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Abstract: Intent classification is an essential task for goal-oriented dialogue systems for automati-
cally identifying customers’ goals. Although intent classification performs well in general settings,
domain-specific user goals can still present a challenge for this task. To address this challenge, we au-
tomatically generate knowledge graphs for targeted data sets to capture domain-specific knowledge
and leverage embeddings trained on these knowledge graphs for the intent classification task. As
existing knowledge graphs might not be suitable for a targeted domain of interest, our automatic
generation of knowledge graphs can extract the semantic information of any domain, which can
be incorporated within the classification process. We compare our results with state-of-the-art pre-
trained sentence embeddings and our evaluation of three data sets shows improvement in the intent
classification task in terms of precision.

Keywords: intent classification; term extraction; named entity extraction; relation extraction;
Knowledge graph generation

1. Introduction

A large part of global business in the consumer domain is providing services, such as
consumer payments, mobile cloud services, and more. In providing these services to the
customers, a business also needs to provide services to satisfy the customer needs that arise
from their customer base [1]. Much of this customer support is provided through online
interactions in the form of web chats. The ability to address these customer requests more
efficiently can be of significant business benefit.

The intent classification task is the automated categorisation of text with different
intents based on customer goals using machine learning (ML) and natural language pro-
cessing (NLP) techniques. In a general setting, a sentence such as “Where is the best place to
buy a television?” could be associated with the purchase intent. Because most goal-oriented
dialogue systems are used to engage with customers through personalised conversations,
intent classification is an essential component of these systems, where intent can be aligned
with a customer’s asked question. Therefore, the automated classification of users’ intent
can significantly reduce the manual effort of analysing user comments to identify avenues
for improvements and issue remediation.

To enrich the classical classification task with domain-specific knowledge, we focus in
this work on automatic knowledge graph (KG) generation, which is incorporated into the
classification task. To automatically generate a KG, we leverage term extraction techniques,
named entity recognition (NER), and dependency parsing to align the concepts, i.e., terms
and named entities with semantic relations. We perform intent classification on two
publicly available data sets, i.e., ComQA [2] and ParaLex [3], as well as on one proprietary
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domain-specific data set, named ProductServiceQA, in the telecommunications domain.
For this, we automatically generate KGs based on the data sets used in this study, whereby
we distinguish between generic and domain-specific KGs. Because the automatically
generated KGs are based on domain-specific data, they emphasise the depth of knowledge.
We compare these results to a general KG, i.e., DBpedia [4], which is based on common
knowledge and emphasises the breadth of knowledge. Within the process of the automatic
KG generation, we evaluate the knowledge extraction, in particular, the extraction of entity
classes and semantic relations between them, as expressed within the data set. Finally, we
leverage this information as knowledge graph embeddings (KGEs) for intent classification
according to the extracted classes and relations.

2. Related Work

In this section, we provide an overview of related work focusing on intent classifi-
cation using large pre-trained models and the incorporation of external knowledge for
intent classification.

Leveraging large pre-trained embedding models for intent classification is explored
in Cavalin et al. [5], where class labels are not represented as a discrete set of symbols but
as a space where the word graphs associated with each class are mapped using typical
graph embedding techniques. This allows the classification algorithm to take into account
inter-class similarities provided by the repeated occurrence of some words in the train-
ing examples of the different classes. The classification is carried out by mapping text
embeddings to the word graph embeddings of the classes. Their results demonstrate a con-
siderable positive impact on the detection of out-of-scope examples when an appropriate
sentence embedding such as LSTM and BERT is used. Similarly, Zhang et al. [6] proposed
IntentBERT, which is a pre-trained model for few-shot intent classification. The model is
trained by fine-tuning BERT on a small set of publicly available labelled utterances. The
authors demonstrate that using small task-relevant data for fine-tuning is far more effective
and efficient than the current practice that fine-tunes on a large labelled or unlabeled
dialogue corpus. Furthermore, Zhang et al. [7] focused on the compositional aspects of
intent classification. The authors decompose intents and queries into four factors, i.e., topic,
predicate, object/condition, and query type. To leverage the information, they combine
coarse-grained intents and fine-grained factor information applying multitask learning.
Purohit et al. [8] studied the intent classification of short text from social media combining
knowledge-guided patterns with syntactic features based on a bag of n-gram tokens. The
authors explored knowledge sources to create pattern sets for examining improvement in
the multiclass intent classification. The work demonstrated significant gains in performance
on the data set collected from Twitter only.

Combining large pre-trained models with KGs is explored in Ahmad et al. [9], where
the authors study a joint intent classification and slot-filling task with unsupervised in-
formation extraction for KG construction. The authors trained the intent classifier in a
supervised way but used this intent classifier for the slot-filling task in an unsupervised
manner. They trained a BERT-based classifier for the intent classification task, which is
used in a masking-based occlusion algorithm that extracts information for the slots from
an utterance. A KG construction algorithm from dialogue data is also described in this
paper. Within their evaluation, they observed that in a completely unsupervised setting
the occlusion-based slot-information extraction method yielded good results. Yu et al.
[10] capture commonsense knowledge for e-commerce behaviours by semi-automatically
constructing a KG for intent classification. The authors leverage large language models
to semi-automatically construct an intention KG, which is then evaluated and curated by
human annotators. The annotation is performed on a large number of assertions that can
explain a purchasing or co-purchasing behaviour, whereby the intention can be an open
reason or a predicate falling into one of 18 categories aligning with ConceptNet, e.g., IsA,
MadeOf, UsedFor. Furthermore, Pinhanez et al. [11] manually leveraged symbolic knowl-
edge from curators of conversational systems to improve the accuracy of those systems.
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The authors use the context of a real-world practice of curators of conversational systems
who often embed taxonomically structured meta-knowledge, i.e., knowledge graphs, into
their documentation. The work demonstrates that the knowledge graphs can be integrated
into the dialogue system to improve its accuracy and to enable tools to support curatorial
tasks. He et al. [12] presented their user intent system and demonstrated its effectiveness
in downstream applications deployed in an industrial setting. For KG construction, the
authors leveraged lexical rule matching, part-of-speech tagging, and short text matching to
construct a KG with “isA” relations between the “intent” nodes.

Further work focused on leveraging large but generic knowledge bases or knowledge
graphs for intent classification. Within this work, Zhang et al. [13] demonstrated that
informative entities in KGs can enhance language representation with external knowledge.
The authors utilized large-scale textual corpora and KGs to train an enhanced language rep-
resentation model. The model can leverage lexical, syntactic, and knowledge information
simultaneously. By leveraging a knowledge base and slot-filling joint model, He et al. [14]
proposed a multitasking learning intent-detection system. The proposed approach was
used to share information and rich external utility between intent and slot modules. The
LSTM and convolutional networks were combined with a knowledge base to improve the
model’s performance. Siddique et al. [15] proposed an intent detection model, named RIDE,
that leverages commonsense knowledge from ConceptNet in an unsupervised fashion to
overcome the issue of training data scarcity. The model computed robust and generalisable
relationship meta-features that capture deep semantic relationships between utterances
and intent labels. These features were computed by considering how the concepts in an
utterance are linked to those in an intent label via commonsense knowledge. Shabbir
et al. [16] presented the generation of accurate intents for unstructured data in Romanised
Urdu and integrated this corpus in a RASA NLU module for intent classification. The
authors embedded the KG with the RASA framework to maintain the dialogue history for
a semantic-based natural language mechanism for chatbot communication and compared
results with existing linguistic systems combined with semantic technologies. Similarly,
Sant’Anna et al. [17] engaged RASA to extract intents and entities from a given sentence.
Using RASA, the authors investigated the effectiveness of automatic answering systems to
consumer questions about products in e-commerce platforms. Hu et al. [18] proposed a
general methodology for the problem of query intent classification by leveraging Wikipedia.
The concepts in Wikipedia were used as the intent representation space, thus, each intent
domain was represented as a set of Wikipedia articles and categories. The intent of any
input query was identified by mapping the query into the Wikipedia representation space.
The authors demonstrated the effectiveness of this method in three different applications,
i.e., travel, job, and person name.

