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Abstract: We utilize Fourier-holographic light scattering angular
spectroscopy to record the spatially resolved complex angular scattering
spectra of samples over wide fields of view in a single or few image
captures. Without resolving individual scatterers, we areable to generate
spatially-resolved particle size maps for samples composed of spherical
scatterers, by comparing generated spectra with Mie-theory predictions.
We present a theoretical discussion of the fundamental principles of our
technique and, in addition to the sphere samples, apply it experimentally
to a biological sample which comprises red blood cells. Our method
could possibly represent an efficient alternative to the time-consuming and
laborious conventional procedure in light microscopy of image tiling and
inspection, for the characterization of microscopic morphology over wide
fields of view.

© 2006 Optical Society of America

OCIS codes: (070.0070) Fourier optics and optical signal processing; (090.0090) Holography;
(100.2000) Digital image processing; (120.3890) Medical optics instrumentation; (170.1650)
Coherence imaging; (170.3880) Medical and biological imaging; (170.4580) Optical diagnos-
tics for medicine.
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1. Introduction

In biological systems, it is often necessary to determine structural information over a large
range of size scales. For example, the size and shape of individual cells and the distribution of
these cells throughout a sample both represent important features necessary for tissue charac-
terization. Histological analysis of tissue sections is the most informative way to assess cellular
composition and events in many situations [1]. All such examinations are laborious tasks, par-
ticularly when large tissue areas must be surveyed to obtainstatistically significant cell popula-
tions, yet information on the microscopic scale must be discerned in order to provide accurate
characterization. Recently, our group proposed a new approach to perform high-throughput
structural characterization of a wide range of biological samples [2, 3]. Our technique is based
on the intrinsic dependence of the angular distribution of elastic light scattering upon sam-
ple microstructure. By employing digital Fourier holography, we seek to map, with a single
camera exposure, scatterer sizes (and potentially refractive-index contrast) over exceptionally
large fields of view. Ultimately, this technique could enable single-image-capture ‘histologi-
cal’ assessment of the microscopic properties of millimeter-scale samples without histological
staining and without microscopic examinations such as cellcounting - indeed, without even
resolving the scatterers. Our publications thus far have entailed the first proposal and demon-
stration of this technique [2], and a preliminary experimental and theoretical analysis [3]. In
this paper, we present a thorough theoretical treatment of the technique, and for the first time
demonstrate experimentally the ability of our approach to generate fully spatially-resolved par-
ticle size maps for non-biological samples, and spatially-resolved angular spectra of a biological
sample. We finally discuss outstanding issues and limitations in its implementation.

The technology of digital holographic imaging has developed considerably in recent years
[4] due to the accessibility of high-power personal computers and advances in digital record-
ing hardware. Its primary advantage over alternative techniques is the ability to form a digital
representation of the full complex field distribution of an image, thus enabling the application
of image processing and reconstruction algorithms to extract sample features, without recourse
to complex optical setups. The renewed impetus in the field has been particularly striking with
respect to the application of digital holographic microscopy, and a considerable body of liter-
ature has developed. Published journal papers have included treatments of quantitative phase
contrast microscopy [5, 6, 7, 8], refractometry [9, 10], three-dimensional visualization [11],
and synthetic-aperture optical imaging to achieve superresolution [12], or high resolution over
large fields of view while utilizing low-numerical-aperture optics [13].

In parallel with developments in digital holographic microscopy, methods of characterizing
a sample using the angular distribution [14] or spectrum [15] of elastically scattered light have
been developed. These techniques have been termed ‘light scattering spectroscopy’ (LSS) and
have been developed to quantify cellular or subcellular morphology (structure). LSS has shown
promise in the detection of nuclear pleomorphism (the increase in size and shape variation of
cell nuclei associated with dysplasia) in epithelial tumors in vivo [15, 16, 17, 18] and has been
applied to bacteria size determination [19, 20]. A closely related microscopy technique has
combined LSS with optical Fourier filtering to map morphology over a microscope’s field of
view [21]. More recently, the importance of angular distributions has begun to be appreciated
[22, 23], including the combined measurement of angular andspectral scattering distributions
[24]. All such techniques are not intrinsically depth sectioning, which is a common impor-
tant requirement for thick or turbid media. Both polarization gating [15, 16, 25, 26, 27] and
coherence gating [28, 29] have been used to determine the depth-resolved spectral or angular
distributions of scattered light.

