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Abstract 

Antibody-drug Conjugates (ADCs) are promising anticancer therapeutics, which offer 

important advantages compared to more classical therapies. There are a variety of ADC 

Critical Quality Attributes (CQAs) such as the protein structure, aggregation, and drug-

to-antibody ratio (DAR), which all impact on potency, stability, and toxicity. Production 

processes can destabilize antibodies via a variety of physical and chemical stresses, and 

via increased aggregation after conjugation of hydrophobic drugs. Thus, a proper control 

strategy for handling, production, and storage is necessary to maintain CQA levels, which 
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requires the use of in-process quality measurements to first identify, then understand, and 

control the variables which adversely affect ADC CQAs during manufacturing.  

Here we show how polarized Excitation Emission Matrix (pEEM), a sensitive, non-

destructive, and potentially fast technique, could be used for rapidly assessing 

aggregation and DAR in a single measurement. pEEM provides several sources of 

information for protein analysis: Rayleigh scatter for identifying aggregate/particle 

formation and fluorescence emission to assess chemical and structural changes induced 

by attachment of a linker and/or a small molecule drug payload. Here we used a non-

toxic ADC mimic (monoclonal antibody with linker molecule) to demonstrate efficacy of 

the measurement method. Emission changes caused via light absorption by the attached 

linker, allowed us to predict DAR with good accuracy using fluorescence signal from the 

final purified products (6% relative error of prediction (REP)) and also from unpurified 

alkylation intermediates (11% REP). pEEM changes could also be correlated with size 

(hydrodynamic radius, Rh) and aggregate content parameters obtained from Dynamic 

Light Scattering and Size Exclusion Chromatography (SEC). For the starting material and 

purified product samples, pEEM correlated better with Rh (R
2
 =0.99, 6% REP) than SEC 

determined aggregate content (18% REP). Combining both fluorescence and light scatter 

signals also enabled in-process size quantification (6% REP). Overall, combining 

polarized measurements with EEM and Rayleigh scatter provides a single measurement, 

multi-attribute test method for ADC manufacturing.  

Graphical Abstract 
Spectroscopic monitoring of Antibody Drug Conjugate (ADC) synthesis can be 

challenging due to spectral overlap between reactants and products, and because of the need 

to simultaneously measure multiple process parameters. Here the authors show how polarized 
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Excitation Emission Matrix (pEEM) can rapidly assess aggregation and quantify the drug to 

antibody ratio via a single parallel polarised EEM measurement. pEEM is thus a potential 

Process Analytical Technology for real time reaction monitoring of ADC production 

 

Keywords: Antibody Drug Conjugate, monoclonal antibody, conjugation, Fluorescence, 

Polarized.  

1.0 Introduction 

Antibody-drug conjugates (ADCs) couple the specificity of monoclonal antibodies 

(mAb) with the cell-killing ability of cytotoxic agents. This is done to increase specificity 

towards tumor cells as well as improving pharmacokinetic profiles, and providing a wider 

therapeutic window (Wu & Senter, 2005). There are currently nine FDA approved ADCs 

with more than 80 molecules in clinical studies (Joubert et al., 2020). IgG1 is the most 

widely used antibody type for therapeutic purposes and also the most common protein 

found in ADCs on the market or in late stage clinical trials (Joubert et al., 2020). 

Chemical conjugation via lysine and cysteine are the most common ADC synthetic 

strategies (Joubert et al., 2020). Conjugation to lysine amine group is widely used 

because it is relatively simple, often a single step reaction. However it generates 

heterogeneous products because IgG has approximately 80 lysine derived amine groups 
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(Mueller et al., 1988) of which approximately 10 are readily accessible for chemical 

modification. Cysteine conjugation is the major alternative, but because of the lack of 

free cysteine thiol groups in most proteins, the process usually first involves disulphide 

bond reduction under carefully controlled conditions to create sulfhydryl groups. These 

free thiols are then available for conjugation to reagents containing groups like 

maleimide. This route usually restricts the attachment sites to eight, leading to more 

homogeneous product mixtures compared to lysine conjugation (Jain et al., 2015), 

although site specific conjugation methods are now becoming available(Coumans et al., 

2020).  

Mishandling of proteins can lead to protein unfolding and aggregation, which can 

cause a loss in function and potentially cause immunogenicity issues for the patient 

(Sharma, 2007). In general, the most important critical quality attributes (CQAs) to be 

considered during protein modification are: homogeneity, purity, degree of conjugation, 

total protein concentration, and lot-to-lot variability of starting materials, intermediates, 

and final conjugated products. The CQAs (“Guidance for industry: Q8 (R2) 

pharmaceutical development, Guideline ICH Harmonised Tripartite,” 2009) are the 

physical, chemical, or biological attributes of the drug substance/product known to 

impact product quality in terms of potency, pharmacokinetics, and toxicity(Alt et al., 

2016; Raynal et al., 2014; Wagh et al., 2018). Protein and ADC analysis is technically 

demanding because of increased structural complexity compared to small molecules and 

the need to monitor both tertiary and quaternary structures. For ADC’s, the problems are 

compounded by the fact that the small molecule payload also has to be characterized and 
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that the structural changes caused by the payload (e.g., increased hydrophobicity) lead to 

products which are significantly more sensitive to aggregation.  

Using intrinsic fluorescence measurements for protein structure and stability analysis 

is well established, because it involves minimal structural perturbation compared to the 

use of extrinsic labels, and is sufficiently sensitive (<10
–6

 M)(Quinn et al., 2015; Yadav 

et al., 2014). Simple (i.e. single point or single excitation measurements) intensity, 

lifetime, and anisotropy measurements can be implemented using relatively simple and 

inexpensive instrumentation and are widely used for studying processes like: aggregation 

(Ohadi et al., 2015), fibrillation (Bekard & Dunstan, 2009), unfolding (Vlasova & 

Saletsky, 2009), and binding.(Lissi et al., 2013; Rawel et al., 2006; Soares et al., 2007; 

Zhang et al., 2008) However, most proteins are multi-fluorophore systems with 

photophysically active species present in close proximity (<10 nm) which interact via 

energy transfer and quenching. This generates complex emission which is better 

represented by 3D measurements like Excitation Emission Matrix (EEM)(Warner et al., 

1977) or total synchronous fluorescence spectroscopy, (TSFS) (Patra & Mishra, 2002). 

