoking, alcohol, exposure
to UV, and exposure to aristolochic acid, increase the risk of developing can-
cer. Individuals that smoke have an increased mutational burden compared
to non-smokers [63, 64], and respiratory cancer risk is higher for smokers than
non-smokers [65]. Point mutation prevalence has been shown to be higher in
smoke and aristolochic acid-exposed individuals than non-exposed (27 and 36
fold respectively) [25]. Alcohol consumption is associated with increased can-
cer risk for upper esophageal, pharyngeal and liver cancers [66]. Exposure to
UV light is the main risk factor for developing skin cancer [67]. Aristolochic
acids are natural compounds that are found in the Aristolochiaceae family of
plants. It is a carcinogen which leaves a characteristic mutational signature in
the genome and is associated with an increased risk of developing urological
cancers [68].

Inherited mutations can predispose an individual to developing cancer.
Patients with an inherited mutation in TSGs or oncogenes tend to develop
cancer at an earlier age than patients who do not. Examples include germline
mutations in BRCA1 and BRCA2 which increase the risk of ovarian and breast
cancers in women, prostate cancer in men and pancreatic cancer in both men
and women [69]. Lynch syndrome is an example of an inherited disorder
that increases the risk of multiple cancers, particularly colorectal cancer [70].
It is due to germline mutations in MLH1, MSH2, MSH6 [71] or PMS2 [72],
which are genes important in DNA mismatch repair. Mutations in these
genes increase the mutational burden with a 130-fold increase in the number
of nuclear mutations observed in patients who had inactivating mutations in
PMS2 compared to PMS2 wild-type patients [25]. Cancer generally originates
in stem cells, and the number of stem cell divisions of tissues have been shown
to correlate with an increased risk of developing cancer in that tissue [73].
This was attributed to the accumulation of somatic mutations incorporated
through errors in DNA replication during each stem cell division.
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Figure 1.1: Principles of clonal mutations in tumor samples. (A) Driver
mutations (plus symbol) can occur in a cell resulting in clonal expansion so that all
cells in the tumor sample have the same mutations that were present in the most
recent common ancestor (MRCA) (grey plus sign). (B) As the tumor continues to
grow, additional mutations can arise, creating sub-populations of cells with distinct
sets of mutations. The tumour sample contains a mixture of tumor cells (solid
circles) and normal cells (dashed circles). (C) Mutations present in the MRCA
will be in all tumor cells (clonal) and will have a cancer cell fraction (CCF) of 1
(square) while other mutations which occurred at a later stage will only be present
in a subset of cells (subclonal) and will have CCF less than 0.5. Adapted, with
permission, from Figure 1 from Dentro et al. [74] (copyright to Cold Spring Harbor
Laboratory Press).
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1.3 Clonal Theory of Cancer

Studies investigating the evolution of tumour growth determined that most
tumours are monoclonal, such that a single cell transforms into a cancerous
cell and expands to generate a mass of cells with a single common ancestor [75].
In 1976 Peter Nowell proposed the clonal theory of cancer evolution whereby
normal cells transform into malignant cancerous cells through a multi-step
process that results in the accumulation of a series of mutations [75]. The
majority of somatic mutations that accumulate are neutral and do not give a
growth advantage to the cell, but they create a population of heterogeneous
cells that compete with each other for resources [76]. Occasionally a mutation
occurs in a gene that either promotes cell proliferation or decreases cell death,
giving the cell a growth advantage so that it can out-compete the other cells
[77]. If this cell continues to divide and grow unchecked, it will result in an
expansion of cells, all harbouring the same mutations present in the initial
founder clone (Figure 1.1). After a cell has transformed into a cancer cell,
it can acquire additional somatic mutations, called subclonal mutations, that
are only present in a subset of cells [74]. The majority of subclonal mutations
are selectively neutral [76, 78]. However, occasionally subclonal mutations
can result in late clonal expansions that create distinct cellular populations
within the tumour that can lead to intra-tumour heterogeneity (ITH) [79].
This has important implications in terms of resistance to cancer therapy [80].

1.4 Bioinformatic analysis of cancer data
1.4.1 Data generated by Cancer Consortiums

Several consortiums have been created with the aim of bringing groups of
scientists together from different research institutions to develop and validate
methods, pool resources and expertise, and generate large datasets to expand
our knowledge and understanding of cancer. Some of the main ones which
have focused on multiple cancer types are detailed below. However, there
are also cancer-specific consortiums such as Tracking the evolution of non-
small-cell lung cancer (TRACER) [81], Multiple Myeloma Research Founda-
tion (MMRF)(mrf.org) and Genetics and Epidemiology of Colorectal Cancer
Consortium (GECCO) [82].

Data from pan-cancer studies:

The Cancer Genome Project was launched by the Welcome Trust Sanger In-
stitute in 2000 to identify genetic changes and patterns across cancer genomes
using high-throughput sequencing. The data from this project is available in
the Catalogue of Somatic Mutations in Cancer (COSMIC) database (can-
cer.sanger.ac.uk), which includes thousands of somatic mutations as well
as a collection of mutational signatures found in human cancers [83]. The
most commonly used dataset in cancer research was generated by The Can-
cer Genome Atlas (TGCA) [84], a consortium launched jointly by the Na-
tional Cancer Institute (NCI) and National Human Genome Research Insti-
tute (NHGRI) in December 2005. Initially started as a pilot program with
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three cancer types; glioblastoma, serous cystadenocarcinoma of the ovary,
and lung squamous carcinoma, it is now comprised of data from primary
cancer and matched normal samples of 33 cancer types. There are 20 col-
laborating institutions located across Canada and the US participating in the
program. TCGA has generated genomic, transcriptomic, epigenomic and pro-
teomic data from over 11,000 individuals, and the data is publicly available to
researchers under open and controlled access types, hosted on the Genomic
Data Commons (GDC) Data Portal (https://portal.gdc.cancer.gov ). The
Pan-Cancer Analysis of Whole Genomes (PCAWG) project was established
to aggregate whole genome analyses from projects such as TCGA and ICGC
[85]. This built upon previous studies to identify coding and non-coding vari-
ations in cancer genomes of 2,834 individuals across 38 tumour types. The
data was derived from primary tumour with matched normal samples and is
publicly available through the ICGC database (https://dcc.icge.org/pcawg).
The International Cancer Genome Consortium (ICGC) was launched in 2008
to coordinate cancer genome projects worldwide [86]. Cancer projects such
as TCGA and PCAWG are included within the ICGC. Foundation Medicine
released genomic data for 18,004 adult cancers that were profiled using the
FoundationOne assay [87]. The data comes from 162 tumour subtypes with
the majority being thoracic, gastrointestinal, breast, gynaecologic and hepato-
pancreato-biliary cancers. Genomics Evidence Neoplasia Information Ex-
change (GENIE) was launched by the American Association for Cancer Re-
search (AACR) to encourage data sharing from 19 different institutions with
the aim of generating enough data to aid in clinical decision making. It is
comprised of genomic and clinical data from 44,756 patients from more than
50 cancer types [88]. Clinical Proteomic Tumour Analysis Consortium (CP-
TAC) was launched in the US in 2011 as a national effort to accelerate under-
standing of cancer using genomic and proteomic data for 1527 samples from
9 cancer types [89]. International Cancer Proteogenomic Consortium (ICPC)
is a global partnership of scientists sharing genomic and proteomic data from
cancer samples from 12 tissue types with the aim of using proteogenomic data
to predict cancer treatment outcome (cpc.cancer.gov).

Data from studies of rare cancers:

The Cancer Genome Characterization Initiative (CGCI) was launched to
characterise rare cancers, including Burkitt’s Lymphoma (BLGSP), HIV+
Diffuse Large B-Cell Lymphoma (HTMCP-DLBCL), HIV+ Cervical Can-
cers (HTMCP-CC), HIV+ Lung Cancers (HTMCP-LC), Diffuse Large B-Cell
Lymphoma (NHL-DLBCL) and Follicular Lymphoma (NHL-FL). The major-
ity of projects are ongoing, with NHL-DLBCL and NHL-FI both complete.
Genomic, exomic and transcriptomic data is publicly available through the
GDC (https://ocg.cancer.gov/programs/cgci ).

Data from studies of paediatric cancers:

The Therapeutically Applicable Research to Generate Effective Treat-
ments (TARGET) program (https://ocg.cancer.gov/programs/target ) was
launched in 2006 to develop targets and biomarkers for treating paediatric
cancers and to further understand the molecular landscape of childhood can-
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cers. There are five cancer types included in this study; Acute Lymphoblastic
Leukemia (ALL), Acute Myeloid Leukemia (AML), Neuroblastoma (NBL),
Osteosarcoma (OS) and Wilms’ Tumour (WT). The research has been carried
out by a collaborative team comprised mostly of Children’s Oncology Group
(COG) members and researchers from the NCI, who worked together to gen-
erate, analyze, integrate, and interpret high-quality genomic, transcriptomic,
epigenomic and kinomic data which is publicly available through the GDC.
There is also the Children’s Brain Tumour Tissue Consortium (CBTTC)
which is a collaborative project from 32 institutions in the US which share
clinical and molecular data from 4842 individuals with brain and spinal cord
tumours [90]. St Jude Children’s Research Hospital launched the Pediatric
Cancer Genome Project study in 2011 with the goal of sequencing genomes
of paediatric cancer patients in order to gain better understanding of more
than 20 different cancer types [91]. They have whole genome sequencing data
from 800 patients and whole exome and whole transcriptome data from 1200
patients.

1.4.2 NGS workflow for detection of somatic variants in cancer
samples

Somatic mutations are generally identified using next-generation sequencing
(NGS) technologies, typically in tumour samples. Targeted sequencing panels
or whole exome sequencing (WXS) panels tend to be used in clinical prac-
tice to identify mutations in genes of interest. Targeted sequencing identifies
mutations in a subset of genes of particular importance for the disease in
question. Limiting the sequenced regions of the genome to these genes allows
each position to be sequenced to a high depth (ranging from 100-1000s of
reads at each position) [92]. WXS targets the roughly 20,000 protein-coding
genes in the human genome and typically sequences to a depth of 100X. [93]
WGS is an unbiased sequence technique which covers the entire genome [94].
However, due to the high costs associated with WGS, depths between 30-50X
are typically achieved for cancer samples, making it challenging to identify
somatic mutations present at a low frequency or in samples with low tumour
purity [95]. A description is provided below of a typical WXS workflow. WGS
follows a similar workflow with some alterations to the processing steps and
WGS-specific tools used for specific steps, such as alignment. The majority
of the data used in this thesis came from WXS, which is why we chose to use
this as our example workflow here.

Sample Types:

Samples for bulk sequencing are generally preserved by formalin-fixed paraffin
embedded (FFPE) or fresh frozen (FF) methods. The FFPE method is used
to store tissue for a long period of time [96]. Samples are first fixed with a
formaldehyde solution that stops cell metabolism, and then paraffin is used
to seal the tissue and reduce the rate of oxidation [97]. The FF technique
requires that the sample is frozen in liquid nitrogen 30-60 minutes after surgery
[98]. The FFPE method preserves morphology, while FF does not. FFPE is
the most common method due to the lower cost, ability to store at room
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temperature and the larger time frame to process the sample after surgery
[99]. FF needs to be kept frozen because once it starts to thaw the DNA
or RNA starts to degrade[100]. FF has the advantage that DNA/RNA is
preserved better than FFPE, with FFPE related artefacts observed as C >T
mutations in the sample [101]. To identify somatic mutations in a sample
matched paired tumour normal samples are generally taken from a patient.
The normal sample is usually taken from blood but sometimes normal tissue
adjacent to the tumour is used [102]. This allows germline variants to be
identified and removed. Occasionally, a tumour sample is taken without a
matched normal sample (referred to as tumour only). This makes it more
difficult to identify germline mutations and relies instead on databases of
common variants or information from a panel of normal samples to remove
variants that are likely to be germline [103].

Alignment and preprocessing:

The first step of any bioinformatics pipeline is to assess the quality of the se-
quence reads output from the sequencer. These reads are typically 75, 100 or
150 base pairs in length and can either be single or paired-end reads. Paired-
end reads are sequenced from both ends of the DNA fragment which gives
higher quality and better sequence alignment. The format of the files are
generally binary base call (bcl) files which are converted to FASTQ files that
contain a readout of the nucleotides called for each read along with a qual-
ity score for each base. These FASTQ files are assessed using a tool called
FASTQC [104] to check that the reads are of sufficient quality for downstream
processing. Typically the ends of reads are trimmed using a tool such as Trim-
momatic [105] because base quality drops off at the 3’ end in the sequencing
by synthesis process of Illumina sequencing. To get positional information
for the reads, alignment to a reference genome is required. Several tools
are available to align reads to the reference genome, with BWA-MEM [106]
the most commonly used. After alignment, preprocessing steps are required
before variant calling. If amplification by PCR is performed during library
preparation, duplicate marking is required to identify reads generated from
the same molecule. This could introduce bias in the variant calling step, with
some reads over-represented in the results. Depending on downstream pro-
cessing, an optional local realignment step using GATK [107] or ABRA [108]
can be performed to limit errors caused by indels and SNPs. The original
alignment step aligned each read separately, but these tools use information
from all reads at that location to determine the best alignment of the reads.
Base quality recalibration is another optional but highly recommended step.
It is performed using the GATK suite of tools [107] and accounts for inaccu-
racy in base quality scores assigned by the sequencer. Base quality scores are
essential for variant calling, and this step improves the accuracy of variant
calls. However, it is computationally expensive and time-consuming. Due to
improvements in sequencing technologies that have increased the accuracy of
base quality scores, some researchers may not include this step in order to
reduce analysis turnaround time.

Somatic Variant Calling, Annotation and Filtering:

11
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Typically somatic variant calling is performed with a matched tumour and
normal sample from an individual. Variants in the tumour are detected
based on comparison to a reference genome and the normal sample to remove
germline variants. Variant callers can be position-based callers or haplotype-
based callers (examples are given in Table 1.1). Position-based callers directly
compare the aligned sequence to the reference base while haplotype-based
callers perform a local realignment step that identifies regions of variation and
uses these haplotype blocks to identify variants. Mutect2 is the most com-
monly used variant caller [109] but there have been many studies to compare
the sensitivity and specificity of the different variant callers available [110-
112]. Best practice guidelines recommend that a consensus-based approach
[109] using multiple variant calling tools is used to identify high confidence
variants such as the approach used by the mutation calling workgroup who
analysed TCGA variant calls [113]. However, this approach increases the pro-
cessing time of the calls so it depends on whether specificity or sensitivity is
important for downstream analysis. After variants have been identified fur-
ther annotation using tools such as Annovar [114] or VEP [115] are performed
to identify the functional impact of variants. Filtering based on the variant
frequency and variant consequence is typically performed to reduce the list of
candidate variants for analysis by clinicians and researchers [103].

Variant Caller | Position-based Haplotype-based Cite
MuTect2 Y [109]
VarScan2 Y [116]
Strelka2 Y [117]
MuSe Y [118]
Pisces Y [119]
deepSNV Y [120]
SomaticSniper Y [121]
VarDict Y+ [122]

Table 1.1: Available somatic variant callers with details of whether
they are position or haplotype based callers. Y indicates which class
the variant caller belongs to. Y* indicates the tool is not haplotype based but
has its own inbuilt realignment step.

1.4.3 Methods to identify clonal variants in tumour samples

An important aspect of assessing somatic variants in tumours is identifying
those variants that are clonal and subclonal. In terms of therapy for cancer
treatment it may be important to identify which variants are clonal and are
therefore present in all cells of the tumour in order to decide on genes to target.
However, in order to identify variants that could aid in relapse identification
of subclonal mutations may be important. While it is possible to use variant
frequency to classify a variant as clonal or subclonal, under the assumption
that a variant with a frequency of 0.5 is clonal, this is not always accurate
due to confounding factors such as tumour purity, copy number alterations
(CNA) and intra-tumour heterogeneity (ITH).

12
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A number of tools are available to identify clonal and subclonal vari-
ants in bulk sequencing tumour samples. These are outlined in Table 1.2.
Tools can be classified as multi-region bulk sequencing or single sample bulk
sequencing. Multi-region tools have the advantage that they can account for
ITH. By sampling from multiple sites within a tumour it is easier to identify
true clonal mutations and not suffer the “illusion of clonality” problem of sin-
gle sample bulk sequencing. Illusion of clonality occurs due to sampling bias
which means a subclonal mutation can appear clonal because it is present in
all cells from the sample but is not present in all cells of the tumour [74].
However, it is rare that a researcher would have multiple samples of the same
tumour with single sample bulk sequencing more common. Copy number al-
terations can impact estimation of the cancer cell fraction (CCF) required
to call a clonal variant [74](estimation of CCF is discussed in more detail in
Chapter2). The majority of tools take copy number status of the variant loci
into account when calculating CCF (references in Table 1.2). The ploidy is
either estimated by the tool itself, as in the case of PureCN, or copy number
information must be supplied as input (Table 1.2). An additional factor to
consider when calculating CCF for a variant from bulk sequencing data is
tumour purity. Normal cells are present in samples taken from a tumour for
bulk sequencing which can dilute the variant frequency of true clonal variants
[74]. Therefore, the tumour purity of a sample should be accounted for when
classifying a variant is clonal or not. Some tools infer tumour purity or take
tumour purity estimates as an input variable while others do not account for
this at all (Table 1.2).

Tool Input Sample | Comments Cite
PureCN Single Infers CNA and purity [123]
Uses CN information from other
PyClone Single or Multi | tools, accounts for normal contamina- | [124]
tion
DPClust Single or Multi | CNA and purity as input [47]
FastClone Single CN data and purity as input [125]
CliP Sinle CNA and purity as input [126]
CloneFinder Multi Does not account for CNA [127]
TrAp Single Does not accou'nt f(?r CNA, accounts for [128]
normal contamination
PhylogicNDT Single or Multi | CNA and purity as input [129]
SciClone Single or Multi | CNA and purity as input [130]
CITUP Multiple Eto;s not account for CNA, estimates pu- [131]
SCHISM Multiple CNA and purity as input [132]
Chimaera Multiple CNA and purity as input [133]
.. Longitudinal . . .
LiquidCNA liquid biopsies CNA and purity estimation [134]
QuantumClone | Muli CNA and purity as input [135]
SuperFreq Multiple CNA as input [136]
Single, multi . .
MOBSTER and longitudinal CNA and purity as input [137]
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DEVOLUTION | Multiregion CNA as input. Uses genotype data [138]
THEMIS Multiple CNA as input [139]
Canopy Multi CNA and purity as input [140]
AncesTree Multi Doe's not account for CNA, estimates [141]
purity
BayClone Single CNA as input [142]
Clomial Multi Does not account for CNA or purity [143]
Multi or .
cloneHD longitudinal CNA as input [144]
LICHeE Multi Does not account for CNA or purity [145]

Table 1.2: Tools that determine clonal status of SN'Vs using targeted
or whole exome sequencing data. CNA= copy number alteration, CN=
Copy Number, purity=tumor purity.

1.5 The role of antigen presentation in immunoediting
and the subsequent impact on immunotherapy ef-
ficacy

The immune system has evolved primarily to protect us from microbial
threats, preserve our integrity, and avoid death [146]. Humans have devel-
oped sophisticated innate and adaptive mechanisms for this purpose. The
innate system can recognise a threat that has not been encountered before,
while the adaptive system only recognises specific threats and also has a mem-
ory so it can recall prior exposure [147]. The role of the immune system in
cancer has been debated since the 1800s, but it is now well established that
the immune system actively removes cancerous cells before they have a chance
to take hold [148]. The first evidence that the immune system played a role
in preventing cancer came from treating cancer with a toxin known as Co-
ley’s Toxin, which caused the tumor to disappear [149]. The response to the
toxin was assumed to be caused by immune cells attacking and eliminating
the tumor cells. However, not all patients responded to this treatment, and
the modality was unknown, causing scientists to question the importance of
the immune system’s role in preventing cancer, until more recently when ad-
ditional research has provided further evidence to support Coley’s principles
(as discussed below) [150].

1.5.1 Cancer cell antigens and the major histocompatibility com-
plex

The immune system can recognise aberrant cells and remove them from our
body. The major histocompatibility complex (MHC) which is expressed in all
nucleated cells plays a major role in this process [147] because it can bind non-
self peptides and present them on the cell surface for possible recognition and
removal by immune cells [147]. Alterations to the DNA sequences can generate
peptides that are different from peptides present in the normal cell (self-
antigens). There are three ways in which non-self antigens can arise in a cancer
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cell: 1) a mutation in the DNA sequence that changes the protein in the cancer
cell compared to the normal cell (neoantigen), 2) overexpression of a protein
or expression of the protein in a cell type that does not usually express it, 3)
post-transcriptional modification such as alternative splicing, glycosylation or
phosphorylation [151]. Here, we focus on neoantigens derived from somatic
mutations. The first evidence that neoantigens play an important role in T
cell response to tumours came with the identification of tumour-associated
RNA transcripts that allowed tumour cells to be recognised by specific T-
cells [152, 153]. Further studies showed it is possible to identify potential
neoantigens that may elicit a T-cell reaction using cancer genomic data [154,
155], and that both CD4 and CDS8 T-cells respond to neoantigens in many
cancers[156-158]. Additionally, neoantigens are proving to be good targets for
T-cell mediated therapies such as immune checkpoint inhibitor (ICI) therapies
and neoantigen-specific T-cell reactivity therapies [151].

The MHC is a cluster of genes on chromosome 6 that encode the
proteins involved in antigen presentation to T-cells [159]. Human Leukocyte
Antigen (HLA) is the term for the human MHC [160]. There are two MHC
classes, MHC-I and MHC-II. The human MHC is polygenic, meaning there
are multiple genes within each class, and polymorphic, meaning there are
multiple variants of each gene. There is a high degree of sequence variabil-
ity within genes between individuals. There are 3 MHC-I genes (HLA-A,
HLA-B and HLA-C) and 3 MHC-II genes (HLA-DR,HLA-DP and HLA-DQ)
[160]. MHC-I genes are expressed on nucleated cells, while MHC-II genes
are expressed on antigen-presenting cells (APCs) such as macrophages, den-
dritic cells, and B-lymphocytes [159]. Dendritic cells can activate both CD4
and CD8 T-cells, while other specialised APCs such as macrophages and B-
lymphocytes can only activate CD4 T-cells [147]. The role of the MHC is to
display antigens present inside a cell on the cell surface, potentially targeting
them for destruction upon recognition by T-cells. The MHC classes detect
peptides originating from different compartments [159]. MHC-I detect pep-
tides generated in the cytosol of the cell while MHC-II detects peptides that
have been generated from phagocytosis of an extracellular protein [147].

Cytosolic proteins are processed by the MHC-I pathway (Figure 1.2
left hand panel) [147]. Upon synthesis by the ribosome, proteins are re-
leased into the cytosol, where the proteasome degrades defective proteins
[161]. MHC-I molecules are formed in the lumen of the endoplasmic reticu-
lum (ER) [162]. Peptides produced by the proteasome are delivered to the
ER through the transporter associated with antigen processing (TAP1 and
TAP2) where they can bind to the MHC-I [163]. MHC-1 molecules test the
binding of peptides until they find one that is the right size and can stably
bind to the MHC-1 molecules [162]. Peptides that bind to the MHC-1 are
usually 8-10 amino acids in length and they bind to both ends of the MHC-1
molecule [164]. The MHC can bind many, but not all, antigens and can bind
them with varying degrees of affinity [165]. Once a peptide is bound then the
peptide: MHC-1 complex is transported to the cell surface for detection by the
T-cells [162].
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Similarly, extracellular proteins are processed by the MHC-II pathway
(Figure 1.2 right hand panel) [147]. These proteins have been engulfed by the
APC into an intracellular vesicle called an endosome. This endosome fuses
with a lysosome in the cell which is acidic and causes the protein to break
down into peptides [147]. MHC-II molecules are present in the ER. Once they
are synthesized they interact with the Ii protein (CD74) which prevents other
ER proteins from binding to the MHC-II [166]. The Ti protein chaperones the
MHC-II molecule out of the ER through the Golgi apparatus and forms a new
endosome [166]. The acidic environment of this endosome breaks down the Ii
protein so that only a fragment called CLIP remains bound to the MHC-II
molecule groove [167]. HLA-DM then interacts with the MHC-II molecule,
releasing CLIP [167]. The structure containing the MHC-II molecule fuses
with the endo-lysosome allowing the MHC-II molecule to interact with the
fragmented peptides. Like MHC-I, MHC-II molecules will only bind to specific
peptides. Once bound the peptide:MHC-II complex is transported to the cell
surface for detection by CD4 T cells.

T-cells have receptors (TCRs) that are capable of binding the pep-
tide:MHC complex [168]. There are two classes of T-cells, CD4 and CD8
T-cells. T-cell development takes place in the thymus and only those T-cells
that have receptors that do not bind strongly to self-antigens can differenti-
ate into mature T-cells [168]. These naive T-cells then enter lymphoid organs
where they can come into contact with APCs that have antigens presented on
their cell surface [169]. TCRs are heterogenecous which means they can bind
many different peptides [170]. The specificity of T-cell recognition involves
both the peptide and the MHC molecule. CD4 T-cells, also known as helper
T-cells (Th), bind to MHC-II molecules while CD8 T-cells, cytotoxic T-cells
(CTLs), bind to MHC-I molecules. Once a T-cell binds to the peptide:MHC
complex, it becomes activated and clonally expands and differentiates [169].
Activated CTLs release cytotoxins leading to programmed cell death of the
target cells, while activated Th cells recruit other immune cells to attack the
target cell [147].

1.5.2 Immune-Surveillance and Immunoediting

In 1906 Ehrlich postulated that the immune system has the ability to recog-
nise and eliminate cancer cells [171]. However, it was not until half a century
later that work from Burnet and Thomas gave the first evidence that the
immune system is involved in preventing cancer[172, 173]. The large num-
ber of mutations present in some cancer types which had the potential to
activate the immune system had confused researchers because if the immune
systems was playing a role in preventing cancer then these cells should have
been eliminated by the immune system. Thomas and Burnet postulated that
tumour cells might continue to develop and provoke an immune response that
would clear the tumour without hint of its existence, a process termed “im-
mune surveillance” [172, 173]. This theory suggests that the immune system
is constantly monitoring cells and once detected destroys cancerous and pre-
cancerous cells before they have a chance to grow. It is only when the cancer
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cells evolve and obtain mechanisms to avoid detection that they are then able
to proliferate. In 2002 Dunn et al. expanded this theory and introduced the
concept of immunoediting whereby the immune system shapes the mutational
landscape of the tumour such that the tumour is composed of mutations that
are successfully able to evade the immune system [174]. There are three
stages in the process of immunoediting (Figure 1.3); 1) Elimination phase; 2)
Equilibrium phase, 3) Escape phase.

1. Elimination phase \Immunosurveillance: This phase encompasses the
early ideas of immunosurveillance in which tumour cells are suppressed
due to the constant detection and removal by innate and adaptive im-
mune cells. As a tumour cell forms, it is recognised and removed before
it has a chance to grow and proliferate, leaving no evidence of its ex-
istence behind. This made it difficult to prove the existence of the
theory of immune-surveillance because there was no way to observe it
in the tumour. Early mouse studies showed that chemically induced tu-
mours could be immunogenic in genetically similar mice [175, 176]. If a
mouse immunised with irradiated tumour cells is subsequently injected
with viable cells of the same tumour, the tumour rejection antigens were
eliminated while they were not removed when tumour cells of a different
cell type were injected into the mouse [175, 176].

A lot of additional research has been carried out using animal models
since then to provide evidence for the role of the immune system in
preventing cancer. Several studies in immunocompromised mice (RAG
gene knockouts) demonstrated the process of immunoediting in practice
[177, 178]. The purpose of the RAG gene is to introduce double-strand
breaks in lymphocytes in order to initiate V(D)J recombination [179].
This is an important step for creating diverse antigen receptors in ma-
ture lymphocytes. When this gene was knocked out, the mouse lacked
mature T cells and was immunodeficient [177]. It was also shown that
RAG knockout mice were more prone to cancerous tumours when ex-
posed to carcinogens compared to wild-type mice. Additionally, they
were more likely to get spontanecous tumours [178]. The protective ef-
fects seen when a mouse was injected with irradiated cells before in-
jection with viable cells were not seen when the experiments were per-
formed on immune-deficient mouse models [178].

Studies using immune-suppressed mice showed they were at a higher risk
of developing tumours due to chemically induced and spontaneously
arising mutations than their non-immune compromised counterparts
[178]. Additionally, transplanting tumour cells from immunodeficient
mice into mice with a fully functioning immune system showed that
the tumour cells were effectively removed but tumour cells where not
removed in these mice when they were derived from syngenic immuno-
competent mice [178]. Shankaran et al. showed that rejection of the
tumour cells was due to the activation of T-cell immune responses [178].
Further evidence came from the observation that humans with primary
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Figure 1.2: Schematic of the major histocompatibility I (MHC-I) and
major histocompatibility II (MHC-II) pathways.. MHC-I pathway (left
hand panel) and the MHC-II pathway (right hand panel), illustrating the process
of antigen uptake (1), processing (2), binding to MHC (3) and presentation on the
cell surface (4). TAP=transporter associated with antigen processing, TCR= T-
cell Receptor. Reprinted from “MHC Class I and II Pathways”, by BioRender.com
(2023). Retrieved from https://app.biorender.com/biorender-templates.
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Figure 1.3: The three phases of tumor immunoediting. (A) Elimination
phase: Developing tumor cells (blue) and tumor cell variants (red) are recognised
and removed by immune cells (white flashes), (B) Equilibrium phase: the immune
cells do not eliminate all tumor cells but keep their levels at bay, (C) Escape phase:
the immune system can no longer recognise the tumor cells which are now free
to grow uncontrollably. Additional tumor variants have formed (orange). Different
lymphocyte populations include CD4 (purple) and CD8 (yellow) T cells, NK= Nat-
ural Kill cells (green), NKT= Natural Killer T-cells (brown). Grey cells=underlying
stroma and non-transformed cell, Small orange circles= cytokines. Reprinted with
permission from Dunn et al. 2002.
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immune deficiencies [180-182], HIV-infected patients [183, 184] and im-
munosuppressed transplantation patients [185-190] were at increased
risk of developing tumours. These patients often develop viral-related
cancers, with non-Hodgkins lymphoma caused by the Epstein Barr Virus
the most common [191-193]. However, non-viral cancers also occur at an
increased rate [184, 194-196]. Thus, highlighting the role of the immune
system in protecting against such cancers. A population-based study of
patients who received transplants in Finland spanning 30 years showed
that cancer risk decreased in the later period, which was associated with
changes in immunosuppression regimes [197].

2. Equilibrium phase \Immune Selection: The equilibrium phase is the
process by which immune cells do not completely eradicate the tumour
but keep the numbers at bay so it cannot grow and progress. This is
termed tumour dormancy and may last many years [198] with the equi-
librium phase believed to be the longest of all the phases. It is during
this phase that the immune system shapes the mutational landscape of
the tumour cell. Cells that harbour neoantigens that fail to be recog-
nised by the immune system are retained while cells with immunogenic
neoantigens are selectively removed [199]. During this phase there is a
balance between stimulation and inhibition of the immune system de-
pending on the presence of pro or anti immune molecules present at
each stage of the immune life cycle [200]. The first evidence for this
immune selection of cancer cells came from injecting mice with carcino-
gens [198]. Those mice that had stable masses of cells which did not
transform into a tumour initially, subsequently had components of their
immune system disabled [198]. This resulted in the formation of tu-
mours, suggesting the immune system played a role in preventing the
tumour [198].

Immune selection is difficult to assess in practice because the levels of
tumour cells are below the level of detection until they have evaded
the immune system and are able to grow into a large mass of cells
[198]. However, there have been studies that have used predicted MHC
binding affinity of neoantigens to identify evidence of immune selection.
Support for immune-mediated negative selection in tumours came from
studies that used the ratio of nonsynonymous mutations to synonymous
mutations (AN /dS) to detect regions of negative selection in the tumour
genome [201, 202]. Human epitopes (the part of the antigen that binds
to the T cell) showed stronger evidence of negative selection compared
to non-exposed regions of the same protein, with epitopes bound to
common HLA alleles showing stronger negative selection than epitopes
bound to rare HLA alleles [201]. Additionally, dN/dS scores were nega-
tively correlated with cytolytic activity of immune infiltrates which the
authors proposed was evidence of immune selection [201]. A more recent
study using dN/dS to measure immune selection in cancer patients, clas-
sified patients with negative selection as “immune edited” and patients
who had a missense or a truncating mutation in a gene involved in anti-
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gen presentation as “immune-escaped” [202]. Those patients that were
immune-escaped were no longer under the same selection pressures as
patients that were not immune-escaped and showed evidence of neutral
neoantigens [202]. Immune-edited patients were also shown to have low
tumour antigenicity and have a poor response to ICI treatment [202].
Other studies investigated the relationship between predicted neoanti-
gens and cytolytic activity in the tumour [203, 204]. Predicted neoanti-
gen load was found to be correlated with cytolytic activity, particularly
in cancers with a viral contribution [203]. Additionally, these tumors
showed evidence of escaping the immune system with enrichment of mu-
tations within the antigen presentation machinery and over-expression
of immunosuppressive genes that protect against CTL mediated destruc-
tion observed in these tumors [203]. Two studies using predicted MHC-I
and MHC-II binding affinity of observed neoantigens in TCGA samples
found evidence of selection based on patient HLA type for driver mu-
tations. They proposed that common driver mutations are common
because common HLA alleles cannot bind them and present them for
removal by the immune system|[205, 206]. These results have been ques-
tioned by us, as discussed in Chapter 3, [207] and others [208], due to
the author’s misinterpretation of results and failure to account for the
trinucleotide context, which gave a false indication of negative selec-
tion. While debates on this are ongoing [209-212], the consensus seems
to be that prediction of MHC binding affinity is not sufficient to detect
negative selection. Incorporating the probability of being recognised by
TCRs with predicted MHC binding affinity was shown to be a better
predictor of survival after immunotherapy treatment than neoantigen
load alone [204]. Using this scoring method meant that a neoantigen
with a high score would have a high predicted binding affinity and low
similarity to self-antigens [204].

3. Immune Escape: Cancer that can grow has developed mechanisms to es-
cape the immune system. They can do this by engaging the signals that
prevent activation of the immune system . These signals are referred to
as immune checkpoints and when they are engaged, they will prevent the
T cell from killing [213]. The cancer cell can engage these checkpoints
but they can also be activated by dendritic cells and macrophages [214].
This is because the immune system has learned to constantly modulate
its ability to respond and regulation of this response is as important
as activation in order to prevent immune cells from attacking healthy
normal cells [147]. While dendritic cells send signals to activate the T
cell to kill, they also modulate T-cell ability to react against a threat
[215]. There is a fine balance between activation and inhibition, and in
some cases, the tip to inhibition has gone too far so that the T cells are
suppressed and cannot act on the cancer cell to remove it [216].