In quantitative microscopy, the morphological parametersof samples are generally measured
directly and accuracy depends largely on spatial resolution. The requirement for high spatial
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resolution typically restricts fields of view to substantially less than the region of interest. In
LSS, microscopic morphology and spatial resolution are decoupled; measurements averaged
over small but macroscopic areas of the sample are sensitiveto microscopic morphology. Ac-
curate measurements of the scatterer sizes can still be obtained, via the convenient use of low-
resolution optics. The angular scattering spectra published elsewhere [14, 19, 20, 22, 23, 24, 28]
were obtained point by point over a sample area. Our technique enables such spectra to be col-
lected over millimeter-scale samples with a single image capture.

The remainder of the paper is organized as follows. In Section 2, we describe in detail the
theory of the technique. In Section 3, we present its experimental realization and an analysis
of the experimental setup. In Section 4, we present experimental results. We provide some
discussion and draw some conclusions in Section 5.

2. Methodology

To determine the angular scattering spectra for each local area of a sample, it is sufficient to
record the complex amplitude distribution of the scatteredwave. Our approach is based on
recording a digital hologram of the scattered light in a plane optically conjugate to the Fourier
plane of the object. By performing filtering in either the Fourier plane or the reconstructed
object plane, we are able to generate spatially-dependent angular scattering profiles for the
sample.

Fig. 1. Schematic showing orientation of the object and recording planes,and their coor-
dinate systems. The wavevectorskR andkS, and the fringe vectorkF , correspond to the
special case of an axial sample wave.

Figure 1 is a schematic showing the orientations of the object (ξ ,η) and recording (x,y)
planes, and the coordinate systems used to describe them. The complex representations of the
Fourier transform of the scattered wave and the plane reference wave in the recording plane
may be denotedUS(x,y) = U0S(x,y)exp[− jϕS(x,y)] andUR(x,y) = U0R exp[− jϕR(x,y)], re-
spectively, whereU0S(x,y) is a real (positive) spatially-varying amplitude, andU0R is a con-
stant amplitude (assumed real and positive, without loss ofgenerality). The termϕS(x,y) is
the phase of the Fourier transform of the sample wave,ϕR(x,y) = ksinθr(xcosφr + ysinφr) is
the phase of the reference wave, linear with respect to spatial position,k = 2π/λ represents
optical wavenumber, andλ is the wavelength of the source. The angleθr is the incident angle
of the reference wave (relative to thez-axis, which is normal to the Fourier plane) andφr is the
azimuthal angle, i.e., the angle between the reference plane of incidence and thex coordinate
axis.
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The recorded intensity distribution is:

I(x,y) = U2
0S +U2

0R +USU0Re jϕR +U∗
S U0Re− jϕR . (1)

When this intensity is inverse Fourier-transformed, we obtain

F
−1 [I(x,y)] = Γu(νx,νy)+U2

0Rδ (νx,νy)+U0RuS

(

νx +
sinθr cosφr

λ
,νy +

sinθr sinφr

λ

)

+U0Ru∗S

(

−νx +
sinθr cosφr

λ
,−νy +

sinθr sinφr

λ

)

, (2)

whereF−1 denotes the inverse Fourier-transform operator, defined bythe equation:

h(νx,νy) = F
−1{H(x,y)} =

∫ ∞

−∞
H(x,y)exp

{

+ j2π (νxx+νyy)
}

dxdy, (3)

and(νx,νy) represent the coordinates in the transform space. In Eq. (2), uS is the inverse Fourier
transform ofUS, andδ represents the Dirac delta function. The first term on the right-hand
side of the equation,Γu(νx,νy) = uS(νx,νy)⊗ u∗S(−νx,−νy), is a zero-order autocorrelation
and the second term is a high-intensity zero-order spot, located at the origin. The third and
fourth terms are first-order twin images of the sample field and its (spatially inverted) complex
conjugate, each translated in opposite directions due to the influence of the exponential carrier
factors. If the first-order images are sufficiently spatially separated from the zero-order images,
the squared magnitude of the entire transformed distribution yields reconstructed twin images
of the scattered power from the sample. Otherwise, the first two terms can be removed by
recording the sample and reference intensities separately, and subtracting both from Eq. (1).

The reconstructed fielduS(νx,νy) is a scaled version of the scattered field distribution in the
object plane. We denote the latter distribution byVO(ξ ,η) (utilizing the input plane coordinate
system), such that:

VO(ξ ,η) =
− j
M

uS

(

− ξ
M

,− η
M

)

, (4)

whereM is a constant (with dimensions of squared length) dependenton the optical elements
of the setup and proportional to the illumination wavelength.

