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h i g h l i g h t s g r a p h i c a l a b s t r a c t 

• Deep Reinforcement Learning-based 

control handles energy savings and com- 

fort. 
• PV self-consumption optimization brings 

flexibility for energy management sys- 

tems. 
• Deep Reinforcement Learning does not 

need prior information about the build- 

ing. 
• Home energy systems can have smart 

control due to new hardware and soft- 

ware. 
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a b s t r a c t 

The use of machine learning techniques has been proven to be a viable solution for smart home energy man- 

agement. These techniques autonomously control heating and domestic hot water systems, which are the most 

relevant loads in a dwelling, helping consumers to reduce energy consumption and also improving their comfort. 

Moreover, the number of houses equipped with renewable energy resources is increasing, and this is a key ele- 

ment for energy usage optimization, where coordinating loads and production can bring additional savings and 

reduce peak loads. In this regard, we propose the development of a deep reinforcement learning (DRL) algorithm 

for indoor and domestic hot water temperature control, aiming to reduce energy consumption by optimizing the 

usage of PV energy production. Furthermore, a methodology for a new dynamic indoor temperature setpoint 

definition is presented, thus allowing greater flexibility and savings. The results show that the proposed DRL al- 

gorithm combined with the dynamic setpoint achieved on average 8% of energy savings compared to a rule-based 

algorithm, reaching up to 16% of savings over the summer period. Moreover, the users’ comfort has not been 

compromised, as the algorithm is calibrated to not exceed more than 1% of the time out the specified temperature 

setpoints. Additional analysis shows that further savings could be achieved if the time out of comfort is increased, 

which could be agreed according to users’ needs. Regarding demand side management, the DRL control shows 

efficiency by anticipating and delaying actions for a PV self-consumption optimization, performing over 10% of 

load shifting. Finally, the renewable energy consumption is 9.5% higher for the DRL-based model compared to 

the rule-based, which means less energy consumed from the grid. 

1. Introduction 

A report from Eurostat [1] shows that energy consumption in the 

residential sector accounted for approximately 26.1% of total energy 

consumption in the EU in 2018, where the main consumption was in 
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heating systems and water heating, consuming 63.6% and 14.8% of the 

total, respectively. Moreover, most of the residential energy consump- 

tion is covered mainly by natural gas (32.1%) and electricity (24.7%), 

while renewables account for just 19.5%. There is a global trend of re- 

newable energy asset expansion, as they represented almost two-thirds 
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of the new net world electricity capacity additions in 2016 and it is ex- 

pected to increase by 43% between 2017 and 2022, according to studies 

from the International Energy Agency [2] . To reach the key target set 

by the EU of at least 32% share for renewable energy this growth has 

to continue [3] . However, as solar and wind generation rely on weather 

conditions, challenges due to intermittent generation have to be solved, 

and solutions for energy management such as demand response and pho- 

tovoltaic (PV) self-consumption optimization can play a key role in this 

regard. 

Residences with automated actuators and monitored sensors, known 

as smart homes, can get benefits from advanced machine learning (ML) 

techniques for energy management and achieve better results in terms 

of energy savings when compared with scheduling or manual control 

methods, which in some cases depend on the user’s behavior or do not 

consider all the variables for optimal operation. This can be seen in 

Barrett and Linder’s [4] work, where they have proven that machine 

learning-based adaptive methods, such as reinforcement learning (RL), 

can achieve even greater cost reductions in the heating, ventilating, and 

air conditioning (HVAC) domain, the most relevant load in European 

residences. Reinforcement learning is a sub-field of ML; it can learn the 

optimal policy by interacting directly with their environment, choosing 

actions based on its previous experiences within the domain, with no 

prior knowledge. After a number of trials and a reward signal indicat- 

ing the benefit linked to the actions in a particular state, the agent can 

decide the best action to be taken for a given state. In the context of 

energy management, the rewards could be based on performing control 

actions when the cost of energy is low, or the production of energy in 

the house is high. The target would be, for example, saving energy as 

much as possible, but also respecting the user’s needs. 

Reinforcement Learning can be applied through different ap- 

proaches. Vázquez-Canteli and Nagy [5] presented an extensive review 

of algorithms and modeling techniques in the demand response domain, 

where they classified articles according to their application and ability 

to address the problems of speed of convergence, and curse of dimen- 

sionality. Mason and Grijalva [6] , in their review about reinforcement 

learning for autonomous building energy management, also explored 

different types of RL, concluding that applications of deep reinforce- 

ment learning (DRL) algorithms are expected to keep growing due to 

their increased effectiveness over traditional approaches. 

In this work, we propose the use of reinforcement learning to manage 

and control the heating system and domestic hot water (DHW), with 

PV self-consumption optimization. The main contributions of this paper 

include: 

• The development of a deep reinforcement learning algorithm for in- 

door and domestic hot water tank temperature control, aiming to 

reduce energy consumption by optimizing the usage of PV energy 

production. The algorithm also provides load shifting, helping the 

energy grid balance. 
• A thorough investigation of the impact of user comfort levels and 

energy savings is conducted, with performance comparison against 

conventional control methods. 
• A methodology is proposed for a flexible indoor temperature comfort 

threshold definition, considering a real case study in Ireland. 