Avoiding immune destruction is one of the hallmarks of cancer [217].
Cancer cells counteract the ability of the immune system to eliminate
them, allowing them to grow and progress. In order for the immune

20



1 INTRODUCTION

system to impact tumour growth and shape the tumour genome, there
needs to be a fully functioning antigen presentation machinery (APM)
and also the presence of immune cells capable of recognising and de-
stroying the cancerous cells within the tumour microenvironment. To
avoid detection cancer cells have acquired ways to disrupt the APM. Re-
current mutations in key players, such as MHC-1 and $2-microglobulin
(B2M), are common in cancers, with downregulation of the genes more
frequently observed [218, 219]. B2M is a component of the MHC that
is required for its formation and stabilization on the cell surface. The
MHC cannot form without B2M and loss of this gene is a form of im-
mune escape in cancers [220]. However, mutations in this gene are rare
with downregulation of the gene more common [219]. HLA-G, a non-
classical HLA molecule, is an immunosuppressive protein that inhibits
natural killer cells and CTLs and plays a role in pregnancy tolerance
by protecting the fetus from attack by maternal NK cells [221]. Tt is
usually expressed in immune-privileged tissues but is also frequently
over-expressed in tumours [222]. Additionally, TAP1 is downregulated
in colorectal cancer as a means to escape immune recognition [223].
Downregulation of key players in the APM inhibits the ability of the
immune system to identify antigens on the cancer cell surface. Can-
cer cells also overexpress proteins such as PDL1 and NF-kb, which are
checkpoint inhibitors that block the immune system [224-226].

T-cell suppression is also common in cancer. Regulatory T-cells (Tregs),
whose normal function is to monitor and regulate effector T cell activ-
ity, are present in high levels in several cancer types [227]. Additionally,
Tregs in tumours have been shown to have greater suppressive function-
ality compared to Tregs in normal samples [228, 229]. Cytokines such
as TGF-B produced by the tumour cells themselves or by other cells in
the tumour microenvironment can also suppress T-cell function [230].

It has also been suggested that low mutational burden is another means
by which the tumour escapes the immune system|[231]. With fewer mu-
tations, there is a decreased likelihood of neoantigens that will elicit an
immune response. The theory behind this is that those tumour cells that
had neoantigens capable of eliciting a strong immune response would
have been removed by the immune system, leaving behind cancer cells
that can fly under the radar [199, 232]. In this sense, decrease in tumour
immunogenicity is a method to escape immune detection. However, re-
cent work has questioned this, showing there is limited evidence for
depletion of neoantigens in cancer samples [233].

HLA loss of heterozygosity (LOH) is another proposed mechanism of
immune evasion, with loss of HLA-C08:02 which is required for KRAS
G12D neoantigen detection observed in a lesion from a tumour that
was resistant to treatment with CD8+ cells targeting mutant KRAS
[234]. Subsequently HLA LOH was shown to be prevalent in lung cancer,
occurring in 40% of early-stage NSCLCs [235].
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1.5.3 Response to Immunotherapy

The premise of the development of immunotherapies is to reactivate the im-
mune system so that it can fight the cancerous cell as it had been able to do
prior to cancer progression. It was discovered that inhibition of the checkpoint
blockade, enables T cells once again to target the cancer cell and remove it
[236]. Therefore, instead of targeting the cancer cell itself, it is possible to
target the immune system, which allows us to predict how the immune system
will respond because it is so heavily regulated. Current treatments perform
a combination of targeting the cancer cell as well as targeting the tumour
microenvironment. Currently, only three checkpoint blockade molecules are
targeted by therapies, CTL4, PD-1 and PDL1 [237], but there are many other
molecules that could also be targeted and are the focus of ongoing research
[238]. ICI treatments are only effective in about 20-30% of patients and their
efficacy varies among cancer types [239]. Due to the high costs associated with
immunotherapy treatment current research aims to identify biomarkers that
will predict which patients would respond well to immunotherapy. Currently,
there are only three FDA-approved biomarkers of response to immunother-
apy; PDL1, microsatellite instability (MSI) and tumour mutational burden
(TMB)[237].

Programmed Cell Death Protein 1 (PD-1) is found on the surface of
T-cells and, when it is bound to its ligand, PDL1 or PDL2, it prevents T-cells
from attacking other cells [240]. Anti PD-1 therapy blocks the interaction
of PD-1 with PDL-1 allowing the T-cell to attack cancer cells. PDLI is
highly expressed in some tumours and its expression is correlated with better
response in tumours treated with anti PD-1 therapy [241-243]. PDL1 was the
first approved biomarker of response to immunotherapy [244]and is the most
frequently used in the clinic [237]. However, it has a low predictive potential
with a high proportion (estimates of 20-30%) of patients with negative PDL1
responding well to anti PD-1 treatment [245, 246]. This is likely due to
biological factors such as the temporal and spatial regulation of PDL1 gene
expression [247] and the impact of prior treatment on PDL1 expression [248],
as well as technical factors such as differences in antibodies and platforms
used to detect PDL1 and differences in thresholds and scoring methods to
call PDL1 high [249].

Tumours with defects in the DNA mismatch repair (IMMR) ma-
chinery accumulate thousands of mutations and are considered hypermutated
[250]. Microsatellite regions are 1-6 nucleotides of repetitive sequences found
in the human genome [251]. These regions are particularly prone to muta-
tion in tumours that have defective AMMR [250]. Microsatellite instability
(MSI) /deficient AMMR was the first biomarker approved as a companion di-
agnostic for all solid tumours rather than for a specific tumour type [252].
MSI tumours have increased expression of PD-1 and PDL1 [253] with MSI
high (MSI-H) tumours shown to respond well to anti PD-1 treatment [254].

TMB is the number of nonsynonymous mutations per million bases
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(Mb) in a sample [255, 256]. However, there is some inconsistency in the
definition of TMB in the literature with some publications using nonsyn-
onymous or missense mutations only in the calculation and others, generally
studies using targeted gene panels, including indels and synonymous muta-
tions too [257]. TMB is correlated with neoantigen load and as a result was
proposed as a potential biomarker for ICI response [258]. The idea behind
this is that the higher the mutation load in a sample, the higher the number
of mutations with the potential to elicit an immune response. High TMB is
associated with a good response to immunotherapy [259] and was the third
biomarker for response to pembrolizumab approved by the FDA [237]. Like
MSI, this biomarker is not cancer type specific but approved for the treat-
ment of adult and paediatric patients with unresectable or metastatic solid
tumours. Multiple studies have assessed the predictive potential of TMB as a
biomarker for response to ICI across a wide range of cancer types with mixed
results[255, 260] indicating a need for more tumour type specific analysis.

There are many other factors, other than overall mutation numbers,
that should be considered when predicting response to immunotherapy [261].
Clonal load ie. the total number of mutations that are present in all cells of the
cancer [262, 263] has important implications in terms of response to therapy
and likelihood of relapse. The expression level of genes containing the neoanti-
gens is important as only the antigens that are expressed can be processed
and presented to the immune system [264]. Another important factor is the
binding affinity of those neoantigens to the HLA alleles because this affects
which neoantigens will be presented on the cell surface [264, 265]. Neoanti-
gens that are highly different to self or known antigens would also be more
likely to be recognised by the immune system [261]. TMB estimates focus on
SNV numbers only, but indels are also common and can create neoantigens
that are highly distinct [266]. Tumour purity impacts TMB estimates with
stromal cells shown to be a confounding factor when assessing TMB [264].
Intra-tumour heterogeneity confounds immune checkpoint blockade response,
with mixed results reported for a subset of lung cancer patients [264]. Finally,
a recent study [267] argues that in addition to overall TMB, copy number
states and the sequence alteration load should be considered when making
clinical decisions. Therefore, there are many additional factors that can im-
pact response to immunotherapy and should be considered when developing
biomarkers.

1.6 Allele-Specific Expression

Most of this section has been published in: Cleary S and Seoighe C. Perspec-
tives on Allele Specific Fxpression. Annu. Rev. Biomed. Data Sci. 2021.4:1,
doi:10.1146/annurev-biodatasci-021621-122219

Allelic imbalance arises when there is a difference in the states or ac-
tivities of the alleles of a locus in a diploid (or higher ploidy) organism. Much
of the research on allelic imbalance has focused on differences in messenger
RNA (mRNA) abundance, which we will refer to as allelic expression imbal-
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ance. Imbalance in mRNA abundance between alleles has been referred to as
allele-specific expression (ASE) [268]. This term is often used to refer to gene
expression imbalance, without regard to whether the difference in expression
is due to genetic variants or epigenetic effects, such as imprinting or random
monoallelic expression [269, 270]. However, as it is suggestive of an effect that
arises from the allele itself, we propose that the term allele-specific expression
should be reserved for imbalance with a genetic origin and adopt that usage
here. We use the term allelic expression imbalance when the cause of the
differences in expression between alleles is not specified. Similarly, we use al-
lelic imbalance to refer to any differences between alleles in chromatin state,
expression level or relative isoform abundance and allele-specific imbalance
when these differences are genetic in origin.

1.6.1 Mechanisms of Allelic Imbalance and ASE

Genetic variants can have an impact on chromatin structure [271, 272], on
gene transcription [271, 273, 274], and post-transcriptional processes (Figure
1.4). In many cases, these variants can affect the expression level of the linked
allele, leading to ASE, as well as leading to other measurable forms of allele-
specific imbalance. Some of the main mechanisms leading to allele-specific
imbalance, highlighting the potential of some of these to give rise to ASE,
are:

e Transcription factor binding: The alleles of a heterozygous SNP can
have different affinities for a transcription factor resulting in allelic im-
balance in transcription factor occupancy [274] and distinct rates of
transcription for each allele [275]. Analysis of allele-specific transcrip-
tion factor binding has played an important role in understanding how
non-coding DNA can affect gene expression and contribute to disease
phenotypes. In order to dissect fully the implications of altered binding,
the causal gene regulatory variant, the transcription factor that binds
to it and the target gene should all be identified [276]. Differences in
chromatin accessibility can also result from allele-specific transcription
factor binding and may make a substantial contribution to complex dis-
eases [272].

e Nonsense-mediate decay: NMD is a key cellular quality control mech-
anism that results in the elimination of mRNAs carrying premature
termination codons (PTCs) that might result in malformed proteins
[277]. This process takes place in the cytoplasm and is associated with
the termination of translation and mRNA degradation [278]. NMD also
plays a role in controlling mRNA expression level, contributing to the
regulation of a large number of human genes [279]. A heterozygous SNP
at which one of the alleles results in a PTC can result in degradation of
mRNA derived from that allele, resulting in ASE [280].

e Alternative splicing: Genetic variants can affect mRNA splicing by al-
tering splicing signals in the transcript. Such mutations can occur within
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or close to splice donor or acceptor sites, around the branch point or in
exonic or intronic enhancer or suppressor sites [281]. Common effects
on splicing include exon skipping, intron retention, alternate 3’ or 5’
exon ends and mutually exclusive exons [282]. Because they act in cis,
transcribed splicing mutations typically result in allele-specific splicing
[281, 283]. When a mutation that alters mRNA splicing introduces an
in-frame stop codon (e.g. by skipping an exon within the coding re-
gion that is not a multiple of three nucleotides in length) it can trigger
nonsense-mediated decay [282] targeted towards the affected allele. This
results in a lower abundance of the mature mRNA for the allele causing
mis-splicing than from the wild-type allele and consequently results in
ASE. Even when NMD is not triggered, differences between the protein
isoforms resulting from genetic variants that affect splicing can have
important functional consequences [284].

e Variants affecting mRNA binding: RNA-binding proteins (RBPs) play
a role in post-transcriptional gene regulation by binding to RNA in a
sequence specific manner, modulating the fate of the bound RNA. Ge-
netic variants on the mRNA can disrupt the interaction of RBPs with
the mRNA, resulting in allelic imbalance in RNA binding and, poten-
tially, ASE or allelic variation in mRNA localization or translation [285].
Application of a method developed to detect allelic imbalance in RNA
binding to enhanced crosslinking and immunoprecipitation sequencing
(eCLIP-Seq) data from ENCODE revealed genomic variants that alter
mRNA splicing as well as gene expression level [286, 287], illustrat-
ing the potential of allele-specific RNA binding to cause ASE. miRNAs
and long non-coding RNAs (IncRNA) contribute to post-transcriptional
regulation of gene expression. These non-coding RNAs can themselves
display allele-specific imbalance in their expression, as well as inducing
ASE in the genes they regulate [288, 289]. Compared to protein-coding
mRNAs, IncRNAs show greater levels of allelic imbalance in their ex-
pression [290]. The interaction of miRNAs with their target mRNAs can
be affected by SNPs within sites in the mRNA that are complementary
to the miRNA [291] and again this is likely to result in allele-specific
expression.

1.6.2 Computational pipelines for measuring ASE

Analysis of ASE from high throughput sequencing data typically involves
generation of counts of sequence reads mapped to each allele. Generating this
data involves multiple steps, as detailed below, each of which is associated
with potential biases and confounding factors. Several efficient and scalable
pipelines are available for these tasks, such as AlleleWorkbench [293], WASP
[294], CloudASM [295] and ALEA [296].

1. Sequencing In order to have sufficient power to discriminate between
the expression levels of alternative alleles, analysis of allelic imbalance
requires higher coverage than is generated in a typical RNA-Seq ex-
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Figure 1.4: Types of allelic imbalance. (A) Allelic expression imbalance. Three
cases are shown: equal expression of both alleles (top); exclusive expression of one
allele (middle); higher expression of one allele (bottom). (B) Allelic imbalance in
translation. Genetic variants can alter the rate of mRNA translation, resulting in
different levels of ribosome occupancy between alleles. (C) Imbalance in transcrip-
tion factor binding. In the example shown a sequence variant reduces transcription
factor binding affinity resulting in allele-specific expression. (D) DNA methylation
imbalance: methylation inhibiting the expression of one allele. If the difference
in methylation results from cis-acting genetic variants it can lead to allele-specific
expression (E) Allele-Specific Splicing: A variant that alters splicing results in dif-

ferent isoforms from the two alleles. Reprinted with permission from Cleary et
al.[292].
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periment focusing on total expression analysis [297]. A threshold of 30
reads spanning the location of interest is often applied to infer allelic
imbalance at individual heterozygous sites [298, 299]. This can limit the
number of genes with sufficient coverage to detect allelic imbalance.

2. Alignment and removal of PCR duplicates One of the first steps in
software pipelines for the analysis of allelic imbalance is to align the
sequence reads to a reference genome or transcriptome. Errors in the
alignment, or mapping, can have a substantial impact on the results
obtained [300]. Mapping errors (mapping a read to the wrong location
or failure to map a read) can occur with greater frequency for reads
containing the alternative than the reference allele at heterozygous SNPs
[301], leading to false-positive signals of allelic imbalance. A number of
strategies have been proposed to mitigate sequence alignment biases.
These include the use of a masked reference [302], personalised diploid
genomes [303] or transcriptomes [304], haplotype genomes for alignment
[305], the use of SNP-tolerant mappers such as GSNAP [306],STAR-
WASP [307], ASE-lux [308] and SNP-omatic [309] and methods that use
remapping strategies such as WASP [294]. Methods that align sequence
reads to a diploid transcriptome that includes genetic variants have been
reported to result in improved estimation of ASE [304].

The polymerase chain reaction (PCR) amplification step in the prepara-
tion of sequencing libraries can result in the same cDNA fragment being
sequenced more than once. This results in sequence reads with identical
mapping coordinates. Although it is straightforward to identify these
duplicate reads and remove them, this is generally not recommended
for RNA-Seq data due to loss of information for highly expressed genes.
However, statistical tests of allelic imbalance are often not robust to
the presence of duplicate reads and therefore potential PCR duplicates
should be removed prior to analysis of allelic imbalance [300]. Many
tools for removing duplicates retain the read with the best mapping
score, but for analysis of allelic imbalance it is essential to use tools,such
as WASP [294], that select the retained reads at random, to avoid map-
ping bias in favour of the reference allele.

3. Genotyping and haplotype phasing Generation of allele-specific read
counts requires at least one heterozygous SNP within the targeted fea-
ture (gene, transcription factor binding site etc). Heterozygous SNPs
can be identified separately using genotyping arrays or genomic DNA
sequencing. Alternatively, the heterozygous SNPs can be inferred from
the reads that map to the feature of interest. In the case of allele-specific
expression, for example, genotype can be inferred from the RNA-Seq
reads. However, this carries the risk that features that show extreme
imbalance can be mistakenly called as homozygous, leading to false neg-
atives in the inference of allelic imbalance. Conversely, sequencing er-
rors, transcription errors or even rare somatic mutations that result in
a site that is homozygous in the germline incorrectly being called het-
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erozygous can lead to false positive inference of allelic imbalance. Errors
may also occur when genotyping is performed on genomic DNA. In this
case, homozygous sites incorrectly called heterozygous can lead to false
positive inference of allelic imbalance [294]. More recent methods for the
analysis of allelic imbalance take account of uncertainty in genotyping
(294, 310, 311].

Accurate SNP phase data supports the inference of allelic imbalance,
by allowing reads to be mapped to haplotypes spanning multiple het-
erozygous SNPs. The information contained in the sequence reads can
be used for this purpose, with the higher accuracy obtained when long
read data are available [312]. Haplotypes inferred from population phas-
ing can be combined with the information contained in RNA-Seq reads
spanning heterozygous SNPs to improve accuracy [313]. However, this
tends to be accurate for common variants but uncertain for rare variants.

Allele-specific read counts are the required input for many ASE tools
[310, 314-317]. These can be determined for heterozygous SNPs us-
ing tools such as ASEReadCounter [300]. However, mapping reads to
haplotypes rather than individual heterozygous SNPs provides greater
power for ASE analysis [313]. Haplotype-specific expression levels can
be estimated from RNA-Seq data using phASER [313] and haplotypes
obtained from the RNA-Seq reads can be integrated with population-
level phasing using phASER-pop [313] to extend haplotypes to putative
regulatory variants in untranscribed regions (Figure 1.5 C). Some tools
such as IDP-ASE [312] and BYASE [318] perform haplotyping as part of
ASE estimation. For tools, such as EAGLE [319], that take read counts
as input it is possible to supply gene level haplotypic counts instead of
heterozygous SNP counts [320] as phaser generates one count per gene
[313].

1.6.3 Considerations for analysis of ASE in cancer

Somatic copy number alteration (SCNA) can be a confounding factor
in analysing allelic imbalance in cancer studies, leading to false posi-
tives for ASE [321]. A recent pan-cancer study revealed that SCNAs
accounted for 84.3% of the observed allelic imbalance [322]. Some stud-
ies address this by filtering positions that overlap with copy number
variation [303, 323]. Methods have been developed to take account of
copy number variation and tumour purity when assessing allelic imbal-
ance of somatic mutations [324]. Due to the presence of high frequency
somatic mutations and copy number alterations in cancer, genotyping
is usually based on the normal sample. Comparison of the cancer and
normal sample can then reveal the allele that is retained in cancer in
the case of loss of heterozygosity, which can be informative about the
process leading to cancer development [325]. Alternatively, ASE can be
estimated for tumour and normal samples separately and the propor-
tions of SNPs showing ASE can be compared between the two groups
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[326]. Other studies have compared the variant allele frequency of het-
erozygous SNPs in whole exome sequences and transcriptome sequences
[327-329] or used the allelic ratios in genomic DNA to correct for the
effects of copy number variants [330].

1.6.4 Statistical Methods

A wide range of statistical models have been developed for the analysis of ASE.
Broadly, they can be characterized by whether the goal is to detect allelic im-
balance within individual samples or to combine data across multiple samples,
either to characterize ASE or to use it to help estimate the effects of putative
regulatory variants (Figure 1.5). For the former goal the simplest method is
to treat the number of reads mapping to the reference (or alternative) allele
as a binomial random variable. Several Bayesian methods [312, 331, 332] have
also been proposed to analyze ASE within individuals. Methods focused on
estimating ASE can be differentiated based on whether they are applied on a
gene by gene basis in individual samples, as is the case with the binomial test
and also some more specialist methods [312, 333], or whether they attempt to
learn model parameters by considering multiple genes simultaneously (Exem-
plified by Skelly et al. [331], McCoy et al [332]). Of particular note has been
the development of models designed to learn about the effects of regulatory
variants by combining ASE with variation in gene expression levels across
individuals [294, 311, 334]. Building on these, recent work has leveraged ASE
to estimate the expected variance in gene expression for human genes, with
important implications for understanding genetic disease mechanisms [335].

1. Binomial model and its limitations Applied to individual heterozygous
SNPs, it is straightforward to evaluate a null hypothesis that a randomly
sampled sequence read has the same probability of being generated from
the reference or alternative allele. This null hypothesis can be modified
to account for mapping bias in favour of the reference allele [301] by
setting a slightly higher probability of a read being generated from the
reference allele, under the null hypothesis of no imbalance [298]. Fur-
ther improvements in power can be obtained by mapping reads to phased
haplotypes rather than to individual heterozygous sites and information
within RNA-Seq reads, including allelic imbalance, can be leveraged to
obtain phased information even for rare variants[312, 313, 336]. Statis-
tical models have also been developed for joint inference of heterozygous
SNPs and detection of ASE from RNA-Seq reads [310]. In common with
many other methods to infer ASE (Exemplified by Liu et al. [316]), the
latter method uses a likelihood ratio test to evaluate a null hypoth-
esis corresponding to equal representation of alternative alleles, while
accounting for uncertainty in the inferred genotypes.

Inference of allelic imbalance using the binomial test, and its variants,
has several major caveats. Allele-specific count data tends to be overdis-
persed, relative to the binomial distribution, meaning that the variance
in the count of reads mapping to an allele is higher than expected for
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Figure 1.5: Illustration of the types of statistical models used in the anal-
ysis of allelic expression imbalance. Boxes represent individuals. Filled grey
circles represent heterozygous SNPs and black circles represent homozygous SNPs.
Sequence reads mapped to alleles of (A) a single heterozygous SNP or (B) hap-
lotypes spanning multiple expressed heterozygous SNPs can be tested for unequal
representation of the two alleles. (C) Haplotypes can be extended to putative reg-
ulatory SNPs when population-based phasing is taken into account. If data from
multiple individuals are available this allows the extent and direction of expression
imbalance to be correlated with the allele at the putative regulatory SNP. (D)
Statistical models can learn parameters of distributions describing the variation of
ASE across genes within a single sample. (E) Models can combine evidence from
ASE in heterozygous individuals with gene expression level in all individuals. These
models include distributions describing allelic expression ratios across SNPs in the
same gene and across different genes as well as distributions for total expression
level in different individuals. Reprinted with permission from Cleary et al. [292]
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a binomial random variable [294, 300]. This overdispersion is likely to
have both biological causes, reflecting a high prevalence of true allelic
imbalance, as well as technical causes. It is possible to treat the number
of reads derived from one of the alleles or haplotypes as a beta-binomial
(or a binomial-logit-normal [335]) instead of a binomial random vari-
able [294, 300, 333]. The beta-binomial is a two-parameter distribution
that arises when the parameter of a binomial random variable is itself a
beta-distributed random variable. It can be parameterized with a mean
and an overdispersion parameter [333], with the latter controlling the
extent of the increase in variance relative to the binomial parameter.
However, if the overdispersion is primarily biological in origin, reflect-
ing a high frequency of allelic imbalance, including an overdispersion
parameter estimated from the data in the null hypothesis may result in
a reduction in power to detect ASE.

One of the technical sources of overdispersion is the presence of duplicate
reads, but this can be addressed by removal of duplicates as discussed
previously, or through the use of molecular barcodes [337]. A lack of
reproducibility of allelic imbalance results between technical replicates
has recently been reported and interpreted to suggest that other steps in
library preparation may be more important sources of bias than PCR
amplification for allelic expression analysis [338]. This lack of repro-
ducibility is in contrast to earlier results, obtained from technical repli-
cates in the Geuvadis study, which suggested that the variance across
technical replicates was similar to its expectation under the binomial
distribution following implementation of quality control steps [300]. A
key shortcoming of hypothesis testing for allelic imbalance is that it
places the emphasis on evaluating a null hypothesis, which may be un-
realistic and sensitive to sequencing depth, rather than on estimating
the extent of the imbalance between alleles. Lastly, methods to detect
allelic imbalance in single individuals cannot easily distinguish between
genetic and epigenetic causes and therefore cannot be used to infer ASE
(which as used here implies a genetic origin). Despite the above po-
tential limitations the binomial test remains in use for detecting allelic
expression imbalance [339], perhaps due to the ease of interpretation
and use.

2. Bayesian models for allelic imbalance Several Bayesian methods have
been developed for the analysis of allelic imbalance. Considering data
from just a single gene and a single individual, but multiple SNPs, IDP-
ASE [312] simultaneously performs haplotype reconstruction and infer-
ence of allelic expression imbalance from RNA-Seq data. Taking a flat
prior it samples from the joint posterior probability of the reconstructed
haplotypes and the probability that a random read is derived from one
or other of the haplotypes in an individual. Skelly et al. [331] developed
a hierarchical Bayesian model for allelic imbalance that considers data
from multiple genes simultaneously (Figure 1.5 D). This was first used
with RNA-Seq data derived from crosses of Saccharomyces cerevisiae
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strains and data from a single human cell line [331]. The study also
included genomic data, which allowed technical artifacts, such as map-
ping bias, to be taken into account. The model for the RNA-Seq data
consisted of a mixture prior with a component corresponding to allelic
imbalance genes and another for non-allelic imbalance genes, for which
the allele-specific read counts have the same distribution as in the ge-
nomic data. For the imbalance component, allele-specific read counts in
a given gene were modelled using a beta-binomial, parameterized with
the expected value and overdispersion. Across all genes, both the ex-
pected value and overdispersion were themselves beta-distributed, with
independent parameters, allowing for genes with variable or relatively
constant allelic imbalance across heterozygous SNPs. Markov Chain
Monte Carlo (MCMC) was used to obtain samples from the joint poste-
rior distribution of the proportion of genes with imbalanced expression,
expected value and overdispersion of the imbalance for each gene as
well as parameters describing how these vary across the genes with al-
lelic imbalance. An advantage of this Bayesian approach is the capacity
to make inferences about the overall proportion of genes affected by
allelic imbalance and the effect size distribution across these genes. A
Bayesian implementation of a mixed effects binomial regression model
was used by the same group to combine information across individuals
and across tissues to estimate ASE associated with Neanderthal intro-
gression [332]. The parameter of the binomial distribution describing
the number of non-reference reads was modeled as a sum of a fixed
intercept term (corresponding to the ASE effect) and random effects
for tissue and individual. Recently, Dong et al. developed a Bayesian
model, together with a Python library [318] to estimate gene and iso-
form level expression imbalance for any ploidy >1. The authors claim
that their method compares favourably to existing methods and gives
consistent results across technical replicates. To the best of our knowl-
edge, however, no independent benchmarking has been carried out to
evaluate the performance of these methods.

1.6.5 Prevalence of Allele Specific Expression

Several studies have reported the frequency with which allelic expression im-
balance is observed [273, 298, 299, 331, 332, 339-341]. As discussed above,
there are multiple genetic and epigenetic mechanisms that can lead to allelic
expression imbalance; however, most allelic expression imbalance is reported
to arise from genetic variation [298]. Therefore, estimates of the overall preva-
lence of allelic expression imbalance provide an indication of ASE prevalence.
There are at least two different quantities that can be considered. The first is
the frequency with which the alleles are imbalanced within an individual. This
has been estimated by testing heterozygous SNPs for evidence of imbalance
[298]. However, rejection of the simple null hypothesis of equal expression of
two alleles does not guarantee that the imbalance is biologically meaningful.
Any sequence heterogeneity between the alleles may have some effect on gene
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regulation and rejection of the null hypothesis may then become a question of
the precision of the measurement, which tends to be greater for more highly
expressed genes. Methods that consider all genes simultaneously and estimate
the proportion of imbalanced genes and the effect size distribution are, there-
fore, preferable [331]. A second measure of prevalence of allelic imbalance
that has been reported is the proportion of genes that show imbalance in at
least some subset of individuals, when data from a cohort of individuals is
analyzed. Given a large enough sample of individuals, high sequencing depth
and samples from sufficient tissues, this proportion is likely to approach one,
and it therefore requires thresholds on the strength of imbalance and the pro-
portion of individuals displaying imbalance in a particular tissue type [339]
to be meaningful.

1. Divergent reports of ASE frequency In 2002, Yan et al. [342] developed
an experimental method to assess differences in expression between al-
leles of heterozygous SNPs and applied the method to data from 13
genes in 96 individuals from the Centre d’Etude du Polymorphisme Hu-
main (CEPH) pedigrees. For six of these genes, there was evidence of
allelic imbalance, and this imbalance followed a pattern consistent with
Mendelian inheritance. This was followed in 2003 by an estimate of the
prevalence of ASE in human using microarrays [273]. Of 602 genes that
could be tested, 54% showed evidence of allelic expression imbalance.
Using reciprocal crosses of two mouse subspecies and a method based on
consistent rejection of the null hypothesis of balanced allelic expression
(p-value < 0.05) across replicates, Pinter et al. [340] estimated that
20% of mouse genes show evidence of allelic expression imbalance in
any given tissue. The majority of the imbalance resulted from genetic
effects rather than imprinting or random monoallelic expression. By
crossing inbred mice from three subspecies and applying a slightly dif-
ferent method that also focused on rejection of the null hypothesis of bal-
anced expression, Crowley et al. [341] reported that over 80% of genes
showed evidence of allelic imbalance. Using Bayesian modeling Skelly
also estimated a high frequency (80%) of ASE in a hybrid of two diverse
Saccharomyces cerevisiae strains [331]. Applying the same method to a
single human cell line, they estimated a frequency of approximately 20%
of allelic imbalance [331]. Studies that have investigated allelic imbal-
ance in humans rely on standing genetic variation, rather than crosses
of divergent strains and the prevalence of ASE may therefore depend on
the heterozygosity of the individual. Data from human lymphoblastoid
cell lines, generated by the Geuvadis consortium [298], suggested that
6.5% of human genes show evidence of ASE, again using a binomial test
(with a significance level of 0.005). A similar frequency of ASE (390
out of 6385 sites interrogated, or 6.1%) was reported by the pilot study
of GTEx [299], using the same p-value threshold. This was reduced
to 2.3%, when reads were downsampled to achieve a common sequence
depth of 30 reads. This decrease by nearly a factor of three illustrates
that the reported frequency of ASE based on statistical hypothesis tests
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is not a reliable indicator of the underlying prevalence. Estimation of
the prevalence requires parameterized models, such as those described
earlier, that can provide estimates of the proportion of genes affected
within or across individuals and the distribution of the effect size. If
the estimate of 20% for the weight of the allelic imbalance component
in the model of Skelly et al. [331] referred to above is reasonable, this
suggests that locus-specific tests may fail to detect a substantial propor-
tion of ASE. This may be due to limitations in sequencing depth and
insufficient power to detect weaker ASE effects.

Approximately 25% of heterozygous SNPs that tag an introgressed hap-
lotype from Neanderthals showed evidence of ASE [332]. In some sense,
this resembles a natural experiment analogous to the reciprocal crosses
that were used to estimate ASE prevalence in mouse [340, 341], except
that the crossed populations are outbred and the data are collected
many generations after the hybridizations, so that the introgressed seg-
ments may have been affected by evolutionary selection. Interestingly,
there was no significant difference in the prevalence of ASE between
heterozygous SNPs that tagged a Neanderthal allele compared to other
heterozygous SNPs matched for minor allele frequency. This is sur-
prising, given that the Neanderthal alleles should be associated with
more divergent regulatory regions, creating more opportunities for al-
lelic imbalance. The lack of a difference was interpreted as evidence
of post-introgression purifying selection acting on variants that affect
gene regulation [332]. However, it is worth noting that the comparison
involves Neanderthal haplotypes that are at low frequency in modern
humans, potentially due to the relatively small contribution of the Ne-
anderthal introgression and modern human haplotypes at comparable
frequencies, some of which will have been suppressed by purifying se-
lection in modern humans. Although no differences are reported in
ASE prevalence between introgressed and non-introgressed haplotypes,
a cross-tissue analysis suggested lower relative expression of Neanderthal
haplotypes in brain and testis, compared to other tissues [332].

2. Survey of ASE across tissues and over time Generation of RNA-Seq
data from over 838 individuals across 49 human tissues by the GTEx
consortium [343] has provided a real opportunity to gain insights into
the prevalence and patterns of ASE. Analysis of the most recent release
of GTex suggested that a very high proportion of genes show evidence
of ASE in at least some of the samples [339]. Among protein-coding
genes, 53% showed evidence of strong ASE (at least two fold difference
in expression between the alleles) in at least 50 individuals in at least
one of the 49 tissues, (Figure 1.6). Given the mean number of samples
per tissue (311) this corresponds to strong imbalance in a substantial
fraction of the samples. Note that these results show that most genes
can be affected by ASE, but does not translate easily into an estimate
of the probability that a given gene will show expression imbalance in a
given sample.
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Analysis of the prevalence of ASE across samples suggested some dif-
ferences across GTEx tissues, with testis having the largest number
of genes with detected imbalance, though this appeared to have been
driven largely by the number of expressed genes [339]. An earlier anal-
ysis of whole-blood RNA-Seq data from 65 individuals at age 70 and at
age 80 from the Prospective Investigation of the Vasculature in Uppsala
Seniors (PIVUS) cohort [344] suggested a small (2.7%) but statistically
significant increase in the prevalence of ASE with age [345], though
there were examples of genes for which ASE tended to decrease as well
as increase with age. Many of the genes that showed changes in ASE
over time were associated with the immune response and suggested to
be involved in the aging process [345]. Changes in ASE with age suggest
that it may be valuable to evaluate the frequency and effect size distri-
bution of ASE across genes at a sample level. This is likely to reflect
sequence heterozygosity, but given the relationship with age, may also
have associations with phenotype or disease risk.

ASE does not occur at the same level across the human genome. A
recent study investigating ASE in the GTEx and CARTaGENE cohorts
discovered that ASE is less frequently observed in low recombinant re-
gions and that recombination is used as a mechanism to mask delete-
rious mutations ensuring they are expressed at a lower frequency than
the wild type allele [346].

