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MAPT Microtubule Associated Protein Tau 
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Abstract 

Cognitive decline is one of the most feared aspects of ageing leading to major health and 

social issues. Non-pathological or age-related cognitive decline leads to increased challenges 

in completing tasks that require information processing and memory, which in turn leads to a 

deleterious effect on an individual’s enjoyment of and participation in life events. Cognitive 

resilience is our ability to withstand negative effects of stress and maintain cognitive 

functioning. Understanding the factors that contribute to resilience is becoming increasingly 

important given the ageing demographics of the world’s population. There is a growing 

knowledge of how non-genetic factors such as cardiovascular health and social participation 

contribute to cognitive resilience; however, an understanding of the genetic contribution has 

been hampered by the lack of large datasets with genetic data and suitable longitudinal data 

on cognition. Chapter 1 explores the current understanding of cognitive genetics leading to 

our current knowledge of what constitutes cognitive resilience.  

In chapter 2, I discuss the various bioinformatic tools and methods employed to create a 

cogntive resilience phenotype and to explore genetic variation associated with cognitive 

resilience within the UK Biobank (UKB). In Chapter 3, I discuss how in the absence of direct 

measurements of cognitive ability at distal timepoints we employed proxy phenotypes. We 

used number of years in education (education years (EY)) as a proxy phenotype for cognitive 

performance in early adulthood, following several previous studies. Current cognitive 

performance was determined based on reaction time (RT) as a measure of processing speed. 

This approach captured an average time span of 40 years between past and current cognitive 

performance in 330,097 individuals. A confounding factor in my analysis is that EY is highly 

polygenic and masked the genetics of resilience. To overcome this, I employed Genomics 

Structural Equation Modelling (GenomicSEM) to perform a GWAS-by-subtraction using two 

GWAS, one GWAS of EY and resilience and a second GWAS of EY but not resilience. 

Subtracting one from the other generated a GWAS of Resilience. Replication of this approach 

was shown using independent discovery and replication samples within UKB.  

Chapter 4 outlines the results of functional analysis on the full UKB GWAS which show 

significant genetic correlation with a GWAS of cognitive change in the independent Health 

and Retirement Study (N=9,526; P=1.5x10-3). We found 13 independent genetic loci for 

Resilience. Functional analyses showed enrichment in several brain regions and involvement 

of specific cell types, including GABAergic neurons (P=6.59x10-8) and glutamatergic 

neurons (P=6.98x10-6) in the cortex. Gene-set analyses implicated the biological process 



XXII 

 

“neuron differentiation” (P=9.7x10-7) and the cellular component “synaptic part” 

(P=2.14x10-6). The cellular component “wnt signalosome” had a strong effect size 

(Beta=1.22, P=4.75x10-6). The role of Mendelian randomization analysis showed a causative 

effect of white matter volume on cognitive resilience.   

In chapter 5, I discuss ad hoc testing to show that the genetic correlation between Resilience 

and RT is strong because this is an RT-based resilience phenotype. However, there are 

differences in the associated genes being detected. This phenotype enabled the identification 

of genetic differences between those individuals in the UKB who preserved or maintained 

their capability to process information and respond over a 40-year time period compared to 

individuals who showed diminishing processing speed. This chapter also explores the effect 

of the gene rich locus on chromosome 3 showing that is does not unduly influence the 

functional analysis. Ad hoc testing also shows limited overlap with a GWAS of declining 

cognitive ability in the Health and Retirement Study. 

The discussion in chapter 6 summaries the findings of this thesis and highlights that this 

research is the first of its kind to explore the genetics of cognitive resilience in large data and 

opens the way for future investigations in the area to enhance the neurobiological 

understanding of resilience. It also proposes ways to advance the knowledge of the genetics 

of cognitive resilience going forward with the ultimate goal of discovering interventions and 

therapeutic compounds that will combat cognitive decline and improve quality of life for an 

ageing population. 
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1 Introduction 

(Note this Introduction uses material gathered for my MSc in Clinical Neuroscience, a recent 

literature review (Fitzgerald, Morris, & Donohoe, 2020) and extracts from published research 

where I was the lead author (Fitzgerald et al., 2021) ) 

Improved life expectancy and declining birth rates has led to an increasing percentage of the 

population that is greater than 60 years of age. The average age of the world population is 

increasing and according to the WHO, is expected to increase overall from 12% to 22% by 

2050 and will be up to 30% in the more developed countries (World Health, 2015) (Figure 

1.1). The human ageing process has evolved, as in other species, to stabilize populations and 

ecosystems to mitigate for resource restrictions and predation (Mitteldorf & Sagan, 2016). It 

is an inherent part of our life cycle and understanding ageing processes is essential to 

implement policies that promote healthy ageing. 

 

Figure 1.1: Projected proportion of the population over 60 years of age in 2050 

WHO – Report on ageing and health 2015 (World Health, 2015)  

 

While overall physical health is a core component of the ageing process, cognitive health is 

essential for normal functioning. Age-related cognitive decline leads to increased challenges 
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in completing tasks that require information processing and memory which in turn leads to a 

deleterious effect on the degree to which an individual can enjoy and participate in life events 

(Andrews, Das, Cherbuin, Anstey, & Easteal, 2016). Cognitive decline is one of the most 

feared aspects of ageing leading to major health and social issues and is associated with 

illness, dementia and death (Deary et al., 2009). However, individual rates of cognitive 

decline differ and cannot be explained by advancing age alone. Factors such as education 

level, fitness, diet, genetics, and overall life style influence rates of cognitive decline 

(Daffner, 2010). The concept of cognitive resilience has recently emerged to explain this 

variation.  

1.1 Age-related cognitive decline 

There are several theories as to what constitutes overall intelligence. However, with regards 

to the measurement of cognitive decline and resilience the concepts of crystallized and fluid 

intelligence are often used. Crystallized intelligence refers to the ability to use knowledge that 

has been accumulated throughout life, whereas fluid intelligence refers to an individual’s 

ability to deal with new situations and problems (Brown, 2016). 

Examining the constructs of crystallized and fluid intelligence shows that crystallized 

intelligence remains stable over the life span and can show a gradual improvement of 0.02 to 

0.003 standard deviations (SD) per year in our sixties and seventies as it is based on the 

accumulation of life experiences. Conversely, fluid intelligence peaks in our thirties and 

declines at a rate of -0.02 SD per year (Harada, Natelson Love, & Triebel, 2013). Executive 

functioning, which is our capacity to direct our behaviour in a purposive, independent, 

appropriate and goal-related manner, declines with age, especially after the age of seventy 

and is affected by decline in speed of processing (Harada et al., 2013). 

Prospective memory, which is remembering to perform an agreed task in the future, is 

generally poorer in older people under laboratory settings. However, in practice older people 

are often more reliable than their younger counterparts and it is proposed that this is due to an 

awareness of their limitations and the use of compensatory mechanisms. Furthermore, more 

recent studies have shown that older people perform better in the setting and regulation of 

goals which enhances prospective memory despite declining episodic memory (Brown, 

2016). 
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Implicit memory, which is our automatic ability to perform a task such as riding a bike, is 

task dependent. New implicit memory learning is complicated by declining motor skills in 

older adults, but existing implicit memories are generally well preserved (Schacter, 2019). 

Attention is also affected by age, however, simple auditory attention span is only slightly 

affected whereas selective and divided attention demonstrate a more notable age effect 

(Harada et al., 2013).  

1.1.1 Genetic and cellular processes involved in cognitive decline 

Normal cognitive ageing is a process that happens during healthy ageing and is a result of the 

inability of the body to counteract various stressors, such as detoxification of free radicals or 

oxidative stress with resultant cellular damage (Daffner, 2010). Abnormal cognitive decline 

results from pathological processes such as tauopathies. It has been shown that decline seen 

in Alzheimer’s disease (AD) is not an acceleration of the healthy ageing process but has a 

unique pathology of its own (Toepper, 2017) (Figure 1.2) .  

 

Figure 1.2: Change in general cognitive function Diagram shows the normal progression through age in 

contrast to the abnormal process where normal function is followed by mild cognitive impairment (MCI) and 

Alzheimer’s disease (AD) (Gupta, Fua, Pautler, & Farber, 2013; Petersen et al., 2001) 
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However, the accumulation of altered proteins in the body that is associated with age-related 

pathologies such as Alzheimer’s disease (AD) is also associated with non-pathological 

cognitive ageing. Normally these proteins are degraded by cellular proteases but during 

ageing there is either decreased elimination or increased production (Hipkiss, 2006; Nilsson 

& Tarnopolsky, 2019). These altered proteins may arise due to inaccurate synthesis by 

mitochondrial and cytoplasmic ribosomes, or damage inflicted by reactive nitrogen and 

oxygen species, unstable amino acid residues that spontaneously racemise, isomerise or 

deamidate and glycation (Hipkiss, 2006). This leads to apoptosis due to the build-up of 

breakdown products caused by activity of superoxide and hydrogen peroxide, which are 

generated in the mitochondria. As neuronal cells are not readily turned over or replaced, 

neurodegeneration occurs (Nilsson & Tarnopolsky, 2019).  

Recently, proteome-wide association studies of cognitive decline found almost 600 proteins 

associated with cognitive trajectory, with neuronal mitochondrial activity, increased synaptic 

activity and decreased apoptosis and inflammation each found to be associated with cognitive 

resilience (Wingo et al., 2019).  

Altered dopamine (DA) levels are associated with many neurodegenerative disorders and are 

also linked with non-pathological ageing. Various pharmaceuticals developed to control 

dopamine production are known to affect memory, for example, bromocriptine improves 

spatial working memory whereas haloperidol, which is a dopamine antagonist has the 

opposite effect (Baddeley, Eysenck, & Anderson, 2014). A meta-analysis shows that the 

reductions across the DA system are linked to a decrease in levels of DA transporters and 

receptors with age but the ability to synthesise DA is not affected. The average reduction in 

dopamine levels is 3.7%-14.0% per decade (Karrer, Josef, Mata, Morris, & Samanez-Larkin, 

2017). The relationship of DA transporters to dopamine levels in age and cognition was 

studied using positron emission topography (PET), where a radioligand used to measure 

binding of DA to the putamen and caudate showed clear age-related losses and these were 

associated with a deterioration in executive function and episodic memory (Erixon-Lindroth 

et al., 2005). As well as mediating the effects of cognitive decline, DA was also shown to 

effect cognitive function where individual differences in binding, independent of age were 

shown to be associated with crystallized intelligence. However, a more recent PET study was 

unable to confirm the causal effect of dopamine receptor loss and age-related cognitive 

decline and cautions the interpreting of PET findings (Juarez et al., 2019). 
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Another biological pathway that has been implicated in cognitive change is noradrenergic 

signalling (for further details see Section 1.3.1.1). 

Another biological factor that is increasingly associated with age-related cognitive decline is 

remodelling of the immune system. Over time, the efficacy of the immune system decreases 

leading to a susceptibility to inflammatory diseases, reduced vaccination response and 

increased vulnerability to infections (Aiello et al., 2019). Activated microglia which are the 

immune cells in the brain, produce the required inflammatory response. However, there is 

preclinical and clinical evidence that in ageing and diseased states the microglia, by genetic 

predisposition or by increasing sensitivity over time to previous pathology, produce a chronic 

response with multiple neurotoxic consequences leading to neurodegeneration and loss in 

brain function (Cunningham, 2013). A review of this relationship shows that chronic 

inflammatory conditions or immunosenscence, increases the susceptibility of older people to 

infection and increases vascular ageing causing neuroinflammation and cognitive decline 

(Tangestani Fard & Stough, 2019). 

In addition, there is an association between replicative senescence, chronic inflammation, and 

telomere length. Telomeres are heterochromatic repeat regions at the ends of chromosomes, 

and the length of these regions is thought to be a biomarker for biological ageing (Zhang et 

al., 2016). The inflammatory response and oxidation are thought to accelerate the shortening 

of telomeres leading to eventual senescence and accelerated ageing. Leucocyte telomere 

length has been associated with cognitive capability and is a potential biomarker of cognitive 

ageing (Linghui et al., 2020), however, other data based on longitudinal studies did not show 

strong evidence for an association between decline in cognitive functioning and telomere 

length (Zhan et al., 2018). More work is needed to ascertain if telomere length is associated 

with cognitive decline (see Figure 1.3).  
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Figure 1.3: Biological theories of cognitive decline 

Challenges to brain functioning leading to cognitive decline. 

 

1.1.2 Epigenetic factors influencing cognitive decline 

Alteration in lifestyle and environment modulates the effects of cognitive decline. The 

understanding of the epigenetic mechanisms triggered by these modulators through 

longitudinal studies is critical to our overall understanding of cognitive decline (Papenberg, 

Lindenberger, & Bäckman, 2015). Dysregulation of epigenetic mechanisms such as DNA 

methylation, microRNA-mediated gene regulation, nucleosome remodelling and changes in 

post-translational histone modifications have been associated with cognitive ageing and 

influence most of the brain functions including synaptic plasticity, memory and learning 

(Harman & Martín, 2020).  

Master switches (molecules that that drive cognitive change) were identified in translational 

studies that control epigenome regulating gene expression involved in cognitive ageing. It 

appears that epigenetic modification is decreased in DNA methyl transferases 1 (DNMT1) 

and increased in histone deacetylases 2 (HDAC2) during the ageing process (Konar, Singh, & 

Thakur, 2016) (Figure 1.4). 
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Figure 1.4: Gene expression changes and master switch in age related cognitive decline 

Brain ageing accompanies alteration in expression (red circles represent downregulation; blue circles represent 

upregulation) of genes belonging to multiple pathways. Epigenetic modifications, particularly decrease in 

DNMT1 and increase in HDAC2 level, might be master regulators and accordingly epigenetic modifiers might 

prove ideal therapeutic targets (Konar et al., 2016). 