Differently from the approaches noted above, our work focuses on providing domain-
specific knowledge into the classification model by automatically generating semantically
structured resources, i.e., knowledge graphs, from the targeted data sets. This allows us to
automatically generate a knowledge graph from a document of a targeted domain, which
eliminates human intervention or the dependency on existing knowledge graphs needed
to guide the intent classification within a goal-oriented dialogue system.

3. Experimental Setup

In this section, we provide information on the KG extraction framework, KGEs gener-
ation, the state-of-the-art (SOTA) pre-trained sentence embeddings, and the data sets used
in this work.

3.1. Saffron—Knowledge Extraction Framework

To automatically generate KGs from the targeted data sets, we used the KG extraction
framework Saffron (https://saffron.insight-centre.org/, accessed on 30. 03. 2023). The tool
is designed to create a KG automatically from a large text corpus by identifying terms and
relations between them using syntactic and corpus frequency information.

https://saffron.insight-centre.org/


Information 2023, 1, 0 4 of 21

3.2. Knowledge Graph Embeddings

In a given KG, each subject h or object t entity can be associated as a point in a
continuous vector space. In this work, we use TuckER [19], which employs a three-way
Tucker tensor decomposition, which computes the tensor T and a sequence of three matrices
leveraging the embeddings of entities (A and C) and relations (B) between them (G ≈
T ⊗ A ⊗ B ⊗ C). This allows us to create KGEs that are used in the network embedding
layers in our system.

3.3. Pre-Trained Word and Sentence Embeddings

In addition to using the automatically generated KGs and KGEs trained on the targeted
data sets, we leverage different SOTA pre-trained word and sentence embeddings for the
classification task. First, we leveraged the pre-trained GloVe [20] word embeddings, which
were trained on six billion tokens extracted from Wikipedia and the Gigaword archive
(https://catalog.ldc.upenn.edu/LDC2011T07, accessed on 30. 03. 2023). LASER [21] is a
multilingual sentence encoder to calculate and use multilingual sentence embeddings. The
framework learns joint multilingual sentence representations for 93 languages and uses a
single Bi-LSTM encoder combined with a decoder trained on publicly available corpora.
LASER transforms sentences into language-independent vectors, which allows it to learn a
classifier using training data in any of the covered languages. Furthermore, we use SBERT
[22], which uses Siamese and triplet network structures for generating sentence embeddings.
Finally, we leverage MPNet [23], which is trained through permuted language modelling
(PLM), allowing a better understanding of bidirectional contexts. MPNet leverages the
dependency among predicted tokens through PLM and takes auxiliary position information
as input to make the model see a full sentence. The model is trained on various corpora
(over 160 GB of text) and fine-tuned on a variety of down-streaming tasks, such as GLUE
and SQuAD, among others.

3.4. LIME

To better understand the predictions made by our intent classification models, we used
the local interpretable model-agnostic explanations (LIME, https://github.com/marcotcr/
lime, accessed on 30. 03. 2023.) algorithm introduced by Ribeiro et al. [24]. LIME learns
an interpretable model locally around the prediction to explain predictions of any given
classifier. For each prediction, it illustrates the degree how much each feature contributed
to the outcome of the machine learning model’s output. LIME implements this using the
original model to generate fresh samples by making slight permutations to the feature
values from the training set given to the model. Each of these samples is then given a weight
based on its resemblance to the occurrence we are seeking to describe. The explainable
model is then trained using the weighted proxy data created earlier.

Figure 1 illustrates the LIME visualisation of important words (i.e., recharge, ticket,
develop) and their contribution degree for the intent classification of the question Hello,
may I recharge my account? Where can U develop my ticket? Using LIME allowed
us to identify the most important words that contribute to the classification task. Further-
more, we compare the top-k words (k = 5) provided by LIME with the automatically
extracted terms using Saffron. This allowed us to filter the automatically generated KGs by
Saffron based on the important words provided by LIME (cf. Section 4.3).

https://catalog.ldc.upenn.edu/LDC2011T07
https://github.com/marcotcr/lime
https://github.com/marcotcr/lime
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Figure 1. Visualisation of the LIME framework explanation with the top-k important words (k = 5)
and their contribution degree based on the provided question.

3.5. Significance Testing

To compare the predictive accuracy of the two models, we use McNemar’s test [25],
which is based on a two-by-two contingency table of the two models’ predictions. For
McNemar’s test, the null hypothesis shows there is no difference between the marginal
frequencies. Therefore, if the p-value is greater than 0.05, it can be concluded that there is
not a significant difference between false negatives and false positives. The alternative hy-
pothesis shows there is a significant difference between the marginal frequencies, whereby
the p-value is less than or equal to 0.05.

3.6. Data Sets

First, we used a proprietary question–answer data set, named ProductServiceQA data
set (Table 1). It consists of 7,611 user queries, such as “Can the VISA and MASTER cards
be added to the card package?”, which are distributed among 338 different classes (i.e., Bank
cards that can be added).

Table 1. Statistics on the data sets used, i.e., ComQA, ParaLex, ProductServiceQA, and ATIS.

ProductServiceQA ComQA ParaLex ATIS

# Total samples 7611 1829 21,306 5632
# Samples (train) 5328 1463 17,045 4833

# Samples (test) 2283 366 4261 799
# Classes 338 272 275 8

The ComQA data set [2] (http://qa.mpi-inf.mpg.de/comqa/, accessed on 30. 03. 2023)
consists of 11,214 questions of users’ interest, which were collected from WikiAnswers, a
community question-answering website. The data set contains questions with various chal-
lenging phenomena such as the need for temporal reasoning, comparison, compositionality,
and unanswerable questions (e.g., Who was the first human being on Mars?). The questions in
ComQA are originally grouped into 4834 clusters, which are annotated with their answer(s)
in the form of Wikipedia entities. To evaluate all data sets with a similar set of classes, we
selected from ComQA only the QA pairs, which appear more than six times in the data set.

The ParaLex data set [3] (http://knowitall.cs.washington.edu/paralex/, accessed
on 30. 03. 2023). The data set contains paraphrases, word alignments, and basic NLP-
processed versions of the questions. There are about 2.5 million distinct questions and 18
million distinct paraphrase pairs. As an example, “What are the green blobs in plant cells?”
and a green substance in the plant cell be the? represent the question pairs within this data
set. This allowed us to evaluate the targeted data sets with a similar set of intents, ranging
between 272 intents for ComQA and 338 for ProductServiceQA.