Both have been used for multi-fluorophore mixture analysis for various applications 

(Bridgeman et al., 2011; Li et al., 2011; Li et al., 2014; Ryan et al., 2010). By combining 

polarization with 3D EEM measurements, one can obtain extra information about 

changes in molecular size, local viscosity, and/or fluorophore mobility (Casamayou-

Boucau & Ryder, 2017; Groza, 2016; Groza et al., 2015). 

Here we investigated the use of polarized EEM (pEEM) to monitor an ADC reaction 

process with the key objectives being to: 1). measure variance in the mAb starting 

reaction materials, 2). monitor the course of the reaction and assess variance in the 
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reaction intermediates, 3). predict final product drug to antibody ratio (DAR) during the 

alkylation reaction, and 4). measure variance and DAR of the final purified products. 

Most ADCs analysis studies focus on characterizing final conjugate stability and DAR 

(Wakankar et al., 2011) with fewer looking at conjugation reaction monitoring. UV-vis 

absorbance spectroscopy (Andris et al., 2018) was used to monitor DAR during 

conjugation of two different drug mimics to an engineered mAb. A RP-HPLC and TOF 

mass spectrometry based method (Tang et al., 2017) was used to monitor DAR of a 

randomly conjugated lysine linked ADC. Our work presents a very different, multi-

attribute alternative for assessing aggregation changes during the reactions, measuring 

DAR during alkylation, and DAR in the final, partially purified product. 

2. Materials and methods 

Materials: mAb donated by Byondis (Nijmegen, NL) was buffer exchanged prior to use 

(vide infra), MC-Val-Cit-PAB-OH linker was purchased from Tokyo Chemical Industry, 

and TCEP hydrochloride, n-acetylcysteine, and reagents for buffer preparation 

(NaH2PO4, Na2HPO4*7H2O and disodium EDTA dehydrate) were purchased from 

Sigma-Aldrich. HPLC grade water (Fisher chemicals) was used for all solutions which 

were membrane filtered (0.10 μm) using Captiva Filters prior to use. A single 11.0 mL 

mAb aliquot (see Supplemental Information, SI, for more details) was buffer exchanged 

to remove the formulation buffer in order to facilitate synthesis. The mAb in reaction 

buffer was then aliquoted into smaller vials (5.0 mL LoBind tubes) suitable for single 

experiments, refrozen, and stored at –70°C until required. This reduces and controls the 

number of freeze thaw cycles ensuring that all samples in an experimental campaign have 

the same number of cycles. Absorbance spectroscopy was used to check the final 
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concentration (of mAb in PBS/EDTA and fluorescence measurements and dynamic light 

scattering (DLS) were also carried out (data not shown). Ellman’s test (Figure S1, Table 

S1, SI) was used to verify the number of free thiol sites under the different conditions 

employed.  

Linker and Conjugation: A big challenge when studying ADCs is the often very high 

potency of the payload drug requiring the use of strict safety protocols and controlled 

environments. Thus, the safest alternative for preliminary studies particularly for 

analytical method development is to use a non-toxic model with payload molecules that 

mimic the structure/behavior of the real drug-linker which facilitates the safe study of all 

the key steps from starting material preparation to final purification of conjugated 

products. The drug mimic used here was selected to be similar (e.g., solubility, 

absorptivity) to common drug-linkers used in marketed ADCs but avoided toxicity issues. 

We used a molecule composed of valine, citruline, PAB-OH, with an active maleimide 

terminal group, which is a common commercial ADC linker (Joubert et al., 2020). We 

selected a non-fluorescent small molecule because we wanted to minimize interference, 

and only measure the changes in protein fluorescence (Figure S2/S3, SI). 

Conjugates were prepared by partial reduction of IgG disulphide bonds with 

TCEP.HCl for 2 hours followed by alkylation with an excess of the “drug” linker for 2 

hours, at 20°C. The two-step reactions were conducted in 1×1cm path length quartz 

cuvettes with slow stirring (using a flea magnetic follower in the cuvette with the sample 

holder stirrer) in the spectrometer (Figure S3, SI). A total of 24 reactions were performed, 

using 8 reducing agent TCEP concentrations from 0 to 50 molar excess (0, 1.25, 2.50, 

5.0, 7.5, 10, 25, and 50) in triplicate. For all reactions, the same amount of “drug” linker 
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(20-fold excess compared to mAb concentration) and NAC quencher (12-fold excess 

with respect to linker concentration) was used. The reaction mixtures were measured by 

absorbance and pEEM spectroscopy at 45-minute intervals during the reaction 

(designated Red1-/2-/3-IgG, Alk1-/2-/3-/4-IgG). The starting material (IgG-SM), reduced 

intermediate (Red3-IgG), unpurified final reaction mixture (Alk4-IgG), and partially 

purified final products (Pur-ADC) were also analyzed by DLS to look for aggregate 

formation (See Tables S2/S3, SI). Because DLS, absorbance, and fluorescence 

measurements were made on the same cuvette sample we have confidence that all data 

relates to the exact same sample in terms of chemical and physical composition. 

Unpurified reaction mixtures were transferred to Eppendorf tubes and then stored at –

70°C until purification was undertaken, several days post reaction. A simple filtration-

based purification (see SI) was implemented to remove unreacted small molecules 

(<10kDa) and these partially purified samples (Pur-ADC) were characterized by 

absorbance and fluorescence spectroscopy, DLS, SEC, and Sodium Dodecyl Sulfate-

Polyacrylamide gel electrophoresis (SDS-PAGE).  

Instrumentation and data collection: Absorbance spectra were collected using a 

Cary 60 spectrometer (Agilent) from the same cuvettes used for fluorescence 

measurements. Polarized EEM spectra were collected from 1×1 cm quartz cuvettes 

(Lightpath Optical, UK) using a Cary Eclipse fluorescence spectrophotometer (Agilent) 

fitted with wire grid polarizers (Casamayou-Boucau & Ryder, 2017) and a temperature 

controlled multi-cell holder. pEEM spectra were collected over an excitation range of λex 

= 250–320 nm and an 290–450 nm emission range (2 nm increments in each case) with 

10 nm excitation/emission slit widths and a scan rate of 1200 nm/min. Samples were 
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measured under the four different polarization configurations, as previously described 

(A.L de Faria e Silva et al., 2020; A. L. de Faria e Silva et al., 2020), but only the parallel 

polarized EEM (EEM||) was used here because it is more sensitive to changes induced by 

conjugation and aggregation.(A.L de Faria e Silva et al., 2020; A. L. de Faria e Silva et 

al., 2020), and does not need G factor correction, simplifying measurement. Data were 

blank subtracted prior to any data analysis using the corresponding buffer for each step 

(see SI). pEEM data was corrected for differences in instrument response using a 

correction factor calculated using a Spectral Fluorescence Standard Kit (Sigma, product 

No. 69336) (Resch-Genger et al., 2005), for a restricted λem=302–450 spectral range (this 

was because the standards only covered the 300-700 nm emission range). Following this, 

the Rayleigh scatter (RS) area was replaced with missing data, and the fluorescence 

signal smoothed using Savitzky–Golay filter. For most analyses, the smoothed spectra 

were normalized to the point of the maximum intensity. The extracted RS band (RS||) is 

the first order Rayleigh scattering spectrum, and from this the area under the curve (RS 

volume) was calculated. Both of these parameters were used for qualitatively assessing 

protein aggregation. Descriptions of sample types, data collected, and datasets used for 

modelling are provided in Table S2, SI. 