An important issue to consider in reconstructing the samplefield distribution is that of de-
focusing, in both the object and recording planes. The recording plane may be deliberately
defocused (i.e., located in a plane which isnot conjugate to the back focal plane of the Fourier-
transforming objective lens) when imaging strongly diffracting sample structures. This ensures
that any tightly-focused bright spots in the recording plane are spread out over many pixels,
improving signal-to-noise ratio, and avoiding detector saturation. For the present purposes,
recording plane defocusing is unnecessary, since the detected sample wave is generated by
scattering processes. However, for each recorded hologram, there remains the possibility that
the sample plane is defocused (not located at the front focalplane of the objective lens). Within
the assumption of Fresnel diffraction theory, we can correct for this offset by multiplying the
recording plane fieldUS by a quadratic phase factor, as follows. If the sample is located at a
distanceg in front of the front focal plane, then the field in the front focal planeVO is related to
the field in the sample planeVS via the convolution [30, p. 67]:

VO(ξ ,η) = VS(ξ ,η)⊗ kg(ξ ,η), (5)

where:

kg(ξ ,η) =
exp( jkg)

jλg
exp

[

jk
2g

(

ξ 2 +η2)
]

. (6)
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Thus,US, the detected wave in the absence of defocus correction, is related to the defocus-
corrected waveUS,dc via the equation:

US(x,y) = US,dc(x,y)Kg

(

− x
M

,− y
M

)

, (7)

whereKg, the Fourier transform ofkg, may be represented:

Kg(νξ ,νη) = exp( jkg)exp
[

− jgπλ
(

ν2
ξ +ν2

η

)]

. (8)

If the recorded intensity distributionI(x,y) is divided by the quadratic correction factor, we
obtain (noting that the inverse ofKg is equal to its complex conjugate):

K∗
g I = U2

0SK∗
g +U2

0RK∗
g +US,dcU0Re jϕR +U∗

S,dc(K
2
g )∗U0Re− jϕR , (9)

where the arguments ofKg are taken to be(−x/M,−y/M) as in Eq. (7). It is clear from Eq. (9)
that, after the recorded hologram is multiplied by the quadratic defocus correction factor, only
one of the twin reconstructed images will be focused; the other will be doubly defocused.

The spatial (angular) frequency of the fringe pattern formed due to the interference between
the sample and reference waves in the recording plane is calculated by projecting the difference
between the sample and reference wavevectors,kR and kS, respectively, onto the recording
plane. For an axial sample wave, this difference, the fringevectorkF = kR − kS, is depicted
along withkR andkS in Fig. 1. The wavevectors both have magnitudek andkF has magnitude
kF = 2ksin(θr/2). The fringe vector is oriented at angleθr/2 to the recording plane, thus, its
projection onto the plane has magnitudekF cos(θr/2). The spatial period of the fringe pattern
is therefore:

H f =
2π

kF cos(θr/2)
=

λ
sinθr

. (10)

It should be noted that in Fourier holography, this fringe period is not dependent on the scatte-
ring angle of the light from the sample; instead, it depends only on the location of the scatterer in
the sample plane. This is an important advantage of Fourier holography over other techniques,
endowing it with the ability to record a large range of scattering angles on a low-resolution
CCD sensor.

For a sample composed of discrete scatterers, angular scattering spectroscopy measurements
may be sufficient to ascertain the scatterers’ sizes and their relative refractive indices with re-
spect to the background medium. In the Fourier plane, there is a one-to-one correspondence
between spatial position and scattered light direction. Todetermine the angular scattering dis-
tributions for selected sample regions, we have adopted twodifferent (but essentially equiv-
alent) techniques. In the first, we perform Fourier filteringusing a selection of masks in the
recording plane, each of which specifies (and weights) a particular scattering solid angle range.
After filtering, a reconstructed image of the entire sample is formed only from the light scat-
tered within that range. For each area of the sample, the variation in the reconstructed power
corresponding to different mask positions can be used to determine sample structural charac-
teristics. This technique, demonstrated in Refs. [2, 3], isuseful when it is not convenient to
select (manually or automatically)a priori sample regions of interest. In the second technique,
we select such sample regions from the reconstructed objectplane field distribution (where all
detected scattering angles are utilized to form the reconstruction). The field within each region
is Fourier-transformed to obtain a map of the scattering angle distribution. The principal advan-
tage of this technique is the fact that it allows direct access to these two-dimensional maps. The
distribution of the scattered power in each may be used to determine sample properties within
the selected region.
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The fundamental resolution limit of our method, which holdsfor both approaches above, is
governed by the Fourier uncertainty relationship between angular resolution in the recording
plane and spatial resolution in the sample plane. Assuming a(one-dimensional) Gaussian filter
mask profile in the recording plane of full-width-at-half-maximum (FHWM)∆w, then accord-
ing to Eq. (4), the spatial resolution in the reconstructionplane is limited by a Gaussian coherent
point-spread function FWHM of∆d = 4(ln2)M

