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Abstract

HPC or super-computing clusters are designed for executing computationally intensive
operations that typically involve large scale IO operations. This most commonly involves
using a standard MPI library implemented in C/C++.

The MPI-IO performance in HPC clusters tends to vary significantly over a range
of configuration parameters that are generally not considered by the algorithm. It is
commonly left to individual practitioners to optimise IO on a case-by-case basis at code
level. This can often lead to a range of unforeseen outcomes, specifically when it comes
to the manual tuning of the configuration parameters.

The ExSeisDat utility is built on top of the native MPI-IO library comprising of
Parallel IO and Workflow Libraries to process seismic data encapsulated in SEG-Y file
format. The SEG-Y File data structure is complex in nature, due to the alternative
arrangement of trace header and trace data. Its size scales to petabytes and the chances
of IO performance degradation are further increased by ExSeisDat.

The aim of this research is to auto-tune the Parallel IO configurations which determine
the gain in bandwidth performance, without requiring the user programmer’s interven-
tion. This research thesis presents a novel study of the changing IO performance in terms
of bandwidth, with the use of parallel plots against various MPI-IO, Lustre (Parallel)
File System and SEG-Y File configuration parameters.

Another novel aspect of this research is the predictive modelling of parallel (MPI)
IO, and ExSeisDat’s SEG-Y IO and file sorting bandwidth performance behaviour using
Artificial Neural Networks (ANNs). In continuation to this, the auto-tuning parameters
strategy is designed, which is based on the ANN models predictions. This is an innovative
approach to optimize Parallel IO bandwidth performance for MPI-IO, seismic (SEG-Y)
data IO and file sorting operations.

The results presented in the thesis, show significant performance gain through sta-
tistical analysis, in the Parallel IO bandwidth within the HPC cluster. Additionally,
this research has highlighted the common most useful configuration settings which give
the highest probability of improving the IO performance, in the event ML models are
unavailable for bandwidth predictions.

Furthermore, the different ANN hidden layer node configurations have also been dis-
cussed with respect to identified SEG-Y operations, for separate and combined READ-
/WRITE executions, which show maximum average bandwidth performances.
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Chapter 1

Introduction

1.1 Motivation

Seismic data is one of the most critical factors for geophysicists to study and understand
the earth structure beneath its surface or seabed. The critical importance of seismic data
is not only restricted to understanding the earth’s sub-surface but also when earthquakes
might jeopardise human life [2]. The Oil and Gas industry also extensively relies on the
seismic data as a critical factor for processing and visualizing the sub-structure of the
earth or seabed before oil/gas exploration [3]. The seismic data is normally stored and
encapsulated in SEG-Y format files which is a global standard [4]. The SEG-Y file format
is a complex structure layout used to store the seismic data in a file. It contains trace
headers and actual traces data on alternate positions in the file. Usually the SEG-Y or
seismic data scales to petabytes when written to files on disks. Therefore, it increases the
need of the high performance computing (HPC) or super-computing system facilities to
perform large scale IO processing.

Modern HPC clusters are normally designed to perform exascale operations in a time
efficient manner. They usually contain a high number of computing nodes and parallel
storage disks connected via fast network hardware infrastructure (NHI) [5, 6]. The basic
HPC cluster is normally composed of many compute nodes and storage disks connected
over Network Hardware Infrastructure (NHI) fabric. At software side a programming
paradigm is also required to exploit the clusters potential by writing and executing par-
allel applications, which in this case is the standard Message Passing Interface (MPI)
library to serve the purpose [7]. The library also contains the application programming
interface (API) for carrying out parallel IO processing tasks by running parallel pro-
cesses communicating with multiple storage disks. These disks are normally controlled
and managed by a parallel file system (PFS) protocol. In this research, the Lustre File
System (LFS) is the PFS running on the targeted machine disks [8].

The LFS is a file system specifically designed for Linux based clusters for large-scale
computing. The PFS or LFS are responsible for distributing and storing the file data
across the multiple disks which are connected over the network. The file distribution
pattern is normally decided and executed at this file system layer. This is based on the
number of disks on which the file is stored, and stripe unit which is a splitting unit to
write file chunks across the disks. The purpose of this LFS functionality is to support the
parallel IO processing and enhance the bandwidth performance during the application
execution. However, this comes with overheads which are discussed later in detail.

This thesis addresses the problem of poor IO performance within the parallel applica-
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tions, which leads to the overall program performance degradation. One of the reasons is
with respect to advancement in storage hardware which has been slower over the decades
as compared to compute hardware. Therefore, the computational efficiency of large-scale
applications has been immensely increased however, the IO overheads are still the main
cause of overall poor application performance. Consequently, the IO performance im-
provement is usually left to researchers and experts to devise any methods, to overcome
the performance issues. The second reason for performance issues from the software side
is that in the HPC system the parallel IO is usually optimized by manually tuning the
configuration settings related to MPI-IO, LFS and file properties. However, the perfor-
mance outcome of manual tuning, is subject to case-to-case situations. Manual tuning of
the related configuration settings, on application’s each execution run, is often ignored
from the user programmer end as they pose an extra overhead in the productivity. If
user considers to manually tune the settings, the previous research studies suggest the
data-alignment strategy to apply as the configuration setting [9, 10, 11, 12]. This sets the
number of processes equal to number of disks (stripe count) and each process file chunk
size to READ/WRITE, equal to stripe unit size. Despite the data-alignment is useful in
several cases to optimize HPC IO performance however, it is still not promising for all
types of cases or applications, as explained later.

To process the SEG-Y files data, the Extreme-Scale Seismic Data (ExSeisDat) library
is already developed based on the existing MPI-IO APIs, to further develop and execute
its application on the HPC system [1, 13]. The ExSeisDat contains its own parallel IO
library, namely PIOL, and Workflow library to perform seismic data related functionali-
ties. Despite this parallel processing library, it faces a degradation in program execution
performance. The reason is multiple MPI processes get restricted by the LFS protocol
when they try to access a disk at a same instance in parallel. This is because the data-
alignment is not applied since it is challenging to be configured for the SEG-Y format file,
due to having the traces data being arranged at alternate positions in a file rather than
being placed consecutively. Furthermore, data-alignment is not applied in ExSeisDat
library.

From this scenario, it can be clearly seen that the magnitude of parallel IO band-
width for MPI-IO operations or ExSeisDat’s SEG-Y operations, critically relies on certain
configuration parameters related to MPI, LFS, file properties or SEG-Y file properties.
Therefore, it is necessary to find and tune the suitable parameters settings that can im-
prove the bandwidth performance from the current existing value settings. This can be
only achieved if the right configuration settings that give maximum possible IO band-
width, are already known to be tuned or applied. This has significantly motivated the
aim of this research, to devise an auto-tuning software logic support that does not require
user interference to manually tune the configuration settings. It should be noted that the
auto-tuning is required to be executed before any IO operation during the application
execution. The auto-tuning is supposed to be based on the parallel IO bandwidth predic-
tion of the basic parallel (MPI) IO operations, and the ExSeisDat’s seismic data IO and
file sorting operations. The execution details of these types of operations, are discussed
later in the thesis.

As the aim of this research is to keep the user free from the manual tuning of the pa-
rameters therefore, the proposed method of IO optimization is auto-tuning based on the
Machine Learning (ML) predictions. The recent studies have shown the notable advan-
tages of predictive IO bandwidth or performance modelling through Machine Learning
(ML), for auto-tuning parameters in different HPC problem scenarios [14, 15, 16, 17, 18].
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Consequently, the Artificial Neural Network (ANN) is chosen as the ML technique for
predictive IO modelling [19, 20]. Some of the recent studies, are the source of motivation
in this research to implement ANN based ML models, using the Python PyTorch package
due to its significant accuracy in predicting outputs [21, 22, 23, 24]. The scope of this
research covers the parallel IO and seismic data operations as stated earlier, for their
optimization based on auto-tuning using the ANNs ML predictions. Once the ANNs are
trained, they are validated over the test set of IO bandwidth profiling benchmarks results
against and the related configuration parameters.

This research is divided into three main contributions. The first contribution presents
the graph representation of benchmarks data of high bandwidth on parallel plots (HiPlot
[25]), and the ANN ML prediction models, for MPI-IO and SEG-Y operations. The er-
ror metrics such as: MAE, MSE and MAPE have been used to portray the prediction
accuracy of all the models. The second contribution presents the auto-tuning design
strategy for MPI-IO operations, statistical analysis of bandwidth performance improve-
ments on test cases, and highlights the most selected configuration settings. Lastly, the
third contribution presents the auto-tuning design for SEG-Y IO and SEG-Y file sorting
operations, prediction analysis on range of ANNs for each operation type, varying with
hidden layers nodes, and the statistical analysis of bandwidth performance improvements
on test cases with changing hidden layers nodes of ANNs.

In the third and last contribution of this research, the range of ANNs are tested in
the auto-tuning process, with variation in hidden layers nodes, to observe the impact on
prediction accuracies and IO bandwidth improvements. The purpose is also to detect the
most suitable ANN for the separate READ/WRITE operations in SEG-Y IO and SEG-Y
file sorting, and for their combined READ/WRITE operations executions.

This research has been mainly emphasized on the generation of accurate ANN based
ML models to predict IO bandwidth beforehand, and auto-tuning the MPI-IO, SEG-Y
IO and SEG-Y file sorting operations configurations, using those bandwidth predictions.
Then in addition to this, it presents IO bandwidth parallel plots, prediction accuracy
analysis, statistical analysis of bandwidth improvements in MPI-IO and SEG-Y opera-
tions, highlighted the mostly selected configurations settings for MPI-IO and, impact of
changing ANNs on predictions and bandwidth performance improvement data.

As evident from the results in chapter 5, 6 and 7, the ANN models have shown
significant prediction accuracy, and have been proven their importance in auto-tuning for
optimizing the IO bandwidth performance for MPI-IO and SEG-Y operations.

This thesis follows on with the discssion of high performance computing & parallel
IO in chapter 2. Then seismic data & ExSeisDat are explained in chapter 3. Afterwards,
machine learning process and some algorithms are elaborated in chapter 4. Later in
the thesis, chapter 5 represents the first publication and research contribution about the
application of neural networks to predict HPC-IO and seismic data bandwidth. This
follows on with the next two research contributions chapters 6 and 7, which explain
the auto-tunning approach for optimizing parallel HPC IO and seismic data bandwidth
performance, respectively. Then chapter 8 presents summary of thesis. In last, conclusion
& future work are discussed in chapter 9.
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1.2 Research Questions

The research work conducted in the thesis further extends the existing research in the
area of parallel HPC IO bandwidth performance optimization. Specifically, it approaches
the IO optimization from learning the pattern of changing bandwidth over configuration
parameters to auto-tuning the parameters, in relation to basic parallel MPI IO and seismic
data operations. In particular, the following are the research questions as the theme of
problems stated and addressed in this thesis:

1. RQ1: What are the configurations that determine high bandwidth for parallel IO
and seismic data operations? What is the most suitable technique to accurately pre-
dict the changing bandwidth pattern in basic parallel IO, and ExSeisDat’s parallel
seismic data IO and sorting operations?

2. RQ2: What is the best approach to optimize the basic parallel IO operations per-
formance?

3. RQ3: What approach can be used to optimize the ExSeisDat’s seismic data IO and
sorting operations performance?

1.3 Thesis Contributions

To address the research questions stated above, this thesis has been mainly comprised of
three parts which corresponds to RQ1, RQ2 and RQ3, as the contributions of this work.
The following are the research contributions of this thesis, as listed with respect to each
research question posed earlier:

1. Applying Neural Networks to predict HPC-IO bandwidth over seismic
data on Lustre File System for ExSeisDat

This research corresponds to RQ1, which is the first contribution of this thesis work,
presented in chapter 5. In this research, the data-alignment and high bandwidth
values against the identified configuration parameters, have been highlighted using
the parallel plots, for parallel IO and seismic data operations. Afterwards, the
most suitable and accurate bandwidth prediction technique is identified which is
the ANN based ML modelling. The IO bandwidth profiling benchmarks data is
used for training and testing the models, against the configuration value settings of
parameters. The prediction accuracy values are evaluated using the error metrics
such as MAE, MSE and MAPE. This research has been published in [26].

2. Artificial Neural Networks based Optimization of Parallel IO Band-
width in HPC System

This research corresponds to RQ2, which is the second contribution of the the-
sis and presented in chapter 6. In this research, the auto-tuning design strategy
is proposed and explained, to optimize the parallel (MPI) IO operations perfor-
mance, based on the bandwidth predictions by ANN models, against the identified
configuration parameters. The significant percentage of improvement in overall
bandwidth performance, is observed, ranging from 65-83% in reading and writing
data. Additionally, 3-5 configuration settings are noted to have higher probabilities
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in increasing IO performance for disk reads and writes. This research has been
published in [27].

3. Seismic Data IO and Sorting Optimization in HPC through ANNs Pre-
diction based Auto-tuning for ExSeisDat.

This research corresponds to RQ3, the third and last contribution of this thesis,
which is presented in chapter 7. In this research, the auto-tuning design for parallel
seismic data IO and sorting is proposed to optimize the ExSeisDat’s application
performance based on their ANNs prediction models, against the identified related
parameters. The auto-tuning is executed over the range of ANNs having different
hidden layers nodes configuration. This shows the impact of increasing ANN hidden
nodes on the seismic data bandwidth prediction accuracy and the overall bandwidth
improvement. Additionally, the specific ANN configurations are clearly visible that
yields to maximum possible bandwidth improvement for each identified seismic data
operation. This research has been published in [28].

1.4 Thesis Structure

The structure and layout of work presented in this thesis has been outlined in this section.
The first four chapters present the introduction and background topics relevant to this
thesis, along with a related literature review. Then next three chapters present the
main three primary contributions of this thesis, which correspond to addressing the three
research questions, as stated earlier. The IO bandwidth prediction technique discussed in
chapter 5, and based on that, the IO optimization by auto-tuning approach elaborated in
chapter 6, are together applied to the usecase of seismic data IO and sorting operations.
This indicates the usefulness of the novel approach that it can be applied to different
domains of applications running on the HPC cluster via MPI standard with a parallel file
system based disk IO. Then, in the final two chapters, the work of this research thesis is
summarized and concluded. The following is the outlined description of these chapters:

1. chapter 2 presents the background of HPC area and initial research studies in
regards to overcoming performance issues of parallel IO within the cluster environ-
ment. Mainly, it elaborates the usage of different parallel programming memory
models in the HPC framework, and the parallel IO and file system techniques.

2. chapter 3 presents the background of seismic data in SEG-Y file format and its
HPC application ExSeisDat. This explains the main features of ExSeisDat library
along with the seismic data format structure in SEG-Y file.

3. chapter 4 presents the background study of Machine Learning and its application in
various types of applications and research studies to improve HPC IO. This chapter
mainly demonstrates the different steps involved in a complete ML process.

4. chapter 5 presents an ANN ML based bandwidth prediction technique for parallel
(MPI) IO, and seismic data IO and sorting operations, which corresponds to RQ1.

5. chapter 6 presents the parallel IO optimization approach, based on the bandwidth
predictions by ANN based ML models, corresponding to RQ2.
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6. chapter 7 presents the seismic data IO and sorting operations optimization, based on
the bandwidth predictions by their respective ANN ML models. This corresponds
to RQ3.

7. chapter 8 presents the summary of all the research work done in this thesis, from
the background study chapters to the research chapters.

8. chapter 9 finally concludes on the critical research and outcomes of this thesis, along
with the suggestions for the future work.
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Chapter 2

High Performance Computing &
Parallel IO

2.1 Introduction

High Performance Computing (HPC) generally refers to the ability of application pro-
grams to efficiently execute complex tasks operating on extremely large data volumes.
HPC tasks are executed by harnessing the power of many compute, memory and stor-
age resources, in parallel [29]. This is a specific domain of computer science which re-
quires a powerful computing hardware infrastructure usually referred to as clusters or
super-computers, rather than the personal general computer systems. HPC cluster or a
super-computer can normally comprise of numerous compute nodes having high frequency
many-core CPUs, equipped with large size shared and distributed memory, and multiple
parallel storage devices. It is also the reason that usually the term HPC is interchange-
ably used with super-computing or cluster-computing and that it has many sub-forms
i.e., distributed computing, parallel computing, GPU programming, etc. Since it involves
clusters of high-powered computing resources, the medium connecting them is considered
a important component for communication among processes. It is referred to as Network
Hardware Infrastructure (NHI), usually involves fast Local Area Network (LAN) cables
for high-speed data transfers among processes. The ones most widely used in academia
and industry are Intel Omnipath and Infiniband [5, 6]. HPC clusters highly depend on
multiple IO storage devices for parallel IO among processes and disks. Therefore, this
thesis focuses on addressing the issues in IO performance. Since the cluster servers are
used for large scale computations on the data stored in a number of storage devices, they
are also connected in parallel with the same network hardware to READ/WRITE data
from compute nodes. The Figure 2.1 shows the internal structure of an HPC cluster with
multiple compute nodes connected to the multiple storage devices via NHI.

In order to perform computations within the cluster by utilizing the compute re-
sources, different programming models and libraries or frameworks exist [7, 30, 31]. It
depends on what level the computations are required to be executed. The basic theme of
HPC is to split and distribute the large problem into small problems and execute them
in parallel by processes or threads. If the tasks are required to be executed by processes
running on a number of compute nodes, then a distributed memory programming model
such as the standard Message Passing Interface (MPI) [7, 13], is normally used. Despite
this, an MPI program can also be used to run on a single compute node or a general
computer system with single or multiple CPU cores. If the tasks are just required to
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Figure 2.1: The basic view of HPC cluster system.

be executed at any particular compute nodes by threads or CPU cores, then a shared
memory programming model is used, such as the OpenMP standard [30]. The hybrid
(distributed-shared) programming model can also be used to split the small problem at
compute node in further chunks for CPU cores or threads. On a compute node level, GPU
programming is also frequently used to process compute intensive graphics related tasks
i.e., CUDA [31]. Since modern efficient computer systems come with a specific graphics
card for this purpose, it can be integrated in a hybrid model. The CUDA library itself
provides a number of Application Programming Interfaces (APIs) with MPI semantics
to use distributed memory transfers easily and efficiently.

Apart from these programming frameworks providing a platform for efficient compu-
tations, the IO storage processing in clusters play a key role. As the computations are
performed on data, it is frequently needed to read/write from hard disks. For achieving
high IO throughput in clusters, they are normally provided with a Parallel File System
(PFS) to manage multiple parallel networked storage devices i.e., Lustre File System
(LFS) [8]. As the parallel running processes may perform IO on their particular chunks
of file(s) on disks, data should be distributed and managed among the storage devices
connected to the cluster network for an efficient access. The data splitting, striping or
distributing of a single or multiple files are common operations of any PFS. The widely
used PFSs other than LFS are Parallel Virtual File System (PVFS), General Parallel
File System (GPFS), and Hadoop Distributed File system (HDFS) for Hierarchical Data
Format (HDF) [32, 33, 34, 35].

The performance issues in IO storage processing are very common challenges for
researchers, addressed with different approaches [36, 37]. The IO performance has always
been the concern because it has proven to be the main source of overall application
performance degradation. The data read/write from disks already wastes a lot of CPU
cycles apart from actual computations. The storage side in computer systems has not
shown much advancement throughout the evolution of computer systems with the passage
of time. An algorithm focused group of programmers, researchers and computer scientists
also often ignore making any IO optimizations at the software side. This leads to program
performance degradation and IO issues that are left to the researchers of this domain to
be addressed with different approaches and techniques. Research studies in the past have
produced numerous techniques for optimizing the IO performance. However, they all
pose limitations as well, due to the application specific nature of problems.

In this chapter, different forms of HPC programming techniques and memory models
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will be discussed in detail. Furthermore, the parallel IO, file system with the perspective of
performance issues and past research studies suggesting different approaches to overcome
poor IO will also be discussed.

2.2 HPC Parallel Programming Memory Models

2.2.1 Distributed Memory Model

In HPC, the distributed memory programming model enables a user to write a parallel
application that can contain multiple end processes executing across the number of cluster
compute nodes, as mentioned by Walker [38]. There can be communication among the
processes over the network for passing important information or data to each other as a
requirement to solve a particular problem.

Figure 2.2 depicts an overview of programming model where compute nodes has their
own local memory, connected via network for communication of data among their pro-
cesses. Similarly, when application code is replicated on the required number of processes,
all have the separate copy of the memory variables regardless of being declared as local
or global variables. So, a process needs to explicitly send/receive the data to/from other
processes. Only in case of storage IO the processes can have concurrent access to the
same file. The processes do not require to explicitly pass file data to each other for sharing
before any processing.

Figure 2.2: The Distributed Memory Model Overview.

The MPI library is a widely used framework for such type of distributed applications,
originally implemented in the C language. It is originally supported by the standard
C/C++ programming platform. However, it is also available in Java and Python, as
mentioned in the works of Baker et al. and Dalcin et al. [39, 40]. Additionally, MPI is
integrated with CUDA as well to extend GPU programming to support heterogeneous
computing, as elaborated in the work of Awan et al. [41]. The MPI processes are
often referred as MPI ranks which denote the unique identity for each process. For the
understanding of this paradigm, a simple example is the sum of array elements computed
by all the processes equally. Figure 2.3 presents the working of this example. As can be
seen from the diagram, there are total 4 MPI processes (P0 - P3) executing this task.
First, the head process P0 with MPI rank 0 creates the array of integers of size 12 and
splits it into 4 chunks of equal size of 3. Then P0 keep the first chunk for itself to compute
the sum of elements in its array chunk.
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The remaining MPI processes first receive their data chunks. Once all processes get
their respective data chunks then they compute the local sum of elements in parallel.
Then P1 - P3 having ranks 1 to 3 send their results of sum values back to the P0 head
process. The P0 process receive the sum values results from the other processes and then
finally compute the total sum of all values with its own sum value as a final answer. The
MPI Send() and MPI Recv() are the very basic frequently used APIs that provides the
functionality of communication among the MPI processes, implemented on top of the
sockets interface. MPI also provides the API to apply reduction for summation of all
values received at the head process i.e. MPI Reduce() would be suitable for this scenario.
The other frequently used APIs are MPI Bcast(), MPI Scatter() and MPI Gather(),
which are useful for collectively distributing and gathering data from cluster compute
nodes [13]. Ultimately, the MPI library provides a very broad range of APIs to imple-
ment distributed memory programming model based parallel applications to execute via
exploiting the potential of HPC clusters.

Figure 2.3: MPI Example - Sum of integers in array.

Since there is a necessity of communication among processes and compute nodes
involved in this memory model, NHI also plays important role. The efficiency of an
application relies on high speed data transfers for communication. If an application is
extensively managing the communication or data transfers among the processes, then it
might also affect the overall program performance. This is a case where specially NHI
is not providing the ideal transfer speed among the multiple compute and storage nodes
connected in the cluster. However, as stated earlier, Infiniband and Intel Omnipath are
the latest NHIs known for their ideal transfer speed, and they are widely used in modern
HPC clusters.

The parallel MPI-IO is another important element of the distributed memory applica-
tions. Therefore, the storage hardware and its file system at software side should also be
promising in providing maximum possible performance. However, its details and issues
are discussed in later section. In short, the performance measurement or time-complexity
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of an MPI application must be analyzed from 3 aspects: 1) IO, 2) computations and 3)
communication.

MPI applications can also be executed on single compute node as much as multiple
MPI processes can be run in parallel on a single node. However, it may limit the perfor-
mance of the application. In this context, the MPI One-Sided communication and shared
memory interface are useful tools to further explore the options for efficiently execut-
ing the application. The MPI Put() and MPI Get() APIs are efficient MPI methods to
send/receive data efficiently among the processes on one shared memory node. They can
directly access the other process local memory to read/write without creating extra buffer
which is a requirement in case of MPI Send()/MPI Recev() APIs. So, this summarizes
the basic idea of working with distributed memory programming model.

2.2.2 Shared Memory Model

The shared memory programming model is referred to as the parallel computing form of
HPC that normally restricts to one compute node within a cluster, which can be seen
from the work of Gibbons et al. [42]. Figure 2.4 depicts this model. The single node
is nowadays usually a multi-core or many-cores machine attached to common shared
memory i.e., RAM. However, there are other multiple levels or a hierarchy of memory
i.e., registers, L1, L2 and L3 caches, which may be shared among CPU cores. The closest
one is register memory followed by L1 cache whereas, farthest ones are Random Access
Memory (RAM) and hard disk storage device. According to the memory hierarchy the
CPU gets data in most efficiently and quickest time from the closest memory i.e., register
and then L1 cache. Whereas CPU gets data in slowest time from the farthest devices i.e.
RAM and then hard disk storage memory.

Figure 2.4: The Shared Memory Model Overview.

In this memory model, the problem size or data is split and distributed at the single
machine level, among the number of threads running on single or multiple CPU cores.
It is normally referred to multi-threading. However, multiple processes on the same
machine can also be created to distribute the problem and solve it using shared memory
constructs and inter-process communications. As the process creation in parallel requires
separate space allocation in memory, it becomes an expensive operation. Whereas the
thread creation does not require separate space rather its memory is allocated in the same
process space. It is the reason that in the shared memory model the multi-threading is
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always preferred over multi-processing, to execute the independent tasks in parallel within
an application.

OpenMP is a widely used shared memory framework for C/C++ in the HPC com-
munity, which is built on top of the Unix POSIX threads (PThread) library [30, 43]. The
OpenMP syntax and semantics directives, and other APIs, enable users to create task or
loop parallelism based applications. The simplest form of OpenMP construct is #pragma
omp parallel{...} which implicitly follows the fork-join flow for task parallelism for
thread creation and execution. In addition, it runs the work sharing engine at the back-
end for load balancing among running threads via loop parallelism construct #pragma

omp for. Threads creation in a program space, share and access the same global mem-
ory. This is a reason for no explicit need for sending/receiving data to/from threads as
the case is in distributed memory model.

Considering the same example of computing the sum of array elements using threads,
their respective data chunks can be specified by defining starting and ending boundary in-
dices. The chunks can be distributed among threads with respect to their unique identity
number. Figure 2.5 represents the example working in the shared memory programming
environment. The array of 12 integer elements is split into 4 chunks for 4 threads (T0 -

T3). The starting (s) and ending (e) boundaries defining logic for threads is also men-
tioned in the diagram. Each thread afterwards computes and update its local sum in the
same global variable. Thus, it can generate a data race condition leading to incorrect
result.

In order to avoid a data race condition, a line of code can be defined as a critical
section by specifying #pragma omp critical. This implicitly synchronizes the access of
the section such that only one thread can enter it at an instance. There are many other
ways to synchronize a particular code section or just over memory and update operation
in OpenMP framework. Once all threads are executed synchronously over sum variable,
it computes the correct result value for this example.

There are also other libraries and different programming language platforms for shared
memory or multi-threading models i.e., Intel Thread Building Blocks (TBB), Java -
Threads, Python Threads, etc [44, 39, 45]. In general, shared memory programming or
multi-threading optimize application performance. Since there is no communication of
data through a network among processes or threads, overall time-complexity or perfor-
mance has only two components: IO of data and computations. In this model the max-
imum performance through thread parallelism is when the number of executing threads
are equal to number existing physical CPU cores on board. Otherwise, the performance
either stays the same or starts deteriorating if there is more than one thread on one CPU
core due to concurrent context switching and time slicing. This summarizes the basic
idea of parallel shared memory programming environment on a single compute node.

2.2.3 Hybrid Memory Model

In the Hybrid (Distribute-Shared) programming model, the data or tasks are broken
down from compute node to CPU core or thread level within the cluster, as elaborated
in the work of Pham et al. [46]. Since modern super-computing clusters come with
many CPU-cores compute nodes, an application can exhibit both distributed and shared
memory programming at the same time. Thus, it increases the complexity of code design
logic of such parallel application which is a typical MPI-OpenMP program. However, it
can further increase the application parallelism since a task distributed at a particular
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Figure 2.5: OpenMP Example - Sum of integers in array.

compute node is further split or distributed among CPU cores/threads for parallel exe-
cution. Figure 2.6 depicts that hybrid model which is a cluster of shared memory model
compute nodes connected over the fast network as a distributed memory model.

For designing a hybrid memory model from a programming perspective, the very basic
level of code structure of such software should be understood first. By considering the
MPI-OpenMP program for instance, the MPI and OpenMP APIs and semantics would
be working and carefully integrated together in a single code to execute the parallel tasks.
These program generally starts with calling the MPI Init() API to initialize the MPI
based distributed memory environment. The number of MPI nodes and MPI processes
per node within a communicator group are normally specified at command line, which
are then normally accessed by MPI Comm size() in the program, and MPI Comm rank()

returns the rank or process ID. Then the code logic for distributing the tasks among
MPI processes is usually written before moving towards the OpenMP directives. Once
the tasks are distributed among MPI processes at code level then the OpenMP directives
and APIs can be applied within the #pragma omp parallel{...} section. In the scope of
this section, the tasks are further split and distributed among CPU threads and executed
in parallel.

Consider the same example of computing sum of array elements using this hybrid
memory programming model. Figure 2.7 explains the flow of tasks of the problem from
distribution from processes nodes to parallel execution at CPU threads. The initial
global array is created at P0 MPI rank or head node. Note that the data splitting among
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Figure 2.6: The Hybrid Memory Model Overview.

processes is similar to the mechanism for threads, as described at the bottom of the
diagrams in the Figures 2.5 and 2.7. The differences are the number of processes and
process ID or MPI rank involved in setting the starting and ending indices for each MPI
process. The other difference is the particular chunks of the array are explicitly being sent
to the specific MPI processes via MPI Send()/MPI Recv() APIs except P0. Whereas, for
threads at each process level, the array data is split only by defining starting and ending
indices. It is sent or received among threads as they shared a process or CPU memory.

Once the array is split and distributed among the MPI processes P0, P1 and P3 it
is further divided among each process threads T0 and T1. Each thread then computes
its sum of array which is further reduced to total sum at process level via OpenMP
or any other shared programming API. Then finally all the processes sums are reduced
to final global sum at P0 head node process via the MPI Reduce() function call. This
whole procedure depicted a very simple example for elaborating the working of a hybrid
or distributed-shared memory parallel programming model. The problem size in this
example is small in terms of array data, number of processes and number of threads to
explain the overall working of hybrid memory model. Increasing the problem size in all
means can show how the performance scales in terms of execution time and parallelism.
According to the nature of problem, it can be analysed what number of processes and
threads ensure maximum possible performance. Increasing the number of processes and
threads after a certain threshold may not add up to further performance gains and can
lead to deterioration instead of enhancement.

The other possible way to improve or further maximise the hybrid model performance
is by using GPU programming at shared memory node level. This is since modern HPC
clusters are GPU enabled as they come with dedicated high resolution performance graph-
ics cards. A very big chunk of data can be offloaded to the large number of GPU cores
and threads to solve the problem, provided that the tasks can be executed independently.
This sums up the explanation of working with the hybrid memory programming model.
The next section discusses in detail about the GPU programming model.

2.2.4 GPU Programming Model

The GPU programming was introduced with the invention of dedicated computing units
specially designed for processing high-resolution image data [47]. Previously, the native
CPU technology was not capable for smooth execution of basic operating system applica-
tions and heavy graphical processing simultaneously. Therefore, the separate Graphical
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Processing Units (GPUs) were introduced on board to execute heavy resolution or large
sized graphical imagery data tasks separately from the CPUs, i.e NVIDIA, AMD Radeon,
etc [48, 31, 49, 50]. In the current era, the image pixels resolution is increasing to be
rendered, and becoming computationally complex with the passage of time. Therefore,
GPUs are becoming more equipped and advance to process the image data efficiently.
However, the use of GPUs is not restricted to image processing or gaming applications
but also used for simulations, Artificial Intelligence, Machine/Deep Learning (ML/DL)
and other computing techniques.

Figure 2.8 shows the very basic overview of GPU inside and its communication to host
CPU via Peripheral Component Interconnect Express (PCIe) bus on the motherboard.
The single GPU device can contain numerous grid blocks sharing their common global
memory. Each grid block can then contain numerous threads blocks where numerous
threads can execute in parallel without pre-emption. This feature of GPUs makes the
image or graphics complex problems easy and efficient from the perspective of processing
their large sized data. The advancement of GPU cards also relies on these properties by
extending them in greater numbers to scale the performance in processing huge graphics
data.

Figure 2.8: The GPU Memory Model Overview.

One GPU card can reside on a single shared memory node of an HPC cluster. Since
the modern HPC clusters have many-cores nodes, GPU cards usually ranges from 2 to
4 on one shared memory node. For example, the KAY cluster used in this research has
2x NVIDIA Tesla V100 16GB PCIe (Volta architecture) GPUs on each node of partition
of 16 nodes [51]. This has been done to further extend the working and performance
of image processing tasks over ample amount of graphics bytes data. This means the
GPU programming model can work with both shared memory and distributed memory
in hybrid fashion.

In the GPU programming structure, the data first needs to be offloaded from CPU
memory to GPU device memory to process it by the GPU threads. Once the result is com-
puted by the GPU it is offloaded back to CPU memory. Considering the NVIDIA’s GPU
cards platform, it provides CUDA semantics and APIs to perform GPU programming
tasks [31]. CUDA works and integrates with C/C++, also supports Java and Python.
The cudamemcpy() API is used to transfer the data from CPU host memory to GPU de-
vice memory after allocation on both ends via malloc() and cudaMalloc() calls. Then
a typical CUDA C/C++ program can contain a user or programmer defined GPU kernel
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function that contains the logic of processing data by GPU threads i.e. global void

GPU kernel(int arg1,float *arg2,...){...}. This GPU kernel function normally
called after memory data transfer in main() function, as in the following example:

GPU_kernel<<<ThreadBlocksPerGrid,ThreadsPerBlock>>>(arg1, arg2,...);

After the complete execution of the GPU kernel function the result data still resides
in the GPU memory unless it is transferred back to CPU host memory. For this data
transfer, the same cudamemcpy() API is used to copy the result data from device to
host memory. The typical operations performed at the GPU side are related to complex
matrix problems like matrix multiplication, which is frequently executed during the ML
training process as well. Therefore, it can involve large data transfers that hinders the
performance of a GPU based program. In addition to this the CUDA aware MPI platform
enables users to write applications exploiting GPUs power across the number of compute
nodes within a HPC cluster [41]. This is conditioned to NVIDIA’s GPU cards have
enabled GPUDirect RDMA [52]. In this case data can be transferred from GPU to GPU
on different machines via distributed memory by directly passing device memory pointers
in MPI Send() and MPI Recv() calls.

Considering the example of two extremely large matrices addition which results in a
large matrix since, it performs corresponding index-wise addition of all elements. In this
scenario, the initial transfer of two source matrices data from CPU to GPU memory and
the last transfer of resultant matrix data from GPU to CPU memory would be a major
overhead for an application performance. This is despite the efficient execution of the
main matrix addition performed by a number of parallel GPU threads.

Because of the issue of large memory transfers, there are some memory optimization
techniques developed in the CUDA library. The CUDA Unified Memory is one approach
to overcome these performance issues to some extent [53, 54, 55]. The concept is to use
one allocated memory at both CPU and GPU sides. The corresponding API for this
purpose is cudaMallocManaged(). Once the memory is allocated using this function
call it can be accessed and modified by both CPU and GPU without any extra memory
transfers as previously. Before the CPU accesses same memory after GPU kernel function
call, the memory may not be updated yet.

To synchronize the memory access, cudeDeviceSynchronize() is useful API to be
executed before CPU access, which is mostly recommended by experts. At the back-end
during memory access, the CPU or GPU page caches might suffer from page faults upon
the unavailability of updated data at the time of requirement. It is also suggested from
a development point of view to initialize the memory at the GPU side by defining and
calling an extra GPU kernel function to avoid the initial GPU page fault. The other
useful approach is prefetching the initialized data into GPU device memory by using the
cudaMemPrefetchAsync() API call. This usually brings GPU page faults to 0.

While addressing memory optimization, it should be noted that initially, all the re-
quired large data for processing usually resides in file on disk. Therefore, it cannot be
ignored to discuss techniques for GPU directly accessing the file data on disk. Normally
the data must be read from disk into CPU memory before it is brought or prefetched
into GPU memory. So, there is always an IO overhead at the GPU side. Since there are
some ways and techniques to make data readily available for GPU but eventually, they
all passes through CPU memory first which always leaves an overhead.

The NVIDIA’s GPUDirect Storage utility can provide the direct path between disk
and GPU via PCIe to overcome the IO bottleneck [56]. The cuFile() APIs support to
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carry out direct GPU based file IO. However, this utility has some system limitations
and is not completely functional yet, it is still under development or improvement. The
one limitation is that it is only compatible with SSDs NVMe technology, normally resides
in Tier-1 storage. It does not work with the Tier-2 storage HDDs. Since SSDs are way
faster than HDDs, the data needs to be brought into a Tier-1 storage layer from Tier-2,
in order to be acceptable to GPUDirect Storage cuFile() functionality.

Apart from these issues, GPUs provide powerful computational performance features.
For the same reason, ML/DL problems are often offloaded to GPUs. Since the most
expensive and time consuming component is the training of models, executing large and
complex matrix operations, GPU plays an important role to train the model way faster
as compared to CPU. To keep the GPU based model training simple for ML/DL users,
the popular frameworks are PyTorch and Tensorflow on Python platform. These plat-
forms provide API support for utilizing GPUs for ML, by keeping the complex CUDA
memory transfer details hidden from the users [22, 57]. These developments have further
accelerated the DL based computer vision, image processing and many other problem
areas apart from the games and simulations.

For the case study, specifically the significant importance of NVIDIA’s GPUs can be
imagined as they are playing a vital role for developing a vehicle aimed for 2030s manned
mission to Mars planned by NASA [58]. Before the mission can launch, the critical
challenge is the safe landing of heavy weight loads on the planet by a manned vehicle which
can weigh at least around tens of metric tons. The solution is high-resolution simulations
using retropropulsion. This involves complex fluid dynamics for vehicle’s tiny turbulence
to larger airflow meters away with different landing conditions and other parameters. This
type of simulation yields around 100 terabytes of output data. Hundreds of thousands
of these simulations will be run to test a range of possible conditions a vehicle could
encounter when descending towards the Martian surface. By exploiting the processing
power of 3,312 NVIDIA V100 GPUs (each 640 Tensor Cores) using GPUDirect Storage
technology for high-bandwidth data transfers, six simulations can be executed at once
with NASA’s FUN3D computational fluid dynamics software, a work by Bartels [59].
Otherwise, it would take six months on conventional computing platform. This will
enable engine designing team to visualize different engine design choices and finding the
right adjustments of parameters to finalize design via retropropulsion.

In short, by analyzing the complexities in different problem studies the emergence of
GPUs technology into the modern HPC clusters has been significantly proven in scaling
the computationally intensive applications performance.

2.3 HPC Parallel Storage

2.3.1 Parallel IO

The IO portion of an application has always been a concern of researchers and scientists
as it leads to performance degradation when not taken carefully [36, 37]. If application is
consuming large chunk of time in reading the data from disk to memory for processing,
then, meanwhile CPU cycles are not running the computations. As a result of this, the
CPU cycles are wasted when CPU remains in an idle state, waiting for reading of data in
memory, to complete. Afterwards, when the computations of the core tasks are finished,
and application is spending another significant time on writing data back to disk then
it is wasting additional CPU cycles. This means application is also IO bound alongside
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being CPU (or less CPU) bound.
In the parallel programming memory models discussed earlier, the compute tasks are

assigned to processes or threads. Similarly, the IO tasks can be assigned to processes
or threads to read or write data to disks, in parallel. This parallel reading or writing of
data by processes or threads, is normally referred to as parallel IO [60]. Each process or
thread is responsible for reading or writing its own defined chunk of data to file on disk
as demonstrated in Figure 2.9. This basic technique help reducing IO time as compared
to one process or thread is performing read/write operation. Since this research evolves
around MPI-IO APIs therefore read/write is normally done by just MPI processes [13].

Figure 2.9: Parallel IO.

The parallel application running IO on Kay cluster ([51]) goes through its specific
IO stack mentioned in Figure 2.10. It can be understood that an application would be
written on top of MPI-IO APIs by means of using them. Then the MPI-IO calls are
written on top of Unix based POSIX-IO APIs [61]. When the IO request reaches at file
system level to read/write data to/from disks then, it first interfaces with an underlying
employed PFS which is LFS in this case. Since LFS is responsible for giving access to
processes for reading or writing files bytes across multiple disks, it is at the last level of
the IO stack, for managing files on physical disks. This is the overall flow for handling
parallel IO requests from the view of IO stack.

Figure 2.10: View of IO Stack in HPC cluster for handling parallel IO requests.

The MPI-IO APIs are a set of collective and non-collective functionalities for read-
ing/writing data to a common file on disks by multiple MPI processes. Note that at the
application side logic, the splitting of file chunks among MPI processes would be same as
previously shown by examples in Figures 2.3, 2.5 and 2.7 by threads or processes. Under
the hood, in non-collective IO the MPI processes access file chunks independently and
read/write contiguously the stream of data bytes. It assumes that the file chunks on disk
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for each process are placed contiguously as an ideal case for non-collective IO thus, it
works exactly as in Figure 2.9.

On the contrary, in collective IO the MPI processes access file chunks independently
but read/write data to file non-contiguously and collectively. This operation is especially
useful for file chunks placed on disks non-contiguously for each MPI process. So, at the
backend processes might copy data chunks to each other’s buffers in order to contain
the process requested data as a collective operation. This can be executed using three
different types of techniques at the MPI-IO backend: 1) Data sieving, 2) Aggregation
and 3) Two phase IO.

Figure 2.11 shows the data sieving techniques at each process end to read or write
non-contiguous data to the disks [62, 63]. In case of data sieving within a read operation,
the process requests its chunk portion which is non-contiguously placed over a single or
multiple disks. Before requested portion reaches to process buffer, the whole chunk of
non-contiguous data first fetched into the temporary buffer as the contiguous chunks.
Then all the non-contiguous chunks are joined together in the process buffer. The data
sieving in read operation, goes exactly same for all other MPI processes trying to access
their respective chunks from the disks.

Figure 2.11: Data Sieving in parallel read or write operation.

For the case of data sieving write operation, the process buffer chunk is first written
into temporary buffer by splitting into non-contiguous chunks. Then temporary buffer
contents are contiguously written onto disks. The white boxes presented in Figure 2.11
in temporary buffer and disks can be the data chunks for other processes. In addition to
this, data sieving reduces the number of operations by combining small accesses into a
single large request for both read and write operations to improve the latency.

In aggregation technique for collective IO the subset of processes moves the data
among processes buffers for reading or writing file chunks on disks as explained in [64]. In
read operation, the data chunks for all processes are first moved to their buffers regardless
of related data to processes or not. Then the subset of MPI processes called as aggregators
move data to the respective right MPI processes buffers including themselves. The Figure
2.12 depicts collective read aggregation technique. This is transparent to process or user
as there is no temporary buffer step involved as in previous case of data sieving.

Distinguishably, in write operation, the aggregator processes take their own data and
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Figure 2.12: Aggregation READ.

other non-aggregator processes data into their buffers and copy the chunks into disks.
This technique is depicted in Figure 2.13. It is visible from this figure that it might
become possible the good number of chunks for each process end up on the same disk
placed contiguously due to the underlying PFS file managing striping policy per unit MB
in round-robin fashion, explained later. This can improve read operation in the future if
the processes request same data from the disks.

Figure 2.13: Aggregation WRITE.

Since it is known that file data normally is striped or distributed across multiple disks
therefore, each process chunk data is also distributed among the parallel disks. In the
Two phase collective IO, at the backend, as portrayed in Figure 2.14, each process read
small parts of all processes designated chunks into their buffers in first phase [65]. In
second phase, those small parts of chunks move to their related processes buffers. For
writing data to disks, this flow of two phases will be just opposite in direction as the
LFS distribute the chunks stripes across all the disks, such that it would end up in non-
contiguous fashion. Considering this scenario, it can be imagined that the IO bandwidth
is relying on number of parameters. These parameters can be number of MPI processes,
MPI processes per compute node, the file access pattern, and how the file is distributed
across parallel storage devices.
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Figure 2.14: Two Phase Collective IO.

2.3.2 Parallel File System

The parallel file systems (PFSs) are usually one of the main software components that
manage parallel disks in the HPC clusters storage architecture. The parallel networked
storage disks are a common feature of modern HPC clusters for an efficient parallel IO
therefore, PFS becomes essential component to manage distributed files and their parts
stored on multiple disks. They are responsible for providing pattern to a file to be stored
across multiple parallel disks. The storage pattern eventually impacts the file access
pattern therefore, it is also a factor in setting the magnitude of parallel IO bandwidth.
This feature is common in Lustre File System (LFS used in this research), General Parallel
File System (GPFS) and Parallel Virtual File System (PVFS) which are popular in HPC
large scale computing [8, 34, 32].

A typical parallel or distributed file system enables hosts to access separate or common
files on shared storage resources over the network. The client side usually does not have
the direct access to the block storage being managed by the server side. However, the
client nodes can access file or data on storage indirectly by a remote access protocol
over the network. This restricts the access of client side to the file system depending
on access list and capabilities of multiple servers and clients. It is unlike the clustered
filesystem storage giving equal access to all nodes over the block storage file system. The
other main advantage of distributed file system is providing improved bandwidth via
transparent replication and distribution of files data. Additionally, it also provides fault
tolerance such that system continues to work without any data loss in case a limited
number of storage nodes of a file system are offline.

In this research, the LFS has been used as underlying distributed PFS for parallel
storage management within the HPC cluster Kay as presented by IO Stack in Figure 2.10
[8, 51]. The Lustre is short abbreviation for Linux Cluster since it is specifically designed
for Linux based large-scale cluster computing and have been used on a majority of the
Top500 supercomputers. It is generally known and used for high performance data IO
processing scaling to petabytes over thousands of nodes, and somehow, easy to configure
and deploy.

The LFS storage architecture has three functional units: 1) Meta Data Servers
(MDSs), 2) Object Storage Servers (OSSs) and 3) Clients accessing the file data, as
shown in Figure 2.15. A single or multiple MDSs can contain single or multiple Meta
Data Targets (MDTs) - the disks for LFS to keep namespace information about file
names, directory paths, access permissions and file distribution pattern. MDTs single
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disk dedicated file system is mapped to the client-side nodes to give them access to files
and paths, and inform whether an object makes a file or not. Then single or multiple
OSSs can contain single or multiple Object Storage Targets (OSTs) - the disks contain-
ing actual file data stored on them. An OST employs an object-based file system which
enables read/write operations. LFS capacity is defined by the number of OSTs and their
usable bytes space. Then finally single or multiple clients remotely access the file data
from OSTs over the cluster network.

Figure 2.15: Lustre Architecture.