3. Caveats Recent results suggest that ASE is affected by technical arti-
facts arising most likely during the preparation of sequencing libraries
[338]. Mendelevich et al. simulated replicate RNA-Seq datasets and
found that the differences in allelic imbalance between technical repli-
cates were greater than expected from the simulations. They used this
difference to calculate an overdispersion factor, which was found to be
relatively stable for a given sample. This was then used as a correction
factor for the inference of imbalance, resulting in substantial reductions
in false positive rates. The absence of technical replicates makes it dif-
ficult to assess the potential of false positives to contribute to the high
rates of allelic imbalance reported by the GTEx consortium. However,
it is difficult to envision how such technical artifacts could result in
strong and consistent signals of ASE across such high proportions of
individuals. Encouragingly, the allelic fold changes reported by GTEx
from ASE were also highly consistent (Spearman rho = 0.83) with fold
changes estimated orthogonally on the basis of eQTL analysis. Interest-
ingly, excluding individuals who were heterozygous for a known eQTL
led to a relatively small drop (median of 7.5%) in the number of genes
with evidence of ASE in at least one sample of a given tissue [339]. It is
therefore possible that some of the ASE that is not supported by eQTLs
is artifactual; however, it seems more likely that this result points to a
large number of low-frequency eQTLs that have not been discovered.
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Figure 1.6: Proportion of protein-coding genes with allelic imbalance in
normal tissue. The top row gives the proportion of protein-coding genes with al-
lelic imbalance data in at least the number of individuals shown in the column for at
least one GTEx tissue. The remaining rows show the proportion of protein-coding
genes with statistically significant allelic imbalance (binomial test FDR <0.05) in
at least the number of individuals shown in the column in at least one tissue, as
a function of the minimum effect size (expression ratio between the alleles) given
in the rows. Reprinted with permission from Castel /emphet al. [339] under the
Creative Commons licence.
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1.6.6 ASE in cancer

A recent study by the PCAWG consortium found that about 10% of allelic
expression imbalance found in cancer is attributed to germline regulatory
variants while the remaining 90% is due to somatic events [322]. Inherited
regulatory variants can increase cancer risk in certain tissue types while ac-
quired somatic mutations on one copy of the gene or chromosome can disrupt
gene expression or can change the dosage level due to copy number changes.
Additionally, studies of precancerous and normal tissue bordering cancerous
cells have implicated the role of Al in the development of cancer. Al is in-
creased in normal tissue adjacent to the tumour compared to distant normal
tissue [347]. Although the level of Al is similar in tumour and adjacent tis-
sue, the pattern differs, indicating a large degree of genomic instability in
surrounding cells which may have implications for disease progression and
response to therapy [347]. Indeed, ASE of PIK3CA has been recently shown
to be prognostic in breast cancer [348]. Analysis of precancerous legions with
matched lung adenocarcinoma revealed shared chromosomal Al events and
highlighted its role in tumourigenesis [349].

1. Germline ASE:

Germline variants associated with ASE of specific genes were found to
increase the risk of certain cancers. The first evidence came from stud-
ies of colorectal cancer where it was discovered that the rs6983267 SNP
was associated with ASE in the MYC gene [350, 351]. This SNP was
first associated with colorectal cancer by Tomlinson et al. [352] and
a further study in the Finnish population confirmed AI as a mecha-
nism for the contribution of this SNP to the risk of cancer development
[353]. They showed that, compared to first-degree relatives, patients
with colorectal cancer favored the G allele at this location [353]. Ad-
ditional studies identified genes with ASE that conferred an increased
risk of other cancer types. These included ASE of BRCA1, BRCA2,
FGFR2, DMBT1, STXBP4 and COX11, PALB2 in breast cancer [354—
360], APC and TGFBR2 in colorectal cancer [361, 362], PARP1 in
melanoma [363], BRCA1 in ovarian cancer [360], DAPK1 in chronic
lymphocytic leukemia [364] and SCARBI in renal cancer [365].

Familial studies of Li—Fraumeni syndrome demonstrated the role of ASE
in the modified penetrance of germline TP53 mutations through an
analysis of unaffected carriers of the mutation with affected offspring
[366, 367]. Variable penetrance of missense variants in LRRC34 con-
tributing to papillary thyroid carcinoma has also been attributed to
ASE caused by an upstream regulatory variant that reduces the expres-
sion of the mutant allele [368].

As previously discussed, ASE is common in normal tissue, but the mag-
nitude of differences between alleles is often small for non-imprinted
genes. This differs in cancer samples with tumours showing significantly
different patterns of ASE of germline SNPs compared to the matched
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normal sample [365, 369]. A study of kindreds with familial pancreatic
cancer showed that changes in ASE can include loss of ASE, gain of
ASE and extreme, almost mono-allelic, gain of ASE and that extreme
ASE is common in the germline of patients relative to normal control
samples [369]. They also showed that those patients that developed
pancreatic cancer were at the higher end of the ASE spectrum, indi-
cating that increased ASE is a risk factor for developing cancer [369].
Similar investigations comparing tumour and matched normal samples
in prostate cancer showed significant changes in the regulatory effect of
germline variants between normal and tumour [370].

A recent study by Luft et al. explored the presence of germline muta-
tions in the human genome that were selected for/against during cancer
development, with loss of heterozygosity, an extreme form of Al, ob-
served predominantly in genes involved in the repair of double-stranded
breaks and homologous repair [325]. These mutations increased the like-
lihood of a second hit that removes the wild-type allele and retains the
mutation damaging to the tumour suppressor genes [325].

2. Somatic ASE

Although germline variants can contribute to Al in cancer by altering
the expression of one allele, it is not the main mechanism for allelic
imbalance in cancer samples. Changes in DNA allelic ratios caused by
somatic copy number events is the main contributor, with different re-
ports estimating it accounts for between 35%-85% of observed Al in
genes [322, 326] Somatic mutations leading to nonsense-mediated de-
cay are common in cancer genomes, leading to downregulation of the
allele containing the protein truncating mutation [371]. This is a com-
mon cause of disruption of tumour suppressor gene function. Rhee et
al. reported a high degree of allelic imbalance in known cancer genes,
consistent with frequent dysregulation of cancer genes [328]. Although
loss of function (LOF) mutations in tumour suppressor genes tend to be
recessive, allelic imbalance can contribute to cancer development when
the functional gene copy is downregulated [328]. Expression of wild
type alleles can be affected by LOH or changes in CNV [328]. Clay-
ton et al., discovered that LOF mutations are frequent in the normal
genome. However, changes in the expression of the allele containing
the mutations distinguishes cancer from normal cells [326]. This implies
that healthy individuals are at an increased risk of developing cancer
and functionally important changes in ASE are associated with cancer
onset and progression [326]. In cancer samples LOF mutations are not
limited to cancer-associated genes and are common in other genes sug-
gesting that there is a general loss of regulatory control and almost half
of genes exhibiting ASE in cancer showed evidence of exon-skipping in-
dicating that alternative splicing plays an important role in changing
ASE patterns in cancer [326].
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Gain of function mutations can also be associated with Al in cancer
genomes [324]. These mutations are typically present in oncogenes that
drive proliferation and progression of cancer. In contrast to tumour sup-
pressor genes, heterozygous mutations in oncogenes are generally suffi-
cient for tumourigenesis [372]. However, they are usually present in the
genome along with copy number variation leading to changes in dosages
for mutant versus wild type alleles [324]. Bielski et al. discovered that
allelic imbalance in oncogenes is common in untreated cancers [324].
Previously, it had been suggested that mutant Al was a consequence of
cancer therapy but these results indicate that Al likely provides a fitness
advantage to the evolving clone [324]. They also discovered that copy
number changes leading to Al of mutant alleles arose independently of
the mutant SNV [324].

Examples of genes exhibiting Al in cancer include KRAS and telomerase
reverse transcriptase (TERT). KRAS is one of the most frequently mu-
tated gene in human cancers and activating mutations of the gene have
been found to be the driving force behind a number of cancers includ-
ing colorectal, pancreatic and lung adenocarcinomas [373]. KRAS is a
protein within the RAS/MAPK pathway and is responsible for growth
and proliferation of the cell, making it an attractive target for cancer
[374]. AI of KRAS has been shown to be extremely frequent in cancers
with loss of heterozygosity and copy number variation being the two
main mechanisms [373]. Loss of the wild type allele is common in lung
adenocarcinomas and copy number gain of the mutant allele is com-
mon in pancreatic cancer [373]. Normal cells exhibit cellular senescence
meaning that they have a limited number of cell divisions before they
die [375]. This is due to telomere shortening with each cell division
[375]. TERT is responsible for telomere lengthening, allowing continued
cellular replication and its expression is regularly up-regulated in cancer
[376]. TERT expression is affected by epigenetic regulation with mutant
TERT showing the histone activating modification H3K4me2/3 on its
promoter along with RNA polymerase II binding [377]. In contrast, the
wild-type promoter has the histone silencing modification H3K27me3
[378]. TERT has also been shown to be regulated through alternate
splicing with highest expressed isoform in cancer shown to be the full-
length isoform, resulting in active telomerase [377].

1.7 Thesis Overview and Research Questions

It is clear from the studies of somatic mutations in normal tissues that there
is much that remains to be discovered about the transformation of normal
cells into cancerous cells and the role of somatic mutations in this process.
Therefore, this thesis focused on identifying mutations that occurred prior
to cancer transformation in cancer samples, understanding the role of the
immune system in shaping this mutational landscape and investigating the
role of germline ASE in cancer predisposition.
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In Chapter 2 we identified clonal mutations in WXS data from TCGA
by adjusting variant frequency for tumor purity and local copy number varia-
tion because these factors can affect our ability to identify mutations present
in all cells of the tumor. In this chapter we make the assumption that the
majority of clonal variants are likely to have been present in the cell prior
to cancer initiation and this would give us a good indication of the somatic
mutations present in the normal cell. We then investigated which cut-offs for
calling clonal and subclonal variant calls give the best sensitivity and speci-
ficity scores by comparing results to calls generated for TCGA samples in the
PCAWG cohort. Next, we used the relationship between age and somatic
mutation accumulation to estimate the true clonal load for each sample and
compared predicted values to observed somatic mutations from the same tis-
sue type and age. Finally, we investigated the relationship between median
predicted clonal load and cancer risk and also perform a genome-wide as-
sociation study analysis with the predicted clonal load as the phenotype to
identify any germline variants that may be associated with the accumulation
of somatic mutations.

In Chapter 3, we aimed to understand the role of the immune system
in shaping which somatic mutations are clonal in these samples, with the
assumption that the majority of clonal mutations occurred prior to immune
escape. Two previous studies [205, 206] showed that driver mutations in
cancer are common because of an inability of common HLA alleles to present
them to the immune system. However, the same was not true for passenger
mutations. Therefore, we focused our analysis on passenger clonal mutations
and investigated the relationship between gene expression and immune escape.
We hypothesized that the lack of a relationship between clonal passenger
mutations and HLA genotype may reflect alternative mechanisms through
which these mutations may be hidden from the immune system. Specifically,
clonal passenger mutations may occur preferentially on lowly expressed genes
or the genes on which they occur may be selectively down-regulated. The
latter could result in allele-specific expression if the effects that cause the
mutant allele to be down-regulated to avoid detection by the immune system
act in cis. We also used simulations to identify an upper bound for the
detection and removal of missense mutations by the immune system.

In Chapter 4, we extended our analysis of the relationship between
gene expression and somatic mutation accumulation by investigating the re-
lationship between germline ASE and cancer risk. We hypothesized that ASE
in tumor suppressor genes could be associated with cancer risk because if one
copy of the gene is down-regulated compared to the other then the probabil-
ity of getting cancer would be greater as the cell would only need to acquire
loss of function somatic mutations on the expressed copy for cancer to arise.
First we aimed to predict germline ASE using genotype data from heterozy-
gous SNPs and tested this approach using data from the GTEx cohort. We
used two methods to predict ASE; 1) a modified version of a gene expres-
sion prediction tool called PrediXcan [379] 2) logistic regression models using
gene-level ASE generated by Castel et al. [339] as the response variable and
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heterozygous status of SNPs as the predictor variables. We then performed
a pilot study to predict ASE in UK Biobank data and tested its association
with breast cancer risk.

Our research questions can be summarised as follows:

1. Is it possible to predict the true clonal somatic mutation load in a cancer
sample by utilizing the known relationship between somatic mutation
accumulation and age? (Chapter 2)

2. Is predicted clonal load associated with cancer risk? (Chapter 2)

3. Is it possible to identify germline variants that are associated with in-
creased clonal load? (Chapter 2)

4. Does gene expression level explain the lack of a signal of immunoediting
among clonal passenger mutations? (Chapter 3)

5. Is it possible to predict gene level germline ASE using genotype data?
(Chapter 4)

6. Is there a relationship between predicted germline ASE of tumour sup-
pressor genes and cancer risk? (Chapter 4)
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2 Chapter 2: Investigating somatic mutation
load in normal tissues using clonal cancer
mutations

2.1 Abstract

Somatic mutations are difficult to measure in normal tissues due to the low
frequency of the mutations and our inability to distinguish these variations
from noise introduced by the methodological processes. We use clonal mu-
tations in cancer samples in place of normal tissues to understand what has
occurred in the cell before cancer transformation. We adjust the variant fre-
quency of somatic mutations identified in samples from the Cancer Genome
Atlas (TCGA) to account for tumour purity and ploidy and then determined
the clonal status of those mutations. We use the relationship of age with
somatic mutation accumulation to estimate the true clonal mutation load for
these samples. Using our model, we can predict the total clonal burden of
a sample for a particular cancer at a particular age. We find a positive cor-
relation between the clonal mutations estimated using our method and the
somatic mutation load determined in normal tissue by other studies. We also
find a correlation between the clonal mutation load and lifetime cancer risk
of developing cancer. Our findings suggest that this method can be used to
estimate somatic mutation load in normal tissues from cancer samples and
has the advantage of being able to use the multitude of already published
cancer data sets to accentuate our understanding of the somatic mutations
that accumulate throughout a person’s lifetime.

2.2 Introduction

Somatic mutations arise in cells throughout a person’s lifetime. They con-
tribute to ageing [8, 9], neuro-degenerative diseases [10, 11], cancer and other
age-related disorders [12-14]. A somatic mutation arises in a stem cell. It
is, therefore, only present in the initial stem cell and any cell derived from
it, meaning it is generally only present in a small subset of cells within the
tissue. This makes somatic mutations in normal tissue samples challenging
to detect using standard bulk sequencing approaches.

In recent years, due to advances in technology such as single-cell clonal
expansions [16], laser capture microdissection [380] and single-cell RNA Se-
quencing [381], there has been a growing number of publications studying the
number and types of somatic mutations present in normal tissue cells. These
have primarily focused on individual tissue types, such as skin [20, 382-384],
oesophagus [385, 386], colon [387], endometrial [388], liver [389, 390], brain
[391], prostate [392], urethral tissue [393, 394], or on a variety of tissue types
within individuals but from a small number of donors [16, 388, 395-398]. The
most surprising finding from these studies was the identification of cancer
driver mutations under positive selection in normal tissues that showed no
evidence of cancer growth. This finding led scientists to question the previous
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ideas about cancer transformation. These driver mutations were considered
sufficient to initiate cancer transformation; however, although these mutations
drive clonal expansion, additional mutations are required for tumorigenesis.
Additionally, it could be the timing and order of these mutations, the combi-
nation of mutations or tissue specificity rather than the presence of a driver
mutation that is important [51].

There have been many attempts to estimate the normal somatic mu-
tation rate in humans. The first estimates used inactivating mutations in
”sentinel genes” such as PIG-A[399] and HPRT [400] to calculate the somatic
mutation rate. However, more recent technological advances in high through-
put sequencing, such as duplex sequencing[24], BotSeqS [25], NanoSeq[26],
SMM-Seq [29] and EcoSeq [28] , and methods that incorporate culturing sin-
gle cells followed by sequencing [401] have allowed direct estimation using cells
from normal tissues. Despite the advances in our ability to analyse somatic
mutations in normal tissues, current technologies still have a lot of problems,
such as high error rates [381], the introduction of laboratory-induced muta-
tions [402] or an inability to determine monoclonal structures in the tissue
types [403]. These issues mean a tissue’s true somatic mutation load can be
underestimated.

Here, we used clonal mutations derived from cancer samples to study
somatic mutations in normal tissue. Due to the nature of cancer evolution, i.e.
the clonal expansion of an initial cancerous cell, every cell in the cancer sample
contains a record of all of the mutations that accumulated before the last
common ancestor of the cancer cells (clonal mutations), as well as those that
occurred subsequently (subclonal mutations). Therefore, subclonal mutations
will only be present in a fraction of the cells. An advantage to this method is
that we can use the already thousands of available cancer sets to study somatic
mutations and their role in cancer tumorigenesis without the need to identify
mutations in normal tissues. In this study, we identified clonal mutations in
single sample bulk sequencing data from The Cancer Genome Atlas (TCGA)
and estimated the true clonal mutation load using the known correlation of
somatic mutation accumulation with age [404]. To our knowledge, this is
the first attempt to estimate the true somatic clonal mutation load in cancer
samples in this way. We also explored factors that affect clonal mutation load
and investigated the relationship between somatic mutation load and cancer
risk.

2.3 Results

2.3.1 Clonal classification of variants

We followed the method outlined by Dentro et al. [74] to infer the clonal
status of 1,096,100 single nucleotide variants (SNVs) in 6,807 TCGA sam-
ples. This approach uses variant frequency (VF) to determine clonality, with
a threshold that is adjusted for tumour purity and copy number variation
(CNV) status (explained in detail in Methods). The adjusted variant fre-

43



2 INVESTIGATING SOMATIC MUTATION LOAD IN NORMAL TISSUES USING
CLONAL CANCER MUTATIONS

quency allows the cancer cell fraction (CCF), i.e. the proportion of cancer
cells that harbour the mutation, to be calculated, and we use this to deter-
mine clonality. As explained in Methods, several thresholds can be applied
to classify variants as clonal or subclonal, with ambiguous calls falling into
an "undetermined” class. We applied binomial tests to calculate the CCF
and used the confidence intervals from these tests to classify variants. We set
upper and lower confidence intervals for clonal variants and an upper limit
for subclonal. Determining which value to use for these limits is explained in
the following section.

2.3.2 Adjusting thresholds to improve clonal variant calling

A recent study by the Pan-Cancer Analysis of Whole Genomes Consortium
[405] investigated the clonal and subclonal architecture of 2,658 cancers using
whole genome sequencing. They performed a comprehensive analysis using
a consensus approach that incorporated the output of 11 different subclonal
reconstruction callers to assign clonal status to each mutation. This dataset
includes 527 TCGA samples from our analysis, which we used to compare our
results to assess the accuracy of the calls. Limiting our comparisons to posi-
tions analysed by both, we had 64,393 variant calls to compare. An advantage
of using this dataset to gain confidence in our calls is that the samples for
WGS are taken from a different region of the tumour and, therefore, can act
as a second sample for the tumour.

To investigate the impact of adjusting the confidence interval thresh-
olds for classifying variants as clonal, subclonal and undetermined (Figure
2.1), we compared our calls to the clonal and subclonal calls from PCAWG.
This ensured that we had high confidence that the clonal calls were truly
clonal and subclonal calls were truly subclonal. Adjusting the upper con-
fidence interval for classifying a subclonal variant increases the number of
PCAWG clonal variants classified as subclonal in our dataset (Figure 2.1A.)
As the CCF increases, it is more challenging to distinguish clonal from sub-
clonal calls. It can be that specific variants arose early on in cancer progression
and rose to prominence, appearing clonal in the region where the PCAWG
sample was taken, but it is, in fact, subclonal in the tumour as a whole. If a
variant appears subclonal in one region of the tumour, it is deemed subclonal
in the whole tumour. For this reason, we can keep the upper CI threshold for
subclonal as high as 0.7 and still be confident that we have not misclassified
subclonal mutations as clonal.

Next, we investigated the impact of changing the thresholds to call
a variant clonal (Figure 2.1B and Figure 2.1C). Changing the lower CCF
confidence interval (Figure 1B), has a greater effect on our clonal calls than
changing the upper confidence interval (Figure 2.1C). Changing the lower
confidence interval for classifying a variant as clonal impacts the number of
subclonal mutations misclassified as clonal. Therefore increasing the lower
limit decreases the proportion of subclonal variants misclassified as clonal.
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A. Changing CCF upper confidence intervals for calling a subclonal variant:

Subclonal CCF Upper CI: 0.7 Subclonal CCF Upper CI: 0.6 Subclonal CCF Upper CI: 0.5

Clonal Subclonal Clonal Subclonal Clonal Subclonal

¢ 66 66

B. Changing CCF lower confidence intervals for calling a clonal variant:

Clonal CCF Lower CI: 0.8 Clonal CCF Lower CI: 0.7 Clonal CCF Lower CI: 0.6
Clonal Subclonal Clonal Subclonal Clonal Subclonal

C. Changing CCF upper confidence intervals for calling a clonal variant:

B Clonal
Clonal CCF Upper CI: 0.9 Clonal CCF Upper CI: 0.8
Clonal Subclonal S u b C I Oona |

B Undetermined

Clonal Subclonal

o

Figure 2.1: Comparison of clonal and subclonal calls when cancer cell
fraction (CCF) thresholds are changed. Comparison of calls from the TCGA
dataset to clonal and subclonal calls from PCAWG when changing CCF confidence
interval thresholds. The circles represent clonal and subclonal calls from PCAWG,
and the colours represent calls from TCGA. 50X minimum depth was required for
variants used in this analysis. (A) Clonal CCF confidence intervals were kept at
1 for the upper limit and 0.8 for the lower limit. Subclonal upper CCF confidence
intervals varied. (B) Subclonal CCF confidence interval was kept at 0.7, and upper
CCF for calling clonal variant was kept at 1. Clonal lower CCF confidence interval
varied. (C) Subclonal upper CCF confidence interval was kept at 0.7, and the
lower CCF for calling clonal variant was kept at 0.8. Clonal upper CCF confidence
interval varied.

2.3.3 Impact of read depth on classifying variants

As total read depth increases, our ability to classify variants also increases
(Figure 2.2). Therefore, we assessed the impact of changing the depth thresh-
old on our ability to call clonal variants. Below depths of 100X we could not
classify over half of the variants, while the total proportion of unclassified
variants drops to about 25% when we achieve minimum depths of 400X. The
proportion of variants called clonal by PCAWG but are called subclonal in our
analysis also increases as depth increases. As there are more reads covering
these variants, we can be confident that these variants really are subclonal but
appear clonal in the region from which the PCAWG sample was taken. The
proportion of variants called subclonal by PCAWG but called clonal in our
analysis remains high until we achieve depths of 1000X. However, the number
of variants present at 1000X is extremely low so it is difficult to draw strong
conclusions. The number of variants dramatically decreases as read depth
increases. The mean read depth for a variant in our dataset is 95X. Therefore
we use a depth of 100X going forward in our analysis to use as much data as
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Depth: 20X n=61,130 Depth: 100X n=26,858
Clonal Subclonal Clonal Subclonal
Depth: 200X n=8,536 Depth: 300X n=3,275
Clonal Subclonal Clonal Subclonal
Depth: 400X n=1,495 Depth: 500X n=796
Clonal Subclonal Clonal Subclonal
Depth: 700X n=270 Depth: 1000X n=82
Clonal Subclonal Clonal Subclonal

B Clonal |7 Subclonal [ Undetermined

Figure 2.2: Comparison of clonal and subclonal calls when cancer cell
fraction (CCF) thresholds are changed. Comparison of calls from the TCGA
dataset to clonal and subclonal calls from PCAWG over different sequencing depths.
The circles represent clonal and subclonal calls from PCAWG, and the colours
represent calls from TCGA. Percentages of total PCAWG clonal or subclonal are
given for each pie piece. Subclonal CCF upper CI is kept at 0. Clonal CCF
confidence intervals were kept at 1 for the upper limit and 0.8 for the lower limit.
Each pair of pie charts represent the overlaps for varying minimum read depth
values. The number of variants (n) present after filtering for depth is also given.
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possible while also confidently classifying at least half the variants. At 100X
there is also a small proportion of variants called subclonal in our analysis but
clonal by PCAWG (11.7%) and called clonal in our analysis but subclonal by
PCAWG (6.2%).

2.3.4 Relationship of mutation load with purity

The tumour purity of a sample has a major impact on our ability to call
variants. This is especially true in the case of subclonal variants because it
is much more difficult to identify subclonal mutations when the proportion
of cancer cells is low in the sample. As expected, the inferred number of
subclonal mutations increases as tumour purity increases (Figure 2.3C).

Variant allele frequencies are lower for clonal variants in samples with
low tumour purity compared to samples with higher purity. This is because
the reference allele will be present at a higher fraction than the mutant al-
lele due to the presence of normal cells in the sample. The purity distribution
varies among cancer types (Figure 2.3A), which is reflected in the correspond-
ing variant frequency distributions (Figure 2.3B). Cancers with lower purity,
such as LUAD or LUSC, have a clonal peak around 0.25. However, cancer
types for which samples tended to have higher tumour purity, such as UVM,
peak at 0.5. This highlights the impact of purity on the inferred mutant allele
frequency and why it needs to be accounted for when classifying variants as
clonal or subclonal instead of using variant frequency alone.

There is a decline in the total number of clonal variants as purity
increases (Figure 2.3C). This is because most samples with high tumour purity
come from ACC and UVM cancers which have a low overall mutational burden
and therefore their clonal burden will be low in comparison to samples from
other cancer types.

2.3.5 Comparison of raw mutation calls versus curated call set

For our analysis, we used the publicly available mutation calls from the Multi-
Center Mutation Calling in Multiple Cancers (MC3) working group [113].
This is a highly curated set of mutation calls for which MC3 working group
applied stringent filtering criteria and performed a comprehensive assessment
of variants in order to remove germline variants and artefacts before making
the dataset available for public release. We repeated our analysis using the
original raw mutation calls from all seven callers, using the same consensus
approach that a variant must be called by at least two variant callers in
order to assess the impact of noise on determining clonal and subclonal calls.
The curated calls contains 22.6% of the variants present in the raw calls
(Table 2.1). Interestingly, applying a depth filter of 100X to both sets reduced
the raw calls by 3% but reduced the curated calls by 70%. This is likely
due to differences in combining results from various mutation callers. When
combining variants from the raw calls, we used the depth results from the
variant calls of one variant caller, while the MC3 group averaged counts from
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Figure 2.3: Overview of purity estimates and variant frequency for vari-
ants within each class of clonality. (A) Purity distributions per sample split by
cancer type. (B) Variant frequency spectrum for clonal (blue), subclonal (yellow)
and undetermined (grey) variants split by cancer type. (C) Relationship between
sample purity and median clonal (blue), subclonal (yellow) and undetermined (grey)
mutational loads for each purity value.
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Raw variants | Curated variants
Total SNV 8,326,463 1,884,295
Total after > 100X depth filter 8,082,966 550,601
Number of hypermutated samples | 129 29
SNVs classified as clonal 2,383,316 192,403
SNVs classified as subclonal 512,914 82,854
SNVs not classified 5,186,736 275,344

Table 2.1: Comparison of results when using variants present in the
raw mutation calls to those present in the curated calls.

all variant callers. Identifying hypermutated samples as those which have
>1000 missense mutations removes 100 more samples from the analysis when
using the raw calls than when using the curated calls. This is likely due
to artefacts and germline variants contributing to the total missense count,
inflating the mutation load for these samples. The proportion of variants
classified as clonal, subclonal and undetermined is similar when using both
datasets, indicating that there is no difference in our ability to classify variants
in both datasets. If the majority of variants in the raw calls are, in fact,
germline variants or artefacts, as identified by the MC3 group, then using
the raw calls for our analysis would result in a high overestimation of the
mutational loads.

2.3.6 Impact of total reads for calling variants

The number of reads sequenced for each individual sample has an impact
on the total number of variants called for that sample. Each variant caller
requires a certain depth for which a variant can be called. Therefore, if the
number of reads present in a sample is low, the total number of variants
that reach the minimum depth threshold will also be low. Additionally, we
apply a read depth filter to our dataset to increase our confidence in clonal
classification. The number of reads sequenced for each sample ranges from
25,964,716 to 850,543,992. There was a positive correlation between total
mutational burden and total sequenced reads (Spearman Rho=0.25, p-value=
7.2 x 10719¢). Therefore, it is important to consider this when analysing the
total mutational burden.

2.3.7 Relationship of mutational load with age

We are confident that the thresholds we used to classify variants resulted in
accurate clonal and subclonal calls. However, there was still a large propor-
tion of variants we could not classify (undetermined). In order to further
assess the impact of the confidence interval thresholds on our calls, we ex-
ploited the known relationship of age with mutation accumulation. Because
somatic mutations accumulate with age in healthy cells, the number of clonal
mutations in a cancer sample should also increase with patient age since the
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clonal mutation burden includes all of the mutations that arose prior to cancer
transformation. This is not the case for subclonal mutations, as the subclonal
mutation burden depends on the rate at which mutations accumulate in the
cancer cells and the time since the development of the cancer (rather than on
patient age). Mutation load increases with age in most cancer types except
for lung and endometrial cancers, which show a negative trend [406-408] . We
also saw this in our data when we assessed the relationship between age and
mutation load for each cancer type (Table 2.2). For this reason, we removed
the UCEC, LUAD and LUSC cancer types from our analysis. Although LUSC
showed a negative correlation which did not reach statistical significance, we
still removed it from the analysis due to the negative correlation reported
previously.

The positive correlation between the remaining cancer types and age
(Spearman’s tho=0.32, p-value= 9.4 x 10~114) provides a means to estimate the
total number of clonal mutations per sample. We assume the relationship with age
exists only for clonal variants. In that case, we can say that the total clonal load,
T, of a sample can be modelled as follows, with age, A, as the predictor variable:

T = Bor + BiTtA+¢

The number of clonal variants we have classified as clonal is a proportion
of the total true clonal load with the remaining clonal variants present in the un-
determined group. The slope of the model (B17) tells us how much the total clonal
mutational load changes with each year increase in age. The slope of the model
using the clonal variants we have accurately classified as clonal will be a propor-
tion, p, of the total slope. The remaining slope will be present in the model that
relates the unclassified variants to age in the model. As a result, we can estimate
the proportion of all clonal variants that were called clonal using the slopes from
two models 1. relating the clonal mutation load to age (see methods equation 7),
2. relating the undetermined mutation load to age (see methods equation 8),.

The intercept of the regression model relating mutation load to age (Bor)
can be used to estimate the specificity of calling clonal mutations. This is because
the clonal mutation load, but not the subclonal load, correlates with age. If all
clonal calls are truly clonal and no subclonal calls have been misclassified as clonal,
we would expect this intercept to be 0 (i.e. the extrapolated clonal mutation burden
at age zero is zero). However, if the clonal calls contain subclonal mutations, the
intercept will no longer pass through or close to 0. Because the variants classified
as clonal are only a proportion of the true clonal load, we first estimated the true
clonal mutation load and fit a model using these values to obtain the intercept value
of the estimated total clonal load value at age zero.

In order to build a linear regression model predicting clonal mutation load
using age as the predictor variable, we first needed to assess whether our data
met the assumptions of linearity, normality and homoscedasticity for linear models
(Figure 2.5). Using the clonal mutational load values as our response variable, we
did not meet the normality assumptions for the residuals (first column of Figure
2.5B) which means our estimates of clonal load would not be reliable using this
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’ Cancer Type \ Rho \ P-value

ACC 1027 | 0.01
BLCA 1012 | 0.02
BRCA 10.04 | 0.30
CESC 1018 | 0.04
CHOL 10.31 0.08
COAD 10.08 | 0.24
DLBC 1024 | 041
ESCA 1018 | 0.02
GBM 1028 | 0.00
HNSC 10.16 | 0.00
KICH 1047 | 0.00
KIRC 10.4 0.00
KIRP 10.41 0.00
LGG 1039 | 0.00
LIHC 10.11 0.17

« LUAD | ] -0.11| 0.02
* LUSC 1002 064

)Y 1019 | 0.19
PAAD 10.16 | 0.04
PCPG +0.15 | 0.12
PRAD +0.13 | 0.01
READ +0.19 | 0.10
SARC 1032 | 0.00
SKCM 1022 | 0.03
STAD 10.25 | 0.00
TGCT 10.08 | 0.36
THCA 1029 | 0.00
THYM 1016 | 0.27

« UCEC 1-0.17 | 0.00

UCS 1029 | 0.04

UVM 1-0.05 | 0.69

Table 2.2: Spearman correlation coefficient for age and total muta-
tion load per cancer type. Arrows represent the direction of the corre-
lation, with the up arrows representing a positive relationship and the down
arrows representing a negative relationship. P-values that reach statistical
significance (<0.05) are coloured in green. Stars indicate the cancer types
that were removed due to known negative correlations.
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Figure 2.4: Relationship between age and median clonal, subclonal and
undetermined mutational loads for each age value. Clonal= blue, Sub-

clonal= yellow, Undetermined= grey. Medians were calculated over all samples
with a given integer-valued age.
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data. We also have a problem with heteroscedasticity in this data set (Figure
2.5C), (Breusch-Pagan test p-value=5.63 x 1071%). Applying log transformation to
the response variable (second column of Figure 2.5) fixed the normality violation.
However, the response and predictor variables no longer have a linear relationship.
Scaling the clonal mutational load by total sequencing read depth (third column
Figure 2.5) gave similar results to using the original data. Instead of using all data
to fit our model, we used the median clonal load at each age, taking cancer type into
account (column four of Figure 2.5). Although this improved the heteroscedasticity
of the model (Breusch-Pagan test p-value=0.51), it did not improve the normality.
We also tried a weighted least squares approach (column 5 of Figure 2.5) which
again improved heteroscedasticity but failed to improve normality. Therefore, we
instead used a generalised linear model method which does not assume a normal
distribution for residuals.

The thresholds used to identify clonal mutations can be further optimised
using the proportion of true clonal mutations that have been called clonal as well
as the intercept of the model using the estimated total clonal load. The slopes
from both models were calculated each time the thresholds were altered and used
to assess the impact of changing the thresholds (Figure 2.6). Again, changing the
lower confidence interval for calling a clonal variant had the biggest impact. We
achieved the lowest intercept value using a lower CCF confidence interval of 0.8.
The upper confidence interval had no impact at this level, so we kept it at 0.8 in
order to capture as many variants as possible. Although the proportion of variants
is still small (0.45), we are confident that the variants classified as clonal really
are clonal, and so our predictions of total clonal load will be more reliable. Our
final thresholds for calling a clonal variant are 0.8 for both the lower and upper
CCF confidence intervals, and the final lower CCF confidence interval threshold for
calling a subclonal variant is 0.7.

2.3.8 Effect of Cancer Type on clonal load

The model with age as the only predictor assumes that the relationship of clonal
mutations with age is consistent across all cancer types. However, we know this
is not the case and that mutation rates differ between tissue types. Using the
estimated total clonal load, we can perform a linear regression which accounts
for cancer type and age to understand the impact of cancer type on the clonal
mutational load. When we include the cancer type in our model, the goodness of
fit of this model (McFadden R squared=0.29) is better than a model with age alone
(McFadden R squared=0.07).