Chemometric analysis were performed using PLS_Toolbox 8.2.1®, MATLAB (ver. 

9.1.0), and in-house written codes. Exploratory data analysis was carried out using 

ROBust Principal Component Analysis (ROBPCA), which minimizes the effect of 

outliers (Hubert et al., 2005) compared to classical PCA. It was implemented using the 

Venetian blind method (4 splits) for cross-validation and the Root Mean Square Error 

(RMSE) values to select the optimum number of PCs. Quantitative modelling for DAR 
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and % of aggregates was implemented using unfolded PLS, u-PLS, (Haaland & Thomas, 

1988). Model performance was assessed by coefficient of determinations (R
2
), RMSE, 

and relative error of prediction (REP). The elliptical joint confidence region (EJCR) test 

was used to compare the accuracy and precision of different models at a 95% confidence 

interval (Mandel & Linnig, 1957). iPLS was used for variable selection and it works by 

comparing u-PLS performance with and without each variable (here each excitation 

wavelength), selecting variables that return lower cross validation errors (Nørgaard et al., 

2000). The pooled relative standard deviation (RSDP) of SEC and DLS parameters was 

calculated using the RSD of values obtained from replicate measurements (see SI).  

SEC was performed using a 300×7.8 mm mAb PAC-SEC. 1 column 

(ThermoFisher) with a 5µm particle size with an Agilent 1260 HPLC system equipped 

with a DAD detector. Solutions were filtered using a 0.20μm Captiva PES filter and 

10µL of sample were injected in triplicate at 30°C with 50mM Sodium Phosphate pH 

6.8+300 mM NaCl buffer as the mobile phase, and a 0.8 mL/min flow rate. The 

important output parameter used for characterization and modelling was the %Agg. value 

which for this study was defined as: the ratio in % terms of the sum of the Area Under the 

Curve (AUC) of the aggregate peaks (all those at Rt<10 minutes) divided by the total 

peak area in the SEC chromatograms. Because no fragment peaks were observed and the 

buffer components peak (~14 min) was excluded, the % of aggregates corresponded to 

100_(% Monomers). Here the aggregate peaks occur between Rt=~7 and 10 min. 

However, we do have to note that the %Agg. values here represent the soluble species 

and do not take into account large aggregates which might precipitate out or otherwise be 

lost. DLS data were collected at 20 °C, after filtration (0.20μm PES filter), using a 
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Malvern Zetasizer Nano ZS (173°detection angle). Each sample was measured 5 times 

(each measurement was an average of 10 runs of 10 second duration) in disposable 

plastic cuvettes. Z-average size (radius) and Polydispersity Index (PdI) were obtained by 

Cumulants analysis while the hydrodynamic radius (Rh) was extracted from the 

distribution fit (both from the Intensity PSD), using the Zetasizer software, ver. 7.13 

(Malvern Panalytical). SDS-PAGE was performed according to the BioRad TGX Precast 

Gels® specifications (see SI for details).  

3. Results and discussion 

Starting materials (IgG-SM) and partially purified products (Pur-ADC) were first 

characterized using conventional methods to measure aggregation by SEC, size by DLS, 

and DAR via UV-visible absorbance spectroscopy. This data was then used to explain the 

observed spectral changes in the pEEM spectra before using multi-variate data analysis to 

build predictive models for DAR and aggregation content.  

3.1. Conventional reference measurements:  

3.1.1 DAR quantification: As all reactions were undertaken in cuvettes, we expected 

high recovery, however, absorbance spectroscopy suggested a decrease in total protein 

concentration over the course of the reaction (Figure 1A). Average absorbances of 

1.08±0.02 (IgG-SM), 1.04±0.01 (Red3-IgG), and 0.98±0.02 g/L (Alk4-ADC) were 

measured, with a decrease due mostly to dilution via reagent addition. Recovery after 

purification was ~75% which was a significant protein loss experienced during handling 

and reconstitution of purified material which is to be expected with the small reaction 

volumes used. The final purified solutions used for measurements had a concentration 

(measured by absorbance) of 1.05±0.02 g/L. DAR can be considered one of the most 
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important CQAs because it determines the final product potency and stability. 

Absorbance spectroscopy is often used to determine DAR if drug and mAb have different 

absorption maxima (Chen, 2013; Wakankar et al., 2011). However free drug is a problem 

if its absorbance spectrum overlaps that of the conjugated drug, which could lead to DAR 

overestimation. Here we collected absorbance spectra from the purification washings to 

ensure complete free “drug” removal. DAR was calculated from the ratio of the 

concentrations of “drug” and mAb (see SI) which were determined using the extinction 

coefficients at the two wavelengths of maximum absorbance (Hamblett et al., 2004). It 

confirmed that varying degrees of conjugation, 1.0±0.0 to 8.2±0.1 DAR (Table 1), were 

achieved. The maximum number of conjugation sites should be eight, however the 

slightly higher DAR value measured could be a result of small variations in protein 

absorption at 250–270 nm or possibly some conjugation to intra-chain disulphide bonds 

(which would result in more than eight free thiols and higher DAR).  