The rest of this paper is organized as follows: Related Work shows the 

related works regarding reinforcement learning applied to home energy 

management systems. Environment Setup provides information about the 

simulated environment and the temperature threshold definition. DRL 

Home Energy Management System , describes the algorithm and tests per- 

formed. The Results section presents all the relevant outputs of our ex- 

periments, showing the performance of the algorithm and comparing the 

methods. Finally, Conclusions and Future works recaps the main points of 

the paper, introducing ideas for future work. 

2. Related work 

A Home Energy Management System (HEMS) is a system deployed 

in the home containing both hardware and software that allows users to 

manage their energy consumption and production, thus enabling partic- 

ipation in the electricity market. These systems are becoming increas- 

ingly popular due to the recent advancement in residential metering, 

monitoring and controlling, which allows a more reliable energy man- 

agement and new business schemes, such as demand response programs. 

Shareef et al. [7] presented the evolution of HEMS from works since 

1970, showing control methods such as rule-based and artificial intelli- 

gence (AI), where the common targets were energy savings, CO 2 emis- 

sion reductions, and user’s comfort. They also pointed out a future trend 

of self-learning AI techniques for HEMS. Lee and Cheng [8] found that 

34% of the papers about energy management systems in the same period 

belong to the residential sector. Vázquez-Canteli and Nagy [5] catego- 

rized papers about reinforcement learning for demand response across 

four different groups: HVAC and DHW, electrical vehicles, smart appli- 

ances, and distributed generation with storage; the first two groups rep- 

resented more than two-thirds of the recent publications. Q-Learning 

is the most popular learning method [5,6,9] , with deep Q-learning 

gaining popularity since 2015 due to its capability to handle learning 

rate issues from large state-action space, known as the curse of dimen- 

sionality. After analyzing a number of studies, authors in [6] showed 

that RL algorithms can improve residential energy efficiency, and al- 

though projects can vary significantly, typical savings of approximately 

10% and 20% can be achieved for HVAC applications and DHW, 

respectively. 

Regarding the HVAC application, Barrett and Linder [4] proposed a 

tabular Q-learning RL architecture for occupancy prediction and HVAC 

control, optimizing user comfort and energy costs achieving 55% and 

10% of cost reductions compared to ”always on ” and ”programmable ”

methods, respectively. Extending upon this research Lissa et al. [10] de- 

veloped a transfer learning technique which successfully sped up the 

learning time taken to learn optimal policies in the domain. Cheng et al. 

[11] applied model-free Q-learning for HVAC control and window sys- 

tems for natural ventilation, achieving up to 23% of energy savings. Wei 

et al. [12] applied a data driven DRL, with cost reductions from 20% to 

70% when comparing their results with scheduling methods. Nagy et al. 

[13] used a data-driven approach, outperforming rule-based control by 

between 5% and 10%. Wang et al. [14] reduced energy consumption 

of a central HVAC by 5% through a model-free RL method applying 

recurrent neural networks. Gao et al. [15] , Zhang and Lam [16] and 

Valladares et al. [17] applied DRL for energy optimization and thermal 

comfort control. 

Moving to DRL applied to other home applications, Wan et al. 

[18] proposed an algorithm to minimize the energy cost of a house with 

battery energy storage. Liang et al. [19] also worked with energy storage 

systems, but in coordination with HVAC control. One of the most recent 

studies in this field belongs to Sangyoon and Dae-Hyun [20] , where they 

proposed a hierarchical DRL for scheduling appliance usage in a single 

home, including an air conditioner, a washing machine, a PV system, an 

energy storage device, and an electric vehicle (EV), under a time-of-use 

pricing model. 

The aforementioned model-free methods have proposed solutions for 

different home energy system architectures. However, to the best of our 

knowledge, this is the first time that DRL is proposed as a solution for 

indoor heating and DWH control, aligned with PV self-consumption op- 

timization and a variable setpoint strategy. There are also other con- 

trol methods for comfort and energy management that are not from the 

RL domain, such as fuzzy control [21,22] or model predictive control 

(MPC) [23,24] , where building an accurate model for a house can be 

time-consuming. 
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Table 1 

Construction characteristics. 

Construction U -Value (W/m 

2 ) 

Wall 0.27 

Roof 1.50 

Windows 3.00 

Ground floor 0.45 

Internal partitions 1.80 

Doors 1.35 

Fig. 1. DHW operation [25] . 

3. Environment setup 

3.1. Building simulator 

The first step of the experiment involved the development of the 

Building Simulator (BS) application which enabled the DRL control al- 

gorithms to be applied. The case study is a residential dwelling located 

on the Island of Inis Mór, Co. Galway, Ireland. The dwelling was built 

in the1970 ′s and has a total floor area of 110 m 

2 . In recent years the 

dwelling has been upgraded, including additional insulation to the walls 

and roof and installation of an 8.5 kW Mitsubishi heat pump along with 

a PV panel array consisting of 8 panels, with a total nominal power of 

2 kWp. The construction characteristics of the building can be seen in 

Table 1 . 