/

(π∆w). In the paraxial approximation, the de-
flection angleθd (from the optical axis) is related to the focal point deflection distance in the
recording planerd by the equationθd = λ rd/M. Thus, the scattering angle resolution (FWHM
in air) ∆θ is related to spatial resolution in the reconstruction plane ∆d by the equation:

∆d∆θ =
4ln2

π
λ . (11)

It is clear from Eq. (11) that the only system parameter upon which the trade-off depends is the
optical wavelength. For the red He-Ne laser wavelengthλ = 632.8nm and a FWHM angular
resolution of∆θ = 1.0◦, this yields a sample spatial resolution∆d = 32µm. Despite the fact
that this value is clearly too large to directly resolve sample microstructure, it does not represent
an impediment in our approach.

3. Experimental setup and procedure

Figure 2 presents a schematic diagram of our experimental setup. A light beam from a coherent
source S (He-Ne laser) is split into reference and sample waves at the beamsplitter B1. A
sample is placed at the object plane of the Fourier-transforming objective lens L1 (focal length
f1 = 15mm) and illuminated by a plane wave. Its optical Fourier spectrum is imaged onto
the recording plane via the lenses L2 and L3 (of focal lengthsf2 = 15cm and f3 = 26cm,
respectively). For this setup, the scaling constantM = λ f1 f3/ f2. Recording is performed using
a charge-coupled device (CCD) matrix sensor (12 bit, 1392×1040 pixels, pixel length∆r =
4.65µm). The reference wave is expanded using the telescopic system T and is directed off-
axis onto the CCD matrix at angleθr of approximately 2.3◦.

Fig. 2. Schematic diagram of the experimental setup. Items L1, L2, L3 are lenses, M1, M2,
M3 are mirrors, B1, B2 are beamsplitters, RFS is a rectangular field stop,S is the light
source, T is a telescopic system, and CCD is the CCD matrix sensor. The inset contains a
magnified depiction of the sample, showing the direction of the illumination and scattered
waves within the sample plane.

The direction of the light scattered by the sample is described by a polar (scattering) angle
θs, the deviation from the forward direction, and an azimuthalangle. Its angular deviationθd
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from the axis depends on both of these angles, as well as the direction of the illumination wave
(described byθi,φi) and the refractive index of the sample mediumnmed. The inset to Fig. 2
illustrates this relationship in the plane of incidence. Restricting our consideration to this plane,
we may letθd take both positive and negative values with respect to the optical axis, with the
direction shown corresponding to a positive value. Within this plane,θs is related toθd via the
equation:

θs = π −
[

arcsin

(

sinθi

nmed

)

+arcsin

(

sinθd

nmed

)]

. (12)

The range of angles captured by the optical system is limitedby the numerical aperture (NA)
of the objective lens L1, the diameters and focal lengths of lenses L2 and L3, and the pixel size
and count of the CCD sensor. In our case, the size of the CCD sensor is (for the most part) the
limiting component of the system. For our experimental setup, in whichθi

∼= 49◦, the angular
deviationθd range is about 17◦ (in air), centered on the axis. If the sample background medium
is water (nmed= 1.33), the scattering anglesθs which can be detected range from 139◦ to 152◦.
A rectangular field stop is placed in a plane conjugate to the sample, in order to restrict the field
of view to a 1mm×2mm area, thus enabling clear identification of the first-order twin images.