The clients are represented by unified namespace for the file system and its files data,
allowing current and coherent read/write access. If a client request access for a file path,
it is first lookup on the MDS from its MDTs. Then either a new file is created, or the
distribution pattern of the existing file is returned to the client-end. The file locking
on OST let client execute more than one read and write operations with synchronized
concurrent access. However, client cannot directly modify file on OSTs rather than
by OSSs dedicated tasks as per access requests. This ensures scalability, security, and
reliability to avoid the file system gets corrupted by unsynchronized clients read/write
requests.

The linux command to list all the available MDTs and OSTs is lfs df -h. The
Figure 2.16 shows the example of the listing command that output 4 MDTs and 36
OSTs available in Kay cluster used in this research. The total bytes capacity of disks
used and available are also shown. Additionally, the directory on which the LFS is
mounted on shown as well. The command to get file layout pattern on the disk is lfs

getstripe somefile.txt where somefile.txt is any file path whose layout is intended
to be displayed. Provided that the file is already created with a layout pattern. The
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Figure 2.17 shows the example output of the layout information of the file distribution
pattern. The lmm stripe count value is 4 means file is distributed along 4 OSTs and
lmm stripe size value is 1048576 means the file chunks are separated and spreaded
across the OSTs by 1MB of data slicing. Whereas lmm pattern is raid0, simply means
file is placed on multiple disks by disk striping. It should be noted that this file and
pattern is generated by the command lfs setstripe -c 4 and -S 1M somefile.txt

where -c 4 is number of disks are 4 and -S 1M is data slicing unit is 1MB. So, if this file
was not created already then new empty file is created so, in future bytes will be filled
on storage according to the pattern specified in example.

Figure 2.16: Lustre command to list available MDTs and OSTs.

Coming towards the main feature of LFS is the file data storage pattern that projects
IO bandwidth with the given number of processes running IO over multiple OSTs disks.
This storage pattern is defined by two parameters as already seen, namely: 1) stripe
count - the number of parallel disks on which file is intended to be placed by distribution
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Figure 2.17: Lustre command to get File Distribution Pattern.

and 2) stripe size - the size of file chunk parts that are intended to be distributed across
the disks in round-robin fashion. The Figure 2.18 depicts file distributed across OSTs
disks. An example could be the 4 MPI processes reading/writing file of size 16 MB from 4
OSTs as a stripe count where data slicing unit 1MB as its stripe size. It should be noted
that there can be a contention of all running parallel MPI processes at each single disk
access since their related chunks are striped on every disk. As mentioned earlier, OSTs
are employed with file locking mechanism to avoid unsynchronized concurrent access of
processes by means of data race condition on file stored, especially for write operation.
This leads to IO bandwidth performance degradation therefore, there have been much
research related to this problem to overcome this issue, discussed in the next section.

Figure 2.18: File Striping.

The Figure 2.19 depicts different striping where requested stripe count is 4 and stripe
is 2MB. Therefore, due to round-robin data slicing only first two OSTs will be occupied
and last two are unused presented with white boxes.

Similarly, in Figure 2.20 the last two OSTs are again left unused since stripe size was
8MB with 4 stripe count requested. Therefore, first two processes buffers got fixed in
OST0 and last two processes buffers fitted in OST1 which completed the 16MB of file
size.

Unlikely, the Figure 2.21 represent a different scenario where only stripe count for 2
OSTs requested with stripe size of 4mb. Therefore, due to same distribution strategy by
LFS, the alternate processes buffers got fixed on the disks.

It should be noted that in Figures 2.18 to 2.21 each used disk contains at least two
processes buffers or file chunk parts. This can cause contention among the running
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Figure 2.19: File Striping with stripe count 4 and stripe size 2MB.

Figure 2.20: File Striping with stripe count 4 and stripe size 8MB.

parallel MPI processes at each single disk access since the chunks are striped on every
OST. As mentioned earlier, OSTs are employed with file locking mechanism to avoid
unsynchronized concurrent access of processes by means of data race condition to write
file, and even for reading operation on file. This slows down the IO process and leads
to bandwidth performance degradation therefore, there have been much research related
to this problem to overcome this issue, discussed in the next section. This sums up the
basic information about the Parallel Lustre (Linux Cluster) File System.

2.3.3 Previous Related Work

2.3.3.1 Research Work around Data-aligning strategies

Since LFS employs file locking mechanism that bares concurrent access of multiple pro-
cesses at a time therefore, it greatly damages the IO bandwidth performance. It is because
only one MPI process can have access to a file on disk at an instance. Despite the con-
sideration for a moment that there is no file locking employed even then the disk header
can perform only one read at a time. This one hardware limitation of HDDs cannot be
ignored when designing software solutions for efficient parallel IO.

The solution to the file locking problem lies in data-aligning methodology adopted
by number of researches in [9, 10, 11, 12], to further support in their own approaches.
The strategy here is to set stripe count equal to number of MPI processes and stripe size
equal to file chunk size. As the lustre stores bytes in round-robin fashion therefore, when
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Figure 2.21: File Striping with stripe count 2 and stripe size 4MB.

stripe size equal to chunk size it will store each chunk on separate disks such each process
would access separate disk for its corresponding file chunk.

In [12], Yu et al. introduced the Hierarchy Striping technique for file IO access across
the Lustre File System. This technique creates the groups or pairs of OSTs for each
process to access its subfiles on them. Each process will be accessing their respective
group of OSTs for IO with free of file locking overhead and in the end all subfiles are
joined back. This technique reduces the File Locking overhead in the Lustre File System
and significantly improves the performance of collective IO.

Y-Lib: A User Level Library presented in [11] by Dickens et al., highlights the over-
heads in IO bandwidth performance on Lustre File System using MPI’s Collective Two-
phase IO strategy, in terms of data access patterns MPI aggregator processes-to-OSTs.
First overhead is File locking by Lustre such that only one process can acquire a lock to
access a file strip on an OST at a time that means there can be no concurrent access by
two or more processes. The second overhead exploits the first one as the data for each
process is being distributed across all the OSTs therefore, it becomes an all-to-all data
access pattern as all processes would have to access all the OSTs to get their file blocks
or chunks. To overcome this problem Y-lib: a user level library is designed on top of the
MPI. It redistributes the data into one-to-one OST access fashion such that file view is
set for each process to access each OST where their desired file blocks are being placed.
This is generally known as data-aligning as depicted in Figure 2.22. When Two-phase IO
request will be called now each process will have its independent but a lock-free concur-
rent access to each OST to pick up their respective file blocks. This significantly improves
the Two-phase IO bandwidth performance with the factor of ten.

In paper by Liao [10], the technique is discussed to align the starting and ending
offsets of partitions of file domains for each MPI process within the stripe sizes of parallel
file systems to avoid file locking on two file domains being accessed from the same stripe
server. This technique contributes to 30 times more of write bandwidth on IBM GPFS
and Lustre File System.

The research conducted by Li et al. [9], presents another efficient way of writing output
matrix (from matrix-multiplication in Cannon’s Algorithms) to file is being discussed to
over the extent-based locks of Lustre file system by aligning processes file partitions to
stripe sizes of OSTs, through one-to-one pattern and stripe-continuous pattern. This
improved the write bandwidth throughput significantly.
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Figure 2.22: Data aligning at Lustre File System level.

2.3.3.2 Techniques Implementations at MPI-IO or LFS Level

There are also other techniques proposed in previous research which are not data-aligning
oriented. However, they regard to file pattern reorganization, replication, and other MPI-
IO or LFS level implementations. For example, work presented in [66] by Tran, addresses
the key issues in access patterns of file of specific parallel MPI applications which affects
the MPI atomicity because of file overlapping chunks at the splitted Storage backends
employing Lustre system. Due to Lustre’s exclusive access of processes, it badly affects the
concurrency of application and thus IO bandwidth performance. The approach to resolve
this moves around three key principles which are 1) Dedicated API at the level of the
storage back-end (a library integrated with ROMIO), 2) Data Stripping and 3) Versioning
as a key to enhance data access under concurrency (by using shadowing technique). It
achieved an aggregated throughput ranging from 3.5 times to 10 times higher in several
experimental setups, including highly standardized MPI benchmarks specifically designed
to measure the performance of MPI-IO for non-contiguous overlapped writes that need
to obey MPI-atomicity semantics.

The work by Byna et al. [67], presents the parallel IO prefetching technique via MPI
file caching and IO signatures. Prefetching is an effective latency hiding optimization.
However, traditional prefetching strategies limit themselves to simple strided patterns and
avoid complex prediction strategies so that a prefetching decision can be made swiftly.
Therefore, a combination of post-execution analysis with runtime analysis to reduce the
overhead of predicting future IO reads, was introduced. This paper expands the classi-
fication of IO accesses and introduced a new IO signature notation. This notation can
be used in reducing the size of trace file, in making decisions about prefetching, and in
selecting prefetching strategies. The signature is predetermined and is attached to the un-
derlying application for future executions. In this prefetching strategy, a separate thread
is being used to prefetch at runtime. It was implemented in the MPI-IO implementation
(ROMIO) and results shown significant performance benefits.

The work demonstrated in [68] by He et al., proposed the file pattern aware reorgani-
zation of file blocks mapping at the PFS and the storage level. The diverse access patterns
of data-intensive applications cause physical file organization in parallel file systems not
matching with the logical data accesses. Therefore, small, and non-contiguous data ac-
cesses can lead to large overhead in network transmission and storage transactions. In
this paper, a pattern-aware file reorganization approach is proposed to take advantage
of application IO characteristics by leveraging the file remapping layer in the existing
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MPI-IO library. The proposed approach maintains a data block remapping mechanism
between user data accesses and file servers, to turn small and non-contiguous requests
into large and contiguous ones. Experimental results demonstrate that this approach
shows improvements of up to two orders of magnitudes in reading and up to one order of
magnitude in writing. This could be somehow like the research by Yu et al. in [12]. This
is a bit closer to the different application specific IO techniques, as they can be specific
to a particular file pattern at large scale, presented by Poyraz et al. in [69].

The research by Qian et al. [70], the paper addresses the key issue of IO congestion
control in the Lustre File System. As the scale of clients to access file IO increases it
induces the higher congestion over the OSSs and OSTs. An IO dynamic RCC (Request
Concurrency Credits) based congestion control mechanism is being used for the scalable
Lustre File System to overcome this problem. When servers are under light load; on the
other hand, it can throttle the clients’ IO and limit the number of IO requests queued
on the server to control the IO latency and avoid congestive collapse, when the server
is overloaded. This improves the IO throughput for both servers under light and heavy
load of IO accesses from clients or processes.

The research by Tsujita et al. [71], presents the multithreaded Two-Phase IO tech-
nique. It covered the gap for the performance in the collective two-phase IO, which showed
the 60% improvement. The technique covered this space was multi-threaded pipelining
based Two-Phase IO. One main-thread manages the hole check and data exchange for
IO request and the other IO-thread performs the read and write operations. Both are
synchronized in a pipelined manner that there are no overlapping requests or data on
collective buffers and user buffers during the IO processing.

The work by Hammond et al. [72], implements BigMPI Library on top of native MPI
Library to address the problem of large count arises due to the INT MAX value limitation
which is around 2GB. When programmer wants to send/receive or read/write the larger
bytes of data in one MPI call it limitizes it to value of INT MAX that means more MPI
calls will be needed to communicate rest of the data. As the MPI call is an expensive
operation in terms of execution time therefore, it can degrade the overall performance but
sending the whole large chunk in one call makes a lot of difference. So, in BigMPI library
the large byte count MPI data types can be created by using its functions written over
the native MPI functions and using the same functionality the functions to send/receive
or read/write operations are also modified in a way that a user can pass more than 2GB
of data as maximum possible.

The research done by Han et al. [73] presents another unique approach at LFS level.
The LFS has been evaluated from the aspect of RPC (Remote Procedure Call) threads
running on MDSs (Meta Data Servers), OSSs (Object Storage Servers) and Lustre Clients
to communicate with each other upon the IO request. These threads normally match up
with the number of CPU cores in those servers with certain ratio. Changing the number of
threads of OSSs over different number of Lustre Cilent requests, can lead upto maximum
of 114% improvement in IO throughput performance.

The technique presented in [74] by He et al., work around reorganizing of file domain
blocks in heterogeneous storage, which can be somehow like work done in [68]. The paper
describes the new collective IO technique implemented in MPI-IO library enabling the
cross-platform systems in an HPC cluster to read or write data over the HDD or SSD
storage devices. This technique has been implemented in ROMIO which reorganizes the
File Domain Blocks in the Aggregator processes (leaving the first aggregator) buffers
such that at one cycle of data storage process either the blocks are being placed in
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HDDs in parallel or in SSDs in parallel. This significantly reduces the total number of
cycles to process IO requests and outperformed the previous ROMIO’s Collective IO and
Concurrency Awareness IO techniques.

Then work presented by Zhang et al. [75], proposed new scheme IR+ which does the
profiling run over the file to detect its interfered segments by MPI programs. It replicates
it over the different SSDs so the programs can access them on independent disks which
reduces the excessive disk seek heads to access those segments. This ultimately improves
the disk IO for the future. This was another work done in relation to heterogeneous
storage hardware in HPC clusters.

2.3.3.3 Related Work in LFS Performance Evaluation

There have been research studies regarding just LFS performance Evaluation. For exam-
ple, work presented by Jackson et al. [76], addresses the key issues of IO in most of the
HPC systems. This was from the aspects of both software libraries and underlying hard-
ware infrastructures employed by LFS and IBM’s GPFS. The performance evaluation
was supported by benchmarking on various factors like multiple processes, file striping
and IO libraries: MPI-IO, HDF5 and NetCDF [7, 77, 78].

Wang et al. [79], explains and shows the performance results related to IO bandwidth
over the Infiniband based networked HPC cluster and employing the Lustre Parallel File
System over it. Where, key factors are client count, stripe count, stripe size, etc.

Similarly, Jian et al. [80], analyze the different factors affecting the IO performance
of Lustre File System. Those key factors are underlying network hardware, number of
processors requesting IO in single application or client and stripe count values.

Then the research by Inacio et al. [81], a statistical analysis of the IO performance
on PFSs was conducted. This paper also presented comparisons of IO performances over
different factors. The key factors were the experimental environments setup, IO strategies
with changing stripe counts and operations (read/write).

In the past research studies, the work has been carried out for performance evaluation
of LFS by means of creating a mathematical model approach to predict IO performance.
For example, Zhao et al. [82], conducted the in-depth survey on LFS. The different
factors have been highlighted during the performance evaluation. Then prediction model
based on Grey Theory was applied to them, leading to mathematical relation among
those factors. This prediction model could obtain better prediction precision and could
be further applied to performance evaluation of other parallel file systems. The similar
approach was also carried out in [83] by Zhao et al., where the experiments based on the
performance of IO bandwidth over Lustre File System followed by a mathematical based
prediction model. This was designed to predict the IO bandwidth from 17% to 28%. The
model involved various factors affecting the IO bandwidth such as OSS threads for OSTs,
number of OSTs, read-write request size, etc. However, there have been more research
conducted in later years, which were used to predict and optimize IO performance based
on the various ML techniques, discussed in the next chapter.

2.4 Summary

In this chapter, the domain of HPC has been explained from the aspects of different mem-
ory models computing or programming and the usual parallel IO processing techniques
followed within the supercomputing clusters. It first introduces the overall environment
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of HPC clusters and the scenario of working parallel IO. Afterwards, it has been discussed
that users can program distributed memory applications to work over multiple compute
nodes within cluster nodes by splitting and distributing the data, also known as divide-
and-conquer via standard MPI library. Then similar approach can be implemented by
shared memory application to work over only one compute node by splitting and dis-
tributing the tasks among CPU cores or threads via the OpenMP standard library. By
combining these two approaches users can program distributed-shared or hybrid memory
application by first splitting and distributing the tasks among compute nodes and then
further among each CPU cores or threads via combined MPI-OpenMP standards. Addi-
tionally, it has been discussed that modern HPC clusters come with the dedicated GPU
cards on the number of compute nodes. Therefore, users can also program to execute
tasks by splitting and distributing them among GPU threads on either single or multiple
compute nodes via CUDA or MPI-CUDA standard libraries in case of NVIDIA’s graphic
cards.

The other half of the chapter discusses HPC storage infrastructure within the clusters
involving parallel IO processing and the parallel LFS to support it in a performance effi-
cient way. It first discusses the basic parallel IO technique via multiple MPI processes on
single or multiple nodes, reading or writing their independent buffers on disks, following
KAY cluster specific IO stack. It is a non-collective IO approach for accessing contigu-
ous data. However, then various collective IO approaches have been discussed since the
pattern of buffers data at processes end usually do not match with pattern on multiple
disks at the back-end. This makes it collective IO approach efficient to some extent when
accessing non-contiguous data on parallel disks.

Since the parallel storage is managed by a particular PFS, in this research it was LFS.
It has been discussed that LFS applies a particular file striping to store its data on disks,
based on stripe count of OSTs disks and stripe size data slicing unit. This results in data
of processes being non-contiguously stored on the number of disks. Therefore, it creates
issues of contention for reading/writing data among MPI processes running in parallel
because OSSs applies file locking on OSTs to synchronize concurrent file access. This
causes IO bandwidth performance degradation. Later in the thesis, different strategies
have been discussed from past research with perspective of machine learning to improve
parallel IO performance. This sums up the discussion about the HPC and cluster storage.
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Chapter 3

Seismic Data & ExSeisDat

3.1 Introduction

Seismic data is image data from underneath the earth’s surface. It is normally used and
analysed by geophysicists working in various fields i.e., earthquake data studies, mineral
exploration, reservoir management, Oil/Gas industry, etc. Instruments like seismometers
are used to collect the sub-surface data, normally through a wave reflection mechanism
[84]. It depends on the type of work of what is required to be located under the earth
surface at certain depths like minerals, rocks, water, or oil. Once the seismic data is
collected by the instruments then it can be visualized on computer systems or other
graphical display devices for analysis. The importance of seismic data can be seen from
the study of earthquakes jeopardising human lives, to its usage in Oil/Gas industry [2, 3].

The specific usage of seismic data in Oil/Gas industry is the concern of this research
when comes to its large IO processing in the HPC clusters. The seismic data collected
to locate oil for drilling, scales to petabytes in size thus, making it time consuming for
computer and software systems to process it. The IO operations of such large sized seismic
data significantly lead to performance issues and a need to develop HPC applications to
process it along with other essential functionalities. This is where the ExSeisDat library
comes in serving the purpose of efficiently processing seismic data as a solution within
HPC clusters [1].

The ExSeisDat was explicitly developed to efficiently process seismic data. The library
was built using the C/C++ standard MPI library [7, 13]. A user can write distributed
parallel application that interfaces with ExSeisDat APIs instead of directly calling MPI
functionalities. Considering the IO Stack of an ExSeisDat based application in HPC
environment, the Figure 3.1 shows the ExSeisDat layer between application level and
MPI level layers. This is the IO stack used in Kay cluster for executing the parallel
application using ExSeisDat for seismic data operations. Additionally, it is used for
further optimizing its IO processing as part of this research.

This chapter further discusses the seismic data file format, the working detail of the
ExSeisDat library and presents the performance results.s

3.2 Seismic Data Format in SEG-Y File

The standard format used for seismic data within computer systems to read/write is SEG-
Y file format [4]. The seismic data contains traces data of wave reflections exhibiting
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Figure 3.1: IO Stack involving ExSeisDat.

depths underneath earth surface, in numerical form, which can further be processed
or visualized on computer or display devices. However, the traces in SEG-Y file are
not arranged in sequence as they are recorded. The Figure 3.2 shows the pattern of
arrangement of trace data in SEG-Y format.

Figure 3.2: Structure of SEG-Y file format. Reprinted from ”ExSeisDat: A set of parallel
I/O and workflow libraries for petroleum seismology” by Fisher, M.A., Conbhúı, P.Ó.,
Brion, C.Ó., Acquaviva, J.T., Delaney, S., O’brien, G.S., Dagg, S., Coomer, J. and Short,
R., 2018, Oil & Gas Science and Technology–Revue d’IFP Energies nouvelles, 73, p.74
[1].

A SEG-Y file start with a File Header of initial 3600 bytes then each trace data is
place alternatively separated by the trace header of 240 bytes. This File Header is a
breakdown of 3200 bytes Textual File Header and 400 bytes Binary File Header. The
values against all headers and traces were earlier stored in Big-Endian number format,
means most significant and byte and bit would be closer to beginning of file. However,
in revision 2 of SEG-Y format, the Little-Endian and byte-swapped ordering format is
used specially in regard to IO performance. This provides independence from the number
format to which file is written as the byte ordering of a SEG-Y file would not be affected
if data is stored on a mainframe’s tape or a PC’s disk. Additionally, the values stored are
treated as signed values or 2’s complement values regardless of their sizes whether they
are 2-bytes, 4-bytes, or 8-bytes long. Since, Textual File Headers values are just texts or
strings so, their byte ordering would always be same at the time of reading/writing.

As all the headers have fixed byte length however, a trace data length can be varied or
fixed. A trace data length or size depends on the number of samples collected per trace.
The info regarding trace data length fixed or varied, resides in the Binary File Header.
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If a fixed length trace flag is set in the Binary File Header, it means all traces data are
of the same length otherwise they are varied within a file. Upon a fixed length trace
flag is set, the other useful information in the Binary File Header is about the sampling
of trace data. For example, if a six seconds’ data sampled at a two-millisecond interval
then total number of samples per trace would be 300 within a SEG-Y file. It is also
recommended for the people collecting seismic data to keep the bytes size consistent in
each trace record. This makes equal number of samples are existing in all traces. This
uniformity keeps easy read/write access in terms of IO performance. Otherwise, traces
with varying sizes would lead to complex random access of file on disk. The reason is the
starting indices of traces following the first trace would not be known without fetching the
whole file from disk into memory. This can degrade the IO performance and eventually
other seismic data workflows processing.

The other essential data for each trace is the source and receiver locations in form of
coordinates. It is a basic requirement to process and interpret seismic data. The seismic
trace coordinates can be either as geographic coordinates or grid coordinates. The source-
x and source-y represents the source coordinates however, the receiver coordinates are not
directly presented in SEG-Y format, rather they are computed by the under-surface depth
from the source coordinates. The form of coordinates is determined by the coordinate
reference system (CRS) specified in the Binary File Header and Trace Headers [85]. If the
coordinates having units in seconds of arc, decimal degrees, or Degrees-Minutes-Seconds
(DMS) format, then source-x (or X coordinate) values would represent longitude and the
source-y (or Y coordinate) values would represent latitude. In case the coordinates are
in the form of Greenwich Meridian grid projected system then a positive value in meters
would depict east or north of the equator otherwise, a negative value would depict south
or west [86, 87]. However, this can still produce ambiguity if the coordinates format is
unknown or uncommon in one complete SEG-Y dataset. It can be avoided by a single CRS
defined in the Binary File Header and the Extended Textual Headers for all coordinates in
an individual SEG-Y file data. Furthermore, the units of coordinates should be common
throughout all the traces. The common properties of SEG-Y data would make processing
easier, less complicated thus, time efficient one. Whereas randomness and irregularities
in SEG-Y data would make it more complex to process, even in designing logic for large
workflows processing routines. Therefore, efficient SEG-Y data IO and its other workflows
processing for extremely large datasets are required.

These are some very brief and basic details about the arrangement and complexity of
seismic data in SEG-Y format. The complete detail about each value and properties are
mentioned by Hagelund et al. [4]. In general, it can be seen that the SEG-Y data naturally
has its own unique complexity once it is collected when transferred to magnetic tapes or
disks on computers and can largely scale to petabytes in size. This has inspired researchers
to develop a powerful high performance tool or application for efficient processing of
seismic data. The next section describes ExSeisDat as a HPC application specifically
created to address the need of efficient large scale SEG-Y data processing for the Oil/Gas
industry.
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3.3 ExSeisDat

3.3.1 Motivation

The resolution of seismic data analysis and studies have overall increased immensely in
the past decades thus, the size of such data conveniently scales up to terabytes and beyond
[88]. The high expansion of seismic data became inevitable since, its high resolution must
give crystal clear insights of hydrocarbons from underneath the earth surface. Thereby,
giving precise locations to extract petroleum and other related products [89, 90].

As the largely dense seismic datasets have enhanced their interpretation therefore,
they also have yielded IO and memory overheads. For such problems HPC parallel IO
has become an essential necessity however, it is complex due to large volume and the
changing access patterns in multiple separate files. This means particularly for random
access pattern such as in the case of SEG-Y format. In the last chapter, it has been
discussed that there is random access and arrangement of file distribution on disks due to
LFS (or any PFS or even serial file system) management. This can produce bottlenecks
or contention among processes operating on multiple parallel storage hardware, which
leads to IO bandwidth degradation. Caching can have limited positive effects since, an
entire large file reaching terabytes cannot be prefetched or read into the RAM. For writing
on disks, shared file access among numerous parallel processes becomes more inefficient
since, it must deal with the PFS file locking at runtime. As the SEG-Y traces are placed
alternately, and therefore are separated by their corresponding trace headers shown in
Figure 3.2 therefore, parallel writes of such patterns become less efficient.

Programmers are obliged to deal with SEG-Y format directly despite, the availability
of other conversion tools to visualize it in a convenient way. All those tools are serial and
can take good a significant amount of time to process. Furthermore, the SEG-Y format is
too complex to modify being a legacy code which is an industrial constraint. Therefore,
the issue of SEG-Y access pattern could only be addressed at a library level within an IO
Stack of the HPC cluster. A software layer that could provide abstraction to geologists
or geophysicists from the complex working nature of underlying PFS however, putting
the right code logic to give the efficient file access at the application level.

The Extreme-Scale Seismic Data (ExSeisDat) library served this purpose by address-
ing the overheads related to seismic data IO processing within the Oil/Gas industry
via advanced parallel approaches combined with the IO storage hardware and software
technologies. ExSeisDat was designed and developed in partnership with Tullow Oil plc
and DataDirect Networks (DDN) to be both scalable and user friendly. ExSeisDat in-
cludes two open-source libraries: ExSeisPIOL, a low-level seismic parallel IO library, and
ExSeisFlow, a high level parallel seismic workflow library. Both are discussed in next
section.

3.3.2 Basic Design Concept

As stated earlier in the previous chapter that parallel IO enables multiple processes
or compute nodes to execute read/write operations simultaneously within a system or
cluster. The parallel IO of a single file in a cluster normally supported by a PFS as
it stores file data in blocks across the multiple storage devices. This leverage multiple
processes to read/write from multiple disks instead of being contended around one disk.
However, LFS hinders the parallel IO performance to protect data by locking file portion
on each OST at an instance. Furthermore, the file layout on multiple disks is hidden from
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the application-level view. The MPI-IO collective or non-collective calls access pattern
normally do not match with the file layout across the OSTs thus, causing a further IO
and overall program performance degradation. Considering this scenario, the handling
of parallel IO and workflows of a complex file format such as a SEG-Y in this case was
quite a challenge which was addressed by ExSeisDat library.

ExSeisDat is the set of SEG-Y IO and workflow libraries implemented in an object-
oriented paradigm on top of the standard C/C++ MPI APIs, to make parallel IO and
file system optimization simpler alongside the other seismic data flows and computations.
Ultimately, it is to facilitate the developer productivity and application performance. It
is open source and portable, available at https://github.com/ICHEC/ExSeisDat under
the LGPLv3 license.

The aims of ExSeisDat were to remove the bottlenecks and overheads in IO from the
perspective of both development time and runtime. The libraries bridge the gap between
MPI-IO and LFS different access patterns and hide the specific details of the SEG-Y
file format. However, they still provide some openness for customizing the file and trace
headers. The libraries also contain a language binding interface in C language platform
for future development usability.

A key purpose of ExSeisDat when handling seismic SEG-Y data is supporting soft-
ware and hardware to optimize one process reading or writing to only one OST disk as
much as possible. This has been done to keep data-aligned to achieve maximum possible
bandwidth. Additionally, the data access among processes, is also coordinated and com-
municated where possible. As this cannot be always a case therefore, ExSeisDat benefits
from DDN’s Infinite Memory Engine (IME) based hardware. IME middleware layer can
convert random IO access patterns to contiguous IO access patterns. This can reorder
the IO accesses to the PFS and optimizes the parallel IO throughput from ExSeisDat to
IME to file system.

ExSeisDat is based upon its core libraries: ExSeisPIOL and ExSeisFlow for explicitly
handling file IO and seismic workflows, respectively. Additionally, it contains, supple-
mentary APIs as the wrappers on basic MPI calls for handling communication among
processes and error logging. Whereas the majority of complex MPI calls are already
contained within the two core libraries. The communication based supplementary API
supports retrieving the number of MPI processes running and the rank of the current MPI
process. The other example is the barrier wrapper function call which is implemented
based on the MPI Barrier() call to force some processes to wait at an instance in exe-
cution. Meanwhile, the other processes perform any tasks and then eventually call the
barrier function. When each process comes to the instance of calling barrier function then
all the processes become free to execute rest of the code. This provides synchronization
among processes.

3.3.3 ExSeisPIOL

ExSeisPIOL is parallel IO library of ExSeisDat for efficiently extracting the traces and
other related information from SEG-Y files distributed across the parallel storage devices.
Despite the abstraction of the API, it is simple to use, it still requires three parameters
related to IO from the application user, which are: memory limits, data selection and
data decomposition throughout the parallel processes. Thus, leveraging the MPI-IO layer
for efficiently accessing the PFS in multi-processing.

The further breakdown of the IO stack within the ExSeisPIOL design, consists of
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multiple component layers responsible for communication between storage and MPI pro-
cesses effectively. All components have downward dependency within the layers from top
to bottom. However, on the same time it has flexibility to avoid or remove that de-
pendency for code compilation and execution. These components are divided into three
groups: the data layer, the object layer, and the API layer.

The data layer is at the lowest level to utilize MPI-IO function calls and manage
data access on the file system by a process contiguously reading data block regardless
of overlapping. To avoid data overlapping among processes, the number of data blocks
of a specified by length can be read or written onto disks. In this way the data blocks
can be separated by the predetermined offset value based on length for each process.
Additionally, every process can write varying number of data blocks.

Then comes the object layer to specify and prepare data which the data layer can
read or write. Its purpose is to transform the file and trace headers, and trace data into
a block representation. As the object layer is separated from API level layers, file access
pattern optimizations are performed independently from the packing operations to fill
objects values. Furthermore, this object layer performs mapping of the file and headers
attributes to their byte locations into memory thus, enabling the application programmer
to use parameters in function calls by their names rather than by exact file paths. This
layer is ultimately useful regarding addressing the particular description of SEG-Y file
access.

Finally, the PIOL API layer that end-users will be directly calling for IO before seismic
workflows computations, is specifically designed to read/write file and trace headers, and
traces data, in a simplifying way. To support the memory management in this process,
these values are read or written separately, allowing only the most required values. As
mentioned before, the parameters are read and written by directly calling their names
i.e., xSrc (x-source coordinate), ySrc (y-source coordinate), etc. ExSeisPIOL enable end-
users to customize header data values. Furthermore, ExSeisPIOL enables them to create
new parameters overloading for the SEG-Y format standard. In this way, the reference
to standard SEG-Y parameters during programming code, is not required while referring
to their customized parameters.

3.3.4 ExSeisFlow

ExSeisFlow takes advantages of the ExSeisPIOL to initiate and run seismic workflows
in parallel once, the SEG-Y file data is read into memory and when the data needs to
be written back to disks after the seismic operations. The memory limits, data selection
and decomposition are implicitly handled. The separated headers and values are read
or written internally. In the case of ExSeisPIOL, all fields are supposed to be specified
explicitly, as stated earlier. This allows application end developers to put their full focus
on only seismic data operations without worrying about the IO related conditions and
essential necessities.

ExSeisFlow functionality aims at the pre-stack preprocessing operations which are
determined as either trace, gather or survey wide. These categories point to a specific
communication type. Trace based computations need communication within single trace
data or headers data. Gather based operations need communication among all trace
data and header data in a single SEG-Y file. Similarly, survey based operations also need
communication among all trace data and header data during survey. The examples of
trace computations are trace filtering and muting. Then examples of gather based com-
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putations include executing gathers and transformations from radon to angle. Similarly,
survey operations examples involve 4D binning and file sorting by x-source coordinates
thus, a single workflow can be composed multiple function calls against such operations.

In a single workflow of ExSeisFlow, every MPI process is internally initialized, and
parallel IO is executed after completion. Each operation is queued during the application
execution. Upon the completion of the application, its destructor is called implicitly, and
any required data is read into memory to perform remaining operations.

As the ExSeisFlow is developed to execute large scale datasets efficiently therefore,
the internal memory usage is optimized by the library itself. Additionally, the advantage
of queuing operations is that the data required is already known before performing any
parallel IO operation. Therefore, only required data is read into memory while operations
are being performed.

Since an operation has its own unique specifications in relation to its modification
and data type dependencies, the modification level and communication type is set at the
time of operation submission to the queue. This setting describes the data access type:
header or trace, and the data modification can be one of the following options:

• traces added

• traces deleted

• trace values modified

• trace lengths modified

• header values modified

• traces reordered

Similarly, the modification dependencies can be one of the following:

• number of traces

• order of traces

• value of traces

• value of trace header

Additionally, the operation communication level can be one of the following:

• trace

• single gather

• survey

These categories settings enable ExSeisFlow to determine when a trace value or its meta-
data can be changed.

The operations in ExSeisFlow or SEG-Y workflows are executed according to the hier-
archy as per the modification dependencies followed by the communication type settings.
It should be noted that operations having modification dependencies are executed after
those operations modifying that dependency. According to the communication hierarchy,
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Table 3.1: ExSeisDat Benchmarking Settings.

Cluster DDN.
File system LFS with (IME mounted/unmounted).
Stripe count 40 OSTs.
Stripe size 1 MiB.
1 OST space 14 TiB.
File sizes 100 GiB, 500 GiB, 1 TiB, 2 TiB, 10 TiB, and 20 TiB.
Compute nodes 4.
Cores per node 16.

the trace wide type operations are executed prior to the gather wide type operations,
followed by the survey wide type operations.

The traces and headers data frequently used by multiple operations within a workflow,
are always cached to avoid redundant reads from main memory or disks. If any header
or trace value is not modified frequently by operations in sequence of workflow, then it
is saved on disk to reduce the data in memory space. Once all the data is modified by
all the operations and is written on disk, then the remaining unmodified header or trace
data is read into memory and subsequently written to output file on disk.

3.3.5 Overview of ExSeisDat Benchmarking Experimental Setup

The performance evaluation of any parallel IO operations or library requires benchmark-
ing that depends on the hardware and software system specification on which the parallel
application testing is carried out. These specifications include the underlying PFS type,
number of disks (OSTs in case of LFS), striping unit for a file, and NHI interconnect
speed. The specifications can vary among different HPC clusters and their file systems
for parallel storage thus, significantly impacts the IO runtime of an application [91]. Sim-
ilarly, the impact of modifications at the parallel IO library level, can be observed from
the benchmarking results. Furthermore, the impact of increasing the number of processes
reading and writing on the overall parallel IO runtime performance, is also evident in the
benchmarking results.

The ExSeisDat Library was tested via benchmarking on DDN’s cluster running LFS
with IME mounted/unmounted. The system details are specified in Table 3.1. Each OST
in this cluster had 14 TiB of space storage for the file system consisted of 40 OSTs as
a stripe count value. Each file had been distributed by a unit size of 1 MiB as a stripe
size value. In addition to this, the MPI-IO’s LFS access was optimized. The profiling on
LFS and LFS+IME stacks was conducted on 4 compute nodes where each node had 16
cores thus, one process on each core was executed. The benchmarked SEG-Y file sizes
were 100 GiB, 500 GiB, 1 TiB, 2 TiB, 10 TiB, and 20 TiB. Since, the SEG-Y file sizes
were varying therefore, the number of traces were kept the same to focus the benchmarks
on the parallel IO runtime, instead of the computational runtime of the file sorting code
logic. However, the samples per trace were varied within a trace data in each file size.

The parallel IO profiling was analyzed via the Darshan profiler tool [92]. This tool
can track the number of MPI, and POSIX based calls within the application code to
give the clear picture of the IO operations and their access patterns. The Darshan tool
library covers MPI API and some other user space libraries APIs, by using LD PRELOAD as
the environmental variable which substitutes the IO calls with its own instrumentation.
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It should be noted that Darshan makes no modifications to the application source code
while instrumentation for profiling. Furthermore, it has been observed that the overheads
introduced by Darshan instrumentation, are significantly less in case of the small file sizes
(i.e., less than a GB), and they continue to reduce for the larger file sizes.

The ExSeisFlow’s file sorting utility has been used to benchmark ExSeisDat library
which consumed 32-cores on the cluster. Its sorting algorithm sorts traces from an input
SEG-Y file by the trace header data i.e., x-source coordinate. Each process reads the
minimum required data from each trace header within a file, in a parallel-distributed
way. This indicates the memory required per process for a complete sorting is O (number

of traces / number of processes). This sorting algorithm is actually a variation of
the parallel quick-sort [93]. In this utility, initially, every process sorts its own header data
and keeps the track of original position of each header in the SEG-Y file. Afterwards, the
processes send the lower half of their sorted values to the corresponding lowest ranked
process. Consequently, the current process receives data from the corresponding highest
ranked process. Eventually when the data is sorted, then each process sends the upper
half of the sorted values to its corresponding highest ranked process. The procedure
repeats unless the values are not modified at each process end, for the algorithm’s single
iteration. The worst case is that each process yields computational complexity about
O(N + (N/P) log(N/P)), and communication complexity of O(P), where N represents
the number of traces in the SEG-Y file and P is the number of MPI processes.

The sorting algorithm utility from ExSeisFlow was ideal for the ExSeisDat’s libraries
benchmarking as it consists of running multiple IO access patterns. In the code logic, the
individual traces are read contiguously whereas, trace and file headers are non-contiguous
reads and writes, with the given stripe size. These variations of read and write patterns
in algorithm shows the true potential of the ExSeisDat library.

3.3.6 ExSeisDat Benchmarking Results

The ExSeisPIOL was tested for underlying parallel IO, to show its ideal usage with the
pre-existing seismic computations having complicated IO by porting the Kirchhoff mi-
gration utility, previously used by [94]. The results presented for ExSeisPIOL were rough
estimations rather than direct representations of actual development. The code logic con-
tained around 63 thousand lines of code with 44% IO related instructions. However, the
porting of Kirchhoff migration decreased the IO related code instructions by 25%, with
16% decrease in overall code logic. The ExSeisPIOL calls replaced the previous IO calls.
The ExSeisPIOL calls were including all the MPI-IO function calls alongside the type
conversions and trace header data scaling. It should be noted that approximately 36%
of code developed was related to IO optimizations and handling, which was specifically
tough to code as per the developers reporting. In numerical figures, it approximately took
450 commits for parallel IO development and optimization whereas, it approximately took
30 commits for porting Kirchhoff migration to ExSeisPIOL. These ExSeisPIOL/Kirch-
hoff runtimes were within around 10% of the actual Kirchhoff migration code which was
explicitly hand optimized by the expert(s).

The LFS supported IME shown notable performance increase in comparison to only
LFS, as shown in Figure 3.3. It was evident from there that LFS-backed IME increased
the read data performance by 2.8 times whereas, write performance was increased by 86
times. This resulted in 27% decrease in overall application runtime by LFS leveraging
DDN’s IME hardware. It should be noted that the computations portion of the sorting
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algorithm utility was not considered in this speedup or runtime analysis as it was solely
related to IO portion and its performance comparison among two file systems. The other
noticeable fact was that separating IO and computations portions in terms of fraction
could be exaggerating where both portions are partially overlapping. On the other hand,
all file sizes kept the almost stable throughput rate (IO bandwidth) for reading from and
writing to disks, as shown in Figure 3.4. It can be observed that the LFS based system
has faster reads as compared to its writes. On the contrary, LFS supported IME system
has shown faster writes than its reads.

The application IO time for reading and writing averaged around 73% of the total
runtime on LFS based system, as shown in Figure 3.5. Specifically, the writing to disk
consumed 70% of the total runtime. Whereas, on the LFS-backed IME system, the IO
consumption was 8% or less throughout all the file sizes. Conclusively, the LFS based
system application was IO bound and the LFS supported IME system application was
CPU bound.

Figure 3.3: LFS runtime and LFS+IME runtime. Reprinted from ”ExSeisDat: A set of
parallel I/O and workflow libraries for petroleum seismology” by Fisher, M.A., Conbhúı,
P.Ó., Brion, C.Ó., Acquaviva, J.T., Delaney, S., O’brien, G.S., Dagg, S., Coomer, J. and
Short, R., 2018, Oil & Gas Science and Technology–Revue d’IFP Energies nouvelles, 73,
p.74 [1].

3.4 Summary

Overall, the ExSeisDat library had yielded a highly significant performance results thus,
convincible to industries and geophysicists to use it. The IO or workflows libraries were
open to port any pre-existing seismic data analyzing codes into the ExSeisDat system.
The Kirchhoff migration utility was ported into ExSeisDat library for benchmarking and
performance evaluation. Furthermore, ExSeisDat could give notable benefits regarding
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Figure 3.4: Throughput comparison between LFS and IME reads/writes. Reprinted from
”ExSeisDat: A set of parallel I/O and workflow libraries for petroleum seismology” by
Fisher, M.A., Conbhúı, P.Ó., Brion, C.Ó., Acquaviva, J.T., Delaney, S., O’brien, G.S.,
Dagg, S., Coomer, J. and Short, R., 2018, Oil & Gas Science and Technology–Revue
d’IFP Energies nouvelles, 73, p.74 [1].

maintainability, portability and matchable execution time with experts’ hand optimized
code. The porting of seismic data based utilities and applications into the ExSeisDat
could expectedly open the opportunities to introduce various functionalities within the
library. Mainly, the actual advantage of ExSeisDat usage is its simplicity to use by
geoscience programmers as it provides good level of abstraction and keeping the main
code compact, providing highly significant performance at the same time. The approach
was to comfort users by hiding the low-level details in relation to storage hardware and
software design architecture [95].

The results mentioned earlier via benchmarking shown the ExSeisDat is convenient
regarding parallel IO and computations of large sized SEG-Y files from 100 GiB to 20
TiB, with remarkable performance. One of the aims of ExSeisDat was to keep the code
short for running common seismic data operations alongside being the high performance
application program. The reason was the seismic data files other than the SEG-Y file
format could be clearer and well organized therefore, simplicity in code and performance
at the same time was kept at the level of easily introducing new seismic formats into
ExSeisDat library. Since there were no previous implementations of parallel SEG-Y IO
libraries or programs therefore, the comparison among the ExSeisDat and them was not
possible.

As the ExSeisDat library in general, do not need the extra tuning at the hardware
side therefore, it would expectedly enhance the parallel IO performance further. How-
ever, there is always a lot of room for tuning and optimizations from the software side.
Considering the case for ExSeisDat managing IO on a cloud-based cluster, it would need
extra study some or many steps forward to determine the parallel IO optimization strate-

42



chapter 3 3.4. SUMMARY

Figure 3.5: Fraction of runtime spent on IO and SEG-Y computations for LFS and LFS-
supported IME. Reprinted from ”ExSeisDat: A set of parallel I/O and workflow libraries
for petroleum seismology” by Fisher, M.A., Conbhúı, P.Ó., Brion, C.Ó., Acquaviva, J.T.,
Delaney, S., O’brien, G.S., Dagg, S., Coomer, J. and Short, R., 2018, Oil & Gas Science
and Technology–Revue d’IFP Energies nouvelles, 73, p.74 [1].

gies and techniques for different HPC or cloud cluster systems equipped with the specific
networking infrastructure features. Despite this, the performance results stated earlier,
also mentioned in [1] should be considered if jobs need to be run on a single compute
node with many CPU-cores to read/write from a local disk.

The LFS being employed on the DDN’s IME storage system further increased the
ExSeisDat IO performance. Specifically, when IME increased the non-contiguous writes
throughput, which is a common access pattern in most of the SEG-Y operations in
the ExSeisDat. The IME file system played a major role in this performance increase
by converting non-contiguous writes into contiguous ones on the disks. These writes
were further combined to become largely contiguous for LFS being independent from
the program execution. The speedup was expected as less than 3 times however, it was
greater due to IME’s SSD hardware reading 2.7 to 3 times faster than the HDD hardware.
A transformation of sorting functionality from IO bound to compute bound from LFS to
LFS+IME system open the opportunities of further computational optimizations i.e., by
modification of sorting function. This can make a significant positive effect although, it
would affect a bit the overall IO bound application performance which is a usual scenario
with the extremely large sized files. It was also worth noting that the 86 times speedup
in case of LFS+IME writes was encouraging and favourable for new applications using
burst buffer technology to seismic files, in future.

By summarizing the advantages and results for ExSeisDat, it reduced the extra over-
head of development by hiding the low-level details of data pattern from the end users
by means of abstraction. This was done in parallel with keeping the performance high.
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This was presented by the results on the latest architecture of storage hardware. Com-
bining the efficient IO middlewares with high level libraries was seemed to be promising
portable approach for further performance gain in HPC application programming rather
than extremely hand tuned programming, as presented via ExSeisDat and LFS+IME
system.
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Chapter 4

Machine Learning

4.1 Introduction

Machine Learning (ML) is the process of enabling a computer system to improve by
learning from past experiences and reflect on decision making based on predictions [96].
ML has been rapidly advancing overtime among the interdisciplinary research and devel-
opment industries [97, 98, 99]. From the technical point of view, ML lies where computer
science, artificial intelligence, data science and statistics overlap with each other.

ML is based on a mathematical model, an equation which is tuned and improved
over time with different inputs. This usually involves many computations for the model
to train [100]. There are already various learning techniques that are data intensive
[101, 102, 19, 20]. Therefore, recent research studies have been developing new learning
theory and algorithms. This is either with using online or offline available data to reduce
the computational cost for some problem areas [103, 104, 105, 106]. Despite the ML
techniques being data intensive, they are still being applied to a number of daily real-life
problems. This includes technology, health care, commerce, education, manufacturing,
policy making, business financial modelling and so on.

To generate a ML model using any learning algorithm, a number of steps must be
followed in sequence [107]. The very initial step is to identify the problem that needs to be
addressed through prediction or forecasting based on specific input parameters and values.
In the ML terminology, the input values are normally called as input feature parameters
and predicted estimated values are normally referred to as output feature parameters.
Both input and output feature parameters can be single or multiple depending on the
nature of the problem. The multiple input feature parameters and single output feature
parameter, are common in many cases and scenarios i.e., prediction of house price in a
future year depending on area, age, location, etc.

First, the input and output feature parameters are decided according to the given
problem statement. Then next step is to prepare the data that can feed into the initial
stage ML model equation. The Figure 4.1 shows the basic and common steps to complete
and finalize the ML process from data preparation to model testing.