3.1.2 Physical Characterization: SDS-PAGE gels indicated that all reactions were 

relatively clean, while also giving information about attachment sites within the antibody 

(Figure 1B). The rationale behind this is the dissociation of the antibody into light and 

heavy chains (L and H) which are no longer covalently attached via disulphide bonds 

(because of conjugation). With the increased TCEP (and thus higher DAR), the amount 

of unconjugated IgG (HHLL, 150kDa) decreased, with a concomitant increase in 

dissociated L (25kDa), H (50kDa), HL (75kDa), HH (100kDa), and HHL (125kDa) 

species depending on the degree of conjugation and site of attachment. This agreed with 

the claim that inter H-L di-sulphide bonds were the first reduced under mild reducing 

conditions (Guo et al., 2014). The gels also showed good reproducibility between 
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replicate experiments as demonstrated by the band patterns (Figure S4, SI). SEC-HPLC 

(Figure 1C) aggregation data and DLS (Figure 1D) Rh data (Table 1 and Table S3, SI) 

showed that all IgG-SM had very similar aggregation profiles (99.2±0.1 % monomer) and 

sizes. These measurements also showed that aggregation increased after purification 

(87.9±13.3 % monomer).  

3.0 pEEM Measurements.  

3.1 Fluorescence Spectroscopy: Normalized EEMǁ difference spectra showed 

significant intensity changes (at λex<260 nm) of up to 20% for the highest DAR samples 

(Figure 2A) which was probably related to secondary changes in fluorescence induced by 

varying Inner filter Effect (IFE) caused by light absorption by attached linker, rather than 

large changes in intrinsic protein emission. IFE is usually considered a problem because 

it causes a non-linear dependence between intensity and concentration. However, it is a 

valuable source of information about protein-based samples because of the high 

sensitivity to changes in sample composition (Panigrahi & Mishra, 2019; Ryder et al., 

2017) and can be incorporated into variance assays once identified and taken into 

account.  

To better interpret the spectral changes and their significance we used ROBPCA, 

which generates loadings plots to provide information about the types of spectroscopic 

changes occurring and scores plots that provide data on the magnitude/significance of 

these changes. ROBPCA of IgG-SM +Pur-ADC samples ( 

Table 3, Figure 2B-C) easily discriminated conjugated from non-conjugated mAb with 

most separation along PC1 (78% explained variance) which is caused by spectral 

differences at λex/em~260/340 nm due to increased absorbance by attached linker 
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molecules (λmax = 250 nm) and a corresponding decrease in Trp emission as DAR 

increases due to IFE induced by linker attachment. PC2 (15.26%) represents changes 

centered at λex/em~280/340 nm and seems to be related to changes in the directly excited 

intrinsic fluorophores (Trp and Tyr) but mostly Trp. Because PC2 scores decreased with 

DAR, this suggested some form of quenching via non-radiative transitions. PC3 (4.07%) 

seems to represent the intrinsic protein variance related to small variation in 

concentration (~2%) as sample distribution was linear along PC3 and the scores showed a 

negative signal at λex ~300 nm with very little change at shorter excitation wavelengths. 

The fact that IgG-SM samples were distributed along PC3 also supports this view.  

3.2 DAR quantification: Based on these observations, we built a u-PLS model (Table 2) 

for DAR quantification using the Pur-ADC normalized pEEM spectra (Figure 3A) with 

samples split into calibration and validation sets using the Kennard-Stone Algorithm. The 

best model obtained had relatively small error (RMSE<6%), and then by using iPLS 

variable selection, it was possible to reduce the number of excitation wavelengths, 

facilitating shorter acquisition times while maintaining similar prediction performance 

(REP=8%) as shown in the EJCR plot (Figure 3B). Both u-PLS selected variables and 

ROBPCA loadings (Figure 3C-E) indicated that two main spectral regions contributed to 

the quantification model, thus one can build a simpler, more transparent DAR correlation 

model using single data points, e.g., intensity at λex/em = 260/336 nm, or better use a ratio 

measurement between λex/em 260/336 and 292/336 nm. Both gave good correlations 

(R
2
=0.99) with the nominal DAR. This demonstrates a key use of EEM measurements 

and chemometric analysis for quickly screening the full emission space to find simpler 

measurement options.  
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3.3 Aggregation Analysis and prediction: Aggregation is a critical CQA to be 

monitored during ADC production and it is thus important to monitor changes in both 

tertiary and quaternary structure. An increase in insoluble aggregates was indicated by a 

general rise in the ultraviolet aggregation index 

(𝑈𝑉 − 𝐴𝐼 = (𝐴350 (𝐴280 − 𝐴350)) × 100⁄ ), 0.61±0.43 → 1.35±0.58 → 1.96±0.76% for 

IgG-SM, Red-IgG, and Alk-IgG (average values for all samples, n=24), respectively 

(Wang & Roberts, 2010). After purification, UV-AI decreased to 0.72±0.15% which 

could be a result of either de-aggregation or more probably selective aggregate loss 

during purification, since recovery was only ~75% (e.g., sedimentation of large 

aggregates). All the individual reactions apart from the control show similar trends and 

the complete data is available in the SI (Table S5/Figure S9). Previously we showed (A. 

L. de Faria e Silva et al., 2020) that UV-AI had a poor relationship with SEC measured 

aggregation, which was probably due to its poor sensitivity for small soluble aggregates. 

Turbidity measurements (usually OD350nm) have been used to monitor protein aggregation 

with stress conditions(Ross & Wolfe, 2016) Here, there was no correlation between UV-

AI with either SEC or DLS Rh values (Figure 4A), which shows that UV-AI is unsuitable 

for this type of sample/process where relatively low levels of soluble aggregates are 

present. However, there was a good correlation (R
2
>0.9, Table 1, plot not shown) 

between Rh and % aggregates for the Pur-ADC, which indicated that the issue for UV-AI 

was sensitivity. RSǁ volume on the other hand, generated significantly better correlations 

to both Rh (DLS) and %Agg (SEC), R
2
 =0.96 and 0.88 respectively (Figure 4B), for the 

combined IgG-SM and Pur-ADC sample set. Considerably lower correlations (R
2
=0.44) 

were obtained for Z-average which was unsurprising since the Z-average size metric is 
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unreliable for polydisperse samples with PdI>0.1, (Bhattacharjee, 2016). Here all the Pur-

ADC samples had PdI > 0.2. It is probably because of the ~30% (on average) Rh increase 

between IgG-SM to Pur-ADC (Table S3, SI) that we get good correlations with RSǁ 

volume measurements. In cases where the distribution fits showed a second larger 

species, it was present only in relatively small quantities (<3% in the Pur-ADC) and as 

such seem to have a low influence on the model. However, these reference DLS size 

measurements need to be investigated further in future studies.  

u-PLS predictive models ( 

Table 4) for quantification/prediction of %Agg (SEC) and Rh (DLS) using EEMǁ and 

RSǁ, showed that Rh prediction was better. This suggested that the presence of species 

which were not detected by SEC (e.g., non-covalent aggregates or very large particles), 

had a significant impact on EEMǁ and RSǁ spectra. Non-covalent aggregates could be 

either agglomerates or reversible aggregates, however, we have no data available to 

discriminate between the two. The higher errors obtained for %Agg prediction 

(REP>18%) can also be related to greater SEC measurement errors (RSDP =4.2%) 

compared to DLS (2.3%). Other error factors were possible sample changes caused by an 

extra freeze-thaw cycle, additional sample handling, and the time delays making SEC 

measurements.  