The heating system installed in the dwelling is an 8.5 kW Mitsubishi 

Electric Ecodan heat pump. The heat pump connects to a 170 L hot wa- 

ter cylinder which is used to store hot water for both space heating and 

DHW. The DHW mode operates automatically based on the upper and 

lower limits set by the system installer as seen in Fig. 1 . This is influ- 

enced by the DHW max temperature and the DHW maximum tempera- 

ture drop. The hot water is automatically heated once the tank temper- 

ature exceeds the DHW max temp drop. For example, if the DHW max 

temperature is set to 50 °C and the lower threshold is 40 °C, there is a 

delta temperature of 10 degrees [25] . 

The BS was formed by developing a building energy model (BEM) 

extracting key data from the case study dwelling. Sensors were installed 

in the dwelling which measured indoor temperature °C, total electricity 

consumption (kWh), total PV production (kWh) and heat pump elec- 

tricity consumption (kWh). The characteristics obtained from the site 

survey, along with data collected from each of the sensors, were used 

as to develop a detailed and calibrated white-box model, using the In- 

tegrated Environmental Solution Virtual Environment (IESVE) software 

[26] . Simulations have been carried out to identify the main parame- 

ters and heating transfer dynamics necessary to build a reduced grey- 

box model. The parameters extracted from the white-box model were 

indoor air temperature increase and decrease rates for both, DHW and 

indoor temperatures, considering their behavior during stationary con- 

ditions (system off) and when actions are performed. 

Considering the heat pump off, the indoor temperature drop ranges 

from 0.0057 °C to 0.0230 °C every 5 min, depending on how high the 

difference between them is, if the indoor temperature is higher than the 

outdoor temperature. DHW temperature only relies on tank insulation, 

so the temperature drop is around 0.075 °C per 5-min interval for the 

operational range of 40–55 °C, slightly reducing this value until reaching 

the indoor temperature level. Regarding heat pump on, the temperature 

increases on average 0.2 °C and 2.75 °C every 5 min for space heating 

and DHW function, respectively. The new building simulator grey-box 

model reads the current environment state every 5 min and estimates 

the next DWH and indoor temperature values, calculated from the rates 

established previously. The benefit is that the new simulator can run the 

environment step-by-step, which allows us to implement our proposed 

DRL control approach. 

3.2. Indoor thermal comfort threshold definition 

Demand response programs can take advantage of occupant behav- 

ior changes, which can increase flexibility during the control decision 

process, hence allowing higher energy savings. However, authors in 

[27,28] stated that thresholds must be identified prior to deploying a 

strategy. In order to assess the thermal comfort of the occupant dur- 

ing the analysis, an indoor temperature threshold was developed based 

on a statistical analysis on the measured indoor temperature. The ap- 

proach stems from Sweetnam et al. [27] , who calculate the mean in- 

ternal temperature (MIT) and upper and lower thresholds for 15-min 

intervals for each home in a 31-dwelling case-study, calculating the ef- 

fect of a demand response control system on the heat pump. Upper and 

lower thresholds are based on calculating the upper and lower deciles 

of temperature. The outcome of the data analysis is a unified tempera- 

ture profile bandwidth over a 4-month period which is used to compare 

temperatures pre- and post instalment of HEMS. 

Different approaches can be used to determine the best threshold to 

handle savings and comfort. For instance, a popular method for assess- 

ing building comfort is the predicted mean vote (PMV), which was first 

proposed by Fanger [29] and is an index that predicts the mean value of 

the thermal sensation votes of a group of people according to a seven- 

point sensation scale [30] . Comfort compliance is achieved if the PMV 

is within a range of −0 . 5 < 𝑥 < 0 . 5 as per ASHRAE Standard 55-2017 

guidelines [30] . This method is more suitable for application in con- 

trolled office environments but less suitable for homes where residents 

may have other individual preferences for temperature conditions, and 

the assessment of temperature may depend on other criteria than in an 

office environment. 

To identify the individual preferences for the case study, the home- 

owner was interviewed on the preferred indoor temperature and occu- 

pancy hours, where two key assumptions were identified. Firstly, it is 

assumed that over the previous heating season months the occupant is 

satisfied with the indoor temperature when the heating is on. Secondly, 

through validation with the homeowner, the temperature can be altered 

for the analysis. Data was gathered at 30-min intervals for each day over 

three months. In the case of significant outliers or anomalies, data was 

cleaned by interpolating the temperature based on previous and pro- 

ceeding timeslot. 

For each of the months, the cumulative indoor temperature was cal- 

culated for each hour of the day. For example, the indoor temperature 

value at 00:00 h summed for each day (92 days in total) and the mean 

temperature of that hour was calculated by Eq. (1) : 

𝑀 𝐼 𝑇 = 

∑𝑁 

𝑛 =1 𝑇 𝑖𝑛𝑑𝑜𝑜𝑟 

𝑁 

(1) 

Where N is the total number of days for which the data is gathered. 

The MIT is calculated for every 30 minutes and is outlined in Fig. 2 . 