The generation of a dataset is primary component of ML process incase data is not
readily available, as depicted in Figure 4.1 [108, 109, 110]. Dataset generation is an
important step as the ML model learns and updates itself from data as its experience
and becomes trained enough to make future predictions on unseen data. In some problem
scenarios, datasets are readily available online or already within an organization however,
in some cases datasets must be generated explicitly. Furthermore, despite the datasets are
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Figure 4.1: Basic Machine Learning Process steps.

generated or in hand already, they would still need additional pre-processing step. This is
required to make the dataset values numerically acceptable for mathematical ML model
to perform computations on them correctly. The data preparation or pre-processing step
is specifically essential to the problems that fall under the supervised learning category
as explained later in this chapter.

A most common issue during data preparation is that the fields in a dataset, are
not homogeneous [111]. This means the input and output feature attributes have differ-
ent data types that represent a single row or record of a dataset. In addition to this,
sometimes data fields have the same data type values but with different scales. A math-
ematical model equation requires input and output fields parameters data on a common
scale. Therefore, all values in a dataset requires scaling or normalization as next im-
portant step, explained later in this chapter. Similarly, the unification of dataset fields
into decimal format type makes the processing convenient by a model. As result of this,
a model learning is correctly improved according to a specific learning algorithm being
used.

The data is usually shuffled prior to normalization or scaling, and then split into two
sets: a training set and testing set. The purpose of shuffling the data in a dataset is to
reduce the variance or standard deviation among classes and targets. This helps to ensure
that a model is well generalized and accurate for predictions against the unseen data in
the future. An apparent example would be if the data is sorted by the classes/targets
against the parameters’ fields within a dataset. In this case, the random shuffling of
data provides a generalized representation of the initial distribution of data values in the
training and testing sets.
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The main step of the ML process is model training [101, 102, 19]. Since the training
set can be easily split from a dataset after shuffling, subsequently, it is passed on to
a model with its initial state according to a learning algorithm. This is where model
training or learning begins. During this process, each data tuple from a training set is
passed to the model equation. In each iteration, the model predicts a value which is
compared to the original output feature parameter value in terms of computing the error
with a specific loss function.

Based on the error loss value, model’s weights or variables states are updated to
process the next data tuple from a training set in the next iteration. This is normally
referred to as gradient descent method which is widely used throughout different learning
algorithms in various forms and software tools [112]. It eventually reduces the error
and improves the prediction accuracy after several iterations depending on the problem
scenario. The gradient here represents the error loss between predicted and original
output value. Therefore, if the gradient approaches zero, this means prediction error is
reducing. This normally improves the accuracy of a model during training and eventually
the predictions over the unseen data in the testing set.

Once the model is finalized, then the testing dataset is passed onto the trained ML
model. The model predicts output against each tuple of the testing dataset and subse-
quently, completes the prediction results. The results are typically validated against the
actual output values via computing the prediction accuracy value in terms of percentage.
The prediction accuracy shows how well the model is generalized and trained on unseen
data. If the percentage value is low, then it means the model is not well generalized which
can be a cause of being under-fit or over-fit [113]. However, a high prediction accuracy
on the testing set is an indication of a generalized model and is considered as best-fit.

The fit of the model can be analyzed by plotting error loss value with respect to
the training and testing set output values against a certain number of iterations [114].
In each iteration, execute the model over the training and testing sets, then compute
their respective error loss values. If over the iterations, both the error loss values are
approaching zero, and converge to each other and remain constant, it means model is
trained, and can predict accurate output values.

Where both the error loss values on training and testing sets diverge or have a sig-
nificant gap, then it means the model is over-fit. Being over-fit means the model is
only accurate for the training set values but not for unseen data. Therefore, it is not
generalized and trained well. In case the error loss values over training set are not ap-
proaching zero, or increasing, this means a model is under-fit, which is the worst-case
scenario. There are several techniques explored in later sections which are useful to avoid
under-fitting and over-fitting of a ML model.

This summarizes the overview of the ML process steps. The later sections discuss
additional details about the data preparation, regression and classification based predic-
tions, difference between supervised and unsupervised learning, artificial neural networks
(ANNs), and then recent research done in the area of optimizing HPC IO using different
ML approaches and execution environment levels.

4.2 Data Preparation

The data preparation is one of the preliminary and critical step of a ML process [108,
109, 110]. A dataset provides the basis of experience to a model to learn the pattern and
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Table 4.1: Example - Estimation of House Prices.

Input Parameters Output Parameter
area (ft2) location year price (€)
2722.51 location A 2020 100,000
2722.51 location A 2021 150,000
2722.51 location B 2020 200,000
2722.51 location B 2021 250,000
5445.01 location A 2020 200,000
5445.01 location A 2021 250,000
5445.01 location B 2020 300,000
5445.01 location B 2021 350,000

predict the output on unseen inputs. Since the data is a source of experience to gain
by a model, it is essential to pre-process the data properly according to the needs of a
problem. The steps to prepare and pre-process the data are: 1) identifying input and
output parameters, 2) data generation, 3) data scaling or normalization, 4) data shuffling
and 5) data splitting, as mentioned in Figure 4.1. These steps are further explained in
this section.

4.2.1 Identification of Input and Output Feature Parameters

In data preparation, the first step is to identify the input and output feature parameters
according to the ML problem [115]. The input feature parameters describe what type
of input values will be passed to the model. Whereas, the output feature parameters
describe the type of data which will be output by the model as the predicted values.
Consider an example of a real time problem to predict the house price based on area,
location, and year. In this scenario, the area of house, location of the house and the
year, are input to a model which processes these values and gives a price of house
as a predicted output. Therefore, the area, location and year become the identified
input feature parameters. Whereas, the price becomes output feature parameter as the
predicted value. This is illustrated by example in Table 4.1.

Since the number of input and output feature parameters can be varied from case to
case, they can be minimum to one or as maximum as possible. Consider the time series
problem of forecasting weather of a region on every next minute or hour. In this scenario,
the input parameter is time and output parameter is the temperature of that region.
This type of problems are normally addressed as time series forecasting methods based
on ML [116, 117, 118]. This is illustrated by example in Table 4.2.

In contrast, consider the case of predicting CPU time and IO time of a parallel ap-
plication, based on the number of threads, file size, memory usage. In this scenario, the
application threads, file size and memory usage, are input to the model for comput-
ing the estimate (CPU time) and the IO time as the outputs. Therefore, the threads,
file size and memory usage are identified as the input feature parameters. Whereas,
CPU time and IO time are identified as the output feature parameters for prediction.
This is illustrated by example in Table 4.3.

In general, the ratio of input to output parameters can be 1-to-1, many-to-1, or many-
to-many, depending on the nature of the problem. The identification or selection of the
input and output parameters is critical as it defines the problem more transparently.
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Table 4.2: Example - Forecasting Temperature on Hourly basis.

Input Parameters Output Parameter
time (hour) temperature (◦C )
01:00 15
02:00 16
03:00 17
04:00 18
05:00 17
06:00 14
07:00 16

Table 4.3: Example - Estimation of CPU time and IO time.

Input Parameters Output Parameters
threads file size (GiBs) memory usage (MiBs) CPU time (s) IO time (s)

4 2 256 3 4
4 2 512 1.5 3
4 4 256 2 3.5
4 4 512 1 3
8 2 256 1.5 2.5
8 2 512 0.75 2
8 4 256 1 2
8 4 512 0.5 1.5

However, the number of parameters in some problems, can be reduced in the later stages
of ML if those parameters are not contributing much to determine the output of the
system. This can be done via statistical or data analytical techniques.

4.2.2 Data generation

After the identification of input and output parameters, the next critical step is to gen-
erate datasets based on those parameters [119]. Since it is an essential step prior to
model training, the data should depict an actual or true representation of the problem.
This is because the accuracy of prediction on the future unseen data, relies on a true
representation of the initial dataset. Otherwise, fake, or false data can lead to highly
inaccurate predictions for future. Some problems require a time consuming training step
on very large datasets therefore, it is necessary that training is being done on the data
as accurate as possible. After a long training step, if predictions are not precise due to
inaccurate datasets, then it can cost time and money depending on the situation.

In some problem scenarios, the data is readily available online, which can be tweaked
and adjusted according to the parameters identified. The data may be available across
different institutions and organizations for collection. After collection, data can be ad-
justed according to the requirements i.e., clinical data, government data etc. However,
in other scenarios, the data is not available from any source. In such scenarios, the data
needs to be gathered via surveys among the individuals or by running the different ex-
perimentations according to the domain of the problem. In this case, the outer factors
should be reported such as the country where survey is conducted or environment and
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equipment details for carrying out experiments generating the data.
Consider the example of runtime prediction of an OpenMP application based on the

CPU cores, frequency, threads, cache memory, or any additional related parameters. In
this scenario, the number of benchmarks are required to be executed in order to get the
initial runtime data against each possible combination of these parameters values. A
machine which runs these benchmarks experiments, has its own system specifications in
terms of software and hardware, which can be different from another machine environ-
ment. For example, 8-cores 3.6 GHz Intel Xeon Gold 5315Y Processor with 12 MB cache
memory, Linux Operating System. Therefore, these specifications should be reported as
the same benchmarks can produce different runtime results on a different machine.

On the other hand, the experiments related to physics, chemical reactions, or other
sciences, can be affected by having the different environment setups. Therefore, they
should also be reported. In the later stages of ML, when the training process is executed
on a system, its machine or framework specifications should be mentioned. Specially,
if the GPUs are involved, which are very common nowadays to accelerate the training
step, their specifications should be reported as well. The reporting of every single bit of
information related to experiments is always required. This for the reproducibility of the
same results in future by different researchers if they are working or extending the same
research study.

It is recommended that the data generated should be saved in a file on the disks,
in a way that it is clearly readable as represented by examples from Table 4.1 to 4.3.
Consequently, it can be easily fetched afterwards into the memory for later use, being
in the matrix form. Since the learning algorithms usually involve matrix operations, a
generated dataset easily fetchable into the memory, makes the training process convenient
in later stage. For this purpose, storing the data in comma-separated values (csv) or
extensible markup language (xml) formats, is a common practice in ML community. They
can be easily fetched into the matrix memory due to availability of powerful software tools
and libraries within the programming languages like Python and MATLAB.

By keeping all these details in view, data generation or already available datasets
is a crucial step towards ML. This is because the training process of the model is im-
mensely depending on it. If the data is valid a model will be valid for future unseen data.
Otherwise, if the data is invalid or false, then a model will be invalid for true unseen
data.

4.2.3 Data Scaling

Scaling of the generated dataset is another important step prior to the training process
[111]. It is common that the datasets having values of different input and output param-
eters at different scales. If one parameter has value 10 the other may have 1000 or 10000
or may be lower as 0.0002. For example, in Table 4.3, the values of all parameters have
same scale except memory usage due to values range between 256 and 512, inclusively.
If the values in datasets are not scaled to same level, then it probably causes model to
under-fit as a result of training process.

Sometimes, there can be discrete categorized non-numerical values. For example, in
Table 4.1, the location parameter has two discrete non-numerical values as ‘location
A’and ‘location B’. In this case, the training cannot work at all. It probably does not
execute and throw exception due to being non-numerical values in the dataset, depending
on which programming framework is used to generate the ML models. This is because

50



chapter 4 4.2. DATA PREPARATION

semantically, it is not possible to perform an arithmetic operation on different types of
values at computer hardware architecture level.

If the meaning of result of arithmetic operation on two different data types, is explicitly
defined at software functionality like an operator overloading, the result is neither vague
nor an error. For example, an operator overloading for summation of two string values
can be defined as the concatenation of two strings. However, this still cannot benefit the
training process at all because it completely relies on complex matrix decimal floating-
point operations. Therefore, all input and output parameters values are supposed to be
in the same scale.

A common solution to this problem is scaling or normalizing the values of all input
and output parameters between 0 and 1. This means all values to become decimal values
between 0 and 1 regardless of being originally discrete integers values having different
scales. The two most commonly used scaling methods are: 1) MaxAbsScaler and 2)
MinMaxScaler [111]. They are also called as normalization methods and either of them
can be used to scale the values. Following are the equations that can be applied for
scaling to each column or parameter of the dataset:

(MaxAbsScaler) x ′ =
x

xmax
(4.1)

(MinMaxScaler) x ′ =
x − xmin

xmax − xmin
(4.2)

where x is the original (unscaled) value, x ′ is the new scaled value, xmin is the minimum
value in a particular column against a specific column in the dataset, and similarly, xmax

is the maximum value.
For categorical values, they can be explicitly set between 0 and 1, inclusively or not.

For example, as there are only two categories for location {‘location A’,‘location B’} in
the Table 4.1, they can be set as {0.0,1.0}. If there are more than two category values in
the parameter column then, they can be set between 0 and 1 with equal difference from the
previous corresponding category. For example, if there are three distinct categories exist-
ing in a column: {‘A’,‘B’,‘C’} then, they can be set as: {0.0,0.5,1.0}. Similarly, if there are
four categories: {‘A’,‘B’,‘C’,‘D’} then, they either can be set as: {0.25,0.50,0.75,1.00} or:
{0.00,0.25,0.50,0.75}. Alternatively, these categories can be first set numerically in order:
{1,2,3,4}, and then MaxAbsScaler can be applied which results in: {0.25,0.50,0.75,1.00}.
If MinMaxScaler is applied then it results in {0.00,0.33,0.67,1.00}. Therefore, either of
the set of values can be used as scaled values.

This summarizes the method to scale the data in same range, which is favourable for
a smooth training process of the model.

4.2.4 Data Shuffling

The shuffling of data also plays an important role to avoid the incorrect model training
[120]. It is possible that the datasets have rows placed in a sorted order with respect to
any column index. In this case, when a dataset is split into a training and testing set in
the next stage, the model trained on the dataset may not be a complete representation
of the original dataset. This normally leads to an over-fitting of the model which shows
the high prediction accuracy on training set and the low prediction accuracy on testing
set during validation of the model. To avoid this situation, data is usually shuffled to
give the overall representation of the dataset to the training of the model.
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If programming in Python, the pandas module give extensive APIs for data manipu-
lation, including sampling functionality to shuffle the data [121]. By using the sample()

function of the module, the data can be shuffled mainly with respect to either number of
rows or the fraction of rows of the dataset.

For example, consider the house prices data in the Table 4.1 to be saved in a CSV
format file “house-prices.csv” on disk. First, a data frame is needed to be created by
loading all the rows from a file. This must be done prior to calling any data manipulation
functionality. Therefore, first two instructions can be as follows:

import pandas

data_frame = pandas.read_csv("house-prices.csv"),

where import keyword is used to import all objects and functions of specified module
pandas. Additionally, the function read csv() is used to load the data rows from the
CSV file into data frame memory specified as data frame. Then another data frame can
be made where the new shuffled data can be placed. Subsequently, the next instruction
would be as follows:

data_shuffled = data_frame.sample(n=8),

where sample(n=8) shuffles all the data in data frame of n rows which is 8 since being
the total rows of house prices data. Then moves it into another frame which is specified
as data shuffled. This is a flexibility of sample() functionality that any number of
data rows specified by its argument n, can be shuffled out of the original dataset and
moved into another data frame.

Similarly, instead of specifying rows to be shuffled, the fraction of dataset rows can
be specified for shuffling. Since, all the rows are supposed to be shuffled, the alternative
instruction can be as follows:

data_shuffled = data_frame.sample(frac=1),

where fraction is specified as 1 in frac=1. This instruction also shuffles all the data in
the data frame. The Table 4.4 and 4.5 depict the two different sample outputs of the
shuffled house prices data from two different instructions. The data is shuffled, which is
evident from the unsorted row numbers specified by first column row#. However, repeated
execution of same instruction can give different output. It should be noted that the data
scaling and shuffling can be done alternatively in sequence as it does not affect the results.
This summarizes the data shuffling procedure.

Table 4.4: Sample 1 of shuffled House Prices data by rows.

row# area (ft2) location year price (€)
4 5445.01 location A 2020 200000
3 2722.51 location B 2021 250000
5 5445.01 location A 2021 250000
2 2722.51 location B 2020 200000
6 5445.01 location B 2020 300000
1 2722.51 location A 2021 150000
0 2722.51 location A 2020 100000
7 5445.01 location B 2021 350000
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Table 4.5: Sample 2 of shuffled House Prices data by fraction.

row# area (ft2) location year price (€)
4 5445.01 location A 2020 200000
0 2722.51 location A 2020 100000
1 2722.51 location A 2021 150000
6 5445.01 location B 2020 300000
3 2722.51 location B 2021 250000
7 5445.01 location B 2021 350000
2 2722.51 location B 2020 200000
5 5445.01 location A 2021 250000

4.2.5 Data Splitting

The next step is to select the training and testing rate of the model over the main dataset
[122]. This can be done usually by splitting the data in two different sets with different
percentage of the original dataset. At this stage, it is usually assumed that the data is
already shuffled such that when it is split, both the training and testing sets have overall
representation of the original dataset. The only concern here is the selection of percentage
rate for partitioning the sizes of training and testing sets, to split them from the main
dataset.

There is no general rule for selecting the training and testing rate since every problem
has its own number input and output parameters and its dataset. However, if according
to the number of parameters a dataset is covering most of the values combinations and
sufficiently large, then 70-30% or 80-20% of training/testing ratios can be used. Since the
training must be fed with the data as large as possible, the 70% or 80% of the dataset
usually contains the overall representation of the data. In some scenarios, the ratios can
be 50-50% where the number of data rows are extremely greater and are expected to have
the overall representation in half of the dataset.

In the scenarios where the size of the dataset is too small, then cross-validation is
usually recommended and applied to train the model [123]. It is normally referred to
as k-folds cross-validation. In this procedure, the training set is selected from 70% to
90% of the dataset. Then within the training set, the data rows are split into k number
of foldings for validation as illustrated in Figure 4.2. For each k folding for validation
the remaining data rows are used for training. Consequently, the model is trained and
validated by k number of times from the scratch. The model giving maximum accuracy
or minimum error on validation of folding, can be chosen for testing on the remaining 10%
to 30% of the dataset. It is also possible that a model giving less accuracy on a validation
folding data rows, gives more accuracy on the testing set as compared to other models.
Therefore, the best one according to these cases can be selected for further predictions
on future unseen data.

It should be noted that the data splitting, training, validation, and testing are execut-
ing back and forth during the whole process of cross-validation. However, in the scenarios
where cross-validation is not required, the training and testing is performed in sequence
once the dataset is split by the required ratios. This summarizes the overview of data
splitting.
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Figure 4.2: k -Folds Cross-Validation.

4.3 Supervised vs. Unsupervised Learning

In this section, two different types of ML approaches: supervised and unsupervised learn-
ing, are discussed. The training through both approaches is different than each other
along with the requirements and conditions of the training dataset. Since both approaches
have different weaknesses and strengths, the problem addressed by both learning models
are normally different [124]. When a company intends to deploy a ML model, the selec-
tion of a specific learning algorithm is carried out. This selection is usually by analyzing
the available data and a problem that must be addressed. In this case, the main dif-
ferences between supervised vs unsupervised ML techniques should be understood that
which approach can be correctly utilized to solve a problem.

4.3.1 Supervised Learning

The supervised ML processes evolve around training on the data which has labelled
input and output features, as the few examples stated in earlier sections [125]. Since the
labelling of data is important, it is mostly done by a person preparing the data during the
dataset generation phase before training the model. When a model learns the relationship
between the input and output labelled data, then it can be used to predict or classify the
output on the given unseen future input data.

This process is called supervised learning because it requires human interference to
convert the available raw data into the labelled data so, it can be processed properly.
In other words, a human supervision is required over data to ensure the meaning of the
data. The data should be labelled accordingly to exhibit its meaning. For example, area,
location and year are input values to predict price of a house as an output value, as
stated earlier. Additionally, learning on the labelled data can be compute-intensive if the
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training dataset is large.
The supervised learning is usually used for; classification of file formatting types that

represent words, documents, or images, and predicting the regression based output by
learning the changing patterns in the training dataset. The examples for supervised
learning based classification can include (but not limited to) the following problems:

• spam email detection as the firewall’s utility.

• identification of objects within an image of a specific file format.

• face and speech recognition systems.

• classifying text or numbers written in different writing styles.

• Human sentiment analysis from the written text messages.

To address these problems, they first need to identify which type of classification
problem it points to. Such classification problems can be any of three possible: binary
classification, multiple class classification and multiple label classification. The multiple
label classification can employ binary and multiple class classification on different multiple
output features.

In binary classification problem, a model can predict output label feature with only
two classes. For example, an email can be either “spam” or “not spam”. The typical
approaches to binary classification based ML models are: Logistic Regression, Decision
Trees, Näıve Bayes, etc [102, 126, 127].

On the other hand, the multiple class classification model can predict output label
feature with multiple classes identified for a problem. An example can be the recognition
of a digit written in any type of style. The typical ML approaches to such problems can
be: Random Forest, k-Nearest Neighbours, Näıve Bayes, etc [128, 129, 127].

With respect to multiple label classification, a model predicts classes on multiple
output label features. For example, classifying multiple objects within an image. The
approaches to this type of problems, are commonly addressed by the ML techniques such
as: Multiple Label Gradient Boosting, Multiple Label Random Forests, Multiple Label
Logistic Regressions, or different classification approaches can be used on different labels
[130, 131, 132].

Supervised learning based regression models are used to predict the outcomes of the
input data, in the form of numeric values. The example problems for regression based on
supervised learning can be (but not limited to) as follows:

• forecasting trading outcomes or stocks, which is a vital part of ML in finance.

• predicting the success rate of organizations for campaigns in relation to marketing.

• forecasting house prices in future.

• weather predictions in regard to forecast the temperature, wind speed and atmo-
sphere in the next hours or days.

• predictions of changing trends of health in a specific region.
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The typical regression techniques in supervised learning to address these kinds of
problems are: Linear Regression and Decision Tree Regression. Linear Regression is
one of the famous regression techniques as stated and explained earlier, which is used to
predict the desired output from a single or multiple input feature variables or parameters.
The model is trained via gradient descent and then can be used for prediction. Another
example can be the prediction of salary based on gender and age.

Then Decision Tree Regression technique usually models the tree structure where
branches are incremented by time during training [133]. Since it is a popular approach
in the domain of supervised learning, it is normally used for both classification and
regression. The dataset in this approach is spilt into multiple incremental subsets to
learn the relation among multiple independent variables. This summarizes the basis of
supervised learning.

4.3.2 Unsupervised Learning

Unsupervised learning is a group of ML techniques which train models on unlabelled or
raw training data [134]. It is normally used for identifying trends and patterns of raw
data, or more specifically, it is used for clustering the similar data into a number of specific
groups. It is even used for understanding datasets gathered from an early exploration of
experiments.

It can be noticed from the name that unsupervised learning requires no human in-
teraction to pre-process or organize the data in a labelled dataset form. The actual
purpose of unsupervised learning is to process huge arrays of raw or unlabelled data.
This is opposite to the case of supervised learning. However, a small human interference
is still required to set the model’s hyper-parameters i.e., learning rate, the number of
cluster points, etc. Since a limited human interference is needed, a clearer explanation is
required in understanding the decisions of the model’s output on the given input. There-
fore, it is a well-suited technique for answering questions to unseen relationships or trends
within datasets.

A large chunk of the data around the world is raw and unlabelled data. Therefore,
unsupervised learning becomes a powerful tool when it comes to gaining insights to the
data. This relates to the grouping of similar featured datasets, understanding the trends
and patterns within a dataset. Whereas, in contrast, supervised learning can require
extra memory and be more computationally intensive since it requires pre-processing
and labelling of the data. Unsupervised learning is normally used for clustering datasets
based on similarities in segmentation of data and some features. Additionally, it is used
for understanding relations between various data points and analyzing initial datasets.
The following example problems are usually addressed by the unsupervised learning:

• partitioning clusters of customers and audience working in marketing related envi-
ronment.

• performing the initial data analysis on newly discovered raw datasets, for under-
standing the groups among different data points.

• detection of anomalies and outliers outside the clustered data.

The common unsupervised learning techniques to address these kinds of problems
are K-means clustering and Gaussian Mixture Models. The K-means clustering is the
famous and commonly used approach to cluster data into different groups [135, 136, 137].
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K denotes the count of groups or clusters, which can be set by the programmers. The
clusters in this approach, are determined from the centre-to-centre of each data group.
This means if the cluster count is high then there is a high granularity of groups, and
low cluster count means the low granularity of groups. This approach can recognize both
exclusive and overlapping clusters. The exclusive clusters mean that a data point can
exist in only one cluster at the moment. Whereas the overlapping clusters mean that
data point can exist in more than on clusters at an instance.

In the Gaussian Mixture Models approach, the clusters are determined by the prob-
ability of data points belonging to a certain group [138, 139, 140]. This is called as
probabilistic clustering approach. This method uses probability to map data points into
a group or cluster, which contrasts with K-means clustering which determines the clusters
by the distance between the centres of the groups.

The other class of examples in unsupervised learning, are based on association rules.
Association is the identification of the relations among different features, to analyze how
one data point feature is related with the other features. This is to map the relations
among the different data points. The famous approach to form the association rules is a
method called the Apriori algorithm. This algorithm identifies different trends within a
database based on the frequency of trends [141]. The parallel processing based variants
of the Apriori algorithm also exist for large scale data [142, 143]. The following problem
examples require such method to form association rules:

• Recommendations of products or services to users, according to the habits of pur-
chasing or buying.

• Recommendations of songs, movies or TV-series, based on the users interests i.e.
Netflix, etc.

• Understanding the interests and habits of e-commerce customers, in regards to
informing them about the marketing campaigns or e-commerce.

These problems can be addressed by the unsupervised learning algorithms stated
earlier. This summarizes the overview of unsupervised learning.

4.4 Model Training

In this section, the two basic types of ML techniques are discussed for model training
that corresponds to regression and classification problems, respectively [101, 102]. The
techniques elaborated are supervised learning algorithms since they operate on specific
input and output parameters. For regression problems, the Linear Regression, and for
classification problems, the Logistic Regression, are explained as the supervised ML tech-
niques. This is regarding the sequence to train the model which can be then tested on
unseen data in later. The example problems illustrated in this section are the ones with
multiple input feature parameters and a single output feature parameter.

4.4.1 Linear Regression (for Regression problems)

In regression problems, a numerical value is expected as the predicted output value based
on the hypothesis of the model on its input parameters. Consider a case, where n in-
put features exist with 1 output feature having m rows of training dataset. The Linear
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Regression is a very basic ML technique to train the model and predict the output for
future data [101].

The model hypothesis equation for Linear Regression is as follows:

h(θ, x) = θ0x0 + θ1x1 + θ2x2 + ... + θnxn, (4.3)

where x denotes the input parameter, and θ is the initial coefficient variable that deter-
mines the accumulated predicted output value of the model hypothesis, as represented
by h(θ, x).

The summation of all the terms from 0 to n in the hypothesis equation, estimate the
prediction value. It should be noted that the actual parameters are from x1 to xn, and x0
is intuitively added with value 1 as the θ0 is a bias value of the model. The values of θ0 to
θn update throughout the training iterations. Additionally, this equation of hypothesis
can be presented in the form of vectors or matrices. Consider θ and x as the following
vectors:

θ =


θ0
θ1
θ2
...
θn

 and x =


x0
x1
x2
...

xn

 , (4.4)

then in the matrix-vector form the equation is as follows:

h(θ, x) = θTx =
[
θ0 θ1 θ2 ... θn

]


x0
x1
x2
...

xn

 , (4.5)

where θT is the transpose of the vector θ, and hence, the new hypothesis matrix equation
θTx is equivalent to the stated equation 4.1.

The main task of training is to update the values of θ from the iterations in sequence.
When, after the iterations, final values of θ are multiplied with corresponding input values
of x , their accumulated sum should give the accurate prediction output value. The most
popular approach to update θ or weights in different ML techniques is the gradient descent
method [112, 144]. The following equation represents the gradient descent approach to
update the values of θ as part of training of the model:

θj ⇐ θj − α
∂

∂θj
J(θ0, ... , θn), for j ∈ 0, 1, 2, ... , n, (4.6)

where α is the learning rate of the model and J(θ0, ... , θn) is the error cost function. This
equation should be executed with repeated iterations for every weight coefficient θj that
corresponds to xj input feature parameter, till the value of θj is converged. Probably, in
the last few iterations the values of each θj would be closely similar. This means θ values
are converging to the global minimum point of cost function curve where its gradient is
zero. Therefore, the iterations are supposed to be stopped at this point, and the model
is now trained enough. These iterations that update the values of θ through gradient
descent, actually train the model.
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A gradient descent equation updates the values of θ in each iteration by subtracting
the product of learning rate α and partial derivative of the cost function J(θ). Since these
values are used in the gradient descent equation, the equation of the cost function and
its partial derivative can be analyzed intuitively. The cost function is as follows:

J(θ0, ... , θn) =
1

2m

m∑
i=1

(hθ(xi)− yi)
2, (4.7)

where n and m are number of input features and training examples, respectively, as stated
earlier. Then i is the i th training example therefore, xi is a set of input features in an i th

training example. Furthermore, yi is its corresponding actual output value, and hθ(xi)
is the corresponding predicted hypothesis value. Since the partial derivative of the cost
function is required in the gradient descent based training, intuitively and mathematically
using calculus, the equation of its partial derivative is as follows:

∂

∂θj
J(θ0, ... , θn) =

1

m

m∑
i=1

(h(θ, xi)− yi)xij , (4.8)

where xij is the j th input feature within a set of i th input values in a training example xi .
Remaining details are same as stated earlier. It can be noticed that the cost function
is the computational error cost against all input features and corresponding θ variables
associated with the problem model. Since the function has n + 1 dimensions of θ, it can
be represented as n + 1 dimensional linear or non-linear curve.

The partial derivative regarding specific values of θ gives the gradient of the cost
function curve. This is done by computing difference between hypothesis value with xi
input feature values and an actual output value yi in a training set example, with respect
to specific input feature xij .

The key point is to descend or decrease the gradient towards 0 which is a global
minimum point for all values of θ in each iteration of this training process. This is done
when in each iteration the value of partial derivative multiplied with the learning rate
α is subtracted from the current values of θ. As the iterations run, the values of θ are
supposed to be getting closer to global minimum point. It may not reach at exact global
point. However, if the values of θ are not changing much in the last few iterations that
means the values are converged at point closer to global minimum gradient. Hence, a
model can be considered as trained and the iterations can be stopped.

The speed of this training process via gradient descent can be altered by changing
the value of α since it directly represents the learning rate of the model, as stated earlier.
Generally, by increasing the value of α, the system can reach the global minimum point
faster than by decreasing the value of α. This means it can take a smaller number of
iterations to train the model as compared to training with the lesser value of α. However,
the non-realistic increase in the value of α can lead the system to towards divergence from
global minimum and in θ values, after being converged. For example, the previous value
of α was 0.001 and the current learning rate is set to 100. This may further increase the
time of training or iterations, as compared to smaller value of α. Therefore, the value
of the learning rate α should be realistically increased to reduce the training time. For
instance, α can be increased to 0.002, 0.004 or similar values, from 0.001.

The alternate way to minimize the cost function J(θ) value to its minimum optimal
value, is the Normal Equation [145]. This updates the values of θ variables to the global
minimum point of cost function. Since the gradient descent method can take a large
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number of iterations as they are not fixed, the Normal Equation finds the optimal value
of θ in a fixed number of iterations. This is with respect to m training examples and n
input features, involving Matrix-Multiplication operation as the equation follows as:

θ = (XTX )−1XTy , (4.9)

where X is matrix representing n input features values as columns in m training examples
as rows therefore, X is m × n matrix, more accurately it is Xm×n matrix. Then, XT is
the transpose matrix of X so, it is XT

n×m matrix. The term (XTX )−1 represents matrix-
multiplication of XT and X , and its inverse so this, has the complexity of O(n×m× n).
Finally, y is a vector of actual output feature values corresponding to their input feature
values in X from m training examples.

The benefits of the Normal Equation are as follows:

1. no data scaling is required,

2. no selection of the learning rate α is required, and

3. no iterations are needed as in case of gradient descent.

However, there are some disadvantages as well, which are as follows:

1. it can be slower if the training set m and input features n are large,

2. it has greater time-complexity than gradient descent, due to matrix-multiplication,
and

3. the resultant matrix of XTX can be non-invertible if there are redundant or closely
related input features, or if the number of input features are greater than the number
of training examples m (i.e. if m ≥ n).

The non-invertibility can be simply avoided by removing extra redundant features
and adding more training examples in a training set such that m becomes greater than
n. This summarizes the use of Linear Regression based ML technique for training the
model, which is used in previous research works [146, 147, 148, 149].

4.4.2 Logistic Regression (for Classification problems)

A categorical class is used to represent a specific group of data. For example, data
regarding the human race can be specified by different groups of categories: Asian or
African or European. Similarly, gender can be specified as male or female. This means
an information like race or gender can be classified by the category it lies in.

In classification problems, a categorical class value is expected as the predicted output
value based on the hypothesis of the model on its input parameters. Consider the case
of binary class classification as an output 0 or 1 based on n parameters with m training
examples. The very basic ML approach is the Logistic Regression to train the model and
predict class of output for future input data [102, 144].

The model hypothesis equation for Logistic Regression is as follows:

h(θ, x) = g(θ0x0 + θ1x1 + θ2x2 + ... + θnxn) (4.10)

or h(θ, x) = g(θTx) by θ and x as matrices, (4.11)
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where g(θTx) is an additional sigmoid function over θTx computation [150]. The sigmoid
function convert an any arbitrary regression value into a decimal number between the
range of (0.0, 1.0). This is a probability value well suited for classification of the output
value. It is represented by the following equation:

g(θTx) =
1

1 + e−(θT x)
, (4.12)

where e is the exponential constant with already determined value 2.718. Considering
this equation, the three distinct probabilities from the hypothesis in range (0.0, 1.0) are
as follows:

h(θ, x) = g(θTx) = 1.0 if θTx →∞, e−∞ → 0, (4.13)

h(θ, x) = g(θTx) = 0.5 if θTx = 0, e0 = 1, (4.14)

h(θ, x) = g(θTx) = 0.0 if θTx → −∞, e∞ →∞, (4.15)

where it means that intuitively for discrete value output (0, 1), if hypothesis h(θ, x) is
greater than or equal to 0.5, the output is 1, otherwise 0. Implicitly, it also leads to the
conclusion that if the value of θTx is greater than or equal to 0 then h(θ, x) or g(θTx)
is greater than or equal to 0.5, and the output is 1. Otherwise, if θTx is less than 0
then h(θ, x)org(θTx) is less than 0.5, and the output is 0, as presented in the following
equations:

θTx ≥ 0⇒ h(θ, x) or g(θTx) ≥ 0.5⇒ y ′ = 1, (4.16)

θTx < 0⇒ h(θ, x) or g(θTx) < 0.5⇒ y ′ = 0, (4.17)

A probability from the hypothesis function determines the class output against the
given input feature values. By example, if the h(θ, x) = 0.8 then the class output is 1
because its probability is greater than 0.5, as a general rule. This means the probability
of class output is not 0, is 0.8, in case of binary class classification therefore, probability
of class output being 0, is 0.2. The sum of probabilities for both classes is equal to 1.
The hypothesis equation can be presented in the form of probability equation as follows:

h(θ, x) = P(y ′ = 1) = 1− P(y ′ = 0), (4.18)

and 1.0 = P(y ′ = 1) + P(y ′ = 0), (4.19)

where P is probability over y ′ predicted output as 1 or 0. However, the probability
equation is different for the multi class classification case.

In Linear or Non-linear Regression modelling the hypothesis is the straight or curved
line giving the predicted output values over different input features. In contrast, the
Logistic Regression line or curve of the model hypothesis is the decision boundary to
classify the output values. Consider a model with two input features and one extra
feature with value always 1. Assume x = (x0 = 1, x1, x2), and θ = (4, 3, 2). Now, for
output y ′ = 1, the value of θTx should be greater than or equal to 0. This leads to the
following equations:

4 + 3x1 + 2x2 ≥ 0, (4.20)

3x1 + 2x2 ≥ −4, (4.21)

x2 ≥ −
3x1
2
− 4. (4.22)
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By imagining a graph relation between x1 on horizontal axis and x2 on vertical axis, this
equation represents a straight line as decision boundary with a gradient −3/2, x1 intercept
at −4/3 and x2 intercept at −4. Since the lefthand side of the equation is greater than or
equal to righthand side, the region above this decision boundary line presents the output
y ′ classified as 1. Under this line, the output y ′ is classified as 0. It should be noted that
in different problem scenarios the decision boundary line does not has to be necessarily
a linear straight line. It can be any type of non-linear curve separating different classes.

Moving towards the training part of Logistic Regression model, it is like the Linear
Regression since the gradient descent method is general in both techniques. However,
the hypothesis and error cost function are different but ultimately the partial derivative
becomes closely similar as in Linear Regression case. Hence, the Logistic Regression
model can be trained using the general gradient descent method. The following equation
presents the cost function for logistic:

costfunc(h(θ, x), y) = −y ln(h(θ, x))− (1− y) ln(1− h(θ, x)), (4.23)

where ln is natural logarithm function, whose base is the exponent constant e, and can be
presented as loge . The h(θ, x) is hypothesis of model to output predicted class as stated
earlier, and y is actual output class value against a training example. Since this equation
has two terms determining the result, it should be noted that if y is 1 then the second
term (1− y) ln(1− h(θ, x)) is 0, otherwise, if y is 0 then the first term −y ln(h(θ, x)) is 0.
In both cases the net result cannot be affected. The equation of this cost function is for
only one training example. By re-writing it for m training examples and n + 1 coefficient
variables (θ0, ... , θn), this equation is as follows:

J(θ0, ... , θn) = − 1

m

m∑
i=1

(yi ln(h(θ, xi)) + (1− yi) ln(1− h(θ, xi))), (4.24)

where J(θ0, ... , θn) represents cost function just like previously in case of Linear Regres-
sion, m denotes the total number of training examples, n is number of input features, and
i denotes the i th number of an example in the training set. Hence, xi and yi represents
input feature values and output feature values set in an i th examples of the training set.
Despite the cost function of Logistic Regression is different from the Linear Regression,
its partial derivative with respect to different θ values, is the same, by using calculus
techniques. Therefore, the resultant equation for training by gradient descent is also the
same as follows:

θj ⇐ θj −
α

m

m∑
i=1

(h(θ, xi)− yi)xij for j ∈ 0, 1, 2, ... , n, (4.25)

Similarly, this process must be repeated unless all the values of θ are converged closer
to global minimum cost. Afterwards, the trained model hypothesis with these optimal
θ values can be used to classify the predicted output against the given input features
values. This equation can be converted into vectorized, or matrix form as follows:

θ ⇐ θ − α

m
XT (h(θ, X )− y), (4.26)

where h(θ, X ) = g(Xθ). (4.27)

In these equations, X denotes matrix containing m rows of training examples with n + 1
columns of input features values therefore, XT is its transpose matrix. Then y is m rows
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of vector containing actual output feature classified values corresponding to each example
row of matrix X . Furthermore, θ is n + 1 rows of vector to be multiplied with X matrix
to complete the hypothesis and predict the class output. The application of the logistic
regression is used in couple of previous research works [151, 152, 153, 154].

4.4.3 Multi-class Classification

In the multi-class classification problem, the multiple or more than two label categories
exist as classes to classify the output of the hypothesis over given input [155, 144]. There-
fore, rather than having two discrete output y = (0, 1) classes, there are now k +1 discrete
output classes to classify on a given input such that y = (0, 1, 2, ... , k).

The main approach is to divide the k + 1 problems into k + 1 binary classification
problems. Each problem predicts the probability of y belongs to one of the class from
k + 1 classes (0, 1, 2, ... , k). Then one predicting the maximum probability of a class from
k + 1 classes is the classified output of the given input. Intuitively, this process can be
represented by the following equations:

y ∈ 0, 1, 2 ... , k ,

h0(θ, x) = P(y = 0), (4.28)

h1(θ, x) = P(y = 1),

h2(θ, x) = P(y = 2),

...

hk(θ, x) = P(y = k),

Predicted Output = maxk
c=0(hc(θ, x)), (4.29)

where c is a counter for a discrete output class from 0 to k . In this mechanism, each
hypothesis is selecting one class while considering all the remaining classes as a single
different class, in terms of probability, by using Logistic Regression. When all the hy-
potheses’ probabilities are computed for all the classes, then the one giving the maximum
predicted probability of a class is the chosen class output.

In order to train the model for multi-class classification problem, a Logistic Regression
binary classifier h(θ, x) should be trained. This should be executed for each class to predict
the probability P(y = c) of that class, as mentioned in the last section. It should be
noted that since the Logistic Regression model must be trained for all the k + 1 classes,
the values of θ parameters will be different for each c class hypothesis. Therefore, the
values of θ parameters are supposed to be maintained carefully and separately for each
class c , from the perspective of programming code logic. Once the model is trained for
all the classes then an unseen input can be given to the model to predict the probability
of each class. The output class is the one having maximum probability for a given input
where it most probably lies. This is worked out by using the equations 4.28 and 4.29.
This summarizes the use and application of multi-class classification which exists in many
previous research studies [156, 157, 158, 159].

4.4.4 Regularization - a solution to Overfitting

The problem of overfitting is common when training a model. In general, overfitting is
spotted when a trained model gives a high prediction accuracy on the training dataset and
low prediction accuracy on the testing dataset. This problem can occur on both regression
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and classification problem, which means it can be the case for both Linear Regression
and Logistic Regression models. There are mainly two choices to overcome this issue.
One is to reduce the number of features by manually selecting the features to keep or
use the model selection algorithm via cross-validation as stated earlier [123]. The second
choice is to use the regularization method which implicitly means to reduce the magnitude
θ parameters values, without reducing the number of original input features [160]. The
regularization method is useful even when the problem contains many redundant or barely
useful input features.

By adding the regularization parameter lambda λ in the cost function, it determines
the inflation over the costs of θ values. By including the extra summation function over
θ values and λ parameter, within the cost function, can decrease the overfitting in the
model. The following two cost function equations can be analyzed for Linear and Logistic
Regression, respectively:

JLinear(θ0, ... , θn) =
1

2m

[
m∑
i=1

(hθ(xi)− yi)
2 + λ

n∑
j=1

θ2j

]
, (4.30)

JLogistic(θ0, ... , θn) = − 1

m

m∑
i=1

[
(yi ln(h(θ, xi)) + (1− yi) ln(1− h(θ, xi)))

]
+

λ

2m

n∑
j=1

θ2j .

(4.31)

The second summation term in both of the equations explicitly omits the bias parameter
θ0 since it starts from j = 1 instead of j = 0. It should be noted that if the selected
value of λ is too large, it may cause underfitting instead, where accuracy is low with both
training and testing datasets. On the other hand, if the value of λ is too small or 0 then
it may again show the overfitting of the model. Therefore, the selection of value for λ
should be carefully realistic keeping these points in consideration, to get the best results.

The partial derivative for both models are changed consequently however, in general,
its equation and the gradient descent equation is the same for both Linear and Logistic
Regression, which is as follows:

θj ⇐ θj − α

[
1

m

m∑
i=1

(h(θ, xi)− yi)xij +
λ

m
θj

]
for j ∈ 1, 2, ... , n. (4.32)

It should be noted that this regularized gradient descent equation is for values of θ
parameters from θ1 to θn. The gradient descent equation for θ0 is the same as previously
stated in earlier sections.

Specifically, for Linear Regression, the Normal Equation to get θ minimized cost, can
also be regularized, as follows:

θ = (XTX + λL)−1XTy , (4.33)

where λ is any numeric or decimal value and L is a matrix of dimensions (n + 1)× (n + 1)
with 0 at top left location and everywhere else except the diagonal positions are filled
with value 1. The regularization is used to overcome the previously stated issue of the
non-invertibility of term XTX in the Normal Equation when m is less than n. Since
the term λL is added, this makes the whole term invertible. This summarizes the basic
techniques to generate and train the model for regression and classification problems
via Linear Regression and Logistic Regression, respectively, and to avoid overfitting by
regularization.
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4.5 Artificial Neural Network

Artificial Neural Network (ANN) is a specific ML/DL technique to address the predictions
or forecasting problems in real time [19, 20]. The ANN technique or algorithm has
the same purpose as some ML approaches discussed earlier, which is to identify the
relation within a dataset, between input and output data. Therefore, this is another
supervised learning algorithm to determine the relation between input and output features
by forming a ML model for future predictions.

The way of forming the relation within a dataset using ANN, replicates the way a
human brain functions. Therefore, since a neural network is a connected network of
neurons passing information, the neurons can be either artificial or organic, depending
on the context. In the context of computer science and artificial intelligence, the neurons
are artificial that can be represented by computer memory locations. This is a reason that
a neural network in the context of computer science or artificial intelligence, is referred
to as an Artificial Neural Network most of the times, with its abbreviation as ANN.

Figure 4.3 shows the basic structures of ANNs that can be trained as ML models to
identify the mathematical relation between input and output features within a dataset.
The first one on the top-left is the Single Layer Perceptron (SLP) which is only useful
for learning the linear patterns within a dataset. It has only two layers: the input layer
and the output layer. Usually, it can contain one neuron memory in the output layer to
estimate output on the given values to the input layer neurons. The neurons in input
layer can be more than two.

In general, for any problem dataset, the input layer is meant to contain neurons
memory cells to hold the values of several input features. Whereas, the output layer is
meant to contain a memory to maintain predicted output value of the output feature.
However, in some scenarios there can be more than one output values to predict. Hence,
the output layer can contain more than one neurons.

The rest of the three structures are the basic examples of the Multi-Layer Perceptron
(MLP), which is useful for learning both linear or non-linear patterns within a dataset
[161]. An ANN is referred to as MLP or DL neural network if it contains one or multiple
hidden layers between the input and output layers. It should be noted that the hidden
layers or their neurons memory cells are treated as a linear function unless the non-linear
activation functions are applied to them [162]. This is to learn the arbitrary or non-linear
pattern within a dataset.

The top-right structure in Figure 4.3 is the most basic MLP structure with only one
hidden layer. Whereas, the remaining two are more deep MLPs or neural networks since
more hidden layers are added, specifically to be more precise learning the non-linearity
in the dataset patterns. The last one at the bottom-right is with the two output neurons
in the output layer, which is to predict two output features values. Considering the case
of the MNIST dataset for recognizing handwritten digits using Convolutional Neural
Network (CNN) [163]. It requires ten output neurons to give the probabilities of all ten
digits, from which the one having maximum probability is chosen as the classified and
predicted handwritten digit against an input image.