 

1.1.3 Psychological factors affecting cognitive decline 

A systematic review of relationships between cognitive decline and personality traits showed 

a consistent negative affect of neuroticism on cognitive performance in older adults and a 

positive relationship with conscientiousness. No other significant relationships were found 

with other personality traits (Koller, Hill, Mogle, & Bhang, 2019). It is possible that the 

relationship with conscientiousness is related to living a healthier lifestyle. Openness to new 

experiences leading to a diverse range of activities has a positive effect on cognitive ability 

during ageing (Jackson, Hill, Payne, Parisi, & Stine-Morrow, 2020). Vulnerability to stress is 

a trait of neuroticism and has been linked to poor cognitive performance in older adults 

(Manning, Chan, & Steffens, 2017). 

Social interactions moderate cognitive decline. Social isolation has a negative effect on 

cognitive function (Evans et al., 2018). Loneliness, which is different from social isolation 

such that it is an emotional rather than a physical state, is also associated with cognitive 

decline (Levitin, 2020). Loneliness has been found to be a heritable trait and a poly genic risk 
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score for neuroticism was predictive of loneliness (Abdellaoui et al., 2018). Social 

interactions and educational attainment are associated with the trait of emotional intelligence. 

Both these parameters mediate the effects of declining emotional intelligence in older adults 

(Cabello, Navarro Bravo, Latorre, & Fernandez-Berrocal, 2014) . Both social isolation and 

loneliness are associated with reduced glutamate in the brain which is important for signal 

transmission (Levitin, 2020; Shao et al., 2015). Having a large, diverse and stimulating social 

network is associated with better cognitive function (Litwin & Stoeckel, 2015). 

1.1.4 Environmental factors associated with cognitive decline 

Educational attainment (EA) has a strong association with cognitive function and much of 

this is driven by a high correlation between EA and intelligence (Deary, Penke, & Johnson, 

2010). However, environmental factors such as childhood health and socioeconomic 

parameters also affect EA independent of intelligence and have an association with cognitive 

outcomes in later life (Kobayashi et al., 2017). 

Sleep is restorative and recent research has uncovered the repair processes and memory 

consolidations that happen during sleep. Quality and sleep patterns are associated with 

cognitive function in older adults. Long sleep latency (which is the time it takes to fall asleep) 

is associated with cognitive decline in healthy older adults, whereas long sleep duration and 

early sleep times are associated with normal cognitive function (Suh et al., 2018). The 

relationship of sleep duration with overall health is U shaped, in that significantly less than or 

greater than 8 hours sleep is associated with poorer performance. Average sleep period of less 

than six hours and greater than nine hours have been associated with poorer health outcomes 

(Fang et al., 2012; Levitin, 2020). 

Cardiovascular health (CVH) is important to cognitive function and good midlife CVH is 

associated with preserved cognitive function in later life (González et al., 2018). Factors that 

negatively affect CVH such as obesity, diabetes and high blood pressure are also associated 

with cognitive decline (Leritz, McGlinchey, Kellison, Rudolph, & Milberg, 2011) . 

Cardiovascular disease (CVD) impairs the regulation of cerebral blood flow which results in 

reduced oxygen and nutrient supply to the brain, effecting neuronal processes (Vanherle, 

Matuskova, Don-Doncow, Uhl, & Meissner, 2020). Diet and exercise are therefore important 

to neurocognitive function and there is evidence to show that reversing the obesity trend has a 
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positive effect on cognitive health (Stillman, Weinstein, Marsland, Gianaros, & Erickson, 

2017). 

1.2 Theories of cognitive ageing 

1.2.1 Processing speed and cognitive decline 

Because processing speed is one of the strongest predictors of performance across cognitive 

tasks in older adults (Salthouse, 1996; Salthouse & Ferrer-Caja, 2003), it is the foundation of 

the reduced speed of processing hypothesis to explain decline in fluid cognitive processes 

(Salthouse, 1996). This theory proposes that older adults take longer to process information 

and the result of this slower processing leads to impairment in cognitive functions and 

information is not available for the next part of a task as quickly as with younger adults. It is 

proposed that superior intelligence is linked to faster processing speed and speed of higher 

order information processing explains about 80% of variance in cognitive ability (Schubert, 

Nunez, Hagemann, & Vandekerckhove, 2019). In a study using 1,800 adults ranging in age 

from 20 to 90 it was found that 70 to 80% of decline in processing speed was shared with 

declining reasoning ability (Scheiber, Chen, Kaufman, & Weiss, 2017).  

Decline in processing speed had been found to be associated with cerebral small vessel 

disease and factors involved in the maintenance of cerebellar morphology (Eckert, Keren, 

Roberts, Calhoun, & Harris, 2010). In addition, better cognitive processing speed is 

associated with larger cerebral cortex volumes, lower levels of inflammatory markers and 

insulin and is mediated by physical exercise (Bott et al., 2017).   

Frontal lobe and cerebellar grey matter volume predict variations in processing speed and 

research points to specific neural networks that undergo decline during ageing (Eckert, 2011). 

A systematic review of intra-individual variability during longitudinal assessment of 

processing speed as measured by reaction time and age-related cognitive decline have shown 

that poorer neuroanatomical integrity and greater behavioural variability are associated with 

lower white matter volumes and increased white matter hyperintensities. This could be 

explained by age-related dopamine reduction (Haynes, Bauermeister, & Bunce, 2017). 

Demyelination of white matter tracts is associated with ageing and it has been found that 

higher myelin content of white matter tracts results in faster processing speed (Chopra et al., 

2018). 
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1.2.2 Other theories of cognitive decline 

Another theory relates to working memory, where deficits are thought to be caused by the 

inability to deal with interference and it is proposed that the capacity to divide attention 

decreases with age (Baddeley et al., 2014). Our ability to suppress irrelevant information 

decreases as we age, resulting in impaired working memory performance (Samrani, 

Bäckman, & Persson, 2017). 

In the ‘less wiring more firing’ hypotheses, it is proposed that a decrease in connectivity of 

certain networks is compensated for by increased activity in the remaining neurons (Daselaar 

et al., 2015). Rodent studies have shown that as the number of afferent neurons decrease, the 

synapses of the remaining neurons show higher synaptic potentials. This was also found in 

humans using event-related fMRI and diffusion weighted MRI where low executive function 

was linked to decreased white matter and more firing in the prefrontal cortex when subjected 

to a task and those low on memory scores showed the same results in the medial temporal 

lobes (Daselaar et al., 2015).  

Compensation theory (Grady, 2012) proposes that older adults recruit more areas in the brain 

when performing cognitive tasks when compared to younger adults (attempted 

compensation). In some cases, this results in increased performance (successful 

compensation) and in others, has a negative affect (unsuccessful/ partial compensation). 

Grady has used fMRI studies to support her hypothesis. 

The scaffolding theory of ageing and cognition (STAC) was proposed by Park and Reuter-

Lorenz in 2008 (Park & Reuter-Lorenz, 2008) which argues that increased frontal activation 

in the ageing brain shows that the brain is adapting to declining neural structure and function 

through compensatory scaffolding to protect cognitive function.  

1.3 Cognitive resilience/reserve 

In the research literature the terms cognitive reserve is often used interchangeably with the 

term cognitive resilience, but as cognitive reserve is also used to describe one component of 

resilience, I will use the term cognitive resilience unless talking specifically about the 

subcomponent of cognitive reserve. 

Cognitive resilience is the ability to withstand negative effects of stress on cognitive 

functioning (Staal, Bolton, Yaroush, & Bourne Jr, 2008). Cognitive reserve is the innate and 
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acquired buffer that dictates resilience. Recent theories in the understanding the individual 

differences in cognitive reserve have proposed that reserve has two components – brain 

reserve, which can loosely be described as hardware reserve or the structural properties of the 

brain and cognitive reserve which is the software or implementation of cognitive processes 

(Stern, 2012).  

Individual resilience was first described by Katzman et al. in 1988 when examining some 

post mortem samples of brains that contained lesions associated with dementia, however, the 

subject did not display cognitive impairment before death (Katzman et al., 1988). Cognitive 

resilience is described as the buffer a person has against the effects of cognitive decline. This 

buffer has a strong genetic component and there is also evidence to show that this reserve can 

be altered by number of factors associated with a healthy lifestyle, such as aerobic exercise 

(Daffner, 2010). Structural brain alterations have been documented in rodent models where 

an exercise training regime resulted in increased hippocampus size and promotes 

neurogenesis through enhancing proliferation and survival of neurons in the dental gyrus to 

sustain a healthy brain (Vecchio et al., 2018). Exercise and physical activity is now 

understood to alter the human epigenome which can lead to enhanced cognitive health and 

overall health, thus improving quality of life in older adults (Rea, 2017). There is also 

evidence that other activities, such as meditation, reduce cognitive stress (Chan, Deng, Wu, & 

Yan, 2019) and it is proposed that mindfulness meditation may enhance cognitive reserve 

through activation of attentional function and indirectly by lowering stress and improving 

immune function (Malinowski & Shalamanova, 2017).  

1.3.1 Theories of cognitive reserve 

1.3.1.1 Noradrenaline theory of cognitive resilience 

Robertson proposed a theory of cognitive resilience involving the noradrenergic system 

where noradrenaline (norepinephrine) has a neuroprotective effect on brain function. 

Cognitive resilience is enhanced by environmental and psychological factors, and this 

stimulated noradrenaline which preserves working memory, which in turn stimulated factors 

such as attention, arousal, awareness and novelty which in turn increases cognitive resilience 

(Robertson, 2013, 2014) (see Figure 1.5). A recent review of research into the of the role of 

noradrenaline in cognition shows that loss of noradrenergic projections to the forebrain from 

the locus coeruleus is common in cognitive disorders (Holland, Robbins, & Rowe, 2021). 
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Figure 1.5: A hypothetical cognitive reserve network 

The figure outlines the role of a cluster of networks, which hypothetically mediate between cognitive reserve 

variables such as education level on the one hand, and relatively protected cognitive function in later life on the 

other. The top right quadrant of the figure shows the CR-NA relationship. The top left quadrant of the figure 

illustrates the hypothetical relationship between CR and the hypothetical CR network. Education for instance 

should increase curiosity and hence exposure to novelty. Mental stimulation and social engagement will increase 

arousal, and with it, attention, and awareness. The bottom right quadrant shows the enhancement of working 

memory by NA inhibition of cyclic adenosine monophosphate (cAMP) signalling. Working memory 

enhancement may increase NA activity, but there is no direct evidence for this, hence this is the only 

unidirectional relationship. Finally, the bottom left quadrant illustrates the influence of enhanced WM on 

elements of the CR network, particularly attention and awareness. Abbreviations: cAMP, cyclic adenosine 

monophosphate; NA, noradrenergic; WM, white matter. (Robertson, 2014) 
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1.3.1.2 Theory of brain and cognitive reserve 

1.3.1.2.1 Brain reserve 

Brain reserve is seen as a passive component made up of brain volume and structural 

components and synaptic processes and as these decrease over time individuals with more 

brain reserve will express symptoms of impairment slower than those having less reserve 

(Medaglia, Pasqualetti, Hamilton, Thompson-Schill, & Bassett, 2017). Maximal brain 

volume using intracranial cavity measurements remains static in an individual and is 

associated with cognitive ability in later life and is proposed as a proxy for brain reserve 

(Adams et al., 2016; Royle et al., 2013). It is proposed that a structurally larger brain can 

tolerate more pathology prior to demonstrating cognitive decline (Stern, 2012). Cognitive 

changes in ageing are associated with changes in grey matter volume particularly in the 

temporal lobes (Fletcher et al., 2018). A meta-analysis of magnetic resonance imaging (MRI) 

shows an annual decline of 0.5% in whole brain volume at 60 years of age and this rate 

increases after 60 (Hedman, van Haren, Schnack, Kahn, & Hulshoff Pol, 2012). Diffusion 

weighted MRI has shown a decrease in white matter due to breakdown of the structural 

integrity of myelin in neurons of ageing brains. This results in a decline in communication in 

cortical networks and involves executive function, memory and perceptual speed (Madden et 

al., 2012). The effect of brain atrophy over time on an individual is related to their cognitive 

reserve and maintenance of this reserve mediates this effect (Bettcher et al., 2019). The static 

measurement of intracranial volume (ICV) has been found to be highly heritable and 

associated with cognitive function and supports ICV as a biomarker for brain reserve (Adams 

et al., 2016).  

1.3.1.2.2 Cognitive reserve 

Cognitive reserve is seen as an active process involving the implementation and adaptation of 

cognitive processes. It measures the robustness of these processes against pathology and the 

ability to use alternative processes where necessary (Medaglia et al., 2017). Decreased 

connectivity has been found in ageing brains in multiple resting state networks, including the 

salience network, which directs our attention, and the default mode network (DMN). Resting 

state functional MRI (fMRI) could predict age and cognitive ability based on connectivity 

profiles, particularly those between the salience and visual networks and the salience and 

anterior part of the default mode network (DMN). Moreover, this connectivity was predictive 

of episodic memory and executive function performance (La Corte et al., 2016). 
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The threshold model of cognitive reserve (Figure 1.6) proposes that the combination of brain 

reserve and cognitive reserve result in different outcomes, such that and individual with low 

brain reserve and low cognitive reserve may exhibit symptoms of cognitive decline or 

impairment sooner that an individual with high brain and cognitive reserve (Medaglia et al., 

2017; Stern, 2002) . 

 

Figure 1.6: Threshold model of cognitive reserve 

Brain and cognitive reserve are represented by measured quantities that cumulatively protect against disease. 

Patients with greater reserve remain above the impairment threshold following the onset of neuropathology. 

Patient 1 shows greater resilience to brain pathology than Patient 2 due to greater brain reserve with equivalent 

cognitive reserve. Patient 3 shows greater resilience to brain pathology than Patient 2 due to greater cognitive 

reserve with equivalent brain reserve. Patient 4 displays heightened neuroprotection due to the cumulative 

effects of (i) brain reserve equivalent in magnitude to that observed in Patient 1 and (ii) cognitive reserve 

equivalent in magnitude to that observed in Patient 3 (Medaglia et al., 2017). 