To measure the upper and lower limits of MIT, the standard deviation 

( Eq. (2) ) is calculated from the mean. 

𝜎 = 

√ ∑|𝑥 − 𝑀 𝐼 𝑇 |2 
𝑁 

(2) 

3 
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Fig. 2. Temperature threshold. 

Thus, two times the standard deviation was formulated by multiply- 

ing the standard deviation by 2. 

The approach outputted the MIT for each hour of the selected months 

and the associated lower and upper threshold limits for analysis. It is 

assumed that changes in indoor temperature which are within this tem- 

perature bandwidth are acceptable and can be utilised for the demand 

response strategy. The MIT and associated upper and lower limits are 

outlined in Fig. 2 . 

The proposed threshold is utilized as part of our DRL environment 

and control optimization in later stages, helping to achieve additional 

savings without impacting user’s comfort. 

4. DRL-Based home energy management system 

4.1. Markov decision processes and reinforcement learning 

The Markov Decision Process (MDP) is basically composed of 4 com- 

ponents: the state space ( 𝑆), the set of possible actions ( 𝐴 ), the probabil- 

ity distributions regarding state transitions ( 𝑝 ( |𝑠, 𝑎 ) ) and the probability 

distribution governing the rewards received ( 𝑞( |𝑠, 𝑎 ) ). Its main property 

states that the “future is independent of the past given the present ”, which 

means that the current state incorporates all the information regarding 

past states, hence there is no need of keeping a historical record of ac- 

tions performed or states. 

An MDP task usually can be discretized into time periods, where at 

each period 𝑡 the agent occupies a state 𝑠 𝑡 ∈ 𝑆, and then chooses an 

action 𝑎 𝑡 from the set of all possible actions within the current state. 

Performing the chosen action results in a state transition to 𝑠 ( 𝑡 +1) and an 

immediate numerical reward 𝑅 ( 𝑠 𝑡 , 𝑎 𝑡 ) . The state transition probability 

𝑝 ( 𝑠 𝑡 +1 |𝑠 𝑡 , 𝑎 𝑡 ) governs the likelihood that the agent will transition to state 

𝑠 𝑡 +1 as a result of choosing 𝑎 𝑡 in 𝑠 𝑡 . The numerical reward received upon 

arrival at the next state is governed by 𝑞( 𝑠 𝑡 +1) |𝑠 𝑡 , 𝑎 𝑡 ) and is indicative as 

to the benefit of choosing 𝑎 𝑡 whilst in 𝑠 𝑡 . Solving an MDP leads to an 

output policy, which contains information about actions versus states, 

helping the agent’s decisions over the entire learning period. 

If the complete environment model is known, the problem can be 

solved through traditional dynamic programming techniques such as 

value iteration. However, most real-world problems are not fully ob- 

served, which means that the model needs to be either approximated 

(Model-Based Reinforcement Learning), for instance using statistical 

techniques, or having its value function or policy directly estimated 

(Model-Free Reinforcement Learning), where learners attempt to di- 

rectly approximate a control policy through environmental interactions 

[4,10,11,14] . 

MDP models can be applied to HEMS, however dynamic program- 

ming techniques can only be used in complete models. If there is a lack of 

information about the environment, for instance, rewards or transitions 

probabilities missing, a model-free method such as Q-learning [31] can 

be used to generate optimal policies. Q-learning is part of the temporal 

difference methods, having the capability of being able to make pre- 

dictions incrementally and in an online fashion. The update rule for Q- 

learning is defined in Eq. (3) and calculated each time a state is reached 

which is non-terminal. 

𝑄 ( 𝑠, 𝑎 ) ← 𝑄 ( 𝑠, 𝑎 ) + 𝛼[ 𝑟 + 𝛾𝑄 ( 𝑠 ′, 𝑎 ′) − 𝑄 ( 𝑠, 𝑎 )] (3) 

Actions are selected according to the policy 𝜋 and approximations of 

𝑄 

𝜋( 𝑠, 𝑎 ) are calculated after each time interval. Different action selection 

policies can be chosen, such as 𝜖- 𝑔 𝑟𝑒𝑒𝑑𝑦 and 𝑠𝑜𝑓𝑡𝑚𝑎𝑥, aiming to balance 

exploration and exploitation and achieve the best results. Over time the 

actions selected should converge to the optimal, where the agents con- 

sistently choose actions which give the greatest amount of cumulative 

reward. For instance, the 𝜖- 𝑔 𝑟𝑒𝑒𝑑𝑦 strategy chooses the best action from 

the policy most of the time, however the agent explores a certain amount 

of the time governed by 𝜖. Let 𝐴 

′( 𝑠 ) ⊆ 𝐴 ( 𝑠 ) , be the set of all non-greedy 

actions. The probability of selection for each non-greedy action is re- 

duced to 𝜖|𝐴 ′( 𝑠 ) | , resulting in a probability of 1 − 𝜖 for the greedy strategy. 