The training of an ANN model relies on the two main parts across the learning process
iterations: 1) forward propagation pass and 2) backward propagation pass. A forward
propagation pass is to estimate or predict the output from the input to output layers.
Whereas, a backward propagation pass from the output to input layers, is to update the
weights between each pair of neurons, after computing the loss between predicted and
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Figure 4.3: Basic Structures of ANNs.

actual output values. It should be noted that the lines connecting each pair of neurons
in Figure 4.3, represents the weights of a neural network model.

The backward propagation pass uses the gradient descent approach to update the
weights that minimize the cost value closer to global minimum. This is carried out by
subtracting the partial derivative of cost function from the previous values of weights.
This process should be executed backward throughout the layers, from the output to
input layer, which also includes the hidden layers and their connecting weights.

By the end of training an ANN model, it has updated weights throughout the layers.
This gives a cost function value near or equal to its global minimum point where its
gradient approaches to zero. This is similar to the earlier discussion on linear and logistics
regression models training since the gradient descent method is used in numerous ML
algorithms for learning process.
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4.5.1 Forward Propagation Pass

A forward propagation pass is the sequence of instructions containing matrix or vector
operations step-by-step from input layers to hidden layers to output layer [164, 144]. The
execution of a complete forward propagation pass gives the predicted output value at the
end. Since it is a first part during the training iterations of an ANN, it is frequently used
for predictions training set, and on unseen data once a model is trained.

Consider an ANN which is a MLP with 2 neurons in the input layer, 4 neurons in
the hidden layer-1, 3 neurons in the hidden layer-2 and 2 neurons in the output layer, as
depicted in the bottom-right structure of Figure 4.3. These layers can be represented by
the following vectors in the CPU memory:

I2×1 = an Input Layer vector of 2 rows, 1 column to keep 2 given input values, (4.34)

H14×1 = a Hidden Layer − 1 vector of 4 rows, 1 column to keep 4 neurons values, (4.35)

H23×1 = a Hidden Layer − 2 vector of 3 rows, 1 column to keep 3 neurons values, (4.36)

O2×1 = an Output Layer vector of 2 rows, 1 column to keep 2 predicted outputs. (4.37)

Similarly, 3 weights matrices are required to contain weights values from the input
layer to hidden layer-1, then hidden layer-1 to hidden layer 2, and then finally from hidden
layer-2 to output layer. These matrices presented as following:

W 14×2 = a matrix of weights connecting neurons from I2×1 to H14×1, (4.38)

W 23×4 = a matrix of weights connecting neurons from H14×1 to H23×1, (4.39)

W 32×3 = a matrix of weights connecting neurons from H23×1 to O2×1. (4.40)

In each layer-to-layer, all the left-side layer neurons are connected with all the right-
side layer neurons, representing a complete connected sub-graph. Therefore, each weight
matrix is created to keep all possible weights values from layer-to-layer. Hence, W 14×2,
W 23×4 , and W 32×3 weight matrices have 8, 12 and 6 possible memory locations in total,
respectively.

Since this system has all required layers vectors and weights matrices, the matrix-
vector multiplication equations can be executed in the following sequence to complete
one forward propagation pass to predict the outputs:

H14×1 ⇐ g(W 14×2 × I2×1), (4.41)

H23×1 ⇐ g(W 23×4 × H14×1), (4.42)

O2×1 ⇐ g(W 32×3 × H23×1). (4.43)

The first equation 4.41 executes to compute hidden layer-1 neurons values in vector
H14×1 by multiplying weight matrix W 14×2 with input layer vector I2×1. Then, the
second equation 4.42 executes to compute hidden layer-2 neurons values in vector H23×1
by multiplying weight matrix W 23×4 with the hidden layer-1 vector H14×1. Finally, the
last equation 4.43 executes to compute the outputs as the predictions in vector O2×1 by
multiplying weight matrix W 32×3 with the hidden layer-2 vector H23×1.

It should be noted that the sigmoid function g() is applied on each element of a
vector output from matrix-vector multiplication in each steps from eq. 4.41 to 4.43.
Since there are two output neurons in the output layer, this means there are 2 output
feature parameter values that are predicted by a one forward propagation pass. These
equations are predicting the output against one input example.
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Consider, there are m rows of training examples with n input features columns in
matrix X and o number of output features in matrix Y . Then these steps can be re-
written by the following form of matrix operations:

H14×m ⇐ g(W 14×n × XT
n×m), (4.44)

H23×m ⇐ g(W 23×4 × H14×m), (4.45)

Om×o ⇐ g((W 3o×3 × H23×m)T ). (4.46)

The difference between matrix Y and O then can be computed to measure the loss
between actual and predicted output. This loss is used to update the weights in later
stages of the backward propagation pass, discussed in next section.

It should be noted that by adding the extra number of hidden layers in an ANN
model, the steps of a Forward Propagation Pass will also increase. In general, if there are
N hidden layers then there will be N +1 steps of a single pass to predict the model output.
Furthermore, the amount of memory required will be increased as well since more weight
matrices will be required for layer-to-layer neurons connecting weights values.

This means a forward propagation pass can be compute-intensive and memory-intensive
at the same time for larger problems. This is a reason that the training of an ANN model
of large and complex structure with huge amount of training data, is often offloaded to
GPUs to accelerate learning.

4.5.2 Backward Propagation Pass

A backward propagation pass is the second main part of an ANN learning iteration. It is
the critical step as it requires to update the weights in the weight matrices with respect
to every layer in an ANN except the input layer [165, 144]. A backward propagation
pass involves a series of steps in one iteration to update the weights values connecting
the neurons from one layer to another.

A forward propagation pass starts from the leftmost side in the structure and executes
till to the rightmost side. However, in the current context, the weights start to update
from the rightmost side of the structure and run till the leftmost side, the reason it is
referred to as backward propagation pass.

Consider the same ANN as used in the previous example of a forward propagation
pass. Since hidden and output layers neurons are computed sequentially in a forward
propagation pass for one training example, the error for each of these layers must be
computed first. The error computation starts from the output layer, which can be de-
scribed by following equation:

E
{4}
2×1 = O2×1 − Y2×1, (4.47)

where E {4} is a vector matrix to contain error of (Output) Layer-4 neurons values, O2×1 is
predicted output vector matrix as a result of ANNs Forward Pass, and Y2×1 is an actual
output vector matrix against one training example input features set. This equation sim-
ply computes the error by taking the element-wise difference between values of predicted
output vector O2×1 and actual output vector Y2×1.

Then next step is to compute the error in the hidden layers neurons values. The error
of hidden neurons is dependent or based on the error computed for the (Output) Layer-4.
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The error can be expressed in vector-matrix form of equations as following:

E
{3}
3×1 = (W 32×3)TE

{4}
2×1. ∗ g ′(H23×1), (4.48)

E
{2}
4×1 = (W 23×4)TE

{3}
3×1. ∗ g ′(H14×1), (4.49)

where E
{3}
3×1 and E

{2}
4×1 are the error vector matrices for hidden layer-2 (Layer-3) and hid-

den layer-1 (Layer-2), respectively. Both error vectors are computed by multiplying the
transpose of the weight matrix of a current layer with the error vector of right side layer.
Then element wise multiplication with the derivative of sigmoid of current layer’s neurons
vector, is performed. The derivative of sigmoid function is represented by g ′() which can
be expressed by the following equation by applying mathematical calculus transformation
steps:

g ′(H) = H . ∗ (1− H), (4.50)

where H can be considered as a vector for hidden layer neurons values. It should be
noted that E

{1}
2×1 is not computed since it represents the error in the input values which is

logically inappropriate.
The next main part is to compute the partial derivate of the errors with respect

to weights values so, that it can be subtracted from the weights to minimize the error
towards global minimum point. The partial derivative of error with respect to a weight
for a layer, can be expressed by the following equation:

∂

∂W (l)
J(W ) = E {l+1}(H{l})T , (4.51)

where J(W ) represents error cost function and W denotes a weight matrix with respect to
layer l . E {l+1} is error vector of next layer from the current layer and (H{l})T is transpose
of the vector represent current layer’s neurons values. The result of multiplication of
these terms in the equation, is matrix of partial derivatives of error corresponding to
weight values in W (l) matrix.

The row-column formation of the resultant matrix of partial derivatives should be the
same as of weight matrix W (l) in current layer l . Consequently, in this scenario, the
partial derivates of error cost with respect to weights matrices of Layer-3 (hidden layer-
2), Layer-2 (hidden layer-1) and Layer-1 (input layer) are computed by the following
equations:

∂

∂W 3
J(W ) = PW 32×3 = E

{4}
2×1(H

{3}
3×1)T , (4.52)

∂

∂W 2
J(W ) = PW 23×4 = E

{3}
3×1(H

{2}
4×1)T , (4.53)

∂

∂W 1
J(W ) = PW 14×2 = E

{2}
4×1(I2×1)T , (4.54)

Once the partial derivatives: PW 32×3, PW 23×4 and PW 14×2, are computed, the next
step is to multiply them with a learning rate value and subtract them element wise from
the values in corresponding weight matrices. This is presented by the following equations:

W 32×3 ⇐ W 32×3 − αPW 32×3, (4.55)

W 23×4 ⇐ W 23×4 − αPW 23×4, (4.56)

W 14×2 ⇐ W 14×2 − αPW 14×2, (4.57)
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where α is the learning rate. These equations depict the gradient descent method which
has been previously discussed in Linear and Logistic Regression methods. Therefore, as
stated earlier, the basic functionality to update the weight parameters values is to take
the partial derivatives with respect to specific layers weight matrices. Subsequently, the
partial derivatives should be subtracted element wise from the current weight matrices,
to minimize the error cost towards global minimum point.

Additionally, the partial derivatives of error cost with all weight matrices should be
executed simultaneously first. Afterwards, the weight matrices should be updated simul-
taneously. This is important to avoid logical errors in training since all the errors and
then partial derivatives should be computed with the initial or previous values matrices in
an iteration. This completes one backward propagation pass with one training example.
When this process of forward and backward propagation is executed in a number of iter-
ations for all training examples, all the weights should then be near the global minimum
error.

The ANNs training can take an ample amount of time to give accurate predictions,
especially when learning a complex non-linear pattern, as it can require a lot of training
data. In practice, once there is a sufficient training data matrix, it can be reused in further
numerous iterations over the training examples. This keeps updating the weights of the
ANN model until it approaches the global minimum error and gives precise estimations.
However, in this case the partial derivatives are supposed to be set to 0 before the training
examples iterations, and then they should be accumulated throughout the iterations.

In addition to this, the extra equation for regularization can be added for some weight
decay to avoid the overfitting of the model. Once the iterations of all training examples
are complete, then the weights are updated by subtracting the corresponding accumulated
and regularized partial derivatives from the previous values. The accumulation of partial
derivatives during the training example iterations, can be further generalized in matrix
forms and can be expressed by the following sequence of equations:

E {L} = O − Y , (4.58)

PW (l) = 0, (4.59)

For training examples 1 to m {
E {l} = (W (l))TE {l+1}. ∗ H{l}. ∗ (1− H{l}) for (l = L− 1, L− 2, L− 3, ... , 2), (4.60)

PW (l)⇐ PW (l) + E {l+1}(H{l})T for (l = 1, 2, 3, ... , L− 1)}, (4.61)

D(l) =
1

m
(PW (l) + λW (l)), (4.62)

W (l)⇐ W (l)− αD(l) for (l = 1, 2, 3, ... , L− 1), (4.63)

where L is the total number of layers in an ANN model, l denotes current layer and
D(l) represents regularized accumulated partial derivative of error with respect to weight
matrix of layer l . Additionally, m denotes number of training examples and λ is the
regularization parameter or weight decay value in the context of ANNs. This means the
partial derivatives with respect to each layer’s weight matrices are accumulated, excluding
the last output layer.

The equations 4.58-4.59 and 4.62-4.63, are part of the outer iterations which run
till some maximum limit. Before equation 4.58-4.59, the Forward Propagation Pass is
executed to predict the output values in vector O which is then subject to differences
with the actual output values from training set in vector Y . The equation 4.58 can be
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changed to a different error loss function i.e., MSE, MAE, etc. This summarizes the
overview of ANNs structure and the ML process.

4.6 Model Testing

In this section, the model testing is discussed in terms of different error metrics and
methods. Since regression and classification represent two different sets of learning algo-
rithms, the methods to test their models prediction accuracy are different. The model
testing is normally conducted on the testing dataset. The regression models’ prediction
accuracy is usually tested with commonly used statistical error metrics. The error met-
rics are such as: Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), Mean
Absolute Percentage Error (MAPE) and R-Squared Score. Whereas, the methods to
check classification models’ prediction accuracy are different. These methods are such as:
Classification Accuracy, Confusion Matrix, Precision and Recall, F1 Score, Sensitivity
and Specificity, and ROC curve and AUC. This section follows the details of methods to
test the regression and classification models.

4.6.1 Regression Model Testing

To test a regression model, a simplest error metric is MAE. This takes the average of
absolute error differences between the number of actual and predicted values [166]. The
mean average can range from 0 to infinity (∞). If mean is closer to 0 value, the better
the model is. This is a basic technique to get the insight of error in a regression model.
It can be described by the following equation:

MAE =
1

n

n−1∑
i=0

|ai − pi |, (4.64)

where n is the number of actual and predicted values in a set, ai is the i th actual value in
a set and pi is the i th predicted value in a set.

Since MAE is the natural average error measure, its value shows how much error can
be expected in future predictions or forecast. However, in this case the relative error of
two models cannot be compared since one model may have a big MAE due to one or few
big errors. The other model may have a big error due to multiple small errors, which can
only be analyzed by human eye if a dataset is sufficiently small.

The improved form of MAE is RMSE [167]. It is the square root of the average of
squared error difference between actual and predicted values. It can also range from 0 to
infinity (∞). Since it is greater than the magnitude of MAE, its lower value means the
model is better in precision. The RMSE or just MSE (mean squared error) are normally
used as the error metric for regression model. RMSE can be expressed by the following
equation:

RMSE =

√√√√n−1∑
i=0

(ai − pi)2

n
. (4.65)

The RMSE measures how the residuals of error are wide and spread. In some sense it can
be considered as the standard deviation of the uninterpretable variance. As the squared
terms in RMSE gives relatively value which may covers the greater errors or outliers
therefore, reducing the RMSE value reduces the greater error, to optimize the model.
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A prediction accuracy of a regression model can also be measured in the form of
percentage value. For this purpose, the metric MAPE is required to be computed [168].
The MAPE is the average of percentage of error difference between actual and predicted
values. This can also range from 0 to ∞, and the lower percentage error means higher
prediction accuracy in terms of percentage. It can be expressed by the following equation:

MAPE =
1

n

n−1∑
i=0

∣∣∣∣∣ai − pi

ai

∣∣∣∣∣× 100%. (4.66)

Since it is expressed in terms of percentage, it is normally and easily understood by
most of the people, specially, the non-technical ones. Hence, the prediction accuracy
can be simply calculated by subtracting a MAPE value from 100%. This prediction
accuracy metric (100% −MAPE ) has been also used in recent and latest research work
by Madhumitha et al., Nilmini et al. and Marcus et al. in [169, 170, 171].

It should also be noted from the equation that if actual values are too small or close
to 0 then each error percentage is extremely large and MAPE can be biased. Therefore,
MAPE is mostly discouraged by the experts if there are many small data observations.

Another useful metric is R-Squared Score [172]. This score value is the determination
coefficient. The coefficient represents the proportion in variance of the output feature
values. The score value or determination coefficient can be expressed by the following
equation:

R2 = 1−
∑i=n−1

i=0 (ai − pi)
2∑i=n−1

i=0 (ai − ā)2
, (4.67)

where ā is the mean of the actual output values. This metric value normally ranges from
0 to 1 however, it can be negative in some cases. If the score value is negative, this means
a model is not following the pattern in dataset at all, hence, a model is under-fit.

A positive score value close to 0 indicates that the model is not improving in making
accurate predictions over the mean model. Whereas, a score value near to 1 indicates
that the model is making predictions accurately. Therefore, normally, a higher R-Squared
Score means a better the model is.

4.6.2 Classification Model Testing

In case of classification models, the simplest metric to test the model is the classification
accuracy [173]. It simply shows the number or percentage of predictions which are correct.
Straightforwardly, the higher number of correct predictions means highly accurate model.
It can be described in the following form of equation:

CA =
Total Correct Predictions

Total Predictions
. (4.68)

In some cases, this metric may not be enough as it may not be giving the actual insights.
For example, consider a case of binary classification model predicting all the outputs as
“spam email”. This can be due to the reason that the dataset contains 95% of the cases
with “spam email” as the actual output values and remaining only 5% of the cases with
“not spam email” outputs.

In this case, a model is hardly doing any computations to predict the output because
of the class distribution in the dataset is not balanced. Therefore, it has caused a high
bias in the model although it is giving 95% accuracy. This model can probably fail on the
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unseen dataset with the balanced class distribution or the dataset with high frequency
of the other class as the output. Consequently, it requires other metrics or methods to
properly analyze the classification model with more insight detail.

To deal with such nature of problems regarding the classification accuracy, the con-
fusion matrix is normally a better approach rather than a metric. Confusion matrix
provides more clear insights of the predictions. It is a prerequisite to other metrics re-
garding classification, such as precision and recall.

A confusion matrix indicates true or false predictions for each output class [174].
Generally, if there are two classes for an output as in binary classification then a confusion
matrix has a size of 2 × 2. In case of a multi-class classification with n classes for an
output then a confusion matrix has size of n×n, which is first general rule for a confusion
matrix.

There are mainly 4 entities which represents the confusion matrix regarding grouping
the predictions: 1) True Positive, 2) False Positive, 3) True Negative, and 4) False Nega-
tive. The True Positive case occurs where the actual class is positive and predicted class
is also positive. The False Positive case occurs where the actual class is negative, but
the predicted class is positive. The False Negative case occurs where the actual class is
positive, but the predicted class is negative. Lastly, the True Negative case occurs where
the actual class is negative, and the predicted class is also negative. The desired outcome
is that the actual class and predicted class should be the same.

Once the confusion matrix is established then the Precision and Recall metric can be
considered. This takes a step further from the classification accuracy, allowing deeper
evaluation of a model [175]. The emphasis of Precision is to see the number of True
Positive predictions out of the total positive predictions, and can be presented by the
following equation:

Precision =
True Positives

True Positives + False Positives
. (4.69)

Then the emphasis of Recall is to measure that how the model is performing at predicting
the positive class correctly, means True Positives out of the total actual positives, and it
can be expressed by the following equation:

Recall =
True Positives

True Positives + False Negatives
. (4.70)

This is a direct indicator that would tell how many actual positives are the predicted
positives actually. It should be noted that both the Precision and Recall cannot be
maximized at the same time. Either Precision or Recall can be maximized, which depends
on the nature of the problem. For instance, in spam email detection system, maximized
Precision is desired since the actual spam email should be detected as spam, because
detecting a normal email as spam is a False Positive which is not desired. In the other
case of tumour detection, maximizing Recall is required as the maximum possibility of
detecting a tumour is required.

Another metric which can combine both Precision and Recall in one equation and
value, is F1 Score [176]. The F1 Score is the average Precision-Recall product. It can be
expressed by the following equation:

F 1 Score = 2× Precision × Recall

Precision + Recall
. (4.71)
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It is a reliable metric, especially if a dataset contains an unbalanced distribution of
both False Positives and False Negatives. Normally, the best F1 Score is considered as 1
and worst is considered as 0.

The further step to summarize the model performance is the ROC (Receiver Operating
Characteristics) curve [177]. It combines confusion matrices at different threshold values.
The graph of ROC curve normally presents Y-axis with Sensitivity values which are
different True Positive rates (TPR) or Recall, and X-axis with False Positive rates (FPR)
which are the opposite of Specificity [178]. Specificity is used to focus on the negative
class therefore, it is based on the amount of the cases where actual negative output class
is also predicted as negative class. In other words, it is True Negative rate (TNR). The
Specificity (TNR) and FPR can be expressed by the following equations:

TNR = Specificity =
TN

TN + FP
, (4.72)

FPR = (1− Specificity) = 1− TNR = 1− TN

TN + FP
=

FP

TN + FP
. (4.73)

Plotting these values on their axes, the curve can give the summary of the model
performance. However, setting threshold to 0 results in TPR and FPR values equal to
1, and threshold to 1, results in TPR and FPR to 0. Therefore, this becomes an unwise
option to set threshold value to 0 or 1. While aiming to increase the TPR and keeping the
FPR as low as possible, the FPR also increases when TPR get increased. This detects a
number of False Positives that can be tolerated.

This issue can be overcome by measuring the Area Under the curve (AUC) of ROC
[179]. Since it is the area between (0,0) and (1,1) co-ordinates of FPR and TPR axes,
it can be computed by the integration method in calculus. The AUC value gives the
aggregated model performance at all threshold values. As the perfect classifier has the
value 1 therefore, an area value closer to 1 indicates the better classification model.

To summarize this, metric used to measure the performance or accuracy of the classi-
fication model, depends on the requirements of the problem being addressed by any ML
approach. Therefore, the requirements should be defined clearly to ease the process of
metric selection for measuring the ML model performance.

4.7 Recent ML Research for Optimizing HPC IO

ML has been used in the range of studies, to analyze, predict and improve the parallel IO
performance in the HPC systems. Some of them have also ANNs for the same purpose.

Xu et al. has demonstrated that the HPC IO is affected by factors like CPU fre-
quency, number of IO threads, and the IO scheduler [14]. The IO behaviour is predicted
and determined based on these factors using interpolation and extrapolation techniques
by developing a model using a data analytic framework over large-scale experiments.
The performance of the methods is being evaluated by measuring prediction accuracy at
previously unseen system configurations. The methodology for optimizing system config-
urations uses the estimated variability map based on Bayesian Treed Gaussian Process
and some other regression methods. This gives new insights into existing statistical meth-
ods for the practice of HPC variability management in terms of parameters selection.

The work presented by Bez et al., is the adaptive method to schedule parallel IO
request for any application on any HPC system by tuning the parameters depending
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on time window of current workload [15]. The adaptive method is formulated using
reinforcement learning of the scheduling algorithm. It achieves 88% of precision to select
parameters on runtime after observing the access pattern (contiguous or non-contiguous)
for few minutes. Consequently, the system is able to optimize its IO performance for rest
of its life, as claimed.

The approach presented by Bağbaba, is the random forest regression modelling, used
as the ML technique to predict the IO bandwidth for only collective write operation in
MPI-IO Library [17]. In this paper, the accuracy of prediction is very high. It varies
from 82% to 99% approximately depending upon maximum depth setting. However, the
training and testing datasets are very small in comparison to the size of the benchmarks
datasets generated in this thesis. The accuracy can be lower if more variation is added in
datasets. The remaining differences are the format of bench-marking file, the parameters
and the processor or cluster hardware.

The research by Behzad et al., the IO optimization is proposed for HDF5 file format
parallel applications on various HPC platforms with LFS and GPFS [16]. The parallel
IO is optimized via auto-tuning, supported by IO modelling of Lustre’s IOR (Interleaved
or Random) benchmarks and other IO benchmarks, through nonlinear regression models
prediction. The tuning achieves significant increase in IO bandwidth for different appli-
cations on the HPC platforms, by means of prediction and selection of new parameters
values. To some extent, Madireddy et al. also provides the parallel IO predictive mod-
elling of LFS IOR benchmarks by developing a Gaussian process regression ML model
[18].

The system PRIONN developed by Wyatt et al., predicts the runtime and IO resource
usage of an IO aware scheduled job on HPC cluster [24]. This is carried out using Ar-
tificial Neural Networks (ANNs) as its deep learning model, particularly Convolutional
Neural Networks (1D-CNN and 2D-CNN) [19]. The novelty of this tool is the image rep-
resentation of job scripts as the input and output is the automatically detected important
features and patterns from sets of characters from the input. This output is further passed
down to ANN models to predict the runtime. The whole strategy achieved over 75% mean
and 98% median accuracy for runtime and IO predictions on 300,000 job scripts on real
HPC system.

The research presented by Schmidt et al., predicts the file access times on a Lustre file
system from the client end [21]. File access times are measured in various test series and
are then used to develop different models to predict them. The evaluation shows that
these models which utilize ANNs, give 30% less average prediction error in comparison
to linear models. The distribution of file access times was evaluated with respect to file
accesses using identical parameters. The typical access times usually differ by orders of
magnitude and depend upon an alternative IO path.

The research conducted by Zhao et al., involves the in-depth survey on Lustre File
System [82]. The different factors have been highlighted during the performance evalu-
ation and the prediction model using Grey Theory. The Grey Theory in general, refers
to the Grey systems [180]. The systems that lack information regarding its data pattern
or behaviour. They are turned into regular series by establishing a non-function based
forecasting methods instead of time series and regressive methods. This eventually led
to a mathematical relation among those factors affecting IO in Lustre File System. This
prediction model can obtain better prediction precision and could be further applied to
performance evaluation of other parallel file systems.

The other paper presented by Zhao et al., experiments the performance of IO band-
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width over Lustre File System [83]. The purpose of this experiment is to form a math-
ematical based prediction model, resulted in prediction of the IO bandwidth from 17%
to 28%. This model involved various factors affecting the IO bandwidth such as OSS
threads for OSTs, number of OSTs, read-write request size, etc.

This summarizes the related work in the area of improving HPC IO performance over
different levels of execution and environments, with the use powerful ML algorithms and
techniques.

4.8 Summary

In this chapter, the ML process and different techniques have been discussed in detail.
It first discusses the different stages of data preparation, which is a primary requirement
before starting the learning process of the models. This includes, identification of input
and output feature parameters, which can explicitly define what should be input to the
model and what should be predicted as output.

Furthermore, the dataset generation has been discussed which is based on true and
valid data and reporting of every minor software/hardware platform and environment
detail. Then the importance of scaling or normalization of the data has been discussed in
order the support the training process. Afterwards, the techniques and options to shuffle
and split the data have been discussed to select the partitions of the dataset that can be
used for training and testing or validation of the model.

In relation to model training, two main ML techniques have been discussed for two
main categories of the problems: regression and classification. For regression problems,
the Linear Regression approach has been discussed with its mathematical detail. Sim-
ilarly, the Logistic Regression approach has been discussed for classification problems,
including both binary and multi class classification.

Later in this chapter, the further two different categories of ML problems and their
solutions have been discussed in terms of supervised and unsupervised learning. The
problem addressed by both techniques have been differentiated and their solutions in
terms different ML algorithms have been discussed in a brief detail.

Finally, the Artificial Neural Network technique have been discussed as part of model
training, which is also used in this thesis. This has been explained with its two main func-
tionality components for the learning process: forward propagation pass and backward
propagation pass.

Afterwards, the different model testing metrics and techniques have been discussed.
This has been explained from the aspects of regression and classification problems, sep-
arately. For regression models, the metrics such as MAE, RMSE, MAPE, R-Squared
Score, have been briefly explained.

For classification models, the Classification Accuracy has been explained, which is
prerequisite to Confusion Matrix, Precision and Recall. Afterwards, Precision and Recall
have been explained to be used for F1 Score, Sensitivity and Specificity, ROC curve and
Area Under the curve (AUC).

Finally, recent studies have been discussed regarding optimizing HPC-IO performance
at different execution levels and the computing environments or platforms, based on the
IO performance prediction based on the various ML approaches.
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Chapter 5

Applying Neural Networks to
predict HPC-IO bandwidth over
seismic data on Lustre File System
for ExSeisDat

5.1 Introduction

Seismic data is one of the most critical factors for geophysicists to study and understand
the earth structure beneath its surface or seabed. Aside from being of critical importance
in understanding the globe and when earthquakes and tremors might jeopardise human
life [2], the study of Seismic data is also a critical factor for the Oil and Gas industry
[3]. The SEG-Y File format is the standard across the globe for the encapsulation and
processing of the seismic data [4]. The SEG-Y File format shown in Figure 3.2 is typically
very complex with alternative arrangements of traces, preceded by their corresponding
headers. Its is also quite common for its file size to reach petabytes in scale. This
dramatically increases demands on high performance based IO processing of seismic data
across the research and Oil/Gas production industry. This is where the High Performance
Computing (HPC) or super-computing clusters play a significant role.

The Extreme-Scale Seismic Data (ExSeisDat) Library is developed to process the
SEG-Y files efficiently by further using its Parallel-IO Library (PIOL) and Workflow
Library on the HPC clusters [1]. It is based on the C++ language platform and the stan-
dard Message Passing Interface (MPI) Library, a parallel-distributed memory framework,
which provides a large set of Application Interfaces (APIs) to exploit the potential of par-
allelism within the clusters [7]. Commonly, the parallel MPI-IO struggles in overcoming
the performance degradation of a program because as it relies on certain parameters to
project the IO bandwidth. This is also the case with respect to MPI-IO when applied
to ExSeisDat data and the processing of SEG-Y files. These important parameters are
related to a number of components employed on clusters. For example, the number of
MPI processes running on compute nodes, the Parallel File System (PFS) managing mul-
tiple storage objects which is known as the Lustre File System (LFS) ([8]) in case of this
thesis, and also the file properties, access patterns, etc.

Previous research has shown that IO performance prediction based on the different
parameters settings can result in significant benefits [14, 15, 16, 17, 18]. Despite the
key differences between this and existing research with respect to parameters and ML
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techniques, the prediction of SEG-Y file IO performance beforehand is itself innovative.
It can be immensely beneficial for tuning the related configuration parameter settings to
overcome the poor IO performance during the execution of MPI application. In [21], the
Artificial Neural Networks (ANN [20, 19]) based approach was used as a ML technique
to estimate the IO performance based on the file access times and patterns and showed
30% less prediction error in comparison to linear models. This provided the motivation
to apply ANNs to this problem, arising from its forecasting capabilities to the key input
parameters, and predict the IO bandwidth before execution of the actual IO operation
within application or program. The high prediction accuracy of Deep Learning (DL)
ANNs has also been proven on different frameworks and applications as mentioned in
[23]. The PyTorch is one of those DL frameworks that have been used in the research,
for developing and training the ANN models [22].

The critical idea is to use the predicted bandwidth as a means of optimizing the IO
performance by tuning the parameters. The tuning of parameters can be those settings
from the evaluations of benchmarks execution results, given later in this chapter. In
addition to this, some can be the combinations suggested in previous research that can
increase the IO bandwidth performance on the LFS based cluster in [9, 10, 11, 12]. These
existing studies suggest that by setting the number of MPI processes to the number of
parallel hard disks, and chunk size (being read or written by each MPI process) to stripe
size (file striping unit over hard disks in round robin fashion) can significantly increase
the IO bandwidth performance. There are another series of approaches that are outside
the scope of this research. These include manipulating Remote Procedure Call (RPC)
thread counts, controlling the Object Storage Targets (OSTs or hard disks) and using
the single MPI calls to read or write large chunk sized MPI Datatype [73, 72].

Our research focuses primarily on the very basic and useful parameter settings that
can be considered for the prediction of bandwidth values. These settings can enhance
IO throughput, as shown with the support of parallel HiPlot utility’s graph plots ([25]),
from separately executed MPI-IO, SEG-Y File IO and Sorting benchmarks from ExSeis-
Dat. These parallel plots of IO bandwidth values against different parameters settings
is another novelty of this research. In addition to this, the other primary focus of this
research approach is the prediction of IO bandwidth prior to its runtime, and therefore
potentially yielding significant performance outcomes in terms of accuracy.

The prediction results show that the ANN based models are sufficiently generalized
in the research, to predict the IO bandwidth behaviour. This chapter is structured as
follows; Related Work in section 5.2, Design and Implementation in 5.3, Experimental
Result Analysis in 5.4, Discussion in 5.5 and Conclusion in 5.6.

5.2 Related Work

Previous research has examined where IO behaviour was machine-observed using certain
ML techniques, parameters and environment, subsequently prediction of IO was used as
a tool to overcome poor performance in IO bandwidth. These research studies motivated
to approach the prediction of IO performance for ExSeisDat over SEG-Y format files
distributed over LFS based networked storage in HPC clusters.

Xu et al. in [14], it has been demonstrated that HPC IO is affected by factors like
CPU frequency, number of IO threads, and the IO scheduler. The IO behaviour is pre-
dicted and determined on the basis of these factors using interpolation and extrapolation
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techniques by developing a model using a data analytic framework over large-scale ex-
periments. The performance of the methods is being evaluated by measuring prediction
accuracy at previously unseen system configurations. Then the methodology for optimiz-
ing system configurations uses the estimated variability map based on Bayesian Treed
Gaussian Process and some other regression methods. This yield new insights into ex-
isting statistical methods for the practice of HPC variability management in terms of
parameters selection.

The work presented by Bez et al. in [15], is the adaptive method to schedule parallel
IO request for any application on any HPC system by tuning the parameters depending on
time window of current workload. The adaptive method is formulated using reinforcement
learning of the scheduling algorithm. It achieves 88% of precision to select parameters
on runtime after observing the access pattern (contiguous or non-contiguous) for few
minutes. Consequently, the system will be able to optimize its IO performance for rest
of its life, as claimed.

The approach presented by Bağbaba in [17], is the random forest regression modelling,
used as the ML technique to predict the IO bandwidth for only collective write operation
in MPI-IO Library. The accuracy of prediction is very high in this paper. It varies from
82% to 99% approximately depending upon maximum depth setting, but the training
and testing datasets are very small in comparison to the size of the benchmarks datasets
used in this thesis. The accuracy can be lower if more variation is added in datasets.
The remaining differences are the format of bench-marking file, the parameters and the
processor or cluster hardware.

The research by Behzad et al. in [16], the IO optimization is proposed for HDF5 file
format parallel applications on various HPC platforms with LFS and GPFS. The parallel
IO is optimized via auto-tuning, supported by IO modelling of Lustre’s IOR (Interleaved
or Random) benchmarks and other IO benchmarks, through nonlinear regression models
prediction. The tuning achieves significant increase in IO bandwidth for different appli-
cations on the HPC platforms, by means of prediction and selection of new parameters
values. To some extent, Madireddy et al. in [18] also provides the parallel IO predic-
tive modelling of LFS IOR benchmarks by developing a Gaussian process regression ML
model.

The research presented by Schmidt et al. in [21], predicts the file access times on
a Lustre file system from the client end. File access times are measured in various test
series and are then used to develop different models to predict them. The evaluation
shows that these models which utilize ANNs, give 30% less average prediction error in
comparison to linear models. The distribution of file access times was evaluated with
respect to file accesses using identical parameters. The typical access times usually differ
by orders of magnitude and depend upon an alternative IO path.

In addition to this, few other researches are also explored in the context of prediction
based optimization for MPI applications through ML and auto-tuning parameters, but
they all lack consideration of the IO side [181, 182].

In contrast to these existing studies, the approach of this research focuses on predictive
modelling of IO bandwidth, using ANNs, over seismic data in the form of SEG-Y File
format as the primary usecase for this research.
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5.3 Design and Implementation

5.3.1 Research Methodology

This research is conducted in number of steps which are: 1) Identification of key con-
figuration parameters, 2) Generating list of configurations values sets, 3) Development
of Benchmarks over key parameters, 4) Execution of Benchmarks over key parameters,
5) Collection of runtime performance data as a training set for ML, 6) Training of ANN
model over collected training set, 7) Prediction of IO performance over test set (20% of
collected data) and 8) Accuracy evaluation for predicted results. Figure 5.1 shows the
main components of the research model.

Figure 5.1: Research Flow

5.3.2 Key Parameters Identified

In this research, three types of benchmarks from ExSeisDat are executed: 1) basic MPI-
IO benchmarks to read and write stream of bytes in file, 2) SEG-Y File IO benchmarks
to read and write seismic trace data and 3) SEG-Y file sorting benchmarks to sort seismic
trace data from different unsorted orders. It should be noted that some parameters are
overlapping for all benchmarks and some are different due to the nature of their workings
which are explained in later sections.

Table 5.1 shows the complete list of key parameters identified and the values used
to conduct each of the three benchmarks. The most right column of this table has been
merged to show that both (SEG-Y IO and Sorting) benchmarks have the same parameters
except some of their different possible values which are explained later.
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Table 5.1: Configuration Parameters and their values.

Parameters Benchmarks
MPI-IO SEG-Y IO & Sorting

number of MPI nodes 2,4,8,16 2,4,8,16
MPI processes per node 1,2,4,8 1,2,4,8
stripe count 2,4,8,16 2,4,8,16
stripe size (MBs) 1,256,512,1024,2048 1,256,512,1024,2048
file size (GBs) 1,2,4,8,16,32 -
chunk size (GBs) per process 0.25,0.5,1,2 -
io operation read/write read/write
file access pattern collective/non-collective contiguous/random
number of traces - 512,1024,2048,4096
samples per trace - 256,512,1024,2048
unsorted order - uniform/reverse/random

5.3.3 Development of Benchmarks

This Section explains working of each benchmark type, implementation and formulation
of results.

5.3.3.1 Working of MPI-IO Benchmarks

MPI-IO benchmarks are the simplest, such that MPI processes on each node would
perform READ or WRITE operations on their respective chunk sizes in a single file
size striped across number of Lustre disks (stripe count) with a certain stripe size. The
MPI read or write calls would be either collective (where each process also accesses
neighbouring processes memory space) or non-collective (where each process accesses
only their own memory space) to complete the parallel IO. Considering all the possible
values mentioned in Table 5.1 from MPI-IO benchmarks, the total number of possible
configurations of parameters or the total number of these benchmark executions would
be 30720 (15360 for each READ and WRITE operations).

5.3.3.2 Working of SEG-Y File-IO Benchmarks

SEG-Y File-IO Benchmarks are different than basic MPI-IO benchmarks. In this case,
they are reading or writing (modifying) a combination of traces and samples per trace
within an already generated SEG-Y file with only uniform order. MPI processes in these
benchmarks would be either read or write using contiguous or random access patterns
as can be seen from SEG-Y File-IO Benchmark parameters stated in Table 5.1. As the
SEG-Y file is Lustre striped over a number of OSTs, therefore the number of traces and
samples per trace are distributed over different disks with a certain stripe size. In this
case, the total possible configuration of parameters or executions of this benchmark type
are 20480 (10240 for each READ and WRITE operations).

5.3.3.3 Working of SEG-Y file sorting Benchmarks

Sorting Benchmarks are more complex than the SEG-Y File-IO benchmarks. In these
benchmarks, first a SEG-Y file would be generated with any of the unsorted orders: 1)
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uniform, means SEG-Y file is sorted in ascending order with respect to source-x coordinate
from the trace header value [4], 2) uniform reverse, means trace data is arranged in
descending order with respect to source-x or 3) random, means trace data is arranged
in arbitrary manner, as mentioned in Table 5.1. Then MPI processes in each sorting
benchmark would either read or write with only contiguous access pattern the number of
traces and samples per trace in SEG-Y file, Lustre striped. Therefore, in this scenario,
the total possible configuration of parameters or executions of this benchmark type are
30720 (15360 for each READ and WRITE operations).

5.3.3.4 Code Structure Generating Benchmarks Data

The Listing 5.1, represents the overview of the method to collect IO bandwidth data
against different parameters and values. The parameters and values from Table 5.1 are
passed as arguments to a function definition Execute Benchmarks(), for executing all
possible the benchmarks on line 1 in Listing 5.1. Initially, they are being passed to a func-
tion GenerateConfigsValuesList() on line 2. This function is responsible to generate
a complete proper possible lists of configuration settings according to hierarchy of nested
loops for each parameter in Figure 5.2. The configurations lists have been generated with
respect to each benchmark type (Basic MPI-IO, SEG-Y File-IO and SEG-Y file sorting).
The last nested loop completes one set of configuration values which is appended to the
list that eventually builds a complete list of all possible configurations for each benchmark
type. These lists for each benchmark type are being fetched in a sequence on line 3 with
outer-loop. In line 4 with inner-loop a unique set of a configuration setting (config) is
being fetched from a current benchmark type configurations list (configs list). This
one set of configuration setting object represents one execution benchmark for a file
i.e. [MPI nodes = 16, processes per node = 8, stripe count = 8, stripe size =

256, io operation = WRITE, access pattern = RANDOM, traces = 4096, sample-

s per trace = 1024,...] for one SEG-Y WRITE operation. Apart from configuration
settings values in config object, it also contains all other necessary information related to
currently executing benchmark i.e. benchmark type, input/output file names, the target
Darshan profiling file path and name, etc.

For each benchmark execution, the pre-benchmark settings are applied for the Lustre
File System and Darshan utility on line 11 and 15, respectively. Darshan is a HPC IO
characterization tool, designed to capture IO bandwidth performance [91]. As discussed
previously, benchmarking is completed using Lustre File System disks therefore, before
each execution of the benchmarks with certain configurations, the Lustre Striping on
target file is executed to distribute the file parts on OSTs. This is being done to test the
performance of a particular benchmark configuration with respect to its file striping.

On line 18, an input file is always being generated before the execution of actual
IO benchmark except the MPI-IO WRITE benchmark. The IO bandwidth value is
recorded by the Darshan utility, once the benchmark is executed over a set of configuration
parameters, on line 21, by reading and parsing the generated Darshan file. After the
execution of a benchmark the file is being deleted in order to remove it from cache, as a
post-benchmark setting on line 25.

5.3.3.5 Formation of results

The results of each benchmark along with their configuration parameters are appended
in the YAML file on line 22 of Listing 5.1. Therefore, each (config, io bandwidth)
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Listing 5.1: Overview of Code Executing IO Benchmarks and Collecting Bandwidth Data.

1 def Execute Benchmarks ( Parameters And Values List ) :
2 MPI IO Configs , SEGY IO Configs , SEGY Sorting Configs =

GenerateConf igsVa luesL i s t ( Parameters And Values List )
3 for each c o n f i g s l i s t in [ MPI IO Configs , SEGY IO Configs ,
4 SEGY Sorting Configs ]
5 for each c o n f i g in c o n f i g s l i s t :
6
7 # Here each con f i g i s a unique s e t o f va l u e s from each
8 # parameter mentioned in Table 1 wi th r e s p e c t to the
9 # Benchmark type .

10
11 # Fi r s t app l y ing pre−benchmark s e t t i n g s o f the con f i g .
12 S e t L u s t r e F i l e S t r i p i n g ( c o n f i g [ ’ f i l e n a m e ’ ] ,
13 c o n f i g [ ’ s t r i p e c o u n t ’ ] ,
14 c o n f i g [ ’ s t r i p e s i z e ’ ] )
15
16 Set Darshan File Name And Path ( c o n f i g [ ’ d a r s h a n f i l e ’ ] )
17
18 # Execut ing the IO benchmark wi th t h i s c on f i g va l u e s .
19 Execute Benchmark With This Config ( c o n f i g )
20
21 # Appending r e s u l t s in output f i l e .
22 io bandwidth = ReadDarshanFile ( c o n f i g [ ’ d a r s h a n f i l e ’ ] )
23 Append Output in YAML Format File ( con f i g , io bandwidth )
24
25 # Remove benchmarked f i l e as a post−benchmarking s t ep .
26 Delete Benchmarked Fi le ( c o n f i g [ ’ f i l e n a m e ’ ] )

object written to file is a dictionary object with its (key, value) pairs to represent each
execution.

5.3.4 Development of ML based ANN models

In this section, the approach is outlined that is used to learn and predict the performance
behaviour arising from the benchmark results and types outlined previously.

For this purpose, the ANNs have been used to learn the changing performance be-
haviour over the various configurations on each benchmark’s result. The Listing 5.2
shows the very basic algorithmic view of the ML process under the definition of function
ANN Model Training(). The formation of ANN’s layers plays a key role for the Machine
Learning approach as shown from the line 5 to 14 of Listing 5.2. The ANN for each
benchmark comprises of a 7 node input layer which represents the input parameters,
then the output layer has one node to represent a single output as bandwidth value for
each input of configuration parameters values. The number of hidden layers chosen are
2, the number of nodes in the first hidden layer are 256, and the number of nodes in the
second hidden layer are 128, as described in Table 5.2. These values represent the Neural
Network architectures used in this research, for training the models of each benchmark
type, running independently for read and write operations.

In Table 5.3, the hyper-parameters applied to the models during the training are
described, which eventually supports in improving the accuracy on the test set. The
Dropout percentage rate (nn.Dropout()) and Rectified Linear Unit activation function
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Figure 5.2: Hierarchy of parameter values nested loops generating all possible configura-
tions to benchmark.

Table 5.2: ANN’s Description Table.

input layer hidden layer 1 hidden layer 2 output layer
7 256 128 1

(nn.ReLU()) are applied on ANN’s nodes and layers during training on line 9, 11 and
13 [183]. These are the example values to demonstrate training for one model otherwise,
they are different in actual as mentioned in 4th column from the left side in Table 5.3.
Similarly, the weight decay value on line 19 is also different for each model, as mentioned
in 5th or most right column. The weight decays are applied as means of regularization to
avoid over-fitting as much as possible. The learning rate (lr) on line 18, is same for all
models, as mentioned in 3rd column.

The main loop shown on line 23 of Listing 5.2, is responsible for training the ANN
models. The training set is 80% of the complete data for each benchmark type operation.
It assumes all the data is scaled between 0 and 1 (in addition to random sampling) on
line 20 and 21, and uses the following MaxAbsScaler formula:

x ′ =
x

xmax
(5.1)

where x ′ is the new scaled value, x is the original value and xmax is the maximum absolute
value of any configuration parameter given in Table 5.1. For example, as the number of
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Table 5.3: ANN’s Hyper-parameters.

Benchmark IO Learning rate Dropout Weight Decay

MPI-IO
READ

0.002

0.0 1e−5

WRITE 0.05 1e−5

SEG-Y IO
READ 0.0 0.0
WRITE 0.05 0.0

SEG-Y Sort
READ 0.05 1e−5

WRITE 0.0 0.0

Listing 5.2: ANN based ML Process over Benchmarks Results.