Aggregate content (%Agg. from SEC measurements) was better correlated to 

fluorescence than to scatter signals (but best when both signals were used), which was 

probably due to the weaker scatter contribution of the nm sized soluble aggregates (most 

samples were composed of monomers, dimers, and trimers according to SEC), and also 

because of the noisy/variable absolute scatter signal measured. This is clearly seen in 
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EJCR plots (Figure 4C) which confirmed that the model using both EEMǁ+RSǁ data with 

variable selection was best. Here, with a relatively large sample set and using a mAb 

which better represents therapeutically relevant molecules, pEEM can be used for the 

quantification of soluble aggregates (as determined by SEC measurements) down to ~1% 

( 

Table 4) which is significantly better than demonstrated previously for a polyclonal 

IgG (A. L. de Faria e Silva et al., 2020).  

pEEM spectral variance correlated better with Rh with the RS|| based models being 

slightly better than those using EEMǁ spectra ( 

Table 4). The major issue with using non-normalized RS data for modelling 

aggregation was noise and poor reproducibility because the model relied on absolute 

intensity changes. We attempted to quantify aggregation using normalized RS|| (by either 

band maximum or area), but this produced worse results (data not shown). Despite this, 

the error was relatively low and could be improved by spectral averaging. Another 

solution is to simply use normalized full pEEM spectra to minimize unwanted signal 

fluctuations (fluorescence and RS), which should be a more reproducible source of size 

related changes. Here, a specified spectral data point (λex/em 294/336nm, point of 

maximum fluorescence intensity) was used for normalization. Using this data resulted in 

better Rh models with good correlation coefficients (R
2
>0.95) and a 2-3% decrease in 

REP for EEMǁ+RSǁ compared to RSǁ. Larger improvements were obtained for aggregate 

content ( 

Table 4) using EEMǁ+RSǁ, with R
2
>0.98 and an REP decrease of 10-13%. iPLS 

selected variables and loadings (Figure S6) showed that areas of the fluorescence signal 
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and scatter band were important for size prediction of (Figure S6D/G/H) and aggregate 

content (Figure S6O/L/P), with the RS signal always being the strongest contribution. 

EJCR plots (Figure 4D) confirmed that the best model used both EEMǁ+RSǁ data and 

variable selection.  

4. Reaction monitoring:  

4.1. Spectral changes: To investigate reaction dependent spectral changes, we collected 

pEEM spectra every 45 mins. during the reaction (nine measurements in total): one IgG 

starting material (IgG-SM), three during reduction (Red1/2/3-IgG), four during alkylation 

(Alk1/2/3/4-IgG) and one of the partially-purified product (Pur-ADC). The mean ( 

Figure 5A-H) and standard deviation (StDev) spectra ( 

Figure 5I-P) calculated from normalized spectra at each timepoint showed good 

reproducibility between IgG-SM ( 

Figure 5A/E), and no major spectral changes during reduction ( 

Figure 5B/F). Changes were more significant after linker addition ( 

Figure 5C/G) and this carried through to the Pur-ADC ( 

Figure 5D/H) although it was smaller presumably because the unreacted free drug had 

been removed. The relative standard deviation (RSDEEM), see SI for explanation, for all 

starting materials (n=24) and all reduction intermediate samples (n=72) was 1.8%, with a 

maximum of 2% for a single data point, and a significantly higher variance amongst 

alkylation intermediates and purified product (EEMRSD=8.8 & 4.4%, n=96 & 24 

respectively). These were significant emission changes compared to 1% changes 

previously obtained for control measurements (A. L. de Faria e Silva et al., 2020). It was 

not possible to collect more spectra during the reaction because the scanning-based 
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spectrometer took ~7 min. to collect one full spectrum, which limited the number of 

sample points available for analysis and analysis of reaction rates.  

We assessed the changes at each reaction step using StDev calculated after 

successively adding data collected at each data point e.g., for Step 3 of reduction StDev 

was calculated using IgG-SM + Red1-IgG + Red2-IgG + Red3-IgG samples ( 

Figure 5). This again shows that alkylation was responsible for most of the reaction 

spectral variance, which increased from 8.2% to 11% (EEMRSD) from the first to last 

sampling point. The equivalent variance (i.e., reproducibility), between replicates of same 

reaction at a specific timepoint, was much lower (<2%). Overall, we can say that the 

spectral changes induced by alkylation were large, significant, and thus suitable for 

ROBPCA and quantitative modelling ( 

Table 2). 

ROBPCA ( 

Figure 6) was then used to better understand the source of these spectral changes and 

three ROBPCs were required to explain the spectral variance when models were built 

using all samples. This ROBPCA model contains more complex samples than that 

depicted in  

Figure 2 and the presence of excess unbound linker had the largest impact. The 

outliers plot ( 

Figure 6A) showed the significantly different samples and indicated some IgG-SM as 

outliers (bottom-right and top-left quadrants), but also some of the alkylation 

intermediates for reactions producing a lower DAR. The latter is probably associated 
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with changes in absorption/emission of free and linked drug, as there seem to be a 

decrease in Q Residuals with increasing DAR. The separation along PC1 ( 

Figure 6B) is largely associated with changes in emission induced by the presence of 

linker ( 

Figure 6C), which explained the separation of IgG-SM and Red-IgG groups from 

Alk-IgG (conjugated+free linker) and from Pur-ADC (varying DAR). ROBPC2, which 

only explained 1.20% of variance, represents a decrease in emission intensity, and thus 

probably represents small concentration and aggregate related variation arising from 

sample handling and other factors rather than significant structural change. This was 

because the tertiary structure of the starting material, reduced mAb, and the DAR 0 

product should be similar. Thus, a global ROBPCA model containing all samples does 

not clearly show the reaction induced spectral changes very clearly. 