 

However, others consider this model to be too simplistic in that resilience to cognitive decline 

is multifactorial and is a broader construct than cognitive and brain reserve. Other factors 

such as socio-emotional, physical, and spiritual components need to be considered. In 

addition, disease burden can overwhelm reserve and push it to a threshold or tipping point 

(Schwartz, Rapkin, & Healy, 2016) . Ongoing activities involving engagement in cognitive 

activities and general cognitive function are dynamic constructs and should be considered 

when measuring resilience (Malek-Ahmadi et al., 2017). Acquired reserve is composed of 

past and current reserve building activities and this is influenced by the personal 

characteristics of the individual as described by Schwartz et al., (Schwartz et al., 2016). 
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1.3.1.3 Theory of cognitive reserve, brain reserve and maintenance 

Yaakov Stern proposes a model of resilience of which there are three components, cognitive 

reserve, the passive component of brain reserve and a more active process of brain 

maintenance. This is based on recent research finding on neuroplasticity. Brain maintenance 

is the ability to maintain brain integrity through maintenance activities. In addition, cognitive 

reserve has two components, neural reserve and neural compensation (Stern, 2017; Stern et 

al., 2018). In a systematic review of super-agers (those over 80 with preserved episodic 

memory), preservation of the salience and default mode networks and strong functional 

connectivity were found. In addition, the anterior cingulate cortex was highlighted as a 

potential imaging biomarker for resilience. Brain maintenance, cognitive reserve, and brain 

reserve are complementary but independent. 

1.3.1.4 Theory of reserve, maintenance, and compensation 

In a recent opinion piece by Cabeza and colleagues (Cabeza et al., 2018), a triad of the 

biological mechanisms of reserve, maintenance and compensation are proposed to control 

cognitive decline in healthy ageing. Individual differences in cognitive ageing are due to the 

genetic and environmental effects on these three components. Reserve is discussed in terms 

of brain reserve and cognitive reserve, and these are the resources that remain over and above 

that required for normal cognitive functioning and come into play when resources are 

depleted in later life. Maintenance off-sets neural decline by neural enhancement and is 

increasingly required as we age. Compensation is the addition of alternative neural resources 

when the demand is not met by existing processes (Figure 1.7).  

 

Figure 1.7: Reserve, maintenance, and compensationIndividual differences in cognitive ageing have been 

attributed to the effects of three interacting mechanisms: reserve, maintenance, and compensation. These 

mechanisms are assumed to mediate some (but not all) of the effects of interacting genetic and environmental 

factors on cognitive ageing. (Cabeza et al., 2018). 
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1.3.2 Intelligence and resilience 

Others propose that variation in the rate of cognitive decline can be explained by variation in 

intelligence. Longitudinal analysis in the Lothian Birth Cohort has shown that childhood 

intelligence has a protective effect on cognitive decline in later life (Cadar, Robitaille, Pattie, 

Deary, & Muniz-Terrera, 2020). Other studies show that while higher education reflects 

greater cognitive ability, the rates of change in that ability over time are consistent across all 

education levels, with those starting at a higher level simply having further to fall before they 

present with mild cognitive impairment (Guerra-Carrillo, Katovich, & Bunge, 2017; Lövdén, 

Fratiglioni, Glymour, Lindenberger, & Tucker-Drob, 2020) (Figure 1.8). The role of 

intelligence is confounded by the fact that higher intelligence is associated with healthier life 

styles, which has a protective effect on cognitive decline (Geary, 2019). 

 

Figure 1.8: Effect of education on the adjusted grand index score at baseline across ages  

(Guerra-Carrillo et al., 2017) 

Cognitive assessment results from Luminosity (n=196,288, age 15 -60) by educational attainment. 
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Given the multifactorial drivers that contribute to cognitive decline described in Figure 1-3, 

models that examine cognitive resilience will be complex. A summary of systematic reviews 

of strategies to operationalise cognitive reserve conclude that there is insufficient research to 

create a full cognitive reserve model (Harrison et al., 2015). The proxy measures of 

educational attainment and occupation have been shown to be associated with cognitive 

reserve. Socioeconomic status and premorbid IQ have shown inconsistent results, however, 

when combined with other factors including current cognitive activities they have been 

associated with reserve. Models have not included genetic indicators or diet and exercise. 

1.3.3 Measuring cognitive resilience 

To understand the complexity of phenotypic measurement of cognitive resilience, which 

requires repeated cognitive measures over long periods of time we must first examine the 

challenges in measuring cognition itself. 

1.3.3.1 Measuring cognition 

‘General’ cognitive ability or ‘intelligence’ refers to our ability to reason, learn and solve 

problems and is measured based on performance on tests of processing speed, vocabulary 

size, abstract verbal and non-verbal reasoning, and visuospatial skills. These scores are 

aggregated to yield a general ability score or statistically reduced into a single factor or 

component referred to as Spearman’s ‘g’ (Lee et al., 2018; Plomin & von Stumm, 2018). 

Typically, a principal components analysis of individual subtests yields a single factor that 

explains ~50% of variance in measures used, reflecting the strong correlation usually 

observed between these cognitive tasks. Combining data from multiple sources shows that ‘g’ 

is a robust value, valid in both western and non-western countries (Deary et al., 2010; Lam, 

Hill, et al., 2019). 

Notwithstanding the moderate correlations observed between many cognitive tasks, several 

measurement issues exist. These include low test/retest reliability for some aspects of 

cognition, (Johnson, Nijenhuis, & Bouchard, 2008; Warne & Burningham, 2019), a 

bewildering array of different measures of the same domain and even multiple versions of the 

same test, all of which complicates attempts to combine data from different groups to achieve 

the sample sizes required for genomic studies. Even where the same measures have been 

collected in very large population-based cohorts such as the UK Biobank (UKB), the use of 
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shorter cognitive tests within a larger battery of health relevant tasks have led to issues of task 

validity (De Schryver, Hughes, Rosseel, & De Houwer, 2016; Hedge, Powell, & Sumner, 

2018).   

Yet another issue of phenotypic complexity in large-scale studies relates to the use not of 

cognitive tests per se but to the use of proxy measures of cognitive ability. Given the need to 

combine different datasets to increase sample size to boost power for gene discovery and the 

lack of comprehensive cognitive data in these datasets, some readily available proxy 

phenotypes have been used including years of education (YOE) and educational attainment 

(EA). Based on samples of >70,000 English children, the correlation between EA and ‘g’ was 

observed to be 0.81 (Okbay et al., 2016).  

Recent analyses in very large datasets have shown this correlation to be closer to 0.7 (Fawns-

Ritchie & Deary, 2020). Cognition is defined as any measure of cognitive performance such 

as memory, processing speed, reasoning, acquisition of knowledge, attention, and executive 

function (Okbay et al., 2016). Measurement of intelligence through IQ testing has 

considerable similarity with these domains and the terms, cognitive function and intelligence 

tend to be used synonymously. 

1.3.3.2 Measuring cognitive resilience 

Measuring cognitive resilience is a challenge in that it is only observed with a referent in that 

an individual’s reserve or resilience is a measurement of a better-than-expected performance 

where the expected performance is based on prior knowledge (Schwartz et al., 2016). It 

cannot be measured at a single time point and given that the rate of cognitive decline in 

healthy ageing is slow, long periods of time are needed to determine differences in rates of 

change.  

Both longitudinal and cross-sectional studies are used in research on cognitive change over 

time. In a longitudinal study, a cohort of people is tested at discrete intervals of a number of 

years over several decades, however, these studies present several problems in current 

research in that the acquisition of reliable data takes many years to accumulate and can be 

complicated by changes in cognitive measures and improvement in procedures. In addition, 

natural attrition, or loss due to the development of degenerative conditions, can decrease the 
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power of a study (Baddeley et al., 2014). Furthermore, practice effects through multiple 

testing of the same population may influence the results (Salthouse, 2015). 

Cross-sectional design overcomes the problems with longitudinal studies in that different 

people are measured across age ranges and their performance is measured on unique 

occasions. The difficulty with this approach is that performance cannot be related to earlier or 

later data and therefore has limited use in the study of cognitive resilience. Another difficulty 

that affects both approaches is the cohort effect. This effect relates to substantial changes in 

lifestyles over the decades. A person currently in their twenties would, in general, have 

experienced better educational methods, better nutrition, and better health care than a current 

80-year-old when they were the same age (Baddeley et al., 2014).  

As cognitive decline is a slow process, repeated cognitive measures over several years are 

needed to access different rates in cognitive change over time. The difficulties in measuring 

cognition as explained above become even more complex. As cognitive measures have been 

improved and added to, trying to extrapolate different methodologies over time is difficult. In 

addition, when a cohort is measured at several intervals not all participants are available at 

each timepoint. Traditional statistical methods, such as analysis of variance (ANOVA) would 

eliminate participants with missing data thus curtailing the sample numbers further. To 

overcome this complex statistical method such as linear mixed modelling has been used in 

the limited studies on longitudinal data to date (Arpawong et al., 2017; Zhang & Pierce, 

2014).  

Most studies have measured cognition using the component Spearman’s ‘g’ or one or more 

sub-components such as of processing speed, vocabulary size, abstract verbal and non-verbal 

reasoning, and visuospatial skills. Given that processing speed influences all other cognitive 

measures (see section 1.6.1) is it a reasonable measure to use on its own. In a study 

examining the link between academic achievement and cognition the authors propose a 

model where processing speed moderates academic achievement through its effects on other 

cognitive parameters. In this model, information processing speed is the key predictor of fluid 

intelligence, working memory, and number sense, which in turn contribute to individual 

differences in academic success (Tikhomirova, Malykh, & Malykh, 2020) (Figure 1.9). 
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Figure 1.9: Structural equation modelling (SEM) of the relationships between cognitive abilities and 

general academic achievement in high school education “e” is the latent factor academic success. Dotted 

lines indicate nonsignificant relationships. (Tikhomirova et al., 2020). 

 

Given the multifactorial drivers that contribute to cognitive decline described in Figure 1-3, 

models that examine cognitive resilience will be complex. A summary of systematic reviews 

of strategies to operationalise cognitive reserve conclude that there is insufficient research to 

create a full cognitive reserve model (Harrison et al., 2015). The proxy measures of 

educational attainment and occupation have been shown to be associated with cognitive 

reserve. Socioeconomic status and premorbid IQ have shown inconsistent results, however, 

when combined with other factors including current cognitive activities, have been associated 

with reserve. Models have not included genetic indicators or diet and exercise. 

Exploratory factor analysis arising for a longitudinal study of an ageing cohort in Tasmania 

led to the proposal of a two factors model comprising of current cognitive reserve (cCR) and 

prior cognitive reserve (pCR). pCR measures include prior intelligence, prior education, 

mental activities as young and middle-aged adults and midlife occupation whereas cCR 

measures included current measures of arithmetic ability, spelling ability and current IQ. The 

cCR factor structure was found to be longitudinally stable and had a positive association with 

further education (Ward, Summers, Saunders, & Vickers, 2015). 

Others have used structural equation modelling to study cognitive resilience. Episodic 

memory was decomposed into three components, one predicted by a pathology measure 

derived from brain imaging, the second based on demographics and the third based on 

reserve (which is all the remaining variance). Given that the first two are known, the 

interaction of the latent variable of reserve with conditions such as mild cognitive impairment 
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can be examined. (Figure 1.10). This approach when used in a cross-sectional study shows 

that cognitive resilience mediates rates of cognitive decline towards impairment, rates of 

decline in executive function and rates of brain atrophy (Reed et al., 2011; Reed et al., 2010). 

Further research incorporating this model and using data from a longitudinal study found a 

great potential for its use with repeated measures to capture dynamic cognitive reserve 

(Zahodne et al., 2015). It was found that by incorporating function connectivity (FC) 

measures into the model, higher CR was associated with higher global efficiency, increased 

FC clustering and efficiency in the occipital lobes, CR was also associated with centrality and 

strength of the inferior temporal gyrus (Marques et al., 2016). 

 

Figure 1.10: Analytic model to decompose episodic memory in cognitive ageing 

Rectangles represent observed variables and ovals represent latent variables. Observed demographics, years of 

education, gender (female as reference) ethnicity (Caucasian as reference) African American (AA) and Hispanic 

and MRI variables of brain matter (bm), hippocampal volume (hc) and white matter hyperintensities (wmh) 

were allowed to correlate freely (paths not shown). Mem-B is a linear combination of the three MRI variables, 

with parameters representing regression coefficients of Mem-B on the three indicators. Mem-D is analogously 

related to the observed demographic variables, Mem-R is the component of episodic memory unrelated to 

demographic and and MRI variables. Freely estimated parameters are indicated by ‘asterisk’. S2 refers to 

sample variance. c1 and c2 are scaling constants selected to set variances at 1.0 for the MemB and MemD latent 

variables (Reed et al., 2010).  
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1.3.4 Available datasets 

1.3.4.1 Datasets with longitudinal cognitive data 

In the field of cognitive genetics, it has been acknowledged that the larger the dataset the 

better the outcome for genetic association studies. In recent years datasets with up to 1.3 

million participants have been used in cognitive genomic studies (Lee et al., 2018). These 

studies are discussed further in section 1.5.1. Unfortunately, the generation of datasets large 

enough to explore cognitive genetics has only recently commenced and it will take time to 

accumulate data on cognitive change over time. There are very limited datasets available with 

genetic data on participants that have examined longitudinal measures in cognition in healthy 

ageing. Table 1.1 shows the studies that have been used to date. Findings from these studies 

are discussed in Section 1.4.2.2.  

Table 1.1: Longitudinal datasets used to study cognitive decline 

Study Acronym Country N Date 

started 

Waves 

Health and retirement study HRS US 20,000* 1996 11 

English longitudinal study of 

ageing 

ELSA UK 7,412 2002 8 

Personality and total health PATH AUS 7,500 1999 4 

Religious order study ROS US 750 1993 9 

Rush memory and aging project MAP US 825 1997 9 

Lothian birth control 1921 LBC1921 Scotland 550 1921 5** 

Lothian birth control 1936 LBC1936 Scotland 1,091 1936 5** 

*The participants are of different ethnicity (approximately 9,600 are Caucasian). ** Baseline testing was in the 

starting year but follow up waves of testing commenced in recent years. (n=number of participants with 

genotype data, Waves = number of times cogntive tests were repeated). 

 

In the absence of longitudinal data, there is the possibly of incorporating proxy measures for 

past cognitive performance. The most common proxy measure for cognitive resilience is 

years of education but this static measure of cognitive reserve can be influenced by other 
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variables such as socioeconomic status that affect the risk of cognitive impairment through 

means other than affecting cognitive reserve (Reed et al., 2010). 