1 import torch . nn as nn
2 def ANN Model training ( ) :
3
4 # Se t t i n g the number o f nodes in ANN l a y e r s .
5 input l aye r , h idden laye r 1 , h idden laye r 2 , ou tput l aye r =
6 7 , 256 , 128 , 1
7
8 # I n i t i a l i z i n g ANN model wi th c e r t a i n dropout r a t i o on nodes .
9 model = nn . Sequent i a l (nn . Dropout (p=0.00) , nn .ReLU( ) ,

10 nn . Linear ( i nput l aye r , h i d d e n l a y e r 1 ) ,
11 nn . Dropout (p=0.05) , nn .ReLU( ) ,
12 nn . Linear ( h idden laye r 1 , h i d d e n l a y e r 2 ) ,
13 nn . Dropout (p=0.05) , nn .ReLU( ) ,
14 nn . Linear ( h idden laye r 2 , ou tput l aye r ) )
15
16 c r i t e r i o n = torch . nn . MSELoss ( )
17
18 opt imize r = torch . optim .Adam( model . parameters ( ) , l r =0.002 ,
19 weight decay=1e−5)
20 X = Input Tra in ing Se t # Sca led between 0 and 1 .
21 y = Output Train ing Set # bandwidths s ca l e d between 0 and 1 .
22 # Training Loop . . .
23 for epoch in range (MAXIMUM LIMIT) :
24 # Forward Propagation to p r e d i c t bandwidth .
25 P r e d i c t i o n s = model (X)
26 # Compute l o s s us ing MSE.
27 l o s s = c r i t e r i o n (y , P r e d i c t i o n s )
28 # Zero the g r ad i en t s .
29 opt imize r . z e ro g rad ( )
30 # Perform a backward pass v ia Back Propagation .
31 l o s s . backward ( )
32 # Update the parameters we i gh t s
33 opt imize r . s tep ( )
34 model . t r a i n ( )
35
36 # Save the t ra ined ANN model
37 torch . save ( model , ”ANN MODEL. pt” )
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MPI nodes have possible original values (2, 4, 8, 16) therefore, the possible scaled values
will be (0.125, 0.25, 0.5, 1.0). The MaxAbsScaler is applied on both the input feature
parameters (the possible configuration values) and the output feature parameter which
is the IO bandwidth value collected on each configuration benchmark execution using
Darshan [91]. The input features with two categorised values are explicitly set to 0 and
1 as part of scaling. For example, the original possible values for IO access pattern
(non − collective, collective) will be scaled to (0.0, 1.0). If categorised values are three
as in case of parameter unsorted order in SEG-Y Sorting benchmarks, they are set to
(0.0, 0.5, 1.0) against (uniform, reverse, random) values settings.

The Mean Square Error (MSE) value is computed at line 27 as the loss criterion set
on line 16, to compute the loss in predicted bandwidth value of ANN’s feed forward
propagation on line 25, in each iteration. The MSE values are computed using the
following equation:

MSE =

∑n
i=0(yi − ri)

2

n
(5.2)

where yi is the predicted value of the model and ri is the real value of the i th test data
from n number of test samples from benchmarks results. After computing the loss, the
optimizer is being executed on line 29, to zero the gradients by applying the gradient
descent method Adam, provided by PyTorch ANN’s API. After optimizing gradients, the
loss is propagated backwards in ANN on line 31, followed by updating the parameters
weights on line 33, accordingly. Then on line 34 model.train() finally updates itself
with updated parameters weights.

Once the ANN models were trained enough, they were saved in their separate respec-
tive ANN MODEL.pt files (on line 37). Those trained models were then applied to their
respective test sets (20% of the complete data) of their benchmark results, with the in-
tention of predicting IO bandwidths on unseen data. The Section 5.4 shows the overall
results of executed benchmarks and the prediction accuracy of the trained ANN based
ML models.

5.3.5 Prediction Accuracy Evaluation of ANN Models

The prediction accuracy evaluation of ANN models is being conducted over the test-
ing set of benchmarks results, the 20% of the complete data. This evaluation has been
completed using the testing scheme mentioned under the later section of Prediction Re-
sults Analysis. The Listing 5.3 represents the overview of the code logic defined under
ANN Model Testing() against the testing scheme. On line 5, the saved trained ANN
model is being loaded from the file path ANN MODEL.pt. Then its respective testing set
is loaded in X and y containing scaled input feature values and output feature (IO band-
width) values respectively, on line 8 and 9. These values are scaled between 0 and 1 using
MaxAbsScaler formula as mentioned earlier and the ANN models are trained on scaled
values of their training sets. The value n on line 10 holds the total number of records or
rows of the testing set.

Once the required model and its respective test set is loaded then model is being ap-
plied on test input feature configuration parameters values on line 13. The new predicted
values are being stored in y predictions. Then on line 16 and 17 the previous and
predicted bandwidth values in y and y predictions respectively, are re-scaled to their
actual values by re-ordering Equation 1 as following:

x = x ′ × xmax (5.3)
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Listing 5.3: Testing ANN models over Benchmarks Results Test set.

1 import torch
2 def ANN Model testing ( ) :
3
4 # Load the saved t ra ined ANN model
5 torch . load ( model , ”ANN MODEL. pt” )
6
7 # Load Test ing Set . . .
8 X = Input Tes t ing Se t # Sca led between 0 and 1 .
9 y = Output Test ing Set # bandwidths s ca l e d between 0 and 1 .

10 n = len ( y ) # Number o f Rows in Test ing Set .
11
12 # Test ing . . .
13 y p r e d i c t i o n s = model (X)
14
15 # Resca le the bandwidth output and p r e d i c t i on va l u e s .
16 y = y ∗ max io bandwidth value
17 y p r e d i c t i o n s = y p r e d i c t i o n s ∗ max io bandwidth value
18
19 # Mean Abso lu te Error from Equation 4 .
20 MAE = Sum( y − y p r e d i c t i o n s ) / n
21 # Mean Square Error from Equation 2 .
22 MSE = Sum( ( y − y p r e d i c t i o n s ) ∗∗2) / n
23 # Mean Abso lu te Percentage Error from Equation 5 .
24 MAPE = Sum( ( y − y p r e d i c t i o n s ) / y ∗ 100 .0 ) / n
25 # Accuracy from Equation 6 .
26 Accuracy = 100 .0 − MAPE
27
28 # Breakdown Accuracy va l u e s in t o groups o f number o f
29 # con f i g u r a t i on s r ep r e s en t i n g d i f f e r e n t percentage ranges .
30 Breakdown Accuracy values (y , y p r e d i c t i o n s )

where x represents initial or actual IO bandwidth, x ′ represents scaled bandwidth value
and xmax represents the maximum IO bandwidth value recorded from the execution of
a complete set of a particular benchmark type in Listing 5.3. After re-scaling actual
bandwidth values the MAE, MSE, MAPE and Accuracy values are computed using the
Equations 4, 2, 5 and 6 respectively, from line 20 to 26. Then finally mean accuracy
values are further broken down into groups of different configuration sets within a test
set of a benchmark types. All these errors and accuracy values are presented in Tables
5.4 to 5.8.

5.4 Experimental Result Analysis

The Benchmarks have been executed on up-to 16 ICHEC’s KAY Cluster nodes [51] with
each 2x 20-core 2.4 GHz Intel Xeon Gold 6148 (Skylake) processors employed on up-to
36 Lustre storage disks. The ML models have been trained and tested on KAY’s GPU
node equipped with NVIDIA Tesla V100 16GB PCIe (Volta architecture) using PyTorch
Tensors framework [184, 22].
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5.4.1 Benchmarks Results

The results graph are shown in Figure 5.3 as scatter plots for both READ and WRITE
operations for all benchmarks executed with same hierarchical order of nested loops as
mentioned in Figure 5.2. This HPC Cluster and its Lustre disks are not standalone
and therefore data interference from other users is to be expected. Therefore, these
benchmarks were executed over different periods of time repeatedly to ensure consistency.
The x-axis on each graph represents the configuration number and y-axis represents the
IO bandwidth value in Mega Bytes per second (MB/s).

The configurations shown in Figure 5.3, indicate how alternative configuration num-
bers shown on the x-axis, an associated bandwidth value (y-axis) can be established.
The y-axis represents performance for a particular set of unique parameters which are
not shown in the graphs. For this reason, it is not clear which parameter settings are
causing certain IO bandwidth performance values.

Therefore, all the following benchmark results were visualised in the parallel plot
using HiPlot utility [25]. In particular, the high bandwidth configuration settings are
highlighted.

The use of parallel plots in this context is novel and has not been utilised by any
previous that have been reviewed in this area. The evaluations explain the overall pattern
of IO behaviour, while also highlighting the specific configurations that exhibit high
bandwidth scenarios.

5.4.1.1 MPI-IO Benchmarks Evaluations

As mentioned before the possible combinations for basic MPI-IO benchmark configura-
tions are 30,720 (15,360 for READ and 15360 for WRITE separately). In relation to
the READ bandwidth results, the benchmarks are executed with a common nested order
given in Figure 5.2 therefore, the outer loop executed for number of MPI nodes values.
This means the first main groups of configurations are 4, corresponding to 4 values of
number of MPI nodes in 5.1, in ascending order. These 4 groups of MPI nodes values
can be seen in Figure 5.3a. Each group is comprised of 4 steps of 960 configurations.
These 4 steps in each MPI node value group corresponds to the MPI processes per node
from Table 5.1 in ascending order, as the next Nested Loop 1 is executed according to
Figure 5.2. This means the steps in Figure 5.3a are an indication that the overall IO
bandwidth increases as the MPI processes per node values also increase in each group of
MPI nodes. As MPI nodes increase, the size of the steps also increases, which means the
IO bandwidth is significantly affected by the number of MPI nodes.

In WRITE bandwidth results the steps cannot be seen (in Figure 5.3b) but the band-
width is increasing as the overall number of MPI nodes and processes per node increase.
The IO (both READ and WRITE) performance is less impacted by the lustre striping
parameter values as compared to the overall number of processes.

The data-aligning strategy suggested in [9, 10, 11, 12] does not guarantee sufficient
bandwidths where MPI nodes < MPI processes per node. This means that more than
one MPI process is running on each MPI node, which keeps the total number of MPI
processes the same as in a case of MPI nodes >= MPI processes per node. The total
number of MPI processes are equal to stripe count. Bandwidth can be worst affected
with the collective IO as compared to non-collective IO.

Figures 5.4a, 5.4b present an example scenario where 2 MPI nodes and 8 MPI pro-
cesses per node (total 16 MPI processes) are reading and writing file data, respectively.
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(a) MPI-IO READ Results (b) MPI-IO WRITE Results

(c) SEG-Y File-IO READ Results (d) SEG-Y File-IO WRITE Results

(e) SEG-Y File Sort READ Results (f) SEG-Y File Sort WRITE Results

Figure 5.3: Benchmarks Results Graphs.

The low or decreased bandwidth values can be observed for both READ and WRITE
operations when 16 MPI processes are aligned with 16 lustre disks (OSTs stripe count
value) and stripe size is aligned with chunk size, completing the data-aligning strategy.

These figures also suggest the settings to overcome this problem where stripe size
is not aligned with chunk size, in both READ and WRITE operations scenarios. For
READ operation in Figure 5.4a lowering the chunk size per MPI processes improves the

89



chapter 5 5.4. EXPERIMENTAL RESULT ANALYSIS

(a) Low READ bandwidth of data-aligning with low MPI nodes.

(b) Low WRITE bandwidth of data-aligning with low MPI nodes.

Figure 5.4: Data-aligning strategy showing Low IO bandwidths. Note:- stripe size is
represented in the units of Mega Bytes (MBs), chunk size and file size are represented in
the units of Bytes.
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bandwidth. The minimum chunk size gives the highest bandwidth for both collective and
non-collective READ operations.

Changing stripe size in this scenario is not considered because it has no benefit at
runtime. In this case, the file is already distributed and striped across the disks with
certain striping unit (size). The different bandwidth values for different stripe sizes also
exists, provided that the file is already generated with the same stripe size.

For WRITE operations in Figure 5.4b, changing or lowering the stripe size doubles the
bandwidth from the data-aligned parameters in this case. This jump in bandwidth may
not always be the case as the disks are not standalone, due to the continuous interference
from other users IO processes on the HPC cluster. However, the IO bandwidth still can
be increased with some difference, possibly from the lowest stripe size value (1 MB), as
shown in this scenario. The other chunk size values are not shown but they can also make
small differences in increasing the WRTIE operation bandwidth.

5.4.1.2 SEG-Y File IO Benchmarks Evaluations

For SEG-Y Files benchmarks, READ operations graph (in Figure 5.3c) somehow shows
a similar pattern as in simple MPI-IO READ operations in Figure 5.3a. Considering
the same nested loop patterns in Figure 5.2, for each number of MPI node values, the
bandwidths steps increase as the value of MPI processes per node increases. As the value
of MPI nodes increases the size of the bandwidth step also increases.

In the case of when the threshold is set at 200000 (MB/s), fewer combinations are
observed above this value. When visualized in HiPlot, these configurations have higher
MPI process values, higher samples per trace, and higher number of traces values for
contiguous READ. This is visible in Figure 5.5a. If random READ is to be visualised,
then Figure 5.5b shows the highest MPI nodes value is required for most of the cases.
The SEG-Y File WRITE operations graph in Figure 5.3d are different from basic MPI-
IO WRITE operations in Figure 5.3b. The reason for this, is the parameters involved in
SEG-Y File WRITE are different from the basic MPI-IO WRITE operation.

Keeping the SEG-Y File structure (Figure 3.2) in view, each MPI process would be
interested in writing specific parts of the SEG-Y File. In particular, those parts are trace
data which follows trace headers of 240 bytes. Normally a chunk size is not known to
a process which can be aligned with stripe size. The other factor is the access pattern
which can be contiguous or random. But as the striping occurs when writing a file on a
parallel file system (LFS), the striping parameters still have some impact on bandwidth.

In Figure 5.3d, the rising peaks can be seen indicating that for each MPI nodes
value group, but overall there are numerous low bandwidth configurations, and fewer
high bandwidth configurations. It is easier to identify those configuration settings with
high or rising bandwidth values. The low bandwidth scenarios occur from value 4000
(MB/s) and below whereas higher ones occur at greater values. Figure 5.6a shows those
parameter values and their combinations. It can be seen that 1 MB stripe size (regardless
of stripe count), higher samples per trace, number of traces and overall number of MPI
processes using contiguous pattern gives higher SEG-Y File WRITE bandwidth values. If
random pattern is to be visualised for high bandwidth configuration settings then Figure
5.6b shows the 1 MB stripe size with highest samples per trace, number of traces and
MPI nodes values. The number of traces and samples per trace values ultimately define
the size of the SEG-Y File. This also means the large SEG-Y File is more likely to give
improved WRITE bandwidth as compared to smaller file sizes.
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(a) High read bandwidth configurations with contiguous access.

(b) High read bandwidth configurations with random access.

Figure 5.5: High bandwidth configurations settings for SEG-Y File READ operations.
Note:- stripe size is represented in the units of Mega Bytes (MBs).

5.4.1.3 SEG-Y file sorting Benchmarks Evaluations

We now examine benchmarks relating to SEG-Y file sorting. These benchmarks read or
write a file contiguously that was previously generated using any of these unsorted orders:
uniform (ascending order), random and uniform reverse (descending order) with respect
to x-source of trace header value in the file.

It is important to then determine which combinations of configuration parameters
values give good or high IO bandwidth values for both reading and writing a file contigu-
ously with different unsorted orders. Both results in Figures 5.3e, 5.3f show numerous
low bandwidth plots and fewer high bandwidth plots. It is again important to identify
the combinations of configurations settings with high bandwidths after certain threshold
values, as in the case of SEG-Y File-IO benchmarks findings.

First, considering the READ operation results shown in Figure 5.3e, the highest band-
width plots occur from 4000 (MB/s), which represents the upper half of the graph. Set-
ting those values in the HiPlot utility gives an insight of all possible combinations in
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(a) High write bandwidth configurations with contiguous access.

(b) High write bandwidth configurations with random access.

Figure 5.6: High bandwidth configurations settings for SEG-Y File WRITE operations.
Note:- stripe size is represented in the units of Mega Bytes (MBs).

Figure 5.7a. The settings shown are for each unsorted order, have a high total number
of MPI processes, and regardless of stripe count, the stripe size should be set to 1MB,
and the number of traces with samples per trace should be as high as possible. These
configuration settings are shown to yield high READ bandwidths.

With respect to the WRITE operation results in Figure 5.3f, the highest bandwidths
plots occur from some values greater than 10000 (MB/s) and above. This is again the
upper half of the graph as it was in READ operation results mentioned previously. A
visualization of these bandwidth values and combinations in HiPlot is shown in Figure
5.7b. The settings shown are for each unsorted order, have a high total number of MPI
processes, and regardless of stripe count, the stripe size should be set to 1MB, and the
number of traces with samples per trace should be as high as possible. These configuration
settings are shown to yield high WRITE bandwidths. It is worth noting that the approach
identified between READ and WRITE operation results was identical.

The data shown in this section has demonstrated that there are no continuously in-
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(a) High read bandwidth configurations with all unsorted orders.

(b) High write bandwidth configurations will all unsorted orders.

Figure 5.7: High bandwidth configurations settings for SEG-Y file sorting. Note:-
stripe size is represented in the units of Mega Bytes (MBs).

creasing or continuously decreasing patterns in the data that can be assumed. Instead, the
changing patterns of IO bandwidth over alternative configurations of parameter values,
are observed.

It has been shown that most configurations result in low bandwidth values while only a
small number result in more optimal higher bandwidth values. Therefore, it demonstrates
the need for an approach that will identify good combinations of settings, which can
achieve better overall performance. The challenge is to identify these combinations of
settings prior to the execution of any IO operations begin.

For this reason, this research has proposed to apply Neural Networks as a means of
making certain predictions about the optimal combinations of settings. Neural Networks
are an appropriate approach to allow the system to learn these changing patterns over
different features or parameters which effect the IO bandwidth performance so signifi-
cantly.
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Table 5.4: Errors during Training and Testing.

Benchmark IO MSE (Training) MSE (Testing) MAE (MB/s)

MPI-IO
READ 6.09e-4 6.66e-4 7530.36
WRITE 4.05e-3 5.04e-3 1244.14

SEG-Y IO
READ 1.04e-6 2.07e-5 1111.05
WRITE 8.60e-5 1.65e-4 82.34

SEG-Y Sort
READ 7.28e-4 9.99e-4 167.82
WRITE 1.98e-4 3.59e-4 249.45

5.4.2 Prediction Results Analysis

The ANN models for all the benchmarks have been applied to their respective test sets
as means of prediction. The MPI-IO and SEG-Y Sorting benchmarks have 3072 number
of configurations tested for each of their READ and WRITE operations. Whereas the
SEG-Y IO benchmarks have 2048 tested configurations for each READ and WRITE
operation.

5.4.2.1 Testing Scheme

The prediction results of the ANN models on their related test sets are determined via
different accuracy metrics, namely: MSE (Mean Squared Error) values, MAPE (Mean
Absolute Percentage Error), percentage accuracy and MAE (Mean Absolute error) [185,
186, 187, 79]. This was done to check the accuracy of bandwidth predictions that how fit
is the model as compare to bandwidth pattern generated by benchmarks results in Figure
5.3. The prediction percentage accuracy has also been used as a metric for measuring the
precision of ML models in couple of previous research works [23, 17, 21]. The Table 5.4,
shows the computed MSE values during training and testing, and MAE in IO bandwidth
prediction on test set, for each benchmarks READ and WRITE operations models. The
MAE in 5th column of this table, MAPE and percentage accuracy in Table 5.5, are
computed using the following equations:

MAE =

∑n
i=0(yi − ri)

n
(5.4)

MAPE =
1

n

n∑
i=0

∣∣∣∣∣(yi − ri)

yi

∣∣∣∣∣× 100.0% (5.5)

Accuracy = 100.0−MAPE (5.6)

where yi is the predicted value of the model and ri is the real value of the i th test data
from n number of samples in test set from benchmarks results data.

In Table 5.4, the MSE values presented after the final testing shown in 4th column
are closer to zero and slightly greater than the MSE of training in the 3rd column. This
indicates that the trained ANN models for each benchmark type are not under-fitted
and very less over-fitted according to [113], which is further supported by Figure 5.8.
The MAE values in 5th column represents the mean difference of predicted IO bandwidth
values from the actual IO bandwidth values of benchmarks results. These MAE values
in predictions are very small in comparison to the range or scale of actual IO bandwidth
values given on the y-axis of benchmarks graphs in Figure 5.3. As evident from the table,

95



chapter 5 5.4. EXPERIMENTAL RESULT ANALYSIS

Table 5.5: Accuracy of applied ANN models.

Benchmark IO MAPE Accuracy (%) Accuracy without -ve values (%)

MPI-IO
READ 37.5 62.5 83.5
WRITE 27.9 72.1 76.3

SEG-Y IO
READ 3.5 96.5 96.5
WRITE 11.9 88.1 90.4

SEG-Y Sort
READ 23.0 77.0 84.8
WRITE 20.0 80.0 85.2

the MPI-IO READ’s ANN model gives the highest MAE value despite the fact it mostly
follows the pattern similar to actual bandwidth values as shown in Figure 5.8a.

5.4.2.2 Testing Results Analysis

The Figure 5.8 presents 50 randomly selected configurations from the test set with their
actual and predicted IO bandwidth values for each model of a benchmark type. It demon-
strates that the models can predict the IO bandwidth values according to the pattern
or behaviour exhibited by actual values from the benchmarks results in Figure 5.3, for
future unseen configuration data.

The accuracy ranges from 62.5% to 96.5% with respect to the generated models,
as shown in Table 5.5 - 4th column. This results from the MAPE values ranging from
3.5% to 37.5%, in the 3rd column. There are few cases while making predictions on
test set, where predicted bandwidth is larger than the actual bandwidth value, results
in negative percentage accuracy values. This affects the overall accuracy of a model but
still prediction follows the right pattern in estimating bandwidth, as shown in Figure 5.8.
Excluding these cases results in increased accuracy values as mentioned in 5th column.
It is exception to the case of SEG-Y IO READ ANN model with the highest accuracy
among all the models, which has no case of negative accuracy values when predicting IO
bandwidth on its test set configurations.

The mean accuracy values are further breakdown in different number of configuration
cases of test set in Tables 5.6, 5.7 and 5.8. The 1st and 3rd columns of these tables
represents the 11 different groups of number of configurations from the test set. Each
group has its own mean accuracy percentage. For example, in Table 6, a group of 484
READ Test configurations have their IO bandwidth predicted with 85.7% Mean Accuracy.
This is exception to the case of SEG-Y IO READ tests have few groups as almost all test
configurations covered and resulted in the high accuracy values groups . The 2nd and 4th

column represents their respective mean accuracy values. This shows that most of the
predictions on test set cases tend towards the high percentage accuracy values. There are
few with very low or negative mean accuracy values. The Table 5.6 shows ≈7% and ≈3%
of the READ and WRITE test configurations predicted with negative mean accuracy
values, respectively, shown in the second last row. Similarly, the Table 5.7 shows 0% and
≈1%, and Table 5.8 shows≈4% and≈3%, of their READ and WRITE test configurations,
respectively, being predicted with negative mean accuracy values. Dividing the sum of all
Mean Accuracy values by total tests, for each benchmark type, results in overall accuracy
of a model as represented in the 4th column of Table 5.5. Excluding the negative accuracy
values and the corresponding test cases from them, results in overall accuracy without
negative values, as represented in in the 5th column of Table 5.5.
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(a) MPI-IO READ Predictions. (b) MPI-IO WRITE Predictions.

(c) SEG-Y READ Predictions. (d) SEG-Y WRITE Predictions.

(e) SEG-Y Sort READ Predictions. (f) SEG-Y Sort WRITE Predictions.

Figure 5.8: Predictions Results using Trained ANN Models.
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Table 5.6: Accuracy breakdown for MPI-IO benchmarks prediction models.

READ Tests Mean Accuracy (%) WRITE Tests Mean Accuracy (%)
1580 96.0 794 95.1
484 85.7 726 85.1
273 75.5 612 75.2
192 64.9 358 65.5
99 54.8 216 55.4
74 45.3 109 45.5
54 36.3 69 35.5
39 25.5 50 25.4
28 15.0 33 15.0
36 5.6 22 5.3
213 (≈7%) -218.2 83 (≈3%) -79.4
Total=3072 Total=3072

Table 5.7: Accuracy breakdown for SEG-Y IO benchmarks prediction models.

READ Tests Mean Accuracy (%) WRITE Tests Mean Accuracy (%)
1907 97.4 1371 95.5
118 86.7 444 86.1
18 76.6 120 76.0
4 67.0 48 65.1
1 44.9 21 54.4
- - 9 46.0
- - 3 34.5
- - 2 21.9
- - 4 13.3
- - 3 5.1
- (0%) - 23 (≈1%) -122.8
Total=2048 Total=2048

An important consideration is that the trained ANN models are following almost the
same trend when predicting the IO bandwidth values on different sets of configurations,
as compared to actual benchmarks. It depicts that if one configuration has greater IO
bandwidth than the other configuration then, the same behaviour is expected by the
prediction model.

Since the trained ANN models are simulating the pattern of changing IO behaviour,
their usefulness is to compare the bandwidth values among the different configurations.
This feature of these ML models can be used to detect and tune the best configuration
settings for any given scenario, prior to the execution of IO processing in the MPI appli-
cation. This is hugely significant, in the ongoing challenge of more efficiently processing
seismic data through SEG-Y Files.

5.5 Discussion

In the previous results section, a series of experiments have been presented. These show
that certain configuration parameters are involved in setting high or low IO bandwidths
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Table 5.8: Accuracy breakdown for SEG-Y Sorting benchmarks prediction models.

READ Tests Mean Accuracy (%) WRITE Tests Mean Accuracy (%)
1338 95.2 1431 95.1
919 85.6 896 85.8
381 75.9 323 75.9
132 66.1 131 65.8
69 55.6 60 55.7
31 44.4 42 44.4
34 35.1 30 36.0
24 24.7 17 23.7
21 14.5 22 15.1
12 5.4 20 6.3
111 (≈4%) -129.1 100 (≈3%) -75.6
Total=3072 Total=3072

i.e. the MPI processes, lustre striping parameters, size of trace data in SEG-Y file, etc.
This information assisted in identifying the exact configuration parameters for the basic
MPI-IO file operations and SEG-Y File IO/sorting operations in ExSeisDat.

As per related work, the common practice to improve HPC-IO in different scenarios
is the prediction of IO bandwidth over the configuration parameters which can be tuned
beforehand to give the improved bandwidth afterwards. It is noted that, perceiving the
changing behaviour of IO bandwidth performance is difficult when multiple configurations
are involved. The best approach determined for prediction was a ML approach based on
ANNs, due to their high accuracy [23, 19, 21].

Once the key parameters were identified, the benchmarks have been executed on the
generated list of all possible configurations, to provide training and testing data to the
ML models. As the SEG-Y File IO and Sorting are common operations in ExSeisDat
apart from basic MPI-IO File operations, the benchmarks are categorised into three
types; 1) MPI-IO benchmarks for basic file read and write operations, 2) SEG-Y File IO
benchmarks and 3) SEG-Y file sorting benchmarks. The findings on each benchmark,
explains the IO behaviour. This is shown by the graphs in Figure 5.3 and highlights the
high bandwidth configurations on parallel plots using HiPlot Utility in Figures 5.4, 5.5,
5.6 and 5.7, which has not previously been presented by any state-of-the-art research.

In the case of the remaining configurations with low bandwidths, as shown in section
of benchmarks results in Figure 5.3. These were greater in number, and therefore it is
difficult to determine the IO pattern that each configuration contributes to increased or
decreased performance. This results in the development of the ML ANN models for each
benchmark type to predict the IO bandwidth over different configurations. The prediction
models are trained and tested through different metrics such as MSE, MAE and Accuracy
using MAPE, values. The models learned the trend of changing IO behaviour which is
reflected in the prediction results graphs shown in Figure 5.8. As has been shown, the
prediction models can predict the IO bandwidth according to the learned trend for future
unseen configurations. Therefore, these are hugely beneficial in tuning the configuration
parameters for basic MPI-IO operations and SEG-Y operations in ExSeisDat.

Having a well-trained model, the execution path or flow can be completed from pre-
diction to tuning parameters in application before IO operations. The steps of execution
can be: 1) Get the current set of configuration values, 2) predict its IO bandwidth 2)
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Check different parameters settings and compare their prediction bandwidths values with
current predicted value, 3) Choose the settings predicting maximum IO bandwidth value
and 4) Tune the configuration parameters with chosen settings. Therefore, it is possible
that current or existing parameter settings predict maximum bandwidth out of all other
possible settings being checked, and parameters may not be tuned to different values. In
relation to tuning parameters on runtime execution of MPI program, it should be noted
that not all the parameters are tunable except some of them. For example, in SEG-Y
WRITE operation the access pattern, stripe count and stripe size values can be tuned but
MPI processes and processes per node cannot be changed as the MPI application is al-
ready in execution, and number of traces and samples per trace values cannot be changed
being the requirement of a user. Therefore, a set of tunable parameters values should
be chosen, predicting higher or maximum IO bandwidth with the given non-tunable pa-
rameters values. This also means tuning parameters logic will be different with respect
to type of operation. Despite this, eventually the tuning parameters based on the ML
prediction can be gainful in a longer term due to forecasting bandwidth beforehand and
adapting the optimized configurations.

5.6 Conclusion

In this research chapter, it has been examined that how MPI-IO performance varies
in ExSeisDat over SEG-Y files on LFS [1, 4, 8]. It first demonstrates the need for a
flexible and efficient optimisation approach through a series of experimental benchmarks.
This is similar to much existing research which examines how IO performance can prove
challenging in these scenarios [14, 15, 16, 17, 18, 21]. There are two key contributions
outlined in this chapter. Firstly, the provision of parallel plots that give clear and succinct
insights into the high bandwidth performance of the system across various configuration
parameters. Secondly, the application of the ANN based ML approach to the prediction
of IO bandwidth using the previously identified benchmarks. The prediction accuracy
ranges from 62.5% to 96.5% throughout the trained ANN models for those benchmarks.
Previous studies in this area which have been reviewed earlier in this chapter, indicate the
limitations of previous approaches to each of these contributions. The results show that
these contributions have a significant benefit to practitioners in this field, by contributing
major improvements on overall bandwidth prediction, which in itself has many other
knock-on benefits with respect to parameter tuning. Thereby, improving the overall
efficient completion of tasks for seismic data processing.
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Chapter 6

Artificial Neural Networks based
Predictions towards the Auto-tuning
and Optimization of Parallel IO
Bandwidth in HPC System

6.1 Introduction

This research examines the use of Artificial Neural Networks in optimisation of parallel
High Performance Computing (HPC) Input / Output. HPC or Super-computing ma-
chines are normally clusters of many-core CPU nodes and storage disks. These are inter-
connected via fast LAN cables (e.g., Infiniband, Intel OmniPath, etc.) as the medium of
communication at hardware infrastructure level [5, 6]. The Figure 2.1 shows the typical
overview of a HPC cluster hardware structure. Parallelization has been highly effec-
tive in exploiting the power of a cluster via Message Passing Interface (MPI) standard
software library written on C/C++ platform [7]. MPI is a distributed memory parallel
programming framework that comes with a broad set of functionalities to utilize a clus-
ter’s parallelism potential. When an application using MPI is built, the MPI-IO part
within the program is often leftover to consider for optimization thus, causes the poor IO
throughput, resulting in the overall performance issues. Since, the IO side needs to be
manually tuned by different configurations for performance optimization, this creates an
extra overhead at the user end to perform this task. It becomes even more challenging for
the user to select particular settings since not knowing the IO performance outcome. To
overcome this challenge, in this research, we have proposed the technique to predict the
IO bandwidth performance and auto-tune the related configuration parameters before an
IO operation. This extra software layer between user and MPI-IO operation takes away
the burden of manually tuning the configuration settings. Additionally, the powerful
Artificial Neural Network (ANN) based ML prediction model supports in selecting new
value settings with highly expected improvement in parallel IO performance.

Despite MPI being an efficient parallel computing framework, the parallel MPI-IO side
of the HPC cluster suffers from application performance degradation. The first reason
is the slow pace of development in the advancement of IO storage processing hardware
in contrast to computing hardware. The second reason is, in HPC systems parallel IO
depends on particular parameters to determine its bandwidth from the software side.
These critical parameters are related to different components which support parallel IO
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on the clusters. Parallel IO and storage are normally managed by a specific Parallel File
System (PFS) in the clusters at a low level. In this research case, the PFS is Lustre File
System (LFS) [8]. The common factors which effect IO bandwidth performance are; the
number of MPI processes, the number of parallel discs, the file access patterns and other
properties. These factors and IO optimizations are not generally taken into account by
the parallel application programmers. This results in poor IO and consequently overall
application performance degradation. The parallel IO side is often neglected and left
solely to manual tuning by researchers to devise techniques for the improvement of parallel
IO at the software side, as being done in the past [9, 10, 11, 12]. These approaches
suggest the different strategies around data-alignment based configuration settings that
improve IO but do not cover all the scenarios as explained in the previous chapter.
In this research, the approach is required to optimize IO for the maximum possible
scenarios within MPI-IO applications. To achieve this, the proposed technique is to auto-
tune parameter settings from current values that estimate maximum possible bandwidth
values, before any IO execution.

The need of HPC and Machine Learning (ML), is crucial to areas such as Internet
of Things (IoT) based smart city environment, that critically relies on the efficient data
IO, and has shown recent advancement [188, 189, 190, 191, 192]. In this research, the
ML technique is applied to HPC MPI-IO operations, for the bandwidth performance
optimization. It is the extension of the previous work completed in chapter 5, in regard
to MPI-IO operations bandwidth prediction only, on the related parameters settings. In
extending this previous work, our innovation lies in auto-tuning those parameters on
the basis of MPI-IO bandwidth prediction to the optimized values. Previous research
studies show significant benefits of ML based IO performance prediction and auto-tuning
over different parameters settings at different environment experimental setups [14, 15,
16, 17, 18]. This has provided the motivation to apply similar approach to improve the
MPI-IO application bandwidth performance, in this research scenario. Therefore, the
prediction models are generated through the ML process, and used in this research to
support the auto-tuning approach. The work presented in [19, 20, 21, 22, 23], explains
the basic working of ANNs as ML technique, application to improve file access times in
HPC, and shows the significant prediction accuracy of using ANNs, specially when models
constructed in PyTorch framework. This provided us further motivation to use ANNs
based ML technique with PyTorch API. In result of this, the generated ANN models in
this research, have proven significantly beneficial for optimizing the MPI-IO performance
through auto-tuning parameter settings against the default configuration test cases.

Initially, the MPI-IO READ/WRITE benchmarks are re-generated and re-executed
for bandwidth profiling over the related parameters with possible settings, as mentioned
in chapter 5. This was to ensure that the similar IO bandwidth patterns are replicated
from varying the configuration settings. Then the separate ANN models for READ-
/WRITE operations, are re-generated, having the precise similar prediction accuracy to
the previous work, as stated in the earlier chapter of the thesis. Subsequently, the auto-
tuning strategy is designed based on those ANNs, which is a critical first contribution
of this research chapter. This research presents a ANN ML based approach to select
and auto-tune the parameters settings to get optimized bandwidth. The results have
shown notable improvements in bandwidth through a detailed statistical analysis which
represents the second key contribution contained in this research. Finally, since having
significant IO bandwidth performance outcomes, the most beneficial configurations have
been noted and highlighted in detail as the third key contribution.
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The results presented later in this research chapter, demonstrate that the proposed
auto-tuning strategy using ANN models contributes to a significant gain in IO perfor-
mance. The remaining structure of this chapter follows with the Related Literature in
section 6.2, Research and Design Strategy in 6.3, Performance Evaluation in 6.4, Sum-
mary of the Work in 6.5 and Conclusion in 6.6.

6.2 Background and Related Research

Earlier research studies have been explored, involving the use of ML based predictive
IO modelling, and how best to address poor IO performance issues. This is primarily
achieved by tuning related parameters on certain cluster environments. These research
studies have been a motivation towards auto-tuning of the related parameters in this
research scenario, predicting the maximum possible IO bandwidth performance for files
striped across parallel networked Lustre disks in HPC clusters.

In earlier chapter, it was shown that the parameters relating to MPI, LFS and file
properties can cause increases or decreases in IO bandwidth. Therefore, ANN models
were created to predict IO bandwidth performance for the MPI-IO READ and WRITE
operations scenarios. The models’ prediction accuracy values were 62.5% and 72.1% for
READ and WRITE operations, respectively. The parallel HiPlots have also been used
to visualize bandwidth changes with different parameters settings values [25].

The work by Xu et al. in [14], the study demonstrates that parameters like the IO
scheduler, number of IO threads and CPU frequency affects HPC-IO performance. The
IO behaviour is predicted and determined upon these factors as parameters through ex-
trapolation and interpolation techniques. This was completed by large-scale experiments
using a data analytics framework. Their performance evaluations were conducted by
prediction accuracy calculations with the unseen testing system configurations. After-
wards, the system used a Bayesian Treed Gaussian Process variability map with different
regression techniques. This supported parameter selection through HPC variability man-
agement and insights of current statistical methods.

The method demonstrated by Bez et al. in [15], allows for the adaptive scheduling
of parallel IO requests within a HPC system running application. This was achieved
by tuning the time window based parameters of the current executing workload. This
adaptive technique is implemented through reinforcement learning by the scheduler. It
achieved 88% precision in parameter selection on runtime after access pattern observation
and classification using neural networks by the system for few minutes. Subsequently, its
IO performance would be optimized by the system for its remaining lifetime, as declared
in the study.

The work presented by Bağbaba in [17], examines bandwidth predictive modelling
for MPI WRITE Collective operations via random forest regression. The prediction
accuracy values are extremely high, ranging around 82-99%, which depends on depth
setting maximum value. The datasets for training and testing were relatively small,
which would be require more examination. Having greater variation in the data, the
accuracy values could be significantly lowered.

In the research presented by Behzad et al. in [16], the IO performance optimization
of parallel applications was proposed for HDF5 format files. It was tested on a range of
varied HPC clusters employing LFS and General Parallel File System (GPFS). The auto-
tuning played a key role on the basis of predictive IO modelling. The predictive models
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were trained with Lustre IOR and other benchmarks data using a nonlinear regression
technique. The IO performance notably increased with new parameters selection via auto-
tuning. Comparatively, the work by Madireddy et al. in [18] also demonstrated predictive
IO modelling for LFS IOR benchmarks but using a Gaussian process regression (GPR).

The work carried out by Schmidt et al. in [21], performs prediction for time of file
accesses on LFS storage disks. The file access time for a series of tests are recorded to be
used for developing prediction models. The evaluation shows the generated ANNs yield
30% less error in average prediction as compared to linear predictive modelling. The
file access times distribution and its evaluation were conducted with regard to similar
parameters used to access files. It also discovered that the typical file access times usually
differed by a degree of magnitude, depending on the different IO paths.

Additionally, some other research studies were inspected in the area of MPI application
optimization using ML prediction and auto-tuning parameters, however, the IO side was
mostly ignored [181, 182].

6.3 Experimental Design and Implementation

This research has been conducted by applying a series of steps in sequence. 1) iden-
tification of the key parameters 2) the generation of benchmark data 3) generating 2
ANN based prediction models for each READ and WRITE operation, 4) designing and
applying the auto-tuning strategy, 5) analysing IO bandwidth improvements statistics
and 6) identifying the common configuration settings selected by auto-tuning the system
model. The Figure 6.1 explains the main components that summarise the sequence of
steps involved in our proposed approach with the experimental setup, further elaborated
and explained in Listings 6.1 to 6.5.

6.3.1 Identification of Key and Tunable Parameters

Initially, the key configuration parameters must be identified with fixed possible value
settings. This is an essential step prior to the execution of READ/WRITE bytes of data
from the file on disk in the series of benchmarks. Each benchmark execution should
be completed in order to profile bandwidth, as an output against each READ/WRITE
operation with a specific set of configuration values settings. This bandwidth profiling
data is then split and used as training and testing sets separately. The data is split in
a 80:20 ratio of the total benchmarks results for these training and testing sets. This
approach then allows training and testing the ANN models. It should be noted that
configuration parameters are either tunable or non-tunable, when considering them for
auto-tuning in later.

The Table 6.1 contains the identified key tunable and non-tunable parameters against
their corresponding values settings specified for benchmarks execution. The total num-
ber of value settings available to benchmark is shown to total 30720, which gives an
indication of the scale of configurations for the machine learning process. However, the
IO operation specified in this table is not essentially a configuration parameter. This
is to just specify that these configurations are executed for both READ and WRITE
operations separately. They are marked as ”Not Applicable” from the tunability point
of view. Arising from this, the total is 15,360 possible configurations (30, 720/2) for each
operation type (READ & WRITE). Thus, this is an intuitive process for the generation
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Figure 6.1: Research Methodology of the Experimental Setup to train the ANN ML
models and auto-tune the configuration parameters settings based on the IO bandwidth
predictions.

of datasets relating to both the READ and WRITE bandwidth patterns. This can then
be modelled by two separate ANN models for each operation type.

To summarise, a single configuration setting row in a list of dataset can be represented
as follows:

[′number of MPI nodes = 16′,′MPI processes on each node = 1′,
′lustre stripe count = 4′,′ lustre stripe size = 1MiB ′,

′file size = 32GiB ′,′ chunk size = 0.5GiB ′,′ file access pattern = collective ′],

where it runs for a READ and WRITE operation separately. Similarly, all configuration
settings in that list are fetched and benchmarked iteratively and separately for both IO
operations (READ/WRITE).
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Table 6.1: Tunable/Non-tunable Parameters with possible values settings.

Configuration Parameters Values Settings READ/WRITE Tunability
Number of MPI nodes 2,4,8,16 No/No
MPI processes on each node 1,2,4,8 No/No
Lustre stripe count 2,4,8,16 No/Yes
Lustre stripe size (MiBs) 1,256,512,1024,2048 No/Yes
File size (GiBs) 1,2,4,8,16,32 No/No
Chunk size (GiBs) per process 0.25,0.5,1,2 Yes/Yes
IO operation read,write Not Applicable
File access pattern collective,non-collective Yes/Yes

6.3.2 Generating MPI-IO Benchmarks Results Data

In this section, the procedure is described for generating MPI-IO benchmarks in order to
then use this as a training and testing set for the ANN models.

The Listing 6.1 shows the method Generate Benchmark Results() used to generate
IO bandwidth profiling data by means of benchmarking against each configuration setting.
It takes Configuration Settings as an argument, which has the list of value settings
for each parameter. The first step (Line 2) is to generate a complete list of all possible
configuration settings to be benchmarked. Each row of (MPI IO Configs List) have
one set of configuration settings, as stated by the example mentioned in Section 6.3.1
previously.

During the execution of MPI-IO benchmarks, the MPI processes read/write the cor-
responding file chunks. Prior to execution, the file is striped and generated over stripe

count of LFS employed disks with the specified value of stripe size in the case of
READ operations. This is stated from Line 11 to 16. For WRITE operations these
Lustre settings are applied to an empty file beforehand.

When the file is written on disks it is distributed on the same stripe count of disks
with the stripe size value. A single MPI read/write execution can be collective

or non-collective. In the collective operation each process accesses other running
parallel processes address space, therefore making a non-contiguous access. Whereas, in
non-collective operation each MPI process can have access to its own address space
only and keeps the access contiguous.

Before every benchmark execution the pre-benchmarks settings are applied in regard
to LFS striping as mentioned earlier, and the Darshan utility. Darshan is the tool for
characterization of HPC IO for capturing bandwidth during execution [91], as the setting
applied on Line 18.

At this point, pre-benchmark settings are applied as a means of measuring the band-
width performance of a specific configuration in regard to specific file striping. Once the
execution of a configuration set completes on Line 21, the IO bandwidth performance gets
captured by Darshan and parsed to retrieve on Line 24. The benchmarked bandwidth
value for each IO execution with its configuration parameters values settings are added
at the end of file in the YAML dictionary style format on Line 25.

Afterwards, the post-benchmark setting is applied to that benchmarked file by deleting
it to free the cache, on the last Line 28. This completes a single benchmark iteration over
a configuration set of parameter settings for each READ and WRITE operation.

The following Figure 6.2 shows the benchmark results which depict the bandwidth
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Listing 6.1: Overview of Code Executing IO Benchmarks and Collecting Bandwidth Data.

1 def Generate Benchmark Results ( C o n f i g u r a t i o n S e t t i n g s ) :
2 MPI IO Conf igs List = Generate L i s t ( C o n f i g u r a t i o n S e t t i n g s )
3 for each con f i g row in MPI IO Conf igs List :
4
5 # A conf i g row rep r e s en t s a s i n g l e unique con f i g u ra t i on
6 # s e t t i n g as s t a t e d by example in s e c t i on 6 . 3 . 2 in the second
7 # paragraph . However , i t a d d i t i o n a l l y con ta ins o ther
8 # a t t r i b u t e s i . e . t a r g e t f i l e name , darshan f i l e path , e t c .
9

10 # Applying pre−benchmarking s t e p s b e f o r e a con f i g execu t i on .
11 S e t F i l e S t r i p i n g ( con f i g row [ ’ f i l e n a m e ’ ] ,
12 con f i g row [ ’ l u s t r e s t r i p e c o u n t ’ ] ,
13 con f i g row [ ’ l u s t r e s t r i p e s i z e ’ ] )
14
15 i f ( con f i g row [ ’ i o o p e r a t i o n ’ ] == ”READ” ) :
16 G e n e r a t e F i l e t o b e r e a d ( con f i g row [ ’ f i l e n a m e ’ ] )
17
18 Set Darshan Fi l e Path ( con f i g row [ ’ d a r s h a n f i l e ’ ] )
19
20 # Benchmarking IO of the curren t con f i g row va l ue s .
21 Execute Benchmark ( con f i g row )
22
23 # Append the bandwidth va lue in YAML f i l e a f t e r i t i s parsed .
24 bandwidth value = ParseDarshanFi le ( con f i g row [ ’ d a r s h a n f i l e ’ ] )
25 Append Output in YAML File ( conf ig row , bandwidth value )
26
27 # The l a s t ( post−benchmark ) s t ep i s to d e l e t e the t a r g e t f i l e .
28 Delete Benchmarked Target Fi le ( con f i g row [ ’ f i l e n a m e ’ ] )

patterns for all configuration settings available. In general, the bandwidth values increase
with respect to the increasing number of MPI nodes and processes per node.

6.3.3 Creation and Development of ANN models

In this section, the training and development of ANN models is presented, that are used
for bandwidth predictions. These ANNs have two hidden layers with 256 and 128 nodes
respectively, as outlined in Table 6.2. The input layer and output layer has 7 and 1
nodes against the 7 input feature parameters from Table 6.1 and 1 output feature as the
predicted IO bandwidth value in all models. The Table 6.3 shows the mappings of 7 input
layer nodes to the 7 configuration parameters. The 1 output layer node maps to the IO
bandwidth value. The IO operation parameter from Table 6.1 is excluded because the
models are created separately for READ and WRITE operations. Therefore, there are
two distinct ANNs models, ANNREAD and ANNWRITE . Table 6.4 represents the values for
hyper-parameters being used during the ANNs training, to support the accuracy during
validation.

The ANN models are developed and trained using PyTorch ([22]) through the pseudo-
code ANN Training() in Listing 6.2. The hyper-parameters values are applied according
to Table 6.4. Prior to the ANNs training, the MPI-IO benchmarks results data is scaled
using MaxAbsScaler ([111]). Afterwards, data is shuffled and split between training
and testing sets. For each ANN model 80% of benchmarks results are used for training
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(a) READ Bandwidths. (b) WRITE Bandwidths.