The scores obtained for the two models (IgG-SM +Red-IgG and Alk-IgG) were 

plotted (Figure S7/8, SI) against reaction timepoint showing the trajectory followed by 

the different reaction conditions which lead to different DAR products. ROBPC1 and 2 of 

IgG-SM + Red-IgG indicated, as expected, very small changes in IgG emission during 

reduction, and highlighted the starting materials as the main sources of variation. Because 

the variance amongst IgG and Red-IgG was rather small (EEMRSD<2%), it is possible 

that part of the changes modelled are related to instrument/measurement. For the 

alkylation process (Alk-IgG samples), PC2 showed the clearest correlation with DAR. It 

suggested (Figure S7F, SI) a possible combination of IFE at 310 nm and changes in Trp 

local environment (from less to more hydrophobic), with increasing DAR, which might 
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be associated with the amount of conjugated/free linker in solution which agreed with 

observations ( 

Figure 2).  

We attempted DAR prediction using pEEM spectra collected during Alkylation, prior 

to purification (Table 2). Here absorbance spectroscopy was ineffective because of 

spectral overlap between free and conjugated linker, which resulted in very small spectral 

differences between in-reaction samples with different DAR (the same amount of linker 

was added to all reactions). u-PLS results suggested however, that there were small 

variances in pEEM spectra of the alkylation intermediates (Alk1–4), which correlated 

with DAR. Alk3-IgG had a better correlation with DAR (R
2
>0.92, REP=11%) compared 

to Alk1/Alk2 because it was later in the reaction whereas the poorer correlation obtained 

with Alk4-IgG seems to be caused by interference from addition of the reaction quencher, 

NAC. When Alk1-4 absorbance spectra were used for DAR quantification, fairly good 

calibration results were obtained (Relative error of calibration, REC, =11%), but 

prediction errors were significantly worse (REP> 28%) compared to pEEM. 

Quantification here seems to be based on small absorbance changes at ~310 nm (and also 

IFE) due to loss of conjugation in the maleimide linker (–C=C–C=O→ –CH–CR–C=O) 

after alkylation (Liu et al., 2013), with the high quantification errors caused by increased 

scattered light at ~310 nm.  

Overall, these results suggested that EEMǁ was the better reaction monitoring option 

because of significant alkylation induced spectral changes. However, when we looked at 

the normalized score changes (Figure S8, SI) there was very little change from Alk1 to 
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Alk3 which suggests that alkylation was faster than anticipated and was nearly complete 

before the first pEEM measurement was completed. 

4.2 Physical stability (in reaction): Previously we assessed polyclonal IgG solution 

quality using pEEM which indicated that most of the variance originated from longer 

wavelength emission (A. L. de Faria e Silva et al., 2020). Here, long wavelength emission 

did not play a role in discriminating solutions according to aggregation which suggested 

that the previous observations were related to lower purity and higher variability of 

polyclonal IgG. The emission ratio between solvent exposed and buried Trp residues 

(I350/I330nm using 296 nm excitation) is commonly used to assess protein stability 

(Beckley et al., 2013). Here the ratio did not correlate with Rh, which is clear evidence 

that there were no major structural changes like unfolding. As expected however, the 

reaction/purification did induce some physical sample changes as observed by DLS in the 

reported Rh (Table 1) and Z-average values (Table S3, SI).  

Although disulphide bond reduction could increase flexibility, and linker addition causes 

a small increase in product mass (~3% for a DAR of 8) these did not cause large changes 

in the Rh values: Rh(IgG-SM)=6.4±0.3 nm, Rh(Red3)=6.1±0.1 nm, and Rh(Alk4)= 

6.7±0.1 nm (Table S3, SI). However, there were very significant changes in derived 

count rates and PdI (~0.1 → ~0.5 → ~0.7 → ~0.2) and for IgG-SM, Red3-IgG, Alk4-IgG, 

and Pur-ADC, respectively (Table S3, SI). This suggested the formation of loosely bound 

reversible aggregates during the intermediate stages. After purification (Pur-ADC 

samples) Rh and variability (9.4±4.0 nm), increased, but there was also a significant drop 

in PdI compared to the intermediates. This indicated that the reversible aggregates 

formed earlier had broken down, and that the protein product may be somewhat 
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aggregated compared to the mAb starting material. This was probably due to reduced 

stability caused the attached hydrophobic small molecules and variable DAR, and/or via 

the stresses of purification and extra sample handling. Similar trends were observed with 

RS volume, but these had higher measurement error (Figure S5, SI). Rh and RS volume 

did not correlate (R
2
<0.5) and, poor u-PLS regression results were obtained when using 

RS bands for size prediction.  

While u-PLS results showed similar Rh prediction performance using IgG-SM and 

Pur-ADC samples (EEMǁ, RSǁ, and combined spectra), size prediction results were better 

when two other reaction samples (Red3-IgG, Alk4-IgG) were added to the model. This 

was probably due to a larger sample set size and greater protein size variability when 

these samples were included. Overall, use of full (EEM +RS)ǁ spectra enabled size 

prediction with low errors (REP<8%) and good correlation with nominal values 

(R
2

Pred=0.97), implying a more robust size change assessment for complex in-reaction 

samples. 

4.3 Reaction End Point Determination: One goal of reaction monitoring is to 

accurately determine reaction end points, and this usually involves collecting multiple 

spectra throughout the reaction and then extracting kinetic and end-point data. Here, the 

long collections times coupled with the fast reaction kinetics, prevented this and thus we 

investigated a different approach. We used non-linear, Support Vector Machine (SVM) 

classification (Table S4, SI) to quantitatively assess if these low numbers of EEMǁ 

measurements could classify samples according to reaction stage and the ultimate product 

DAR (i.e., predict end point for different performing reactions). Samples were split into 

calibration and validation sets and ten different classes were used for classification: IgG-
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SM and reaction intermediates/Pur-ADCs from reactions producing low (1.0-2.0), 

medium (3.2-4.3), and high (5.9-8.2) DAR. The classification errors indicated a good 

performance for successfully classifying both reaction stages and DAR (errors lower than 

10% for all the classes) for the medium and high DAR ranges. The low DAR related 

classes (and the IgG-SM) showed lower specificity, which was probably due to the very 

small spectral changes induced by the lower number of linker molecule attachments.  