2.3.9 Relationship of sample features with clonal mutational load

There are a number of biological features that can have an impact on the total
clonal mutational burden of a sample. These include race, gender, stage, and
grade. Gender [409-411] and race [412] have been shown to have an impact on the
mutational burden for certain cancer types and therefore, could impact our ability
to predict clonal load accurately. Additionally, the stage and grade of a tumour
could impact our ability to call a clonal variant accurately because if the tumour is a
late stage or high grade, there has been a long time since cancer initiation, meaning
it could be a very heterogeneous sample. The heterogeneity of the sample could
mean that a subclonal mutation that occurred after the initial cancer expansion
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Figure 2.5: Diagnostic plots for regression models. ( Diagnostic plots for
) models using the original data as the response variable, (2)

log-transformed response variable (3) response value scaled using total read

depth, 3) response variable as the median clonal load at a particular age,
depending on cancer type (4) original data as the response variable using a
weighted least squares (WLS) approach. (A) Residual versus fitted values
plot to assess linear pattern between response and predictor (B) Q-Q plot to

assess if residuals follow a normal distribution (C) Scale-Location plot to

test the assumption of equal variance (homoscedasticity) (D) Residual
versus leverage plot to identify influential cases.
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Figure 2.6: Sensitivity and specificity of clonal mutation calls as a function
of confidence interval thresholds based on the linear models relating the
clonal mutation load to age and the undetermined mutation load to age.
The size of the circles represents the proportion of true clonal variants called clonal.
The colour of the circle depicts the intercept value of a model with the estimated
clonal load as the response and age as the predictor. Red indicates higher values,
and green indicates low intercept values. The Y-axis shows the different clonal
upper confidence interval thresholds applied, and the X-axis shows the different
clonal lower confidence interval thresholds.
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Figure 2.7: Relationship between median predicted clonal load and age
for each cancer type. Colours correspond to each cancer type. Cancer codes are
explained in Table 2.4.
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Predictors Goodness of Fit (McFadden R?)
Age 0.07
Age + Cancer Type 0.29
Age + Gender 0.07
Age + Race 0.07
Age + Grade 0.07
Age +Stage 0.07

Table 2.3: Assessment of adding predictors to the model. The two
models with * were fit using fewer samples because grade and stage informa-
tion was not available for all samples.

has taken over now appears clonal. This would result in a higher clonal mutation
load for these samples compared to samples from an earlier stage or lower grade
tumour.

We assessed the impact of adding each factor separately as predictors in
the model that includes age as a predictor (Table 2.3). Adding each factor to the
model did not improve the goodness of fit, indicating that cancer type with age is
enough to capture the variation in clonal mutational load.

2.3.10 Comparison with somatic mutation load in normal tissues

Next, we investigated whether the clonal counts estimated for each tissue type
correlated with the expected somatic mutation load for the normal tissues from
which the cancer originated. This gives us an indication as to how well the clonal
counts represent the normal somatic mutation load. A recent study by Moore et
al.[413] generated somatic mutation burdens using whole genome sequencing for 29
cell types. Using our model, we predicted the total clonal mutation burden for each
cell type and age present for seven cancer types that correspond to tissue types in
the data; see Methods for details of the normal data.

Our predictions were derived from whole exome sequencing (WXS) data,
so we scaled the whole genome sequencing (WGS) values from the normal tissue,
assuming that the exome corresponds to approximately 1.5% of the whole genome,
for the comparisons. There was a high correlation (Pearson r=0.63, p-value=0.03)
between the estimated values and those observed in normal cells (Figure 2.9). The
regression line (blue) deviates from the x=y line (black), indicating that our es-
timates do not perfectly match the normal somatic mutation load. However, it
does fall within the 95% confidence interval of the regression. This indicates that
although the estimated clonal mutation burden in the cancer samples was higher
than the mutation burdens observed in the corresponding normal cells, the differ-
ence was not significant.

Some predictions fall outside the 95% confidence interval range (grey area),
which indicates that we may be over and underestimating the total clonal load for
these cancers. Interestingly, we had normal data from two individuals for each
of these tissue types (skin, prostate and oesophagus), but only one sample for
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Figure 2.9: Scatterplot of predicated clonal mutation load versus scaled
somatic mutation load from normal tissues. The fitted linear regression line
is shown in blue, with the light grey area indicating the 95% confidence interval on
the regression line. The x=y line is shown in black. Samples are labelled by cancer
type. Cancer codes are explained in Table 2.4.
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each fell outside the range. Further investigation of the mutational load from the
normal samples showed that the normal skin tissue for the individual at age 54
was lower than the mutational load from the normal skin sample at age 47. While
the prediction for skin at age 47 was close to the observed mutational load for the
skin sample at age 47, the prediction for age 54 was almost three times higher than
the observed mutational load for the skin sample at age 54. This could be due to
skin exposure, or lack thereof, to UV light. It may be that the individual at age
47 had more exposure to UV compared to the individual at age 54, which would
result in a higher mutational burden. This is likely to be true, too, for the samples
used to build the model used for predictions. It is likely that individuals with skin
cancer have had high exposure to UV light, explaining why the prediction at age
47 is closer to the observed mutational load in the normal skin sample at age 47.
Investigating the normal oesophageal samples showed that the individual at age
47 had 1.5 times more mutations compared to the individual at age 78 and more
than twice the number of mutations as predicted for age 47. It is possible that
the individual at age 47 had some unreported exposure to environmental factors
that increased mutational load or had a defect in DNA mismatch repair, causing
hypermutation. It is interesting to note that the individual at age 78 died of
metastatic oesophageal cancer. The prostate sample at age 78 had more than four
times the somatic mutational load of the individual at age 47 and 2.75 times more
than the predicted value at age 78. These results demonstrate that our predictions
are close to the observed values in normal tissue, but we require more data from
normal tissues to properly assess the accuracy of the predictions.

2.3.11 Association with lifetime cancer risk

Age is the most significant risk factor for cancer [61] , and this has been attributed
to the accumulation of somatic mutations throughout a person’s lifetime. We in-
vestigated the relationship between the log predicted clonal mutation counts at age
80 per cancer type and log lifetime cancer risk (LCR) (Figure 2.10). There was a
positive correlation between the values, but it did not reach statistical significance.
There is also a positive correlation between lifetime stem cell division (LSCD) and
predicted clonal counts for the same cancer types (Figure 2.10B). Even with the
small sample size, there is a strong positive relationship between LCR and LSCD
(Figure 2.10C), as previously reported by Tomasetti and Volgestein [73]. It should
be possible to better understand the relationships as LSCD data becomes available
for more cancer types, as we were limited to the 11 cancer types for which we had

LSCD data.

2.3.12 Genome-Wide Association Study

In order to examine germline genetic contribution to the predicted clonal muta-
tional load, we performed a genome-wide association analysis (GWAS) using pre-
dicted clonal mutational load as the phenotype. No SNPs reached genome-wide
significance (p <5 x 107%), and there was only one SNP that passed the threshold
for suggestive loci (p <1 x 107%) (Figure 2.11A). There was one gene, CKM, that
passed the significance threshold in the gene-based analysis (Figure 2.11B). There
is little evidence that there is a germline effect on the clonal mutational load of
the cancer samples. However, it may be that the effect is confounded by the large
number of cancer types in this study. A GWAS analysis for individual cancer types
with large sample sizes would help to elucidate this.
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Figure 2.10: Relationship between predicted clonal load, cancer risk and
lifetime stem cell divisions. Scatterplots of (A) log median estimated clonal
load versus log lifetime cancer risk, (B) log median estimated clonal load versus
log lifetime stem cell division (LSCD), (C) log lifetime stem cell division versus log
lifetime cancer risk. Blue lines are the fitted linear regression lines with the light
grey area indicating 95% confidence intervals.
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Figure 2.11: Manhattan plots using predicted clonal load as phenotype in
a genome wide association study. (A) SNP-based Manhattan plot with genetic
coordinates on the x-axis and negative logarithm of the association p-value for each
single nucleotide polymorphism (SNP) displayed on the y-axis. Each dot represents
a SNP. (B) Gene-based Manhattan plot with genetic coordinates on the x-axis and
negative logarithm of the association p-value for each gene displayed on the y-axis.
Each dot represents a gene. The dotted red lines indicate the significance level.
Any SNP /gene that achieved significance is labelled.

2.4 Discussion

Recent studies determining somatic mutations in normal tissue have highlighted
that there is still a lot unknown about somatic mutation accumulation in the nor-
mal cell [20, 39, 382-398, 414-418]. These studies showed that driver mutations
are present at high frequencies and that clonal expansions are common in normal
tissues. Thus, highlighting the need for further studies into somatic mutation ac-
cumulation in normal tissues. However, there is still a long way to go to improve
technology, reduce costs and eliminate noise from these datasets. Therefore, it is
essential to glean as much information about the normal tissue from the myriad
of cancer datasets that already exist. Historically, studies investigating clonal mu-
tations in cancer primarily focused on identifying driver mutations, understanding
somatic mutation rates in the normal tissue and predicting response to immunother-
apy. Passenger mutations were less studied until more recently when it was discov-
ered that they aid in reducing tumour fitness [419, 420], can be used as a molecular
clock to calculate the age of the tumour [421], can be used to more accurately clas-
sify tumour types for tumour biopsies [422], and some may even accumulate to slow
down tumour progression [423, 424]. Cancer samples have not been fully utilised to
understand what is happening in the normal cell, which is essential to understand
the path to cancer fully. Here, we predicted the total clonal mutation burden in
the exome of cancer samples to investigate if it could be used to understand muta-
tions in normal tissue further. We also investigated the relationship between clonal
mutation load with factors such as tissue of origin, grade, and stage, as well as the
association with LCR, LSCD and somatic mutation load in the normal tissue.

Variant frequency can be used to infer the clonality of a variant, with
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low variant frequency called subclonal and high variant frequency called clonal.
However, using a fixed variant frequency threshold can result in some variants being
misclassified as either clonal or subclonal because a cancer sample is never purely
made up of cancer cells and is a heterogeneous mix of normal and cancer cell types.
Therefore it is necessary to adjust variant frequency to account for this. While many
methods, such as Canopy [140] and cloneHD [425], take copy number into account,
few methods also incorporate tumour purity. Our analysis used adjusted variant
frequencies to account for tumour purity and local copy number to calculate the
CCF, which is used to determine clonality. Even with adjusted variant frequencies,
our results show it is still challenging to classify variants accurately as clonal or
subclonal using set thresholds.

Several factors affect our ability to identify all clonal mutations in a sample
and cause us to underestimate the total clonal burden. These include the sequencing
depth at each position and the total reads sequenced in the sample. We applied
a depth filter of 100X, which means that any clonal variant present at a location
that did not meet this depth requirement would be lost from our analysis. This
is impacted by the total number of reads sequenced per sample because samples
with lower total reads will have a reduced ability to meet the depth requirement. A
limitation of our analysis is that we were not able to obtain the callable size of the
genome for each sample. This is a measurement of the total number of positions
which reached the required depth for calling a variant. A better estimate of the
total clonal mutational burden would have included this value in the calculation.

We assumed that at age zero, the somatic mutation load for an individual
was zero. However, somatic mutations can occur during early human embryogenesis
at an estimated 3 mutations per cell per cell doubling [426]. Most variant calling
pipelines in cancer studies use a matched normal from the same individual to remove
germline variants which will also remove somatic variants that occurred during
embryogenesis. These would not be identified by our method. Therefore, we would
expect the number of somatic mutations at birth to be zero or close to zero and were
able to use this as another way to determine the specificity of the model. We were
unable to achieve an intercept of zero, even with the most stringent CCF thresholds
applied, which indicates that there was some level of subclonal contamination in
our clonal calls. It is estimated that roughly 26% of clonal calls may actually
be subclonal calls when using a single sample bulk sequencing approach [79, 427].
This means that using a single sample would result in an overestimation of the total
clonal load.

We also assumed that there is no relationship between subclonal mutations
and age. However, the number of accumulated subclonal mutations might also de-
pend on the time since cancer initiation and the amount of time that has passed
until cancer diagnosis. This is because for some cancer types a large amount of
time may have passed between cancer initiation and detection, during which time
subclones are able to accumulate mutation. Although the rate of mutation may
be different to the rate prior to cancer initiation, this rate could also be correlated
with time. There is a deficiency in analyses investigating the relationship between
age and subclonal mutations. Therefore we rely on the studies investigating muta-
tional signatures in subclonal mutations to understand the impact. A recent study
investigating intra-tumour heterogeneity of cancer samples has shown a change
in signature activity in subclonal mutations compared with clonal mutations [79].
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SBS1 clock-like signature is no longer active in subclones, which indicates that the
C >T dominant signature, characteristic of the relationship between somatic mu-
tation and age, is not present in subclones and can act as evidence that there is no
or low relationship between age and subclonal mutation accumulation.

The somatic mutation rate can differ between human tissues and cell types,
which is reflected in differences in the mutational load between cancer types. In-
cluding the cancer type in our model increased the goodness of fit for the model
predicting the total clonal mutation load. Clonal load differs depending on the
tissue of origin for the cancer, with endometrial (UCEC), lung (LUAD and LUSC),
skin (SKCM), colorectal (COAD) and bladder (BLCA) cancers all showing high
clonal load and thyroid (THCA), PCPG, thymus (THYM) and eye (UVM) cancers
exhibiting low clonal load. This is all in line with results previously reported in the
literature showing the relationship between the mutational burden of cancer types
and response to immunotherapy. Cancer types such as melanoma, lung, urothelial
and endometrial all have a better response to immunotherapy, possibly as a result
of their high mutational burden [259, 428-432]. The high mutational burden of skin
and lung cancers is attributed to mutagenic exposure such as UV light and tobacco
smoke, respectively [48] while the APOBEC signature, which causes an increased
mutation rate, has been found in 70% of bladder cancers[48, 433]. Increased muta-
tional burden observed in colorectal cancers is caused by microsatellite instability,
mutations in the POL genes and defects in the WNT signalling pathway, particu-
larly in the APC gene, which are common in the non-hypermutated samples [434].
Uveal melanoma has a much lower mutation rate compared to other cutaneous
melanomas and, as a result, has a low response to immunotherapy [435]. Com-
parison of metastatic uveal melanomas with paired primary tumours has shown
stability at the nucleotide level in this cancer type[436]. Thymomas have the low-
est average mutational burdens among human cancers and have low somatic copy
number alterations, which is thought to explain why they do not respond well to
molecular targeted therapies [437, 438].

A limitation of our analysis is that only a single sample was available per
patient, which can cause an illusion of clonality when a mutation is shared by
all cancer cells in the sample but not all cells in the wider tumour from which
the sample was derived. By using only a single sample from these patients, we
may be misclassifying subclonal mutations as clonal mutations and, as a result,
overestimating the true clonal count in these samples. This is especially true for
late-stage and high-grade tumours, which have had more time to evolve and are
more differentiated. In addition, it is difficult to determine from the data if a
subclone has expanded to replace the original clone in the more advanced cancers
because the CCF of the variants are all 1. It would only be possible to determine
this by using multiple samples from the same tumour.

When comparing the predicted clonal counts estimated in cancer samples
to the corresponding tissue type, we see a positive correlation between the two
values. Although our estimates are higher than those of the somatic mutation
load in normal tissue, they follow a similar trend. One factor that may affect these
comparisons is that we only have one sample for an individual at a particular age for
each normal tissue type. Therefore, the somatic mutation load in the normal tissue
does not account for variability between individuals. While on the other hand, we
do not have multiple samples from different regions in a tumour from the cancer
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samples, so the predictions do not account for variability within an individual.
There may also be variability in the mutation load in clones from normal tissue;
therefore, the samples used may not reflect the mutational burden of a normal
cell before cancer initiation. Suppose specific clones within a normal tissue have
different mutational burdens, we would expect that the cancer cell is more likely to
arise from a cell that has a mutational burden in the higher end compared to other
clones in the tissue. Additional analysis using single-cell sequencing data is needed
to clarify this.

A high-profile study by Tomasetti and Volgestien in 2015 [73] investigated
the relationship between the lifetime number of stem cell divisions (LSCD) of a
tissue and lifetime cancer risk (LCR). They found a high correlation between these
two values and claimed that this suggested that intrinsic factors, i.e. stem cell
divisions, play a far greater role in cancer risk than previously thought. They
attributed this correlation to the accumulation of somatic mutations that are in-
corporated through errors in DNA replication during each stem cell division, i.e.
the higher the number of stem cell divisions, the greater the chance of somatic
mutations occurring. If this is the case, and somatic mutation burden does explain
the relationship observed, we would expect to see a stronger correlation between
somatic mutation load and LCR. However, this was not evident from our analysis
and similar results were reported by Milholland et. al. [439]. Although we saw a
positive correlation between predicted clonal mutation burden and LCR, there is a
stronger correlation between LCR and LSCD, which suggests that the relationship
between LCR and LSCD is not mediated (or at least not entirely mediated) by
increased mutation accumulation.

2.5 Conclusion

In conclusion, the results of this chapter highlight the difficulty of determining clonal
mutations within a tumour sample using single-sample bulk sequencing data. Ad-
justing for tumour purity and copy number variance, the two factors most likely to
bias results, still does not solve the problem, with only 45% of clonal variants clas-
sified as truly clonal after applying the thresholds that achieve the best sensitivity
and specificity. Our results do indicate that it is possible to estimate the true clonal
load of a tumour sample by leveraging the known associations of somatic mutation
accumulation in normal tissues with age. In this way we can determine how many
variants we have accurately classified as clonal for a sample at a specific age and of
a specific tissue type.

Comparing the predicted clonal load to the measured somatic mutation
load of samples taken from normal tissue indicated that the predicted clonal loads
are in line with the expected number of somatic mutations for that tissue type of
a particular age. However, there were some deviations which were indicative of
additional factors other than age that may be contributing. It will be necessary to
develop models for individual tissues types using larger sample numbers in order
to further elucidate this.
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2.6 Materials and Methods
2.6.1 Data Acquisition

Access to controlled TCGA data was granted through the Genomic Data Commons
(GDC). Details of the samples used as provided in Table 2.4. Somatic variant calls
from whole exome sequencing (WXS) were obtained from harmonised data pro-
duced by the MC3 working group, which aimed to reduce artefact contamination
and produce high-confidence somatic calls for the TCGA data [113]. We used
publicly available MAF and raw VCF files from each variant caller for our analy-
sis. Focal copy number variant (CNV) files and HT'Seq count expression files were
downloaded from the GDC. Tumour purity calls were obtained from Thorsson et
al. [440]. Clinical information and metadata were obtained for the TCGA sam-
ples using the TCGAbiolinks (v2.14.1)[441] and TCGAutils (v1.6.2) packages in
R (v3.6.2). TCGA genotype data were obtained from Carrot-Zhang et al. [442]
Lifetime cumulative stem cell division rates and lifetime cancer risk values were
obtained from Tomasetti and Vogelstein [73].

Study Code | Study Name Number of Samples
LAML Acute Myeloid Leukemia 98
ACC Adrenocortical carcinoma 88
BLCA Bladder Urothelial Carcinoma, 380
LGG Brain Lower Grade Glioma 470
BRCA Breast invasive carcinoma 571
CESC Cervical .squamous cell' carcinoma and 137
endocervical adenocarcinoma
CHOL Cholangiocarcinoma 35
COAD Colon adenocarcinoma 220
ESCA Esophageal carcinoma 159
GBM Glioblastoma multiforme 280
HNSC Head and Neck squamous cell carcinoma | 481
KICH Kidney Chromophobe 61
KIRC Kidney renal clear cell carcinoma 246
KIRP Kidney renal papillary cell carcinoma 155
LIHC Liver hepatocellular carcinoma 161
LUAD Lung adenocarcinoma 402
LUSC Lung squamous cell carcinoma 386
DLBC Lymphoid Neoplasm Diffuse Large B 14
cell Lymphoma

(0)% Ovarian serous cystadenocarcinoma 50
PAAD Pancreatic adenocarcinoma 157
PCPG Pheochromocytoma and Paraganglioma | 126
PRAD Prostate adenocarcinoma 439
READ Rectum adenocarcinoma 78
SARC Sarcoma 218
SKCM Skin Cutaneous Melanoma 103
STAD Stomach adenocarcinoma 405
TGCT Testicular Germ Cell Tumours 127
THYM Thymoma 92
THCA Thyroid carcinoma 384
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UCS Uterine Carcinosarcoma 52
UCEC Uterine Corpus Endometrial Carcinoma | 378
UVM Uveal Melanoma, 73

Table 2.4: Description of the TCGA cancer types used in this study,
including the total number of samples available for each.

2.6.2 Variant Processing

Only single nucleotide variants that passed the filtering criteria for each of the seven
variant callers used by the MC3 working group [113] and were called by two or more
variant callers were included in the analysis. Only primary tumour samples were
used for this analysis. Hyper-mutated samples with >1000 missense mutations were
removed from the analysis.

2.6.3 Identification of clonal variants

Clonal status for samples that had CNV and purity estimates were calculated for
all variants. This was achieved following the principles outlined in Dentro et al.
[74] and briefly summarised below.

Variant frequency, f;, is calculated as:

T'muti
J—T W
' Tmuti + Trefi

where
I'muti = Number of reads supporting the mutation

Iefi = Number of reads supporting the reference

Copy number changes and tumour purity can affect the allele frequency of
the mutation. Therefore, the adjusted variant frequency, u;, can be written as
follows:

s = £ 10 o)+ (1= ) M) )
where
f; = observed variant frequency calculated in (1)
p = tumour purity
Dot ¢,i = copy number of tumour cells
Nnormal,t,i = copy number of normal cells. Assumed to be 2 for autosomes, 2
for the X chromosome in females and 1 for X and Y chromosome in males.

u; can also be written as a function of the cancer cell fraction (CCF;) and
multiplicity (m;)), the number of chromosomes that carry the mutation.:

ui:CCFi*mi (3)
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Equation (3) can be rewritten as:

COF; = 2 (4)

mj

A clonal mutation will have u; > 1 while a sub-clonal variant will have
CCF less than 1 and will only be carried by a single chromosome copy (assuming
it has not been affected by a sub-clonal CNV) so will have u; < 1.

Using these observations we can determine m;:

]ui| if Ui Z 1
m; = ) (5)
1 ifu; 1

First, CCF; was determined for each mutation using (4) by calculating
(3) and (5). Then, a Clopper and Pearson 99% confidence interval (CI) [443] was
calculated for u; based on the number of reads harboring the mutation and the
total number of reads covering the mutation assuming a binomial process. Finally,
intergenic mutations or mutations in genes that did not have CNV information
were removed.

2.6.4 Adjusting thresholds to call a variant

The first set of analyses examined the impact of changing various thresholds for
calling a variant clonal or subclonal. We aimed to choose a threshold that would
classify as many variants as possible as clonal or subclonal, reducing the number in
the undetermined category while ensuring we did not misclassify any variant. To
do this, we needed to take the following factors into account:

1. Depth: Choose a depth as low as possible while still being able to classify
variants accurately.

2. Confidence Intervals from binomial tests to calculate the cancer cell fraction

(CCF):

(a) Clonal variants: Choose upper and lower confidence intervals that cap-
ture as many true clonal variants as possible without misclassifying
subclonal variants as clonal. For clonal variants, we expect the CCF to
be close to 1, i.e. all cancer cells carry the mutation. However, due to
fluctuations in the read counts for a variant, true clonal mutations may
be present at a CCF lower than 1. Therefore, we used cut-offs for the
true CCF’s upper and lower confidence intervals to call a variant clonal.

(b) Subclonal variant: In this case, we only needed to consider the upper
bound for the true CCF, as any variant with a low CCF was assumed
to be subclonal (or a technical artefact). We choose an upper bound
high enough to capture as many subclonal variants as possible.

3. The total number of variants classified as clonal or subclonal: We aimed to
limit the number of variants that cannot be accurately classified and are,
therefore, in the ” Undetermined” category. However, this was the least im-
portant factor because our models estimate the true clonal load based on
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the clonal and undetermined variants. Therefore, it was more important for
these models that the clonal mutations are truly clonal and do not incorporate
subclonal mutations that have been misclassified.

2.6.5 Calculating Sensitivity and Specificity

We obtained the mutation timing files from Gerstung et al. [405] to identify sub-
clonal and clonal variants in the PCAWG data to calculate our calls’ sensitivity
and specificity. As a result, sensitivity and specificity were calculated as follows:

A\l

Clonal Not Clonal
Test ‘ Clonal True Positive False Positive
Results ‘ Not Clonal | False Negative | True Negative

Table 2.5: Confusion matrix for comparing TCGA and PCAWG
clonal calls.

Sensitivit TruePositive
ensitivity =
4 TruePositive + FalseNegative
TrueNegative
Speci ficity = g

TrueNegative + FalsePositive

2.6.6 Estimation of true clonal load

We utilised the relationship between clonal mutation counts and age to estimate
the true clonal load for a sample.

T=00+ B1A+¢ (6)

where

T = True clonal counts

A = Age

Bo = intercept of equation
B1 = slope of equation

€= error

When we used conservative criteria to distinguish clonal, and subclonal
mutations, such that only mutations that could be confidently called clonal or sub-
clonal were classified, a large proportion of variants remained unclassified. The
following describes an approach to estimate the faction of these unclassified muta-
tions that were clonal. This fraction was then used to estimate the total number of
clonal mutations (those confidently classified as clonal plus the estimated propor-
tion of the unclassified variants).
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Let the total number of clonal mutations be T, and suppose that a propor-
tion, p, of these have been classified as clonal. We used the following equations to
determine T:

Ye = BOC +610A+5 (7)

Yu = Bou + B1ud + € (8)
o ﬂlc

b= /810 + /Blu <9)
oo b

) (10)

where
ye = Observed counts in the clonal category
yu = Observed counts in the undetermined category

We were also able to calculate the proportion of the undetermined category
that was truly clonal (q) as:

~ (1-pT
¢=— (11)

2.6.7 Estimates of somatic mutation load in the normal tissue

We obtained data for seven tissue types from Moore et al. [388], who performed
single-cell sequencing analysis of biopsies from multiple tissues from 3 individuals.
They took multiple samples from each site for most tissues. We used the median
clonal mutation burden per genome values from monoclonal (proportion clonal=1)
samples for each tissue for each individual (Table 2.6).

Sample ID Tissue Type | Age Cause of Death
PD28690 Oesophagus 78 Metastatic. oesophageal
adenocarcinoma
PD28690 Prostate 78 Metastatic‘ oesophageal
adenocarcinoma
PD23690 Thyroid 73 Metastatic. oesophageal
adenocarcinoma
PD42565/PD43851 | Oesophagus 47 Acute coronary syndrome
PD42565/PD43851 | Pancreas 47 Acute coronary syndrome
PD42565/PD43851 | Prostate 47 Acute coronary syndrome
PD42565/PD43851 | Skin 47 Acute coronary syndrome
PD42565/PD43851 | Stomach 47 Acute coronary syndrome
PD43850 Liver 54 Traumatic injuries
PD43850 Pancreas 54 Traumatic injuries
PD43850 Skin 54 Traumatic injuries

Table 2.6: Details of tissue types and age for samples taken from
Moore et al.
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2.6.8 Genome-Wide Association Study

We obtained quality-controlled, stranded and imputed genotyping files from Saya-
man et al. [444] for the TCGA samples. Chr3 was excluded from this analysis
as the imputed file was corrupt, and we could not retrieve it from the authors.
We also obtained principle component analysis results with the first 3-4 principle
components (PCs) capturing population structure information and PCs 5 and 6
capturing outliers. We used their PAM ancestry calls to limit our analysis to sam-
ples of European ancestry and reduce the impact of population structure on our
results. The European group was chosen as it is the largest group in the dataset
(n=3,383). We used PLINK v2.00a3LM [445] to filter SNPs based on the following
criteria: maf >0.005, hwe with midp adjustment p <1.0 x 1079, variants with miss-
ing call rates >0.02, variant pruning: window size =100-, shift=500, 1> threshold
=0.2, excluded all instances of variants with duplicate ID and excluded variants
with more than two alleles. There were 581,875 SNPs remaining for our analysis.
We applied an inverse normal rank transformation to the estimated clonal load and
used this as the phenotype for GWAS analysis. Sex, cancer type, age and PC1-7
were used as covariates. Sex and cancer type were used as categorical variables, and
all others were continuous. We used GCTA 1.93.2beta MLMA for the association
testing. FUMA online tool was used to annotate, visualise and interpret GWAS
results [446].

71



3 INVESTIGATING THE RELATIONSHIP BETWEEN GENE EXPRESSION AND
IMMUNE EVASION

3 Chapter 3: Investigating the relationship
between gene expression and immune eva-
sion in the context of clonal passenger mu-
tations

The results presented in this chapter motivated Kherreh N, Cleary S, Seoighe C.
No evidence that HLA genotype influences the driver mutations that occur in
cancer patients. Cancer Immunol Immunother. 2022 Apr;71(4):819-827. doi:
10.1007/s00262-021-03028-w. Epub 2021 Aug 21. PMID: 34417841; PMCID:
PMC89211839. Part of the introduction and paragraphs entitled “Susceptibility to
cancer based on HLA alleles” and “No evidence that HLA genotype influences the
driver mutations that occur in cancer patients” in the results section of this chapter
were published in this article.

I performed all data analysis except for susceptibility to cancer based on
HLA alleles which was carried out by Cathal Seoighe, and re-analysis of the Marty
et al. papers, which Noor Kherreh carried out.

3.1 Abstract

The major histocompatibility (MHC) complex can present neoantigens resulting
from somatic mutations on cell surfaces, potentially directing immune responses
against cancer. It has been reported that driver mutations observed in a cancer
occur in the gaps in a patient’s ability to present that particular mutation to the
immune system, which is controlled by the patient’s MHC genotype. Although this
finding was reported for driver mutations, the same was not observed for passen-
ger mutations. Therefore, we hypothesised that immunogenic passenger mutations
escaped immune recognition by different mechanisms related to gene expression.
Here, we investigated whether immunogenic passenger mutations were tolerated
due to their presence in lowly expressed genes. We also investigated whether genes
harbouring these mutations were downregulated compared to the normal expression
of that gene, and we specifically assessed whether the mutant allele was downregu-
lated compared to the normal allele in a process known as allele-specific expression.
When controlling for gene length and sequence context, we found no evidence of
immune evasion by these mechanisms. In addition, we estimated an upper bound
for the impact of immunoediting on the mutation landscape in cancer. This upper
bound indicates that at most 5% of missense mutations are removed by immu-
noediting; however, the data are consistent with no mutations being lost through
immunoediting.

3.2 Introduction

The immune system has evolved to recognise aberrant and non-self-molecules re-
sulting from pathogen infection, somatic mutations and malformed proteins. The
major histocompatibility complex (MHC) plays a crucial role in this process. There
are two classes of MHC molecules, class I (MHC-I) and class II (MHC-IT), encoded,
in humans, by a cluster of genes on chromosome 6. The human MHC genes and
proteins, often termed Human Leukocyte Antigens (HLA), are diverse, with over
15,000 alleles identified [447]. Somatic mutations in genes encoding self-proteins
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can result in an altered amino acid sequence, thereby generating so-called neoanti-
gens that have the potential to elicit an immune response upon presentation by
the MHC to T-cells [448]. By killing cells carrying immunogenic neoantigens, the
immune system has been proposed to play a vital role in shaping the cancer genome
in a process referred to as immunoediting [449, 450].

Dunn et al. first proposed the term immunoediting to describe the dual
ability of the immune system to defend the host by suppressing tumour growth
and shaping the immunogenicity of tumours [174]. It is characterised by three
phases — elimination, equilibrium and escape, collectively termed the three Es of
cancer immunoediting [174, 199]. The elimination phase involves the recognition
and destruction of tumour cells by the immune system before they are clinically
detectable. Some cells are thought to escape elimination and enter into the equi-
librium phase, during which the immune system keeps tumour growth in check but
cannot entirely eliminate it. The tumour may continue to develop mutations that
enable it to evade immune recognition, resulting in a population of cells resistant
to the immune response [199, 450]. The final stage occurs when the cancer escapes
immune control, leading to uncontrolled proliferation, due potentially to reduced
immunogenicity of cancer cells or to mutations that create an immunosuppressive
environment [199, 449].

One of the mechanisms through which cancer evades the immune response
is to acquire mutations that alter antigen presentation [451]. The most selective
step of antigen presentation to the immune cells is the binding of antigenic peptides
to the MHC, which has been inferred by a variety of studies of the implications of
mutating the HLA genes or the B2M gene, whose product, Som, forms an inte-
gral part of MHC Class I molecules [264, 452-455]. Loss or mutation of HLA or
B2M genes is associated with increased tumour mutation burden [455]. A lack of
neoantigens capable of eliciting an immune response could also allow cancers to
avoid immune responses, and several studies have reported selection against im-
munogenic somatic mutations in cancer [201, 203, 453]. However, the evidence for
depletion of mutations that give rise to neoantigens has recently been questioned
[233].

Two high-profile studies [205, 206] reported that the driver mutations found
in cancer patients could be predicted from the capacity of the patient’s HLA alleles
to bind the resulting neoantigens. The patient harmonic mean best rank (PHBR)
score was proposed in Marty et al. [205] and Marty Pyke et al. [206] as a measure of
whether MHC molecules can bind a neoantigen resulting from a somatic mutation,
given the HLA genotype of a patient. The score is derived from predicted binding
affinities of the patient’s MHC molecules for the peptides spanning the mutation.
The conclusions of both studies are based on an analysis of 1,018 cancer driver mu-
tations in patients from the cancer genome atlas (TCGA). The focus of the 2017
study is on MHC class I alleles, and the primary focus of the 2018 study is on
the presentation of cancer neoantigens by MHC class II molecules. Although they
found that the patient’s HLA alleles could predict the driver mutation landscape,
the same was not true for passenger mutations. This finding is surprising as pas-
senger mutations should be under the same selection pressures as driver mutations,
with immunogenic passenger mutations also removed by the immune system. We
hypothesised that immunogenic passenger mutations occur preferentially in lowly
expressed genes, which are less likely to be presented to the immune system, and
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those passenger mutations that occurred in highly expressed genes were removed
by immune cells and are not present in the cancer cell. Here we investigated the dif-
ferences between the expression of genes harbouring missense passenger mutations
to those harbouring synonymous mutations that are not subjected to selection. We
investigated if missense mutations occur in lowly expressed genes or if genes har-
bouring missense mutations are downregulated. We also specifically investigated
differences in the expression of the mutant and reference alleles to test for evidence
of downregulation of the mutant allele as a potential mechanism of immune escape.