1.4 Genetic component of cognitive resilience 

To understand the genetics of cognitive resilience we first must examine the genetics of 

cognition itself.  

1.4.1 Genetics of cognition 

Long before the development of modern genomic methods, as far back as the early 1900’s, 

the heritability of cognitive performance was recognized through twin and adoptive studies 

(Plomin & Deary, 2014). In a study of ~10,000 monozygotic and dizygotic twins, 

concordance in measures of intelligence was found to be 0.86 and 0.60 respectively (Plomin, 

2001; Plomin & Spinath, 2004). Follow-up longitudinal twin research had further shown that 

heritability actually increases during childhood development; this is explained by genetic 

innovation in early childhood, whereby increasing numbers of genes become activated during 

cognitive development, thus amplifying the contribution of genetics over environment (Briley 

& Tucker-Drob, 2013). Given that the estimates of heritability of intelligence, estimated at 

50% across the lifespan, it was originally assumed that it was only a matter of time until the 

key gene(s) involved in cognition were identified (Plomin & von Stumm, 2018; Ramus, 

2006). However, the complex and highly polygenic nature of cognitive phenotypes is now 

well established, with literally hundreds of genes statistically associated with variation in 

cognitive function and implicating a wide variety of processes related to brain development 

and neuron to neuron communication (Lam, Hill, et al., 2019; Lee et al., 2018).   

Early genetic studies of cognition focused on ‘candidate’ genes selected on the basis of their 

hypothesized biological importance to illness risk. However, a failure to replicate the findings 

from these studies, together with the emergence of genome-wide approaches to gene 

discovery in the past ten years have meant that a majority of recent discoveries in both 

cognitive and psychiatric genetics have come via genome-wide association studies (GWAS). 

A major initial challenge in adopting this approach was the limited sample sizes of available 

cohorts, which hindered identification of genome-wide significant results in early GWAS of 

cognitive phenotypes (Trampush et al., 2017). To boost power for genetic studies, several 

consortia were formed to pool sample resources to yield more significant outcomes. In 2015 
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the Cohorts for Heart and Ageing Research in Genomic Epidemiology (CHARGE) 

consortium combined data from 31 cohorts (n=53,949) and performed a meta-analysis of 

GWAS using a general cognitive factor derived from principal component analysis of several 

tests (Davies et al., 2015). This analysis identified three loci, on chromosomes 6, 14 and 19, 

as relevant to cognitive processes (Davies et al., 2015). A further analysis by the Cognitive 

Genomics Consortium (COGENT) combined 21 cohorts (n=35,298) and confirmed the 

findings of the CHARGE study as well as identifying two more significant loci on 

chromosomes 1 and 2 (Trampush et al., 2017). This study also compared the top SNPs from 

larger EA studies (n=164) and found 31 SNPs that were significantly associated with EA in 

other studies that were also nominally significant in this study; all had the same direction of 

effect showing a robust genetic correlation between EA and cognition.   

The UKB project was initiated to generate a very large dataset based on the UK population 

where data was collected on over 500,000 people (Sudlow et al., 2015). Initially, genotypic 

data was released for ~150,000 individuals in May 2015 and was used in combination with 

existing data in a number of GWAS of cognition that confirmed previous findings and 

uncovered more associated loci (Davies et al., 2016; Hill et al., 2016; Okbay et al., 2016; 

Sniekers et al., 2017). The full dataset on >500,000 individuals was released in July 2017 and 

has proved a “game-changer” in GWAS of cognition function by facilitating studies with 

samples sizes of >100,000 individuals that have identified hundreds of independent 

associated loci. Study of the combined CHARGE, COGENT and UKB cognitive and genetic 

datasets (n=300,486 participants) have identified 146 genome-wide significant loci and 709 

genes associated with general cognitive function (Davies et al., 2018). Associated genes show 

enriched expression in most brain regions with strongest signals in the cerebellum and cortex 

and in silico biological investigations of these genes points to processes such as neurogenesis, 

regulation of nervous system development and neuron differentiation being affected. A 

second study based on COGENT and UKB samples plus other samples (n= 267,867 

participants) published around the same time, found a total of 205 loci (implicating 1,016 

genes) to be associated with intelligence (Savage et al., 2018). Analysis of biological 

processes implicated by these associated genes found the pathways involving regulation of 

nervous system development, central nervous system, and neuron differentiation to be 

enriched for associated genes, plus regulation of synapse structure or activity was 

significantly enriched too. Beyond enriched expression of associated genes in multiple brain 

regions, single cell analysis identified the most enriched cell types for genes associated with 
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intelligence to be medium spiny neurons (striatum), CA1 pyramidal neurons (hippocampus) 

and pyramidal neurons (somatosensory cortex).    

1.4.1.1 Genome-wide association studies (GWAS) and cognition 

In addition to data from publicly funded biobanks, commercial companies such as 23andMe, 

have also collaborated in cognitive genomic research (Eriksson et al., 2010). In the largest 

study to date on EA, Lee et al. combined data from 71 cohorts to yield a sample size of 

1,131,881individuals, of which 365,538 samples were provided by 23andMe (Lee et al., 

2018). This analysis identified 1,271 lead SNPs that were independently genome-wide 

significant, again demonstrating the positive correlation between sample sizes, and number of 

variants identified (see Figure 1.11). Lee et al. used multi-trait analysis of GWAS (MTAG), 

an approach that exploits the phenotypic and genetic correlations between different 

phenotypes (e.g., cognitive ones) to increase statistical power (Turley et al., 2018). By 

combining GWAS results from studies of EA, cognitive performance, and mathematical 

ability (for a total n=1,311,438), Lee et al were able to increase their number of genome-wide 

significant loci to 1,624 (n=1,311,438). Biological annotation analysis suggested that genes 

near to these SNPs are strongly enriched for expression in the central nervous system. These 

genes show elevated expression in the prenatal brain, where they are involved in many 

developmental processes, but also have high expression in the postnatal brain where genes 

were involved in nearly all levels of neuron-to-neuron communication and synaptic plasticity. 

Of note, while neurons were strongly enriched for EA-associated genes, astrocytes and 

oligodendrocytes were not, leading the authors to conclude that cognitive variation was not 

associated with genetic differences in myelin related axonal transmission speeds (Lee et al., 

2018). This conclusion contrasted with findings from a MTAG study by Hill et al (Hill, 

Marioni, et al., 2018) that combined GWAS of intelligence (Sniekers et al., 2017) with EA 

(Okbay et al., 2016) (n=248,482) and identified 187 genetic loci associated with intelligence. 

Biological annotation analysis showed associated genes to be enriched in a number of 

processes including neurogenesis, synaptic plasticity, cell development and myelination, 

specifically oligodendrocyte differentiation (Hill, Marioni, et al., 2018). The disagreement 

between these two studies suggests a need for further studies to clarify whether the genetic 

architecture of cognition implicates white matter microstructure and oligodendrocytes 

function. 
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Figure 1.11: Plot of lead SNPs from GWAS and MTAG of g and EA showing increases in significant 

findings with increasing participation 

The studies included for g are 2 lead SNPs (Trampush et al., 2017), 3 lead SNPs (Davies et al., 2015), (1) 18 

lead SNPs (Sniekers et al., 2017), (2)242 lead SNPs (Savage et al., 2018), (5) 434 lead SNPs (Davies et al., 

2018). MTAG analysis (Hill, Marioni, et al., 2018), combining data from Sniekers (1) and Okbay (5) results in 

564 lead SNPs (4). EA includes 15 lead SNPs (Davies et al., 2016), 69 lead SNPs (Rietveld et al., 2014), (5) 74 

lead SNPs (Okbay et al., 2016) and (6) 1271 lead SNPs (Lee et al., 2018). The MTAG results from Lee et al 

show an increase in lead SNP detection in EA from 1271 to 1624 lead SNPs (6). 

 

1.4.1.2 Polygenic scores and cognition 

A polygenic score (PGS) or polygenic risk score (PRS) is a statistic measuring an 

individual’s genetic ‘loading’ for variability in a trait (e.g. cognitive function) or risk of 

illness (e.g. schizophrenia) (Shafee et al., 2018). Using GWAS results, a PGS is a count of 

the number of common associated alleles carried by an individual, weighted by the strength 

of the allelic associations with the disorder or trait. PGS based on the GWAS above can 

explain 11–13% of the variance in educational attainment and 7–10% of the variance in 

cognitive performance in independent samples (Lee et al., 2018). Despite the major advances 

that these studies represent, this suggests that a significant gap remains between the overall 

heritability for cognition estimated from twin studies and SNP-based heritability for 

cognition (i.e. the contribution of common SNPs that can be analysed by GWAS), reported to 
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be 0.19 for general intelligence (Savage et al., 2018). This missing heritability is likely due to 

a variety of factors, including rare variants, gene x gene (GxG) interactions (epistasis) and 

gene x environment (GxE) interactions (Plomin & von Stumm, 2018).   

1.4.1.3 Rare variants 

Copy number variants (CNVs) are structural variants that were originally described as >1 kbp 

sections of DNA that can be present in a human genome at a different copy number to the 

expected two copies in the reference genome. These can be deletions, duplications, inversions 

or other complex rearrangements, and can range in frequency, but it is those that are rare that 

have been of most interest in the study of complex phenotypes (Feuk, Carson, & Scherer, 

2006; Kendall et al., 2017; Lee & Scherer, 2010). Recent technological advancement of 

comparative genomic hybridisation and high-throughput next generation sequencing has led 

to an improvement in the sensitivity of detection of CNVs resulting in the redefinition of their 

size to >50 bp (Nowakowska, 2017). An assembly-based approach to sequencing data from 

two haploid genomes identified over 460,000 variants from 2bp to 28kbp. Only 10% of these 

variants were detected in an analysis of the 1000 Genomes Project, highlighting that 

structural variants have been under-called and under-studied in human genomics (Huddleston 

et al., 2017). Structural variants contribute to genetic diversity (Chiang et al., 2017) and their 

important contribution to the genetic variability of cognition is now recognized (Feuk et al., 

2006).  

CNVs have been associated with disruption of cognitive development leading to intellectual 

disabilities and other neurodevelopmental disorders (Huguet et al., 2018). CNVs associated 

with these disorders may have incomplete penetrance in a population and apparently healthy 

adults may carry some of the CNVs associated with these disorders without displaying 

symptoms (Kendall et al., 2017). A study based on the reasonably homogenous Icelandic 

population showed that incomplete penetrance of pathogenic CNVs for autism and 

schizophrenia was associated with decreased cognitive performance in the healthy population 

and that individual CNVs affected different cognitive domains (Stefansson et al., 2014). 

Examination of non-pathogenic deletions based on children from the Saguenay Youth Study 

(n= 1,983) and the IMAGEN consortium (n= 2,090) found that non-pathogenic deletions 

were associated with decreased IQ and suggested that IQ was linked to haploinsufficiency of 
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most of the coding genome (Huguet et al., 2018; Pausova et al., 2017; Schumann et al., 

2010). 

Thirty-three CNVs associated with risk of neurodevelopmental disorders were examined for 

association with cognitive performance in the UKB (n= 420,247) using seven cognitive 

measures. Twenty-four of the 33 CNVS were associated with reduced cognitive performance 

in healthy carriers and these CNVs also showed an association with reduced educational 

attainment and income. In addition, all 12 of the CNVs associated with schizophrenia have 

been associated with reduced cognitive function in healthy adults (Kendall et al., 2019). In 

comparison to healthy non-carriers, healthy individuals who carried at least one of the 12 

copy number variants associated with schizophrenia showed reduced brain volumes in the 

hippocampus, nucleus accumbens and thalamus, suggesting a mediation role for hippocampal 

and thalamic volumes in cognitive ability (Warland, Kendall, Rees, Kirov, & Caseras, 2019).   

Disruptive (loss-of-function) and damaging (missense) rare and ultra-rare single nucleotide 

variants (SNVs) in highly constrained (HC) genes, i.e., genes under negative selection, are 

associated with neurocognitive disorders but are also found in the healthy population where 

they are associated with decreased EA. In a sample of 14,133 individuals, carrying either a 

disruptive or damaging SNV in a HC gene was associated on average with a reduction in 

years of education of 2.9-3.1 months (Ganna et al., 2016). Each additional disruptive SNV 

reduced the chance of going to college by on average 14%. This effect of ultra-rare disruptive 

and damaging SNVs on EA more than doubled when considering HC genes that are highly 

expressed in the brain.  

In a novel approach to explaining the missing heritability in genetic studies on cognition, Hill 

et al, examined the high level of linkage disequilibrium found in members of the same family 

in the Generation Scotland family cohort (n=20,000) (Hill, Arslan, et al., 2018; Smith et al., 

2006). This analysis using a tool based on a genome-based restricted maximum, GREML-

KIN, measures both the variance explained by the genetic effects clustered in families and 

common SNPs and was replicated in unrelated individuals (Xia et al., 2016; Zaitlen et al., 

2013) . Results showed that for general cognitive ability, genetic effects explained 54% of 

phenotypic variation, of which 31% was explained by pedigree-associated variants (which 

include rare variants, CNVs and structural variants) and 23% by common variants. These 

results are similar to heritability levels found in previous twin studies (Plomin & Deary, 
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2014). Overall, these findings show that most of the pedigree variants associated with 

cognition were rare with allele frequencies between 0.001 and 0.01 and current genotyping 

platforms do not sufficiently tag these variations.    

1.4.1.4 Gene by environment interactions 

Hasan and Afzal (Hasan & Afzal, 2019) argue that to fully understand cognition, 

environmental effects need to be explored. Interplay between nature and nurture has been 

found through twin and adoption studies, with environment and genetics observed to co-vary 

in a manner whereby genetic make-up can determine environmental conditions. They propose 

that the study of candidate genes arising from next generation sequencing should include 

environmental parameters (Hasan & Afzal, 2019). While PGS can explain 10% of the 

variation in educational attainment some of this is indirect and is explained by passive gene-

environment correlation where parents and other relatives provide a rearing environment that 

is associated with the parental genotype (Cheesman et al., 2019; Kong et al., 2018). A recent 

study shows that PGS for intelligence and EA had a 60% greater predictive value when tested 

between families as opposed to within families. This difference disappears when socio-

economic class is controlled (Cheesman et al., 2020). In a further study of adopted 

individuals in the UKB (n=6311) it was found that PGS generated from mainly non-adoptive 

individuals was only 50% as predictive of YOE in adoptees when compared with non-

adoptive individuals and conclude that parental influences affect YOE. It was also found that 

individuals who have a low PGS for YOE spent longer in education if adopted supporting the 

gene-environment correlations theory (Cheesman et al., 2020). These studies support the 

inclusion of environmental effects in genetic studies of cognition.  