The precise relationship between recording plane locationand scattering direction can be
determined. For our setup, theξ , η , x, andy axes, depicted in Fig. 1, are aligned with the
horizontal and vertical axes of the CCD recording area, respectively, and the azimuthal angle
φi

∼= 35◦. For our system parameters, curves in the recording plane corresponding to constant
scattering angleθs (but varying azimuthal angle) are displayed in the left panel of Fig. 3. The
curves are well approximated by straight lines perpendicular to the illumination-wave plane of
incidence (in the paraxial approximation), i.e., orientedat angleφi to they-axis. (The angular
error associated with this straight-line approximation isless than 0.2◦ over virtually the en-
tire recording plane.) The distance between two such lines corresponding to a scattering angle
difference ofθs,diff is approximately ˜xdiff = (Mnmed/λ )θs,diff .

Fig. 3. (a) Curves of constant scattering angles in the recording plane.The distance ˜xdiff
is shown for the caseθs,diff = 1◦; (b) Regions in the sample plane for which the recorded
spectrum is not limited by vignetting, for different objective lens diametersDL (displayed
in millimeters on each curve). In increasing order, their numerical apertures are 0.175, 0.2,
0.225 and 0.25. The case corresponding to our objective lens (DL ∼= 6mm) is highlighted.

Vignetting due to the optical components between the sampleand recording planes can limit
the sample field of view. We assume that the objective lens most severely limits the range of
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scattered rays that can be detected by the system. Then the region of the Fourier spectrum
(in the recording plane) contributed to by a scatterer at point (ξs,ηs) in the sample plane is a
circle centered at the point(xs,ys) = ( f3/ f2)(ξs,ηs) of diameter( f3/ f2)DL, whereDL is the
diameter of the objective lens. Consider the sample area forwhich the CCD recording area lies
entirely within this region. If the CCD recording area was circular with diameterDR, then this
area would also be a circle with diameterDS = DL − ( f2/ f3)DR (if DL > ( f2/ f3)DR, and zero
otherwise). Of course, for our setup, the recording area is rectangular, with dimensions 4.8×
6.5 mm. The corresponding sample areas for a range of different objective lens diameters are
shown in the right panel of Fig. 3. For our case, the objectivelens diameterDL

∼= 6mm, so that
its NA was 0.2.

Let ds be the diameter of the sample (or an alternative representative length). Then to en-
sure that the twin reconstructed images are spatially separated from the zero-order terms, it is
necessary that [30, p. 309]:

sinθr ≥
3dsλ
2M

. (13)

To satisfy sampling restrictions due to the finite pixel sizein the recording plane, it is necessary
that H f > 2(∆r/

√
2), where the factor

√
2 arises due to the effective pixel size in a diagonal

direction, and the factor 2 arises from Nyquist’s theorem, i.e., by Eq. (10):

sinθr <
λ√
2∆r

. (14)

For a 1-mm-diameter sample, Eqs. (13) and (14) imply that, for our system, it is necessary that
3.3◦ ≤ θr < 5.5◦. Our choice ofθr = 2.3◦ clearly violates the lower limit, so there will be some
overlap between the zero-order terms and the twin images. Asexplained above, however, this
can be overcome by digitally subtracting the recorded reference and sample waves from the
hologram. Equation (13) demonstrates that, for a given CCD sensor size and wavelength, ifds

is increased, thenM must undergo a corresponding increase to satisfy the inequality. That is,
there is a trade-off between measured scattering angle range and sample size.

We selected samples based on their scattering profiles in therange of scattering anglesθs de-
tectable by our system, from about 139◦ to 152◦ as described above. The choice of microsphere
suspensions was natural since their angular scattering pattern follows a distinctive modulation
(ripple) pattern described by Mie theory, with an (angular)period which (for the most part)
decreases with increasing sphere diameter. Our samples comprised polysterene spheres sus-
pended in distilled water. The microspheres were diluted toa volume concentration of 0.1%
and a droplet was deposited into a 10×20 mm well on a microscope slide. To demonstrate the
application of our approach to biological samples, we utilized a smear of erythrocytes, or red
blood cells (RBCs). The RBCs were diluted with a droplet of NaCl solution (9%) and evenly
smeared over a microscope slide. A coverslip was placed overthe sample, and sealed at the
edges. The normal RBC shape is a discocyte, an axially-symmetric disc indented on the axis
[31]. This shape produces a distinctive angular scatteringripple pattern [31] which should be
clearly observable over our angle range.