Figure 6.2: MPI-IO Benchmarks Results.

purposes and 20% for testing.
Initially, Line 5 to 14 initialized the ANN model with random weights, where 0.05%

dropout is applied on the hidden layers in the case of training ANNWRITE , and 0.00%
for ANNREAD . Additionally, the Rectified Linear Unit activation function (nn.ReLU()) is
also applied from layer to layer in order to get the expected decimal value at the output
[183]. The loss function is defined as the MSELoss() on Line 16 to compute the loss
between actual and predicted value during training, which is a standard Mean Squared
Error (MSE) [185]. The other hyper-parameters are; learning rate 0.002, and weight
decay 1e−5 are applied on Line 18. This relates to using (Adam) as the gradient descent
optimizer. Then X and y are set as the input and output features from the training set
on Line 20 and 21.

Subsequently, the Line 23 to 34 control the main loop which trains the ANN model
until the specific number of iterations defined as MAX Limit is reached. During loop
iterations, the bandwidth value is predicted on Line 25. Then, Line 27 computes the
loss by MSE value. The Adam optimizer zeros the gradients on Line 29 before the back
propagation can occur. Once complete, loss is propagated backward on Line 31 and the
optimizer updates the weights which are eventually updated by the model calling its
train function on Line 34.

Once the model is trained it has been saved in ".pt" file on Line 37. It is then loaded
back to memory at the time of prediction to support the auto-tuning process later.

The ANN models run on the test set, and the predicted values are re-scaled to their
original values to compute accuracy with the profiled benchmark bandwidth values. The
prediction accuracy denoted by P .A for both ANN models, is defined by the following
equations:

Let X = testing set,

let y = actual bandwidth values against X ,

r = model(X ) gives predicted values against X ,

P .A = 100.0− 1

n

n∑
i=0

∣∣∣∣(yi − ri)

yi

∣∣∣∣× 100.0%,
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where y and r are actual and predicted n number of total bandwidth values, respectively,
and i is the i th row of X , y and r thus, yi is the i th actual bandwidth value and ri is the
i th predicted bandwidth value computed by running model() on Xi the i th configuration
parameters values set.

The prediction accuracy of ANNREAD yields ≈ 63%, and for ANNWRITE yields ≈ 79%.
The Figure 6.3 shows the model predictions on a randomised 50 configuration settings
for each READ and WRITE operations. It is evident from these figures that both ANN
models are well fitted for future predictions on unseen configuration data. Later on, these
models play a vital role in auto-tuning the parameters required for overall bandwidth
performance gain.

(a) READ Predictions. (b) WRITE Predictions.

Figure 6.3: MPI-IO Bandwidth Predictions.

Table 6.2: ANNs Description table to Model READ/WRITE bandwidth behaviour.

Input nodes hidden layer-1 nodes hidden layer-2 nodes Output nodes
7 256 128 1

Table 6.3: ANNs Input and Output Nodes Mapping to Configuration and Output Pa-
rameters for READ and WRITE Bandwidth Predictions.

Input Nodes Configuration Parameters
Node - 1 Number of MPI nodes
Node - 2 MPI processes per node
Node - 3 Lustre Stripe Count
Node - 4 Lustre Stripe Size
Node - 5 File Size
Node - 6 Chunk Size
Node - 7 File Access Pattern

Output Node Output Parameter
Node - 1 IO Bandwidth
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Table 6.4: Hyper parameters applied to ANNs.

ANNs IO modelling types Dropout(%) Weight decay Learning rate
READ 0.00

1e−5 2e−3
WRITE 0.05

Listing 6.2: ANN based ML Process over Benchmarks Results.

1 import torch . nn as nn
2 def ANN Training ( ) :
3
4 # Se t t i n g the number o f nodes in ANN l a y e r s .
5 Input Layer , Hidden Layer 1 , Hidden Layer 2 , Output Layer =
6 7 , 256 , 128 , 1
7
8 # I n i t i a l i z i n g ANN model wi th c e r t a i n dropout r a t i o on nodes .
9 Model = nn . Sequent i a l (nn . Dropout (p=0.00) , nn .ReLU( ) ,

10 nn . Linear ( Input Layer , Hidden Layer 1 ) ,
11 nn . Dropout (p=0.05) , nn .ReLU( ) ,
12 nn . Linear ( Hidden Layer 1 , Hidden Layer 2 ) ,
13 nn . Dropout (p=0.05) , nn .ReLU( ) ,
14 nn . Linear ( Hidden Layer 2 , Output Layer ) )
15
16 C r i t e r i o n = torch . nn . MSELoss ( )
17
18 Optimizer = torch . optim .Adam( Model . parameters ( ) , l r =0.002 ,
19 weight decay=1e−5)
20 X = Input Feature s Se t # Sca led between 0 and 1 .
21 y = Output Feature Set # bandwidths s ca l e d between 0 and 1 .
22 # Training Loop . . .
23 for Epoch in range (MAX LIMIT) :
24 # Forward Propagation to p r e d i c t bandwidth .
25 y pr ed i c t ed = Model (X)
26 # Compute l o s s us ing MSE.
27 Loss = C r i t e r i o n (y , y p r ed i c t ed )
28 # Zero the g r ad i en t s .
29 Optimizer . z e ro g rad ( )
30 # Perform a backward pass v ia Back Propagation .
31 Loss . backward ( )
32 # Update the parameters we i gh t s
33 Optimizer . s t ep ( )
34 Model . t r a i n ( )
35
36 # Save the t ra ined ANN model
37 torch . save ( Model , ”ANN MODEL. pt” )
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6.3.4 Complete Auto-tuning Design Applied to Test Cases

In this section, the complete Auto-tuning process is outlined, and the procedure to collect
the statistical evaluation data relating to performance. The ANNs which are described
earlier, can be used for auto-tuning the configuration parameters.

It should be noted that there are a number of tunable parameters that relate to IO
operations (READ or WRITE), and many remaining which are non-tunable parameters,
as mentioned in Table 6.1 3rd column.

The tunable parameters are marked "Yes", and non-tunable parameters are marked
"No" with respect to READ/WRITE operation. The common non-tunable parameters
in both IO operations are Number of MPI nodes, MPI processes on each node and
File size. The reason is MPI nodes and processes cannot be altered once the appli-
cation is initialized and the file size also cannot be changed being the user requirement.
In case of READ operation the tunable parameters are Chunk size and File access

pattern values. The additional two non-tunable parameters are Lustre stripe count

and Lustre stripe size. As the file will be already distributed over a specific num-
ber of Lustre disks to be READ therefore, re-striping on runtime will not affect the file
distribution pattern on disks. In a situation where the file is first written to disk, which
is then subsequently read, this is not optimal behaviour as it will add unnecessary IO
overhead. Whereas, for WRITE operations the tunable parameters are Lustre stripe

count, Lustre stripe size, Chunk size and File access pattern. All these config-
urations can affect WRITE bandwidth at the runtime.

Considering the configuration parameters tunability, the summarized steps to com-
plete the execution flow are: 1) retrieve the existing applied set of parameters settings, 2)
predict the IO bandwidths on current and all other possible settings of tunable parame-
ters specified in Listing 6.3 with the given non-tunable parameter settings, 3) Compare
all the predicted bandwidth values with each other. 4) Select the maximum predicted IO
bandwidth settings and 5) apply the selected settings to configure the tunable parameters.
These steps are further elaborated in Listing 6.3 and 6.4.

6.3.4.1 Parameters Selection

In this section, a procedure is presented on how to select new parameters settings that
can predict maximum bandwidth.

The function Select Parameters() in Listing 6.3 returns the new tunable configura-
tion settings. It takes the arguments for the given current settings, IO operation (READ
or WRITE) and the file path to saved ANN model (”*.pt”). The Line 1 imports the
torch package to load the saved and trained ANN model in PyTorch on Line 5. The
Line 9 to 11 loads the current settings in variable X, then sets the max bandwidth to
predicted value using model() on current settings X, and max settings hold the current
settings. Lines 14 to 17 represent the possible value settings for tunable parameters for
both IO operations, also specified in Table 6.1.

The mechanism to select new configuration settings is to check every possible combi-
nation of tunable parameters values in nested loops on Line 20 to 23. The stripe counts

and stripe sizes are checked when the current IO operation is WRITE, from Line 26
to 28. By predicting on Line 29 and comparing the new bandwidth value with current
max bandwidth value gives the maximum possible bandwidth and its new configuration
settings in max settings as on Line 30 to 32. If the current IO operation is READ then
the last two nested loops for checking stripe count and stripe size values are not
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Listing 6.3: Parameters values selection based on maximum IO bandwidth prediction.

1 import torch
2 def Se l ec t Paramete r s ( c u r r e n t s e t t i n g s , io , model path ) :
3
4 # Load ANN Model accord ing to IO and hidden l a y e r s .
5 model = torch . load ( model path )
6
7 # Cur r en t s e t t i n g s i n c l u d e s tunab l e and non−t unab l e
8 # parameters wi th va l u e s cu r r en t l y con f i gured .
9 X = c u r r e n t s e t t i n g s

10 max bandwidth = model (X)
11 max set t ings = c u r r e n t s e t t i n g s
12
13 # Pos s i b l e va l u e s range s p e c i f i e d in Table 1 .
14 chunk s i z e s = [ 1 . 0 0 , 2 . 0 0 , 4 . 0 0 , 8 . 0 0 ] # in GiBs
15 a c c e s s t y p e s = [ ’ non−c o l l e c t i v e ’ , ’ c o l l e c t i v e ’ ]
16 s t r i p e c o u n t s = [ 2 , 4 , 8 , 1 6 ]
17 s t r i p e s i z e s = [1 , 256 ,512 ,1024 ,2048 ] # in MiBs
18
19 # Loops to check a l l p o s s i b l e t unab l e s e t t i n g s .
20 for chunk s i z e in chunk s i z e s :
21 for a c c e s s t y p e in a c c e s s t y p e s :
22 for s t r i p e c o u n t in s t r i p e c o u n t s :
23 for s t r i p e s i z e in s t r i p e s i z e s :
24 X[ ’ chunk s i z e ’ ] = chunk s i z e
25 X[ ’ a c c e s s t y p e ’ ] = a c c e s s t y p e
26 i f i o == ”WRITE” :
27 X[ ’ s t r i p e c o u n t ’ ] = s t r i p e c o u n t
28 X[ ’ s t r i p e s i z e ’ ] = s t r i p e s i z e
29 new bandwidth = model (X)
30 i f new bandwidth > max bandwidth :
31 max bandwidth = new bandwidth
32 max set t ings = X
33 i f i o == ”READ” : break
34 i f i o == ”READ” : break
35 return max set t ings

required. In that case, the break statements are applied on Line 33 and 34, respectively,
to terminate the loops for READ operation.

Finally, the new configurations predicting maximum possible IO bandwidth will be
returned on Line 35. These new settings return to code shown in Listing 6.4. According
to steps in Listing 6.3 it is possible that parameters may not be tuned to new values. This
can be due to the existing configurations predicting the maximum possible IO bandwidth,
by checking other value settings in range.

6.3.4.2 Auto-tuning IO operations

In this section the auto-tuning procedure on the MPI side is presented, based on the new
parameter values selection. After the selection of these new parameter value settings,
they are used to tune the configurations before executing parallel IO.

The Listing 6.4 elaborates the overview of how the auto-tuning task is carried out
at MPI application level in the function defined as Auto tune and run IO(). It takes
the current settings, intended IO operation, target file path or name:f name and ANN
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Listing 6.4: Auto-tuning at Application Level.

1 #include <s t r i ng>
2 using namespace std ;
3 void Auto tune and run IO (char ∗ c u r r e n t s e t t i n g s [ ] , s t r i n g io ,
4 s t r i n g f name , s t r i n g model path ) {
5 // I n i t i a l i z i n g MPI space . . .
6 MPI Init ( ) ;
7
8 // Get curren t MPI rank .
9 int rank ; MPI Comm rank(MPI COMM WORLD, &rank ) ;

10
11 // S e l e c t i n g new parameters va l u e s at rank 0 . . .
12 i f ( rank == 0)
13 max set t ings = Se l ec t Paramete r s ( c u r r e n t s e t t i n g s , io ,
14 model path ) ;
15 // A l l p roce s s e s wai t and tune parameters . . .
16 MPI Barrier (MPI COMM WORLD) ;
17 MPI Bcast(&max sett ings , 1 , new max type , 0 ,MPI COMM WORLD) ;
18
19 a c c e s s p a t t e r n = max set t ings . a c c e s s p a t t e r n ;
20 chunk s i z e = max set t ings . chunk s i z e ;
21 // New s t r i p i n g only run by rank 0 f o r WRITE f i l e i n t en t i on .
22 i f ( i o == WRITE && rank == 0) {
23 Remove Previous Fi le ( f name ) ;
24 Apply New Lustre Str ip ing ( f name , max set t ings . s t r i p e c o u n t
25 , max set t ings . s t r i p e s i z e ) ;
26 }
27 MPI Barrier (MPI COMM WORLD) ;
28 // Rest o f the program cont inues here by
29 // execu t ing MPI−IO APIs on f i l e us ing tuned s e t t i n g s . . .
30 }
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model file path as arguments on Line 3. Line 5 initializes the MPI space and environ-
ment using MPI Init(). Subsequently, Line 9 returns the current process ID or rank.
The current settings, IO operation and model file path are passed to the method Se-

lect Parameters() on Line 13, and defined in Listing 6.3. If the current process ID
or rank is 0 only then Select Parameters() function executes, as checked on Line 12.
This returns the new parameters values in max settings predicting maximum possible
bandwidth with the given non-tunable parameters.

Since the max settings are not returned, all other processes are waiting on Line 16.
This is enforced by MPI Barrier() method which is explained in [13]. Once the new
values are returned to the rank 0 process, it will send the max settings object message
to other MPI processes or ranks. Those ranks receive the message in their respective
local max settings object. This is done on Line 17 using the MPI broadcasting method
MPI Bcast(), also explained in [13].

At this point, all processes will have received their max settings. Therefore, each
process updates its configurations with a new set of value settings (Lines 19 to 20).
The access pattern and chunk size are required by all processes to read or write
the file with same access pattern and number of bytes. While the stripe count and
stripe size are updated for all processes, they are only required at the rank 0 process
when IO operation is WRITE. This is essential, for avoiding a race condition on the same
file when applying a new file striping order (Line 22 to 24). In the case of the Rank 0
process, this removes the previous stripe settings by removing the existing empty file on
Line 23 via Remove Previous File() method. Then the new stripe settings are applied
on the file (Line 24) using the Apply New Lustre Striping() method.

It should be noted here, that all processes except rank 0, wait again on Line 27 until
the rank 0 process is applying the new Lustre stripe settings on the file. This creates a
new empty file on the same path with new stripe settings. When the WRITE operation
executes afterwards by all processes the file will be written with new settings applied to
it. On completion, the bandwidth will be recorded using Darshan, as mentioned earlier.
It is also shown in Listing 6.5 for auto-tuning the default configuration test cases, using
this method defined in Listing 6.4.

6.3.4.3 Statistical Data Collection upon Auto-tuning Test Cases

In this section the experimental setup is presented for auto-tuning the test cases and
collecting the key statistical values for the system bandwidth performance. The working
functionalities in Listings 6.3 and 6.4 perform auto-tuning on default configuration test
cases, as mentioned in Table 6.5. These default test cases with parameters values settings
make a total of 1458 configuration settings to be tested. The tunability of parameters is
exactly the same as in Table 6.1.

The purpose of auto-tuning a number of default test cases is to analyze the improve-
ment in IO bandwidth in terms of percentage, through the use of ANN models. The
bandwidth values have been collected using the Darshan characterization tool, upon auto-
tuning the test cases. Listing 6.5 presents the methodology to collect all this necessary
statistical data for performance evaluation presented later in this research.

It should be noted that while the ANN models are trained on smaller file size and
chunk size values, in the evaluation approach, the larger file and chunk size values have
been used for test cases. These are shown in the default configuration test cases to
auto-tune, in Table 6.5.
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Listing 6.5: Statistical Data Collection upon Auto-tuning.

1 import numpy
2 import s t a t i s t i c s
3 def S t a t s D a t a C o l l e c t i o n ( De fau l t Con f i gura t i on s , io , model path ) :
4
5 X = Generate L i s t ( De f au l t Con f i gu r a t i on s )
6 n = len (X)
7 Repe t i t i on s = 3
8 #Loop to Auto−tune t e s t cases to ga ther performance data
9 for i in range (n) :

10 de fau l t bandwidth = l i s t ( )
11 tuned bandwidth = l i s t ( )
12 for j in range ( Repe t i t i on s ) :
13 # Execut ing De fau l t Con f i gura t ions .
14 f name , d name = Lust re and Darshan Set t ings ( io ,
15 X[ i ] [ ’ s t r i p e c o u n t ’ ] ,X[ i ] [ ’ s t r i p e s i z e ’ ] ) )
16 i f ( i o == READ) : G e n e r a t e F i l e t o b e r e a d ( f name )
17 Execute De fau l t Con f i gura t i on (X[ i ] , io , f name )
18 de fau l t bandwidth . append ( ParseDarshanFi le ( d name ) )
19 Remove Target Fi les ( f name , d name )
20
21 # Execut ing Auto−tuned Conf i gura t ions .
22 f name , d name = Lust re and Darshan Set t ings ( io ,
23 X[ i ] [ ’ s t r i p e c o u n t ’ ] ,X[ i ] [ ’ s t r i p e s i z e ’ ] ) )
24 i f ( i o == READ) : G e n e r a t e F i l e t o b e r e a d ( f name )
25 Auto tune and run IO (X[ i ] , io , f name , model path )
26 tuned bandwidth . append ( ParseDarshanFi le ( d name ) )
27 Remove Target Fi les ( f name , d name )
28
29 old bandwidths . append ( s t a t i s t i c s . mean( de fau l t bandwidth )
30 new bandwidths . append ( s t a t i s t i c s . mean( tuned bandwidth )
31 i f ( new bandwidth [ i ] > old bandwidth ) : c im += 1
32 else : c d i += 1
33
34 average o ld bandwidth = s t a t i s t i c s . mean( old bandwidths )
35 average new bandwidth = s t a t i s t i c s . mean( new bandwidths )
36
37 overa l l pe rcentage improvement = ( average new bandwidth −
38 average o ld bandwidth ) / average o ld bandwidth ∗ 100 .0
39
40 pe r imp case s = c im / n ∗ 100 .0
41 p e r d i s c a s e s = c d i / n ∗ 100 .0
42 max tuned bandwidth = max( new bandwidths )
43 max default bandwidth = max( o ld bandwidths )
44 min tuned bandwidth = min( new bandwidths )
45 min default bandwidth = min( o ld bandwidths )
46 median tuned bandwidth = s t a t i s t i c s . median ( new bandwidths )
47 median default bandwidth = s t a t i s t i c s . median ( old bandwidths )
48 stdev tuned bandwidth = numpy . stdev ( new bandwidths )
49 s tdev de fau l t bandwidth = numpy . stdev ( old bandwidths )
50 var tuned bandwidth = stdev imp ∗∗2
51 var de fau l t bandwidth = s t d e v d i s ∗∗2
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Table 6.5: Default Configurations Test Cases for Auto-tuning.

Configuration Parameters Default Values Settings
Number of MPI nodes 16,8,4
MPI processes on each node 16,8,4
Lustre stripe count 16,8,4
Lustre stripe size (MiBs) 512,1024,2048
File size (GiBs) 50,75,100
Chunk size (GiBs) per process 2,4,8
IO operation read,write
File access pattern collective,non-collective

Multiplying the number of value settings results in 1458 possible combinations of
the default configuration settings in one complete list. The description of steps to col-
lect statistics of IO performance improvement data, starts with the function definition of
Stats Data Collection(). This method provides 7 arguments: 1) Default Configurat-

ions, the lists of all default parameters values, 2) io, READ/WRITE operation and 3)
model path, the path of ANN model (".pt") file to use. This is followed by first generat-
ing a complete list of possible default configuration settings in X on Line 5, such that each
element of X is a set of different parameters with values as stated earlier by example in
section 6.3.1. Then Line 6 computes the length or size of that list in memory n. On Line
7 the Repetitions count is set to the value 3, which controls the iterations of the nested
loop on Line 12. This determines the repeated execution of the default configurations
and the auto-tuned configurations respectively.

Line 9 initiates the main loop to process default and auto-tuned configuration settings
against each set of parameters in X. Lines 10 and 11 create the default bandwidth

and tuned bandwidth lists. The purpose of these lists is to save the default settings
bandwidths and the auto-tuned settings bandwidth after their execution. The bandwidth
values of the default and auto-tuned configuration settings are saved in their respective
lists three times from Line 14 to 27. The reason for three repetitions was to mitigate
against individual variations across bandwidth values due to any reason, and therefore
provide an average. After this inner loop, both bandwidths are averaged and appended
in old bandwidths and new bandwidths lists, respectively on Line 29 and 30. The
bandwidth improvement or dis-improvement count is also maintained in c im and c di

on Line 31 and 32, respectively.
Once the main loop is finished, all the default and auto-tuned bandwidths are aver-

aged on Line 34 and 35. The overall bandwidth improvement in percentages is calculated
(Lines 37 to 38). Then all remaining statistics are calculated (Lines 40 to 51). These
include percentages of improved and dis-improved test cases, maximum, minimum, me-
dian, standard deviation and variance in both default and auto-tuned bandwidth values
for comparison. A comprehensive study of performance is explained in the next section
using the data gathered in these steps.

6.4 Experimental Results and Evaluation

This section outlines the runtime complexity analysis of using ANNs predictions for pa-
rameter selection, the improvement results in READ/WRITE bandwidth, achieved by
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auto-tuning the default configuration test cases in Table 6.5, and the common configura-
tion settings applied by the system model during the auto-tuning process.

The Auto-tuning of the test cases is conducted on 16 compute nodes of the Intel
Xeon Gold 6148 Skylake processors cluster (KAY) and its 16 LFS employed disks as IO
object storage targets [51]. The ANN models have been supported by training and testing
through Tensors construct of PyTorch, on NVIDIA Tesla V100 GPU cards [184, 22].

6.4.1 Runtime Complexity Analysis of ANNs Predictions

Since this procedure of parameters value selection involves a brute force to check all
combinations, its runtime cost should be analysed. Line 29 of Listing 6.3, runs the ANN
feed forward propagation pass to predict the value using model(X). In this case, there
are three steps involving: 1) input layer to hidden layer 1, 2) hidden layer 1 to hidden
layer 2 and finally 3) hidden layer 2 to output layer. The Table 6.7 presents all the
steps involved, alongside the number of computations against multiplications (Mul.) and
additions (Add.).

In the first step, there are roughly 3584 computations of multiplications and addi-
tions. Similarly, in second step there are approximately 65536 computations. This is the
most expensive phase in this feed forward propagation process in both computation and
memory consumption terms. This is due to the reason that the hidden layers and their
weights matrices have the greatest number of nodes and memory allocation, respectively.

Finally, in the third and last step, it performs 256 computations. By summing these
computations, the 69376 runs in total are determined, for a single feed forward propa-
gation pass to predict a value. In case of a READ operation the forward propagation
pass runs 8 (4×2) times making a total execution of 555,008 instructions to select pa-
rameters predicting maximum bandwidth. Whereas, in case of a WRITE operation the
forward propagation pass runs 160 (4×2×4×5) times which makes a total of 111,001,60
computations to select parameters. This is according to the code logic of Listing 6.3.

In order to analyze how fast these millions of computations can be processed, this
relies on memory resources usage during the feed forward propagation. The Table 6.6
shows the matrices and the memory space used during a forward propagation pass. These
matrices were part of the ANN model which is created with a default data type float32.
This represents a 32-bit or 4-bytes floating point number. There are 7 matrices used in
a feed forward propagation process as can be noticed.

The total memory required by the ANN model is 140320 bytes or almost 137 KiB.
If the model is created using a 64-bit or 8 bytes double precision floating point number
then this value will be doubled to almost 274 KiB. However, with either of the decimal
datatypes or sizes used, these matrices are easily cacheable in the CPU RAM cache
memory. Therefore, running the millions of computations as stated earlier, approximately
takes a negligible execution time in the unit seconds of 10e−4 including the loading time
of the required libraries. However, for a first time execution, the program loading can
take around 30 seconds. Afterwards, it reduces to less than a second, as tested on a
KAY’s compute node [51].

For the sake of simplicity and ease, the coded parameters selection logic is a separate
python script to execute using PyTorch module, which interfaces with the caller MPI
based C++ program and applies the new configuration parameters settings and run the
READ or WRITE operation, as stated in Listing 6.4. Otherwise, the trained ANN
model could be coded in the same MPI based program as well by using its C++ version
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Table 6.6: Matrices Description and Memory Usage During ANNs Feed Forward Propa-
gation Pass.

Matrix Description Memory Usage (bytes)
I7×1 7 Input features Layer against configurations 7× 1× 4 = 28
H256×1 256 hidden layer 1 nodes values 256× 1× 4 = 1024
W256×7 Contain weights for I7×1 to H256×1 nodes 256× 7× 4 = 7168
H128×1 128 hidden layer 2 nodes values 128× 1× 4 = 512
W128×256 Contain weights for H256×1 to H128×1 nodes 128× 256× 4 = 131072
O1×1 1 output value against predicted IO bandwidth 1× 1× 4 = 4
W1×128 Contain weights for H128×1 to O1×1 nodes 1× 128× 4 = 512

Total Memory used is: 140320 bytes ≈ 137 KiB

Table 6.7: ANNs Feed Forward Propagation Pass to predict bandwidth.

Step# Equation No. of Computations per step pass
1 H256×1 = W256×7 × I7×1 (7Mul . + 7Add .)× 256 = 3584
2 H128×1 = W128×256 × H256×1 (256Mul . + 256Add .)× 128 = 65536
3 O1×1 = W1×128 × H128×1 (128Mul . + 128Add .)× 1 = 256

Total computations are ≈ 69376 per ANNs Forward Propagation Pass

of PyTorch library which is more complex than the python scripting however, it could be
even faster by avoiding the extra program loading during the already executing program.

6.4.2 READ Auto-tuning and Common Configurations Analy-
sis

In this section, a detailed discussion is provided for the Auto-tuning performance with
respect to READ operations.

Table 6.8 shows the READ improvements after execution the procedure represented
in Listing 6.5. The first observation, is that the number of test cases improved during
the testing process. These are 1206 indicating a 82.7% of the total cases (1458). On
further examination, it has been observed that the bandwidth values also show signifi-
cant improvements. The mean bandwidth value of the tuned settings is 62630.5 MiB/s,
which is significantly 1.65× times greater than the mean bandwidth value 37798.1 MiB/s
of the default settings. This is a clear indication of how significant the tuning approach
can be with respect to the critical metric of bandwidth. The overall READ bandwidth
improvement is shown to be approximately 65.7% which is a significant optimized perfor-
mance gain. The remaining statistics are presented with maximum, minimum, median
and standard deviation of bandwidth values for default configurations against the tuned
configurations.

Furthermore, the Figure 6.4 shows the graph of default versus tuned bandwidths
throughout all 1458 test configuration settings. It can be seen that the auto-tuned band-
widths demonstrate far better values than the default bandwidths in many cases.

The ANN predictions have leveraged the auto-tuning process and demonstrate these
significant READ bandwidth performance optimization. It is also worth noting the com-
mon auto-tuned parameters values selection throughout the test cases. The Table 6.9
shows the performance of three common tuned parameters values versus the default con-

118



chapter 6 6.4. EXPERIMENTAL RESULTS AND EVALUATION

Table 6.8: READ Auto-tuning Improvement Results.

Metrics Numerical Figures
Improvements 1206/1458
Improvements(%) 82.7%
Mean Bandwidth of Default Configurations (MiB/s) 37798.1
Mean Bandwidth of Tuned Configurations (MiB/s) 62630.5
Max. Default Bandwidth (MiB/s) 712334.2
Max. Tuned Bandwidth (MiB/s) 697943.6
Min. Default Bandwidth (MiB/s) 121.8
Min. Tuned Bandwidth (MiB/s) 307.9
Median Default Bandwidth (MiB/s) 14020.5
Median Tuned Bandwidth (MiB/s) 17731.1
Default Standard Deviation (MiB/s) 85578.9
Tuned Standard Deviation (MiB/s) 114305.7
Default Variance 7323745984.2
Tuned Variance 13065796947.6
Overall Bandwidth Improvement(%) 65.7%

Figure 6.4: READ Improvements.

figuration settings test cases. This performance is stated with respect to the relative
improvements and dis-improvements. When examining the tuned configurations, it is
noted that the first uses a chunk size of 1 GiB and a non-collective file access pattern.

This setting has been selected in the majority of test cases, 1332 times. This resulted
in 1156 occurrences of improvement while there were 176 occurrences of dis-improvement.
Therefore probabilistically, this configuration setting has a 86.8% chance to improve band-
width while indicating a 13.2% chance of dis-improving.

The second frequently tuned setting involved a chunk size of 2 GiB with the non-
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Table 6.9: Common READ Auto-Tuned Configurations. Note: - c s denotes chunk size
for each MPI process and f a p denotes file access pattern.

Tuned Configurations Improvements Dis-improvements Total selections
[c s:1GiB, f a p:non-collective] 1156 (86.8%) 176 (13.2%) 1332
[c s:2GiB, f a p:non-collective] 48 (42.1%) 66 (57.9%) 114
[c s:1GiB, f a p:collective] 2 (16.7%) 10 (83.3%) 12

Total test cases = 1206 (82.7%) 252 (17.3%) 1458

collective file access pattern. This setting was selected 114 times in which it yielded 48
improvements and 66 dis-improvements. In this case, the model prediction resulted in a
42% chance of improvement and a 58% chance of dis-improvement.

The third and last setting selected for auto-tuning was 1 GiB of chunk size with
the collective file access pattern. This was selected the least number of times, showing
2 improvements and 10 dis-improvements. This has indicates a chance of 16.7% for
bandwidth improvement. Therefore, it is the most unfavourable setting to apply in auto-
tuning.

We note that, the non-collective file access pattern was a common factor in the im-
provements recorded. The non-collective access setting has been used mostly and proven
successful with two different chunk size values throughout the test cases. This yielded
close to 83% chance of improving bandwidth according to the Table 6.9. Therefore, ac-
cording to the findings, non-collective access is the most favourable pattern for READ
operations with a view to maximising bandwidth.

6.4.3 WRITE Auto-tuning and Common Configurations Anal-
ysis

This section presents a series of results related to MPI WRITE operation optimization.
It is evident from Table 6.10 that majority of test cases improved when auto-tuning is
applied. The number of overall improvements observed were 1353 which is 92.8% of
the total number (1458) of the default configurations test cases. The remaining data
shows the mean bandwidth throughput values of the default and tuned configurations.
It can be seen that the mean bandwidth of the tuned configuration cases is 9798.1 MiB/s
which is 1.83× times greater than the mean bandwidth of the default configurations
(5346.9 MiB/s). These numerical figures indicate an overall bandwidth performance of
83.2%. This shows the WRITE bandwidth performance throughput has been significantly
optimized with the devised ANN prediction based auto-tuning strategy.

We note that the maximum tuned bandwidth is greater than the maximum default
bandwidth. This significant increase can be seen in the minimum and median bandwidth
values from the default to tuned settings. The minimum value increased by almost 49×
and the median value by 2.2× due to auto-tuning. The standard deviations remain
comparable between both default and auto-tuned results.

To support the observations, the data in Figure 6.5 has been observed, which shows
the default versus tuned bandwidths. It is noted that the auto-tuned bandwidths show
consistently higher values than the default bandwidths in the majority of the cases.
Therefore, it is safe to conclude the significant performance gain in WRITE operation
bandwidth optimized by auto-tuning based on the ANNs predictions.

The configuration settings which are most commonly selected by the auto-tuning
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Table 6.10: WRITE Auto-tuning Improvement Results.

Metrics Numerical Figures
Improvements 1353/1458
Improvements(%) 92.8%
Mean Bandwidth of Default Configurations (MiB/s) 5346.9
Mean Bandwidth of Tuned Configurations (MiB/s) 9798.1
Max. Default Bandwidth (MiB/s) 18944.6
Max. Tuned Bandwidth (MiB/s) 19563.5
Min. Default Bandwidth (MiB/s) 70.9
Min. Tuned Bandwidth (MiB/s) 3488.0
Median Default Bandwidth (MiB/s) 4718.1
Median Tuned Bandwidth (MiB/s) 10446.1
Default Standard Deviation (MiB/s) 3192.4
Tuned Standard Deviation (MiB/s) 3350.4
Default Variance 10191711.7
Tuned Variance 11225469.3
Overall Bandwidth Improvement(%) 83.2%

Figure 6.5: WRITE Improvements.

process are shown for WRITE operations in Table 6.11. This Table shows the 5 common
settings applied during the auto-tuning of default configuration test cases. For auto-
tuning WRITE operations there are 4 tunable paramaters: stripe count, stripe size,
chunk size and file access pattern. The most common configuration setting was selected
864 times which shown first in the table. This contains stripe count of value 16, stripe
size of 2048 MiB and the non-collective or contiguous file access pattern. This setting
resulted in 794 improvements and 70 dis-improvements which are both the largest when
compared to rest of the settings. Probabilistically, the chance of improving bandwidth
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Table 6.11: Common WRITE Auto-Tuned Configurations. Note: - s c denotes lustre
stripe count, s s denotes lustre stripe size, c s denotes chunk size for each MPI process
and f a p denotes file access pattern.

Tuned Configurations Improvements Dis-improvements Total selections
[s c:16, s s:2048MiB, c s:1GiB, f a p:non-collective] 794 (91.9%) 70 (8.1%) 864
[s c:16, s s:512MiB, c s:8GiB, f a p:non-collective] 103 (95.4%) 5 (4.6%) 108
[s c:16, s s:2048MiB, c s:2GiB, f a p:non-collective] 145 (89.5%) 17 (10.5%) 162
[s c:16, s s:1MiB, c s:1GiB, f a p:non-collective] 214 (99%) 2 (1%) 216
[s c:16, s s:1024MiB, c s:1GiB, f a p:non-collective] 97 (89.8%) 11 (10.2%) 108

Total test cases = 1353 (92.8%) 105 (7.2%) 1458

through using this setting is 91.9%, with a 8.1% chance of dis-improvement.
The second, third and fifth configurations in Table 6.11 show improvements of 103,

145 and 97 respectively. Due to these settings being less frequently selected by the
system arising from auto-tuning, they show comparatively small observations of dis-
improvements of 5, 17 and 11. However, in terms of probability percentage, the second
configuration has a 95.4% chance of improving bandwidth with a 4.6% chance of dis-
improving.

This shows better more promising results than the first configuration with respect
to probability. Whereas, the third and fifth settings have ≈90% chance to improve
bandwidth, with a ≈10% chance to dis-improve it. These marginally less optimal than
than the first configuration.

The fourth configuration has 214 improvements and only 2 dis-improvements. There-
fore, probabilistically, it has a 99% chance of improving bandwidth with only a 1% chance
of dis-improving it. Interestingly, this configuration has a common feature with results
that were recently published in this area. The selected stripe size of 1 MiB, was identified
and suggested as a means of increasing the WRITE bandwidth from the parallel-plots,
as explained in the previous chapter of the thesis.

Another factor which should be noted is that the stripe count value of 16 and non-
collective file access pattern are common across all these selected configurations. The
stripe count value of 16 was the maximum in the range specified in Listing 6.3, for the
selection. Therefore, it can be inferred to keep the maximum stripe count available. This
means bandwidth is expected to increase by increasing number of stripe count value.
Since the file access pattern is set to non-collective in all these settings, it is best for
maximising overall bandwidth.

From studying these settings, they or similar ones can be applied to maximise band-
width throughput in the event of the prediction model not being available for parameter
selection.

6.5 Summary of the Work

The results presented in this research indicate strong performance gains arising from
using ANN models to auto-tune HPC MPI-IO configurations. These improvements have
been demonstrated with respect to bandwidth performance primarily.

The tuning process is focused on a number of key parameters that directly effect IO
bandwidth. Since the optimization has to be performed at runtime, the tunable param-

122



chapter 6 6.6. CONCLUSION

eters can be modified i.e., the chunk size per MPI process, Lustre striping parameters,
etc. Therefore, the certain tunable parameters and settings are identified for READ and
WRITE operations separately.

The optimization of HPC IO using ML predictions has been a common approach in
recent studies [14, 15, 16, 17, 193, 18, 24, 21, 82, 83]. The parameters before IO execution
can be modified or tuned to improve IO bandwidth. It is noted that the predictive IO
modelling with multiple configurations is a primary requirement of the existing problem.
The most convincing technique for predictive IO modelling is ANN due to their high
forecasting accuracy [23, 19, 21].

In previous chapter, the key parameters were identified and executed as benchmarks.
However, in the research outlined in this chapter, the research has been further extended
to identify the tunable and non-tunable parameters for MPI-IO operations. The previ-
ous benchmarks were re-executed on the generated list of all possible configurations as
mentioned in Table 6.1. This was done to regenerate the ANNs through a ML process, as
mentioned in Table 6.2. This process was conducted with respect to their specific hyper-
parameters in Table 6.4, for both READ and WRITE operations. The mappings of the
input layer nodes to configuration parameters are also described in Table 6.3. The models
predict bandwidth precisely and match with the pattern of the changing configurations.
The benchmarks and prediction results are presented in Figure ?? and 6.3.

Subsequently, the auto-tuning approach was applied on the default configuration test
settings, as mentioned in Table 6.5, with respect to READ and WRITE operations.

We observed the auto-tuning of configuration parameters based on ANN predictions,
and these have shown significant optimized IO bandwidth performance results. The
READ operation has shown 65.7% improvement in bandwidth while having 83% of the
test cases improved. Whereas, the WRITE operation has shown 83% improvement in the
overall IO bandwidth while having almost 93% of the test cases improved.

Subsequently, the common configuration settings are discussed as a result of auto-
tuning for both READ and WRITE operations. It was observed that the non-collective
or contiguous file access pattern was selected in the majority of the READ test cases.
Furthermore, the stripe count was set to a maximum available value 16 in all the WRITE
test cases, in order to have maximum possible bandwidth value.

These configurations can be considered with variations of other parameters values for
tuning MPI IO operations, in the event that a ANN model is not available, to optimise
significant IO bandwidth performance.

6.6 Conclusion

This thesis chapter has analyzed MPI-IO bandwidth performance improvements by auto-
tuning configuration parameters via ANNs predictions. It has explained the requirement
of an efficient and adaptable optimization technique by extending the work from previous
chapter. This aligns with already established research which examines the challenges of
HPC IO performance through ML prediction [14, 15, 16, 17, 193, 18, 24, 21, 82, 83].

There are three main contributions outlined in this research chapter. First is the
auto-tuning strategy based on the ANNs MPI-IO bandwidth prediction on various con-
figuration parameters. Second is the statistical analysis of the overall auto-tuned cases
with respect to bandwidth performance. Third is the identified common tunable param-
eters settings, selected and used by ANN based system model.
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From the results presented in the research, it has shown an overall READ bandwidth
improvement of 65.7% with almost 83% test cases improved. Whereas, overall WRITE
bandwidth improvement yielded upto 83% with almost 93% test cases improved.

Furthermore, from the configurations identified in this research, it is shown that there
are clear benefits to firstly using the non-collective file access pattern in both READ-
/WRITE cases. Secondly, the benefits are also noted for using the maximum lustre
stripe count value in WRITE operations. Throughout the results, these observations
were noted as being prominent in the most optimal settings.

In the event that a ML optimisation approach is not available, the identified config-
uration policies could be easily applied to benefit the bandwidth utilisation challenges
noted in previous research. Furthermore, the approach and results outlined in this re-
search show the considerable advantages to professionals in this area. It has demonstrated
substantial improvements on HPC MPI-IO bandwidth performance, thereby enhancing
the overall efficiency of large sized data processing task completion.
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Chapter 7

Seismic Data IO and Sorting
Optimization in HPC through
ANNs Prediction based Auto-tuning
for ExSeisDat

7.1 Introduction

The Oil and Gas industry extensively relies on the Seismic data as a critical factor for
processing it to understand and visualize the structure beneath the surface of earth and
the seabed [3]. The seismic data is normally stored and encapsulated in SEG-Y format
files which is a global standard [4]. The Figure 3.2 shows a complex structure layout of
SEG-Y format to store the seismic data in file. It contains trace headers of 240 bytes
each and actual traces data on alternate positions in the file. Usually the SEG-Y or
seismic data scales to petabytes when written in file on disks. Therefore, it compellingly
increase the need of high performance computing (HPC) or super-computing systems to
perform large scale IO processing, across the Oil and Gas production industry as well as
the research industry.

The modern HPC clusters are normally well equipped to perform exascale operations
and significantly time efficient. They usually contain high number of computing nodes
and parallel storage disks connected via fast network hardware infrastructure [5, 6]. The
Figure 2.1 shows a very basic structure of HPC system. At software side a programming
paradigm is also required to exploit the clusters potential by writing and executing parallel
applications, which, in this case is the standard Message Passing Interface (MPI) library
to serve the purpose [7]. The library also contains the application programming interface
(API) for carrying out parallel IO processing tasks by communicating with multiple
storage disks. These disks are normally controlled and managed by a parallel file system
(PFS) protocols. In this research, the Lustre file system (LFS) is the PFS running on
the targeted machine disks [8].

To process the SEG-Y files data the Extreme-Scale Seismic Data (ExSeisDat) library
is already developed based on the existing MPI-IO APIs [1, 13]. The ExSeisDat contains
its own parallel IO library, namely PIOL, and Workflow library to perform seismic data
related functionalities. In spite of this parallel processing library, it faces degradation
in program execution performance. The reason is underlying running multiple MPI pro-
cesses get restricted by LFS protocols, to access a disk at a same instance in parallel. This
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normally occurs as data-aligning is not applied and considered by users [9, 10, 11, 12].
Although, it does not guarantee maximum possible bandwidth performance, as explained
in chapter 5. It is also tricky to apply data-aligning to SEG-Y format file as traces data is
placed on alternative positions rather than being placed consecutively, and consequently
not considered in ExSeisDat functionality. This means the projection of parallel IO
bandwidth performance of ExSeisDat to process seismic data critically relies on certain
configuration parameters related to MPI, LFS and pattern to access data from SEG-
Y file. For example, number of running MPI processes, lustre stripe count of parallel
disks, random or contiguous access pattern, etc. Therefore, it leaves the user with the
choice to find and tune the suitable parameters settings that can improve the bandwidth
performance from the currently existing value settings.

As the aim is to keep the user of ExSeisDat free from the overhead of manually tun-
ing the settings of related parameters therefore, the auto-tuning approach for SEG-Y
operations is proposed based on maximum IO bandwidth prediction value. This research
chapter further extends the work elaborated in chapter 5, regarding the bandwidth pre-
diction of SEG-Y IO and file sorting operations. The first key contribution in this research
is the auto-tuning design strategy for SEG-Y IO and file sorting operations on the basis
of related parameters bandwidth prediction to optimize performance. The recent studies
have shown the notable advantages of predictive IO bandwidth or performance modelling
through Machine Learning (ML), for auto-tuning parameters in different HPC problem
scenarios [14, 15, 16, 17, 18]. Consequently, the Artificial Neural Networks (ANNs)
ML technique is particularly chosen for predictive modelling [19, 20], on the collected
SEG-Y IO and Sorting benchmarks execution profiling data. The research studies from
[21, 22, 23] are the source of motivation to implement and execute ANNs ML process.
This has been carried out using Python PyTorch package which has significant precision
in predicting outputs. Once the ANNs are trained, they are validated and applied into
auto-tuning design over the default configuration test settings.

We have tested the range of ANNs with varying number of nodes in the hidden layers
to observe its impact on prediction accuracies of ANN models, which is the second key
contribution. The runtime cost analysis of ANNs prediction is also presented, as it is a
core component in new parameters values selection.

Additionally, the statistical analysis of resulted bandwidth values from default and
auto-tuned test settings executions, is a third key contribution. This has also been
conducted on the same range of ANNs with varying hidden layers nodes, as stated earlier.
The purpose of this analysis is to see the most suitable ANN for auto-tuning of SEG-Y
IO and file sorting operations.

Our research mainly emphasizes on the designing of auto-tuning strategy over SEG-Y
IO and file sorting configurations by bandwidth prediction of ANNs. Furthermore, it fo-
cuses on the statistical analysis on varying overall bandwidth performance improvements,
over the range of ANNs.

As evident from results and analysis, the auto-tuning design based on ANNs contribute
to a notable increase in SEG-Y IO and file sorting bandwidth performance. This research
chapter is structured as follows; Related Work in section 2, Design and Implementation
in 3, Experimental Result Analysis in 4, Discussion in 5 and Conclusion in 6.
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7.2 Related Work

The ML based predictive modelling has been an important element in the previous and
recent studies, for handling IO performance degradation. The performance prediction is
evaluated in the area of HPC clusters before further steps such as auto-tuning the specific
configuration parameters. Those researches have been a great source of motivation to
adapt prediction based auto-tuning strategy. This is for optimizing the SEG-Y IO and
file sorting performance across LFS employed disks in the super-computing cluster.

The work presented chapter 5 of the thesis, predicts the IO bandwidth performance
on SEG-Y IO and file sorting parameters using ANNs and shows the prediction accuracy.
However, those ANNs had only one type of setting in the hidden layers. The setting
was 256 nodes in first hidden layer (h1) and 128 nodes in second hidden layer (h2). The
SEG-Y IO READ and WRITE prediction accuracies were 96.5% and 88.1%, respectively.
Whereas, the SEG-Y file sorting READ and WRITE predictions yielded to 77% and 80%
in accuracy, respectively.

The study demonstrated by Xu et al. in [14], presents the parameters such as the
number of IO threads, CPU frequency and the IO scheduler impacts the HPC-IO per-
formance throughput. Using these parameters, the IO pattern behaviour is determined
via predictive extrapolation and interpolation modelling approaches. It was achieved by
a data analytic framework which supported the exa-scale modelling experiments. The
performance evaluation was based on computing prediction accuracies on the unseen con-
figurations of testing system. Subsequently, the map between Bayesian Treed Gaussian
Process variability and the varying regression techniques, was used to optimize the system
configurations. This leveraged the parameters selection by statistical methods insights
and the HPC variability management.

The research by Bez et al. in [15], handles the parallel IO requests by adaptively
scheduling them based on the tuning of time window of executing workload within the
HPC system. The aim is achieved by constructing the adaptive scheduler through re-
inforcement learning. As per performance evaluation, the 88% precision is achieved for
runtime parameters selection once the access pattern is observed and classified. This
classification is determined by deep neural networks in the initial few minutes by the
system. Afterwards, the system optimize and improves its IO performance for rest of
the lifetime, as endorsed by the literature. The key aspect of this study is being more
dynamic as compare to other technique, as it involves no training step.