5.0 Conclusions 

Using pEEM measurements for the non-destructive analysis of the key mAb linker 

reaction monitoring and product variance analysis has been demonstrated. Here, although 

the model reaction was limited to looking just at the linker addition, in small scale, and 

with insufficient time resolution, it does show the very significant spectral differences 

between each stage in the reaction process. Although spectral changes were relatively 

small (EEMRSD=10 for all samples, n=216), they were significant and reproducible. By 

using the full pEEM spectral information, that is both the scatter and fluorescence 

signals, one is able to build quantitative models for predicting DAR using the alkylation 

intermediates (R
2
>0.90 and REP 11%) and that correlate with aggregation and size (Rh, 

R
2
 PRED=0.97 and REP=6%) parameters extracted from SEC and DLS measurements, 

respectively. We also showed that UV-AI measurements were poorly correlated with 

both %Agg. from SEC, and DLS derived size parameters, confirming its unsuitability for 

ADC reaction monitoring with these levels of soluble aggregates.  

For reaction monitoring, the spectral profile changes observed here although small, 

were still significant considering that we only used normalized data. The u-PLS 

modelling showed that it was possible to generate in-process accurate correlations for 
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both size and aggregation parameters when using the combined scatter and fluorescence 

signals. For wider application using payload molecules with different absorption spectra 

that overlap less with the protein absorption spectra, and potentially more with protein 

emission spectra, we suggest that fluorescence spectral changes will be larger and thus 

easier modeled using these techniques. Larger signal changes should make DAR 

quantification and reaction monitoring easier to implement and potentially more accurate 

and this is the focus of future studies.  

Although fluorescence and pEEM are not currently, widely used analytical techniques 

for monitoring ADC synthesis and manufacturing processes (it is mostly used to assess 

the effect of conjugation on higher order structure and stability (Turecek et al., 2016; 

Wakankar et al., 2011)), these results are very promising. However, this alkylation 

reaction was too fast for this spectrometer and was substantially complete by 10 minutes 

when the first in-process pEEM data was collected. For more accurate, continuous in-

process monitoring we require either faster data acquisition using spectrometers with 

multichannel detectors or slower reactions, both of which are being investigated, along 

with the use of more therapeutically drug linker moieties. Overall, this use of the full 

pEEM measurement shows considerable promise as a robust PAT tool for ADC 

manufacturing.  

Supplemental information available   

Supporting information is available providing further details on the spectral and 

quantitative analyses. 
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Figure Captions:  

 

Figure 1: (A) Normalized absorbance spectra of purified products; (B) SDS-PAGE gels, 

Coomassie blue stained, of Pur-ADC samples (first reaction replicate only, see Figure S4, 

SI for replicate measurements); (C) Normalized SEC chromatograms; (D) normalized 

DLS intensity obtained from analysis of starting materials (IgG-SM) and purified 

products (Pur-ADC); The data shown is the mean of the triplicate reactions carried out 

for each condition. 
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Figure 2: (A) Difference spectra (Pur-ADC – IgG SM) calculated using normalized EEM|| 

spectra plotted over the 300 to 450 nm emission range (the dashed lines show the 260 nm 

excitation). The spectra used for calculation was the average from the triplicate reactions carried 

out for each reaction condition. ROBPCA, using Normalized EEM|| data from the Pur-ADC and 

IgG SM sample set (n= 48); (B) scores and (C) loadings plots. 

 

Figure 3: (A) Plots of nominal versus predicted DAR values from u-PLS modelling of all 

Pur-ADC samples after iPLS variable selection. Linear regression results of nominal 

DAR values vs intensity at λex/em 260/336nm (green) and ratio between λex 260/336nm 

and 292/336nm (blue). (B) EJCR plot at 95% confidence level for the regression slope 
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and intercept (1,0) of predicted vs nominal DAR values of Pur-ADC. (C) Selected 

wavelengths (in black) after iPLS variable selection for models built with Pur-ADC. 

(D,E) LV1 and 2 loadings from u-PLS models built using Pur-ADC EEM data after 

variable selection. 

 

Figure 4: Scatter plots showing sample distribution, with % aggregation (as determined 

by SEC) and Rh and (DLS) measurements plotted against: (A) UV-AI, and (B) RS|| 

volume measurements. Linear fits are included for reference. EJCR plots for u-PLS 

regression models (using SM and Pur-ADC sample sets and RS|| and EEM|| data) for 

prediction of: (C) %Aggregation (%Agg,), and (D) Rh values (main (small species) peak 

from distribution fit of the DLS data). 



 

This article is protected by copyright. All rights reserved. 

A
c

c
e

p
te

d
 A

r
ti

c
le

 

 

Figure 5: Rows 1 and 2: Mean (top) and Std.Dev (bottom) spectra calculated for IgG SM 

(A,E), Red-IgG (B,F), Alk-IgG (C,G), and Pur-ADC (D,H) showing the variance 

between the 24 reaction solutions in each of these four datapoints during the reaction. 

Rows 3 and 4: Cumulative Standard deviations calculated from addition of extra process 

step samples to the starting material sample set (n=24): (I) +Red1-IgG (n=48); (J) +Red2-

IgG (n=72), (K) +Red3-IgG (n=96), (L) +Alk1-IgG (n=120), (M) +Alk2-IgG (n=144), 

(N) +Alk3-IgG (n=168), (O) +Alk4-IgG (n=192), and (P) +Pur-ADC (n=216). This 

shows the amount of signal variation available for modelling over the process, and how 

the scatter contribution decreases during the alkylation step. See Table S2, SI, for details 

of the sample sets.  
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Figure 6: Results of ROBPCA analysis of EEM|| dataset (IgG-SM+Red1,2,3-

IgG+Alk1,2,3,4-IgG,Pur-ADC, n=216). (A) Q residuals vs Hoteling (outliers) plot, (B) 

PC1 vs PC2 scores; and (C) refolded loadings plots. The symbols represent the reaction 

stage (pentagram, circle, square and diamond for IgG-SM, Red-IgG, Alk-IgG, and Pur-

ADC respectively) and colors the DAR of final Pur-ADC as indicated by the legend. The 

boundaries for Alk-IgG and Pur-ADC were included as a visual guide to show the two 

groups.  
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Figure 6:  

Table 1: Average sample data: nominal and PLS predicted DAR, % of aggregates (from SEC), Hydrodynamic radius, 

Rh (from DLS), and Rayleigh Scatter (RS) volumes, see also Figures S5, SI. DAR was calculated from Pur-ADC 

absorbance spectra, according to the procedure given in the SI and PLS predicted DAR was obtained from u-PLS 

models of EEM|| after iPLS variable selection (calibration and validation data were included). More DLS data (e.g., Z-

avg.) is available in Table S3, SI.  