1.4.1.5 Current developments in cognitive research 

The comparison of the first release of whole exome sequencing data from the UKB on 

~49,000 individuals and their previously imputed genetic data identified nearly four million 

coding SNPs and indels per individual, ~7 times higher than that observed in the imputed 

GWAS data. There was also a 10-fold increase in the identification of loss-of-function 

variants and loss-of-function variants were found in 97% of autosomal genes (Van Hout et 

al., 2019). A further release of exome data for ~200,000 lead to the examination of the 

association between protein-truncating variant gene burden and cognitive phenotypes. This 

study identified four novel genes associated with cognitive function (Chen et al., 2021) . 
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Whole exome sequencing of the remainder of the UKB, which is on-going, and subsequently 

whole genome sequencing will allow for new analysis of cognition phenotypes using rare 

genetic variants and may give new insights into the genomics of cognition. 

According to Eichler, identifying all the genetic contribution is not just a matter of increasing 

sample size, as variants are being missed with short read datasets that are aligned to a single 

reference genome, even when using whole genome sequencing (Eichler, 2019). He argued 

that more meaningful results will be obtained by diversification of genomic data. Generic 

research to date on cognition (and other traits) has been almost exclusively confined to 

samples of individuals of European ancestry. Lee et al. found that their PGS for EA was far 

less predictive in an African American sample (Lee et al., 2018). Eichler proposed that the 

use of combinations of reference genomes from different populations, that are currently in 

production should in theory identify the majority of structural variants which have been 

untested in recent GWAS (Eichler, 2019; McCarthy et al., 2016; Stefansson et al., 2013). It 

also important that reference genomes contain representation for African populations to 

encompass the evolutionary influences on the genome (McClellan, Lehner, & King, 2017). 

The use of whole genome sequencing, long-read and ultra-long-read sequencing technology 

coupled with the development of bioinformatic tools and the further extrapolation of the 

biological association of over 1000 lead SNPs identified by Lee et al. for EA and others 

should generate a great insight into cognitive processes. In addition, further development of 

tools and research approaches that gives us a greater insight into the interplay of the 

environment and genomics in healthy and psychiatric cohorts will add to our understanding 

of the critical biological pathways involved in neurocognition. 

1.4.2 Genetics of cognitive resilience 

1.4.2.1 Overview of the genetics of cognitive resilience 

It is now clear from recent genetic studies that cognition is highly polygenic. The genetics of 

cognitive resilience is even more complex as in addition we are examining rates of change in 

cognitive performance over time, and we depend on consistent and robust phenotypic 

measures of cognition over those long periods of time. 

While research into the effects of environmental factors have shown the importance of 

cardiovascular health, social involvement and diet on healthy ageing, our assessment of the 
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understanding of the genomics involved in cognitive decline is hampered by the lack of 

strong cognitive measures coupled with large genetic datasets. As yet, we do not know 

whether cognitive decline is genetically influenced by genes associated with general 

intelligence or if genes that regulate other biological processes are involved.   

The resource-modulation hypothesis proposes that during ageing, losses of neurochemical 

and neuroanatomical resources have a modulating effect on genes associated with cognitive 

function in that genetic effects become increasingly important and genes that appear to have a 

weak effect with cognitive performance in young adults may have a stronger association in 

older adults (Lindenberger et al., 2008). In addition, there is growing evidence that 

nonadditive genetic variance becomes increasingly important with age where the influence of 

life course dynamics plays an important role (Reynolds & Finkel, 2015). Longitudinal twin 

studies have shown that as the rearing environment is more distal, more variance in genetic 

effects is seen. 

Genetic variation accounts for 40 to 50% of cognitive performance of older adults and 24% 

of the variability of cognitive change over the life span (Davies et al., 2018; Deary et al., 

2012). Some studies show an association between genetic variants and age-related cognitive 

decline, yet they only explained a fraction of the phenotypic variability. In addition, many of 

the studies failed to replicate due to difference in cognitive measurements and other 

methodological issues and lack of control of participant characteristics (Andrews et al., 

2016).  

Interestingly, recent research has shown that neurogenesis occurs in the dental gyrus of the 

adult hippocampus into the 8th decade of life despite declines in neural plasticity, 

angiogenesis, and quiescent stem cell pools (Figure 1.12). Healthy individuals without 

neurodegenerative conditions show preserved neurogenesis. The authors propose that 

individual resilience leads to variation in rates of neurogenesis and differing rates in cognitive 

decline (Boldrini et al., 2018). However, there are still many unresolved questions on the role 

that adult neurogenesis plays in brain repair, neuroplasticity and overall hippocampal 

function (Kuhn, Toda, & Gage, 2018). 

A meta-analysis of studies on cognitive decline concluded that major improvements were 

needed in research methods, in particular the use of standardized procedures across studies 

(Plassman, Williams, Burke, Holsinger, & Benjamin, 2010). 
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Figure 1.12: Human hippocampal neurogenesis persists throughout ageing 

Persistent adult neurogenesis in humans into the eighth decade of life, despite declines in quiescent stem cell 

pools, angiogenesis, and neuroplasticity. Over a 65-year age span, proliferating neural progenitors, immature 

and mature granule neurons, glia, and dentate gyrus volume were unchanged (Boldrini et al., 2018). 

1.4.2.2 Genetic studies to date 

There are a few modest datasets that have both genetic data and longitudinal data. The most 

prominent being the US Health and Retirement Study (HRS) (Sonnega et al., 2014) and its 

sister UK dataset , the English Longitudinal Study of Ageing (ELSA) (Steptoe, Breeze, 

Banks, & Nazroo, 2013). The HRS dataset consists of approximately 21,000 participants who 

have been assessed by consistent cognitive tests every two years from 1996. The level of 

genotypic data on these individuals is increasing over time. A GWAS was performed in 2014 

on 5765 participants of European extraction using total cognition to assess cogntive decline. 

Associations were found with two loci and chromosome 19, mapping to an Apolipoprotein E 

(APOE) intron and at Translocase of outer mitochondrial membrane 40 homolog (TOMM40) 

intron. A second GWAS published in 2017 (n= 7,486) on cognitive change using the 

construct of delayed recall found significant associations between one variant, rs2075650, in 
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TOMM40, and conditioning analysis indicates the change in cognitive function is driven by 

APOE. This finding was replicated in ELSA (n=6,898) (Arpawong et al., 2017).  

Another genetic study used participants from the US Religious Order Study (n=749) and 

confirmatory testing in 3 other cohorts (n=717 to 825) only found markers for APOE 

associated with rate of cognitive decline (De Jager et al., 2012). 

Both APOE and TOMM40 are associated with late onset Alzheimer’s disease (LOAD) and 

have not been associated with normal cognitive decline (Zhang & Pierce, 2014). 

The Personality and Total Health (PATH) is an Australian cohort of European extraction (n= 

1570) and was used to examine the relationship of loci identified in a previously mentioned 

GWAS (Davies et al., 2015). Of the 3 loci identified by Davies one was in the TOMM40 

region but the other two MIR211‐rs10457441 on chromosome 6 and AKAP6‐rs17522122 on 

chromosome 14 were not associated with Alzheimer’s disease and were examined for 

association with cognitive decline and cognitive change in baseline and longitudinal data 

accumulated over 12 years in the PATH cohort. Using linear mixed models both SNPs were 

tested for association with perceptual speed, reaction time, working memory, episodic 

memory, and vocabulary. AKAP6 was associated with baseline performance across multiple 

domains but not with cognitive change. MIR2113, on the other hand was associated with 

memory decline over time (Andrews, Das, Anstey, & Easteal, 2017).  

Other cohorts that have been monitored both phenotypically and genotypically for cogntive 

decline are the Lothian birth cohorts from 1921 (LBC1921, n= 550) and 1936 (LBC1936, n= 

1,091). Both cohorts were tested for cognitive performance at the age of 11. The surviving 

members of the LBC1921 who have a mean age of 79 at baseline were tested 5 times up until 

the age of 92. The LBC1936 have been tested five times so far, from the age of 70 to 82 

(Taylor, Pattie, & Deary, 2018). There has been a comprehensive analysis of available the 

genotypic data on these cohorts (Corley, Cox, & Deary, 2018). Various candidate genes 

highlighted in other studies have been tested within these cohorts but apart from the APOE e4 

allele no other gene associations with age -related cognitive decline or cognitive function 

were found. PGS analysis identified several conditions associated with lower cognitive 

performance but increased cognitive decline was associated with a PGS for schizophrenia 

alone (Corley et al., 2018). The complexity of these processes suggests a highly polygenic 
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genetic contribution to cognitive decline and suitable datasets are needed to examine the 

genes and biological pathways involved.  

A recent study was carried out using the Lothian Birth Control cohort of 1935 at four 

different time points between the age of 70 and 79 to measure the association of changes in 

‘g’ with fourteen robustly generated PGS. These PGS included EA, grip strength, 

schizophrenia, Alzheimer’s disease, and other health related PGS. The researchers conclude 

that the predictive power of PGS in not yet sensitive enough to explain the variance in 

cognitive decline (Ritchie et al., 2019). 

Local regulatory networks (LRNs) are produced by combining data on genetic variants and 

multi-omics data that infers mechanisms that regulate expression of certain genes in the 

ageing brain. Multi-omics data from the ROS and the Rush Memory and Aging Project 

(MAP) cohort (n= 413) was used to generate LRNs which were then related to measures of 

cognitive decline. This process identified a number of neuronal genes that are predicted to 

control cognitive decline – the most prominent of these being STAU1 and SEMA3F (Tasaki et 

al., 2018). 

1.5 Limitation of research on genetics of cognitive resilience to date 

In comparison to the growing genetic understanding of cognition, the understanding of the 

genetics of cognitive resilience is in its infancy. The studies performed to date have relied on 

data from very small cohorts and these cohorts do not have the power to study the effect of 

ageing on a highly polygenic trait of cognition. In addition, much of the focus on cognitive 

decline had been on neurodegenerative disorders with a particular focus on dementia, and as 

a result the study of cognitive decline in healthy ageing has been neglected. The conundrum 

in studying the genetics of cognitive resilience is that while large datasets such as the UKB 

and 23and Me are emerging, they do not have longitudinal measures on cognition and indeed, 

it will take several years for this data to accumulate. In chapter 6, I discuss at length the type 

of study I would design given unlimited resources. We need studies designed specifically to 

examine the genetics of cognitive resilience. These studies should also collect environmental 

data that effects healthy ageing to allow the use of modelling to examine gene/environment 

interactions. In the meantime, alternative strategies such as the use of proxy phenotypes for 

past cognitive performance and available cognitive phenotypes should be explored. 
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1.6 Project aims 

It is very important to understand cognitive resilience in health ageing for a number of 

reasons, including (a) the growing burden on society driven by the gradual shift to an ageing 

population and the need to plan government strategies to manage this change, (b) to have a 

good quality of life for as long as possible at the later end of life to sustain independent living 

and (c) to reduce the fear we all have of diminishing cognitive performance as we age. While 

there is a general understanding of the environmental factors that contribute to cognitive 

resilience therefore protecting against cognitive decline, the understanding of the genetic 

contribution to resilience is in its infancy. Due to a lack of suitable genetic and longitudinal 

data the aim of this thesis is to investigate alternative ways to obtain genetic information on 

cognitive resilience using large datasets that do not have direct longitudinal data on cognition. 

The central hypothesise guiding my research is that genetic variation in the population 

bestows enhanced cognitive resilience on certain individuals and this derives from associated 

genetic variants strengthening the biological processes involved in neuronal activity relevant 

to cognition. 

Based on this central hypothesise, my research explored the genetic basis of cognitive 

resilience in the UKB using proxy measures to estimate past cogntive performance and 

current cognitive performance, so as to address the following research questions: 

a) Can individual genetic variants associated with cognitive resilience be identified 

in the UKB? 

b) Can these results be replicated within the UKB using independent discovery and 

replication samples? 

c) Does functional analysis using the GWAS output highlight specific brain regions, 

cell types, biological processes and pathways that are enriched for genes 

associated with cogntive resilience? 

d) Can existing longitudinal datasets be used to confirm these findings? 

e) Do the findings support the contribution of brain reserve, cognitive reserve, and 

brain maintenance to cognitive resilience? 

f) Is there more to superior cognitive resilience than superior intelligence? 
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Firstly, in chapter 3, I explore suitable phenotypes within the UKB to use in a GWAS of 

cogntive resilience and isolate those SNPs associated with resilience independent of other 

influences. I then examine the mapped genes associated with these SNPs and link them to 

biological processes. I then explore the use of structural equation modelling to produce a full 

GWAS of cognitive resilience. I show that this method can be replicated by first using a 

discovery sample and repeating the work in a replication sample. In Chapter 4, I describe 

how I combine my findings to perform a functional analysis of the full GWAS. In chapter 5, I 

perform ad hoc analysis to satisfy potential questions on the findings of the functional 

analysis and I explore the use of a longitudinal dataset (the HRS dataset) to confirm findings.  

Finally , in chapter 6, I summarise my findings and explore the potential for future research .
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2 Materials and Methods 

Table 2.1: Bioinformatic tools used in this thesis. 