The ATIS (Airline Travel Information Systems, https://www.kaggle.com/code/siddhadev/
atis-dataset-from-ms-cntk?scriptVersionId=10371998, accessed on 30. 03. 2023) is a data set
of manual transcripts regarding humans asking for flight information on automated airline
travel inquiry systems. The data consist of 17 unique intent categories.

http://qa.mpi-inf.mpg.de/comqa/
http://knowitall.cs.washington.edu/paralex/
https://www.kaggle.com/code/siddhadev/atis-dataset-from-ms-cntk?scriptVersionId=10371998
https://www.kaggle.com/code/siddhadev/atis-dataset-from-ms-cntk?scriptVersionId=10371998
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4. Methodology

In this section, we provide insights on using the automatically generated KGs from
the targeted data sets, NER, dependency parsing for relation extraction, and a relation
filtering approach. Each step of the KG generation allowed us to evaluate the impact of
the semantic information represented in the KG in the classification task. As an example,
Table 2 illustrates the different KGs generated from the ProductServiceQA data set. We
conclude this section with the manual evaluation of the automatically generated KGs.

Table 2. Information on different KGs and statistics on the benchmarks and the automatically
generated KGs of the ProductServiceQA data set.

Benchmark KGt Benchmark KGtr Benchmark KGtre KGt KGtr KGtre

Taxonomy Y Y Y Y Y Y

Semantic Relations N Y Y N Y Y

Named Entities N N Y N N Y

Unique Concepts 84 84 97 100 100 908

Unique Relations 1 221 221 1 230 259

Vocabulary 60 190 392 36 166 468

4.1. Knowledge Graph Creation Pipeline

The creation of domain-specific KGs includes NLP methods for term extraction, NER
follows, and relation extraction provided by the Saffron tool for KG generation (Figure 2).
To automatically generate KGs, domain-specific terms and NEs are extracted from the
corpus and used as a base for the generation of a taxonomy. Additional relations are
extracted from the text corpus and added to the taxonomy to form a KG.

Term 
Extraction

Named 
Entity 

Recognition

Taxonomy 
Generation (KGt)

Relation 
Extraction (KGtr) 

Knowledge Graph 
Generation (KGtre)

Question-Answer 
Pairs

terms

triples

en
tit
ie
s

terms

Figure 2. Knowledge graph generation pipeline.

4.1.1. Term Extraction

For the first step, we use the term extraction module implemented in Saffron [26]. The
approach extracts noun phrases and uses distribution metrics to select term candidates.
Then, a scoring function, i.e., occurrence frequency, context-relevance, reference corpus
usage (e.g., Wikipedia), and topic modelling, is used to measure the domain relevance of
the terms.

4.1.2. Named Entity Recognition

To obtain NEs from the targeted data sets, we used Flair’s NER model, which is based
on XLM-R embeddings (https://huggingface.co/flair/ner-english-large, accessed on 30. 03.
2023). To include domain-specific NEs of relevance for the proprietary ProductServiceQA
data set, a domain-specific NEs recognition model was built to extend the term extraction
step [27]. A list of NEs that are specific to the ProductServiceQA data set was provided
and used to train the NER system. For this, we used Flair [28], more concretely the “Flair

https://huggingface.co/flair/ner-english-large
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(forward+backward)+GloVe”, embeddings as they performed best for our targeted domain.
Table 3 provides the results of a comparison of different embedding methods on the
ProductServiceQA data set.

Table 3. Flair results for different embedding types on the ProductServiceQA data set.

Embedding Precision Recall F1

Flair (Forward+Backward) 0.94 0.92 0.93

Flair (forward+backward)+GloVe 0.95 0.92 0.93

Flair (Forward)+GloVe 0.94 0.92 0.93

GloVe 0.92 0.91 0.91

BERT 0.93 0.91 0.93

ELMo 0.94 0.91 0.93

4.1.3. Taxonomy Generation

The taxonomy generation step is constructing a taxonomy using the top N ranked
terms (Saffron’s default setting is N = 100) and NEs obtained from the previous steps [29].
For each distinct pair of concepts, c, d ∈ C, we attempt to estimate the probability, p(c ⊑
d). Based on the probability scores given by the pairwise scoring, a likelihood function is
defined that represents how likely a given structure of concepts represents a taxonomy for
the set of terms provided. Then, greedy search is used to find the KGt with a taxonomic
IS-A relation that maximizes the value of the likelihood function.

4.1.4. Relation Extraction

To extract relations between the terms, we make use of dependency parsing. For this,
the corpus is parsed using the universal dependencies of the Stanford parser [30] imple-
mented in Stanza (https://stanfordnlp.github.io/stanza/depparse.html, accessed on 30.
03. 2023). All dependencies involving a term, extracted previously using the Saffron frame-
work, and a verb (using the POS information) are extracted, which provides us with a set of
predicate–term pairs, e.g., nsubj(pay, customer) or obj(pay, bill). For phrasal verbs,
particles are added to the predicate using a hyphen (-) (get-up). Similarly, for dependencies
involving a preposition (obl dependency type), we concatenate the preposition to the predi-
cate (add_to, phone). A triple (term1, predicate, term2) is constructed by combining
any dependency pairs where, in the same sentence, the same predicate is the head of two
dependencies in the list of pairs obtained in the previous step, e.g., nsubj_obj(customer,
pay, bill). The triple relations are added to the previously generated taxonomy (KGt).
The outcome of this step is the KGtr with additional lexical relations between the extracted
terms.

4.1.5. Knowledge Graph Generation

By performing term extraction, NER, and relation extraction, we use the obtained
triples to generate the KGtre, incorporating taxonomic and lexical relations between the
extracted terms and named entities.

4.2. Intent Classification with Pre-Trained and Knowledge Graph Embeddings

Finally, we leverage the KGEs for intent classification trained on the KGs noted above
using TuckER, which we combine with the pre-trained sentence embeddings. For this, we
use a multi-layer feed-forward neural network. It is a fully connected network structure
with five hidden layers, whereby the dimension of the input layer is decided based on
the dimensions of the input embedding. The activation function used is ReLU [31], and
we use the Softmax function in the output layer. Categorical Cross-Entropy is used as the

https://stanfordnlp.github.io/stanza/depparse.html
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loss function and Adam [32] is used as the optimiser. We apply dropout (0.3 dropout rate)
between the two hidden layers and between the last hidden layer and the output layer. The
number of training epochs is 300 and the batch size is 512.

The embeddings are fed through the above-explained network architecture for model
building. With this, we leverage pre-trained embeddings (GloVe, LASER, SBERT, MPNet) in
combination with KGEs. The various sentence embedding approaches used in our work can
be categorised into three broad methods. In the first approach, the network is trained with
the SOTA pre-trained models, i.e., LASER, SBERT, or MPNet. The results obtained from a
single embedding category are considered our baseline results. Additionally, we performed
a Concatenation approach, where, for a given sentence, two or more embeddings obtained
from LASER, SBERT, GloVe, or KGEs are concatenated into the embedding matrix (E). For
Substitution, we are examining if a term extracted from the data set is present in the KG. If
it is, we use KGEs to obtain the embeddings; otherwise, GloVe embeddings are used. As
both KG and GloVe have 300 dimensions, the input layer dimension remains the same.

4.3. Filtering Knowledge Graphs with LIME

We run the LIME algorithm on the targeted data sets and extract all words the model
focuses on while making a prediction. The obtained ranked LIME list is compared with the
top words provided by the Saffron tool. Whereas LIME extracts only unigrams, Saffron
provides bi-grams extracted from the targeted data sets. We ran experiments with all KGs
to obtain only the important words marked by LIME. This reduced the vocabulary of the
KG by removing the excess noise.