The discount factor 𝛾, ( 0 < 𝛾 < 1 ), determines the importance of future 

rewards, where a value close to 1 assigns a greater weight to it, while a 

value close to 0 considers only the most recent rewards. Finally, 𝛼 is a 

value lower than 1 that represents the learning rate of value estimates 

over the learning process. 

Depending on the algorithm chosen, the set of estimated Q-values, 

actions, and states can be represented in tabular form (Q-table) or as part 

of a function approximator. Although tabular methods present good ac- 

curacy, they require continuous updating of the value estimates through 

repeatedly revisiting the states and choosing actions in the environment. 

As the size of the state-action space grows, the learning time to converge 

to an optimal policy also increases. This is known as the curse of dimen- 

sionality, where each additional state or action variable added increases 

the problem size exponentially. 

One of the possible solutions is to replace the Q-table, using an ar- 

tificial neural network (NN) to estimate the Q-values of Eq. (3) , which 

can now be simplified. The learning rate 𝛼 is no longer needed, as this 

method has a back-propagating optimizer that already has this func- 

tion. After removing 𝛼, the two 𝑄 ( 𝑠, 𝑎 ) terms cancel each other. The 

4 
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Eq. (4) shows the new update rule after the changes. This technique, 

known as Deep Reinforcement Learning, can manage larger state-action 

spaces, thus bringing more possibilities when working with a huge num- 

ber of variables. 

𝑄 ( 𝑠, 𝑎 ) ← 𝑟 + 𝛾𝑄 ( 𝑠 ′, 𝑎 ′) (4) 

As the proposed HEMS will manage a variety of variables with a high 

range of values, and also thinking about future upgrades and additional 

features we can possibly add to it, we chose an online DRL approach as 

the core of our solution. The details about the neural network design 

are described in the following sections. 

4.2. HEMS operation and MDP formulation 

The proposed HEMS is composed of the elements described in Sub- 

Section 3.1 . The goals are to optimize energy usage and to ensure user’s 

comfort, by controlling the heating and DHW loads. The optimization 

process is made by performing actions when PV production is higher 

and considering the variable setpoint from Sub- Section 3.2 . The timestep 

is discretized to 5-min periods, where the system analyzes the current 

state, performs an action, and moves to another state. The states are 

independent, as they only rely on weather conditions and building dy- 

namics at the current time, thus following the Markov property. The 

state-space 𝑆 comprises the following: 

• 𝑜𝑡 : Outdoor temperature ( °C). 
• 𝑖𝑡 : Indoor temperature ( °C). 
• 𝑡𝑘 : DHW tank temperature ( °C). 
• 𝑝𝑣 : PV production (kW). 
• ℎ𝑟 : Hour of the day. 

The DRL algorithm target is to minimize energy consumption, whilst 

keeping 𝑖𝑡 and 𝑡𝑘 temperatures within their respective thresholds, as pre- 

sented in Section 3 . The set of actions 𝐴 is related to the heat pump 

operation modes, which are space heating on ( 𝐻𝐸𝐴𝑇 𝑂𝑁 

), domestic hot 

water on ( 𝐷 𝐻𝑊 𝑂 𝑁 

), and system on hold ( 𝑆 𝑌 𝑆 𝑇 𝐸𝑀 𝑂𝐹𝐹 ). After per- 

forming an action, the environment will move to a new state and a 

reward 𝑟 𝑡 is calculated. The main target can be divided in three minor 

tasks, where individual rewards were assigned: indoor temperature con- 

trol ( 𝑟 1 𝑡 : Eq. (5) ), DHW temperature control ( 𝑟 2 𝑡 : Eq. (6) ), and energy 

savings ( 𝑟 3 𝑡 : Eq. (7) ). 

𝑟 1 𝑡 = 

{ 

0 , if 𝑖𝑡 𝑚𝑖𝑛 < 𝑖𝑡 < 𝑖𝑡 𝑚𝑎𝑥 |𝑖𝑡 − 𝑖𝑡 𝑠𝑒𝑡 |, otherwise 
(5) 

𝑟 2 𝑡 = 

{ 

0 , if 𝑡𝑘 𝑚𝑖𝑛 < 𝑡𝑘 < 𝑡𝑘 𝑚𝑎𝑥 |𝑡𝑘 − 𝑡𝑘 𝑠𝑒𝑡 |, otherwise 
(6) 

𝑟 3 𝑡 = 

{ 

0 , if 𝑝𝑣 > 𝑎 𝑝𝑜𝑤𝑒𝑟 
𝑎 𝑝𝑜𝑤𝑒𝑟 − 𝑝𝑣, otherwise 

(7) 

Regarding 𝑟 1 𝑡 and 𝑟 2 𝑡 , the reward is 0 if the current temperatures 

are in between their respective minimum and maximum threshold. The 

𝑖𝑡 limits can be seen in Fig. 2 , and the 𝑡𝑘 limits are defined as DHW 

max. and the maximum temperature drop allowed ( Fig. 1 ). To increase 

the system flexibility, the limits chosen are from 40 ◦ to 55 ◦. This way, 

the algorithm can either create a buffer of hot water in case of high PV 

production, or delay a 𝐷 𝐻𝑊 𝑂 𝑁 

action if production is low at the current 

state. On the other hand, if 𝑟 1 𝑡 or 𝑟 2 𝑡 is out of the boundaries, the rewards 

are calculated as the distance of the current temperature compared to 

their central setpoint. Moving to 𝑟 3 𝑡 , the reward is 0 when PV production 

is higher than the energy spent to perform a specific action, which is 

on average 1.5 kW for heating and 2.0 kW for DHW, considering our 

modeled environment. If the PV production is low, the reward is defined 

as the remaining amount necessary to meet the action power. Finally, 

the three partial rewards are aggregated following Eq. (8) along with the 

constants 𝑦, 𝑧, and 𝑤, added to balance the targets of comfort (indoor 

and DHW temperatures) and energy savings. 