For spherical scatterers, the angular scattering distribution depends on scattering angle but
not significantly on azimuthal angle, and this fact was utilized when processing the images.
When applying the first technique of Section 2, the recording plane masks were chosen to be
strips perpendicular to the dotted line in Fig. 3(a). Each thereby corresponded to a single scat-
tering angle (and the full range of azimuthal angles). (The filters had a Gaussian cross-section.)
By applying a range of such masks to the recorded image, it waspossible to record the total
power scattered at each scattering angle. We were thus able to generate a one-dimensional curve
of scattered power vs. scattering angle for each selected sample region [2]. When applying the
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second technique, we sought to develop scatterer identification methods that were sensitive to
structure parallel to the dotted line of Fig. 3(a) (in the scattering-angle-distribution map for each
selected region), the direction of varying scattering angle.

4. Results

The scattered power angular distributions predicted by Mietheory are shown as blue curves
in Fig. 4, assuming a refractive index ratio between sphere and background medium of
m = nsph/nmed= 1.59/1.33= 1.20, for a range of particle sizes. The ripple patterns are readily

Fig. 4. Blue curves show scattered power vs. angle predicted by Mie theory; the high-pass
filtered red curves emphasize their sinusoidal character. Each graphhas an arbitrary (and
different) scale on the ordinate axis.

apparent, as well as the dependence of their angular periodson sphere size. It is this parame-
ter of the curves that we utilize to determine sphere size in our samples. To assign a value to
the apparent angular period in each case, a high-pass filter was applied to the curve in order
to fit it accurately to a sinusoidal curve. The angular periodwas originally estimated from the
average fringe spacing over the angle range 120◦−170◦, and the (4th-order Butterworth) filter
cutoff frequency was equal to 0.75 times the estimated fringe frequency. The filtered curves
are shown in red. They were fitted (in a minimum least-squaressense) to sinusoidal curves,
and the frequencies recorded. By this process, it may be shown that the ripple angular fre-
quency is almost linearly dependent on the Mie size parameter α = πdnmed/λ , whered is
the sphere diameter. Such an approximation is valid (at least) over the refractive index ratio
rangem = 1.1− 1.25, yielding a maximum error in detected diameter of less than 1µm (for
sphere sizes ranging from 1 to 20µm) and a mean error of about 0.2µm. A more direct Mie
inversion procedure may be used for particle size/refractive index values outside these ranges.
Thus, particle size can be recovered from the measured ripple angular frequency, to a degree
of accuracy which should be sufficient for many applications. The minimum particle size mea-
surable by our system can be estimated by determining the sphere diameter for which one full
ripple cycle is visible over the angular range used. As is clear from Fig. 4, this minimum size
is about 2µm, assumingm is within the given range. In general, the particle-size sensitivity of
our approach is limited by angular range and refractive index to the same extent as alternative
angular-scattering-spectroscopy techniques [14]. Goniometric measurements published in the
literature have clearly shown multiple Mie-theory ripplesassociated with sphere diameters of
less than 1 or 2µm [20, 22, 32].

Figure 5 demonstrates the application of Method 1 of Section2 to a sample of 11.4-µm
spheres in water. The apparent brightness of the scatteringregions of the sample (right-hand
side) is clearly dependent on the recording plane strip-mask position (shown on the left-hand
side) and, thus, on scattering angle.
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Fig. 5. Movie showing the variation in the reconstructed scattered power (right) as the
recording plane strip-mask position (and corresponding selected scattering angle, left) is
varied over a scattering angle range from 140◦ to 151◦. (A low-pass spatial filter is applied
to the reconstructed power map before it is displayed.) A linear gray or color scale is used
for both parts of the figure. For the reconstructed power map, a false color scale is used; its
color bar is depicted at the right of the figure.

Figures 6 and 7 show reconstructed images of samples of suspensions of 5.4 and 11.4-µm
spheres in water, respectively. In each case, five regions ofthe sample were selected, and the
angular scattering (power) spectra corresponding to each is displayed. Note that for each, the
speckle size in the two-dimensional spectra (and thus the angular resolution) appears to be in-
versely related to the size of the selected region (outlinedin red), an observation consistent with
the trade-off represented by Eq. (11). A two-dimensional (inverse) Fourier transform operation
was applied to each power spectrum, and the results also displayed, with a dotted yellow line in-
dicating spatial frequencies in the direction of varying scattering angle. Bright spots along this
line correspond to detected ripple frequencies in the angular scattering spectra, and by detecting
the peak position (indicated with a magenta cross), we can identify each region with a detected
sphere diameter by invoking the linear relationship described in the first paragraph of this sec-
tion. (Diffraction effects due to the shape of the recordingarray and low-spatial-frequency noise
were mitigated by subtracting a CCD-sensor-shaped rectangle from the spectra before inverse
Fourier-transforming them, so that their mean value was zero, and applying a radial square-root-
profile mask to the Fourier-transformed spatial frequency spectra before peak detection.) The
same process was applied to every region of the sample, and the detected sphere size in each
displayed using a false color scale. The color scale shown indicates sphere size in micrometers.