In the research by Bağbaba in [17], the random forest regression has been used as the
ML technique for predictive bandwidth modelling against the collective MPI-WRITE op-
eration. The accuracy of the predictions has been notably high, ranges in approximately
82-99%. This was also dependent on maximum depth setting. As per the literature,
the training and testing datasets have been significantly small sized as compared to the
datasets used in this thesis. By adding further variation in the data, the prediction
accuracy could be low by increasing data volume.

The work done by Behzad et al. in [16], deals with the HDF5 format data files by
means of optimizing the parallel IO performance. The testing was carried on various
HPC systems running the LFS and General Parallel File System (GPFS) as the parallel
file systems (PFSs). In this study, the auto-tuning had a vital role, based on the IO pre-
dictions. The predictive IO modelling was done using the data from LFS-IOR and some
different benchmarks by nonlinear regression ML algorithm. This caused notable gain in
parallel IO performance by auto-tuning the newly selected parameters. In comparison,
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the work in [18] by Madireddy et al., demonstrates the IO predictive modelling using
LFS-IOR benchmarks as well. However, for the training purpose, the ML approach has
been used is Gaussian process regression.

The approach demonstrated by Schmidt et al. in [21], predicts file access time on
storage disks managed by LFS. The series of benchmarks were run to profile file access
times, so they could be used in training ML models. The ANNs were used as the ML
technique. The ANNs generated and produced around 30% less the average prediction
error in comparison to the linear ML modelling techniques. The evaluation of distributed
file access times was carried out in regard to similar parameters that used to access the
file. The study also revealed that normally, the file access times are determined by the
degree of magnitude in regard to particular IO paths.

Furthermore, the other researches explored regarding MPI application performance
optimization via ML predictive modelling and then auto-tuning parameters. However,
they do not consider the part of IO processing within a parallel program [181, 182].

Contrasting with existing recent research, the work of this thesis stresses upon optimiz-
ing HPC IO performance for SEG-Y READ/WRITE and file sorting through auto-tuning
parameters, which is based on the predictive IO bandwidth modelling over the range of
ANNs. This provides different bandwidth performance statistics over variation in hidden
layers nodes.

7.3 Design and Implementation

7.3.1 Research Methodology

This work has been carried out with the common sequence of steps for both SEG-Y
IO and file sorting operations separately. The steps comprises of the: 1) Identification
of the key tunable and non-tunable configuration parameters, 2) Re-execution of SEG-
Y IO and file sorting benchmarks to generate profiling data, 3) Training/Testing of 6
ANNs for each SEG-Y READ/WRITE and file sorting READ/WRITE operation (total
24 ANNs), 4) Applying design strategy for auto-tuning on basis of generated ANNs and
5) Prediction accuracy values and statistical analysis of bandwidth performance results
against all ANNs. Figure 7.1 explains the main components of the flow of this research.

7.3.2 Key Parameters Identified

The SEG-Y IO and file sorting benchmarks are executed after identification of key con-
figuration parameters, to read/write and sorting traces data in file, respectively. The
benchmarks profiling datasets comprises of both training and testing sets for ANN mod-
els learning and prediction, respectively. The configuration parameters have also been
used as the input features to ANN models.

Table 7.1 and 7.2 show the complete separate list of the related key parameters for both
SEG-Y IO and file sorting operations and their corresponding values settings. A complete
and separate list for each operation type is generated prior to benchmarking, which
contains all possible configuration settings according to the tables. A single configuration
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Figure 7.1: Research Flow for Auto-tuning SEG-Y operations.

setting in SEG-Y IO list can be presented as follows:-

config SEG -Y -IO = [MPI nodes = 8, processes per node = 4,

stripe count = 4, stripe size = 1MiB ,

number of traces = 512, samples per trace = 256,

file access pattern = random]

Similarly, a single configuration setting in a list for SEG-Y file sorting can be as follows:-

config SEG -Y -SORT = [MPI nodes = 8, processes per node = 4,

stripe count = 4, stripe size = 1MiB ,

number of traces = 512, samples per trace = 256,

unsorted order = reverse]
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These type of configuration settings in the lists are used to execute both SEG-Y READ
and WRITE benchmarks, as well as the sorting benchmarks. The 3rd column in both
Tables 7.1 and 7.2, tells if a particular parameter is tunable or not, which is further
explained in later.

Table 7.1: SEG-Y IO Benchmarks Configuration Parameters and their values.

Parameters Values Settings READ/WRITE Tunability
number of MPI nodes 2,4,8,16 No/No
MPI processes per node 1,2,4,8 No/No
stripe count 2,4,8,16 No/Yes
stripe size (MiBs) 1,256,512,1024,2048 No/Yes
file access pattern contiguous/random Yes/Yes
number of traces 512,1024,2048,4096 No/No
samples per trace 256,512,1024,2048 No/No
IO operation READ/WRITE Not Applicable

Table 7.2: SEG-Y file sorting Benchmarks Configuration Parameters and their values.

Parameters Values Settings READ/WRITE Tunability
number of MPI nodes 2,4,8,16 No/No
MPI processes per node 1,2,4,8 No/No
stripe count 2,4,8,16 Yes/Yes
stripe size (MBs) 1,256,512,1024,2048 Yes/Yes
unsorted order uniform/random/reverse No/No
number of traces 512,1024,2048,4096 No/No
samples per trace 256,512,1024,2048 No/No
IO operation contiguous READ/WRITE Not Applicable

7.3.3 Generating SEG-Y IO and file sorting Benchmarks Re-
sults Data

The procedure to execute SEG-Y IO and file sorting benchmarks, and collect the band-
width profiling data, is specified in Listing 7.1, defined as Generate SEG-Y Benchmarks().
This method takes the input as all the parameter settings values specified in Table 7.1
and 7.2. It first generate two separate lists of all possible combinations SEG-Y IO con-
figurations and SEG-Y file sorting configurations, respectively, on Line 2 to 3. Here each
combination in either list is a set of single configuration settings values as stated in earlier
section 7.3.2. So, Line 4 to 6 are two nested loops applied to iterate both lists and their
configuration sets.

In a loop iteration for each configuration setting, the pre-benchmark settings are
applied prior to the execution of main benchmark execution, which are: LFS stripe
settings, file generation and Darshan settings. From Line 13 to 17, the LFS stripe settings
are applied on an empy file, accordingly, which is then generated to be read/write or sorted
with the specific access pattern or sorting order, respectively. Subsequently, on Line 19,
the Darshan setting is applied which just sets the path for darshan file to be generated
after the main benchmark execution. This is to keep the IO bandwidth profiling data.
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It should be noted that the Darshan is a HPC IO characterization tool for parallel IO
bandwidth profiling [91]. The LFS and Darshan pre-benchmark settings are also being
used during auto-tuning process for test cases, discussed in later section.

For SEG-Y IO operations, the SEG-Y file is generated in uniform order with the
LFS stripe settings. The file is striped across number of Lustre Object Storage Targets
(OSTs) as a stripe count value, before benchmark execution. This distribution of this
SEG-Y file over the parallel OST disks is according to certain stripe size unit value in
a round-robin fashion [8].

The SEG-Y IO benchmarks read or write traces data that makes the amount of
number of traces and samples per trace within a file. The MPI processes read or
write their respective parts of trace data in either contiguous or random access pattern
on Line 22. However, the file should first be generated with a uniform order on Line 19.
The uniform order is the ascending order of trace data according to trace header source-x
coordinate [1, 4]. According to possible value settings mention in Table 7.1, the total
maximum parameters configurations makes total of 20480 benchmarks executions where
10240 are for each READ/WRITE executions.

The SEG-Y file sorting benchmarks are a bit complex in nature than the basic IO
executions. An unsorted input file is given to MPI processes to sort it in ascending order
with respect to source-x trace header coordinate in an output file. Here, in both cases of
contiguous READ and contiguous WRITE an output file is ultimately going to be written
on disks either non-contiguously or contiguously. When file is read contiguously then it
is written on disk non-contiguously in sorted order, which is the case of contiguous

READ. In case of contiguous WRITE the file is read non-contiguously and written to disk
contiguously in sorted order.

Initially, it requires an input SEG-Y file to be created with in regards to corresponding
unsorted orders values mentioned in Table 7.2. The uniform order means trace data is
sorted in ascending order with respect to source-x coordinate from the trace header value
as mentioned earlier [4]. In differentiation, the reverse order is the descending order of
trace data and random order is any arbitrary order of trace data.

During the creation of an input SEG-Y file with any of the unsorted orders as stated,
the file is distributed across the OSTs according to Lustre striping parameters as the
pre-benchmark LFS settings, from Line 13 to 17. This is similar to the case of SEG-Y IO
benchmarks with respect to stripe count and stripe size file distribution settings.
Now during the execution of a benchmark on Line 22, in case of contiguous READ the
MPI processes will read contiguously their chunk of unsorted traces in their local memory.
Then the traces are reordered using a mapping from unsorted input local trace index to
the sorted output global trace index with respect to source-x coordinate. Subsequently,
this sorted index map is used to write non-contiguously the reordered or sorted trace
data into the output SEG-Y file. For the case of contiguous WRITE, the trace indices
are already sorted using the unsorted local to sorted global index mapping. Therefore,
each MPI process read trace from file non-contiguously using that sorted index mapping
of trace indices. Once the traces are reordered or sorted by each process then they are
written contiguously into the SEG-Y output file. In both scenarios the output file is also
Lustre striped across OSTs using the same stripe count and stripe size values used
to generate and distribute the input SEG-Y file. This happens when a configuration
settings benchmark is being executed and an output file is produced.

To summarize, the trace data in an input and output SEG-Y files is generated with
respect to specified unsorted order, number of traces, samples per trace and Lus-
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Listing 7.1: Overview of SEG-Y IO and file sorting Benchmarks Execution and Band-
width Profiling.

1 def Generate SEG−Y Benchmarks ( Parameter Set t ings ) :
2 SEG−Y IO Conf igs L i s t , SEG−Y S o r t i n g C o n f i g s L i s t =
3 Gene ra t e L i s t s ( Parameter Set t ings )
4 for each C o n f i g s L i s t in [SEG−Y IO Conf igs L i s t ,
5 SEG−Y S o r t i n g C o n f i g s L i s t ] :
6 for each c o n f i g s e t in C o n f i g s L i s t :
7 # A con f i g s e t i s a s i n g l e c on f i g u r a t i on parameter
8 # s e t t i n g as mentioned wi th example in s e c t i on 7 . 3 . 2 .
9 # Furthermore , each s e t a l s o ho ld the o ther r e qu i r ed

10 # key/ va l u e s e . g . f i l e name , darshan f i l e path , e t c .
11
12 # Pre−benchmarking app l i e d each con f i g s e t .
13 S e t L u s t r e S t r i p i n g ( c o n f i g s e t [ ’ f i l e n a m e ’ ] ,
14 c o n f i g s e t [ ’ s t r i p e c o u n t ’ ] ,
15 c o n f i g s e t [ ’ s t r i p e s i z e ’ ] )
16
17 Make File ( c o n f i g s e t [ ’ f i l e n a m e ’ ] )
18
19 Fix Darshan Fi le Path ( c o n f i g s e t [ ’ d a r s h a n f i l e ’ ] )
20
21 # SEG−Y IO/ Sor t ing benchmarking o f t h i s c o n f i g s e t .
22 Execute SEG−Y IO or Sort Benchmark ( c o n f i g s e t )
23
24 # Append parsed bandwidth and c o n f i g s e t in YAML f i l e .
25 bandwidth = Read Bandwidth ( c o n f i g s e t [ ’ d a r s h a n f i l e ’ ] )
26 Append Output in Yaml File ( c o n f i g s e t , bandwidth value )
27
28 # Applying post−benchmark as d e l e t i n g the t a r g e t f i l e .
29 Delete Benchmark Target Fi le ( c o n f i g s e t [ ’ f i l e n a m e ’ ] )

tre stripe values settings. By considering all the possible value settings mentioned in
Table 7.2, the total maximum parameters configurations or benchmarks to run are 30720
where 15360 are for each contiguous READ/WRITE executions.

The initial LFS settings are applied to target files to test the IO or sorting band-
width performance against a specific configuration settings benchmark. This is in regard
to its distribution of file on parallel disks (OSTs). The parallel IO bandwidth perfor-
mance during each benchmark execution is measured by the Darshan software tool. The
benchmarked file is deleted after execution completion to release the cache, being a post-
benchmark setting on Line 29.

The parallel IO bandwidth profiling results are appended to the end of YAML file
after being parsed from generated Darshan file on Line 25 and 26. This is against each
benchmark parameters configuration settings execution. These results are kept in form
of dictionary style object for each execution benchmark. The Figure 7.2 shows the IO
bandwidth profiling from all executed benchmarks results of SEG-Y IO and sorting op-
erations.

132



chapter 7 7.3. DESIGN AND IMPLEMENTATION

(a) SEG-Y File-IO READ Results (b) SEG-Y File-IO WRITE Results

(c) SEG-Y File Sort READ Results (d) SEG-Y File Sort WRITE Results

Figure 7.2: SEG-Y Benchmarks Results.

7.3.4 Predictive IO bandwidth Modelling with ANNs

As mentioned earlier, to achieve goals of this research, a ML process for predictive IO
modelling has been used to estimate bandwidth value, which is specifically the ANN
technique. This is to support auto-tuning process in next step. The training and testing
sets for the ML procedure are 80% and 20% of the benchmarks results, respectively. This
is for each SEG-Y operation type, as mentioned in Table 7.3. The recent related work
mentioned in [17] has closely comparable problem with the SEG-Y operations, addressed
in this thesis. The portion of some feature parameters is same, and train test rate is
almost 80% and 20%. Therefore, the similar ratio is used to split benchmarks results into
training and testing datasets.

The ANNs generated in this research according to their structure description in Table
7.4 and 7.5, and their corresponding hyper-parameters values in Table 7.6. As this is
being done for both SEG-Y IO and file sorting READ/WRITE operations therefore,
total trained and tested ANN models are 24. The ANNs input layer nodes map to input
configuration parameters, as described in Table 7.5, which are essential to model training
and testing.

The training of all ANN models for both SEG-Y IO and sorting operations, has been
carried out using the method ANN Model Training() specified in Listing 7.2. It takes
arguments as: h1 - specifies number of nodes in 1st hidden layer, h2 - specifies number of
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Table 7.3: Training and Testing Sets Partitions from Benchmarks Results.

Operation Type Total Benchmarks Training Set Testing Set
SEG-Y IO READ 10240 8192 2048
SEG-Y IO WRITE 10240 8192 2048
SEG-Y Sort READ Contiguous 15360 12288 3072
SEG-Y Sort WRITE Contiguous 15360 12288 3072

nodes in 2nd hidden layer, dp - specifies dropout ratio for hidden layers during training
and wd - specifies weight decay layers nodes, as mentioned in Line 2. On Line 5 it set
the values representing number of nodes in all the layers of the ANN. This is to initialize
the ANN model on Line 9 to 14, with dropout ratios and activation function ReLU().
The ReLU() is rectified linear unit activation function which gives the anticipated value
as output from layer to layer, on the nodes [183].

Afterwards, on Line 16 the criteria to compute loss between actual and predicted
value, has been defined, which is the Mean Squared Error (MSE) [185]. Subsequently on
Line 18, the optimizer is defined by Adam() which is a gradient descent method to reach
the global minimum point. When gradient is close zero or global minimum, a model
is able to make precisely accurate predictions. The Adam() requires the learning rate
and weight decay values as responsible for the speed of converging gradient to global
minimum. Therefore, 0.002 learning rate for all SEG-Y operations modelling and their
specific weight decay values mentioned in Table 7.6, are applied to train the model in an
adequate time.

The Line 20 and 21 sets the X and y matrices containing training set configuration
settings and their corresponding actual profiled IO bandwidth values, respectively. These
settings and values are scaled between 0 and 1 using MaxAbsScaler [111]. Then Line
23 to 34 runs the main training or learning loop iterations till the MAX limit which is
set with the accordance of hyper-parameters. This determines how fast a model can
converge to global minimum gradient in what maximum iterations. In each iteration, on
Line 25 model predicts and save the bandwidth values against all configuration settings
in X via Feed Forward Propagation pass in y predictions. Then, on Line 27, loss
is being computed between actual and predicted bandwidth values using the already
defined criterion function as MSE. Afterwards, on Line 29, optimizer Adam zero the
gradient and loss value is propagated backward on Line 31. Subsequently, Line 33 and
34 runs optimizer step function and model train function, respectively, to update the
weights among nodes from layer to layer.

When iterations are completed, the ANN model is trained therefore, it is then saved
in "ANN Model.pt", as mentioned on last Line 37 of this method. Since all the 24 models
have different settings and purpose, therefore, their file names are different from each
other in actual to avoid any clash. The prediction evaluation results for all the ANN
models have been presented and discussed later in the section of Experimental Result
Analysis section.

7.3.5 Full Design Strategy for Auto-tuning Parameters

The generated and saved ANNs are the basis to auto-tuning parameters during a running
SEG-Y application prior to IO or the sorting operations. Therefore, it is important to
note that only a proportion of configuration parameters are tunable. This depends on the
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Table 7.4: ANNs Structure Configuration.

Layers ANN-1 ANN-2 ANN-3 ANN-4 ANN-5 ANN-6
Input 7 7 7 7 7 7

H1 256 128 64 32 16 8
H2 128 64 32 16 8 4

Output 1 1 1 1 1 1

Table 7.5: Mapping of ANNs Input/Output nodes to Configuration Parameters for SEG-
Y IO and File Sort Bandwidth Modelling.

input layer Nodes Configuration Parameters
Node-1 number of MPI nodes
Node-2 MPI processes per node
Node-3 stripe count
Node-4 stripe size
Node-5 number of traces
Node-6 samples per trace
Node-7 file access pattern (for IO) or unsorted order (for sorting)
output layer Node Output Parameter
Node-1 IO bandwidth value

Table 7.6: Hyper-parameters for SEG-Y IO and file sorting prediction models.

Operation Type Weight Decay Learning rate Dropout
SEG-Y IO READ 0.0 2× 10−3 0.0
SEG-Y IO WRITE 0.0 2× 10−3 0.05
SEG-Y Sort contiguous READ 10−5 2× 10−3 0.05
SEG-Y Sort contiguous WRITE 0.0 2× 10−3 0.0
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Listing 7.2: ANN based ML Process over Benchmarks Results.

1 import torch . nn as nn
2 def ANN Model Training ( h1 , h2 , dp ,wd) :
3
4 # Se t t i n g the ANN l a y e r s to s p e c i f i c number o f nodes
5 Input laye r , Hidden layer 1 , Hidden layer 2 , Output layer =
6 7 , h1 , h2 , 1
7
8 # Applying dropout r a t i o s and a c t i v a t i o n func t i on to ANN nodes
9 ANN Model = nn . Sequent i a l (nn . Dropout (p=0.00) , nn .ReLU( ) ,

10 nn . Linear ( Input laye r , H idden layer 1 ) ,
11 nn . Dropout (p=dp) ,nn .ReLU( ) ,
12 nn . Linear ( Hidden layer 1 , H idden layer 2 ) ,
13 nn . Dropout (p=dp) ,nn .ReLU( ) ,
14 nn . Linear ( Hidden layer 2 , Output layer ) )
15
16 Mode l Cr i t e r ion = torch . nn . MSELoss ( )
17
18 ANN Optimizer = torch . optim .Adam( Model . parameters ( ) , l r =0.002 ,
19 weight decay=wd)
20 X = I n p u t t r a i n i n g s e t # Sca led between 0 and 1 .
21 y = O u t p u t t r a i n i n g s e t # bandwidths s ca l e d between 0 and 1 .
22 # Learning loop i t e r a t i o n s . . .
23 for I t e r a t i o n in range ( MAX limit ) :
24 # Forward Propagation f o r p r e d i c t i n g IO bandwidth va l u e s .
25 y p r e d i c t i o n s = ANN Model(X)
26 # Computing l o s s v ia model c r i t e r i o n MSE.
27 Loss = Mode l Cr i t e r ion (y , y p r e d i c t i o n s )
28 # Zeroing the g r ad i en t s .
29 ANN Optimizer . z e ro g rad ( )
30 # Performing Back Propagation pass us ing the Loss .
31 Loss . backward ( )
32 # Updating the we i gh t s from l a y e r to l a y e r .
33 ANN Optimizer . s t ep ( )
34 ANN Model . t r a i n ( )
35
36 # Saving the t ra ined ANN model in . p t f i l e .
37 torch . save (ANN Model , ”ANN Model . pt” )
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SEG-Y operation type and its given non-tunable parameters values. However, the SEG-Y
file sorting has only two same tunable parameters for both contiguous READ/WRITE
operations. This is because both operations are ultimately writing a sorted file on the
disks.

The 3rd column in Table 7.1 and 7.2, Yes means that parameter is tunable and No

means non-tunable, depending on READ/WRITE operation. The common non-tunable
parameters are number of MPI nodes, MPI processes per node, number of traces

and samples per trace. The MPI nodes and processes cannot be changed once the
SEG-Y MPI application is started, and the formation of trace data cannot be tuned as
well being a user requirement. For SEG-Y IO READ case, the only option is to switch
between the file access patter which is contiguous read or random read. As far
as SEG-Y WRITE operation is concerned, the stripe count, stripe size and file

access pattern settings, can be tuned. In case of SEG-Y READ operation, the file
is already striped across networked parallel Lustre OSTs (disks) with specific stripe

count and stripe size. Therefore, changing these values at runtime cannot change the
file striping arrangement on the disks. Whereas, writing a file with stripe values to read
is an additional overhead in this scenario. For the case of SEG-Y WRITE operation, the
changed or tuned stripe values can impact the bandwidth during execution.

The SEG-Y file sorting by contiguous READ/WRITE operations have only two tun-
able parameters which are stripe count and stripe size values. In SEG-Y Sorting,
the unsorted order is also a non-tunable parameter in addition to previous common
non-tunable parameters. By changing its value also does not impact in bandwidth as
this was just used to generate a SEG-Y file with a particular unsorted order before actual
benchmark execution. The stripe values in contiguous READ/WRITE operations can be
tuned because both write a sorted file eventually. Therefore, both operations bandwidth
is expected to be impacted at runtime.

By consideration of the tunabilities of parameters, the following steps for flow of exe-
cution are: 1) retrieve the existing configurations, 2) compute the bandwidth predictions
on the provided configurations and other tunable/non-tunable possible value settings, 3)
select the configurations having maximum performance of IO bandwidth predicted and
4) Change the tunable parameters settings with selected configurations. This procedure
is exhibited in detail by Listing 7.3 and 7.4.

7.3.5.1 New Configuration Settings by SEG-Y Operations Models

The method New Configs() in Listing 7.3 returns the set of newly suggested values of
tunable configuration parameters against the existing settings in current configs ar-
gument on Line 2. The new configurations predicting maximum bandwidth from the
different combination of values are returned in max configs at the end of this method.
It also takes third argument for ANN model ”.pt” file in model path specific to sec-
ond argument against SEG-Y operation type in op type. According to SEG-Y IO and
Sorting operations stated earlier, the possible string values specified for op type are:
”SEGYRead”, ”SEGYWRITE”, ”SortRead” and ”SortWrite”, from programming point
of view. The PyTorch (torch) package is imported on Line 1 for loading the specific gen-
erated ANN model on Line 5. The Line 8 to 10 get the existing settings in X, predict the
current bandwidth value as maximum in max bandwidth value. This is predicted by call-
ing seg y model(X), and max configs holds the current settings as maximum bandwidth
settings, initially. Afterwards, list of tunable and possible value settings are initialized
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from Line 13 to 15. These lists are initialized as file access types, stripe counts and
stripe sizes as per values mentioned in Table 7.7 and 7.8.

The procedure to configure new parameter values, checks all the possible configura-
tions of tunable settings with the given non-tunable parameters values. The one combina-
tion of values giving the highest possible predicted bandwidth, is the chosen parameters
setting. This is elaborated from Line 18 and 33. The procedure covers all the 4 types
SEG-Y operations as stated earlier. The lists of file access types, stripe counts

and stripe sizes are not applicable on all SEG-Y operations types except ”SEGY-
Write”. The ”SEGYRead” operation only requires file access types to check and set
the highest possible bandwidth setting. Both SEG-Y file sorting operations ”SortRead”
and ”SortWrite” only require Lustre settings stripe counts and stripe sizes to check
and set maximum bandwidth settings. In order to achieve this, the nested loops are run
for checking all possible settings. However, the condition statements are set in place from
Line 21 to 23 to only set the values in iteration according to a specific type of SEG-Y
operation about to execute. Subsequently onward, from Line 31 to 33 have conditions to
break loop for particular settings which are not applicable to currently executing SEG-Y
operation.

In loop, once the values are set in X according to SEG-Y operation type then new band-

width value is computed by calling segy y model(X) on Line 27. Then Line 28 to 30
checks if the new bandwidth value is greater than current max bandwidth value then
update the max bandwidth value with the new bandwidth value and max configs with
currently checked settings in X. By the end of loop the max configs contains the new
configuration settings of tunable and unchanged values of non-tunable parameters, pre-
dicting maximum IO bandwidth value. These new maximum bandwidth settings are
returned on Line 34, to the application running that particular SEG-Y operation whose
method is represented in Listing 7.4. If for some reason the new configurations are exactly
as they were initially, it means the current configuration settings predict highest possible
IO bandwidth value from other combinations of settings.

7.3.5.2 Auto-tuning SEG-Y Operations with New Configuration Settings

This section gives the overview of auto-tuning within the application before executing
a SEG-Y operation. The Listing 7.4 presents the method AutoTuneAndRunSegYOp()

which auto-tune settings on the basis of newly chosen settings returned from method
in Listing 7.3 New Configs(). It takes arguments as current parameters settings in
current configs, SEG-Y operation type in op, target file path in t file and ANN
model ”.pt” file path in model path.

Initially, the ExSeisDat Parallel IO Library (PIOL) has been included, followed by
acquiring its namespace on Line 1 and 2, respectively. Then in the scope of this method,
first, the ExSeisDat environment is initialized on Line 6. Secondly, the current MPI
process number is retrieved in variable rank on Line 9. Then on Line 12 and 13, it
checks if current rank is 0, it means the current process is a head MPI process. Sub-
sequently, it calls the New Configs() method defined in Listing 7.3. This is to get the
new configuration settings predicting maximum bandwidth. These settings are returned
in max configs memory of struct type max configs type. Meanwhile, all other MPI
processes ranks are waiting until rank-0 is finished getting new settings, on Line 16 via
MPI Barrier() method. Afterwards on Line 17, rank-0 process send the new settings
to all other ranks. All those ranks receive the new settings in their corresponding ob-
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Listing 7.3: New Configuration Parameters Settings based on predicted maximum band-
width.

1 import torch
2 def New Configs ( c u r r e n t c o n f i g s , op type , model path ) :
3
4 # Loading SEG−Y Model w. r . t IO/ Sor t ing and h1−h2 nodes .
5 seg y model = torch . load ( model path )
6
7 # cur r en t c on f i g s = tunab l e : non−t unab l e va l u e s .
8 X = c u r r e n t c o n f i g s # e x i s t i n g s e t t i n g s .
9 max bandwidth value = seg y model (X)

10 max conf igs = c u r r e n t c o n f i g s
11
12 # Li s t s o f va lue s e t t i n g s to check p r e d i c t i on .
13 f i l e a c c e s s t y p e s = [ ’ cont iguous ’ , ’ random ’ ]
14 s t r i p e c o u n t s = [ 2 , 4 , 8 , 1 6 ]
15 s t r i p e s i z e s = [1 , 256 ,512 ,1024 ,2048 ] # in MBs
16
17 # Se t t i n g c on f i g u r a t i on s p r e d i c t i n g maximum bandwidth .
18 for f i l e a c c e s s t y p e in f i l e a c c e s s t y p e s :
19 for s t r i p e c o u n t in s t r i p e c o u n t s :
20 for s t r i p e s i z e in s t r i p e s i z e s :
21 i f op type == ”SEGYWrite” or ”SEGYRead” :
22 X[ ’ f i l e a c c e s s t y p e ’ ] = f i l e a c c e s s t y p e
23 i f op type == ”SEGYWrite” or ”SortRead” or
24 ” SortWrite ” :
25 X[ ’ s t r i p e c o u n t ’ ] = s t r i p e c o u n t
26 X[ ’ s t r i p e s i z e ’ ] = s t r i p e s i z e
27 new bandwidth value = seg y model (X)
28 i f new bandwidth value > max bandwidth value :
29 max bandwidth value = new bandwidth value
30 max conf igs = X
31 i f op type == ”SEGYRead” : break
32 i f op type == ”SEGYRead” : break
33 i f op type == ”SortRead” or ” SortWrite ” : break
34 return max conf igs
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Listing 7.4: Auto-tuning before SEG-Y Operations Execution.

1 #include <ExSeisDat/PIOL . hh>
2 using namespace e x s e i s : : PIOL ;
3 void AutoTuneAndRunSegYOp(char ∗ c u r r e n t c o n f i g s [ ] , s t r i n g op ,
4 s t r i n g t f i l e , s t r i n g model path ) {
5 // Loading ExSeisDat Environment on MPI and IO Library . . .
6 auto p i o l = ExSeis : : New( ) ;
7
8 // Current MPI rank from ExSeisDat ’ s PIOL Wrapper f unc t i on s .
9 s i z e t rank = pio l−>getRank ( ) ;

10
11 // Get New Conf i gura t ion parameters s e t t i n g s on rank−0 . . .
12 i f ( rank == 0)
13 max conf igs = New Configs ( c u r r e n t c o n f i g s , op , model path ) ;
14
15 // A l l ranks wai t and ge t new con f i g s e t t i n g s f o r tuning .
16 MPI Barrier (MPI COMM WORLD) ;
17 MPI Bcast(&max conf igs , 1 , max conf igs type , 0 ,MPI COMM WORLD) ;
18
19 i f ( op == SEGYWrite | | op == SEGYRead)
20 f i l e a c c e s s p a t t e r n = max conf igs . f i l e a c c e s s p a t t e r n ;
21 // New s t r i p e s e t t i n g s are on ly run by rank 0 to wr i t e f i l e .
22 i f ( rank == 0 && ( op == SEGYWrite | | SortWrite | | SortRead ) ) {
23 Remove Prev ious Target Fi le ( t f i l e ) ;
24 Apply New Str ipe Set t ings ( t f i l e , max conf igs . s t r i p e c o un t ,
25 max conf igs . s t r i p e s i z e ) ;
26 }
27 MPI Barrier (MPI COMM WORLD) ;
28 // Remaining s e c t i on o f the a p p l i c a t i o n cont inue . . .
29 // Running SEG−Y opera t i ons by new tuned va lue s e t t i n g s . . .
30 }

jects of max configs. This is executed by calling MPI Bcast() method. The methods
MPI Barrier() and MPI Bcast() are mentioned and explained in [13].

Once all the ranks or processes are updated with new configuration settings then, it
checks for the currently required SEG-Y operation type apply tuning accordingly. On
Line 19 and 20, it checks if the current operation is one of the SEG-Y IO operations
”SEGYWrite” or ”SEGYRead”. Then all processes update their file access pattern

in order to READ or WRITE SEG-Y file according to the access pattern set. Subse-
quently, on Line 22 to 24, it checks if current rank is 0 and operation type is either
”SEGYWrite” or one of the file sorting operations: ”SortWrite” or ”SortRead”. Then it
removes the previous target file path specified in t file and apply new lustre settings
specified in max configs.stripe count and max configs.stripe size on an empty
target file. Meanwhile again, all other processes wait on Line 27 until rank-0 process is
finished applying new Lustre stripe settings. Afterwards, all processes runs the remaining
section of application to complete the task of particular SEG-Y operation type with new
tuned configuration settings. This is how the goal of auto-tuning parameters prior to IO
execution on runtime, has been achieved.

On the completion of one execution of a SEG-Y operation through the application
method in Listing 7.4, the new IO bandwidth value is captured via Darshan profiling as
stated earlier and elaborated by method in Listing 7.5, explained in the next section.
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7.3.5.3 Statistical Data Process upon Executing Auto-tuned SEG-Y Opera-
tions

A statistical analysis for performance evaluation requires experimental code setup. This
involves computations of specific metrics which show the real picture of the approach’s
performance. In this scenario, the default configuration settings and the auto-tuned set-
tings are executed to make comparison between their IO bandwidths. This is eventually
conducted by computing the statistical metrics and the overall bandwidth percentage
improvement. The Tables 7.7 and 7.8 present the default configuration settings test cases
to execute and auto-tune for SEG-Y IO and file sorting, respectively. The collected IO
bandwidths against these default settings and their corresponding auto-tuned settings
leveraged the statistical analysis.

In this section, an experimental Python code setup is presented, to run auto-tuning
benchmarks on the test cases stated above for all SEG-Y operations. This procedure is
elaborated in Listing 7.5 method Statistics Collection Process(). The Line 1 to 3
imports the required Python packages as torch (PyTorch), numpy and statistics. The
arguments of this method are: X - a list of all possible test configuration settings specific
SEG-Y operation from Table 7.7 or 7.8, N - the total number of test cases in a test set, op
- a type of a specific SEG-Y operation as stated earlier, H1 - number of nodes in hidden
layer 1 of an ANN, H2 - number of nodes in hidden layer 2 of an ANN and model path -
ANN model file path against H1 and H2 nodes configuration.

The method begins with main loop on Line 5 which runs till N default test settings.
It should be noted for SEG-Y IO operations the value of N is 1458 for each READ and
WRITE execution. Whereas, it will be 2187 for SEG-Y file sorting operations for each
contiguous READ and WRITE execution. The value of N is computed by multiplying
numbers of value settings against each parameter specified in Table 7.7 or 7.8, excluding
the IO operation parameter.

On Line 6 and 7, the two lists; Def bandwidth and Tuned bandwidth are initialized
to contain bandwidth values against a single default configuration and its auto-tuned
setting execution, respectively. Then Line 8 has variable repititions, which specifies the
number of times the default and auto-tuned settings would be executing. Subsequently,
their bandwidth values would be saved in their corresponding lists stated earlier. Since
the repetitions of a configuration settings can run any number of times, therefore, the
nested inner loop is applied on Line 9. So, a default and auto-tuned settings would run
repeatedly according to repetitions specified on Line 8, which is 2 in this case. This has
been done to ensure the bandwidth corresponding to the settings are approximately same
when they are repeated and averaged later on. The reason is sometimes bandwidth can
be low at an instance due interference on OSTs by other user programs.

In the inner loop after Line 9, first the IO or sorting operation is executed with default
setting from Line 11 to 16. The Line 11 runs required settings for LFS and Darshan,
which set their target file names and paths for an operation in variables t file and
d file, respectively. The naming of files is according to a specific SEG-Y operation -
op, number of nodes in hidden layers - H1 and H2, and the Lustre stripe setting values
of an i th configuration - X. Then Line 13 generates file according to current configuration
LFS stripe settings. Subsequently, the IO or sorting operation with default configuration
settings is executed on Line 14. The bandwidth value of the current configuration setting,
is profiled in the darshan file path set in d file which is then parsed and appended in
Def bandwidth on Line 15. The target darshan file and the operation file with LFS
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settings, are deleted to free the cache.
Once an operation with default setting is executed, then it will be re-executed by

auto-tuning that default setting from Line 19 to 24. The steps to execute IO or sort-
ing operations by auto-tuning the configurations, are similar to executing with default
settings. However, the first difference is on Line 22, which calls AutoTuneAndRunSegYOp

method described in Listing 7.4, to auto-tune configurations and execute the SEG-Y op-
eration. The second difference is on Line 23 where the bandwidth of auto-tuned SEG-Y
IO or Sorting operation is appended in Tuned bandwidth list.

After the completion of the inner iterations of a configuration setting, their default
and the tuned bandwidths are averaged and appended in the main lists Old bandwidths

and New bandwidths on Line 26 and 27, respectively. These lists would hold the default
and tuned bandwidth values against N configuration settings test cases. On Line 28, it
checks for current configuration that if its tuned or new bandwidth is greater than its
default or old bandwidth then improvement count C IM is incremented.

The completion of outer main loop is followed by computing the mean default and
tuned bandwidths by averaging the values of Old bandwidths and New bandwidths lists,
respectively, on Line 30 and 31. Then the overall percentage improvement in bandwidth
is computed on Line 32. The percentage of test cases with improved bandwidths is
computed in per IMP cases on Line 34. Afterwards, from Line 35 to 44, the remaining
statistics are computed, which include maximum, minimum, median, standard deviation
and variance values against both default and Tuned bandwidths, separately.

The whole procedure explained above using Listing 7.3, 7.4 and 7.5 completes the
auto-tuning design for optimizing SEG-Y operations in HPC cluster, based on the ANNs
predictions. The statistical analysis of auto-tuning results, is presented in the next section
of Experimental Results Analysis.

Table 7.7: Default SEG-Y IO Configurations Test Cases to Auto-tune.

Parameters Default Settings
Number of MPI nodes 16,8,4
MPI processes on each node 16,8,4
Stripe count 16,8,4
Stripe size (MiBs) 512,1024,2048
Number of traces 4096,8192,16384
Samples per trace 4096,8192,16384
IO operation read,write
File access pattern contiguous,random

7.4 Experimental Results Analysis

The SEG-Y IO and file sorting test cases for auto-tuning have been executed from 4 to
16 nodes of KAY cluster of ICHEC, for performance optimization analysis. Each node
consists of 2x 20-core 2.4 GHz Intel Xeon Gold 6148 (Skylake) processors [51]. The Lustre
OSTs (disks) are utilized from 2 to 16 in range. The ML processes for ANN models have
been carried out using one of the GPU node of KAY having NVIDIA Tesla V100 16GB
PCIe (Volta architecture) card, via Tensors memory construct in PyTorch [184, 22]. The
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Listing 7.5: Statistics Collection Process upon Auto-tuning SEG-Y Operations.

1 import torch
2 import numpy
3 import s t a t i s t i c s
4 def S t a t i s t i c s C o l l e c t i o n P r o c e s s (X,N, op , H1 , H2 , model path ) :
5 for i in range (N) :
6 Def bandwidth = l i s t ( )
7 Tuned bandwidth = l i s t ( )
8 r e p e t i t i o n s = 2
9 for j in range ( r e p e t i t i o n s ) :

10 # Execute SEG−Y IO or Sor t ing wi th De fau l t S e t t i n g
11 t f i l e , d f i l e = Darshan and Lust re Set t ings ( op , H1
12 ,H2 ,X[ i ] [ ’ s t r i p e c o u n t ’ ] ,X[ i ] [ ’ s t r i p e s i z e ’ ] ) )
13 Make File ( t f i l e )
14 E x e c u t e d e f a u l t s e t t i n g (X[ i ] , op , t f i l e )
15 Def bandwidth . append ( parseDarshanFi le ( d f i l e ) )
16 R e m o v e t a r g e t f i l e s ( t f i l e , d f i l e )
17
18 # Auto−tune s e t t i n g s and run SEG−Y IO or Sor t ing
19 t f i l e , d f i l e = Darshan and Lust re Set t ings ( op , H1
20 ,H2 ,X[ i ] [ ’ s t r i p e c o u n t ’ ] ,X[ i ] [ ’ s t r i p e s i z e ’ ] ) )
21 Make File ( t f i l e )
22 AutoTuneAndRunSegYOp(X[ i ] , op , t f i l e , model path )
23 Tuned bandwidth . append ( parseDarshanFi le ( d f i l e ) )
24 R e m o v e t a r g e t f i l e s ( t f i l e , d f i l e )
25
26 Old bandwidths . append ( s t a t i s t i c s . mean( Def bandwidth )
27 New bandwidths . append ( s t a t i s t i c s . mean( Tuned bandwidth )
28 i f ( New bandwidths [ i ] > Old bandwidths [ i ] ) : C IM += 1
29
30 mean def bandwidth = s t a t i s t i c s . mean( Old bandwidths )
31 mean tuned bandwidth = s t a t i s t i c s . mean( New bandwidths )
32 Percentage improvement = ( mean tuned bandwidth −
33 mean def bandwidth ) / mean def bandwith ∗ 100 .0
34 per IMP cases = C IM / N ∗ 100 .0
35 Max tuned bandwidth = max( New bandwidths )
36 Max def bandwidth = max( Old bandwidths )
37 Min tuned bandwidth = min( New bandwidths )
38 Min def bandwidth = min( Old bandwidths )
39 Median tuned bandwidth = s t a t i s t i c s . median ( New bandwidths )
40 Median def bandwidth = s t a t i s t i c s . median ( Old bandwidths )
41 Stdev tuned bandwidth = numpy . stdev ( New bandwidths )
42 Stdev def bandwidth = numpy . stdev ( Old bandwidths )
43 Var tuned bandwidth = Stdev tuned bandwidth ∗∗2
44 Var default bandwidth = Stdev def bandwidth ∗∗2
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Table 7.8: Default SEG-Y Sorting Configurations Test Cases to Auto-tune.

Parameters Default Settings
Number of MPI nodes 16,8,4
MPI processes on each node 16,8,4
Stripe count 16,8,4
Stripe size (MiBs) 512,1024,2048
Number of traces 4096,8192,16384
Samples per trace 4096,8192,16384
IO operation contiguous read/write
Unsorted order uniform,random,reverse

results are mainly comprises of two parts: ANNs Performance Analysis and Auto-tuning
Results Analysis

7.4.1 ANNs Performance Analysis

Being the prediction accuracy as one of the metric used to compare the performance of
ML models in previous couple of studies [17, 21, 23]. Therefore, it is used in this research
and how it is affected by variation in hidden layers configuration of nodes. In this section,
the impact of changing hidden layers nodes is shown on bandwidth prediction accuracy
of ANN models for all SEG-Y operations.

For testing the models, the IO bandwidth data from 20% of benchmarks results as
the testing set, are re-scaled to original values. Each model is loaded back in memory at
an instance to predict and re-scale the bandwidth values. Then, the prediction accuracy
has been measured for all models, using the following equations:

Let X = testing set which is the 20% of complete benchmarks data set.

Let y = actual bandwidth values set against X configuration settings.

r = model(X ) gives all the predicted values.

Prediction Accuracy = 100.0− 1

n

n∑
i=0

∣∣∣∣∣(yi − ri)

yi

∣∣∣∣∣× 100.0%,

where y and r are actual and predicted n number of total bandwidth values, respectively,
and i is the i th row of X , y and r . Therefore, yi is the i th actual bandwidth value and ri
is the i th predicted bandwidth value. This is computed by running model() on Xi the i th

configuration parameters values set.

7.4.1.1 SEG-Y IO ANNs Prediction Evaluation

The Figure 7.3 shows the trend of prediction accuracy changes with increasing the number
of nodes in the ANNs hidden layers, denoted as (h1,h2). For SEG-Y READ operation
predictions, the accuracy is as low as closer to 39.5% with minimum nodes configuration
(8,4). The accuracy takes a significant notable increase upto 86.5% when the nodes are
just doubled to (16,8). Afterwards, it is insignificantly increased and then almost constant
around ≈95% till the nodes reached to (256,128) nodes configuration. In short, it is safe
to conclude hidden nodes equal to or above (32,16) nodes should be ideal as far as just the
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predictions are concerned. In later, model selection can be more specific after analyzing
auto-tuning results.

For SEG-Y WRITE operation predictions, the accuracy starts from 65.5% as a mini-
mum value for (8,4) nodes ANN. It makes ≈3% increase accuracy to reach around 68.2%
when nodes configuration is doubled as in case of (16,8) nodes. Switching to (32,16)
nodes, it gives notable increase to 83.9% of accuracy. Afterwards, it is gradually increased
from ≈87% to 89% as the nodes configuration is changed from (64,32) to (256,128). By
analyzing the line gradient, it can be expected that accuracy becomes constant after
switching to greater nodes configuration than (256,128). Currently, in this scenario the
most suitable ANN for SEG-Y WRITE predictions is one with (256,128) nodes, as it is
yielded to maximum accuracy value. However, after analyzing the auto-tuning results
it can be more clear to choose the most suitable ANN for auto-tuning and optimizing
SEG-Y WRITE operations.

The SEG-Y READ bandwidth prediction accuracy ranges from 39.5% to 96% approx-
imately whereas, for WRITE operation, it ranges from 65.5% to 89.1%, as mentioned in
Table 7.9. The Figures 7.4, 7.5 depict the bandwidth predictions against actual values
of all the 12 ANN models for SEG-Y IO READ/WRITE operations. Each graph in
the figures, represents a specific benchmark and operation type, and hidden layers nodes
configuration used in an ANN model. It can be noticed that predictions of ANNs with
fewer hidden layer nodes are less likely to follow the actual changing bandwidth pattern
as compared to those ANNs with higher hidden layer nodes. The reason is decreased
prediction accuracy with fewer hidden layer nodes.

Figure 7.3: SEG-Y IO ANNs Prediction Accuracy.
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Table 7.9: SEG-Y IO Prediction Accuracy values.

SEG-Y IO Operation ANNs
8,4 16,8 32,16 64,32 128,64 256,128

READ 39.5 86.5 93.5 95.4 94.7 96.0
WRITE 65.5 68.2 83.9 87.1 88.4 89.1

Figure 7.4: SEG-Y IO READ Predictions.

7.4.1.2 SEG-Y file sorting ANNs Prediction Evaluation

The Figure 7.6 shows the trend of SEG-Y file sorting bandwidth prediction accuracy
which changes with increasing the number of hidden layers nodes. For SEG-Y file sorting
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Figure 7.5: SEG-Y IO WRITE Predictions.

with contiguous READ operation predictions, where the WRITE operation is non-

contiguous, it starts with ≈75% with the least nodes configuration (8,4). Then it takes
slight increase of 3% to reach almost 78% accuracy when nodes double to (16,8). After-
wards, a slight notable increase to ≈87% and 90% when switch to (32,16) and (64,32)
nodes, respectively. Onward, it keeps almost constant accuracy around 90% till (256,128)
nodes configuration. It is conveniently visible that any ANN model with equal to or above
(64,32) nodes should be ideal as far as just the predictions are concerned. However, model
selection can be more specific after analyzing auto-tuning results.

For SEG-Y sorting by contiguous WRITE operation predictions for file sorting,
where READ unsorted file is non-contiguous, the accuracy starts from around 50% as a
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minimum value for (8,4) nodes ANN. It makes a significant notable increase in accuracy
till (64,32) nodes from almost 70 to 90%. Afterwards, it remain around 90% accuracy
value till the last (256,128) configuration of hidden layers nodes. Again, it can be clearly
seen that ANN model with equal to or above (64,32) nodes are ideal from only concern
of predictions. The specific model selection would be possible after the analysis of auto-
tuning SEG-Y file sorting operations.