𝑟 𝑡 = 𝑦 × ( 𝑟 1 𝑡 + 𝑟 2 𝑡 ×𝑤 ) + 𝑟 3 𝑡 × 𝑧 (8) 

As mentioned previously, the state transitions follow the principles 

of Eq. (4) , where the values are approximated by a neural network. 

The steps involved in the simulation and DRL process is depicted by 

Algorithm 1 . 

Algorithm 1 HEMS simulation process. 

Initialize Building parameters 

Initialize 𝑄 ( 𝑠, 𝑎 ) arbitrarily 

Repeat (for each episode) 

Initialize 𝑠 

repeat 

Choose 𝑎 from 𝑠 using policy from 𝑄 ( 𝜖- 𝑔 𝑟𝑒𝑒𝑑𝑦 ) 
Take action ( 𝑎 ) 

Update building states ( 𝑠 ′) 

Calculate reward ( 𝑟 ) 

𝑄 ( 𝑠, 𝑎 ) ← 𝑟 + 𝛾𝑄 ( 𝑠 ′, 𝑎 ′) 
𝑠 ← 𝑠 ′

until 𝑠 is terminal 

end 

4.3. Neural network design 

The neural network designed to estimate the Q-values is similar to 

the one presented by Wei et al. [12] . It contains an input layer, two 

hidden layers, and an output layer, as can be seen in Fig. 3 . First, each 

of the variables received from the current state is pre-processed and 

their values are normalized on a scale from 0 to 1 through the min-max 

method ( Eq. (9) ). This practice helps the algorithm to achieve a more 

stable learning process, as it does not have to deal with numbers with 

different ranges. For instance, in this experiment outside temperatures 

range from approximately 4 °C to 20 °C, while PV production ranges 

from 0 to 2 kW. 

𝑣𝑎𝑙 𝑢𝑒 ′ = 

𝑣𝑎𝑙 𝑢𝑒 − 𝑚𝑖𝑛 

𝑚𝑎𝑥 − 𝑚𝑖𝑛 
(9) 

Next, there are two hidden layers, where the Rectified Linear Unit 

(ReLU) is the activation function chosen, followed by the output layer 

with possible actions. The losses are calculated by the mean squared dif- 

ference between the current output and the ideal target values. More- 

over, we use a Gradient Descent Optimizer , which adjusts weights in the 

neural network to minimize these losses. The proposed algorithm also 

incorporates an 𝜖- 𝑔 𝑟𝑒𝑒𝑑𝑦 policy to improve efficiency [4,10,12] . 

5. Results 

5.1. Experiments and methodology 

To validate the proposed DRL algorithm we simulated our test envi- 

ronment using weather data from Weatherbit.io [32] , considering infor- 

mation from 1 May 2020 to 31 December 2020, and historical data about 

PV production from the mentioned Irish residence in the same period. 

The first step was to create a baseline, so the Mitsubishi’s rule-based 

operational mode from Section 3.1 was replicated, where the controller 

has to keep indoor temperature between 19 °C and 22 °C, and DHW tem- 

perature between 40 °C and 55 °C. This baseline is used in later stages 

for evaluating the efficiency of our method. The second step consisted of 

adding the dynamic indoor setpoint from Section 3.2 to the rule-based 

method. Finally, the DRL-based algorithm was deployed, aiming to get 

benefits from the dynamic setpoint and PV self-consumption optimiza- 

tion. 

Over the DRL deployment, a number of different parameters have 

been tested to determine the best configuration for handling comfort and 

energy savings. The final NN architecture is composed of 16 neurons in 
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Fig. 3. Neural network design. 

Fig. 4. Learning Curve. 

each of the hidden layers, with 𝛼 = 0.0001, 𝛾 = 0.95 and 𝜖 = 0.05. The 

𝑦, 𝑧, and 𝑤 reward balancing parameters were defined as 1000, 3.5, and 

3.5 respectively. The learning process and algorithm stability happen 

over the first month of simulation, as can be seen in Fig. 4 . At this stage, 

the performance achieved in terms of comfort is similar to the rule- 

based method, but it is also performing actions aiming to reduce energy 

imported from the grid. 