Acronym Description Version Purpose Web link 

BIG40 Oxford Brain Imaging 

Genetics Server - BIG40 

26/03/2021 Imaging phenotypes 

for UKB 

 https: //open.win.ox.ac.uk/ukbiobank/big40/ 

BioVenn Comparison and visualization 

of biological lists using area-

proportional Venn diagrams 

Current Venn diagram https://www.biovenn.nl/ 

ConsensusPathDB

human 

Integrates interaction networks 

in Homo sapiens 

34 Overrepresentation 

analysis of gene sets 

(data mining) 

http://cpdb.molgen.mpg.de/ 

dbGaP Database of Genotypes and 

Phenotypes 

Current Downloading HRS 

data 

https://www.ncbi.nlm.nih.gov/gap 

dbSNP  Database of Short Genetic 

Variation 

2019 Data mining  https://www.ncbi.nlm.nih.gov/snp 

EVP Ensembl Variant Effect 

Predictor 

104 - May 

2021 

Data mining  https://www.ensembl.org/info/docs/tools/vep 

FINEMAP Efficient variable selection 

using summary data from 

genome-wide association 

studies 

01:01 Fine mapping of SNPs http://www.christianbenner.com/ 
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Acronym Description Version Purpose Web link 

FUMA Functional Mapping and 

Annotation (FUMA) 

1.3.6a Functional analysis  https://fuma.ctglab.nl/ 

Galaxy Web-based platform for data 

intensive biomedical research 

Current Manipulation of large 

datasets 

https://usegalaxy.org 

GCTA -GSMR Tool for Genome-wide 

Complex Trait Analysis 

v1.93.2beta Analysis of mendelian 

randomisation 

 https: 

//cnsgenomics.com/software/gcta/#GSMR 

GenomicSEM R-package for structural 

equation modelling based on 

GWAS summary data 

0.0.2e package to perform 

GWAS-by-

Subtraction and LDSR 

 https: 

//github.com/MichelNivard/GenomicSEM/wi

ki 

GitHub GBS sample size (N effective) 

calculation 

N/A Calculation of sample 

size after GBS 

 https: //github.com/PerlineDemange/non-

cognitive/blob/master/GenomicSEM/Cholesk

y%20model/Calculation_samplesize.R 

GitHub Repository for code current Code used in thesis https://github.com/joanfitz5/cog.res 

GWAS Atlas Atlas of GWAS Summary 

Statistics 

3:20191115 Source of public 

summary statistics and 

comparing GWAS 

outputs 

 https://atlas.ctglab.nl/ 

GWAS Catalog The NHGRI-EBI Catalog of 

human genome-wide 

association studies 

19/05/2021 Source of public 

summary statistics  

 https: //www.ebi.ac.uk/gwas/ 
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Acronym Description Version Purpose Web link 

GWAS-by-

subtraction 

A tutorial on how to perform 

GWAS-by-subtraction in 

GenomicSEM 

14/01/2020 Method used to 

perform GBS 

 https: //rpubs.com/MichelNivard/565885 

Haploreg A tool for exploring 

annotations of the noncoding 

genome at variants on 

haplotype blocks 

4.1 Obtaining proxy SNPs 

to compare HRS and 

UKB datasets 

https://pubs.broadinstitute.org/mammals/hapl

oreg/haploreg.php 

Ldlink A tool to interrogate linkage 

disequilibrium in population 

groups. 

5.1 Exploring 

relationships between 

SNPs 

https://ldlink.nci.nih.gov/ 

Linux Operation system 7 Creation, analysis and 

storge of files through 

the bash command 

line 

https://www.centos.org/ 

Locus Zoom Tools to provide fast 

visualization of GWAS results  

0/13 Data mining  https://my.locuszoom.org/ 

MAGMA  Gene analysis and generalized 

gene-set analysis of GWAS 

data 

1.08 Performing 

conditional analysis 

on genset enrichment 

data 

https://ctg.cncr.nl/software/magma 

Mathcracker Mathematical calculations 2 Simple sign test https://mathcracker.com/sign-test 
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Acronym Description Version Purpose Web link 

Plink  Whole genome association 

analysis toolset 

1.9 Performing 

preliminary GWAS 

and creating LD files 

for FINEMAP 

https://www.cog-genomics.org/plink/1.9 

Plink 
 

2 Performing GWAS 

and working with 

Pgen files  

www.cog-genomics.org/plink/2.0 

R R is a language and 

environment for statistical 

computing and graphics 

3.6.1 Running 

GenomicSEM , 

LDSR, and other 

statistical analysis  

https://www.r-project.org/ 

SPSS Statistics for the social sciences 24 Analysis of the 

phenotypic data in 

UKB and HRS 

https://www.ibm.com/analytics/spss-

statistics-software 

UKB UK Biobank May-21 Source for UKB data  http: //biobank.ndph.ox.ac.uk 

Venn diagram Calculate the intersection(s) of 

list of elements 

3 Venn diagram used to 

study prioritised genes 

(>3 datasets) 

https://www.vandepeerlab.org/?q=tools/venn-

diagrams 
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2.1 UK Biobank 

2.1.1 Participants 

The UKB is prospective study to examine a range of conditions/traits in middle age to older 

adults. A dataset of 502,620 community dwelling participants between the ages of 37 and 73, 

recruited from all over the UK in the period of 2006 to 2010. Sampling at baseline included 

physical and cognitive measures, completion of lifestyle questionnaires and blood, urine, and 

saliva samples. Some participants performed follow up in person and web-based cognitive 

tests. Imaging sampling of participants is ongoing and currently data is available for 

approximately 50,000 individuals. More detail on the study is available from the UKB 

(Sudlow et al., 2015). We obtained permission to access both the phenotypic and genetic data 

under project # 23739.  

2.1.2 Genetic data 

Bycroft et al. describe the processes used by the UKB to genotype DNA extracted from blood 

samples collected from participants. Genotyping was carried out by Affymetrix Research 

Services Laboratory using the UK BiLEVE Axiom and Biosystems UK Biobank Axiom 

arrays. Quality control parameters were applied prior to imputation.  Imputation was 

performed using the Haplotype Reference Consortium data and the merged UK10K and 100 

Genomes phase 3 reference panels using the IMPUTE 4 programme (Bycroft et al., 2018).  

Encripted files were downloaded from UK Biobank using Aspera. Files were decrypted using 

the EgaDemoClient application. During our in-house quality control of the imputed data, 

samples were restricted to those of European descent using 1000 Genomes data and PCA. 

UKB directly genotyped files were merged with the 1000 genome project vcf files, and the 

SNPs used for PCA by UKB (identified in UKB supplied marker QC file) were extracted 

using Plink2 and the --approx option to minimise memory requirements.  The multi-mean of 

the 1000 Genomes CEU samples was calculated and UKB samples with a Mahalanobis 

distance < 6 SD from this multi-mean were identified as being of European ancestry and were 

retained. 

 We excluded related samples using UKB supplied relatedness files which lists pairs of 

individuals related up to a third degree. Subjects with more than 10 relatives were removed 

followed by one individual from each pair until no related subjects remained. We also 

removed samples with discordant sex information, chromosomal aneuploidies, high 
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missingness/heterozygosity, retracted consent and missing phenotype or covariate data.  The 

final sample size used in this analysis was 333,664 participants. 

Using Plink, Imputed variants were converted to hard calls at a certainty threshold of 0.9. 

SNPs were excluded if their proportion of missing genotypes exceeded 2%, minor allele 

frequency (MAF) was less than 1%, or Hardy–Weinberg equilibrium (HWE) was lower than 

1×10−6. Duplicate SNPs were removed resulting in 8,378,152 variants for use in our final 

analysis. 

2.1.3 Cognitive data 

Participants were tested using several cognitive tests which are described fully in the UKB.  

The types of tests and the method of collection and reliability are described elsewhere 

(Fawns-Ritchie & Deary, 2020; Lyall et al., 2016). A summary of the tests used in this thesis 

are listed in Table 2.2. Correlation analysis of these tests with age of participants in the UKB 

was performed using SPSS V.24. A brief description of these tests will follow. 

 

 

Table 2.2: Cognitive data in the UKB and its correlation with age 

Test N r 

Initial tests 2007/2008 
  

Verbal Numerical reasoning 165,486 0.05* 

Reaction Time 496,776 0.27*    

Follow up 2014+ 
  

Verbal Numerical reasoning 21,204 0.04* 

Reaction Time 21,689 0.25*    

   

Online tests (2014/2015) 
  

Trail Making (#1) Online  104,052 0.27* 

Trail Making (#2) Online  104,050 0.34* 

Symbol Digit Substitution Online  118,490 0.43* 

Verbal Numerical reasoning Online  123,665 0.12* 

Numeric Memory Online  111,086 0.13* 

Principle Component analysis factor (g) 111,039 0.39* 

Note: *P<.01, n=number of participants, R = correlation with age 
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2.1.3.1 Verbal-numerical reasoning test (fluid intelligence)  

At total of 165,450 participants were tested at baseline (UKB ref 210016-0.0). This 

assessment consisted of 13 multiple choice scenarios of ranging complexities designed to test 

both verbal and numerical skills. Participants were scored on the number of correct answers 

given in two minutes. It was also administered at two follow up visits (n= 20,113 and 

n=21,204) and a similar test with 14 questions was administered online (n=123,665). We 

found that this test only showed a small correlation with age (r = -0.05, P < 0.01) and there 

was no decline seen at the two subsequent time points with mean scores of 5.98, 6.59 and 

6.73, respectively. The improvement in scores over time may be due to practice effects (Lyall 

et al., 2016).  

2.1.3.2 Reaction time (RT) 

A total of 496,790 participants were tested at baseline for reaction time (UKB ref 20023-0.0) 

and at two follow up intervals (n=20,257 and n=21,689). This test consisted of matching pairs 

of cards. The participants were presented with pairs of cards that were either identical or 

different. The participant was required to acknowledge matching pairs by pushing a button as 

quickly as possible.  RT had a moderate correlation with age (r = 0.27, P < 0.201). 

2.1.3.3  Other baseline tests 

Other cognitive tests were performed at baseline (Table 2.3). These include numerical 

memory, visual pairs matching and prospective memory. These parameters were not 

considered in my analysis as along with fluid intelligence, they had a low correlation with 

age. 

Table 2.3: Comparison of the correlation of age with cognitive measures 

UKB Ref Variable N Correlation (P<.01) 

20016-0.0 Fluid intelligence score  165,477 -0.05 

20023-0.0 Reaction Time 496,713 -0.27 

4282-0.0 Numeric Memory 51,811 -0.08 

399-0.1 Visual Mem Pairs Matching 497,926 -0.10 

4292-0.0 Prospective Memory 171,569 -0.10 
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2.1.3.4 Web based tests: 

• Verbal-numerical reasoning test (fluid intelligence) which was similar to that 

described in section 2.1.1.2.1 with an additional question. 

• Symbol digit substitution test which measures processing speed where participants 

are shown a key which paired symbols with numbers and participants were measured 

in their ability to correctly match symbols to digits as quickly as possible. They were 

scored on the number of correct symbol-digit matches in 60 seconds. 

• Trail making measures executive function and consists of two parts. In part 1, 

participants must arrange a series of 25 numbers on a screen in numerical order and 

in part 2, had to switch between numbers and letters to arrange them in the correct 

order. They were measured on the time taken to complete the task. 

• Numerical memory measures working memory and a participant is required to 

remember and reverse a sequence of numbers starting with two numbers and 

increasing until a participant had two wrong sequences or reached 12 digits.  

2.1.4 Creation of cognitive phenotypes 

2.1.4.1 Current cognitive performance 

We selected RT to represent current cognitive performance as it had a good correlation with 

age and data was available on most participants (n=331,495). Using SPSS, RT was adjusted 

for age to improve normality (Davies et al., 2016), the natural log of corrected RT was 

computed (Figure 2.1). 
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(a)                                                                                             (b) 

 

 

Figure 2.1: Normalising RT cognitive data. 

 (a) RT data before log transformation (b) RT data after log transformation. The x axis shows the RT score, and the y axis is the frequency of that score occurring in the 

sample. 
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A binary RT variable was created using the mean value (m = 5.71). Those with a value less 

than or equal to the mean were considered to have faster than average processing speed/RT 

(quicker to react) and those above the mean were considered to have slower than average 

processing speed/RT. 

A second variable to measure current cognitive performance combining the web-based tests 

was created using principal component analysis in SPSS. This created a generalised measure 

of cognition or ‘g’. I subtracted trail 1 from trail 2 to remove the motor speed component 

from the test (trail making/EF) and then performed a dimension reduction using the online 

tests of fluid intelligence, symbol digit substitution, numerical memory and trail making/EF. I 

then examined the correlation of this new PCA variable with age and it had a moderated 

correlation (r = 0.39, P < 0.01) and corrected the variable for age. 

2.1.4.2 Past cognitive performance 

Given the lack of longitudinal data, an alternative approach was to use proxy phenotypes. For 

past cognitive performance we examined the use of educational attainment/years in 

education. Educational attainment is available for 332,089 individuals in UKB that met our 

genotypic QC requirements. In the dataset, age completed full-time education was recorded 

for participants who did not go to college but not for those who attended higher education. 

We therefore assigned a default score of 20 to those who attended college and created a 

binary phenotype using less than or equal to age 17 to divide participants into two categories 

– above average and below average education years (EY). 

At total of 330,098 individuals had measurements for EY and RT and genetic data and these 

made up the final sample (Table 2.4).  

 

Table 2.4: Description of phenotype 

Variable N Minimum Maximum Mean Std. Dev 

Female 179,737 
    

Male 153,927 
    

Age at baseline sampling 333,664 38 72 56.85 8.01 

Age completed FT education 332,089 0 35 17.63 2.92 

Reaction time (RT) 331,495 79 1985 554.81 112.68 

Log RT corrected 331,487 2.66 7.5 5.71 0.311 

Valid N 330,098 
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Using these two binary variables – above or below average EY and faster or slower RT – I 

created four group of participants. One of these groups demonstrated high resilience and 

these were our cases for our first “EY+Res” GWAS who had below average EY previously 

and faster than average RT now. A second group demonstrated low resilience or cognitive 

decline, and these were our controls for that GWAS who had above average EY previously 

and slower than average RT now. The two remaining groups of UKB samples displayed 

consistent cognitive performance over time. Here our cases for our second “EY/NonRes” 

GWAS had below average EY previously and slower than average RT now (below average 

cognition over time) and our controls had above average EY previously and faster than 

average RT now (above average cognition over time).  