The SEG-Y sorting by contiguous READ operation prediction accuracy ranges from
75.3% to 90.6% whereas, for contiguous WRITE operation, it ranges from 50% to 92.2%,
as mentioned in Table 7.10. The Figures 7.7 and 7.8 depict the bandwidth predictions
against actual values of all the 12 ANN models for SEG-Y file sorting operations. Each
graph in figures, represents a specific benchmark and operation type, and hidden layers
nodes configuration used in an ANN model. It can be noticed again that predictions
of ANNs with fewer hidden layer nodes are less likely following the actual changing
bandwidth pattern as compared to the ANNs with higher hidden layer nodes. The reason
is again decreased prediction accuracy with fewer hidden layer nodes.

Figure 7.6: SEG-Y file sorting ANNs Prediction Accuracy.

Table 7.10: SEG-Y file sorting Prediction Accuracy values.

SEG-Y Sort Operation ANNs
8,4 16,8 32,16 64,32 128,64 256,128

contiguous READ 75.3 78.2 87.1 90.1 90.6 90.5
contiguous WRITE 50.0 69.9 85.3 90.1 89.8 92.2
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Figure 7.7: SEG-Y Sorting Contiguous READ Predictions.

7.4.1.3 Runtime Cost Analysis for New Configurations selection

As the method in Listing 7.3, runs brute force to check all possible combinations to select
new configuration settings for auto-tuning therefore, its runtime cost is also analysed.
The Line 29 in Listing 7.3, runs the ANN feed forward propagation pass to predict the
value using model(X), over several iterations depending on an operation type. In case
of ANNs used in this research, there are three sub-passes involved in a single forward
propagation pass: 1) input layer to hidden layer 1, 2) hidden layer 1 to hidden layer 2 and
finally 3) hidden layer 2 to output layer. By considering the ANN with maximum hidden
layers nodes (256 and 128), the Table 7.12 presents the working of these three sub-passes.
The details in the table also contain the number of computations having multiplications
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Figure 7.8: SEG-Y Sorting Contiguous WRITE Predictions.

(Mul.) and additions (Add.) involved during a whole single pass. The first sub-pass runs
the ≈3584 computations of multiplications and additions overall. Similarly, the second
sub-pass runs ≈65536 computations. This is the most expensive sub-pass by memory
and CPU consumption wise. The reason is the hidden layers and their weights matrices
have the most number of nodes and memory allocation in a single pass, respectively.
Finally, the third sub-pass runs 128 multiplications and 128 additions which makes 256
computations in total. By adding all the computations of the sub-passes it makes total
of ≈69376 computations in a single ANN’s feed forward propagation pass to predict a
bandwidth value.

Keeping the computations in view, the new parameters values selection for SEG-Y
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Table 7.11: Matrices Detail and Memory Space in a Feed Forward Propagation Pass of
an ANN.

Matrix Description Memory Usage (bytes)
I7×1 7 configuration values to input layer nodes 7× 1× 4 = 28
H1256×1 256 hidden layer-1 nodes values 256× 1× 4 = 1024
W 1256×7 Weights matrix between I and H1 layers 256× 7× 4 = 7168
H2128×1 128 hidden layer-2 nodes values 128× 1× 4 = 512
W 2128×256 Weights matrix between H1 and H2 layers 128× 256× 4 = 131072
O1×1 1 output value as predicted IO bandwidth 1× 1× 4 = 4
W 31×128 Weights matrix between H2 and O layers 1× 128× 4 = 512

Memory space used in total is: 140320 bytes ≈ 137 KiB

Table 7.12: Sub-passes of Feed Forward Propagation Pass for a bandwidth prediction.

Sub-pass# Equation Number of Computations
1 H1256×1 = W 1256×7 × I7×1 (7Mul . + 7Add .)× 256 = 3584
2 H2128×1 = W 2128×256 × H1256×1 (256Mul . + 256Add .)× 128 = 65536
3 O1×1 = W 31×128 × H2128×1 (128Mul . + 128Add .)× 1 = 256

Total computations are ≈ 69376 per ANNs pass

READ operation, runs a forward propagation pass 2 times. This makes ≈138,752 of the
total executing instructions. Whereas, the new parameters selection for SEG-Y WRITE
operation, runs 40 (2×4×5) times the execution of feed forward propagation pass. This
makes ≈2,775,040 computations in total. In case of SEG-Y file sorting with contiguous

READ/WRITE, the new parameters values selection for both operations, runs a forward
propagation pass 20 (4×5) times. This makes a total of ≈1,387,520 computations.

To analyze how quick the million of computations can CPU run, depends on the usage
of memory. The Table 7.11 describes the layout of matrices and their memory usage in
a forward propagation pass. The matrices for an ANN model are created with default
float32 data type, which means each location of a matrix contains 32-bit or 4-bytes of
floating point number. The total matrices used are 7 in a single pass which can be seen
from the Table 7.11. By adding all the bytes of the 7 matrices, it makes ≈140320 bytes
or ≈137 KiB of total memory required by an ANN model. If a model would be generated
with 64-bit or 8 bytes of double precision decimal memory, then the required memory
would be doubled to ≈274 KiB. In either case, this size of memory can be easily fit into
the cache RAM. Since the matrices are conveniently cacheable, the execution of millions
of instructions takes negligible execution time by ≈ 10e−4 seconds. This runtime tested
several times on a KAY’s [51]compute node, includes the loading time of the required
libraries. However, the first time program loading can take around 30 seconds. Later on,
it runs by less than a second as just mentioned.

In order to keep simplicity and convenience, the code logic for parameters selection in
Listing 7.3 is written in python script to execute using PyTorch module. This interfaces
with the caller MPI program in C++ to apply the new configuration settings and run
the SEG-Y operation, stated in Listing 7.4. Alternatively, the parameters selection could
be embedded in a single MPI program with using C++ version of PyTorch library. This
can be complex than a python script however, it could be faster due to removal of the
first time program loading step.
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7.4.2 Auto-tuning Results Analysis

In this section, the series of auto-tuning results of improvements are presented in terms
of bandwidth values with the statistical analysis against all the ANNs used. As stated
earlier, to choose a specific ANN for a SEG-Y operation optimization, the auto-tuning
results must be analyzed, using all the ANNs separately. The Table 7.13 presents the
formal definitions of all the statistical metrics used in the experiment, and later being
referred in the tables.

The results tables presented in this section are for SEG-Y READ, WRITE and their
combined IO. Similarly, the tables are also presented for SEG-Y file sorting by contigu-

ous READ, contiguous WRITE and their combined sorting bandwidth results. The
statistics of combined IO and sorting results are computed by merging the lists of band-
width values results of their corresponding READ and WRITE operations. This has been
carried out against all ANNs used by programming the code logic. However, the com-
bined prediction accuracy READ/WRITE results has been computed by the following
equation:

Combined Accuracy =
Ar + Aw

2
,

where Ar and Aw are prediction accuracy percentage values of READ and WRITE ANN
models, respectively.

It should be noted that the metrics presenting bandwidth values are in the unit of
MiB/s and the multiple of 10x represented as ”ex” in the tables. For example, if the
value is 2.54 written in a cell and its corresponding row has a metric represented in the
left most column with (e5 MiB/s), this means the value is 2.54 × 105 MiB/s or 2.54e5
MiB/s, which are equivalent to each other.

7.4.2.1 SEG-Y READ Auto-tuning Results

In this section, the auto-tuning results of improvements are presented for SEG-Y READ
operation test cases, as mentioned in the Table 7.14. According to the results, the auto-
tuning design has resulted in majority of improvements in the test cases. The number of
improved test cases ranges from 65.2% to 87.2%. In case of most of the ANNs (out of 6),
the improved test cases are above 81%. The overall bandwidth improvement ranges in
35.3 % to 97.3%. The worst case of ANN is with (16,8) hidden layers nodes configuration
where the lowest improved test cases and overall bandwidth improvement can be noticed.
This is regardless to its significant prediction accuracy. By excluding this case, majority
of ANNs show bandwidth improvement above 95% whereas, rest of them has 84.6% and
87.8%. It can also be seen that the overall statistics values of tuned mean, maximum,
minimum and median bandwidth values are also significantly greater than their default
values. However, the standard deviation and variance values are somehow comparable
with most of the ANNs. The auto-tuning of SEG-Y READ operation has significantly
optimized the bandwidth performance, is evident from these results. This is further
supported by Figure 7.9, which shows the graph plots of auto-tuned bandwidth values
against the default values, for each hidden layers (h1,h2) nodes configuration of the ANN
models.

It is visible from the Table 7.14 that the improvements do not consistently increase
with increasing the number of hidden layers nodes or prediction accuracy. However, the
most suitable ANN for the SEG-Y READ operation scenario is apparently the one with
(64,32) hidden layers nodes. This ANN has shown maximum test cases improved by
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87.2% and optimized bandwidth performance with 97.3%. Therefore, specifically this
hidden layers nodes configuration can be chosen to auto-tune and execute SEG-Y READ
operations by the system.

Figure 7.9: SEG-Y IO READ Improvements.

7.4.2.2 SEG-Y WRITE Auto-tuning Results

In this section, the auto-tuning results of improvements are presented for SEG-Y WRITE
operation test cases, as mentioned in the Table 7.15. According to the results, the auto-
tuning design has resulted in majority of improvements in the test cases. The number of
improved test cases ranges from 86.1% to 96.7%. In case of most of the ANNs (out of
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6), the improved test cases are above 90%. The overall bandwidth improvement ranges
in 475.5% to 602.6%, which indicates very significant optimization for SEG-Y WRITE
operation. The worst case of ANN is with (128,64) hidden layers nodes configuration
where the lowest improved test cases and overall bandwidth improvement can be no-
ticed. This is regardless to its significant second highest prediction accuracy in all ANNs
configruation. By excluding this case, majority of ANNs show bandwidth improvement
above 580% whereas, rest of them has 556.0% and 558.2%. It can also be seen that the
overall statistics of tuned mean, maximum, median, standard deviation and variance in
bandwidth values are also significantly greater than their default values. However, the
minimum bandwidth values are somehow comparable with most of the ANNs. The auto-
tuning of SEG-Y WRITE operation has shown very significant increase in bandwidth
performance by optimization, is evident from these results. This is further supported by
Figure 7.10, which shows the graph plots of auto-tuned bandwidth values against the
default values, for each hidden layers (h1,h2) nodes configuration used in ANN models.

It is visible from the Table 7.15 that the improvements do not consistently increase
with increasing the number of hidden layers nodes or prediction accuracy. However, the
most suitable ANN for SEG-Y WRITE operation scenario is apparently the one with
(256,128) hidden layers nodes. This ANN has maximum nodes in this scenario. It has
shown maximum test cases improved by 96.7% and optimized bandwidth performance
with 602.6%. Therefore, specifically this hidden layers nodes configuration can be chosen
to auto-tune and execute SEG-Y WRITE operations by the system. The second ideal case
can be an ANN with (8,4) hidden layers nodes. It shows closely comparable bandwidth
improvement by 602.4%, despite having lowest prediction accuracy and hidden nodes.

7.4.2.3 Combined SEG-Y IO Auto-tuning Results

In this section, the combined auto-tuning results of improvements are presented for SEG-
Y IO operation test cases. In the HPC cluster systems, the applications are use to run
both READ and WRITE operations in sequence or parallel. Therefore, it is worth noting
the combined READ/WRITE improvements, as mentioned in the Table 7.16. According
to these results, first of all, the combined prediction accuracy has been increased by
increasing the hidden layers nodes in the ANN model. This ranges from 52.5% to 92.5%.
The improved test cases do not consistently increase but yield percentage from 79.7%
to 91.7%, where (256,128) nodes show maximum improvements. In most of ANNs, the
improved test cases are above 85%. However, the overall bandwidth improvement ranges
from 50.9% to 108.8%, which is significant, and (64,32) nodes have shown maximum
percentage of improvement. The worst case of ANN is with (16,8) hidden layers nodes
configuration where the lowest improved test cases and overall bandwidth improvement
can be noticed. This is regardless to its significant combined prediction accuracy. By
excluding this case, all other ANNs have shown bandwidth improvement above 99.0%. It
can also be seen that the overall statistics of tuned mean, maximum, median, standard
deviation and variance in bandwidth values are also significantly greater than their default
values. However, the minimum bandwidth values are somehow comparable in most of
the ANNs. The combined auto-tuning results indicate that the SEG-Y IO operations has
been significantly optimized in bandwidth performance, is clearly evident.

To choose the most suitable ANN for the series of SEG-Y IO READ/WRITE oper-
ations in the HPC cluster, the one with (64,32) hidden layers nodes, is apparently the
best. This is because it has shown the maximum overall SEG-Y IO bandwidth improve-
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ment with 108.8%. Therefore, specifically this hidden layers nodes configuration can be
chosen to auto-tune and execute the series of SEG-Y IO operations in an application by
the system. The second ideal case can be an ANN with (32,16) hidden layers nodes, as
it shows closely comparable bandwidth improvement of 108.7%, where the percentage of
improved cases is a bit greater.

7.4.2.4 SEG-Y Sorting via contiguous READ Auto-tuning Results

In this section, the auto-tuning results of improvements are presented for SEG-Y file
sorting via contiguous READ operation test cases, as mentioned in the Table 7.17.
According to the results, the auto-tuning design has resulted in majority of improvements
in the test cases. The number of improved test cases ranges from 74.0% to 91.7%. In
case of most of the ANNs (out of 6), the improved test cases are above 76%. The overall
bandwidth improvement ranges in 130.9% to 283.9%, which indicates very significant
optimization in this SEG-Y sorting operation. The worst case of ANN is with (8,4) hidden
layers nodes configuration where the lowest improved test cases and overall bandwidth
improvement can be noticed. By excluding this case, majority of ANNs show bandwidth
improvement above 158% whereas, rest of them has 141.6% and 156.6%. It can also be
seen that the overall statistics of tuned mean, maximum, median, standard deviation
and variance in bandwidth values are also significantly greater than their default values.
However, the minimum bandwidth values are somehow lesser in all the ANNs cases.
The auto-tuning of SEG-Y sorting with contiguous READ operation has shown very
significant increase in bandwidth performance by optimization, is evident from these
results. This is further supported by Figure 7.11, which shows the graph plots of auto-
tuned bandwidth values against the default values, for each hidden layers (h1,h2) nodes
configuration used in ANN models.

It is visible from the Table 7.17 that the improvements do not consistently increase
with increasing the number of hidden layers nodes or prediction accuracy. However,
the most suitable ANN for SEG-Y WRITE operation scenario is apparently the one
with maximum hidden layers nodes (256,128). This ANN has shown maximum test
cases improved by 91.7% and optimized bandwidth performance with 283.9%. Therefore,
specifically this hidden layers nodes configuration can be chosen to auto-tune and execute
SEG-Y sorting via contiguous READ operations by the system.

7.4.2.5 SEG-Y file sorting via contiguous WRITE Auto-tuning Results

In this section, the auto-tuning results of improvements are presented for SEG-Y file
sorting with contiguous WRITE operation test cases, as mentioned in the Table 7.18.
According to the results, the auto-tuning design has resulted in majority of improvements
in the test cases. The number of improved test cases ranges from 67.2% to 92.2%. In
case of most of the ANNs (out of 6), the improved test cases are above 81%. The overall
bandwidth improvement ranges in 76.3% to 221.8%, which indicates very significant op-
timization for SEG-Y sorting with contiguous WRITE operation. Surprisingly, a model
with lowest hidden layers nodes of (8,4) has shown maximum improved test cases about
92.2 %, as compare to other models. The worst case of ANN is with (64,32) hidden
layers nodes configuration where the lowest improved test cases and overall bandwidth
improvement can be noticed. This is regardless to its significant prediction accuracy. By
excluding this case, majority of ANNs show bandwidth improvement above 213%. It can
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also be seen that the overall statistics of tuned mean, maximum, median, standard de-
viation and variance in bandwidth values are also significantly greater than their default
values. However, the minimum bandwidth values are somehow comparable. The auto-
tuning of SEG-Y file sorting via contiguous WRITE operation has shown very significant
increase in bandwidth performance by optimization, is evident from these results. This is
further supported by Figure 7.12, which shows the graph plots of auto-tuned bandwidth
values against the default values, for each hidden layers (h1,h2) nodes configuration used
in ANN models.

It is visible from the Table 7.18 that the improvements do not consistently increase
with increasing the number of hidden layers nodes or prediction accuracy. However,
the most suitable ANN for SEG-Y sorting with contiguous WRITE operation scenario
is apparently the one with maximum (256,128) hidden layers nodes. This ANN has
shown second highest test cases improved by 91.4% but maximum optimized bandwidth
performance of 221.8%. Therefore, specifically this hidden layers nodes configuration
can be chosen to auto-tune and execute SEG-Y file sorting via contiguous WRITE
operations by the system.

7.4.2.6 Combined SEG-Y file sorting Auto-tuning Results

In this section, the combined auto-tuning results of improvements are presented for SEG-
Y file sorting operations test cases. The user of ExSeisDat library can run series of
SEG-Y file sorting with both contiguous READ and contiguous WRITE in sequence
or parallel, on HPC cluster system. Therefore, it is again worth noting the combined file
sorting improvements, as mentioned in the Table 7.19. According to these results, first of
all, the combined prediction accuracy has been increased by increasing the hidden layers
nodes in the ANN model. This ranges from 62.7% to 91.4%. The improved test cases
do not consistently increase but yield percentage from 71.9% to 91.6% where (256,128)
nodes show maximum improvements. In most of ANNs, the improved test cases are above
81%. However, the overall bandwidth improvement ranges from 98.4% to 237.4%, which
is very significant, and (256,128) nodes have shown maximum bandwidth improvement.
The worst case of ANN is with (64,32) hidden layers nodes configuration where the
lowest improved test cases and overall bandwidth improvement can be noticed. This is
regardless to its significant combined prediction accuracy. By excluding this case, all
other ANNs have shown bandwidth improvement above 196.0%. It can also be seen that
the overall statistics of tuned mean, maximum, median, standard deviation and variance
in bandwidth values are also significantly greater than their default values. However, the
minimum bandwidth values are somehow lesser in all the ANNs cases. The combined
auto-tuning results indicate that the SEG-Y file sorting operations has been significantly
optimized in bandwidth performance, is clearly evident.

To choose the most suitable ANN for the series of SEG-Y file sorting operations in
the HPC cluster, the one with maximum (256,128) hidden layers nodes, is apparently
the best. This is because it has shown the maximum overall SEG-Y IO bandwidth
improvement of 237.4% and test cases improved by 91.6%. Therefore, specifically this
hidden layers nodes configuration can be chosen to auto-tune and execute the series of
SEG-Y IO operations in an application by the system.
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7.5 Discussion

Summarizing the work done in this research, the results presented in the section earlier,
are the prediction accuracy evaluation to the auto-tuning analysis. This has been carried
out for all individual SEG-Y IO and file sorting types of operations in ExSeisDat on HPC
cluster, subsequently, leading to combined statistics. The numerics show the impact of
variation in ANNs on both prediction accuracy and auto-tuning results. This leverages
to choose a specific ANNs hidden layers nodes configuration for having the maximum
possible bandwidth performance of SEG-Y data processing. The auto-tuning involves
certain parameters responsible for predicting the bandwidth performance. Nevertheless,
the tunable parameters can be only tempered at the runtime, depending on the type of
SEG-Y data operation executing i.e. the file access pattern, file striping configurations,
etc. Consequently, the certain tunable parameters are identified for a type of SEG-Y
operation and value settings separately.

As per past research, the performance prediction and auto-tuning over various param-
eters have been the key elements in research to improve IO [14, 15, 16, 17]. Since, some
parameters can be tuned prior to IO execution, the predictive modelling for SEG-Y data
processing has been one of the crucial requirement in this scenario, towards auto-tuning
design. Consequently, the best ML approach towards predictive modelling have been
ANNs for its significant forecasting capability as per couple of researches [23, 19, 21, 24].

Previously in chapter 5 of the thesis, the main parameters in regards to MPI-IO,
LFS and SEG-Y file format were identified to generate benchmarks bandwidth profiling
data. This data was later used for the predictive modelling of ANNs with (256,128)
hidden layers nodes. However, this research has conducted re-execution of benchmarks
profiling on the identified tunable and non-tunable configurations in Table 7.1 and 7.2.
Subsequently, the ANNs mentioned in Table 7.4 have been trained with various less
hidden layers node configurations. This is to predict bandwidth for all the SEG-Y IO
and file sorting operations, using all these ANNs.

The ANNs have different prediction accuracy values for SEG-Y bandwidth data,
depending on the ANNs hidden layers nodes (h1,h2) configuration. Then the con-
structed design of auto-tuning strategy, using the ANNs predictions, is applied on the
default test case settings of the SEG-Y operations, as mentioned in Table 7.7 and
7.8. This has been done to get the statistical data of bandwidth performance over
default settings and the corresponding auto-tuned settings, using all the ANNs. Sub-
sequently, to observe the the impact of (h1,h2) configuration on the improvements in
bandwidth performance. The steps to collect the statistical data is comprised of three
main functionalities, namely: New Configs(), AutoTuneAndRunSegYOp() and Statis-

tics Collection Process(). They are indicated in the Figure 7.1 as part of the flow of
this research, and also elaborated by Listings 7.3, 7.4 and 7.5.

In the experiment results, first the impact of (h1,h2) nodes configuration on prediction
accuracy is discussed for both SEG-Y IO and file sorting operations ANNs, as shown in
Figure 7.3 and 7.6. It can be examine that prediction accuracy notably increases from
(8,4) to (32,16) nodes configuration. Afterwards, it is either very gradually increasing or
almost constant till (256,128) nodes configuration. This is generally the pattern for both
SEG-Y operations ANNs predictive modelling. Afterwards, it is followed by the runtime
cost analysis of the bandwidth predicition by ANN, which is computed by the feed forward
propagation pass. It is observed that the parameters selection using New Configs()

method, mostly takes negligible time in the unit of 10−4 seconds.
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Onward, the improvements in the overall bandwidth performance are analyzed, which
occurred during auto-tuning process of all SEG-Y operations. The SEG-Y READ,
WRITE and combined IO auto-tuning yield to maximum 97.3%, 602.6% and 108.8%
of the overall bandwidth performance improvement, respectively. Similarly, SEG-Y file
sorting via contiguous READ, contiguous WRITE, and their combined sorting results,
yield to maximum 283.9%, 221.8% and 237.8% of improvements in the overall bandwidth
performance. In addition to this, it is also discussed that which ANN can be appropriate
from case to case in regard to SEG-Y operation type. In general, it has been demonstrated
in this research, the advantage of adaptability over particular configuration settings at
the runtime on the basis of ML predictions.

7.6 Conclusion

This research examined the improvements of auto-tuning over SEG-Y IO and file sort-
ing operations for ExSeisDat, based on the IO bandwidth predictions by ANNs. It has
been demonstrated that the adaptable and efficient IO optimization technique as the
key requirement, that extends the work presented in chapter 5. The approach presented
aligns with recent research works emphasizing on the challenges in area of overcoming
poor IO performance in HPC. The recent works are mostly carried out via ML pre-
diction over certain parameters, subsequently auto-tuning them in different scenarios
[14, 15, 16, 17, 193, 18, 24, 21, 82, 83]. Consequently, the indicated three key contribu-
tions in this research are: 1) the SEG-Y IO and file sorting operations auto-tuning design
logic based on the ANNs bandwidth performance prediction, 2) the impact on prediction
accuracy by changing hidden layers nodes configuration, and 3) statistical analysis of
default and auto-tuned configuration test settings, over specified ANNs. By witnessing
the results, the maximum overall bandwidth improved by 97.3%, 602.6% and 108.8% for
SEG-Y READ, WRITE and combined, respectively. For SEG-Y file sorting by contigu-
ous READ, WRITE and combined sorting results, the overall bandwidth performance
improved by 283.9%, 221.8% and 237.8%, respectively. As part of this research, it has
been demonstrated that the overall advantage of adaptive technique for SEG-Y opera-
tions optimization based on the ANNs prediction. As evident from the results, these
contributions have meaningful benefits in terms of SEG-Y (Seismic) Data IO and Sorting
optimization. Thus, paving the way for the efficient IO throughput for an ExSeisDat
library based application at runtime within an HPC cluster.

However, this work can be further extended by applying reinforcement learning over
the ANNs and auto-tuning design, which is not the part of this research. This can
enable the optimization of the SEG-Y operations at runtime without requiring the prior
large time consuming steps of the benchmarks profiling and ML model training process.
Furthermore, the different performance measures can be analyzed with varying hidden
layers nodes configuration of the ANNs.
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Table 7.13: Description of Statistical Metrics used.

Metric Explanation
Accuracy(%) Prediction accuracy of an ANN model with

specific hidden layers nodes (h1,h2), in terms
of percentage.

Improvements Number of improved test cases when auto-
tuning is applied to default test settings.

Improvements(%) Percentage of improved test cases when auto-
tuning is applied to default test settings.

Default Mean Mean bandwidth value of default configura-
tion test settings execution.

Tuned Mean Mean bandwidth value of auto-tuned config-
uration settings execution.

Default Max. Maximum bandwidth value captured during
the execution of default configuration test
settings.

Tuned Max. Maximum bandwidth value captured dur-
ing the execution of auto-tuned configuration
test settings.

Default Min. Minimum bandwidth value captured during
the execution of default configuration test
settings.

Tuned Min. Minimum bandwidth value captured during
the execution of auto-tuned configuration
test settings.

Default Med. Median bandwidth value in all the default
test cases.

Tuned Med. Median bandwidth value in all the auto-
tuned test cases.

Default Std.
dev.

Standard Deviation of bandwidth values
from the mean value, in the default test
cases.

Tuned Std. dev. Standard Deviation of bandwidth values
from the mean value, in the auto-tuned test
cases.

Default Variance Variance of bandwidth values in the default
test cases.

Tuned Variance Variance of bandwidth values in the auto-
tuned test cases.

Bandwidth Im-
provement(%)

Overall percentage bandwidth improvement
in Tuned Mean bandwidth value from the
Default Mean bandwidth value.
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Table 7.14: SEG-Y READ Improvements.

Metrics ANNs
8,4 16,8 32,16 64,32 128,64 256,128

Accuracy(%) 39.5 86.5 93.5 95.4 94.7 95.9
Improvements 1194.0 950.0 1255.0 1271.0 1229.0 1265.0
Improvements(%) 81.9 65.2 86.1 87.2 84.3 86.8
Default Mean (e4 MiB/s) 6.55 6.51 6.70 6.58 6.67 7.20
Tuned Mean (e5 MiB/s) 1.21 0.88 1.31 1.30 1.30 1.35
Default Max. (e5 MiB/s) 3.67 3.74 3.61 3.28 3.92 3.94
Tuned Max. (e5 MiB/s) 3.85 3.99 4.22 3.76 4.20 4.35
Default Min. (e2 MiB/s) 1.26 2.86 2.30 2.28 2.54 2.81
Tuned Min. (e2 MiB/s) 2.07 3.17 136.0 131.0 7.90 40.1
Default Med. (e4 MiB/s) 2.47 2.42 2.54 2.49 2.58 2.67
Tuned Med. (e5 MiB/s) 1.19 0.75 1.25 1.22 1.24 1.34
Default Std. dev. (e4 MiB/s) 7.03 6.91 7.26 7.04 7.10 7.70
Tuned Std. dev. (e4 MiB/s) 7.37 8.39 6.74 6.60 6.56 7.67
Default Variance (e9) 4.94 4.78 5.27 4.96 5.04 5.93
Tuned Variance (e9) 5.43 7.04 4.54 4.35 4.31 5.88
Bandwidth Improvement(%) 84.6 35.3 96.0 97.3 95.2 87.8

Table 7.15: SEG-Y WRITE Improvements.

Metrics ANNs
8,4 16,8 32,16 64,32 128,64 256,128

Accuracy(%) 65.6 68.3 84.0 87.1 88.5 89.1
Improvements 1371.0 1373.0 1353.0 1298.0 1256.0 1410.0
Improvements(%) 94.0 94.2 92.8 89.0 86.1 96.7
Default Mean (e3 MiB/s) 1.92 1.92 1.89 1.70 1.71 2.22
Tuned Mean (e4 MiB/s) 1.35 1.31 1.24 1.12 0.98 1.56
Default Max. (e3 MiB/s) 5.76 6.02 5.71 5.76 6.10 7.04
Tuned Max. (e4 MiB/s) 3.58 3.55 3.59 3.63 3.55 3.71
Default Min. (e2 MiB/s) 2.30 2.66 3.00 0.88 1.79 3.77
Tuned Min. (e2 MiB/s) 1.06 1.92 0.72 1.31 0.97 5.72
Default Med. (e3 MiB/s) 1.33 1.32 1.31 1.18 1.18 1.46
Tuned Med. (e4 MiB/s) 1.15 1.17 1.11 0.92 0.75 1.55
Default Std. dev. (e3 MiB/s) 1.28 1.30 1.27 1.21 1.24 1.52
Tuned Std. dev. (e3 MiB/s) 9.27 9.07 8.63 9.09 9.22 9.91
Default Variance (e6) 1.65 1.70 1.62 1.45 1.54 2.32
Tuned Variance (e7) 8.60 8.22 7.44 8.26 8.51 9.82
Bandwidth Improvement(%) 602.4 581.3 558.2 556.0 475.5 602.6

160



chapter 7 7.6. CONCLUSION

Figure 7.10: SEG-Y IO WRITE Improvements.
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Table 7.16: Combined SEG-Y IO Improvements.

Metrics ANNs
8,4 16,8 32,16 64,32 128,64 256,128

Accuracy(%) 52.5 77.4 88.7 91.2 91.6 92.5
Improvements 2565.0 2323.0 2608.0 2569.0 2485.0 2675.0
Improvements(%) 88.0 79.7 89.4 88.1 85.2 91.7
Default Mean (e4 MiB/s) 3.37 3.35 3.44 3.37 3.42 3.71
Tuned Mean (e4 MiB/s) 6.72 5.06 7.18 7.05 7.00 7.54
Default Max. (e5 MiB/s) 3.67 3.74 3.61 3.28 3.92 3.94
Tuned Max. (e5 MiB/s) 3.85 3.99 4.22 3.76 4.20 4.35
Default Min. (e2 MiB/s) 1.26 2.66 2.30 0.88 1.79 2.81
Tuned Min. (e2 MiB/s) 1.06 1.92 0.72 1.31 0.97 5.72
Default Med. (e3 MiB/s) 4.24 4.30 4.19 3.96 4.11 4.80
Tuned Med. (e4 MiB/s) 2.76 1.57 3.22 3.22 3.19 3.23
Default Std. dev. (e4 MiB/s) 5.90 5.82 6.08 5.92 5.98 6.47
Tuned Std. dev. (e4 MiB/s) 7.51 7.05 7.64 7.57 7.63 8.10
Default Variance (e9) 3.48 3.39 3.70 3.51 3.58 4.18
Tuned Variance (e9) 5.64 4.96 5.84 5.74 5.81 6.56
Bandwidth Improvement(%) 99.3 50.9 108.7 108.8 104.7 103.2

Table 7.17: SEG-Y file sorting with contiguous READ Improvements.

Metrics ANNs
8,4 16,8 32,16 64,32 128,64 256,128

Accuracy(%) 75.3 78.2 87.1 90.1 90.6 90.5
Improvements 1618.0 1712.0 1783.0 1677.0 1667.0 2005.0
Improvements(%) 74.0 78.3 81.5 76.7 76.2 91.7
Default Mean (e3 MiB/s) 1.02 1.02 1.01 0.99 0.97 1.22
Tuned Mean (e3 MiB/s) 2.36 2.63 2.60 2.75 2.35 4.69
Default Max. (e3 MiB/s) 4.47 4.35 4.37 3.96 4.25 4.81
Tuned Max. (e4 MiB/s) 2.00 1.95 2.17 1.97 1.99 2.28
Default Min. (e2 MiB/s) 1.17 2.25 2.23 1.21 1.33 3.01
Tuned Min. (e1 MiB/s) 9.21 5.55 7.00 7.22 5.54 5.40
Default Med. (e2 MiB/s) 7.30 7.40 7.30 7.29 7.22 8.08
Tuned Med. (e3 MiB/s) 1.20 1.46 1.46 1.51 1.31 3.31
Default Std. dev.(e2 MiB/s) 7.17 6.73 6.88 6.56 6.56 8.48
Tuned Std. dev.(e3 MiB/s) 2.61 2.70 2.65 2.88 2.52 4.19
Default Variance (e5) 5.14 4.52 4.73 4.31 4.30 7.19
Tuned Variance (e6) 6.81 7.30 7.04 8.28 6.35 17.6
Bandwidth Improvement(%) 130.9 158.2 156.6 176.8 141.6 283.9
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Figure 7.11: SEG-Y file sorting Improvements via contiguous READ.
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Table 7.18: SEG-Y file sorting with contiguous WRITE Improvements.

Metrics ANNs
8,4 16,8 32,16 64,32 128,64 256,128

Accuracy(%) 50.0 69.9 85.3 90.1 89.8 92.2
Improvements 2016.0 1909.0 1790.0 1469.0 1892.0 2000.0
Improvements(%) 92.2 87.3 81.8 67.2 86.5 91.4
Default Mean (e3 MiB/s) 3.46 3.42 3.18 3.53 3.14 3.65
Tuned Mean (e4 MiB/s) 1.10 1.08 1.02 0.62 0.98 1.17
Default Max. (e3 MiB/s) 8.92 9.08 8.74 9.55 9.15 9.59
Tuned Max. (e4 MiB/s) 4.18 4.22 4.11 4.12 4.14 4.28
Default Min. (e2 MiB/s) 4.51 4.71 2.74 6.50 4.73 5.83
Tuned Min. (e2 MiB/s) 4.15 2.40 2.57 6.05 2.50 4.25
Default Med. (e3 MiB/s) 3.06 3.03 2.73 3.06 2.60 3.37
Tuned Med. (e3 MiB/s) 9.57 9.57 8.39 3.72 8.43 10.1
Default Std. dev. (e3 MiB/s) 1.90 1.87 1.89 2.00 1.87 2.00
Tuned Std. dev. (e3 MiB/s) 8.36 8.57 8.94 6.69 8.22 9.05
Default Variance (e6) 3.59 3.51 3.57 3.98 3.48 4.01
Tuned Variance (e7) 6.99 7.35 7.99 4.48 6.75 8.18
Bandwidth Improvement(%) 216.8 217.3 219.7 76.3 213.7 221.8

Table 7.19: Combined SEG-Y file sorting Improvements.

Metrics ANNs
8,4 16,8 32,16 64,32 128,64 256,128

Accuracy(%) 62.7 74.1 86.2 90.1 90.2 91.4
Improvements 3634.0 3621.0 3573.0 3146.0 3559.0 4005.0
Improvements(%) 83.1 82.8 81.7 71.9 81.4 91.6
Default Mean (e3 MiB/s) 2.24 2.22 2.10 2.26 2.06 2.43
Tuned Mean (e3 MiB/s) 6.66 6.74 6.38 4.49 6.10 8.21
Default Max. (e3 MiB/s) 8.92 9.08 8.74 9.55 9.15 9.59
Tuned Max. (e4 MiB/s) 4.18 4.22 4.11 4.12 4.14 4.28
Default Min. (e2 MiB/s) 1.17 2.25 2.23 1.21 1.33 3.01
Tuned Min. (e1 MiB/s) 9.21 5.55 7.00 7.22 5.54 5.40
Default Med. (e3 MiB/s) 1.49 1.49 1.39 1.49 1.36 1.65
Tuned Med. (e3 MiB/s) 3.62 3.83 3.11 2.43 3.10 5.86
Default Std. dev. (e3 MiB/s) 1.88 1.85 1.79 1.95 1.77 1.96
Tuned Std. dev. (e3 MiB/s) 7.54 7.57 7.60 5.44 7.14 7.88
Default Variance (e6) 3.54 3.42 3.20 3.82 3.13 3.84
Tuned Variance (e7) 5.68 5.73 5.78 2.96 5.10 6.21
Bandwidth Improvement(%) 197.2 203.7 204.5 98.4 196.6 237.4
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Figure 7.12: SEG-Y file sorting Improvements via contiguous WRITE.
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Chapter 8

Summary of Thesis

In this research, the machine learning approach based on ANNs modelling is used to
overcome poor parallel IO performance in the High Performance Computing cluster.
Mainly, the parallel IO data bandwidth is optimized by auto-tuning the parallel lustre
file system parameters with the given set of the Standard MPI IO parameters [8, 13, 7].
This is then extended to the application of seismic data processing with SEG-Y format
which is the ExSeisDat library [4, 1].

Initially, background research is reviewed to motivate the problem and identify the
research questions. For this purpose, the related research has been studied from three
perspectives. The first is the background research reviewed in chapter 2 of the thesis,
is in relation to the area of high performance computing. This extends the discussion
from different parallel programming memory models to the working of parallel IO and
its bandwidth performance issues that arise in super-computing clusters.

Since parallel IO mainly depends on message passing interface-IO standard and lustre
file system, the related research examined points to their specific configuration parameters
that determine the IO performance [9, 10, 11, 12]. This adds up few more parameters
when parallel seismic (SEG-Y) data IO processing comes in the form of an ExSeisDat
user application runs on cluster [4]. This is reviewed and discussed in chapter 3.

Afterwards, chapter 4 reviews background research from third perspective of machine
learning techniques. The research reviewed, leads to the motivation of how to approach
the solution of overcoming IO performance degradation, with the use of machine learning
as a state-of-the-art [96, 14, 15, 16, 17, 18, 21].

By reviewing the related background research, the three research questions have been
formed and addressed in sequence. The first research question RQ1 is: What are the
configurations that determine high bandwidth for parallel IO and seismic data operations?
What is the most suitable technique to accurately predict the changing bandwidth pattern
in basic parallel IO, and ExSeisDat’s parallel seismic data IO and sorting operations?

The RQ1 is addressed in chapter 5. It is demonstrated that the identified configuration
parameters related to message passing interface-IO and the lustre file system influence
the parallel IO bandwidth performance, with the use parallel graph plots [25]. These
parallel plots have not been utilized by any previous state-of-the-art work in relation
to describing the IO performance behaviour over several parameters. The seismic data
parameters have been also taken into consideration for their IO and file sorting operations
performance.

The basic parallel IO and ExSeisDat’s seismic data benchmarking results with respect
to configuration parameters, have supported in formation of those parallel graph plots.
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The same benchmarking results have been used to perform predictive modelling of IO
bandwidth performance behaviour for basic parallel IO, seismic data IO and file sorting
operations. The predictive modelling is executed by artificial neural networks based
machine learning technique. The prediction models are generated against each identified
read/write parallel IO and seismic data operation. This technique has been most suitable
to accurately predict the IO bandwidth against the identified configuration parameters.
As per observation, the prediction accuracy of the models, range in 62.5-96.5% across all
the cases.

Since having the accurate bandwidth prediction models, the next question arises is
that how to optimize the IO bandwidth performance on the basis of predictions of each
operation model. The second research RQ2 targets the basic parallel IO operations based
on the message passing interface-IO, which is: what is the best approach to optimize the
basic parallel IO operations performance?

The chapter 6 addresses the RQ2, by extending the work of chapter 5, in the context
of basic parallel IO operations bandwidth performance. It is demonstrated that an IO
operation performance can be optimized by auto-tuning the related configuration param-
eters on the basis of that operation model predictions, as being a novel approach. The
design of experimental setup starts from re-execution of the parallel IO benchmarks, and
regeneration of the prediction models for read/write operations. The prediction accuracy
is increased to some extent, which is 63% for read bandwidth predictions and ≈79% for
write bandwidth predictions.

Afterwards, the auto-tuning implementation design is mainly discussed. It implements
a brute-force approach to check the predicted bandwidth on all specified possible value
settings of the tunable parameters with the given non-tunable settings. The tunable
settings with maximum bandwidth prediction are selected as the new settings which
are then applied to file which is, as intended, distributed on the multiple parallel lustre
storage disks according to read/write operation.

The IO bandwidth value is profiled with the Darshan utility when an MPI-IO op-
eration is executed with new configuration settings by all processes in parallel on file.
Upon running the designed auto-tuning strategy on number of default settings, it is ob-
served that the parallel IO bandwidth performance is significantly improved. The overall
percentage improvement in bandwidth, ranges from 65.7-83.2% in read/write cases.

Furthermore, it is observed that the 3 configuration settings are mostly chosen in case
of read operation test cases, by auto-tuning design based on predictions. Those 3 settings
yielded ≈83% of improvements in the total test cases. Whereas, for write operation test
cases, 5 configuration settings are mostly chosen by the auto-tuning design. Those 5
settings yielded ≈93% of improvements in the total test cases.

It is evident from the overall percentage improvement in IO bandwidth and the num-
ber or improvements in total test cases that are presented in this thesis, have significant
benefits for the application performance. Therefore, it is further extended to the appli-
cation of seismic data using ExSeisDat library, to address the third and last research
question RQ3 of the thesis: what approach can be used to optimize the ExSeisDat’s
seismic data IO and sorting operations performance?

The chapter 7 addresses the RQ3, as the third major contribution of this thesis.
The auto-tuning design logic is applied to according to seismic data parameters and its
operations test cases. It is discussed that the benchmarks for seismic data IO and file
sorting operations are re-executed and the prediction models are also regenerated that
are outlined in chapter 5.

167



chapter 8

In this work, there are 6 neural network models analyzed for each of the four seismic
data operations: SEG-Y read/write and file sorting via contiguous read/write. The
artificial neural networks prediction models are varied over a range of different hidden
layers configurations. The purpose of this is to observe the impact of different models
nodes configuration on prediction accuracy and auto-tuning results for each operation.

First the prediction accuracy is observed on all the models for each operation. It is
mostly seen that the prediction accuracy is notably increased initially, then gradually
increased or almost remained constant afterwards, across all the models. This is a com-
mon case in all SEG-Y operations prediction models. Secondly, using all the models,
the maximum improvement in bandwidth performances noted are ranging from 97.3% to
602.6% throughout all the auto-tuning results.

In addition to this, the percentage of total improvements in the total cases range in
65.2-96.7% across all the models and auto-tuning test cases.

Summarizing the thesis, the novel approach to auto-tune or optimize the parallel HPC
IO and its applications, using machine learning based on artificial neural networks, has
been significantly proven beneficial indeed, as demonstrated with a number of usecases.
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Chapter 9

Conclusion & Future work

In this thesis, the main purpose was to optimize seismic data IO and sorting operations
which are performed by an ExSeisDat based application, within a HPC cluster environ-
ment. The seismic data is specified by the standard SEG-Y format, which ExSeisDat API
utilizes in its library implementation. Since ExSeisDat is built on the standard MPI-IO
library, the basic parallel MPI-IO file operations have also been considered for perfor-
mance optimization. Consequently, the three identified operations were basic MPI-IO,
SEG-Y IO and SEG-Y file sorting that were optimized using the AI/ML approach.

Since the storage architectures have been advanced recently in the form of SSDs or
NVMe, the HPC community is gradually updating their clusters with this new hardware.
However, the current HPC systems have not fully adopted the NVMe/SSDs as their sole
multiple storage and parallel file systems are still based on the magnetic HDDs. Instead,
a storage-tiers approach is normally being used to store the frequently accessed data
in SSDs and infrequent data in HDDs. The one reason can be the cost and capacity
of SSDs. Whereas the other main reason can be a vulnerability to failures as recently
experimentally demonstrated by Lu et al. in [194].

As the storage architectures are not rapidly evolving, the applications and IO opti-
mization strategies still work around the existing hardware and the parallel file systems.
Many recent research studies are mentioned in the thesis that optimize IO using machine
learning followed by tuning different parameters based on the predictions. In the same
context, a work by Julius et al. is also worth mentioning that overcomes IO overhead by
data-aware compression in HPC storage using AI [195]. All these applications from the
research studies operate on the existing storage HDDs and their parallel file systems in
clusters. In addition to this, the work demonstrated by Sriniket et al. in [196], compares
the performances of famous file formats: HDF5, netCDF4 and Zarr, which are normally
used by scientific applications in HPC clusters. However, these file formats were tested on
SSDs with sequential reads, writes and other basic operations. This involved no parallel
file system and parallel IO operations so far during the testing.

Considering this, there are not any potential limitations of the thesis due to changing
storage architectures. If in the future, the parallel file systems within HPC clusters fully
adopt the SSDs then their API have to be responsible for taking care of the low-level
driver’s integration. This means a user is able to use different stripe count and stripe size
configuration just as the way now or before.

However, since the thesis work is based only on lustre file system, there might be
some changes required at the software code level for using different parallel file systems.
Further modifications will also be required for correctly porting the MPI-IO prediction
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models and auto-tuning to different scientific applications. This is only possible if the
data structure and parameters used by applications are adjustable and can be mapped
to the basic parallel MPI-IO operations. Otherwise, if there is a legacy code system
in storing the data as in case of SEG-Y file format then the separate READ/WRITE
prediction models and auto-tuning strategy will be required for IO optimization.

Ultimately, this research still poses a potential future work. Extending this thesis,
the machine learning and auto-tuning can be transformed into reinforcement learning.
This includes the porting of prediction models and auto-tuning code at the MPI-C/C++
code level to avoid switching and packages loading overheads between different platforms.
This can further improve the system performance for optimizing MPI-IO and ExSeisDat’s
SEG-Y operations. In addition to this, several scientific applications using different file
formats can be tested under this IO optimization solution.
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Appendices

Appendix A - 3 columns version of Table 6.8.

Table 1 - READ Auto-tuning Improvement Results.

Metrics Default Figures Tuned Figures
Mean Bandwidth (MiB/s) 37798.1 62630.5
Max. Bandwidth (MiB/s) 712334.2 697943.6
Min. Bandwidth (MiB/s) 121.8 307.9
Median Bandwidth (MiB/s) 14020.5 17731.1
Standard Deviation (MiB/s) 85578.9 114305.7
Variance 7323745984.2 13065796947.6

Overall Bandwidth Improvement(%) 65.7%
Improvements 1206/1458
Improvements(%) 82.7%

Appendix B - 3 columns version of Table 6.10.

Table 2 - WRITE Auto-tuning Improvement Results.

Metrics Default Figures Tuned Figures
Mean Bandwidth (MiB/s) 5346.9 9798.1
Max. Bandwidth (MiB/s) 18944.6 19563.5
Min. Bandwidth (MiB/s) 70.9 3488.0
Median Bandwidth (MiB/s) 4718.1 10446.1
Standard Deviation (MiB/s) 3192.4 3350.4
Variance 10191711.7 11225469.3

Overall Bandwidth Improvement(%) 83.2%
Improvements 1353/1458
Improvements(%) 92.8%
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