After every 8 months of simulation (May to December), the episode 

is finished, and the environment is restarted. Fig. 4 shows the average 

accumulated rewards per month over 3 episodes. Note that the aver- 

age rewards decrease from the middle to the end of each episode, and 

then start to increase in the subsequent months. This is related to the 

outside temperatures, because rewards depend on the number of actions 

executed. Colder temperatures found in winter months means that more 

heating actions are needed to keep user’s comfort, hence lower rewards. 

On the other hand, warmer months need less heating actions and also 

have higher PV production, which makes rewards higher. 

5.2. Comfort analysis 

This section shows the overall comfort performance after the full 

implementation of the DRL algorithm with a dynamic setpoint. Results 

show that from June to December both indoor and DHW temperatures 

are kept in between their respective setpoints most of the time, with 

the indoor setpoint being violated less than 40 timesteps over the seven 

months, and less than 420 for DHW. The number is higher for DHW be- 

cause the heating dynamic during the actions is different. Indoor heating 

is slow, which makes precision easier to be achieved. On the other hand, 

DHW heating is very fast, it needs less than 20 min to exceed the maxi- 

mum setpoint limit, hence if the action of heating water is kept for one 

more timestep than necessary, there is a higher probability of surpassing 

the limit. But even in this condition, this temperature deviation repre- 

sents less than 1% of the timesteps, and it does not exceed 2 ◦ above the 

maximum allowed. Fig. 5 shows the seven months of temperature be- 

havior accumulated in an hourly granularity. Note that from the indoor 

temperature chart it is possible to see bigger bars from 11 am to 6 pm, 

which means the algorithm is exploring more of the setpoint limits due 

to a higher PV production activity. This is not possible to infer from the 

DHW chart, because its action occurs on average two times a day only, 

as the tank temperature decrease is slow. 

5.3. Energy analysis 

Having achieved comfort for both indoor and DHW, the second goal 

of our proposed DRL-based HEMS is to optimize PV self-consumption, 

by prioritizing performing actions when production is higher. The dy- 
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Fig. 5. DRL-based control: Temperature behavior. 

Table 2 

Algorithms comparison. 

Rule-based Static Rule-based Dynamic DRL-based Dynamic 

Month kWh (Baseline) kWh (Reduction %) kWh (Reduction %) 

June 146.15 130.01 (11.5%) 126.55 (13.4%) 

July 105.08 94.10 (10.4%) 87.85 (16.4%) 

August 111.80 100.47 (10.1%) 93.28 (16.6%) 

September 140.76 127.79 (9.2%) 126.07 (10.4%) 

October 207.06 196.18 (10.1%) 190.28 (8.1%) 

November 247.96 245.88 (0.8%) 241.06 (2.8%) 

December 257.95 253.34 (1.7%) 253.99 (1.5%) 

Total 1,216.78 1,147.79 (5.7%) 1,119.12 (8.0%) 

namic setpoint brings additional flexibility during the decision making 

process. For instance, the algorithm can opt to anticipate the action and 

heat the space or tank creating a heating buffer, or it may postpone the 

action and save energy. There are two main benefits of this optimiza- 

tion: consumers can reduce their energy bills and also help utilities to 

balance the grid, through a demand-response program of load shifting. 

To assess energy savings, we first compared the rule-based methods 

with and without a dynamic setpoint by estimating the net energy con- 

sumption (action power minus PV production), which was assumed to be 

zero if production is higher than consumption. Although PV production 

is part of the calculus, both methods do not consider any optimization in 

this regard, which means the actions are taken exclusively to keep com- 

fort. As a result, the dynamic setpoint approach achieved up to 11% of 

savings over the months, with a 5.7% reduction average. 

In the second analysis, we compared the DRL-based algorithm with a 

dynamic setpoint against the baseline. The average savings increased to 

8%, reaching up to 16% of reductions over the summer months. There 

is a small energy reduction in November and December, mainly because 

PV production is low in those months. Also, outdoor temperatures are 

lower, hence more actions over the day are needed to keep indoor com- 

fort, which reduces flexibility. Table 2 summarizes energy saving across 

the different algorithms. 

To evaluate the DRL-based algorithm capability of adapting its con- 

trol actions according to PV production, we compared the accumulated 

number of actions 𝐻𝐸𝐴𝑇 𝑂𝑁 

and 𝐷 𝐻𝑊 𝑂 𝑁 

performed over the seven 

months, grouped by hour, as can be seen in Fig. 6 . The rule-based algo- 

rithm (dotted-red line) has actions well distributed across the day. After 

applying DRL with PV optimization (blue line), a number of actions that 

were originally in ranges from 2 AM to 10 AM and from 5 PM to 9 PM 

moved to the period from 10 AM to 5 PM. This load shifting represents 

10.2% of more activity where PV production is higher. 

PV self-consumption optimization is important to apply in situations 

where the policy is not favorable to the consumer. For instance, in this 

use case the PV system is connected to the utility grid and, if the energy 

is not consumed, the excess amount goes to the grid, but the user does 

not receive credits or incentives for that. In this regard, the proposed 

DRL-based algorithm was able to use up to 9.5% more of PV energy 

over the months than the rule-based one, hence consuming less from 

the grid. 