3.3 Results

To assess whether passenger mutations are preferentially occurring in lowly ex-
pressed genes, we performed several comparisons that used synonymous mutations
as a proxy for neutrality. Synonymous mutations do not change the amino acid
composition of the gene and therefore tend to have less selection pressure acting
upon them. The 68,936 missense mutations included in this analysis were found
in 11,926 unique genes, while the 24,679 genes with synonymous mutations were
found in 9,221 individual genes. Of those, 8,586 genes overlapped between the two
groups, i.e., the gene harboured missense mutations in one or more samples but
synonymous mutations in others. Several genes had multiple missense mutations
for a single sample. We ensured that we only included such genes once in our
analysis.

Some genes harboured multiple missense mutations within an individual
and were also recurrently mutated across samples (Table 3.1). Most of these genes
were longer than the average gene length (6,507 base pairs), meaning there were
more sites within the gene at which a mutation could occur. The highest number
of missense mutations in a gene for an individual sample was 22, while the highest
number of synonymous mutations in a gene was three. It could be that our method
to identify genes with missense or synonymous mutations biases it so that genes with
a lower mutation rate were found predominantly in the synonymous group because
genes with a missense mutation could also have a synonymous one. However, this
was unlikely due to the considerable overlap of genes seen in the two groups. The
average gene length in the missense group was 6,529 base pairs, while the average
gene length in the synonymous group was 6,932 base pairs.

3.3.1 Tolerance of missense mutations in lowly expressed genes

We compared the expression of genes harbouring missense mutations to the expres-
sion of all genes within a sample. We hypothesised that if missense mutations occur
preferentially in lowly expressed genes, then there should be a high proportion of
genes with a missense mutation that have expression values lower than the median
expression of all genes within that sample (Figure 3.1). We compared the propor-
tion of genes with missense mutations with expression lower than the expression of
all genes within the sample to the proportion of genes with synonymous mutations
that have expression lower than all genes (Figure 3.1) and found that there was a
slightly higher proportion of missense genes with expression lower than the average
(P=0.004). This would indicate that missense mutations are occurring preferen-
tially in genes that have lower expression than half the genes within that sample.
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Gene Number.of H.ighest numbef' of Gene GC
samples with a missense mutations
Symbol . . . Length | Content
missense mutation in a sample

TTN 417 22 118976 0.37
MUC16 205 12 43830 0.45
AHNAK?2 162 5 18788 0.58
SYNE1 109 7 47523 0.39
PCLO 108 5 22874 0.35
NEB 90 9 33502 0.39
MUC5B 72 5 18598 0.65
RYR1 52 5 16282 0.60
DNAHS3 47 7 15023 0.46
DNAH9 47 6 16941 0.51
DST 45 6 48142 0.39
F5 45 5 9373 0.38
FAT2 36 5 14712 0.48
NCKAP5 36 5 9558 0.39
MYH3 33 6 6684 0.48
FBN1 33 5 18525 0.40

Table 3.1: The most recurrently mutated genes across samples and
the highest number of missense mutations within the gene for an
individual sample.

1.00

0.75

Proportion

0.25

0.00

Expression lower than median

Missense

W No Yes Proprtion Test P-value: 0.004

Synonymous

Figure 3.1: Comparison of genes whose expression is lower than the me-
dian expression of genes for missense versus synonymous mutations.
Stacked bar plots comparing the conditional proportion of genes whose gene ex-
pression is lower than the median gene expression for individual samples for the
two mutation types.
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Expression lower than median  [Jj No Yes Proprtion Test P-value: 0.01

0.75

Proportion

0.25

0.00

Immunogenic Non-immunogenic Synonymous

Figure 3.2: Comparison of genes whose expression is lower than the me-
dian expression of genes with missense mutations split into those that
are immunogeneic and non-immunogenic. Stacked bar plots comparing the
conditional proportion of genes whose gene expression is lower than the median
gene expression for individual samples for missense mutations split into immuno-
genic and nonimmunogenic based on their PHBR score, compared to synonymous
mutations.

3.3.2 Comparison of immunogenic, nonimmunogenic and synony-
mous gene expression

If neoantigens are being downregulated to escape immune recognition, we would ex-
pect that genes harbouring mutations deemed immunogenic based on their PHBR
score would have lower expression than genes harbouring nonimmunogenic muta-
tions or mutations that do not change the amino acid composition of the protein.
To test this, we split missense mutations into immunogenic (PHBR <2) and nonim-
munogenic (PHBR > 2) genes and compared the TPM expression score for genes
with immunogenic, nonimmunogenic and synonymous mutations. We compared
the proportion of genes that have expression lower than the median expression
within a sample for all three groups (Figure 3.2). We do see a significant difference
(P = 0.001) between the groups, with a trend as expected for immunogenic muta-
tions to have a higher proportion of genes with expression lower than the median
compared to nonimmunogenic or synonymous mutations. These results indicate
that immunogenic mutations are preferentially occurring on lowly expressed genes.
However, the difference is marginal (proportions lower than the median of 0.53,
0.53, 0.52 for genes with immunogenic, nonimmunogenic and synonymous muta-
tions, respectively).
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3.3.3 Simulated mutations in the same sequence context as ob-
served mutations

To assess whether the differences in gene expression were due to immunoediting and
not due to differences in the mutagenic processes between genes, we assigned each
mutation to a random position in the same gene with the same sequence context as
the observed mutation (Figure 3.3). We then computed the consequence of these
changes and calculated the proportion of missense mutations for each gene with
the randomly assigned mutations. By doing this, we controlled for gene length and
sequence context in our analysis. If the difference in expression was due to selection
by the immune system, we would expect to see a difference between the proportion
of missense mutations in the observed and random datasets. When we compared
the proportions of missense mutations in the random set with those observed for
each gene we found no significant difference (P=0.9) (Figure 3.4). If the immune
system resulted in the removal of missense mutations in the real dataset, we would
expect the proportion of missense mutations to be lower in the observed data than in
the random data. However, this is not the case. Although we see a slight difference
between the densities of the observed and random datasets, coloured in blue and
yellow, respectively, the random density deviates from the observed at both high
and low proportions.

To assess the level of immunoediting required to observe a difference in the
missense rate, we randomly removed 1,2,3,4 5,6,7,8,9, 10, 15 and 20% of missense
mutations from the random dataset (Figure 3.5). We then randomly assigned
mutations of the same mutation context within the same gene for the subsets of
data, using the same process as before (Figure 3.3), and compared the proportions.
When 5% or fewer of mutations were selectively removed, we saw no difference
between the medians of the two groups (Figure 3.6). Although a statistical test
comparing the medians of both groups shows a significant difference (p-value <0.05)
at 3%, we do not observe a stable result until we remove 5% of missense variants.
At 5% the result is significant (p=0.003), but the medians are the same indicating
that the significance is caused by a slight difference in the shape of the distribution
of the two sets of data. When 6% or more of missense mutations were removed,
we saw a significant difference (P=0.0004), including a difference between the two
medians. The data for which we simulated immunoediting had a lower proportion
of missense mutations compared to randomised data (median missense proportion
of 0.74 compared to 0.75), which is what is expected for negative selection. This
indicates that we should observe selection by immunoediting when the immune
system removes at least 5% of missense mutations. [456].

We also assessed the relationship between the proportion of missense mu-
tations and gene expression, expecting that genes with high expression would have
a lower proportion of missense mutations (Figure 3.7). We see a slight difference in
the pattern (as indicated by fitting generalised additive models) for the observed
mutations compared to the random dataset. However, the confidence bands (grey
area) overlap between the random and observed fitted lines, indicating no signifi-
cant difference. To confirm this, we assessed the difference in the missense propor-
tion for the random and observed groups for genes whose log TPM expression was
greater than 4 (cutoff determined from Figure 3.7) using a paired Wilcox test and
found no statistically significant difference (P=-0.59). Therefore, as suggested by
the overlapping confidence bands, the slight decrease in the proportion of observed
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° Observed mutation contexts °AII possible positions of each
mutation context per gene
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Randomly select 2 AAA positions
for gene 1 from if there are
more than 2 possible positions to
choose from

v

o Repeat for all observed mutation contexts

M
e Remove genes which have all possible positions in the observed data

v

° Insert the same mutation in the random position as seen in the observed.
Determine mutation consequence using VEP.

Gene 1 Posl: A[A>T]A Pos2: A[A>T]A Synonymous Synonymous
Gene 1 Pos3: A[A>C]JA  Posd: A[A>CJA  Missense Synonymous
Gene N PosNL:T[T>C]T  PosN2: T[T>C]T Missense Missense

v
° For each gene calculate the proportion of missense mutations for the
observed and random mutations:

Total number of missense mutations

Total number of mutations

‘

o Compare missense proportions for each gene between the observed and
random datasets using a Wilcoxon Rank Sum Test.

Figure 3.3: Workflow describing the creation of a random dataset of mu-
tations with the same mutational context as observed mutations. (A)
Mutation contexts are assigned to each observed mutation, and the total number
of observed mutations of each context type is counted for each gene. (B) A list of
all possible positions that could be mutated for each context for each gene. (C &
D) The exact number of positions as observed in the real dataset were randomly
sampled from the list of all possible positions for that context in that gene. (E)
The gene was removed from the analysis if all possible positions were present in
the observed data. (F) The random position was mutated to the same allele as in
the observed data, and the variant consequence was annotated using VEP online
tool. (G) The proportion of missense mutations for each gene was calculated for
the observed and random datasets. (H) A paired Wilcoxon rank sum test was
performed to assess whether the two datasets differed.
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Paired wilcoxon signed rank test p-value: 0.4
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Figure 3.4: Comparison of the proportion of missense mutations per gene
for the observed versus random dataset. Overlapping density plots showing
the proportion of mutations classified as missense for each gene in the observed data
(blue) and in the randomly assigned mutations for the same mutational context
(yellow).
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‘ Synonymous Mutations
‘ Missense Mutations
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Each subset of data became the "observed" data and processed as in Figure 3.

Figure 3.5: Schematic to illustrate the process of randomly removing dif-
ferent proportions of missense mutations from the data. Randomly re-
moved 1, 5, 10, 15 and 20% of the missense mutations from the random dataset
created in Figure 3.3.
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Figure 3.6: Comparison of the proportion of missense mutations per gene
for the simulated datasets with a proportion of missense mutations re-

moved versus the corresponding random dataset. Boxplot P-values are from
paired Wilcoxon rank sum tests.
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missense mutations for highly expressed genes is not dissimilar to the proportion
of missense mutations in the randomly selected mutations. This means that the
decline is not a result of immunoediting but is likely due to other factors, such as
repair mechanisms that act on highly expressed genes in general

3.3.4 Downregulation of genes harbouring missense mutations as
a means of immune escape

We previously compared expression of a gene with a missense mutation to the
expression of all genes within a sample. We next compared the expression of a
gene with a missense gene to the expression of the same gene between samples
of the same tissue. If the expression of the gene with the missense mutation was
lower than the median expression across all samples of that particular cancer type,
it would suggest that the gene was being downregulated compared to the normal
expression of that gene. A gene can be mutated in multiple samples, so we used
the number of genes with lower expression compared to the median as evidence of
downregulation for that gene. We performed binomial tests for each gene to test
the probability of a gene with a missense mutation having lower expression than
the median expression of that gene. After applying multiple test corrections, we
found that none of the genes had a statistically significant difference in expression.
Thus, there is a lack of evidence that genes harbouring a missense mutation are
downregulated as a means to escape the immune system.

3.3.5 Downregulation of mutated allele compared to the normal
allele

A potential mechanism through which cancer could evade an immune response di-
rected against a neoantigen is through downregulation of the allele carrying the
mutation targeted by the immune system. This could result in allele-specific ex-
pression (ASE). We investigated whether the mutant allele’s expression was lower
than the reference allele for the clonal nonsynonymous mutations in our dataset.
For variants exhibiting ASE at the SNV level, we compared the number of vari-
ants with lower expression of the mutant allele (relative to the reference allele)
for both missense and synonymous variants (Figure 3.8). Although the proportion
of variants with lower mutant allele expression compared to the normal is high,
as we would expect, the proportion of variants in the synonymous group is not
significantly different from the proportion of variants in the missense group (P=
0.46). We also investigated ASE of other nonsynonymous mutation types, stop lost,
stop gained and start lost (Figure 3.9) and showed that these mutation types were
behaving as expected, with the mutated allele showing lower expression than the
normal for stop gained and start lost mutations.

Next, we split missense mutations into those that should elicit an immune
response (immunogenic) and those that would not (nonimmunogenic) based on their
PHBR score for samples with scores available (n= 4,796) and found no statistically
significant difference (P= 0.66), thus providing no evidence that the mutant allele
is downregulated compared to the normal allele as a means to evade the immune
system.
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Figure 3.7: The impact of gene expression on the proportion of missense
mutations present in each gene. The proportion of mutations classified as non-
synonymous for each gene in the observed data (A) and in the randomly assigned
mutations for the same mutational context (B) as a function of gene expression.
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Figure 3.8: Comparison of allele expression for mutations that are mis-
sense versus those that are synonymous. Stacked Bar plots comparing the
conditional proportion of missense and synonymous mutants whose allele expres-
sion is greater than (red) or lower than (blue) the normal allele
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Figure 3.9: Comparison of allele expression for synonymous and all nonsy-
onymous mutation types. Stacked Bar plots comparing the conditional propor-
tion of synonymous and all nonsynonymous mutation types whose allele expression
is greater than (red) or lower than (blue) the normal allele.
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Figure 3.10: Comparison of allele expression for missense mutations that
are immunogenic versus those that are nonimmunogenic. Stacked Bar plots
comparing the conditional proportion of missense mutations split into immunogenic
and nonimmunogenic based on their PHBR score whose allele expression is greater
than (red) or lower than (blue) the normal allele.
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3.3.6 Immune escaped versus non-immune escaped

The selection pressures differ between samples that have acquired mechanisms to
escape immune evasion versus samples that have not. Therefore, we investigated
whether including these samples affected our results. Samples that have evaded the
immune system would no longer be under the same constraint and, therefore, should
be free to accumulate mutations in highly expressed genes. However, this would
depend on the time at which the sample escaped immune evasion, as mutations that
occurred before immune evasion would be under the same constraint as samples that
have not evaded the immune system at all.

342 samples contained a clonal nonsynonymous mutation in one of the anti-
gen presentation or immune evasion genes. We removed these samples and repeated
the analyses (Figures 5.1-5.4 in Appendix B). We saw no difference in the expres-
sion of genes harbouring missense mutations compared to synonymous mutations
with regards to the proportion of genes that were expressed lower than the median
gene expression within a sample (P=0.3). Furthermore, we saw no difference when
we split missense mutations into immunogenic and nonimmunogenic based on their
PHBR score (P=0.8). The slight difference we saw between the groups using the
complete data set was absent when we excluded these samples. This was surprising
because if the immunogenic passenger mutations were preferentially occurring in
lowly expressed genes as an alternative means to escape detection by the immune
system, we would expect to see a greater effect when immune escaped samples were
removed. However, it is important to note again that this would depend on the
time at which the sample escaped immune evasion.

We saw no statistically significant difference when we compared the propor-
tion of mutant alleles expressed lower than the normal allele for missense and syn-
onymous mutations (P=0.9) and immunogenic versus nonimmunogenic (P=0.64).
We also performed binomial tests to test if genes were downregulated compared to
their normal expression across samples and found no statistically significant differ-
ence after multiple test correction.

3.3.7 Impact of changing threshold for calling clonal variants

The thresholds we used to call a clonal variant could also influence our results. We
used strict thresholds to call a clonal variant, as determined in Chapter 2. However,
we might have excluded some real clonal mutations, which would result in some
genes being classed as having a synonymous mutation only when they do have a
clonal missense mutation. Therefore, we applied much lower thresholds for calling a
clonal variant, with cancer cell fraction upper limit >0.6 and lower limit >0.4. We
saw similar results as reported for the more stringent thresholds (Figures 5.1-5.4 in
Appendix B), which indicated that this was not affecting results.

3.3.8 Susceptibility to cancer based on HLA alleles

Marty et al.’s findings have significant implications in terms of the potential to
predict susceptibility to cancer occurrence based on a patient’s MHC alleles. We
investigated this by fitting a logistic regression model to the log odds of cancer sta-
tus to PHBR coverage, using age and sex as covariates, in the UK Biobank data and
showed that HLA homozygosity was not a potential cancer risk factor (P=0.15).
Coverage is the number of common driver mutations that can be presented to the
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immune system by patients in the UK Biobank. The lack of association between
PHBR coverage and cancer risk did not support the finding that cancer driver mu-
tations occur in gaps in the ability of a patient’s MHC alleles to bind the mutations.

3.3.9 No evidence that HLA genotype influences the driver muta-
tions that occur in cancer patients

Based on our inability to prove both of our hypotheses that stemmed from the
Marty et al. papers, our group re-analysed their results. In doing so, we discovered
that specific mutations in the dataset could be seen in many patients and, as a
result, contributed many data points in the comparisons of PHBR scores between
the "no mutation” and ”mutation” groups. If a mutation that occurred many
times happened to have high PHBR scores (indicating low immunogenicity), then
it would skew the results, especially since there was a high correlation between
scores across patients (Figure 3.11A). This would mean that there was a lack of
independence between the scores, in violation of the assumption of the statistical
tests performed. When we shuffled the MHC genotypes between patients, we found
no difference compared to the real data (Figure 3.11B), with the difference between
the mutation group and no mutation just as large in the shuffled dataset. This
indicated that the difference between the no mutation and mutation groups was
not driven by the patient genotype.

Marty et al. used mixed effects models to account for the non-independence
of observations in their study. Two separate models were used to account for dif-
ferences in the frequencies of different driver mutations (referred to as the 'within-
mutation model’) and differences in the number of driver mutations between pa-
tients (referred to as the ’within-patient model’). However, they did not find a
significant result when they used the within-mutation model, suggesting that their
results were driven by differences in driver mutation frequencies, which were not
accounted for in the within-patient model. The failure to detect a result using the
within-mutation model was explained as being because the mutation frequencies
were high in the cases where they cannot be presented to the immune system, and
this was due to the failure of common MHC alleles to bind the peptides. We ex-
plored this explanation by shuffling the MHC genotypes and comparing the PHBR
scores between the real and shuffled data. We saw no difference between the two
groups (P=0.69), suggesting that it was not the HLA alleles that were responsible
for this result. We also found that common mutations in the dataset, such as BRAF
V600E, were found to be immunogenic in a large number of patients. Therefore,
the reason it was common could not be explained by a failure of the most common
HLA alleles to present it to the immune system.

When we compared scores split by the recurrence number of the mutations
instead of combining all results, we saw no difference between the mutation and
no mutation groups (Figure 3.11C). This further shows that the difference Marty
et al. observed between the mutation and no mutation groups was caused by a
small number of highly recurrent mutations that happened to have high PHBR
scores. We also showed that highly recurrent mutations tend to occur in the same
genes and that there was a high correlation between PHBR, scores for mutations
within the same gene. This indicated that mutations within the same gene, which
could be of the same amino acid class which can affect binding scores [233], could be
responsible for what appears to be a link between the recurrence of the mutation and
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Figure 3.11: Comparison of patient harmonic best rank (PHBR) scores
for driver genes within TCGA data. (A) Scatterplot of log PHBR-I scores of
all driver mutations, calculated using the HLA genotypes of two randomly selected
patients from TCGA. (B) Median and interquartile range of PHBR-I score in the
No Mutation (blue) and Mutation (orange) groups for the real data and for data
in which the MHC genotypes have been randomised between patients. (C) Median
and interquartile range of PHBR-I scores in the No Mutation (blue) and Mutation
(orange) groups in bins of mutation recurrence.
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the inability of the patient’s antigen to present the mutation to the immune system.
When we restricted the analysis to include only the most frequent mutation for a
driver gene, we saw no difference between the mutation and no mutation groups

(P=0.28).

3.4 Discussion

Marty et al. hypothesised that the driver mutations observed in a cancer occurred
in the gaps in a patient’s ability to present that particular mutation to the immune
system, which is controlled by the patient’s MHC genotype [205, 206]. However,
they reported that this phenomenon is only seen for driver mutations and not for
passenger mutations. If this is the case, then it would appear that the landscape of
passenger mutations in the tumour was not shaped by the immune system. How-
ever, passenger mutations should be more likely to be removed by the immune
system as they offer no benefit to the cancer, and there is no advantage to keep-
ing them. Therefore, we expected the selection effect to be greater for passenger
mutations than for drivers. To understand Marty et al.’s findings, we investigated
whether there were alternative mechanisms for removing these passenger mutations.
We hypothesised that observed passenger mutations are in genes that were either
lowly expressed or were being downregulated compared to the normal gene. The
idea behind this was that the cancer downregulated that gene to avoid detection by
the immune system as an alternative method of immune escape. This mechanism
would not be advantageous for the cancer in terms of driver mutations as their
expression is required for cancer survival and progression.

Our initial analyses assessed whether passenger mutations were tolerated
due to their occurrence in lowly expressed genes. Genes harbouring immunogenic
mutations appeared to have lower expression than the median expression across
samples, supporting our theory that they were preferentially occurring in lowly ex-
pressed genes. However, it is difficult to distinguish between differences caused by
mutagenic processes themselves and selection by the immune system. Many factors
can affect the presence of a mutation. Mutation rates differ at specific sequence
contexts, with higher mutation rates in GC-rich regions [48, 457-461]. The length
of the gene can also affect the mutation rate. Longer genes can accumulate more
mutations because there are more positions at which a mutation can occur. How-
ever, even accounting for gene length, genes that encode larger proteins, such as
TTN, are enriched with mutations [462]. This is due to differences in mutation
rates related to the transcription of genes as well as differences in replication tim-
ing. Larger genes tend to have lower expression and to be late replicating, both of
which were linked to increased mutation [462]. To account for both of these fac-
tors, we randomised mutations within a gene with the same mutational context as
observed mutations and saw no statistically significant difference in the proportion
of missense mutations within genes. Thus indicating that the difference between
the expression of genes with missense mutations and synonymous mutations was
due to factors other than immunoediting.

We were also able to determine an upper bound on the percentage of mis-
sense mutations that were required to be removed by the immune system for a
difference to be observed. We found that if at least 5% of missense mutations were
removed due to the immune response, then we would expect to see evidence of
purifying selection within the dataset. Our results are consistent with no or low
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contribution of the immune system on removing passenger mutations. However, it
may be that the effect of immunoediting is subtle and that its effect is not large
enough to be detectable in this data. It could be that only 5% or less of missense
mutations are capable of being recognised and eliminated by the immune system.

The idea that genes harbouring immunogenic passenger mutations were
downregulated or that the mutant allele is downregulated compared to the normal
allele to evade the immune system was not supported by our results. Rosenthal
et al.[264] reported that only 33% of clonal neoantigens were present in expressed
genes when analysing non-small-cell lung cancer. However, we found no evidence
of a difference in the expression of missense, and more specifically, immunogenic
missense mutations being present in lowly expressed genes as a consequence of
immunoediting. As shown in our analyses, any difference in expression of genes
with immunogenic mutations were likely due to differences in sequence context for
the genes, which was not accounted for by Rosenthal et al.

The lack of evidence for immunoediting of passenger mutations and the
finding that individual-specific driver mutation coverage inferred from PHBR scores
shows no association with cancer risk led us to re-evaluate the results from Marty et
al. [205] and Marty-Pyke et al.[206] . We discovered that the relationship between
HLA genotypes and the oncogenic landscape of driver mutations reported in these
papers is due to misinterpretation and unjustified statistical assumptions. The
results of this paper were also questioned by Claeys et al. [208], who noted that
the immunogenic selection signals were due to oncogenic mechanisms that lower
binding affinities of 13 common driver mutations in 6 different genes and not due
to HLA binding affinity.

Our results show that the relationship between MHC genotype and mis-
sense mutations present in an individual is independent of PHBR scores, as reported
by Marty et al. However, it is possible that the MHC genotype does play a role in
shaping the mutational landscape in an individual but that the PHBR score does
not capture the effect. This seems unlikely due to the experimental evidence for the
capacity of PHBR scores to predict the binding affinity of neoantigens [205, 206].
However, it is likely that binding affinity alone is not sufficient to determine the
immunogenicity of a neoantigen. As well as presenting the neoantigen to the im-
mune system by the MHC activation of cytotoxic T cells is required to destroy the
tumour cell. PHBR score does not consider the cytolytic activity of the tumour
or the similarity of neoantigens to self antigens. Using HLA-binding affinity to
classify mutations as immunogenic is routinely used. However, a study by a global
consortium which assessed predicted epitope immunogenicity found that only 6%
of predictions were actually immunogenic [463], consistent with a previous report
[464]. This indicates that our results may have been impacted by noise introduced
due to the method we used for predicting immunogenicity and that the level of im-
munogenic mutations capable of eliciting an immune response is lower than observed
in our dataset. As our expression analyses depended on the correct classification of
immunogenic mutations, this could have confounded our results. Using tools, such
as DeepNeo [465, 466], which consider T -cell reactivity as well as MHC binding
affinity predict immunogenicity may be necessary to observe a signal.

A limitation of our analysis when identifying immune-escaped samples is
that we used a simple classification method to identify them. By solely using the
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presence of a clonal nonsynonymous mutation in one of 88 genes involved in antigen
presentation and immune escape, we may be misclassifying some samples as immune
escaped that were not. Samples that have a mutation in one of these genes tend
to have many mutations. This may be because the mutations can no longer be
recognised and eliminated by the immune system. However, it is also likely that
these samples have a mutation in one of the 88 genes because it is a highly mutated
sample and therefore has a higher chance of having a mutation in these genes. We
could also have excluded some samples that have evaded the immune system due to
the strict thresholds we applied for calling clonal variants. A more accurate method
to classify these samples is required to elucidate this.

3.5 Conclusion

In conclusion, we assessed the theory that passenger immunogenic mutations are
preferentially occurring on lowly expressed genes or are exhibiting ASE with down-
regulation of the mutant allele as a means of immune escape. Our results show that
the difference in the expression of genes harbouring immunogenic mutations com-
pared to non-immunogenic and synonymous mutations is likely due to differences
in sequencing context rather than the effect of immunoediting. We also estimated
an upper bound of 5% for the level of immunoediting that could be acting on the
tumour, at a level that is undetectable in our data. This would suggest that im-
munoediting does not play a role in shaping the passenger mutation landscape of
tumors or that if it does have a role it is too low to detect.

3.6 Materials and Methods
3.6.1 Clonal Variants

Variants classified as clonal from the analysis in Chapter 2 were used in this analysis.
Specifically, these mutations reached 100X total depth and had an upper confidence
interval for the cancer cell fraction (CCF) >0.8 and a lower confidence interval
of >0.7. Driver mutations were removed from the analysis. Oncogene [467] and
tumour suppressor gene [468] information was downloaded on 13 January 2020 from
their respective websites. A list of 56 weak driver genes was obtained from [469].
We also included the pan-cancer TCGA driver genes from Oncovar [470]. This gave
a list of 2,020 driver genes.

3.6.2 Identification of immunogenic mutations

The immunogenicity of mutations was determined using PHBR scores provided
by Noor Kherreh. The scores were calculated by considering all peptides of a
specific length or range of lengths that contain the mutation. First, a rank-based
presentation score was obtained for each peptide using NetMHCpan3.0 [471], and
for each of the patient’s HLA alleles, the best rank value was retained. The PHBR
score is then the harmonic mean (across the patient’s HLA alleles) of these best-
rank scores (see Marty et al. [205] and Marty-Pyke et al. [206] for details). This
score was calculated for class I MHC alleles in [205], based on peptides with lengths
ranging from 8 to 11 amino acids and for class II alleles in[206], where it was based
on peptides of length 15 amino acids.
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3.6.3 Expression Analysis

HTSeq Count files for each primary tumour sample were merged into one matrix
for each cancer type using a custom R script. Genes were filtered using the fil-
terByExpr function in edgeR (v3.28.1) [472] with the default settings so that at
least 70% of samples had a minimum count of 10. Genes were then normalised to
transcripts per million (TPM) for comparing gene expression within samples in a
data set or to the weighted trimmed mean of M-values (TMM) when comparing the
expression of a gene across multiple samples. We used log2 TPM and TMM values
in our analysis. Boxplots were produced using ggplot2 (v3.3.0) [473], and pairwise
comparison tests were performed using the Wilcoxon test. Fisher’s exact test was
performed to test the significance of contingency tables. For all analyses that split
mutations into immunogenic, nonimmunogenic, and synonymous mutations, only
samples for which HLA data were available were included. For analyses looking at
nonsynonymous and synonymous mutations, all samples were included. Oncogenic
genes were removed from the study.

3.6.4 Randomisation of mutations in the same mutational context
as observed mutations

Mutation contexts for all trinucleotides within the coding region of the GRCh38
genome were provided by Noor Kherreh. These regions were annotated with gene
information by finding the overlapping regions with gene coordinates using the
GenomicRanges (v1.46.1) [474] R package. Trinucleotide contexts of all clonal pas-
senger mutations were annotated using the mutSignatures (v2.1.4) [475] R package.
Random mutations within genes containing trinucleotide contexts of the same type
as the observed mutations within that gene were assigned for each mutation. If the
possible mutations of that context for a gene were the same as the observed mu-
tations, it was removed. Mutations were annotated with Variant Effect Predictor
online tool [476] against GRCh38 using the option to show one selected consequence
per variant.

3.6.5 Allele-Specific Expression Analysis

Pileup files from RNA-Seq genomic realigned bam files downloaded from GDC
were generated using samtools v1.9 [477] mpileup with the -C50 and —B options.
We limited the output to the list of clonal mutations for each sample. This was
then used as input to cisASE v 1.0.2 [330], run in RNA-only mode. cisASE was
run using SNV and gene level detection. The annotation file used for gene level
detection was generated with Ensembl Biomart [478] for human GRCh38. The
minimum required depth was set to 10. The log-likelihood ratio (LLR) thresholds
for significance at 0.05 level for each sample were obtained from cisASE output.
These thresholds were computed by simulating the null distribution 2,000 times
using the input data. Genes or SNVs with an LLR value greater than the cut-
off value for that specific sample were deemed to show ASE. We only included
mutations within the autosomes for ASE analysis.

3.6.6 Immune Escaped Samples

To assign samples as immune escaped or immune non-escaped, we followed the
method of Gourmet et al. [479] and characterised samples as immune escaped and
non-immune escaped based on the presence of nonsynonymous clonal mutations
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in at least one of 88 genes known to be involved in antigen presentation and im-
mune escape; B2M, CALR, CANX, CD4, CD74, CD8A, CD8B, CIITA, CREBI,
CTSB, CTSL, CTSS, ERAP1, ERAP2, FAS, HLA-A, HLA-B, HLA-C, HLA-DMB,
HLA-DMA, HLA-DOA, HLA-DOB, HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-
DQA2, HLA-DQB1, HLA-DRA, HLA-DRB1, HLA-DRB3, HLA-DRB4, HLA-
DRB5, HLA-E, HLA-F, HLA-G, HSPA1A, HSP90AA1, HSP90AB1, HSPA1B,
HSPA1L, HSPA2, HSPA4, HSPA5, HSPA6, HSPA8, HSPBP1, IFI30, IFNG,
IRF1, KIR2DL1, KIR2DL2, KIR2DL3, KIR2DL4, KIR2DS1, KIR2DS2, KIR2DS4,
KIR2DS5, KIR3DL1, KIR3DL2, KIR3DL3, KLRC1, KLRC2, KLRC3, KLRC4,
KLRD1, LGMN, MEX3B, NFYA, NFYB, NFYC, PDIA3, PSMA7, PSMBI0,
PSMB11, PSMB6, PSMBS8, PSMB9, PSME1, PSME2, PSME3, PSMF1, RFX5,
RFXANK, RFXAP, TAP1, TAP2, TAPBP, TNF
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4 Chapter 4: Predicting allele specific ex-
pression in tumor suppressor genes and
analysing its relationship with breast can-
cer risk

4.1 Abstract

Allele-specific expression (ASE) is the process of expressing one allele at a different
level to a second allele at a specific location in a diploid organism. ASE of tumor
suppressor genes (TSGs) occurs in both normal and cancer cells and ASE of specific
TSGs has previously been shown to be associated with cancer risk. Here, we assess
the feasibility of predicting ASE in TSGs using data from The Genotype-Tissue
Expression project, to generate a single ASE score for TSGs and test its association
with cancer risk. We assessed the ability of two methods, an adapted version of
the gene expression prediction tool PrediXcan and application of logistic regression
models, using genotype data to predict ASE. While both methods showed it is
possible to predict ASE to some extent using this data, the overall performance was
poor, with each method having its own limitations. As a pilot study, we applied
the prediction methods to UK Biobank data and generated a single TSG ASE score
for each sample and assessed its association with breast cancer risk. Although we
found no statistically significant association between TSG ASE and breast cancer
risk, the lack of association may be due to our inability to predict ASE in TSGs
that contribute to cancer risk in this tissue type. We could not predict ASE for the
TSGs commonly containing driver mutations in breast cancer, as assessed using
data from The Cancer Genome Project. It is likely that as more data becomes
available, it will become possible to improve the prediction of ASE and generate a
more accurate score to be used to test for an association with cancer risk.

4.2 Introduction

Allele-specific expression (ASE) is the process of expressing one allele at a specific
locus in a diploid organism at a different level than the second allele. ASE can
be caused by genetic variation that alters the expression of alleles. Mutations can
cause a difference in the ability of a transcription factor to bind to a gene to initiate
transcription [480], can result in nonsense-mediated decay of one version of the gene
[481] or can disrupt splicing sites resulting in aberrant gene expression [482, 483].
ASE has a high prevalence in normal tissues, with a recent report using data from
838 individuals across 49 tissue types by the Genotype-Tissue Expression (GTEx)
project reporting that at least 53% of protein coding genes show evidence of ASE in
at least 50 individuals [339]. However, this imbalance varied across tissues within
individuals and between individuals.

Tumour suppressor genes (TSGs) play an essential role in preventing can-
cer. downregulation or disruption of these genes is frequently required in order for
cancer to progress. Inherited mutations in these genes can increase the risk of an
individual acquiring cancer [484]. This is because it only takes one driver mutation
that disrupts the normal functioning version of the gene for cancer to develop. ASE
in TSGs has been shown to occur in normal tissues as well as in cancer samples
[326]. However, the proportion of loci showing ASE is much higher in some cancer
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tissues, such as breast, head and neck, lung and thyroid, compared to their corre-
sponding normal tissues. The majority of genes showing ASE in tumor tissues were
due to somatic events such as copy number alterations or exon-skipping within the
tumour tissues [322, 326]. ASE caused by germline mutations has been indicated
as a risk factor for cancer in several tissue types such as melanoma [485], prostate
[370, 486-488], colorectal [353, 361, 362, 489-491], pancreas [492], lung [493], breast
[356, 359, 494, 495], kidney [365]and blood[496, 497]. However, these studies fo-
cused on particular ASE SNPs in one or more TSGs rather than investigating the
level of ASE across the whole class of TSGs. Here, we propose to generate a single
TSG ASE score to assess the level of ASE in tumour suppressor genes within an
individual and to investigate its relationship to an individual’s risk of developing
cancer.