4.4. Intent Classification on Intents Translated into English

Along with its intent in English, ProductServiceQA also holds the intents in Spanish
and Chinese. To simulate the intent classification for these languages, we leveraged a
translation pipeline to test how a slightly noisy data set affects the Siamese network
classifier.

4.5. Manual Evaluation of KGs

We manually analysed and curated the automatically generated ProductServiceQA
KGs, which resulted in the benchmark KGs for this data set. These benchmark KGs allowed
us to evaluate the quality of the automatically generated ProductServiceQA KGs and
are not used in training of the intent classification models or the generation of any other
automatic KGs. Three curators, one male and two female, all NLP specialists in knowledge
extraction, performed the curation.

Term Extraction Curation: The term list was provided to the three annotators who
independently identified terms that were correctly extracted based on the definition of a
term and the domain of the data set. As an example, the extracted term pay card swiping
was annotated as an incorrectly extracted term, whereas pay card was labelled as correct.
Where possible, if the term span was incorrect, a corrected version was proposed. In this
case, wearable device support bank was corrected in the benchmark KGs to wearable
device. Within this manual curation step, 50% of terms were identified as correct, whereby
13 terms were modified.

Taxonomic Relations Curation: A similar curation was performed on the extracted tax-
onomic relations. The curators were presented with pairs of terms involved in a taxonomic
(hyponym) relation, i.e., parent_term → child_term. The annotators had to identify whether
the parent term (payment) was correctly identified for the child term (flash payment). A
wrongly identified relation pair would be device → support. If the taxonomic relation
was not correctly extracted, the experts proposed a replacement parent term from the list or
a new term if none was deemed appropriate. Evaluating this step, 33% of relations were
considered as correct, whereby 20 new terms were defined and added to the benchmark
taxonomy. The benchmark KGtr, which was used to evaluate the automatically generated
KGs, contains 83 terms within a taxonomy of depth 5.
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Named Entity with Dependency Relation Curation: For the benchmark KGtre, we
collected a list of NEs and their types, which resulted in 619 NEs (e.g., card) belonging to
22 different types (CARD_TYPE). In order to add the NEs to the benchmark KGtre, we selected
the NE types that match a term in the taxonomy. Seven such types were identified. We
then collected all the NEs corresponding to these seven types from the list (amounting to
25 NEs) and added them to their parent in the benchmark KGtre using a taxonomic relation.

Within the same curation step, the dependency-based relation extraction algorithm
was performed, extracting predicates involving two NEs, or a NE and a term (from the
initial list of terms in the third step of the approach). A set of 126 triples with terms
and NEs were finally added as relations that contain NEs to the previously mentioned
benchmark KGtre.

5. Results

In this section, we provide insights into experiments using an RNN as well as Siamese
networks for the intent classification task. Additionally, we illustrate the performance of the
classification task with the most important term in KGs, identified by the LIME framework.
Finally, we evaluate the performance of the classification task in a multilingual setting.

5.1. Intent Classification with Recurrent Neural Networks

Analysing the results for the ComQA data set in the top part of Table 4, MPNet em-
beddings contribute best to the classification task compared to LASER or SBERT. The KGEs
trained on the automatically generated KGs do not outperform the SOTA embeddings,
although the performance of the KGs improves with the number of terms within the KG.
As seen in Table A1 (see Appendix A), KGt with 100 terms achieves a precision of 40.71,
whereas KGtre, with 750 terms and relations between them, achieves a precision of 93.34.

When concatenating sentence embeddings with GloVe or the automatically generated
KGs, KGt with 500 and 750 terms performs best (99.45) when it is combined with LASER
and SBERT or MPNET. Comparing the performance between the GloVe embeddings and
the automatically generated KGs, the latter outperforms the former in the majority of the
setups. Substitution performs comparably to the concatenation approach, where combining
LASER+SBERT+KGtr achieves the same precision as the best-reported concatenation approach.

For the ParaLex data set (Table 4), leveraging the SBERT pre-trained model as a
single resource performs best (54.06). Nevertheless, when combining different embed-
dings, LASER+SBERT+GloVe outperforms the standalone embeddings (54.41). Similarly to
the ComQA data set, although extracting more terms for KG generation improves the
classification task (precision of 22.38 with KGt with 100 terms, 50.45 KGtre with 750 terms),
it does not outperform any SOTA pre-trained models (Table A2 in Appendix A). On the
other hand, in combination with LASER+MPNet, the KGEs trained on KGtr with 750 terms
and extracted relations outperform the SOTA embeddings for the ParaLex data set using
the substitution approach (55.42).

Next, we leverage the SOTA sentence embeddings on the proprietary ProductSer-
viceQA data set (lower part of Table 4). Analysing single embeddings, compared to SBERT,
LASER, or the KGEs trained on the automatically generated KGs and DBpedia, MPNet
performs best on the proprietary data set in the telecommunication domain (69.25). When
combining sentence embeddings with the KGs, DBpedia in combination with LASER+MPNet
contributes the most when using the concatenation approach. Similarly to the data sets
described above, embedding substitution does not outperform the concatenation approach
(see Table A3 in Appendix A).
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Table 4. Intent classification evaluation for the targeted data sets using an RNN (bold numbers
indicate the best results for each setting).

ComQA Data Set ParaLex Data Set

SOTA Embeddings Dimension Precision SOTA Embeddings Dimension Precision

SBERT 768 98.36 SBERT 768 54.06

LASER 1024 96.75 LASER 1024 52.92

MPNet 768 98.63 MPNet 768 53.80

LASER+SBERT 1792 98.28 LASER+SBERT 1792 54.07

LASER+SBERT+GloVe 2092 98.63 LASER+SBERT+GloVe 2092 54.41

Best Embeddings with KG Dimension Precision Best Embeddings with KG Dimension Precision

LASER+SBERT+KGt (750) 2092 99.45 LASER+MPNet+KGtr (750)/GloVe 2092 55.42

LASER+MPNet+KGt (500) 2092 99.45

LASER+SBERT+KGtr (750)/GloVe 2092 99.45

ProductServiceQA Data Set ATIS Data Set

SOTA Embeddings Dimension Precision SOTA Embeddings Dimension Precision

SBERT 768 68.02 SBERT 768 98.67

LASER 1024 62.68 LASER 1024 98.87

MPNet 768 69.25 MPNet 768 98.43

LASER+SBERT 1792 68.60 LASER+SBERT 1792 98.50

LASER+SBERT+GloVe 2092 68.40 LASER+SBERT+GloVe 2092 98.62

Best Embeddings with KG Dimension Precision Best Embeddings with KG Dimension Precision

LASER+MPNet+KG (DBpedia) 2092 70.00 LASER+KGt (100) 1,324 99.25

LASER+SBERT+KGt (100) 2092 99.25

LASER+MPNet+KGtr (100) 2092 99.25

LASER+MPNet+KGtr (100) 2092 99.25

LASER+SBERT+KGtre (100)/GloVe 2092 99.25

LASER+MPNet+KGtre (100)/GloVe 2092 99.25

In addition to the experiments noted above on the proprietary ProductServiceQA data
set, we analysed the impact of the set of terms within KGtre extracted by the Saffron tool. As
Saffron in its default setting extracts the 100 most domain-specific terms from the targeted
document, we extended the set of domain-specific terms gradually (Table 5). As seen in
Table 6, extending the set of terms positively contributes to the classification precision when
using the KGs as a single embedding resource. As a result, even the KG with 1000 terms
does not outperform any pre-trained sentence embeddings used in this work. Nevertheless,
when concatenating the KGs with SOTA pre-trained embeddings, LASER+MPNet+KGtre with
100 terms performs best (69.99).