The mean diameter of the detected spheres (ignoring spurious outliers) was 4.8µm and
9.9µm (with standard deviations 0.9µm and 0.5µm), respectively. The systematic error of 10-
15% is due possibly to errors in the system scaling constantM (due to the large tolerances of the
optical components used), leading to a smaller range of scattering angles being imaged onto the
CCD detector than predicted theoretically. The relativelylarge variation in the values measured
in the former case is due to the difficulty in precisely detecting the period of low-frequency
fringes using a detector encompassing a limited angular range. In both cases, the scatterers on
the far left of the reconstruction take on a ‘streaked’ appearance. This is due to vignetting at the
boundary of the sample region; the scatterers are reconstructed using a reduced range of spatial
frequencies, so they exhibit a resolution loss (and apparent broadening) in one direction.

Figure 8 presents a reconstruction and a false-color map showing the detected size distribu-
tions of a sample containing a mixture of both 5.4 and 11.4-µm spheres. The two particle sizes
are clearly distinguishable by their distinct hues used in the latter representation. Six different
regions, three of each particle size, are highlighted as before. The detected sphere sizes are
consistent with those measured in the previous two figures.
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Fig. 6. Reconstruction of a sample of 5.4-µm spheres in water (logarithmic scale, top row,
left), and a false-color plot (right) showing the detected sphere size in each region (the scale
bar indicates sphere diameter in micrometers). The second row displaystwo-dimensional
angular scattering power spectra (linear scale) corresponding to the five selected regions
in the sample. The third row shows the two-dimensional inverse Fourier transform of each
region (linear scale), with a dotted yellow line indicating the direction of scattering angle
variation. The detected peak position is indicated with a magenta cross, and the theoretical
peak positions corresponding to 5.4 and 11.4-µm spheres shown in yellow. The detected
sphere sizes for the five regions were, respectively, 4.3, 4.3, 4.8, 4.6, and 4.3µm.

The reconstructed image and scattering spectra from five selected regions of a hologram
of the red-blood-cells sample are shown in Fig. 9. The orientation of the incident beam with
respect to the recording plane was different from the previous measurements. (In this case,
φi

∼= 140◦.) Thus, the angle of the lines of constant scattering angle has been likewise varied.
Clear ripple structure is apparent in the recorded power spectra (and highly visible peaks along
the yellow dotted line in their inverse Fourier transforms), corresponding to a uniform spatial
frequency. Since red blood cells are not spherical, it is notstrictly appropriate to utilize Mie
theory to determine their sizes. Nonetheless, for the purpose of comparison with the previous
results, the same Mie inversion procedure was applied to thesample, and a false-color map
of particle size generated, as before. (The fact that the relative refractive indexm between the
blood cells and their background was outside the range specified earlier in this section was
ignored for the purpose of this simple analysis.) For this sample, despite the fact that a majority
(65%) of detected particle sizes were within 1µm of the mean value (ignoring spurious outliers),
there was much more variation in the detected blood cell sizes than in the sphere sizes of the
earlier experiments. This is probably accounted for by the natural variation in the size and
orientation of the particles, as well as the general inaccuracies inherent in applying a Mie-theory
inversion procedure to a distribution of non-spherical particles. However, the mean detected
size of about 6µm correlates well with typical red-blood-cell sizes reported in the literature
[31]. It is evident in the reconstructed image (as it had beenin Figs. 6-8) that the focused
regions corresponding to individual red blood cells take the form of a pair of closely-spaced

#74964 - $15.00 USD Received 12 September 2006; revised 30 October 2006; accepted 31 October 2006

(C) 2006 OSA 13 November 2006 / Vol. 14,  No. 23 / OPTICS EXPRESS  11099



Fig. 7. Reconstruction and sphere size detection of a sample of 11.4-µm spheres in water.
The structure of the figure is similar to that of Fig. 6. The detected sphere sizes for the five
regions were, respectively, 10.2, 10.2, 10.5, 10.5, and 9.4µm.

bright points. This is unsurprising, since the far-field interference pattern generated by a pair
of coherent point sources is a fringe pattern with a similar appearance to the two-dimensional
spectra generated in these figures. We should therefore expect the focused scatterer images to
be of this form when highly visible ripple patterns are present in the angular scattering spectra.