2.1.5 Performing GWAS with UKB 

Initially Plink1.9 was used to perform preliminary genetic studies but Plink 2.0 (Chang et al., 

2015) was used to perform all genetic studies used in the final analysis. Logistic regression 

was used to perform the case/control analysis using --glm (Hill et al., 2017). Covariates used 

were age, sex, test centre, genotype array and first 8 PCA supplied by UKB. All codes used 

in Plink are available in my GitHub page at https://github.com/joanfitz5/cog.res. All analysis 

was performed on the server housed by the School of Mathematics at NUIG. 

2.1.6 GWAS-by subtraction (GBS) 

To extract those SNPs that were associated with resilience only, we used Genomics Structural 

Equation Modelling (GenomicSEM ) (Grotzinger et al., 2019). There are several processing 

steps that need to be performed to enable the summary statistics to be processed through 

GenomicSEM and these are described in the original paper by Grotzinger et al and 

accompanying tutorials (Grotzinger et al., 2019; Nivard, 2019). Following closely the process 

use by Demange et al (Demange et al., 2021), we defined a Cholesky model (Figure 2.2: 

SEM of GWAS-by-subtraction) as follows using the summary statistics from the EY+Res 

and EY/NonRes GWASs. Both EY+Res and EY/NonRes were regressed on a latent factor, 

which captured the shared genetic variance in EY (hereafter “EduYears”). EY+Res was 

further regressed on a second latent factor capturing the variance in EY+Res independent of 

EY/NonRes, hereafter “Resilience”. Genetic variance in Resilience was independent of 

genetic variance in EduYears (rg = 0) as the Resilience factor represents residual genetic 

variation in our EY+Res phenotype that is not accounted for by the EduYears factor. These 

two latent variables, Resilience and EduYears were then regressed on each SNP in the 

https://github.com/joanfitz5/cog.res
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original GWASs (EY+Res and EY/NonRes) resulting in new GWAS summary statistics for 

both Resilience and EduYears (Figure 2.2). To calculate the path loadings for λEduYears – 

EY+Res and λResilience – EY+Res, the model was run without the SNPs. Coding used to 

perform GBS are available in my GitHub page at https://github.com/joanfitz5/cog.res. 

2.1.7 Calculation of sample size after GBS 

Running the analysis through GBS alters the sample size and it is necessary to calculate the 

new value for downstream analysis. To calculate sample size or effective N (Neff) of the 

Resilience GWAS for discovery, replication and full analyses, we followed the procedure 

specified in GenomicSEM (Grotzinger et al., 2019; Mallard et al., 2020) and by Demange et 

al (Table 2.1). To do this we needed to determine path loading for the models used in the 

three analyses as the path loading differs with different sample sizes. We trimmed our data to 

only include SNPs with a MAF of >0.10 and <0.40 as low and high MAF can bias the result. 

The analysis was performed in R 3.6.1 on the math server at NUIG. Output of this analysis 

and the calculations of sample size is in Table 2.5.

https://github.com/joanfitz5/cog.res
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Figure 2.2: SEM of GWAS-by-subtraction 

The observed variables are the GWAS EY+Res and EY/NonRes and SNP and the latent variables (unknown) 

are Resilience and EduYears. There are two pathways for the SNPs analysis in this model to EY+Res – the first 

is through EduYears to EY+Res and EY/NonRes and incorporates the genetic effects of the variables used in the 

phenotype. The other path is through Resilience to EY+Res and measures the genetic effect of resilience 

independent of EduYears. To calculate the model, the genetic covariances between EY+Res and EY/NonRes 

and Resilience and EduYears are set to 0 and the variances of EY+Res and EY/NonRes are also set to 0. The 

variance is therefore explained by the latent factors. The SNP value is calculated as 2pq from allele frequencies 

of the 1000 Genome phase 3 data where p is the reference allele and q the alternative allele.   
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Table 2.5: Pathway loading and sample size (effective N) calculation  

Sample Pathway  Effective N (Neff) 

  res =~ EY+Res EduYears =~ EY+Res EduYears =~ EY/NonRes 
   

  

  est P value est P value est P value Min Median Mean Max 

Discovery  0.4129 < 5e-300 0.2862 2.76E-118 0.5036 < 5e-300 84,137 88,684 88,607 88,796 

Replication  0.4743 2.28E-63 0.2133 1.04E-12 0.5228 7.04E-132 22,618 25,786 25,706 25,926 

Full  0.4220 < 5e-300 0.2758 7.04E-132 0.5081 < 5e-300 105,876 111,396 111,316 111,513 
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2.1.8 Identification of genomic loci associated with resilience 

FUMA: Manhattan plots of GWAS outputs from original phenotypes and GBS outputs were 

generated in FUMA v 1.3.6 (Watanabe, Taskesen, van Bochoven, & Posthuma, 2017) using a 

P-value setting of < 5 x 10-8 for genome-wide significant SNPs. We used an LD r2 setting of 

0.6 and the 1000G phase 3 European reference panel to identify independent lead SNPs and 

an additional r2 setting of 0.1 to identify lead SNPs and a maximum distance for LD blocks of 

250 kb to separate findings into separate genetic loci. Conditional analysis was performed 

where there was more than one independent significant SNP within 1000 kb distance using --

condition command in Plink 1.9 (Chang et al., 2015), which adds a SNP as a covariate in 

GWAS analysis. Setting used in FUMA are showed in Table 2.7 at the end of this chapter. 

FINEMAP v 1.4 (Benner et al., 2016) was used to investigate causal SNPs by analysing the 

relationship between the candidate GWAS SNPs generated in FUMA and LD data. LD files 

were generated in plink 1.9 using the --r square spaces command – for example - 

“./plink --bfile cogres --chr 6 --extract 6.fuma --r square spaces --out 6f” 

Results of SNPs listed by Bayes Factor for each locus were examined as well as the 

configuration files generated by FINEMAP to examine for causal SNPs sets. The maximum 

number of SNPs in a set was fixed at 3.  

Coding used to perform Fine mapping is available in my GitHub page at 

https://github.com/joanfitz5/cog.res. 

2.1.9 Function analysis of GWAS output 

We used FUMA v 1.3.6 (Watanabe et al., 2017) to perform functional analysis. We used the 

default settings as described in the Tutorial section of the website and in previous 

publications (Jansen et al., 2019; Savage et al., 2018) . The parameters used are shown in 

Table 2.7 at the end of this chapter. FUMA analysis of Resilience is published and can be 

viewed publicly in FUMA as ID:171. We used the calculated effective sample size of 

111,316 (Neff) for the analysis of the Resilience output to examine the functional 

consequences of SNPs on genes, Combined Annotation Dependent Depletion (CADD) 

scores, chromatin states and Regulome DB analysis.  

https://github.com/joanfitz5/cog.res
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2.1.10 Mapping SNPs to genes 

Gene-mapping was performed in FUMA using three strategies: (a) Positional mapping which 

mapped SNPs to genes based on their genomic location within a 10 kb window of known 

gene boundaries. (b) Expression quantitative trait (eQTL) mapping which aligned cis-eQTL 

SNPs to genes whose expression they affected, selecting information from tissue types in 4 

datasets in FUMA (PsychENCODE (Wang et al., 2018), BIOS QTL (Bonder et al., 2017), 

Blood eQTL (Westra et al., 2013), and GTEx 8 (Battle, Brown, Engelhardt, & Montgomery, 

2017)). (c) Chromatin interaction mapping using the 3D DNA to DNA interactions mapped 

SNPs to genes. 

Gene-set analyses: The GENE2FUNC function within FUMA examines enrichment of 

mapped genes using hypergeometic tests of 9,494 gene-sets form GTEx (Carithers et al., 

2015) , MSigDB (Liberzon et al., 2015) and GWAS catalog (Buniello et al., 2019).   

2.1.10.1 MAGMA gene-based analysis 

FUMA computes a gene-based genome-wide association analysis (GWGAS) from the SNP-

based P-value from the GWAS. A total of 18,879 protein coding genes containing a 

minimum of one GWAS SNP were used in this analysis and were used to test for association 

with 53 tissue types obtained from GTEx (Consortium, 2015). Associations were Bonferroni 

corrected for multiple testing with P < 0.05/18,879 = 2.648 x 10-6. 

We further explored the sets of associated genes in cell type specificity analyses with scRNA-

seq in FUMA (Watanabe, Umićević Mirkov, de Leeuw, van den Heuvel, & Posthuma, 2019) 

using the following datasets: GSE104276 Human Prefrontal cortex per ages (Zhong et al., 

2018), GSE67835 Human Cortex (Darmanis et al., 2015) and Linnarsson Mouse Brain Atlas 

(Zeisel et al., 2018). We analysed significant cell types across datasets, independent cell type 

associations based on within-dataset conditional analyses and pair-wise cross-datasets 

conditional analyses. 

Pathway enrichment analysis was performed on curated gene sets and Gene Ontology (GO) 

terms from Msigbd v 7.0 (Ashburner et al., 2000) terms using the full distribution of SNP P-

values from the Resilience GWAS.  
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2.1.11 Comparison with published traits 

LD score regression (LDSR) analysis was performed using the LDSC function within 

GenomicSEM (Grotzinger et al., 2019) to examine the genetic correlation between Resilience 

with other phenotypes. Various sources were used to obtain summary statistics from GWAS 

of published research in psychiatry, brain imaging, and other traits of interest (see Table 2.6). 

Summary statistic files generated during GBS were used for Resilience, EduYears, EY+Res 

and EY/NonRes in the LDSR. Associations were Bonferroni corrected for multiple testing 

with P < 0.05/21 = 2.88 x 10-3.
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Table 2.6: Publicly available datasets used for LDSR 

Trait Source Link Author Year N 

Cognitive 
     

Intelligence GWAS catalog ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/SavageJE

_29942086_GCST006250/SavageJansen_IntMeta_sumstats.zip 

Savage et al  2018 269,867 

Reaction time GWAS catalog http://www.psy.ed.ac.uk/ccace/downloads/Davies_NC_2018.zip Davies et al 2018 330,069 

Educational 

attainment 

GWAS atlas https://www.dropbox.com/s/ho58e9jmytmpaf8/GWAS_EA_excl23a

ndMe.txt?dl=1 

Lee et al  2018 766,345 

Psychiatric and Neurological 
    

Amyotrophic 

lateral 

sclerosis 

GWAS catalog ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/vanRheen

enW_27455348_GCST004692/harmonised/27455348-

GCST004692-EFO_0000253.h.tsv.gz 

Van 

Rheenan et 

al 

2016 36,052 

Alzheimer's 

disease 

GWAS catalog ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/JansenIE

_30617256_GCST007320/AD_sumstats_Jansenetal_2019sept.txt.gz 

Jansen et al 2019 455,258 

Unipolar 

Depression 

GWAS catalog ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/NagelM_

29942085_GCST006475/sumstats_depressed_affect_ctg_format.txt.

gz 

Nagel et al 2018 358,000 

Schizophrenia GWAS atlas http://walters.psycm.cf.ac.uk/clozuk_pgc2.meta.sumstats.txt.gz Pardinas et 

al  

2018 105,318 
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Trait Source Link Author Year N 

Bipolar 

disorder 

PGC https://www.med.unc.edu/pgc/download-

results/bip/?choice=Bipolar+Disorder+%28BIP%29Bipolar+Disord

er+%28BIP%29 

Stahl et al  2018 35,802 

Parkinson’s 

disease 

GWAS atlas https://drive.google.com/open?id=1FZ9UL99LAqyWnyNBxxlx6qO

UlfAnublN 

Nalls et al 2019 482,730 

Stroke GWAS catalog ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/MalikR_2

9531354_GCST005843/harmonised/29531354-GCST005843-

HP_0002140.h.tsv.gz 

Malik et al  2018 520,000 

Neuroticism CCAGE (PGC) http://www.psy.ed.ac.uk/ccace/downloads/Luciano_2017.zip Luciano et 

al 

2017 329,000 
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2.1.12 Mendelian randomisation 

Mendelian randomisation was performed using Generalized Summary statistics-based 

Mendelian Randomization (Zhu et al., 2018) using the GCTA tool v1.93.2 beta (Yang, Lee, 

Goddard, & Visscher, 2011). The procedure examines credible causal associations between 

different traits based on GWAS outputs and requires non-overlapping samples. This restricted 

our analysis because most of the traits examined by LDSC contained UKB participants. 

However, the sample used for the discovery.Resilience GWAS (section 1.2.1) does not 

contain individuals that have brain imaging data within the UKB so we used this cohort to 

examine unidirectional and bidirectional causal associations between Resilience and brain 

imaging phenotypes that showed significant correlations with Resilience using LDSC. We 

used a HEIDI-outlier p-value of 0.01 for outlier detection analysis. Given the low level of 

independent significant SNPs in the discovery.Resilience GWAS and the imaging GWAS, we 

reduced the default minimum level of significant SNPs from 10 to 8. For the disorders of 

ALS, bipolar disorder and schizophrenia we used the full Resilience GWAS and ran the 

analysis at the default setting of a minimum of 10. Associations were Bonferroni corrected 

for multiple testing with P < 0.05/12 = 4.23 x 10-3. 

2.2 Health and Retirement Study (HRS) 

The HRS is a longitudinal study of adults aged 50 years or older in households in the United 

States. The study commenced in 1992 and participants were interviewed at baseline and 

every two subsequent years. I applied for and was given access to the phenotypic data 

through the HRS website. To obtain the genetic data we applied for and were given approval 

through dbGaP as project 18937.  

2.2.1 Genetic data 

Genetic data was downloaded from the portal on dbGaP (see Figure 2.3). Data was 

downloaded using IBM Aspera connect and was decrypted using the srs tool kit (V2.9.4). 

The imputes files were presented per chromosome as probability files (gprob.gz) and the 

quality metrics were supplied with the genotype data.  

Plink 2 has the option with gprob of creating binary files (bfiles) or keeping the probability 

information in the form of pfiles. Preliminary research showed that there was little difference 

in the output, so I proceeded to use pfiles. Plink 2 does not have the ability currently to merge 
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pfiles so each chromosome was processed through GWAS separately and the output 

combined. 

Variants were screened by applying quality control filters (geno 0.02, MAF 0.001, info score 

0.9 and HWE 0.000001) and removing duplicates for each chromosome. 