For the ATIS data set (bottom part of Table 4) in the aviation travel inquiry domain,
LASER performs best (98.87) as a single embedding resource, whereas combining LASER with
SBERT or SBERT+GloVe does not improve the performance on the classification task. In con-
trast, many systems that leverage the information of the KGs outperform the classification
task when only the LASER pre-trained embeddings are used (99.25).

Table 5. Statistics on the automatically generated KGtre with different thresholds of terms.

Terms 100 200 300 500 1000

Unique Concepts 908 1008 1108 1308 1808

Unique Relations 259 279 299 305 324

Vocabulary 468 494 529 553 653



Information 2023, 1, 0 11 of 21

Table 6. Impact of different sets of terms within the KGtre for intent classification, based on Product-
ServiceQA (bold numbers indicate the best results for each setting).

SOTA Embeddings Dimension Precision Best Embeddings with KG Dimension Precision

SBERT 768 68.02 LASER+MPNet+KGtre (100) 2092 69.99
LASER 1024 62.68
MPNet 768 69.25
LASER+SBERT 1792 68.60
LASER+SBERT+GloVe 2092 68.40

Number of Set Terms

Embeddings with KG Dimension 100 200 300 500 1000

KG 300 40.34 40.34 41.61 42.14 44.20

Concat.
LASER+KG 1324 62.15 62.15 61.94 62.85 52.91
LASER+SBERT+KG 2092 68.24 68.24 67.89 67.85 67.85
LASER+MPNet+KG 2092 69.99 68.37 68.77 68.29 68.46

Substit.
LASER+KG/GloVe 1324 62.51 60.58 61.54 62.64 60.36
LASER+SBERT+KG/GloVe 2092 68.20 68.37 68.20 67.81 67.41
LASER+MPNet+KG/GloVe 2092 67.89 67.90 67.19 67.76 67.24

5.2. Siamese Network

In addition to the experiments using the RNN architecture, we employed a Siamese
network for the classification task. The top part of Table 7 illustrates the results for the
ComQA data set, where compared to LASER, as well as the concatenation of SBERT and
LASER embeddings, SBERT embeddings contribute best (95.18) to the intent classification
task. When concatenating sentence embeddings with KGEs trained on the automatically
generated KGs, KGtre with 100 terms combined with SBERT and LASER performs the same as
SBERT pre-trained embeddings only (95.18).

Table 7. Intent classification evaluation for the targeted data sets using a Siamese network (bold
numbers indicate the best results for each setting; * denote statistically significant, p = 0.05).

ComQA Data Set ParaLex Data Set

SOTA Embeddings Dimension Precision SOTA Embeddings Dimension Precision

SBERT 768 95.18 SBERT 768 48.81

SBERT+LASER 1792 94.66 SBERT+LASER 1792 49.75

MPNET 768 94.37 MPNET 768 50.33

MPNET+LASER 1792 94.14 MPNET+LASER 1792 50.47

Best Embeddings with KG Dimension Precision Best Embeddings with KG Dimension Precision

SBERT+LASER+KGtre (100) 2092 95.18 MPNET+KGt (100) 1,068 52.29 *

ProductServiceQA Data Set ATIS Data Set

SOTA Embeddings Dimension Precision SOTA Embeddings Dimension Precision

SBERT 768 73.94 SBERT 768 99.37

SBERT+LASER 1792 73.77 SBERT+LASER 1792 99.00

MPNET 768 73.55 MPNET 768 98.62

MPNET+LASER 1792 73.51 MPNET+LASER 1792 98.62

Best Embeddings with KG Dimension Precision Best Embeddings with KG Dimension Precision

MPNet+LASER+KGtr (100) 2092 74.69 MPNet+KGtre (100) 1068 99.50

For the ParaLex data set (top right part in Table 7), the MPNet pre-trained model as a
single resource performs best within the classification task (50.33). Next, when combining
different embeddings, MPNet+LASER slightly improves the performance on the classification
task (50.47). We significantly (p < 0.05) outperform the performance of the classification
task of MPNet+LASER when leveraging the KGt with 100 terms in combination with MPNet.

The lower part of Table 7 illustrates the intent classification task on the ProductSer-
viceQA data set using the Siamese network. Analysing SOTA pre-trained embeddings,
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SBERT performs best (73.94); when leveraging the KGEs trained on automatically generated
KGs, the combination of MPNet+LASER+KGtt with 100 terms further improves the perfor-
mance of the classification task compared to the existing pre-trained models (74.69 vs.
73.94).

For the ATIS data set, SBERT demonstrates the best performance among the SOTA
pre-trained models (lower part of Table 7). When leveraging the KGEs based on the
automatically generated KGs, MPNet+KGtre, further improves the performance of the intent
classification task.

As the sentences in the ComQA data set appear frequently and are thus repetitive, we
filtered the data set with sentences in a manner so that they appear only between two and
five times in the data set. Compared to the entire ComQA data set (top part of Table 7), the
classification precision drops due to the smaller set of sentences used to train the Siamese
network (≈95 vs. ≈84). Table 8 demonstrates best performance by the concatenation of
the MPNet+LASER embeddings (84.23), while concatenating sentence embeddings with the
automatically generated KGs, i.e., SBERT+LASER+KGt with 100 terms, outperforms the usage
of SOTA embeddings (84.87 vs. 84.23). Table A6 in Appendix A illustrates the extended
analysis with different KGs and sets of terms and relations extracted by Saffron.

Table 8. Intent classification evaluation for the ComQA data set, filtered by questions with a frequency
between two and five, using a Siamese network (bold numbers indicate the best results for each
setting).

SOTA Embeddings Dimension Precision

SBERT 768 83.31
SBERT+LASER 1792 84.12
MPNET 768 83.25
MPNET+LASER 1792 84.23

Best Embeddings with KG Dimension Precision

SBERT+LASER+KGt (100) 2092 84.87

5.3. Filtering Knowledge Graphs Using LIME

Within the next steps, we analysed the significance of the automatically extracted terms
and relations within the KGs. Therefore, we leveraged the LIME toolkit (cf. Section 3.4) to
exclude terms in the original KGs that are not considered important by LIME.

5.3.1. Filtering for Intent Classification with Recurrent Neural Networks

For the ComQA data set (top part of Table 9), we observed two cases, i.e., KGtr with
100 terms and KGtr with 750 terms, where the classification performance significantly
(p < 0.05) improved compared to the original KGs (90.49 vs. 90.67 and 94.96 vs. 95.25).
This demonstrates that these filtered KGs, which are reduced to one-third (or less) of their
original size, hold important domain-specific information to guide the classifier to predict
the correct intent.

For the ParaLex data set, three filtered KGs significantly improve (p < 0.05) the
performance of the classification task over the original KGs (54.72 vs. 55.14, 55.07 vs. 55.47
and 54.45 vs. 54.62).
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Table 9. Intent classification evaluation in terms of precision for the targeted data sets using an RNN
and most important terms within KG using LIME (bold numbers indicate the best results for each
setting; Orig. = original KG, Filt. = filtered KG; * denote statistically significant, p = 0.05).