 

[TCEP] 

(M excess) 

DAR 

% Aggregates 

(from SEC) 

Rh  

(from DLS) 

RS volume  

(from EEM||) 

Nominal 

Predicted 

(EEM||) 

IgG-

SM 

Pur-

ADC 

IgG-SM Pur-ADC IgG-SM Pur-ADC 

0 Control 0.1±0.1 0.2±0.4 0.8±0.1 8.8±4.0 6.3 ± 0.2 8.2 ± 0.1 19,250±206 28,345±912 

1.25 1.0±0.0 0.9±0.3 0.8±0.1 1.8±0.5 6.4 ± 0.4 6.7 ± 0.1 20,220±198 21,314±382 

2.5 2.0±0.0 2.1±0.1 0.8±0.1 7.6±2.3 6.4 ± 0.2 7.5 ± 0.4 19,822±48 26,481±548 

5.0 3.2±0.1 3.4±0.1 0.8±0.1 10.0±2.6 6.4 ± 0.1 8.1 ± 0.4 19,877±93 28,346±498 

7.5 4.3±0.1 4.4±0.0 0.7±0.1 7.9±2.2 6.3 ± 0.1 7.6 ± 0.3 19,629±18 26,429±487 

10 5.9±0.0 6.0±0.1 0.7±0.1 27.5±1.1‡ 6.4 ± 0.1 19.4 ± 1.6‡ 25,546±2559 65,798±1687 
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25 7.5±0.1 7.6±0.2 0.8±0.1 11.2±0.9 6.7 ± 0.4 8.6 ± 0.1 22,647±2448 29,523±862 

50 8.2±0.1 7.9±0.2 0.8±0.1 13.3±1.0 6.2 ± 0.1 9.5 ± 0.3 23,888±1173 33,687±844 

 ‡In addition to the high DAR, these samples had a long hold time during purification, which might explain the higher 

aggregation. §Rh was defined as the Rh calculated for the main peak (results are the average of three reactions measured 

5×10 times). 

Table 2: Summary of u-PLS DAR prediction results using normalized spectra of alkylation intermediates and Pur-

ADC with and without iPLS variable selection. In all cases the total sample number was 24, which were split into 

calibration (n=18) and external validation (n=6) sets (the same samples in all cases).  

 

 Absorbance spectra pEEM 

 

Alk1-

IgG 

Alk2-

IgG 

Alk3-

IgG 

Alk4-

IgG 

Alk1-

IgG 

Alk2-

IgG 

Alk3-

IgG 

Alk4-

IgG 

Pur-ADC 

 

Var. Sel. - - -  - - - - - iPLS 

RMSE 

Cal 

0.49 0.48 0.53 0.91 0.61 0.61 0.53 1.53 0.25 0.21 

RMSE CV 0.71 0.66 0.75 1.42 1.30 0.98 0.76 3.18 0.29 0.23 

RMSE 

Pred 

(REP) 

0.89 

(28%) 

0.91 

(29%) 

0.88 

(28%) 

1.72 

(54%) 

0.56 

(18%) 

0.68 

(22%) 

0.34 

(11%) 

1.15 

(39%) 

0.19 

(6%) 

0.25 

(8%) 

R
2 
Cal 0.97 0.97 0.96 0.88 0.95 0.95 0.96 0.67 0.99 0.99 

R
2 
CV

 0.93 0.94 0.92 0.73 0.82 0.88 0.92 0.11 0.99 0.99 

R
2 
Pred 0.94 0.94 0.94 0.90 0.96 0.97 0.99 0.90 1.00 0.99 

 

Table 3: Summary of ROBPCA EEM|| modelling results for: 1). all reaction/product samples, 2). only IgG-SM, 3). 

only reduction intermediates (Red-IgG), 4). combined model of IgG-SM and Red-IgG, 5). only alkylation intermediates 

(Alk-IgG); and 6). IgG-SM and Pur-ADC. 

 

ROBPC All samples IgG-SM + Alk-IgG
†
 IgG-SM Red-IgG IgG-SM 
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(n=216) Red-IgG 

(n=96) 

(n=96) (n=24) (n=72) and Pur-

ADC (n=48) 

1 98.55 91.65 71.42 73.29 91.12 78.38 

2 1.20 2.87 21.50 18.93 2.68 15.26 

3 0.06 1.46 2.99 1.07 1.71 4.07 

4 - - 0.49 - - 0.44 

Total variance 99.81 95.98 96.41 93.29 95.51 98.15 

†This model did not include control samples, which were considered outliers in the model because of the absence of 

linker. 

Table 4: Summary of u-PLS modelling results obtained for % of Aggregate and Rh quantification using the 

fluorescence signal from EEMǁ, the RSǁ (not normalized), and the combined fluorescence and scatter signal. For u-PLS 

modelling EEM spectra were normalized to maximum intensity, EEM with RS were normalized to λex/em 294/336nm, 

which is a data point with high intensity value and low StDev.  

 

IgG SM + Pur-ADC 

(n=48, cal.=36/val.=12)
 †

 

IgG SM + Red3-IgG+ Alk4-IgG 

+Pur-ADC  

(n=96, cal.=72 /val.=24)
 †

 

 % Agg. (from SEC) Rh (from DLS) Rh 

 EEM|| RS|| 

EEM||+ RS 

EEM|| RS|| 

EEM||+RS|| 

EEM|| RS|| 

EEM||+RS 

- iPLS - iPLS - iPLS 

RMSE 

Cal 

1.39 4.63 0.94 0.67 0.74 0.70 0.67 0.57 1.42 0.70 0.51 0.46 

RMSE 

CV 

2.28 4.76 1.18 0.93 1.32 0.72 0.78 0.71 1.78 0.72 0.70 0.61 

RMSE 

Pred 

1.91 

(31%) 

4.86 

(79%) 

1.28 

(21%) 

1.13 

(18%) 

0.63 

(9%) 

0.59 

(9%) 

0.54 

(7%) 

0.47 

(6%) 

1.61 

(21%) 

0.81 

(11%) 

0.60  

(8%) 

0.49 

(6%) 

R
2 
Cal

 0.96 0.87 0.98 0.99 0.94 0.95 0.95 0.97 0.62 0.91 0.95 0.96 

R
2 
CV 0.89 0.88 0.97 0.98 0.82 0.95 0.94 0.95 0.42 0.90 0.91 0.93 

R
2 
Pred 0.94 0.90 0.99 0.99 0.97 0.98 0.99 0.99 0.67 0.91 0.97 0.97 
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† 

The same samples were used for calibration and prediction in each sample group to enable comparison between 

various measurements/parameters.  

 