ASE is normally measured by comparing the number of reads for each
allele or haplotype using RNA sequencing data to the ratio of the reads using
DNA sequencing data from an individual [498]. This allows us to account for any
biases that may be introduced due to the sequencing or mapping process. However,
RNA and DNA sequencing data are not always available for individual samples
due to the large costs associated, limited amounts of specimen taken from biopsies
as well as storage capabilities for the large amounts of data generated. Another
issue is that ASE analysis requires more extensive coverage than is generated in
normal RNA-sequencing experiments [499]. While models such as cisASE [330]
have been developed, which allow us to measure ASE data using RNA-sequencing
data only, the same is not true when only DNA sequencing data is available. A
previous study [500] assessed the feasibility of predicting ASE at the SNP level,
using genomic features such as GerpN, a score of neutral evolution, to predict if
a specific SNP shows an imbalance. The goal of their study was to use predicted
SNP imbalance to prioritise candidate variants in clinical diagnostics when RNA-
Sequencing data is not available. However, this requires large amounts of gene
annotation and downstream processing to obtain the relevant data to develop the
predictions. The results of the predictions rely on the correct annotation of the
variants. Additionally, this method generates predictions at the SNP level only,
which may not correspond to the gene level imbalance in which we are interested.

Here we assess the ability of phased genotype data to predict ASE. We
then use these predictions to generate an ASE score which can be used to measure
the level of ASE of a target gene set within a single sample. Generating scores
for specific classes of genes can be used to assess potential risk for diseases such as
cancer. We are specifically interested in predicting ASE in TSGs as we hypothesise
that ASE in this class of genes may be associated with increased cancer risk. As a
pilot study, we test the association between predicted TSG ASE and breast cancer
risk using data from the UK Biobank. We also investigate the presence of predicted
TSG ASE in breast cancer samples from the pan-cancer analysis of whole genome
(PCAWG) to further assess the prevalence of ASE in T'SGs in the normal tissues
of individuals with cancer.

96



4 PREDICTING ALLELE SPECIFIC EXPRESSION IN TUMOR SUPPRESSOR GENES

4.3 Results

4.3.1 Prevalence of ASE in tumour suppressor genes for GTEx
samples

The most comprehensive database of allelic expression to date comes from Castel et
al. [339] who generated SNP and haplotype level ASE results from 54 human tissues
of the GTEx project . We refer to this data as the phASER results going forward,
based on the method used to generate the data. We assessed the prevalence of ASE
in TSGs within the GTEx cohort (Figure 4.1), and found varying numbers of genes
exhibiting ASE at the gene level within different tissue types. All samples showed
ASE in at least one TSG gene. Of the possible 1018 protein-coding TSGs, 837
showed ASE in at least one sample in this dataset (822 genes when imprinted genes
were removed). The three artery tissue types had the highest number of TSGs
with ASE, with a median value of 7 across samples within that tissue type, while
all brain tissue types clustered at the lower end of the spectrum, with the majority
having ASE in fewer than five genes. It is reassuring to see that tissue types of the
same organ tended to cluster together and that the number of TSGs per sample
type remains relatively consistent within tissue type, suggesting that the result is
not artefactual and is robust.

There were a number of samples that had a higher number of TSGs showing
ASE than the majority (Table 4.1). It is interesting to note that the majority of
these samples are males. This observation is not due to imprinting, as we removed
imprinted genes prior to analysis because it is impossible to predict ASE in these
genes using genotype data. However, the median per sex per tissue type was the
same £+ 1 (Figure 5.7 in Appendix C), indicating that, in general, there are no
sex biases in terms of the number of T'SGs per tissue type. There was no obvious
pattern in terms of tissue type, age, or cause of death, with a variety of each
category observed. One sample was present twice (GTEX-QMRG6), while the rest
of the samples were unique to one observation. Curiously, the cause of death for
this sample was an illness such as heart disease or cancer ( no specific details of
illness was provided by GTEx).

4.3.2 ASE Prediction in GTEx

We first assessed the feasibility of using a tool called PrediXcan [379] to predict
allele-specific expression in the GTEx cohort. PrediXcan was developed to predict
gene expression using phased genotype data as input. By assessing the genotype
of specific model SNPs for an individual, it predicts a measure for each gene for a
particular tissue by applying multivariate adaptive shrinkage in R

. Total TSGs . Cause of
Subject ID with ASE Tissue Age | Sex Death
GTEX-QMR6 109 Lung 50-59 | Male | 4
GTEX-Q2AH | 96 Skin Sun Exposed |y 19 | vale | 0
Lower leg

GTEX-QMR6 | 58 Brain 50-59 | Male | 4
Hippocampus

GTEX-1497 | 49 Skin Sun Exposed | ¢ 60 | ale | 0
Lower leg
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GTEX-POYW 45 Lung 60-69 | Male | O

GTEX-VJYA 42 Muscle Skeletal 60-69 | Male | O

GTEX-WWYW | 41 Pituitary 50-59 | Female 3

GTEX-QDVN | 41 Skin Sun Exposed | 5 50 1 ate | 0
Lower leg

GTEX-V955 41 Breast Mammary | ¢, 6o | Male | 0
Tissue

GTEX-1RB15 | 37 Adipose Visceral | o oo | Nale | 0
Omentum
Skin Not Sun

GTEX-VJYA 36 Exposed 60-69 | Male | 0
Suprapubic

GTEX-OIZI 33 Whole Blood 40-49 | Male | 0

GTEX-1JMQI | 33 Adipose 50-59 | Male | 0
Subcutaneous

GTEX-VUSG 32 Whole Blood 50-59 | Male | 0

GTEX-QDVN | 31 Adipose 50-59 | Male | 0
Subcutaneous

Table 4.1: amples that have the highest number of genes showing
alleles specific expression for a particular tissue type.

(MASHR) based expression models. We generated predictions for all genes
for each tissue type in the GTEx cohort for which models were available (n=49)
using PrediXcan for each haplotype, as explained in Methods. We then compared
the z-score ratio of haplotype A and haplotype B for each gene to the allelic fold
change (aFC) score generated with the phASER results for each individual sample
(Figure 4.2). While we do see a positive correlation between the aFC and z-score
ratio, the correlation is not strong, with the highest Pearson r of 0.31 observed for
any sample in any tissue type. This equates to an r? of 0.09, meaning that only
9% of the variation of the observed aFC is explained by the predicted score.

However, when we calculate gene level correlation (Figure 4.3) instead of
sample correlation, we see that the PrediXcan method performs well at predicting
ASE for some genes. For some genes, there is a strong positive correlation; for
others, there is a strong negative correlation; and for others, there is no correlation.
Therefore, it may be genes for which there is no correlation that is causing the
poor performance in sample-level correlations. To check whether the difference in
performance for individual genes was due to the expression level of genes, with genes
that had no expression or low expression in that tissue type having poor correlation,
we removed genes that had a TPM expression value less than 10 for that tissue
(Figure 5.8 in Appendix C). We also removed genes that had no observed ASE in
the phASER results because there would be no variability in the aFC values (Figure
5.9 in Appendix C). Although the distributions are flatter, we see no difference in
the range of scores, indicating that this is not the reason for the variability in
performance.

We next looked to see if converting the ASE score to a binary classifier
of ASE and no ASE would improve results. We applied different combinations of
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Figure 4.1: Distribution of the number of samples showing allele specific
expression in tumor suppressor genes in normal tissues. Boxplot of number
of TSGs showing ASE, classified using a binomial threshold, per sample split into
Tissue Type. Outliers (Number of TSGs >15) were removed from plot.

thresholds to classify ASE status and calculated the area under the curve (AUC)
to assess the performance within each tissue type. The highest AUC we achieve
for any tissue type is 0.813 (Figure 4.4A), with the highest results observed in
testis. The lowest AUC score achieved is 0.491 in brain amygdala (Figure 4.4B),
performing no better than by chance. We observe the poorest performance when
a high threshold (6) is applied to phASER results, and either low (0.5) or high
(>9) is applied to the predicted values ( Table 5.2 in Appendix C). The top AUC
scores within individual tissue types (Figures 5.10-5.13 in Appendix C) tended to
occur with phASER thresholds of 3 or 4 and predicted thresholds ranging between
1 and 3. The AUC results suggest that as we increase the predicted threshold
value, performance worsens, but as the phASER threshold increases, performance
improves. This might indicate that the predictions work better for extreme ASE.
Investigating the results in more detail, we see that specificity tends to be poor for
the predictions. This means that although the predictions called a large number
of true ASE genes, it also misclassified a large number. Also, when we looked
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Figure 4.2: Comparison of predicted allele specific expression using
Predixcan versus allelic fold change from phASER results for all genes
within a sample. Histogram of Pearson r values for comparing PrediXcan z-score
ratios to aFC for all genes within a sample. Plots are split by tissue type.

at the number of ASE genes in the phASER results compared to the PrediXcan
results we saw that the number of samples that had ASE for a particular gene
in the phASER results was small while the number in the PrediXcan results was
large. This would indicate that the good performance values observed are likely
because the PrediXcan results called a large number of samples as having ASE for
particular genes, which happens to overlap with the majority of phASER ASE calls.
We also applied a significance level threshold to phASER aFC, with genes showing
ASE also required to have an adjusted p-value of <0.05 based on a binomial test
assessing the difference in counts between the two haplotypes. If they did not reach
this significance level and meet the aFC threshold, the gene was classified as not
showing ASE. This did not improve results, with the AUC values ranging from
0.49 to 0.81 with the best performance still achieved in testis. Due to the poor
performance of binary classification of ASE with PrediXcan results, we use the
z-score ratio going forward in our analysis.

4.3.3 Logistic regression models models applied to individual
genes in GTEx breast samples

Due to the poor overall performance of the PrediXcan models to predict ASE in the
GTEx data, we next sought to apply logistic regression models using ASE status
for each gene as the response variable and SNP genotypes within 100 kilobases of
the gene region classified as heterozygous or homozygous as the predictor variables.
We focused our analysis on one tissue type, breast tissue, so that we would not
have single individuals with multiple tissue types contributing many data points to
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Figure 4.3: Comparison of predicted allele specific expression using
Predixcan versus allelic fold change from phASER results for each gene
across all samples. Histogram of Pearson r values for comparing PrediXcan z-
score ratios to aFC for all samples within a tissue type for a particular gene. Plots
are split by tissue type.
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A. Testis: Observed Threshold=6 Predicted Threshold=3 B. Brain Amygdala: Observed Threshold=6 Predicted Threshold=0.5

AUC: 0.813 AUC: 0.491
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Figure 4.4: Example Receiver Operator Curves when predicting a binary
outcome of allele specific expression using PrediXcan. (A) Best and (B)
Worst binary classification comparisons. The red dashed line corresponds to the
performance of a random classifier while the black line corresponds to the model
performance. Area under the curve (AUC) are given for both.
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the models. This could inflate the relationship of a specific SNP to the response
variable due to the same individual’s genotype contributing many times. Using
SNPs that were present in both GTEx and UKB datasets and were present within
100 kilobases of the gene of interest, we generated models following the workflow
shown in Figure 4.9.

Using a binary response variable of ASE or no ASE with an aFC of at least
+1 and binomial p-value <0.05 required to deem a value as ASE, we were able to
analyse 2580 genes that exhibited ASE. We were only able to generate models for
472 of these genes. Of the genes that did not have a model, 1625 failed because
there were insufficient samples with ASE numbers to balance the classes in the
training set, 157 failed due to the information value filter step, 314 failed because
there were no SNPs available in the dataset for the genes and 12 failed due to too
few heterozygote SNPs or cross-validation error. Of the 472 genes which we could
model, the prediction performance, as measured by AUC using the test dataset,
varied between 0.2532 and 1. The median AUC achieved was 0.6538, meaning that
at least half of the models had poor performance (AUC <0.7) when we used a
probability score of 0.5 as the cutoff to classify predictions as ASE and no ASE.
Most models (434) use only 1 SNP for predictions and there was a slight negative
correlation between AUC and the number of heterozygous SNPs available for the
gene (Pearson’s r= -0.103, p-value = 0.026; Figure 4.5). It appears that genes
with a small number of samples exhibiting ASE is accounting for the low and high
AUC values, with genes that had a large number of samples with ASE tending to
have AUC between 0.5 and 0.9. This is unsurprising since AUC values are more
stochastic in these cases. Of the 472 genes, only 26 were TSGs, and their AUC
values ranged from 0.3462 to 0.9177 with a median of 0.6175. There were 12 TSGs
which had good performance (AUC >0.7).

Applying a binomial threshold to classify genes as ASE or not ASE may
be too stringent. Therefore, we applied logistic regression models to the data using
only aFC cut-off to classify variants. By doing this we were able to build models for
7850 genes. Of those that failed 3561 were due to IV filter step, 2456 were because
there were no SNPs available in the dataset for the genes, 254 failed because there
were insufficient samples with ASE numbers to balance the classes in the training
set, 56 failed due to too few heterozygote SNPs and 34 due to cross-validation error.
Of the 7850 genes which we could model, the prediction performance, as measured
by AUC using the test dataset, varied between 0.2532 and 1. Again the majority
of genes (7407) only had 1 SNP in the model. In this case, there was no significant
correlation between AUC and the number of SNPs used in the model (Pearson’s
r= 0.004,p-value=0.7465), which was unsurprising due to the high number of genes
that only had 1 SNP in the model. There was a significant correlation between
the performance of the models and the number of samples showing ASE (Pearson
r= -0.1, p-value= 2.7 x 107'7). This slight negative correlation was surprising as
we would expect that predictive ability would be worse when fewer samples are
exhibiting ASE but it is likely due to the small number of genes that have a large
number of samples exhibiting ASE. The median AUC achieved was 0.5586, meaning
that at least half of the models could not classify genes as ASE when we used a
probability of 0.5 as the cut-off to classify predictions as ASE and no ASE. It is
likely that by removing the binomial threshold filter, we are classifying samples
as ASE for a particular gene that may not be true ASE, resulting in models that
cannot accurately predict ASE. Of the 7850 genes, there were 483 T'SGs, and their
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Figure 4.5: Relationship between area under the curve (AUC) perfor-
mance value for each gene model when a binomial threshold was applied
compared to the number of samples that have ASE for that gene in the
PhASER results. Data points are coloured by the number of SNPs used in the
model.
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AUC ranged from 0.2785 to 0.9304 with a median of 0.5560. There were 76 TSGs
which had good performance (AUC>0.7).

4.3.4 Comparison of PrediXcan results with binary logistic regres-
sion models

We compared the results from both methods for predicting ASE in order to assess
which performed better and should be used for downstream analysis. We compared
the performance of predictions for the TSGs which achieved AUC >0.7 when we
generated logistic regression models to the z-score ratio for the same genes generated
from PrediXcan breast tissue results. We generated a single ASE score per sample
using each prediction method and compared the results to a score generated using
phASER aFC. Instead of applying a probability cut-off to classify genes as predicted
ASE or not ASE using the logistic regression model results, we used the probability
scores themselves to generate the score. We added the probabilities for all TSGs
into one score per sample. By doing this, a gene which had a high probability of
being ASE contributed more to the score than a gene that had a low probability, so
a sample that had a large number of genes showing ASE would have a larger score
than a sample with few or no genes showing ASE. This would also negate the need
to apply gene-level thresholds, which might improve model performance, to classify
predictions. For the PrediXcan results, we generated an ASE score by combining
the absolute z-score ratio of predictions for the same genes present in the logistic
regression results. We also generated a single score for these genes in the phASER
results by adding the absolute aFC score. By adding the scores, genes that had
large aFC or z-score ratio, meaning they had more extreme ASE, contributed more
than genes that had a low aFC or z-score ratio. Therefore samples that had a low
number of TSGs with ASE but had high ASE had a similar score to samples that
had a lot of genes with small amounts of ASE but scored higher than samples with
low number of TSGs with low ASE. Comparing the predicted scores to the score
generated using the observed phASER aFC values, we saw a positive correlation for
both methods. Comparing ASE score for the 12 TSGs and 76 TSGs that achieved
good predictive performance in Section 4.3.3 (Figure 4.6) with the phASER scores
generated using the same genes, we saw positive correlations (Pearson’s r = 0.29,
p-value= 6.4 x 107%and r = 0.21, p-value = 3.1 x 1075, respectively). When we
assessed the PrediXcan score with the phASER score for the same genes we also
got a positive correlation (Pearson’s r = 0.2 p-value = 6.9 x 10 °and r = 0.08,
p-value = 0.11, respectively) but it was not as strong as from the logistic regression
models (Figure 4.6).

4.3.5 Pilot Study: Predicting Breast Tissue TSG ASE in UK
Biobank

We next generated PrediXcan results for breast tissue in 21,036 UKB white British
females, half of whom had self-reported breast cancer, with the remaining samples
as matched controls, as explained in Methods. We limited our analysis to white
British to limit the impact of population structure on our results. The input data
we used for this came from phased haplotype data instead of phased whole genome
data, and as a result, only a subset of the SNPs used by the MASHR models were
available to generate the predictions. There were 11% of the overall SNPs available
for the breast tissue MASHR models. Of the 14,654 genes present in this dataset,
only 848 had the full model SNPs available for generating the predictions. We
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Figure 4.6: Tumor suppressor gene (TSG) allele specific expression (ASE)
scores generated from phASER allelic fold change (aFC) compared to
scores generated from predictions. Scatterplot of TSG ASE scores generated
using the observed phASER aFC results against scores generated using logistic
regression predictions (blue) or PrediXcan (red). ASE scores for all three types of
data were generated using the (A) 12 or (B) 76 TSGs for which we could generate
logistic regression models (A included a binomial threshold filter for classifying
ASE and B did not). Each data point is a score for an individual breast tissue

sample.
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Figure 4.7: Relationship between allele specific expression (ASE) score
generated using phASER aFC against total number of tumor supressor
genes (TSGs) showing ASE in this dataset.

could only assess ASE in the genes for which the model could accurately generate
predictions. Of these 848 genes, there were only 47 T'SGs available.

We generated an ASE score by combining the absolute z-score ratio of
predictions for the 47 TSGs, which had all model SNPs available for PrediXcan to
provide gene expression predictions. The TSG score allowed us to generate a score
that considers the magnitude of ASE. There was a positive correlation between the
ASE score and the number of TSGs showing predicted ASE (z-score >1) (Figure
4.7). However, ASE scores tend to vary compared to the number of TSGs showing
ASE, with similar ASE scores observed with different numbers of TSGs with ASE.
This was because some genes which had a higher z-score ratio contributed more to
the ASE score than a gene with a low ASE score and a sample that had a small
number of TSGs showing large magnitude of ASE had a similar score to a sample
with a large number of TSGs showing a small level of ASE. Therefore, the ASE
score was likely a better measure of ASE than just counting the number of genes
that exhibited some level of ASE because it captures more information.

We fitted a binary generalised logistic regression model to determine if there
was an association between ASE score and cancer risk. Using cancer status (0 =
no cancer, 1 = cancer) as our response variable, we found no significant association
between PrediXcan ASE Score and cancer risk (Figure 4.8A). We also fitted mod-
els using ASE scores generated using genes that achieved good performance after
fitting logistic regression models with (Figure 4.8B) and without (Figure 4.8C) bi-
nomial thresholds applied as the predictor variables and again found no significant
association with cancer risk.
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4.3.6 TSGs with driver mutations in TCGA breast cancer samples

We identified TSGs that commonly have driver mutations in breast cancer data
in order to prioritise genes that have been shown to play a role in breast cancer
development for our analysis. There were 19 TSGs that had driver mutations in
TCGA breast cancer data. However, only one of these genes (CASP8) has ASE
in the phASER results, and it displayed ASE in just one sample. This was an
important observation as it means that TSGs commonly mutated in cancer are
absent from ASE results derived from normal tissue. Therefore, there was no data
available to generate models for these genes using the GTEx data.

PrediXcan can be used to identify ASE in genes that do not have ASE
in the phASER results. However, we cannot assess the accuracy of predictions for
these genes. Unfortunately, none of the 19 genes were present in the 47 TSGs for
which all SNPs were available for determining predicted ASE in the UKB data.
Therefore, the lack of association between predicted ASE score and cancer risk in
the UKB dataset might be due to our inability to predict ASE in TSGs important
for breast cancer development.

We were able to predict ASE in 80 TCGA breast cancer samples using
PCAWG genotype data. The advantage of using this data was that the majority
(91%) of SNPs are available for predicting expression using PrediXcan. There were
739 TSGs in the MASHR breast tissue PrediXcan results, with 659 genes having all
SNPs available to make predictions. Of the 19 genes that had driver mutations in
TCGA breast cancer samples, there were 13 for which we could predict ASE with
PrediXcan, and none of them had predicted ASE when we calculated the z-score
ratio.

4.4 Discussion

Allele-specific expression is common in tumour suppressor genes within normal
tissues. Based on Knudson’s two-hit hypothesis model of cancer [501], it seems
likely that downregulation of one copy of a TSG could be a risk factor for cancer
as it would only take a mutation that disrupts the function of the normal version
of the gene to knock out its function completely. Imprinted genes offer us a natural
example of this theory. Genomic imprinting is the process by which only one copy of
the gene is expressed, dependent on the epigenetic activation of a specific parental
chromosome [502]. Aberrant expression and gene copy loss of imprinted TSGs such
as MEGS3 is common in tumourigenesis [503]. Additionally, specific SNPs that cause
allelic imbalance in a tumour suppressor gene have been shown to increase cancer
risk in various cancer types[353, 356, 359, 361, 362, 365, 370, 485-497].

The ability to predict gene level ASE has applications for diseases other
than cancer. ASE was shown to play a role in the variability in penetrance of
certain disease-causing variants [504]. A mystery that had confused scientists, why
individuals with the same disease-causing variant had different severity of disease,
was explained, in part, by the variants that affect gene expression. The presence
of the disease-causing variant combined with differences in gene expression regula-
tion contributed to the modified penetrance of the disease. Therefore, the ability
to predict ASE may prove useful when predicting the severity of disease-causing
variants for diseases other than cancer such as autism spectrum disorder which has
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Figure 4.8: Comparison of predicted tumor supressor gene allele specific
expression scores for breast cancer versus non-cancer samples within UK
Biobank data. Boxplots of TSG ASE Scores for UKB samples with and without
cancer generated using predictions from PrediXcan (A) and from logistic regression
models for genes that had AUC >0.7 when the binomial threshold was (B) and
was not (C) applied. 109
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variable penetrance that could be explained by ASE [504].

The initial aim of our analyses was to determine if it is feasible to predict
gene level ASE. Although the predictive performance is low using both methods to
predict ASE, our results do indicate that it is possible to predict ASE to a certain
extent. It is important to note that using the results from Castel et al. may not
be fully appropriate for what we are trying to do. If we look at the occurrence of
TSGs that are genomically imprinted (Table 5.4 in Appendix C), we observe that
they are not as consistent as might be expected in the phASER results. While
the detection of ASE for these genes may differ between tissue types due to gene
expression differences between tissues, we would expect that an imprinted gene
would be consistently called ASE within a tissue type. Therefore, there may be
additional factors in the data, such as sequencing depth or sample quality, that
affect the ability to detect ASE in the truth set. This may account for some of the
discrepancies between observed and predicted ASE.

PrediXcan was designed to predict overall gene expression for particular
tissue types. The variability in gene level correlation with the phASER results
is likely due to the poor performance of PrediXcan for predicting overall gene
expression for some genes [505]. If it does not work well for predicting overall gene
expression, which it was developed for, in some genes we cannot expect it to perform
well at predicting allele specific expression for all genes, as seen in our results. It
is also important to note that the PrediXcan models were developed using the
GTEx data, and therefore we would expect it to perform best when predicting
ASE in this dataset. Migrating the method to other datasets, such as UKB and
PCAWG, would result in poorer predictive potential. Without ASE data in these
datasets to further assess the predictive performance of PrediXcan, it is difficult
to determine the degree of model degradation in these datasets and the accuracy
of the ASE scores. It is possible that the lack of relationship between predicted
ASE and cancer risk is due to poor predictive performance rather than a lack of
association. As PrediXcan models improve so should our ability to predict ASE
using PrediXcan.

The ability to predict ASE in the UKB data was restricted due to the
availability of appropriate input files to use with PrediXcan. The method requires
the use of phased data, and as such, we could only use the haplotype data. There
was a small overlap between the SNPs in the haplotype data compared to the GTEx
data, with only 10% of the SNPs used in PrediXcan models available. In contrast,
the majority of SNPs were available for predicting ASE in the PCAWG, for which
we had whole genome phased data available. This meant that our ASE score, which
was used to assess cancer risk, was generated using only a small number of TSGs
and is likely not representative of the true extent of ASE in these samples, limiting
our ability to assess cancer risk.

Applying logistic regression models using the phASER data worked well
for a small subset of TSGs. A disadvantage to this method is that we could only
generate models for genes that had samples exhibiting some level of ASE in the
phASER results for breast tissue data. This limited our analysis to 2580 genes,
when we applied a significance threshold (binomial p-value <0.05 to call ASE event)
and 14221 genes otherwise. Another disadvantage to the method is that we were
limited to SNPs that were present in the UKB to apply our models in downstream
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analysis. If we had used all SNPs available in the GTEx dataset, we might have
been able to generate models for a larger number of genes, and we may have had
SNPs that improved the predictive performance, but we would not have been able
to apply the models to the UKB data.

Additionally, we are likely unable to predict ASE in the TSGs that are
most associated with cancer risk. From our investigation of ASE in TSGs with
common driver genes in breast cancer, we found that there is no overlap with our
predicted results. Either ASE is not common in these genes, or our method could
not predict ASE accurately in the relevant genes. When we applied the PrediXcan
method to 80 breast cancer samples from the PCAWG we could not predict ASE
in any of the TSGs. The PCAWG dataset had the advantage that we could use
whole genome genotype data and were able to generate results for the majority of
TSGs. The lack of predicted ASE in these genes in this dataset could indicate that
the PrediXcan method is not appropriate for this analysis. However, it could also
be the low sample size that resulted in no predicted TSGs.

As previously mentioned, it is possible that the phASER dataset is not ap-
propriate for our analysis. The allelic expression results in this data was derived in
normal samples who died of causes other than cancer. Therefore, this dataset may
be biased towards individuals who do not have ASE in their TSGs and therefore do
not have ASE in the genes required for our analysis. Using normal tissue samples
from patients with cancer to derive ASE data which can be used to develop mod-
els, may be more appropriate. However, most cancer datasets have gene expression
from tumour samples only, or if a matched sample is available, it is generally from
adjacent tissue, which is not appropriate for assessing germline ASE. Tumour sam-
ples have increased rates of acquired ASE compared to the normal sample and
adjacent normal samples have been shown to have rates similar to tumour tissue
but distinct from normal tissue at more distant sites [347]. Alternatively, a dataset
of allelic expression in normal tissue with a much larger sample size than available
in GTEx could yield enough information to predict ASE in TSGs more commonly
mutated in particular cancer types.

4.5 Conclusion

In conclusion, we have shown that it is possible to predict ASE using genotype data
for some genes. As a pilot study, we assessed the association between predicted TSG
ASE and cancer risk in breast tissue. Although we found no association, this may
be due to the poor performance of the methods used to predict ASE rather than
a lack of relationship between the two. Additionally, it could be that we need to
restrict our analysis to TSGs that have driver mutations in a particular cancer type.
Our results showed that we were unable to predict ASE in TSGs that have driver
mutations in breast cancer, and so we could not assess this. Our ability to detect
ASE is limited by the availability of appropriate datasets to develop methods and
the poor performance of existing methods designed to predict gene expression that
we have modified for ASE prediction. Our results do show that when more ASE
datasets become available, it would be possible to build up a resource of gene-level
models that can be used to predict ASE. This will allow us to better assess the
relationship between TSG ASE and cancer risk and may also prove helpful for
researchers focused on specific Mendelian disorders associated with these genes.
Predicting ASE in these genes would aid in determining the expected penetrance
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of disease and could help in identifying therapeutic targets.

4.6 Materials and Methods
4.6.1 Data Acquisition

We retrieved haplotype-level ASE generated by Castel et al. for 838 GTEx sam-
ples for 49 tissue types that were generated using WASP filters [339]. We used the
haplotype-level data in order to determine which genes show ASE to use as the
truth set for comparing the results of our predictions. Phased whole genome geno-
type data were obtained from GTEx [506]. We obtained haplotype level data for
normal tissues from UKB [507] and phased whole genome genotype data for cancer
tissues from PCAWG [508]. A list of 1217 TSGs was downloaded from the TSGene
database on 10 January 2023. A list of 127 imprinted genes was downloaded from
geneimprint [509] on 23 January 2023 (Supplementary Table2).

4.6.2 Determining aFC for each gene

Using the haplotype expression matrix file containing counts for haplotype A and
haplotype B based on WASP-corrected RNA-seq alignments for each GTEx sample
generated by Castel et. al. [339] we calculated allelic fold change (aFC) for each
gene as:

aF'C = loga o et

In order to calculate significant ASE, we performed a binomial test for
each gene and performed multiple test corrections using the Holm method [510].
Any gene which had an adjusted p-value <0.05 was considered to have significant
ASE. We applied the p-value threshold when assessing the number of TSGs that
show ASE in the phASER results. However, for the comparisons of phASER aFC
with the predicted results, we assessed the results with and without the threshold
applied in case the requirement of p-value <0.05 was too stringent.

4.6.3 Predicting gene level ASE using PrediXcan

Using the phased genotype files from GTEX, we created two new files for each al-
lele of the haplotype to supply as input to PrediXcan. For heterozygote SNPs, we
changed 0|1 phased genotype to 0|0 for haplotype A and 1|1 for haplotype B and
changed 1]0 to 1|1 for haplotype A, and 0|0 for haplotype B. Homozygote SNPs re-
mained unchanged as they are the same for both alleles. We predicted expression for
each haplotype file using MASHR models for each of the 49 tissue types available us-
ing the following options with Predict.py: vef mode= genotype, on the fly mapping
= METADATA {}_{}- {}-{}- b38; —vcf_genotypes and model_db_SNP key=varID.

The results from PrediXcan gave us predicted z-score transformed values
for each gene available for each tissue type. We then computed a z-score ratio, as
described in [511], for the values from haplotype A and haplotype B to determine
ASE for a particular gene. To obtain the z-score ratio by dividing the difference
between the z-scores from haplotype A and haplotye B by the standard deviation
of differences for all genes for that sample. We divide by the standard deviation in
order to determine if the difference between the two scores is statistically significant
[511].
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4.6.4 Assessing the performance of PrediXcan

In order to assess how well PrediXcan performed when predicting ASE, we cal-
culated sample level Pearson correlation for each tissue type. We also performed
gene-level Pearson correlation analysis.

In order to assess whether a binary classification worked better than using
a continuous value for ASE, we applied different combinations of thresholds to the
real and predicted results and calculated the area under the curve (AUC) for each
pair. We applied the following cutoff to the real data; increments of 1 ranging
from aFC=1 up to aFC=6, using absolute values for aFC. We applied thresholds
in 0.5 increments for the z-score rations ranging from z-score=1 to z-score=10,
using absolute values for the z-score. We used the pROC package [512] in R to
compute AUC with the default ”DeLong” method for confidence intervals. Delong
calculates the variance for the AUCs using the method present in Delong et al.
[513] and calculates the confidence intervals using qnorm.

4.7 Logistic Regression Model Development

We applied logistic regression models for each gene as described in the workflow
below (Figure 4.9). Firstly we created our two input datasets as follows:

1. Using the haplotype data phASER results for breast tissue samples we gen-
erated binary response variable of ASE (1) and no ASE (0) for each gene.
We classified samples based on their aFC for each gene. If absolute aFC >1
the gene for a sample was classified as having ASE and if absolute aFC < 1
it was classified as having no ASE. We also generated models incorporating a
binomial p-value threshold to classify a sample as having ASE for that gene.

2. Using phased genotype data from GTEx, we generated all possible predictor
variables for a gene by identifying SNPs that were present within 100KB
of the gene and also present in the UKB dataset. We classified genes as
heterozygous (1) and homozygous (0) based on their genotypes.

We then developed the models as follows:

1. We ensured that heterozygous SNPs were available to use as potential predic-
tor variables. If there were none available we could not proceed with model
development.

2. We split the samples so that 80% were in the training set and 20% were in
the test set, ensuring that ASE status was balanced between the two sets
using the groupdata2 v2.0.2 R package [514].

3. We developed the logistic regression models using the training set as follows:

(a) To account for imbalanced response variables, we used the ROSE R
package v0.0-4 [515] to create synthetic balanced samples. ROSE re-
quires at least two majority and two minority class examples.

(b) We assessed the predictive performance of SNPs using the Information
Value (IV) v1.2.3 R package.
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(c) We removed any SNPs that had an IV lower than 0.1 as these SNPs
would have weak predictive performance. We also removed SNPs that
had an IV higher than 0.5 as this are deemed suspicious and may cause
overfitting [516].

(d) Before performing best subset selection of predictors, we prioritised
SNPs based on their IV value. If a gene had more than 15 SNPs avail-
able to use for predictions we picked the 15 with the highest IV. This
is because the function to perform best subset selection requires 15 or
less values due to the high computational requirements of the method.

(e) If there were more than 1 SNP we performed 5 fold cross
validation model selection using bestglm v 0.37.3 R pack-
age [617] to find a small subset of predictors with the
best prediction accuracy, following the method outlined in
http://www.science.smith.edu/ jcrouser/SDS293/labs/lab9-r.html.

(f) If best subset selection was performed we chose the model that had the
lowest cross validation error.

4. By applying the models to the test dataset we generated prediction probabil-
ity scores for each sample. Samples which had a predicted probability score
of >0.5 was deemed to have ASE in the gene and no ASE otherwise. Finally,
we assessed the model performance using pROC v1.18.0 R package [512] to
generate area under the curve (AUC) values for each gene.

4.7.1 Predicting ASE in UKB

We limited our analysis in the UKB dataset to samples of white British heritage in
order to limit the influence of population structure on our results. As breast cancer
is the predominant cancer type in the UKB dataset, we focused on this cancer type
for our analysis. In order to create the relevant input for use with PrediXcan, we
created two-phased genotype VCFs, one for each haplotype as previously described.
We analysed data from the 10,518 females with self-reported breast cancer and
10,518 white British females who had no reported cancer diagnosis of any kind as
control samples. To ensure we were not introducing any biases into our dataset by
reducing the data to these numbers, we randomly selected samples that matched
the age and smoking status of the samples with breast cancer. In total, we analysed
21,036 samples.

We extracted variants for these 21,036 samples from the phased haplotype
data using plink2 (v2.00a3LM AVX2 Intel (15 Jun 2020)) with the default options
and exported the results to VCF format. We then created two haplotype files, as
previously described for the GTEx data, to use as input to PrediXcan. UKB data
were aligned to the hgl9 genome build, so we used the liftover command within
Predict.py to convert to hg38 using the hgl9 to hg38 chain file. All other options
were the same as those used for the GTEx data.