In summary, the proposed algorithm was able to optimize PV self- 

consumption by choosing actions when production was higher, as shown 

in Fig. 7 . The grey bars represent the accumulated number of actions 

per hour over the 8 months of the experiment. The green line shows 

the average PV production and, similarly to the previous analysis, the 

higher concentration of actions occurs when production is high. Finally, 

the orange dotted line is the average energy consumed from the grid. 

Even having more actions from 10 AM to 5 PM, the imported energy is 

lower compared to the other periods. There is also a slight increase of 

actions very early in the morning due to the DHW cycle, which happens 

on average twice a day. For instance, if DHW is turned on around 3 

PM, it will probably turn on again 2 AM to keep the temperature to the 

specified setpoint. 

5.4. Balancing comfort and energy savings 

An important role of the proposed DRL-based control is to balance 

users’ comfort and energy savings, and this process is ruled by the 𝑧 

value of Eq. (8) . To define 𝑦, 𝑧, and 𝑤 reward parameters, first we 

removed 𝑟 2 𝑡, 𝑟 3 𝑡, 𝑦, 𝑧 and 𝑤 . As a result, the algorithm only focuses 

on keeping the indoor temperature in between the setpoints. Then, we 

added 𝑟 2 𝑡 and the parameter 𝑤 . We started to change the value of 𝑤, ver- 

ifying the impact on the indoor and tank temperatures, until both were 

in between their respective setpoint ranges. This was necessary because 

indoor and tank temperatures dynamics are different. Moreover, the set- 

point operation zone is 4 ◦ for indoor and 15 ◦ for DHW, affecting directly 

the weight of the rewards. After this step, the algorithm achieved a sim- 

ilar performance to the rule-based method in terms of reaching temper- 

ature targets. Finally, 𝑟 3 𝑡, 𝑦 and 𝑧 were added to the formula. The value 

of 𝑦 only equalizes the temperature rewards to a similar weight level of 
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Fig. 6. Actions distribution. 

Fig. 7. PV production and Energy consumption. 

energy savings. Finally, we started to change 𝑧 to find the best balance 

between temperature and energy savings targets. 

A 𝑧 number closer to zero represents an algorithm focused strictly 

on comfort, and in that case it will not try to optimize energy usage 

according to PV production. As can be seen in Fig. 8 , increasing 𝑧 makes 

energy consumption to decrease, but after a certain limit the comfort 

matters start to be sacrificed. The purple line represents the percentage 

of timesteps out of indoor and DHW setpoints for different 𝑧 values, 

considering accumulated values from June to December. The red line 

shows the total energy consumption for the same period and specified 

parameters. 

As our first target was to achieve a similar comfort performance of 

the rule-based control, a 𝑧 value of 3.5 was chosen. The time out of 

comfort in this configuration is around just 0.5%, in addition to outper- 

forming inferior 𝑧 values in terms of energy savings performance. Note 

that a 𝑧 greater than 3.5 achieves more energy consumption reduction, 

but the time out comfort starts to increase quickly, reaching 25% of dis- 

comfort rate for a 𝑧 equal to 6. In a common sense with the user, another 

𝑧 could be selected targeting greater energy savings, such as 4.5, where 

time out comfort is around 5% and the energy consumption is lower 

when compared to a 𝑧 of 3.5. Another option would be also changing 

the 𝑤 parameter of Eq. (8) , which aims to balance the importance level 

between indoor and DHW temperatures. 

6. Conclusion and future work 

This work presented a new DRL approach for a HEMS control, which 

includes a PV self-consumption optimization and a dynamic setpoint 

definition for indoor temperature. The primary goal was to keep user’s 

comfort, followed by energy savings and load shifting. Although our 

algorithm architecture and use case differs from previous works in many 

ways, the energy savings of up to 16% achieved is in line with values 

found by authors in [4,6,10,11,14] . Apart from bringing savings, PV self- 

consumption optimization also contributed to 10.2% of load shifting, 

by anticipating or delaying heating actions. Furthermore, right after the 

first month the level of comfort achieved by the proposed algorithm 

is nearly optimal, which means users would not experiment more than 

1% of temperatures out of the specified setpoints range. The proposed 

DRL-based control also allows balancing energy savings and comfort 

according to the user’s preferences. 

For future work, a different approach to get the user’s setpoint pref- 

erences could be applied. For instance, the user could receive a smart- 

phone app where they can evaluate if the temperature is good or not 

at a specific time. Another option, if the house already has temperature 

sensors installed with historical data available, a data-driven statistical 

or machine learning models could be used to infer the setpoints. Moving 

to DRL, further analysis and optimization can be carried out consider- 
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Fig. 8. Balancing comfort and energy savings. 

ing other factors, such as dynamic prices or neighborhood energy peak 

reduction, which can also include a multi-agent or transfer learning ap- 

proach. Another important topic to observe is about changes in the PV 

production policies, which can suddenly allow users to sell energy back 

to the grid. In that case, the algorithm could be upgraded considering 

selling prices, deciding what is the best time to consume or sell the pro- 

duced energy. Finally, this work could be extended to other geographic 

locations with different PV production patterns and loads attached to it. 
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