ComQA KGt KGt KGt KGtr KGtr KGtr KGtre KGtre KGtre
Data Set (100) (500) (750) (100) (500) (750) (100) (500) (750)

Orig. Filt. Orig. Filt. Orig. Filt. Orig. Filt. Orig. Filt. Orig. Filt. Orig. Filt. Orig. Filt. Orig. Filt.
Embeddings 183 86 873 315 1,246 392 416 115 1272 347 1681 425 1510 327 2767 590 4133 628

LASER+KG 89.74 89.10 91.54 90.26 90.49 90.49 90.03 90.67 * 90.26 90.72 89.33 90.90 91.48 91.13 89.74 89.74 89.22 89.45
LASER+SBERT+KG 94.38 94.84 95.07 95.25 95.19 94.67 95.77 95.65 94.96 95.36 94.67 95.25 * 94.78 95.30 94.78 95.48 94.78 94.61
LASER+MPNet+KG 94.84 95.19 95.19 94.90 94.72 94.26 95.13 94.61 94.03 94.61 * 93.91 93.91 94.49 94.38 92.93 93.39 93.16 94.20

ParaLex KGt KGt KGt KGtr KGtr KGtr KGtre KGtre KGtre
Data Set (100) (500) (750) (100) (500) (750) (100) (500) (750)

Orig. Filt. Orig. Filt. Orig. Filt. Orig. Filt. Orig. Filt. Orig. Filt. Orig. Filt. Orig. Filt. Orig. Filt.
Embeddings 169 70 785 262 1,116 313 343 100 1156 313 1473 343 641 138 1445 340 1,816 388

LASER+KG 54.04 53.57 54.39 54.22 54.72 55.14 * 53.94 54.15 54.74 55.14 54.48 54.62 * 54.39 54.29 54.34 55.09 54.08 55.33
LASER+SBERT+KG 54.25 54.08 54.76 55.11 54.48 54.27 54.04 54.11 54.43 54.41 55.00 54.48 53.92 54.46 54.55 54.69 55.23 55.14
LASER+MPNet+KG 54.48 54.20 55.40 54.83 54.81 54.53 53.89 53.73 55.07 55.47 55.16 55.16 54.41 54.69 54.95 54.67 55.21 55.16

ProductServiceQA Data Set KGt KGtr KGtre

Orig. Filt. Orig. Filt. Orig. Filt.
Embeddings Dimension 136 34 494 129 1280 286

LASER+KG 1324 63.64 63.51 63.16 62.42 63.42 63.16
LASER+SBERT+KG 2092 68.50 68.46 68.76 68.37 67.89 68.86
LASER+MPNet+KG 2092 69.60 68.94 69.03 69.16 68.77 68.16

Similarly to the aforementioned data sets, KGtr and KGtre improve the performance of
the classification task over the original KGs generated on the ProductServiceQA data set
(lower part of Table 9).

5.3.2. Filtering for Intent Classification with Siamese Networks

In addition to the RNN classification using the filtered KGs, we perform the same
experiment with the Siamese network. As seen in the top part of Table 10 for the ComQA
data set, filtered KGt with 100 and 500 terms, respectively, significantly (p < 0.05) outper-
form the performance of the classification task in comparison to the original KGs, which
contain a larger set of terms and relations.

Similarly, applying the filtered KGs to the ParaLex data set, KGtr and KGtre outperform
their original counterparts while using the SBERT and MPNet embeddings, respectively.

As seen in the lower part of Table 10, the filtered KGs did not significantly outperform
any of the original KGs generated from the ProductServiceQA data set. Nevertheless,
minor improvement is detected for all KG variants with different SOTA embeddings.
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Table 10. Intent classification evaluation in terms of precision for the targeted data sets using a
Siamese network and most important terms within KG using LIME (bold numbers indicate the best
results for each setting; Orig. = original KG, Filt. = filtered KG; * denote statistically significant, p =
0.05).

ComQA KGt KGt KGt KGtr KGtr KGtr KGtre KGtre KGtre
Data Set (100) (500) (750) (100) (500) (750) (100) (500) (750)

Orig. Filt. Orig. Filt. Orig. Filt. Orig. Filt. Orig. Filt. Orig. Filt. Orig. Filt. Orig. Filt. Orig. Filt.
Embeddings 183 86 873 315 1246 392 416 115 1272 347 1681 425 1510 327 2767 590 4133 628

SBERT+KG 94.96 94.67 94.43 94.78 94.78 94.90 94.78 95.13 94.31 94.78 94.78 94.55 94.78 95.13 94.32 94.78 94.78 94.55
SBERT+LASER+KG 95.13 94.49 94.55 95.25 * 94.60 94.84 94.78 94.96 94.55 94.55 94.95 94.66 94.14 94.61 93.80 94.32 92.93 92.12
MPNet+KG 95.13 98.63 * 94.49 94.38 92.86 93.28 94.49 94.72 94.03 94.32 92.34 92.35 94.49 94.72 94.03 94.32 92.35 92.35
MPNet+LASER+KG 95.02 89.62 94.43 94.49 92.92 93.28 94.14 94.61 93.79 94.32 92.92 92.12 94.14 94.61 93.80 94.32 92.93 92.12

ParaLex KGt KGt KGt KGtr KGtr KGtr KGtre KGtre KGtre
Data Set (100) (500) (750) (100) (500) (750) (100) (500) (750)

Orig. Filt. Orig. Filt. Orig. Filt. Orig. Filt. Orig. Filt. Orig. Filt. Orig. Filt. Orig. Filt. Orig. Filt.
Embeddings 169 70 785 262 1116 313 343 100 1156 313 1473 343 641 138 1445 340 1816 388

SBERT+KG 49.26 48.59 48.82 48.43 49.49 49.53 48.93 49.13 49.43 50.23 49.31 50.42 49.30 50.14 * 50.59 50.54 49.91 49.91
SBERT+LASER+KG 49.17 48.94 49.52 48.59 49.17 49.86 48.65 48.83 49.28 50.40 49.35 50.28 52.72 52.04 53.66 53.10 52.77 52.44
MPNet+KG 52.29 50.35 51.21 52.11 51.54 52.28 50.18 52.16 50.55 52.79 51.86 54.48 * 52.89 52.63 53.14 53.07 52.79 52.60
MPNet+LASER+KG 51.49 50.54 50.97 52.42 50.57 52.46 50.86 53.26 51.04 52.58 51.75 53.87 52.72 52.04 53.66 53.10 52.77 52.44

ProductServiceQA KGt KGtr KGtre

Orig. Filt. Orig. Filt. Orig. Filt.
Embeddings Dimension 136 34 494 129 1280 286

SBERT+KG 1068 73.51 73.23 73.77 73.67 73.73 73.67
SBERT+LASER+KG 2092 73.16 73.06 74.08 74.06 73.07 73.36
MPNet+KG 1068 73.64 73.80 74.37 74.50 73.59 73.45
MPNet+LASER+KG 2092 73.81 73.49 73.77 73.14 73.29 73.49

5.4. Multilingual Setting

As a final experiment, we leverage the translations into English of the multilingual
ProductServiceQA data set. Table 11 illustrates the intent classification task when the
Spanish language is used. The best performance with pre-trained models is demonstrated
with SOTA MPNet+LASER embeddings. When leveraging the KGEs trained on the automat-
ically generated KGs, the classification precision increases to 65.57 when combining the
embeddings as MPNet+LASER+KG.

Table 11. Intent classification evaluation for the Spanish ProductServiceQA data set translated into
English using a Siamese network (bold numbers indicate the best results for each setting).