The 47 TSGs for which all SNPs were available for predicting gene ex-
pression in breast tissue were DLEC1, EED, SIRT6, SMARCA2, CNOT3, PNN,
RASSF2, STUBI1, FZR1, TGFBI1, TBL2, RNF8, E2F3, CYB561D2, RAPI1A,
ARID1A, MXI1, TNFRSF10B, TNFSF9, MAX, ZFP36, MYBBP1A, XAF1, ED-
NRB, BRCA2, CDH13, SCYL1, EPHA2, SELENBP1, RBMS3, CTDSPL, LRIG1,
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Figure 4.9: Workflow for generating gene level models using phASER
allelic fold change as predictor and GTEx genotype data as response
variable.
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NR1I2, TSLP, CDKN2A, CCAR2, HPGD, HEPACAM, STAT3, KISS1, IRXI,
SAA1, PAWR, ALOX15B, ZFP82, SPRY4, TRIMS3.

4.7.2 ASE Score Generation

In order to generate a single score to act as a measure of the level of TSG within a
sample, we summed the absolute score of all predicted values. We used the absolute
score because the direction of ASE is not important, but the magnitude of ASE is.
The important thing is that one allele of the gene is showing ASE relative to the
other. We did not apply a threshold but instead summed the values of all genes
available. We also applied a threshold in order to produce a binary classification.
We then generated a score summing the total number of TSGs showing ASE. We
then assessed the association of the continuous score and binary score with the risk
of breast cancer in UKB using by fitting a generalised linear regression model with
cancer status as the response variable and TSG ASE score as the predictor.

4.7.3 ASE Prediction in PCAWG

We generated predictions for the 819 TCGA samples present within the PCAWG
cohort. We used the phased whole genome genotype files available from [508] and
generated two files for each allele as previously described. We ran PrediXcan using
the same commands as for the UKB data, again using the function to liftOver from
hg19 to hg38 genome. We used the Breast Mammary Tissue MASHR model from
PrediXcan to predict ASE in breast cancer samples of those with infiltrating duct
carcinoma, as this is the cancer type that corresponds to the GTEx tissue type.
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5 Chapter5: Conclusions and Future Work

5.1 Summary and Main Findings

The aim of this thesis was to investigate somatic mutations present in cancer cells
prior to the initiation of cancer as a means to understand somatic mutations in
normal tissues. Recent studies of somatic mutation load in normal tissues have
shown that there is still a lot unknown about how somatic mutations contribute to
cancer initiation. While technologies to detect somatic mutations in normal tissue
are improving, these analyses still have many limitations. Somatic mutations can be
studied by analyzing cancer samples. However, cancer samples contain mutations
that have occurred post-cancer initiation. Consequently, investigating all mutations
in the sample does not give us a full understanding of what has occurred pre-cancer
initiation. Therefore, it is essential to identify those mutations that accumulated
throughout the history of the cell and its progenitors prior to the development
of cancer. Once these mutations were identified, we were able to assess some of
the factors influencing their abundance in the sample. We investigated the role of
the immune system in shaping the mutational landscape of the cancer cell before
it has escaped immune recognition. We also investigated hereditary variants that
result in allele-specific expression (ASE). Germline ASE could reduce the number of
somatic mutations that are required for a normal cell to transition to a cancer cell.
For example, a single somatic mutation may be sufficient to inactivate a tumour
suppressor gene in individuals who have a high level of allele-specific expression of
the gene.

To understand what is happening in the cell before cancer transforma-
tion, it was first necessary to accurately determine which somatic mutations were
present in the initial cancer cell. Chapter 2 focused on identifying clonal somatic
mutations using bulk sequencing data from TCGA samples. Bulk sequencing has
the disadvantage that it is generally a mix of tumor and normal cells so it is dif-
ficult to distinguish true clonal mutations when using variant frequency alone. In
the absence of copy number changes, the expected frequency of autosomal clonal
variants in samples that consist only of tumor cells, with no contamination from
normal cells, is close to 0.5 (with some deviation from 0.5 due to bias introduced
from aligning reads with a mutated allele compared to the normal allele). It is
essential to account for tumor purity when determining which somatic mutations
were present prior to the occurrence of the most recent common ancestor of the
tumor. However, even when accounting for tumor purity and local copy number
status of a variant it can still be difficult to distinguish clonal from subclonal mu-
tations using read counts from bulk sequencing data. We estimated that using
thresholds based on binomial tests comparing alternative and reference allele read
accounts, which allows us to account for alignment bias, could only accurately clas-
sify approximately 45% of true clonal calls. This means that the clonal status of
the majority of variants could not be established using read counts from variants
with bulk-sequencing data.

To avoid the need to determine the total number of clonal mutations in
a sample using sequencing data we developed a linear model to predict the true
clonal load of a sample using the known relationship between somatic mutation
accumulation and age. In Chapter 2 we generated a generalized linear regression
model using age and cancer type as covariates to predict the total clonal mutational
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burden for a sample. To our knowledge, this was the first time this approach has
been taken to estimate the total number of clonal mutations within a sample. We
showed that predictions from this model closely matched somatic mutation numbers
observed for the same age and tissue type as supplied to the model, indicting this
approach worked well for estimating the somatic mutation load of a cell pre-cancer
initiation. However, there were some deviations from predictions which were likely
due to environmental factors that were not accounted for in our model. Although
these predictions do not tell us which mutations are clonal it does give an indication
of the estimated total load and therefore can be informative about the proportion
of clonal mutations have accurately been identified within a sample. However, more
accurate predictions that incorporate environmental factors in the model would be
beneficial to get more precise estimates of clonal load.

In Chapter 2 we also assessed the relationship between somatic mutation
numbers and lifetime cancer risk using predicted clonal load at age 80. A previous
study found an association between the lifetime stem cell division numbers for a tis-
sue type and risk of developing cancer [73]. The positive relationship between these
two quantities was explained as arising from an increased somatic mutation burden
for tissues with many stem cell divisions. However, we found a lower association
between predicted clonal mutation burden and cancer risk than between lifetime
stem cell divisions and cancer risk. This was surprising because if the relationship
between lifetime stem cell division and cancer risk is due to increased somatic mu-
tation burden with every stem cell division, we would expect a stronger association.
This suggests that there may be factors in addition to mutation burden responsible
for the relationship between lifetime stem cell division and tissue-specific cancer
risk reported by Tomasetti and Vogelstein [73]. This is an important finding, given
the controversy generated by the results of Tomasetti and Vogelstein, who were
accused in the literature of downplaying the role of environmental factors such as
UV exposure and smoking on the risk of developing cancer.

Once we identified the clonal mutations in TCGA samples, we next sought
to understand the impact of the immune system on shaping the mutational land-
scape. Chapter 3 focused on investigating the relationship between the expression
of genes harboring passenger mutations and immune evasion. We hypothesized
that passenger mutations successfully evaded detection and removal by the im-
mune system due to lowered expression compared to other genes within a sample
or alternatively the mutated allele was downregulated compared to the normal allele
in a process termed allele-specific expression. We found no evidence that passenger
mutations occur preferentially on lowly expressed genes or that the mutated allele
was downregulated compared to the normal allele, after we accounted for sequence
context and gene length.

Additionally in Chapter 3, using simulations, we estimated an upper bound
for the proportion of missense mutations that could be eliminated by the immune
system without detection in our data. We estimated that if at least 5% of missense
mutations were removed by immunoediting we would be able to detect it in our
analysis. To our knowledge this was the first attempt to estimate an upper bound
for the impact of immunoediting on the mutation landscape in cancer. Our results
are consistent with no mutations being lost through immunoediting or if immu-
noediting is playing a role on the mutation landscape of cancer the effect is too
subtle to observe. It is possible that the number of missense mutations that can be
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recognized and eliminated by the immune system is lower than currently thought.
This may be due to the methods generally used to predict the immunogenicity of
a mutation. Most methods rely on predicting MHC binding affinity. However, al-
though this is an important step in the process, it is not enough for the peptide to
be presented on the cell surface. There must also be a TCR capable of recognizing
the peptide for the immune system to remove it. A recent study by an international
consortium estimated that only 6% of predicted neoantigens can bind to a TCR for
effective removal by the immune system [463]. Therefore, only a small proportion
of missense mutations can generate an immune response.

Furthermore, in Chapter 3, we showed that reanalysis of two previous
studies reporting that certain driver mutations are commonly seen in cancer because
of a gap in a patient’s MHC genotype to recognize them was due to unjustified
statistical assumptions. The observed relationship between MHC genotype and
driver mutation occurrence was due to the presence of multiple high frequency
variants that had highly correlated MHC binding affinity scores. When accounting
for this we found that the signal reported by Marty et al. and Marty-Pyke et al.
[205, 206] disappeared and that there was no evidence that HLA genotype influences
the driver mutations that occur in cancer patients.

In Chapter 4, we assessed the impact of germline variation of tumor sup-
pressor genes (TSGs) on cancer risk. Inherited germline mutations of certain tumor
suppressor genes such as BRCA1 and BRCA2 confer an increased risk of develop-
ing certain cancers [69] and certain SNPs resulting in ASE of these genes have also
been shown to increase cancer risk [354-360]. Here, we investigated the effect of
inherited germline variation that could result in ASE in T'SGs in general instead of
studying specific SNPs. ASE could disrupt the expression of one version of a tu-
mor suppressor gene so that mutations are only required in one copy, the expressed
copy, to initiate cancer. We hypothesized that inherited ASE of TSGs would re-
sult in fewer somatic mutations being required to disrupt the overall expression of
TSGs, thereby increasing cancer risk. To assess this in the UK Biobank data we
first needed to predict gene level ASE within a sample. ASE is usually studied by
comparing the ratio of reads covering the mutant allele or mutant haplotype to the
normal allele/haplotype using RNA-Sequencing data. This is then compared to the
ratio of mutant and normal reads in matched DNA-Sequencing data to eliminate
the effect of alignment bias. However, RNA-Seq and DNA-Seq data are not always
available for a sample. Moreover, RNA-Seq data was not available for UK Biobank
data for which we used to assess cancer risk. Therefore, we first aimed to predict
gene level ASE using genotype data only.

Although methods have been developed to predict gene expression level
from genotype data, to our knowledge, this was the first attempt to predict gene-
level ASE using DNA-Seq data only. Our results highlighted the difficulty of pre-
dicting gene-level ASE with the available data. The largest resource of allelic imbal-
ance in humans available to date was generated in the GTEx data set. While this
provided ASE results for a large variety of tissue types (n=54) there was only data
available from 838 individuals and although ASE was observed in a large number
of TSGs there were small numbers of samples with ASE of a particular TSG. This
made it difficult to generate models to predict ASE for all TSGs. As a result, our
initial approach was to utilize a tool, PrediXcan, designed to predict overall gene
expression using genotype data by providing information for each haplotype inde-
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pendently and determining a ratio of ASE using the predicted score for each. While
this appeared to work well for some genes it did not work well for all. This was
likely caused by the poor performance of PrediXcan to predict overall gene expres-
sion for some genes. If it does not work well for the predictions it was designed for it
is unsurprising that it does not work well for predicting ASE either. As PrediXcan
models improve for predicating overall expression it is possible that it would also
improve our ability to predict ASE using them. We next sought to fit generalized
linear models for each gene with a binary outcome of ASE or no ASE using the
genotype (classified as heterozygous or not) of SNPs within 100 kilobase of the
gene. This only performed well for a subset of genes, likely due to an insufficient
number of individuals showing ASE for the majority of TSGs. Additionally, the
UK Biobank data did not have whole genome phased genotype data which meant
there were some genes that did not have SNPs available for building the models.

Finally in Chapter 4, as a pilot study, we predicted ASE in TSGs for
which the models performed well and tested an association with breast cancer risk.
Although, we found no evidence of a relationship between ASE in TSGs and cancer
risk it is possible this was due to poor performance of ASE predictions. When we
analysed the TSGs common in breast cancer samples from TCGA we discovered
that the TSGs for which we could make predictions were not common drivers of
breast cancer. Therefore, it is likely that genes for which ASE could confer an
increased cancer risk in breast tissue were not included in the analysis.

5.2 Future Work

Although our method for predicting the total clonal burden of a sample generated
estimates comparable to those observed in the corresponding normal tissue for the
same age some improvements could be made. Our model was generated using pan-
cancer data as input with cancer type used as a covariate. However, there was
varying numbers of samples available for each cancer type which may impact the
results. It would be advantageous to generate models using larger cancer data sets
to improve estimates. It may be better to generate models on a per-cancer basis
using cancer sub-type as a covariate to get more accurate predictions for individual
cancer types. Additionally, it would be useful to incorporate environmental factors
as covariates as exposure to these would likely affect the mutational burden within
a sample.

Finally, our results indicate that it is feasible to predict ASE for some
genes using genotype data but that is difficult with the limited amount of data
currently available. A larger resource of gene expression from normal samples is
required to predict ASE for all genes. Additionally, in the case of ASE in TSGs, it
may be more beneficial to use samples from normal tissues of patients with cancer.
Germline ASE in TSGs might be too rare in the general population to generate
sufficient data for developing models. Therefore, it could be useful to generate
the data from cancer samples which could have increased numbers of samples with
germline ASE. However, somatic ASE is common in cancer tissue and is increased
in normal tissue adjacent to the tumor [347]. Therefore, it is essential that the
normal sample be taken from a site in the tissue that is distal from the tumor.
Generating models to predict ASE is relevant to diseases other than cancer and
therefore a resource of models to predict ASE in all genes, not just TSGs, using
this data could prove useful for diseases with variable penetrance that could be
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explained by ASE [504].
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Expression lower than median  [lil No Yes Proprtion Test P-value: 0.3

0.75

Proportion

0.25

0.00

Missense Synonymous

Figure 5.1: Comparison of genes whose expression is lower than the me-
dian expression of genes for missense versus synonymous mutations when
immune escaped samples are removed. Stacked Bar plots comparing the con-
ditional proportion of genes whose gene expression is lower than the median gene
expression for individual samples for the two mutation types with immune escaped
samples removed.
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Expression lower than median Il No Yes Proprtion Test P-value: 0.8

0.50

Proportion

0.25

0.00

Immunogenic Nonimmunogenic Synonymous

Figure 5.2: Comparison of genes whose expression is lower than the me-
dian expression of genes with missense mutations split into those that
are immunogeneic and non-immunogenic when immune escaped samples
are removed. Stacked Bar plots comparing the conditional proportion of genes
whose gene expression is lower than the median gene expression for individual sam-
ples for missense mutations split into immunogenic and nonimmunogenic based on
their PHBR score, compared to synonymous mutations types with immune escaped
samples removed.
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Proportion test p-value: 0.9

[l Mutant allele expressed higher than normal M Mutant allele expressed lower than normal

1.00

0.50

Proportion

0.00

Missense Synonymous

Figure 5.3: Comparison of allele expression for mutations that are mis-
sense versus those that are synonymous when immune escaped samples
are removed. Stacked Bar plots comparing the conditional proportion of missense
and synonymous mutants whose allele expression is greater than (red) or lower than
(blue) the normal allele with immune escaped samples removed.
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Proportion test p-value: 0.64

[l Mutant allele expressed higher than normal  [llMutant allele expressed lower than normal

1.00

0.75

0.50

Proportion

0.25

0.00

Immunogenic Nonimmunogenic

Figure 5.4: Comparison of allele expression for missense mutations that
are split into immunogenic and nonimmunogenic mutations when im-
mune escaped samples are removed. Stacked Bar plots comparing the condi-
tional proportion of missense mutations split into immunogenic and nonimmuno-
genic based on their PHBR score whose allele expression is greater than (red) or
lower than (blue) the normal allele.
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Expression lower than median  [Jlij No Yes Proprtion Test P-value: 0.02

0.75

0.50

Proportion

0.25

0.00

Missense Synonymous

Figure 5.5: Comparison of genes whose expression is lower than the me-
dian expression of genes for missense versus synonymous mutations when
less stringent thresholds are applied for classifying clonal mutations.
Stacked Bar plots comparing the conditional proportion of genes whose gene ex-
pression is lower than the median gene expression for individual samples for the
two mutation types with adjusted thresholds for calling a clonal variant.
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Expression lower than median W No Yes Proprtion Test P-value: 0.001

1.00

0.75

0.50

Proportion

0.25

0.00
Immunogenic Nonimmunogenic Synonymous

Figure 5.6: Comparison of genes whose expression is lower than the me-
dian expression of genes with missense mutations split into those that
are immunogeneic and non-immunogenic when less stringent thresholds
are applied for classifying clonal mutations. Stacked Bar plots comparing
the conditional proportion of genes whose gene expression is lower than the median
gene expression for individual samples for missense mutations split into immuno-
genic and nonimmunogenic based on their PHBR score, compared to synonymous
mutations with adjusted thresholds for calling a clonal variant.
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Number of TSGs with ASE

30-*

D_E@%’tﬁﬁ%;mu&ggﬁémi""%;a

=
@
i
3

Tissue

Figure 5.7: Boxplot of the number of samples showing allele specific
expression in tumor suppressor genes in normal tissues split by sex.
Red=male, Blue=female.

. Threshold

Tissue Roal | Prodicted Upper CI | AUC | Lower CI | Sens. | Spec.
Adipose 4 1 0.68 | 0.69 0.7 0.87 | 051
Subcutaneous
Adipose 4 1.5 0.68 | 0.69 0.7 092 | 045
Subcutaneous
Adrenal Gland | 4 0.5 069 |07 0.71 | 0.78 | 0.62
Adrenal Gland 4 1 0.68 0.69 0.7 0.87 0.51
Adrenal Gland 4 1.5 0.69 0.7 0.71 0.92 0.48
Adrenal Gland | 4 9 069 |07 071 | 095 | 0.44
Adrenal Gland | 4 25 0.68 | 0.69 0.7 0.96 | 0.42
Artery 4 1.5 0.68 | 0.69 0.7 0.92 | 0.46
Coronary
Artery 4 2 0.68 | 0.69 0.7 095 | 0.44
Coronary
Brain Cerebellar | -4 1 0.7 0.7 071 | 086 |0.55
Hemisphere
Brain Cerebellar | -4 1.5 0.7 0.71 072 | 091 | 051
Hemisphere
Brain Cerebellar | -4 9 0.7 0.71 071 | 094 | 047
Hemisphere
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Brain Cerebellar

2.5

0.69

0.7

0.7

0.96

0.43

Hemisphere

Brain Cerebellar 05 0.68 | 0.69 07 |07 | o061
Hemisphere

Brain Cerebellar 1 071 | 0.73 074 | 0.86 | 0.59
Hemisphere

Brain Cerebellar 1.5 073 | 0.74 076 | 091 | 0.58
Hemisphere

Brain Cerebellar 9 074 | 075 076 | 094 |0.55
Hemisphere

Brain Cerebellar 25 073 | 0.74 076 | 0.96 | 053
Hemisphere

Brain Cerebellar 3 072 | 073 074 | 097 | 049
Hemisphere

Brain Cerebellar 35 0.7 0.71 072 1098 | 043
Hemisphere

Brain Cerebellar 4 0.68 | 0.69 07 1099 |039
Hemisphere

Brain Cerebellar 1.5 067 | 0.69 071 |091 |047
Hemisphere

Brain Cerebellar 9 068 |07 072 094 |0.45
Hemisphere

Brain Cerebellar 25 068 |07 072 1096 | 044
Hemisphere

Brain Cerebellar 3 068 |07 072 |097 |0.42
Hemisphere

Brain

Conobellun 1 0.68 | 0.69 0.7 0.86 | 0.52
Brain

Corebellum 1.5 069 | 0.69 0.7 091 |0.48
Brain

Conebellumy 1 0.68 | 0.69 0.7 0.86 | 0.53
Brain

Conobellu 1.5 0.7 0.71 072 1091 | 051
Brain

Conebellum 9 0.7 0.71 072 1094 | 048
Brain

Conebellu 25 069 |07 072 096 |0.45
Cells Cultured

broblasts 0.5 0.7 0.7 071 | 076 | 0.64
Cells Cultured

fhroblaste 1 072 | o072 072 | 087 |0.57
Cells Cultured

broblnsts 1.5 072 | o072 073 092 |0.52
Cells Cultured

fhroblaste 9 071 | o072 072 1095 | 049
Cells Cultured

(b roblast 25 0.7 0.7 0.7 097 | 0.43
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Cells Cultured

fibroblasts 4 0.5 0.7 | 071 0.72 | 076 | 0.65
Cells Cultured

fibroblasts 4 1 0.72 0.73 0.74 | 0.87 0.59
Cells Cultured

fibroblasts 4 1.5 0.74 0.75 0.76 0.92 0.57
Cells Cultured

fibroblasts 4 2 0.74 0.75 0.76 | 0.95 0.55
Cells Cultured

fibroblasts 4 2.5 0.73 0.74 0.75 0.97 0.51
Cells Cultured

fibroblasts 4 3 0.72 0.72 0.73 0.98 0.47
Cells Cultured

fibroblasts 4 3.5 0.7 0.71 0.72 0.98 0.43
Cells Cultured

fibroblasts 5 1 0.68 0.69 0.7 0.87 0.51
Cells Cultured

fibroblasts 5 1.5 0.7 0.71 0.72 0.92 0.5
Cells Cultured

fibroblasts 5 2 0.71 0.72 0.73 0.95 0.49
Cells Cultured

fibroblasts 5 2.5 0.7 0.71 0.72 0.97 0.46
Cells Cultured

fibroblasts 5 3 0.68 0.7 0.71 0.98 0.42
Cells Cultured

fibroblasts 6 1.5 0.67 0.69 0.71 0.92 0.46
Cells Cultured

fibroblasts 6 2 0.68 0.7 0.72 | 0.95 0.45
Cells Cultured

fibroblasts 6 2.5 0.68 0.7 0.72 0.97 0.44
Colon Sigmoid 4 1.5 0.68 0.69 0.7 0.92 0.46
Colon Sigmoid 4 2 0.68 0.69 0.7 0.95 0.44
Colon 3 1 0.69 0.69 0.7 0.88 0.5
Transverse

Colon 4 0.5 0.69 0.7 0.7 0.79 0.6
Transverse

Colon 4 1 0.71 0.72 0.73 0.88 0.56
Transverse

Colon 4 1.5 0.71 0.72 0.73 0.93 0.51
Transverse

Colon 4 2 0.71 0.72 0.72 0.95 0.48
Transverse

Colon 4 2.5 0.68 0.69 0.7 0.97 0.42
Transverse

Colon b 1 0.68 0.69 0.71 0.88 0.5
Transverse

Colon 5 15 0.68 | 0.69 0.71 | 093 | 046
Transverse
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Colon 2 0.68 | 0.69 071 |095 |0.44
Transverse
Esophagus
Gastroesophageal 1 0.69 0.7 0.71 0.87 0.53
Junction
Esophagus
Gastroesophageal 1.5 0.7 0.71 0.72 0.92 0.49
Junction
Esophagus
Gastroesophageal 2 0.69 0.7 0.71 0.95 0.46
Junction
Esophagus
Gastroesophageal 2.5 0.69 0.7 0.7 0.97 0.42
Junction
Esophagus
1 0.69 0.69 0.7 0.87 0.52
Mucosa
Esophagus 1.5 0.68 | 0.69 060 |0.92 |0.46
Mucosa
Esophagus
0.5 0.7 0.71 0.71 0.76 0.66
Mucosa
Esophagus
1 0.73 0.74 0.74 0.87 0.61
Mucosa
Esophagus 15 0.73 | 0.74 0.75 | 092 | 056
Mucosa
Esophagus
2 0.72 0.72 0.73 0.95 0.5
Mucosa
Esophagus
2.5 0.7 0.7 0.71 0.97 0.44
Mucosa
Esophagus
1 0.69 0.71 0.72 0.87 0.55
Mucosa
Esophagus
1.5 0.7 0.71 0.73 0.92 0.51
Mucosa
Esophagus
2 0.69 0.71 0.72 0.95 0.46
Mucosa
Esophagus
2.5 0.68 0.69 0.7 0.97 0.42
Mucosa
Esophagus
. 1 0.69 0.69 0.7 0.87 0.51
Muscularis
Esophagus 1 0.7 0.71 0.72 | 087 |0.55
Muscularis
Esophagus 1.5 071 | 0.72 073 092 |0.52
Muscularis
Esophagus P 0.7 0.7 0.71 | 095 |0.46
Muscularis
Esophagus 2.5 0.68 | 0.69 07 097 |042
Muscularis
Heart Atrial 1.5 0.68 | 0.69 07 092 |046
Appendage
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Heart Atrial

9 068 |07 071 095 |0.45
Appendage
Heart Atrial 2.5 068 | 0.7 071 | 097 | 043
Appendage
Heart Atrial 3 0.68 | 0.69 071 | 098 | 0.41
Appendage
Heart Atrial 3.5 0.68 | 0.69 0.7 098 |04
Appendage
Heart Atrial 1 0.68 | 0.71 073 | 0.87 | 0.54
Appendage
Heart Atrial 15 0.7 0.72 0.75 | 0.92 | 0.52
Appendage
Heart Atrial 9 071 | 0.73 075 | 095 | 051
Appendage
Heart Atrial 2.5 071 | 0.73 075 | 097 |05
Appendage
Heart Atrial 3 071 | 0.73 075 | 098 | 0.49
Appendage
Heart Atrial 3.5 071 | 0.73 075 | 0.98 | 0.48
Appendage
Heart Atrial 4 071 | 0.73 0.76 | 099 | 0.48
Appendage
Heart Atrial 45 0.69 | 0.72 074 | 0.99 | 0.44
Appendage
Heart Left 1 0.7 0.71 072 |088 |0.55
Ventricle
Heart Left 1.5 071 | 0.72 073 | 092 |0.52
Ventricle
Heart Left 9 071 | o072 073 1095 | 048
Ventricle
Heart Left 25 0.7 0.71 072 | 097 | 046
Ventricle
Heart Left 3 069 |07 071 | 098 | 043
Ventricle
Heart Left 35 068 |07 0.7 098 | 0.41
Ventricle
Heart Left 1 068 |07 071 | o088 |0.52
Ventricle
Heart Left 1.5 0.7 0.71 073 1092 |05
Ventricle
Heart Left 9 0.7 0.72 073 | 095 | 048
Ventricle
Heart Left 25 0.7 0.72 073 |097 |047
Ventricle
Heart Left 3 0.7 0.71 073 | 098 | 045
Ventricle
Heart Left 35 0.7 0.71 073 1098 | 044
Ventricle
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Heart Left 5 4 068 |07 071 1099 | 041
Ventricle

Heart Left 6 1 068 |07 073 |08 | 053
Ventricle

Heart Left 6 1.5 0.7 0.72 074 092 |0.52
Ventricle

Heart Left 6 9 0.7 0.73 075 1095 |05
Ventricle

Heart Left 6 25 0.7 0.73 075 1097 | 049
Ventricle

Heart Left 6 3 071 | 0.73 076 | 098 | 0.48
Ventricle

Heart Left 6 35 0.7 0.73 075 | 098 | 047
Ventricle

Heart Left 6 4 069 |o0.72 074 099 |0.45
Ventricle

Heart Left 6 45 069 | 071 074 | 099 | 043
Ventricle

Heart Left 6 5 067 | 0.69 072 1099 | 0.39
Ventricle

Heart Left 6 5.5 067 | 0.69 072 1099 | 0.39
Ventricle

Heart Left 6 6 0.66 | 0.69 071 |1 0.38
Ventricle

Kidney Cortex 4 2 0.67 0.69 0.72 0.95 0.43
Kidney Cortex | 4 25 067 | 0.69 072 097 |042
Liver 3 1 068 | 0.69 0.7 088 |05
Liver 3 15 0.68 | 0.69 0.7 092 | 046
Liver 1 05 0.7 0.72 073 |08 0.64
Liver 1 1 073 | 0.74 075 1088 |06
Liver 1 15 074 | 0.75 076 1092 | 058
Liver 1 2 074 | 0.75 076 095 |0.55
Liver 1 25 073 | 0.74 075 1096 | 051
Liver 1 3 0.7 0.72 073 1098 | 046
Tiver 1 35 069 |07 072 098 | 042
Liver 5 05 067 |07 072 |08 0.6
Liver 5 1 069 | 0.72 074 | 088 | 0.56
Liver 5 15 071 | 0.73 075 1092 | 054
Liver 5 2 072 | 0.74 076 1095 | 053
Liver 5 25 071 | 0.74 076 1096 |05
Liver 5 3 069 | 0.71 073 098 | 045
Tiver 5 35 068 |07 072 1098 | 041
Tiver 6 D 066 | 0.7 074 095 |0.45
Tiver 6 25 066 | 0.7 074 1096 | 044
Minor  Salivary | -, 0.5 0.7 0.72 073 |08l |0.62
Gland

Minor - Salivary | 1 0.68 | 0.7 071 | 088 |0.52
Gland
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Minor  Salivary | -, 1.5 0.69 | 0.71 072 092 |0.49
Gland

Minor - Salivary | 2 0.69 | 0.7 0.72 |0.95 | 0.46
Gland

Minor  Salivary | -, 2.5 0.68 | 0.7 071 | 096 |0.43
Gland

Minor  Salivary | 0.5 0.72 | 0.74 077 | 081 |0.67
Gland

Minor  Salivary | 1.5 0.67 |07 072 092 |047
Gland

Minor  Salivary | 2 0.67 | 0.69 0.72 |0.95 |0.44
Gland

Minor Salivary | 2.5 0.67 | 0.69 072 096 |0.42
Gland

Minor  Salivary | 0.5 0.67 | 0.71 0.76 | 0.81 | 0.62
Gland

Nerve Tibial 4 0.7 0.71 0.72 0.86 0.56
Nerve Tibial 4 1.5 0.71 0.72 0.72 0.92 0.52
Nerve Tibial 4 2 0.71 0.72 0.72 0.95 0.49
Nerve Tibial 4 2.5 0.71 0.71 0.72 0.97 0.46
Nerve Tibial 4 3 0.69 0.7 0.71 0.98 0.42
Nerve Tibial 5 1 0.69 0.7 0.71 0.86 0.53
Nerve Tibial 5 1.5 0.7 0.72 0.73 0.92 0.51
Nerve Tibial 5 2 0.71 0.72 0.73 0.95 0.5
Nerve Tibial 5 2.5 0.71 0.72 0.73 0.96 0.48
Nerve Tibial 9 3 0.7 0.71 0.73 0.98 0.45
Nerve Tibial 6 1.5 0.68 0.7 0.72 0.92 0.48
Nerve Tibial 6 2 0.68 0.71 0.73 0.95 0.46
Nerve Tibial 6 2.5 0.68 0.7 0.73 0.96 0.44
Nerve Tibial 6 3 0.68 0.7 0.72 0.98 0.43
Ovary 4 1 0.68 0.69 0.71 0.88 0.51
Ovary 4 1.5 0.69 0.7 0.72 0.92 0.49
Ovary 4 2 0.69 0.7 0.72 0.95 0.46
Pancreas 4 0.5 0.69 0.7 0.71 0.77 0.63
Pancreas 4 1 0.72 0.73 0.74 0.87 0.59
Pancreas 4 1.5 0.73 0.74 0.75 0.92 0.56
Pancreas 4 2 0.72 0.73 0.74 0.95 0.52
Pancreas 4 2.5 0.71 0.72 0.72 0.96 0.47
Pancreas 9 0.5 0.69 0.7 0.72 0.77 0.63
Pancreas 5 1 0.71 0.73 0.74 0.87 0.59
Pancreas 5 1.5 0.73 0.74 0.76 0.92 0.57
Pancreas 5 2 0.73 0.74 0.76 0.95 0.54
Pancreas 5 2.5 0.7 0.72 0.74 0.96 0.48
Pancreas 5 3 0.68 0.69 0.71 0.98 0.41
Pancreas 6 0.5 0.69 0.71 0.74 0.77 0.66
Pancreas 6 1 0.7 0.73 0.75 0.87 0.59
Pancreas 6 1.5 0.72 0.74 0.77 0.92 0.57
Pancreas 6 2 0.72 0.75 0.78 0.95 0.55
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Pancreas

2.5

0.7

0.73

0.75

0.96

0.49

Pancreas

0.68

0.71

0.74

0.98

0.45

Pancreas

3.5

0.68

0.7

0.73

0.98

0.42

Pituitary

[=2] Rer] Nep) Rep)

0.5

0.68

0.7

0.72

0.78

0.62

Skin Not Sun
Exposed
Suprapubic

0.69

0.7

0.71

0.87

0.53

Skin Not Sun
Exposed
Suprapubic

1.5

0.7

0.71

0.72

0.92

0.5

Skin Not Sun
Exposed
Suprapubic

0.7

0.71

0.72

0.95

0.47

Skin Not Sun
Exposed
Suprapubic

2.5

0.7

0.71

0.71

0.97

0.45

Skin Not Sun
Exposed
Suprapubic

0.69

0.69

0.7

0.98

0.41

Skin Not Sun
Exposed
Suprapubic

0.69

0.7

0.71

0.87

0.53

Skin Not Sun
Exposed
Suprapubic

1.5

0.71

0.72

0.73

0.92

0.52

Skin Not Sun
Exposed
Suprapubic

0.71

0.72

0.73

0.95

0.49

Skin Not Sun
Exposed
Suprapubic

2.5

0.71

0.72

0.73

0.97

0.48

Skin Not Sun
Exposed
Suprapubic

0.7

0.71

0.72

0.98

0.45

Skin Not Sun
Exposed
Suprapubic

3.5

0.69

0.7

0.72

0.98

0.42

Skin Not Sun
Exposed
Suprapubic

0.68

0.7

0.71

0.99

0.4

Skin Not Sun
Exposed
Suprapubic

0.67

0.69

0.72

0.87

0.51

Skin Not Sun
Exposed
Suprapubic

1.5

0.69

0.71

0.73

0.92

0.5

Skin Not Sun
Exposed
Suprapubic

0.69

0.71

0.74

0.95

0.48
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Skin Not Sun

Exposed 6 2.5 0.7 0.72 0.74 0.97 0.47
Suprapubic

Skin Not Sun

Exposed 6 3 0.69 0.71 0.73 0.98 0.44
Suprapubic

Skin Not Sun

Exposed 6 3.5 0.68 0.7 0.72 0.98 0.42
Suprapubic

Skin Not Sun

Exposed 6 4 0.67 0.69 0.71 0.99 0.4
Suprapubic

Skin Sun

Exposed 5 1.5 0.68 0.69 0.7 0.92 0.46
Lower leg

Skin Sun

Exposed 5 2 0.68 0.7 0.7 0.95 0.44
Lower leg

Skin Sun

Exposed 5 2.5 0.68 0.69 0.7 0.97 0.42
Lower leg

Skin Sun

Exposed 6 1.5 0.67 0.69 0.71 0.92 0.46
Lower leg

Skin Sun

Exposed 6 2 0.68 0.7 0.71 0.95 0.44
Lower leg

Skin Sun

Exposed 6 2.5 0.67 0.69 0.71 0.97 0.42
Lower leg

Skin Sun

Exposed 6 3 0.67 0.69 0.71 0.98 0.4
Lower leg

Small Intestine ) - 1 0.68 | 0.69 0.7 | 088 |05
Terminal Ileum

Small Intestine | 1.5 0.68 | 0.69 0.71 | 093 | 046
Terminal Ileum

Spleen 4 0.7 0.71 0.72 0.86 0.56
Spleen 4 1.5 0.7 0.72 0.73 0.92 0.51
Spleen 4 2 0.7 0.71 0.72 0.95 0.47
Spleen 4 2.5 0.69 0.7 0.71 0.96 0.44
Spleen 4 3 0.68 0.69 0.7 0.97 0.41
Spleen 5 1 0.67 0.69 0.71 0.86 0.52
Spleen 5 1.5 0.68 0.7 0.72 0.92 0.48
Spleen 5 2 0.67 0.69 0.71 0.95 0.43
Spleen 5 2.5 0.67 0.69 0.71 0.96 0.41
Stomach 4 1 0.68 0.69 0.7 0.88 0.5
Stomach 4 1.5 0.68 0.7 0.7 0.93 0.46
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Stomach 4 2 0.69 0.7 0.71 0.95 0.44
Testis 3 0.5 0.68 0.69 0.69 0.77 0.61
Testis 3 1 0.71 0.71 0.72 0.86 0.56
Testis 3 1.5 0.71 0.71 0.72 0.92 0.51
Testis 3 2 0.71 0.71 0.72 0.94 0.48
Testis 3 2.5 0.7 0.7 0.71 0.96 0.44
Testis 4 0.5 0.72 0.73 0.74 0.77 0.7