5. Discussion and Conclusion

The results presented in this paper clearly demonstrate themeasurement of spatially resolved
angular scattering spectra, and their use in estimating microscopic sphere sizes over large
fields of view. We have confirmed that the spatial resolution required to resolve the sam-
ple’s microstructure is not necessary to characterize it. The theoretical (diffraction-limited)
spatial/angular resolution trade-off for the present setup (using a Gaussian-profile spatial fil-
ter mask) in the direction of varying scattering angle may bedetermined using Eq. (11). A
representative pair of values is∆θ = 1.3◦ (in air), and∆d = 25µm. Utilizing the full mask
length to reconstruct the sample, the angular/spatial resolutions in the direction of varying az-
imuthal angle are given by 8.9◦ (rectangular length) / 6µm (main lobe length). In principle, an
image can be formed from a single exposure, in common with conventional microscopy, how-
ever, since we do not require spatial resolutions high enough to measure microparticle sizes
directly, our system optical requirements are very modest.We can utilize a low-magnification,
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Fig. 8. Reconstruction and associated images of a sample comprising spheres of two dif-
ferent sizes (5.4 and 11.4µm) in water. The structure of the figure is similar to that of the
previous two, except that six regions have been highlighted. Regions 1-3 correspond to the
larger spheres, and regions 4-6 to the smaller spheres. The detected sphere sizes were 10.3,
10.0, 10.2, 4.8, 4.9, and 5.4µm, respectively.

low-numerical-aperture objective, which allows us to formimages over long working distances
and millimeter-scale fields of view. This ability to form millimeter-scale images that provide
the angular distribution of the scattered light in each local area is unique to our method.

Digitally recording the complex Fourier transformation ofthe scattered sample wave pro-
vides great flexibility for applying spatial filtering and, potentially, optical pattern recognition
methods to select specific information from a sample. Besides Mie theory, other models to
describe scattered light can be utilized in our technique. For example, for samples such as
connective tissue that comprise non-spherical scatterers, alternative methods will be needed to
quantify scatterer parameters. We are encouraged, in this regard, by the demonstrated sensitivity
of light scattering to even small changes in the structure ofa sample [21, 33]. In many instances,
detection of change (e.g., differentiating normal from abnormal tissue structures) in itself will
be sufficient to provide valuable capability. In our experiments, we used only the angular fre-
quency of the Mie ripples to detect particle size. This parameter alone has low sensitivity to
refractive index ratios (between spheres and background) over the rangem = 1.1− 1.25. If
we were able to improve our processing procedure to considerother parameters such as peak
position or relative magnitude, our approach could have even greater discriminatory powers.
Curiously, even for samples composed of identical particles (as in Figs. 6, 7), the peaks in
the one-dimensional scattering spectra were not aligned over the five images. This observation
is partially accounted for by the variation in the size of theparticles used (the manufacturer-
specified standard deviation was 0.14 and 0.21µm, respectively, for the 5.4 and 11.4µm sphere
sizes; diameter variations of about 0.3 and 0.2µm, respectively, would be sufficient to account
for complete contrast reversal of the Mie ripples). Also, any variation in the particle shape from
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Fig. 9. Reconstruction and associated images of a sample of red blood cells. The struc-
ture of the figure is similar to that of the previous ones. The false-color size distribution
was generated assuming that the particles could be approximated as spheres; the scale on
the plots on the bottom row is not sphere diameter but fringe spatial frequency in inverse
millimetres. The detected fringe frequencies were 0.37, 0.39, 0.34, 0.38, and 0.35 mm−1,
which would correspond to sphere diameters of 6.1, 6.3, 5.6, 6.2, and 5.7µm, respectively.

sphericity could account for these anomalies.
The accuracy of the technique could be improved by collecting scattered light over a larger

solid angle range, and we are currently working to achieve this (see, for example, Ref. [13]).
The backscattering geometry that we use has the advantage ofnot detecting specularly reflected
or undeflected incident light, but our scattering-angle range of sensitivity could in this way be
extended three- or four-fold.

Spatially-resolved Fourier-holographic angular scattering spectroscopy has great potential
for application to the study of the microarchitecture of biological tissue. The technique could
provide maps of the size ranges of key scatterers, includingcells, cell nuclei, and organelles, as
well as the fibrous components of tissues such as collagen andelastin matrices.
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