SOTA Embeddings Dimension Precision

SBERT 768 62.24
MPNET 768 64.34
SBERT+LASER 1092 61.62
MPNET+LASER 1092 65.00

Best Embeddings with KG Dimension Precision

MPNet+LASER+KGt (100) 1392 65.57

We performed the same experiment with the Chinese intents, which were translated
into English. In this setting, the MPNet+LASER embedding combination outperforms other
SOTA pre-trained embeddings (Table 12). Similarly to the experiment on the Spanish
language, employing the automatically generated KG, in this case in combination with
MPNet, further improves the performance of the classification task.
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Table 12. Intent classification evaluation for the Chinese ProductServiceQA data set translated into
English using a Siamese network (bold numbers indicate the best results for each setting).

SOTA Embeddings Dimension Precision

SBERT 768 58.12
MPNET 768 59.30
SBERT+LASER 1092 59.01
MPNET+LASER 1092 59.70

Best Embeddings with KG Dimension Precision

MPNet+KGt (100) 1092 60.66

6. Conclusions

In this paper, we presented work on leveraging automatically generated knowledge
graphs for intent classification. We provide an analysis of each step, i.e., term extraction,
named entity recognition, and relation extraction, towards the creation of knowledge graphs
and provide insights on their evaluation and manual curation steps. We perform the intent
classification using state-of-the-art sentence embeddings and combine these with domain-
specific knowledge graph embeddings trained on the automatically generated knowledge
graphs. We evaluate our methodology on four different data sets and demonstrate that the
domain-specific knowledge within knowledge graphs further improves the performance
on the intent classification task. Furthermore, we study the set of terms and relations within
the knowledge graphs and filter them by importance by leveraging the LIME tool. Finally,
we leverage the Spanish and Chinese intents of the proprietary ProductServiceQA data set
and leverage machine translation to perform the classification on noisy intents translated
into English. Our ongoing work focuses on the use of knowledge graph extraction for use
in multi-turn intent identification, more specifically on generating questions to direct a user
to a more specific answer through knowledge subgraph identification.
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Appendix A

Table A1. Extended intent classification evaluation for the ComQA data set using an RNN and the
automatically extracted KGs (bold numbers indicate the best results for each setting).

SOTA Embeddings Dim. Prec. Best Embeddings with KG Dim. Prec.

SBERT 768 98.36 LASER+SBERT+KGt (500) 2092 99.45
LASER 1024 96.75 LASER+MPNet+KGt (750) 2092 99.45
MPNet 768 98.63 LASER+SBERT+KGt (750)/GloVe 2092 99.45
LASER+SBERT 1792 98.28
LASER+SBERT+GloVe 2092 98.63

KGt KGt KGt KGtr KGtr KGtr KGtre KGtre KGtre
Embeddings with KG Dim. (100) (500) (750) (100) (500) (750) (100) (500) (750) DBpedia

KG 300 40.71 75.41 86.89 45.08 75.13 83.61 79.96 84.70 93.34 14.92

Concat.
LASER+KG 1324 95.35 95.62 95.08 95.63 95.08 95.08 95.90 95.90 95.63 96.17
LASER+SBERT+KG 2092 98.90 99.18 99.45 98.91 98.63 98.63 98.36 98.63 98.91 98.91
LASER+MPNet+KG 2092 99.18 99.45 98.09 98.91 98.36 98.63 98.09 98.63 98.36 98.36

Substit.
LASER+KG/GloVe 1324 94.81 94.54 95.36 94.81 93.72 94.26 95.36 96.72 95.36 96.72
LASER+SBERT+KG/GloVe 2092 98.36 98.63 98.91 98.09 98.91 99.45 98.91 98.91 98.36 98.09
LASER+MPNet+KG/GloVe 2092 97.54 98.09 98.36 97.54 98.36 98.09 98.36 98.91 97.81 98.36

Table A2. Extended intent classification evaluation for the ParaLex data set using an RNN and the
automatically extracted KGs (bold numbers indicate the best results for each setting).

SOTA Embeddings Dim. Precision Best Embeddings with KG Dim. Precision

SBERT 768 54.06 LASER+MPNet+KG/GloVe 2092 55.42
LASER 1024 52.92
MPNet 768 53.80
LASER+SBERT 1792 54.07
LASER+SBERT+GloVe 2092 54.41

KGt KGt KGt KGtr KGtr KGtr KGtre KGtre KGtre
Embeddings with KG Dim. (100) (500) (750) (100) (500) (750) (100) (500) (750) DBpedia

KG 22.38 46.67 49.39 25.86 47.82 47.65 30.34 48.69 50.45 20.15

Concat.
LASER+KG 1324 54.04 54.39 54.72 53.94 54.74 54.48 54.43 54.95 54.46 53.24
LASER+SBERT+KG 2092 54.25 54.76 54.48 54.04 54.43 55.00 54.11 54.67 54.29 53.66
LASER+MPNet+KG 2092 54.48 55.40 54.81 53.89 55.07 55.16 54.46 55.28 55.14 53.66

Substit.
LASER+KG/GloVe 1324 51.41 54.27 53.47 52.91 54.20 54.27 54.25 54.46 54.29 51.55
LASER+SBERT+KG/GloVe 2092 52.37 54.39 53.26 52.11 52.49 53.54 54.58 54.90 55.16 53.43
LASER+MPNet+KG/GloVe 2092 51.69 54.65 53.10 53.45 53.40 54.79 54.62 55.35 55.42 51.64

Table A3. Extended intent classification evaluation for the ProductServiceQA data set using an RNN
and the automatically extracted KG with 100 terms (bold numbers indicate the best results for each
setting).

SOTA Embeddings Dim. Precision Best Embeddings with KG Dim. Precision

SBERT 768 68.02 LASER+MPNet+DBpedia 2092 70.00
LASER 1024 62.68
MPNet 768 69.25
LASER+SBERT 1792 68.60
LASER+SBERT+GloVe 2092 68.40

Embeddings with KG Dim. Bench. KGt Bench. KGtr Bench. KGtre KGt KGtr KGtre KGtre f DBpedia

KG 300 26.19 34.91 38.10 25.62 31.80 45.15 39.33 23.61

Concat.
LASER+KG 1324 63.20 62.06 62.46 63.64 63.16 63.42 63.03 62.77
LASER+SBERT+KG 2092 68.68 68.37 67.14 68.50 68.76 67.89 68.11 67.37
LASER+MPNet+KG 2092 68.77 68.94 68.24 69.51 68.16 68.77 69.21 70.00

Substit.
LASER+KG/GloVe 1324 59.75 61.76 60.93 59.75 60.18 62.33 62.07 60.27
LASER+SBERT+KG/GloVe 2092 67.15 67.85 68.33 67.76 68.55 68.46 68.07 67.76
LASER+MPNet+KG/GloVe 2092 67.59 67.02 66.14 67.85 68.51 67.15 68.37 68.64
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Table A4. Extended intent classification evaluation for the ATIS data set using an RNN and the
automatically extracted KG with 100 terms (bold numbers indicate the best results for each setting).

SOTA Embeddings Dim. Precision Best Embeddings with KG Dim. Precision

SBERT 768 98.67 LASER+KG 1324 99.25
LASER 1024 98.87 LASER+MPNet+KG 2092 99.25
MPNet 768 98.43 LASER+SBERT+KG/GloVe 2092 99.25
LASER+SBERT 1792 98.50 LASER+MPNet+KG/GloVe 2092 99.25
LASER+SBERT+GloVe 2092 98.62

Embeddings with KG Dim. KGt KGtr KGtre

KG 300 91.37 91.37 93.87

Concat.