Testis 4 1 0.76 0.77 0.78 0.86 0.68
Testis 4 1.5 0.78 0.78 0.8 0.91 0.66
Testis 4 2 0.78 0.79 0.8 0.94 0.64
Testis 4 2.5 0.78 0.79 0.8 0.96 0.62
Testis 4 3 0.77 0.78 0.79 0.97 0.59
Testis 4 3.5 0.75 0.76 0.77 0.98 0.53
Testis 4 4 0.72 0.73 0.74 0.99 0.47
Testis 5 0.5 0.71 0.72 0.74 0.77 0.68
Testis 5 1 0.75 0.77 0.78 0.86 0.68
Testis 5 1.5 0.77 0.79 0.8 0.91 0.66
Testis ) 2 0.78 0.8 0.82 0.94 0.65
Testis 5) 2.5 0.79 0.8 0.82 0.96 0.65
Testis ) 3 0.79 0.8 0.82 0.97 0.63
Testis ) 3.5 0.77 0.79 0.81 0.98 0.6

Testis 5 4 0.75 0.77 0.78 0.99 0.55
Testis 5 4.5 0.7 0.72 0.73 0.99 0.44
Testis 5 5 0.67 0.69 0.71 0.99 0.39
Testis 6 0.5 0.7 0.72 0.75 0.77 0.68
Testis 6 1 0.74 0.77 0.8 0.86 0.68
Testis 6 1.5 0.76 0.79 0.82 0.91 0.67
Testis 6 2 0.78 0.8 0.83 0.94 0.66
Testis 6 2.5 0.78 0.81 0.84 0.96 0.66
Testis 6 3 0.79 0.81 0.84 0.97 0.65
Testis 6 3.5 0.78 0.81 0.84 0.98 0.64
Testis 6 4 0.78 0.81 0.83 0.99 0.62
Testis 6 4.5 0.75 0.78 0.81 0.99 0.57
Testis 6 ) 0.74 0.76 0.79 0.99 0.54
Testis 6 5.5 0.72 0.75 0.78 1 0.5

Testis 6 6 0.72 0.75 0.78 1 0.5

Testis 6 6.5 0.71 0.74 0.77 1 0.48
Testis 6 7 0.7 0.73 0.76 1 0.46
Testis 6 7.5 0.7 0.73 0.76 1 0.46
Testis 6 8 0.7 0.73 0.76 1 0.46
Testis 6 8.5 0.67 0.7 0.73 1 0.4

Thyroid 3 1 0.69 0.69 0.69 0.86 0.52
Thyroid 4 0.5 0.69 0.7 0.71 0.75 0.65
Thyroid 4 1 0.71 0.72 0.72 0.86 0.57
Thyroid 4 1.5 0.72 0.72 0.73 0.92 0.53
Thyroid 4 2 0.71 0.72 0.73 0.95 0.49
Thyroid 4 2.5 0.7 0.71 0.72 0.96 0.45
Thyroid 4 3 0.69 0.7 0.7 0.98 0.42
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Thyroid 5 0.5 0.68 0.69 0.7 0.75 0.63
Thyroid 5 1.5 0.68 0.7 0.7 0.92 0.47
Thyroid ) 2 0.69 0.7 0.71 0.95 0.45
Thyroid ) 2.5 0.69 0.7 0.7 0.96 0.42
Thyroid 5 3 0.68 0.69 0.7 0.98 0.4

Thyroid 6 0.5 0.68 0.69 0.7 0.75 0.63
Uterus 4 1.5 0.67 0.69 0.7 0.92 0.45
Uterus 4 2 0.68 0.69 0.71 0.95 0.44
Vagina 4 1 0.68 0.69 0.71 0.88 0.5

Vagina 4 1.5 0.68 0.7 0.71 0.92 0.47
Vagina 4 2 0.68 0.69 0.71 0.95 0.44
Whole Blood 4 1 0.69 0.69 0.7 0.88 0.51
Whole Blood 4 1.5 0.69 0.69 0.7 0.92 0.46
Whole Blood 5 0.5 0.68 0.69 0.7 0.77 0.62
Whole Blood 5 1 0.71 0.72 0.73 0.88 0.57
Whole Blood 5 1.5 0.72 0.73 0.74 0.92 0.53
Whole Blood 5 2 0.71 0.72 0.73 0.95 0.48
Whole Blood 5 2.5 0.69 0.7 0.71 0.97 0.44
Whole Blood 6 1 0.7 0.72 0.73 0.88 0.56
Whole Blood 6 1.5 0.71 0.72 0.74 0.92 0.52
Whole Blood 6 2 0.7 0.72 0.73 0.95 0.48
Whole Blood 6 2.5 0.68 0.69 0.71 0.97 0.42

Table 5.2: Top 5% best AUC predictions.Cl= Confidence Interval,
Sens=Sensitivity, Spec=Specificity

. Threshold
Tissue Roal | Predicted Upper CI | AUC | Lower CI | Sens. | Spec.

Adipose 1 8 0.5 0.5 0.5 1 0.01
Subcutaneous
Adipose

1 8.5 0.5 0.5 0.5 1 0.01
Subcutaneous
Adipose 1 9 0.5 0.5 0.5 1 0.01
Subcutaneous
Adipose 1 9.5 0.5 0.5 0.5 1 0
Subcutaneous
Adipose 1 10 0.5 0.5 0.5 1 0
Subcutaneous
Adipose

2 10 0.5 0.5 0.5 1 0.01
Subcutaneous
Adipose
Visceral 1 8 0.5 0.5 0.5 1 0.01
Omentum
Adipose
Visceral 1 8.5 0.5 0.5 0.5 1 0.01
Omentum
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Adipose
Visceral 1 9 0.5 0.5 0.5 1 0.01
Omentum
Adipose
Visceral 1 9.5 0.5 0.5 0.5 1 0
Omentum
Adipose
Visceral 1 10 0.5 0.5 0.5 1 0
Omentum
Adrenal Gland 1 8 0.5 0.5 0.5 1 0.01
Adrenal Gland 1 8.5 0.5 0.5 0.5 1 0.01
Adrenal Gland 1 9 0.5 0.5 0.5 1 0.01
Adrenal Gland 1 9.5 0.5 0.5 0.5 1 0
Adrenal Gland 1 10 0.5 0.5 0.5 1 0
Artery Aorta 1 8 0.5 0.5 0.5 1 0.01
Artery Aorta 1 8.5 0.5 0.5 0.5 1 0.01
Artery Aorta 1 9 0.5 0.5 0.5 1 0
Artery Aorta 1 9.5 0.5 0.5 0.5 1 0
Artery Aorta 1 10 0.5 0.5 0.5 1 0
Artery 1 8 05 |05 05 |1 0.01
Coronary
Artery

1 8.5 0.5 0.5 0.5 1 0.01
Coronary
Artery 1 9 0.5 0.5 0.5 1 0.01
Coronary
Artery

1 9.5 0.5 0.5 0.5 1 0.01
Coronary
Artery 1 10 0.5 0.5 0.5 1 0
Coronary
Artery Tibial 1 8 0.5 0.5 0.5 1 0.01
Artery Tibial 1 8.5 0.5 0.5 0.5 1 0.01
Artery Tibial 1 9 0.5 0.5 0.5 1 0.01
Artery Tibial 1 9.5 0.5 0.5 0.5 1 0
Artery Tibial 1 10 0.5 0.5 0.5 1 0
Brain Amygdala | 1 7.5 0.5 0.5 0.5 1 0.01
Brain Amygdala | 1 8 0.5 0.5 0.5 1 0.01
Brain Amygdala | 1 8.5 0.5 0.5 0.5 1 0.01
Brain Amygdala | 1 9 0.5 0.5 0.5 1 0
Brain Amygdala | 1 9.5 0.5 0.5 0.5 1 0
Brain Amygdala | 1 10 0.5 0.5 0.5 1 0
Brain Amygdala | 6 0.5 0.46 0.49 0.52 0.81 0.17
Brain Amygdala | 6 9 0.5 0.5 0.51 1 0.01
Brain Amygdala | 6 9.5 0.5 0.5 0.5 1 0
Brain Amygdala | 6 10 0.5 0.5 0.5 1 0
Brain Anterior
cingulate cortex 1 7.5 0.5 0.5 0.5 1 0.01

A24
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Brain Anterior
cingulate cortex 1 8 0.5 0.5 0.5 1 0.01
BA24

Brain Anterior
cingulate cortex 1 8.5 0.5 0.5 0.5 1 0.01
BA24

Brain Anterior
cingulate cortex 1 9 0.5 0.5 0.5 1 0
A24

Brain Anterior
cingulate cortex 1 9.5 0.5 0.5 0.5 1 0
BA24

Brain Anterior
cingulate cortex 1 10 0.5 0.5 0.5 1 0
BA24

Brain Anterior
cingulate cortex 2 9.5 0.5 0.5 0.5 1 0.01
BA24

Brain Anterior
cingulate cortex 2 10 0.5 0.5 0.5 1 0.01
BA24

Brain Anterior
cingulate cortex 6 7.5 0.5 0.5 0.51 1 0.01
BA24

Brain Anterior
cingulate cortex 6 8 0.5 0.5 0.51 1 0.01
BA24

Brain Anterior
cingulate cortex 6 8.5 0.5 0.5 0.51 1 0.01
BA24

Brain Anterior
cingulate cortex 6 9 0.5 0.5 0.5 1 0
BA24

Brain Anterior
cingulate cortex 6 9.5 0.5 0.5 0.5 1 0
BA24

Brain Anterior
cingulate cortex 6 10 0.5 0.5 0.5 1 0
BA24

Brain Caudate

. 1 8 0.5 0.5 0.5 1 0.01
basal ganglia

Brain Caudate

. 1 8.5 0.5 0.5 0.5 1 0.01
basal ganglia

Brain Caudate
basal ganglia

Brain Caudate
basal ganglia

Brain Caudate
basal ganglia
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Brain Cerebellar

. 1 7.5 0.5 0.5 0.5 1 0.01
Hemisphere
Bran{l Cerebellar 1 g 05 05 05 ) o1
Hemisphere
Brain Cerebellar | 8.5 0.5 0.5 0.5 1 0
Hemisphere
Bra11.1 Cerebellar 1 9 05 05 05 ) .
Hemisphere
Bralr.l Cerebellar 1 05 05 05 05 : .
Hemisphere
Bran.l Cerebellar 1 10 05 05 05 : .
Hemisphere
Brain Cerebellar | 10 0.5 0.5 0.5 1 0.01
Hemisphere
Brain
Cerebellum 1 7.5 0.5 0.5 05 |1 0.01
Brain
Cerebellum 1 8 0.5 0.5 0.5 1 0.01
Brain
Cerebellum 1 8.5 0.5 0.5 05 |1 0
Brain
Cerebellum 1 9 0.5 0.5 05 |1 0
Brain
Cerebellum 1 9.5 0.5 0.5 0.5 1 0
Brain
Cerebellum 1 10 0.5 0.5 0.5 1 0
Brain
Cerebellum 2 9.5 0.5 0.5 0.5 1 0.01
Brain
Cerebellum 2 10 0.5 0.5 05 |1 0.01
Brain Cortex 1 7.5 0.5 0.5 0.5 1 0.01
Brain Cortex 1 8 0.5 0.5 0.5 1 0.01
Brain Cortex 1 8.5 0.5 0.5 0.5 1 0.01
Brain Cortex 1 9 0.5 0.5 0.5 1 0.01
Brain Cortex 1 9.5 0.5 0.5 0.5 1 0
Brain Cortex 1 10 0.5 0.5 0.5 1 0
Brain Frontal
Cortex BA9 1 7.5 0.5 0.5 0.5 1 0.01
Brain Frontal
Cortex BA9 1 8 0.5 0.5 0.5 1 0.01
Brain Frontal
Cortex BA9 1 8.5 0.5 0.5 05 |1 0.01
Brain Frontal
Cortex BA9 1 9 0.5 0.5 0.5 1 0
Brain Frontal
Cortex BA9 1 9.5 0.5 0.5 05 |1 0
Brain Frontal
Cortex BA9 1 10 0.5 0.5 0.5 1 0
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Brain
Hippocampus
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0.01

Brain
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0.5
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Brain
Hippocampus

10

0.5

0.5

0.5

Brain
Hypothalamus

7.5

0.5

0.5

0.5

0.01

Brain
Hypothalamus

0.5

0.5

0.5

0.01

Brain
Hypothalamus

8.5

0.5

0.5

0.5

0.01

Brain
Hypothalamus

0.5

0.5

0.5

0.01

Brain
Hypothalamus

9.5

0.5

0.5

0.5

Brain
Hypothalamus

10

0.5

0.5

0.5

Brain Nucleus
accumbens basal
ganglia

7.5

0.5

0.5

0.5

0.01
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accumbens basal
ganglia

0.5

0.5

0.5

0.01
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8.5

0.5
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0.01

Brain Nucleus
accumbens basal
ganglia

0.5
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0.01
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0.5

0.5

0.5
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10

0.5

0.5

0.5

Brain Nucleus
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0.01
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Brain Nucleus

accumbens basal 8 0.5 0.5 0.51 0.01
ganglia

Brain Nucleus

accumbens basal 8.5 0.5 0.5 0.51 0.01
ganglia

Brain Nucleus

ccumbens basal 9 0.5 0.5 0.51 0.01
ganglia

Brain Nucleus

accumbens basal 9.5 0.5 0.5 0.51 0.01
ganglia

Brain Nucleus

accumbens basal 10 0.5 0.5 0.51 0.01
ganglia

Brain Putamen 8 0.5 0.5 0.5 0.01
basal ganglia

Brain Putamen 8.5 0.5 0.5 0.5 0.01
basal ganglia

Brain Putamen 9 0.5 0.5 0.5 0.01
basal ganglia

Brain Putamen 9.5 0.5 0.5 0.5 0
basal ganglia

Brain Putamen 10 0.5 0.5 0.5 0
basal ganglia

Brain  Spinal 7.5 0.5 0.5 0.5 0.01
cord cervical c-1

Brain  Spinal 8 0.5 0.5 0.5 0.01
cord cervical c-1

Brain  Spinal 8.5 0.5 0.5 0.5 0.01
cord cervical c-1

Brain  Spinal 9 0.5 0.5 0.5 0
cord cervical c-1

Brain — Spinal 9.5 0.5 0.5 0.5 0
cord cervical c-1

Brain — Spinal 10 0.5 0.5 0.5 0
cord cervical c-1

Brain  Spinal 10 0.5 0.5 0.5 0.01
cord cervical c-1

Brain

Substantia nigra 7.5 0.5 0.5 0.5 0.01
Brain

Substantia nigra 8 0.5 0.5 0.5 0.01
Brain

Substantia nigra 8.5 0.5 0.5 0.5 0.01
Brain 9 0.5 0.5 0.5 0.01

Substantia nigra
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Brain
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Colon
Transverse
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Heart Atrial

Appendage 1 9 0.5 0.5 0.5 1 0.01
Heart Atrial 1 9.5 0.5 0.5 05 |1 0
Appendage

Heart Atrial 1 10 0.5 |05 0.5 |1 0
Appendage

Heart Left 1 8 0.5 0.5 05 |1 0.01
Ventricle

Heart Left 1 8.5 0.5 |05 0.5 |1 0.01
Ventricle

Heart Left 1 9 0.5 0.5 05 |1 0.01
Ventricle

Heart Left 1 9.5 0.5 0.5 05 |1 0.01
Ventricle

Heart Left 1 10 0.5 0.5 05 |1 0
Ventricle

Kidney Cortex 1 7.5 0.5 0.5 0.5 1 0.01
Kidney Cortex 1 8 0.5 0.5 0.5 1 0.01
Kidney Cortex 1 8.5 0.5 0.5 0.5 1 0.01
Kidney Cortex 1 9 0.5 0.5 0.5 1 0
Kidney Cortex 1 9.5 0.5 0.5 0.5 1 0
Kidney Cortex 1 10 0.5 0.5 0.5 1 0
Kidney Cortex 2 10 0.5 0.5 0.5 1 0.01
Kidney Cortex 5 9.5 0.5 0.5 0.51 1 0.01
Kidney Cortex 5 10 0.5 0.5 0.5 1 0
Kidney Cortex 6 9 0.5 0.5 0.5 1 0
Kidney Cortex 6 9.5 0.5 0.5 0.5 1 0
Kidney Cortex 6 10 0.5 0.5 0.5 1 0
Liver 1 7.5 0.5 0.5 0.5 1 0.01
Liver 1 8 0.5 0.5 0.5 1 0.01
Liver 1 8.5 0.5 0.5 0.5 1 0.01
Liver 1 9 0.5 0.5 0.5 1 0
Liver 1 9.5 0.5 0.5 0.5 1 0
Liver 1 10 0.5 0.5 0.5 1 0
Lung 1 8 0.5 0.5 0.5 1 0.01
Lung 1 8.5 0.5 0.5 0.5 1 0.01
Lung 1 9 0.5 0.5 0.5 1 0.01
Lung 1 9.5 0.5 0.5 0.5 1 0.01
Lung 1 10 0.5 0.5 0.5 1 0
Minor - Salivary | 8.5 0.5 0.5 05 |1 0.01
Gland

Minor - Salivary | 9 0.5 0.5 0.5 1 0.01
Gland

Minor Salivary | 9.5 0.5 0.5 0.5 1 0.01
Gland

Minor Salivary

Gland 1 10 0.5 0.5 0.5 1 0
Muscle Skeletal 1 8 0.5 0.5 0.5 1 0.01
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Muscle Skeletal 1 8.5 0.5 0.5 0.5 1 0.01
Muscle Skeletal 1 9 0.5 0.5 0.5 1 0.01
Muscle Skeletal 1 9.5 0.5 0.5 0.5 1 0
Muscle Skeletal 1 10 0.5 0.5 0.5 1 0
Nerve Tibial 1 8 0.5 0.5 0.5 1 0.01
Nerve Tibial 1 8.5 0.5 0.5 0.5 1 0.01
Nerve Tibial 1 9 0.5 0.5 0.5 1 0.01
Nerve Tibial 1 9.5 0.5 0.5 0.5 1 0
Nerve Tibial 1 10 0.5 0.5 0.5 1 0
Nerve Tibial 2 10 0.5 0.5 0.5 1 0.01
Ovary 1 8 0.5 0.5 0.5 1 0.01
Ovary 1 8.5 0.5 0.5 0.5 1 0.01
Ovary 1 9 0.5 0.5 0.5 1 0.01
Ovary 1 9.5 0.5 0.5 0.5 1 0
Ovary 1 10 0.5 0.5 0.5 1 0
Pancreas 1 8 0.5 0.5 0.5 1 0.01
Pancreas 1 8.5 0.5 0.5 0.5 1 0.01
Pancreas 1 9 0.5 0.5 0.5 1 0.01
Pancreas 1 9.5 0.5 0.5 0.5 1 0
Pancreas 1 10 0.5 0.5 0.5 1 0
Pituitary 1 8 0.5 0.5 0.5 1 0.01
Pituitary 1 8.5 0.5 0.5 0.5 1 0.01
Pituitary 1 9 0.5 0.5 0.5 1 0.01
Pituitary 1 9.5 0.5 0.5 0.5 1 0
Pituitary 1 10 0.5 0.5 0.5 1 0
Pituitary 2 9.5 0.5 0.5 0.5 1 0.01
Pituitary 2 10 0.5 0.5 0.5 1 0.01
Prostate 1 8 0.5 0.5 0.5 1 0.01
Prostate 1 8.5 0.5 0.5 0.5 1 0.01
Prostate 1 9 0.5 0.5 0.5 1 0.01
Prostate 1 9.5 0.5 0.5 0.5 1 0
Prostate 1 10 0.5 0.5 0.5 1 0
Skin Not Sun

Exposed 1 8.5 0.5 0.5 0.5 1 0.01
Suprapubic

Skin Not Sun

Exposed 1 9 0.5 0.5 0.5 1 0.01
Suprapubic

Skin Not Sun

Exposed 1 9.5 0.5 0.5 0.5 1 0
Suprapubic

Skin Not Sun

Exposed 1 10 0.5 0.5 0.5 1 0
Suprapubic

Skin Sun

Exposed 1 8 0.5 0.5 0.5 1 0.01
Lower leg
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Skin Sun

Exposed 1 8.5 0.5 0.5 0.5 1 0.01
Lower leg

Skin Sun

Exposed 1 9 0.5 0.5 0.5 1 0.01
Lower leg

Skin Sun

Exposed 1 9.5 0.5 0.5 0.5 1 0
Lower leg

Skin Sun

Exposed 1 10 0.5 0.5 0.5 1 0
Lower leg

Skin Sun

Exposed 2 10 0.5 0.5 0.5 1 0.01
Lower leg

Small Intestine | 8.5 0.5 |05 0.5 |1 0.01
Terminal Ileum

Small Infestine | 9 0.5 0.5 05 |1 0.01
Terminal Ileum

Small Intestine | 9.5 0.5 |05 0.5 |1 0.01
Terminal Ileum

Small Intestine | - 10 0.5 0.5 0.5 1 0
Terminal Ileum

Spleen 1 7.5 0.5 0.5 0.5 1 0.01
Spleen 1 8 0.5 0.5 0.5 1 0.01
Spleen 1 8.5 0.5 0.5 0.5 1 0.01
Spleen 1 9 0.5 0.5 0.5 1 0
Spleen 1 9.5 0.5 0.5 0.5 1 0
Spleen 1 10 0.5 0.5 0.5 1 0
Spleen 2 10 0.5 0.5 0.5 1 0.01
Stomach 1 8.5 0.5 0.5 0.5 1 0.01
Stomach 1 9 0.5 0.5 0.5 1 0.01
Stomach 1 9.5 0.5 0.5 0.5 1 0.01
Stomach 1 10 0.5 0.5 0.5 1 0.01
Testis 1 7.5 0.5 0.5 0.5 1 0.01
Testis 1 8 0.5 0.5 0.5 1 0.01
Testis 1 8.5 0.5 0.5 0.5 1 0.01
Testis 1 9 0.5 0.5 0.5 1 0
Testis 1 9.5 0.5 0.5 0.5 1 0
Testis 1 10 0.5 0.5 0.5 1 0
Testis 2 9.5 0.5 0.5 0.5 1 0.01
Testis 2 10 0.5 0.5 0.5 1 0.01
Thyroid 1 8 0.5 0.5 0.5 1 0.01
Thyroid 1 8.5 0.5 0.5 0.5 1 0.01
Thyroid 1 9 0.5 0.5 0.5 1 0.01
Thyroid 1 9.5 0.5 0.5 0.5 1 0
Thyroid 1 10 0.5 0.5 0.5 1 0
Thyroid 2 10 0.5 0.5 0.5 1 0.01
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Uterus 1 7.5 0.5 0.5 0.5 1 0.01
Uterus 1 8 0.5 0.5 0.5 1 0.01
Uterus 1 8.5 0.5 0.5 0.5 1 0.01
Uterus 1 9 0.5 0.5 0.5 1 0.01
Uterus 1 9.5 0.5 0.5 0.5 1 0
Uterus 1 10 0.5 0.5 0.5 1 0
Vagina 1 7.5 0.5 0.5 0.5 1 0.01
Vagina 1 8 0.5 0.5 0.5 1 0.01
Vagina 1 8.5 0.5 0.5 0.5 1 0.01
Vagina 1 9 0.5 0.5 0.5 1 0.01
Vagina 1 9.5 0.5 0.5 0.5 1 0
Vagina 1 10 0.5 0.5 0.5 1 0
Whole Blood 1 8 0.5 0.5 0.5 1 0.01
Whole Blood 1 8.5 0.5 0.5 0.5 1 0.01
Whole Blood 1 9 0.5 0.5 0.5 1 0.01
Whole Blood 1 9.5 0.5 0.5 0.5 1 0
Whole Blood 1 10 0.5 0.5 0.5 1 0

Table 5.3: Top 5% worst AUC predictions.
Sens=Sensitivity, Spec=>Specificity

Cl= Confidence Interval,

Gene Gene Symbol | Total ASE Samples Expressed Allele
ENSG00000109320 NFKB1 3

ENSG00000181649 PHLDA?2 10 Maternal
ENSG00000078900 TP73 16 Maternal
ENSG00000184937 WT1 17 Paternal
ENSG00000105825 TFPI2 24 Maternal
ENSG00000139687 RB1 33 Maternal
ENSG00000166619 BLCAP 36 Isoform Dependent
ENSG00000140009 ESR2 57

ENSG00000162595 DIRAS3 320 Paternal
ENSG00000185559 DLK1 1111 Paternal
ENSG00000182636 NDN 3123 Paternal
ENSG00000198300 PEG3 6050 Paternal
ENSG00000118495 PLAGL1 7517 Paternal
ENSG00000214548 MEG3 13022 Maternal

Table 5.4: Number of samples showing allele specific

expression in

imprinted tumor suppressor genes in the phASER results.

Gene Location Expressed Allele
ADTRP 6p24.1 AS Maternal
AIM1 6921 Paternal
ANO1 11q13.3 Maternal
ATP10A 15q11.2 AS Maternal
ATP5F1EP2 13q12.2 Maternal
BLCAP 20q11.2-q12 AS Isoform Dependent
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CCDCT1L 7q22.3 AS Paternal
CDKN1C 11p15.5 AS Maternal
CMTM1 1621 Paternal
COPG2IT1 7932 Paternal
CPA4 7q32 Maternal
DDC 7p12.2 AS Isoform Dependent
DGCR6 22q11.21 Random
DGCR6L 22q11.21 AS Random
DIO3 14q32 Paternal
DIO30S 14g32.31 AS Maternal
DIRAS3 1p31 AS Paternal
DLGAP2 8p23 Paternal
DLK1 14q32.2 Paternal
DLX5 7q22 AS Maternal
DNMT1 19p13.2 AS Paternal
DSCAM 21g22.2 AS Paternal
ERAP2 5ql5 Paternal
ESR2 14q23.2-023.3 AS

FAMS50B 6p25.2 Paternal
GDAPI1L1 20q12 Paternal
GLI3 7pl3 AS Paternal
GLIS3 9p24.2 AS Paternal
GNAS 20q13.3 Isoform Dependent
GNASAS 20q13.32 AS Paternal
GPR1 2033.3 AS Paternal
GRB10 Tpl12-p11.2 AS Isoform Dependent
H19 11p15.5 AS Maternal
HECW1 Tpld.1-p13 Paternal
HNF1A 12q24.31

HOXA4 Tpl5-pl4 AS Maternal
HYMAI 6q24.2 AS Paternal
IGF2 11p15.5 AS Paternal
IGF2AS 11p15.5 Paternal
INPP5F V2 10g26.11 Paternal
INS 11p15.5 AS Paternal
IRAIN 15¢q26.3 AS Paternal
KCNK9 8q24.3 AS Maternal
KCNQ1 11p15.5 Maternal
KCNQ1DN 11pl15.4 Maternal
KCNQ10T1 11pl5 Paternal
KLF14 7q32.3 AS Maternal
L3MBTL1 20q13.12 Paternal
LIN28B 6q21 Paternal
LRRTM1 2p12 AS Paternal
MAGEL2 15q11-q12 AS Paternal
MAGI2 7q21 AS Maternal
MCTS2 20ql11.21 Paternal
MEG3 14q32 Maternal
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MEGS 14q32.2-q32.31 Maternal
MEST 7932 Paternal
MESTIT1 7q32.2 AS Paternal
MIMT1 19q13.4 Paternal
MIR296 20q13.32 AS Paternal
MIR298 20q13.32 AS Paternal
MIR371A 19q13.42 Paternal
MKRN3 15q11-q13 Paternal
NAAG60 16p13.3 Maternal
NAPI1L5 4g22.1 AS Paternal
NDN 15q11.2-q12 AS Paternal
NFKB1 4q24

NLRP2 19q13.42 Maternal
NNAT 20q11.2-q12 Paternal
NPAP1 15q11.2 Paternal
NTM 1125 Maternal
OSBPL5 11p15.4 AS Maternal
PARDG6G 1823 AS Maternal
PEG10 7q21 Paternal
PEG13 8q24.22 Paternal
PEG3-AS1 19q13.43 Paternal
PEG3 19q13.4 AS Paternal
PHLDA?2 11p15.5 AS Maternal
PLAGL1 6q24-q25 AS Paternal
PPP1R9A 7q21.3 Maternal
PRR25 16p13.3 Paternal
PSIMCT-1 20q11.2 Paternal
PWARG6 15q11.2 Paternal
PWCRI1 15q11.2 Paternal
PXDC1 6p25.2 AS Paternal
RAC1 7p22.1

RASGRF1 15¢q24.2 AS Paternal
RB1 13q14.2 Maternal
RBP5 12p13.31 AS Maternal
RHOBTB3 5ql5 Paternal
RNU5D-1 1p34.1 AS Paternal
RTL1 14932.31 AS Paternal
SANG 20q13.32 Paternal
SGCE 7q21-q22 AS Paternal
SGK2 20q13.2 Paternal
SLC22A18 11p15.5 Maternal
SLC22A2* 626 AS Maternal
SLC22A3* 6¢26-q27 Maternal
SMOC1 14q24.2 Maternal
SNORD107 15q11.2 Paternal
SNORD108 15q11.2 Paternal
SNORD109A | 15ql11.2 Paternal
SNORD109B 15q11.2 Paternal
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Table 5.5: List of imprinted genes obtained from geneimprint.

SNORD113-1 14q32.31 Maternal
SNORD114-1 | 14q32.31 Maternal
SNORD115-48 | 15q11.2 Paternal
SNORD115@ 15q11.2 Paternal
SNORD116 15q11.2 Paternal
SNORD64 15q12 Paternal
SNRPN 15q11.2 Paternal
SNURF 15q12 Paternal
ST8STA1 12p12.1 AS Paternal
SVOPL 7q34 AS Maternal
TCEB3C 18¢21.1 AS Maternal
TFPI2 7q22 AS Maternal
TP53 17p13.1 AS

TP73 1p36.3 Maternal
UBE3A 15q11-q13 AS Maternal
VTRNA2-1 5q31.1 AS Paternal
WTI1-AS 11p13 Paternal
WT1 11p13 AS Paternal
ZC3H12C 11922.3 Paternal
ZDBF?2 2q933.3 Paternal
ZFAT-AS1 8q24.22 Paternal
ZFAT 8q24.22 AS Paternal
ZFP90 16¢22.1 Paternal
ZIM2 19q13.4 AS Paternal
ZNF 396 18q12.2 AS Paternal
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Figure 5.8: Comparison of predicted allele specific expression using
Predixcan versus allelic fold change from phASER results for all genes
within a sample with all genes and with highly expressed genes only.
Histogram of Pearson r values for comparing PrediXcan z-score ratios to aFC for
all samples within a tissue type for a particular gene. Plots are split by tissue type.
Purple= distribution of all genes. Light blue= distribution of genes with lowly
expressed (TPM <10) removed.

W i genes Low expressed genes removed
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Pearson r

All genes Only genes with observed ASE

Figure 5.9: Comparison of predicted allele specific expression using
Predixcan versus allelic fold change from phASER results for all genes
within a sample with all genes and with genes limited to those that have
observed allele specific expression in the phASER results. Histogram of
Pearson r values for comparing PrediXcan z-score ratios to aFC for all samples
within a tissue type for a particular gene. Plots are split by tissue type. Purple=
distribution of all genes. Yellow= distribution of genes that have observed ASE in
the phASER results.
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Figure 5.10: The top 10 AUC scores for tissue types 1 to 12 alphabetically.
X axis Category= phASER aFC threshold PrediXcan z-score ratio. The results
only show the combination of thresholds applied for the top 10 AUC results and
therefore are blank for the combinations that are in the top 10 for a different tissue
type. Red lines= delong confidence intervals. Y axis = AUC score.
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Figure 5.11: The top 10 AUC scores for tissue types 13 to 24 alphabet-
ically. X axis Category= phASER aFC threshold PrediXcan z- score ratio. The
results only show the combination of thresholds applied for the top 10 AUC results
and therefore are blank for the combinations that are in the top 10 for a different
tissue type. Red lines= delong confidence intervals. Y axis = AUC score.
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Esophagus_Gastroesophageal_Junction
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Figure 5.12: The top 10 AUC scores for tissue types 25 to 36 alphabet-
ically. X axis Category= phASER aFC threshold PrediXcan z-score ratio. The
results only show the combination of thresholds applied for the top 10 AUC results
and therefore are blank for the combinations that are in the top 10 for a different
tissue type. Red lines= delong confidence intervals. Y axis = AUC score.
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Figure 5.13: The top 10 AUC scores for tissue types 37 to 49 alphabet-
ically. X axis Category= phASER aFC threshold PrediXcan z score ratio. The
results only show the combination of thresholds applied for the top 10 AUC results
and therefore are blank for the combinations that are in the top 10 for a different
tissue type. Red lines= delong confidence intervals. Y axis = AUC score.
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