KG 300 91.37 91.37 93.87
KG+Glove 600 98.25 98.62 98.00
LASER+KG 1324 99.25 98.62 98.25
LASER+SBERT+KG 2092 98.25 99.25 98.50
LASER+MPNet+KG 2092 99.25 99.25 98.50

Substit.
LASER+KG/GloVe 1324 98.87 98.62 97.87
LASER+SBERT+KG/GloVe 2092 99.00 98.37 99.25
LASER+MPNET+KG/GloVe 2092 99.12 99.12 99.25

Table A5. Extended intent classification evaluation for the ComQA data set using a Siamese network
and the automatically extracted KGs (bold numbers indicate the best results for each setting).

SOTA Embeddings Dim. Precision Best Embeddings with KG Dim. Precision

SBERT 768 95.18 SBERT+LASER+KG 2092 95.18
SBERT+LASER 1792 94.66
MPNET 768 94.37
MPNET+LASER 1792 94.14

KGt KGt KGt KGtr KGtr KGtr KGtre KGtre KGtre
Embeddings with KG Dim. (100) (500) (750) (100) (500) (750) (100) (500) (750)

SBERT+KG 1068 94.96 94.43 94.78 94.78 94.31 94.78 94.55 94.61 94.78
SBERT+LASER+KG 2092 95.13 94.55 94.60 94.78 94.55 94.95 95.18 94.55 94.43
MPNet+KG 1068 95.13 94.49 92.86 94.49 94.03 92.34 93.43 92.87 92.23
MPNet+LASER+KG 2092 95.02 94.43 92.92 94.14 93.79 92.92 93.91 93.27 91.65

Table A6. Extended intent classification evaluation for the ComQA data set, filtered by questions
with a frequency between two and five, using a Siamese network and the automatically extracted KGs
(bold numbers indicate the best results for each setting).

SOTA Embeddings Dim. Precision Best Embeddings with KG Dim. Precision

SBERT 768 83.31 SBERT+LASER+KG 2092 84.87
SBERT+LASER 1792 84.12
MPNET 768 83.25
MPNET+LASER 1792 84.23

KGt KGt KGt KGtr KGtr KGtr KGtre KGtre KGtre
Embeddings with KG Dim. (100) (500) (750) (100) (500) (750) (100) (500) (750)

SBERT+KG 1068 83.78 83.48 84.24 84.07 84.65 83.95 84.01 83.31 83.60
SBERT+LASER+KG 2092 84.87 84.42 83.54 83.31 83.89 84.01 84.18 83.14 83.78
MPNet+KG 1068 84.29 84.07 84.12 84.30 83.37 83.89 83.95 83.89 83.95
MPNet+LASER+KG 2092 83.02 83.89 83.49 83.89 83.31 83.89 83.54 84.36 83.78
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Table A7. Extended intent classification evaluation for the ParaLex data set using a Siamese network
and the automatically extracted KGs (bold numbers indicate the best results for each setting; * denote
statistically significant, p = 0.05).

SOTA Embeddings Dim. Precision Best Embeddings with KG Dim. Precision

SBERT 768 48.81 MPNet+KG 1068 52.29
SBERT+LASER 1792 49.75
MPNET 768 50.33
MPNET+LASER 1792 50.47

KGt KGt KGt KGtr KGtr KGtr KGtre KGtre KGtre
Embeddings with KG Dim. (100) (500) (750) (100) (500) (750) (100) (500) (750)

SBERT+KG 1068 49.26 48.82 49.49 48.93 49.43 49.31 49.28 49.73 49.12
SBERT+LASER+KG 2092 49.17 49.52 49.17 48.65 49.28 49.35 48.89 48.93 49.49
MPNet+KG 1068 52.29 * 51.21 51.54 50.18 50.55 51.86 51.18 51.68 50.62
MPNet+LASER+KG 2092 51.49 50.97 50.57 50.86 51.04 51.75 51.28 50.69 51.20

Table A8. Extended intent classification evaluation for the ProductServiceQA data set using a Siamese
network and the automatically extracted KGs with 100 terms (bold numbers indicate the best results
for each setting).

SOTA Embeddings Dim. Precision Best Embeddings with KG Dim. Precision

SBERT 768 73.94 MPNet+LASER+KG 2092 74.69
SBERT+LASER 1792 73.77
MPNET 768 73.55
MPNET+LASER 1792 73.51

Embeddings with KG Dim. Bench. KGt Bench. KGtr Bench. KGtre KGt KGtr KGtre

SBERT+KG 1068 74.03 73.73 74.56 73.51 73.77 73.73
SBERT+LASER+KG 2092 73.68 73.77 73.51 73.16 74.08 73.07
MPNet+KG 1068 74.08 73.64 73.68 73.64 74.37 73.59
MPNet+LASER+KG 2092 74.64 74.69 74.16 73.81 73.77 73.29

Table A9. Extended intent classification evaluation for the ATIS data set using a Siamese network
and the automatically extracted KGs with 100 terms (bold numbers indicate the best results for each
setting).

SOTA Embeddings Dim. Precision Best Embeddings with KG Dim. Precision

SBERT 768 99.37 MPNet+KG 1068 99.50
SBERT+LASER 1792 99.00
MPNET 768 98.62
MPNET+LASER 1792 98.62

Embeddings with KG Dim. KGt KGtr KGtre

SBERT+KG 1068 99.25 99.50 99.37
SBERT+LASER+KG 2092 99.00 99.37 99.25
MPNet+KG 1068 99.12 99.12 99.50
MPNet+LASER+KG 2092 98.75 98.50 99.37
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Table A10. Extended intent classification evaluation for the Spanish ProductServiceQA data set
translated into English using a Siamese network and the automatically extracted KGs with 100 terms
(bold numbers indicate the best results for each setting).

SOTA Embeddings Dim. Precision Best Embeddings with KG Dim. Precision

SBERT 768 62.24 MPNet+LASER+KG 65.57
MPNET 768 64.34
SBERT+LASER 1792 61.62
MPNET+LASER 1792 65.00

Embeddings with KG Dim. Bench. KGt Bench. KGtr Bench. KGtre KGt KGtr KGtre

SBERT+KG 1068 62.89 61.58 61.76 62.33 62.41 62.54
SBERT+LASER+KG 2092 62.33 61.97 62.94 61.32 62.46 60.92
MPNet+KG 1068 63.95 60.00 61.06 64.34 63.90 60.31
MPNet+LASER+KG 2092 65.57 59.13 62.41 64.91 63.29 59.83

Table A11. Extended intent classification evaluation for the Chinese ProductServiceQA data set
translated into English using a Siamese network and the automatically extracted KGs with 100 terms
(bold numbers indicate the best results for each setting).

SOTA Embeddings Dim. Precision Best Embeddings with KG Dim. Precision

SBERT 768 58.12 MPNet+KG 60.66
MPNET 768 59.30
SBERT+LASER 1792 59.01
MPNET+LASER 1792 59.70

Embeddings with KG Dim. Bench. KGt Bench. KGtr Bench. KGtre KGt KGtr KGtre

SBERT+KG 1068 58.47 58.25 58.56 58.08 59.70 58.12
SBERT+LASER+KG 2092 57.32 57.42 58.51 58.30 57.42 58.34
MPNet+KG 1068 60.57 55.71 56.15 60.66 59.48 55.54
MPNet+LASER+KG 2092 60.18 55.23 57.59 60.40 58.82 55.45
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