In addition, many of the HRS SNPs were in an older kgp format and needed to be converted 

to RSID. This was done using a list of common SNPs per chromosome by RSID and position 

from the UCSC browser (Kent et al., 2002). 

 

 

Figure 2.3: Screenshot of dbGaP showing relevant HRS files 

 

2.2.2 Cognitive phenotypes 

Several cognitive tests were administered by interviewers, either by phone of face-to-face and 

these are described in detail on the HRS website in the following document:  

http://hrsonline.isr.umich.edu/sitedocs/userg/dr-006.pdf 

http://hrsonline.isr.umich.edu/sitedocs/userg/dr-006.pdf
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The HRS dataset does not contain a reaction time or processing speed measure so after 

examining the various measures, I selected two cognitive variables to explore further, these 

were Total Cognitive performance (COGTOT) and Immediate Word recall (Recall). 

2.2.2.1 Total Cognitive performance 

Using the RAND HRS Longitudinal file 2014 (v.2) I extracted data on total cognitive 

performance (RxCOGTOT) that was based on the Telephone Interview for Cognitive Status 

(TICS) (Brandt, Spencer, & Folstein, 1988), which was validated for use to screen for 

cognitive performance (Welsh, Breitner, & Magruder-Habib, 1993). This is a 27-point test 

which includes a 10-word immediate and delayed recall test (0–20 points) that measures 

episodic memory, a serial 7s test to measures working memory (0–5 points), and a 

backwards-counting test that measures mental processing speed (0–2 points). Scores range 

from 0 to 27, with lower scores indicating poorer cognitive performance. Cognitive data were 

collected at each wave of data collection.  

I used COGTOT data from 1998 to 2014 as the testing format did not stabilise until 1998. 

Data on 38,183 participants were available at nine timepoints. In order to diminish the effect 

of APOE/TOMM40 locus associated with Alzheimer’s disease (Mise et al., 2017) on the 

results , I examined the removal of people demonstrating dementia from the results and I 

found that a minimum limit of 9 on the cognitive score can be justified (Crimmins, Kim, 

Langa, & Weir, 2011; Dassel & Carr, 2014; Lievre, Alley, & Crimmins, 2008). I removed 

any person who had a value below 9, which resulted in the elimination of 929 individuals. 

After also eliminating participants with missing data and who were not non-Hispanic 

white/Caucasian, and less than 2 time points of cognitive data, a total of 13,010 participants 

remained. When matched with the genotypic data, there were 5,345 individuals available for 

GWAS. 

2.2.2.2 Recall 

To increase the number of participants with two data points I looked at direct phenotypes in 

the consisted of the interviewer reading a randomised list of 10 nouns to the respondent from 

one of four lists, and afterwards asking the respondent to recall as many words as possible. A 

different list was used for the same respondent for four time points to exclude practice 

effects.  
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I had data on immediate recall for 38,183 participants at a total of eleven time points. 15,620 

participants had genetic data, and this was reduced further (accounting for ethnicity, missing 

data, or less than 2 data points) and my final sample size was 9,526 individuals. 

2.2.3 Creating longitudinal phenotypes with mixed effect modelling  

Given the multiple times points in the longitudinal cognitive data in HRS and the fact that 

many participants would have missed individual time points, it is not possible to measure the 

effect of change using analysis of variance methods as participants with any missing data 

would be eliminated. It was therefore necessary to use linear mixed modelling. Following the 

procedure in SPSS as specified by Andy Field (Field, 2013) page 849, I used the covariates of 

gender, birth year, education and time of test. I used a step wise approach to add linear, 

quadratic, and cubic polynomials for time and assessed the effect on the -2 restricted log 

likelihood results. This showed that timepoint and quadratic time point influence the model 

for COGTOT. Cubic polynomial time point influenced the model for Recall, so it was 

included in the model.  

2.2.4 GWAS of cognitive change over time 

Using the two outputs from the linear mixed modelling analysis for COGTOT and Recall, I 

created two pheno files and ran two GWAS using the first six PCA components as covariates 

as this is recommended in the genotype QC report (Faul, Smith, & Zhao, 2014). The 

command used was as follows: 

“./plink2 --pfile 22 --glm hide-covar cols=+a1freq --pheno recall.pheno --covar HRS6PCA --

covar-variance-standardize --out 22” 

GWAS analysis was performed per chromosome and outputs combined into a full GWAS 

and exported to FUMA for analysis.  

2.3 Other Bioinformatic tools used 

See Table 2.1 for a list of the tool used during my PhD. At the start of my research, I used 

SPSS and MS Excel for data manipulation and for large datasets I used Galaxy.org to 

perform sort, extract and join files. During my PhD, I gradually shifted to using server-based 

R for statistical analysis and learned to use bash commands on the server to do data 

manipulation.  
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Table 2.7: Parameters used in FUMA  

Parameter Value 

created_at   2020-09-30 15:55:59 

title   res_sept 

FUMA   v1.3.6 

MAGMA   v1.07 

GWAScatalog   e96_r2019-09-24 

ANNOVAR   2017-07-17 

gwasfile   all.res.txt.gz 

becol   beta 

secol   se 

addleadSNPs  1 

N  115463 

exMHC  1 

MHCopt   annot 

ensembl   v92 

genetype   all 

leadP  5.00E-08 

gwasP  1.00E-05 

r2  0.6 

r2_2  0.1 

refpanel   1KG/Phase3 

pop   EUR 

MAF  0 

refSNPs  1 

mergeDist  250 

[magma] 
 

magma  1 

magma_wind

ow  

0 

magma_exp   

GTEx/v8/gtex_v8_ts_avg_log2TPM:GTEx/v8/gtex_v8_ts_general_a

vg_log2TPM 

posMap  1 

posMapWind

owSize  

10 

posMapCAD

Dth  

0 

[eqtlMap] 
 

eqtlMap  1 

eqtlMaptss  PsychENCODE/PsychENCODE_eQTLs.txt.gz:BloodeQTL/BloodeQ

TL.txt.gz:BIOSQTL/BIOS_eQTL_geneLevel.txt.gz:GTEx/v8/Adipos

e_Subcutaneous.txt.gz:GTEx/v8/Adipose_Visceral_Omentum.txt.gz:

GTEx/v8/Adrenal_Gland.txt.gz:GTEx/v8/Cells_EBV-

transformed_lymphocytes.txt.gz:GTEx/v8/Whole_Blood.txt.gz:GTE

x/v8/Artery_Aorta.txt.gz:GTEx/v8/Artery_Coronary.txt.gz:GTEx/v8/
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Parameter Value 

Artery_Tibial.txt.gz:GTEx/v8/Brain_Amygdala.txt.gz:GTEx/v8/Brai

n_Anterior_cingulate_cortex_BA24.txt.gz:GTEx/v8/Brain_Caudate_

basal_ganglia.txt.gz:GTEx/v8/Brain_Cerebellar_Hemisphere.txt.gz:G

TEx/v8/Brain_Cerebellum.txt.gz:GTEx/v8/Brain_Cortex.txt.gz:GTE

x/v8/Brain_Frontal_Cortex_BA9.txt.gz:GTEx/v8/Brain_Hippocampu

s.txt.gz:GTEx/v8/Brain_Hypothalamus.txt.gz:GTEx/v8/Brain_Nucle

us_accumbens_basal_ganglia.txt.gz:GTEx/v8/Brain_Putamen_basal_

ganglia.txt.gz:GTEx/v8/Brain_Spinal_cord_cervical_c-

1.txt.gz:GTEx/v8/Brain_Substantia_nigra.txt.gz:GTEx/v8/Breast_Ma

mmary_Tissue.txt.gz:GTEx/v8/Colon_Sigmoid.txt.gz:GTEx/v8/Colo

n_Transverse.txt.gz:GTEx/v8/Esophagus_Gastroesophageal_Junction

.txt.gz:GTEx/v8/Esophagus_Mucosa.txt.gz:GTEx/v8/Esophagus_Mu

scularis.txt.gz:GTEx/v8/Heart_Atrial_Appendage.txt.gz:GTEx/v8/He

art_Left_Ventricle.txt.gz:GTEx/v8/Kidney_Cortex.txt.gz:GTEx/v8/L

iver.txt.gz:GTEx/v8/Lung.txt.gz:GTEx/v8/Muscle_Skeletal.txt.gz:GT

Ex/v8/Nerve_Tibial.txt.gz:GTEx/v8/Ovary.txt.gz:GTEx/v8/Pancreas.

txt.gz:GTEx/v8/Pituitary.txt.gz:GTEx/v8/Prostate.txt.gz:GTEx/v8/Mi

nor_Salivary_Gland.txt.gz:GTEx/v8/Cells_Cultured_fibroblasts.txt.g

z:GTEx/v8/Skin_Not_Sun_Exposed_Suprapubic.txt.gz:GTEx/v8/Ski

n_Sun_Exposed_Lower_leg.txt.gz:GTEx/v8/Small_Intestine_Termin

al_Ileum.txt.gz:GTEx/v8/Spleen.txt.gz:GTEx/v8/Stomach.txt.gz:GT

Ex/v8/Testis.txt.gz:GTEx/v8/Thyroid.txt.gz:GTEx/v8/Uterus.txt.gz:G

TEx/v8/Vagina.txt.gz 

eqtlMapSig  1 

eqtlMapP  1 

eqtlMapCAD

Dth  

0 

[ciMap] 
 

ciMap  1 

ciMapBuiltin   

EP/PsychENCODE/EP_links_oneway.txt.gz:HiC/PsychENCODE/Pr

omoter_anchored_loops.txt.gz:EP/FANTOM5/EP_correlation_cell_t

ype_oneway.txt.gz:EP/FANTOM5/EP_correlation_organ_oneway.txt

.gz:HiC/Giusti-

Rodriguez_et_al_2019/Adult_Cortex.txt.gz:HiC/Giusti-

Rodriguez_et_al_2019/Fetal_Cortex.txt.gz:HiC/GSE87112/Adrenal.t

xt.gz:HiC/GSE87112/Aorta.txt.gz:HiC/GSE87112/Bladder.txt.gz:Hi

C/GSE87112/Dorsolateral_Prefrontal_Cortex.txt.gz:HiC/GSE87112/

Hippocampus.txt.gz:HiC/GSE87112/Left_Ventricle.txt.gz:HiC/GSE8

7112/Liver.txt.gz:HiC/GSE87112/Lung.txt.gz:HiC/GSE87112/Ovary

.txt.gz:HiC/GSE87112/Pancreas.txt.gz:HiC/GSE87112/Psoas.txt.gz:

HiC/GSE87112/Right_Ventricle.txt.gz:HiC/GSE87112/Small_Bowel

.txt.gz:HiC/GSE87112/Spleen.txt.gz:HiC/GSE87112/GM12878.txt.g

z:HiC/GSE87112/IMR90.txt.gz:HiC/GSE87112/Mesenchymal_Stem

_Cell.txt.gz:HiC/GSE87112/Mesendoderm.txt.gz:HiC/GSE87112/Ne

ural_Progenitor_Cell.txt.gz:HiC/GSE87112/Trophoblast-

like_Cell.txt.gz:HiC/GSE87112/hESC.txt.gz 

ciMapFileN  0 
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Parameter Value 

ciMapFiles   NA 

ciMapFDR  1.00E-06 

ciMapPromW

indow  

 250-500 

ciMapRoadm

ap  

 

E080:E029:E030:E031:E032:E033:E034:E035:E036:E037:E038:E03

9:E040:E041:E042:E043:E044:E045:E046:E047:E048:E050:E051:E

062:E053:E054:E067:E068:E069:E070:E071:E072:E073:E074:E081

:E082:E027:E028:E001:E002:E003:E008:E014:E015:E016:E024:E0

04:E005:E006:E007:E009:E010:E011:E012:E013:E023:E025:E063:

E075:E076:E106:E077:E078:E079:E084:E085:E109:E101:E102:E10

3:E092:E094:E110:E111:E083:E095:E104:E105:E086:E066:E017:E

088:E096:E052:E089:E100:E107:E108:E090:E097:E087:E098:E091

:E099:E055:E056:E057:E058:E059:E061:E113:E026:E049:E093:E1

12:E065:E018:E019:E020:E021:E022 

ciMapEnhFilt  1 

ciMapPromFi

lt  

1 

ciMapCADDt

h  

0 

Note: any parameter marked N/A was deleted from this table.
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3 Investigation of resilience in the UK biobank 

 

3.1 Introduction  

The UKB has genetic and cognitive data for over 500,000 individuals and is described in 

detail in chapter 2. In this chapter, I describe how I examined the available cognitive data to 

see which variables I could use to examine the genetic component of cognitive resilience in 

healthy ageing. I will explain the creation of a longitudinal measure of resilience using a 

proxy phenotype to measure cognitive performance in early adulthood (education years) and 

current cognitive measures to examine performance approximately 40 years later. We 

realised a confounding factor in this approach in that EY is highly heritability with a 

polygenic nature (Lee et al., 2018) that can mask the genetics of resilience. I therefore 

explore methods to extract the genetic variants associated with resilience alone. 

3.2 Selection of Cognitive variables in the UKB 

Due to lack of longitudinal data in the UK biobank, I needed to select a cogntive measure 

from the dataset to represent current cognitive performance and a proxy measure to represent 

past cognitive performance. 

3.2.1 Current cognitive performance 

Table 3.1 lists the cognitive variables in the UKB showing the number of participants 

assessed and the correlation of the variable to age. Participants undertook a wide range of 

cognitive tests (see Error! Reference source not found.). The types of tests and reliability 

are described elsewhere (Fawns-Ritchie & Deary, 2020; Lyall et al., 2018). 

Of the cognitive tests performed at baseline, reaction time (RT) had the highest correlation 

with increasing age, where older age was associated with slower reaction time (r = 0.27, P < 

0.01). In addition, RT was tested on nearly every individual in the dataset. When combined 

with the genetic data, there were 333,664 samples. A GWAS of this phenotype processed 

through FUMA showed 26 associated genetic loci mapping to 542 genes (Figure 3.1). 
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Table 3.1: Correlation of cognitive tests with age 

Test n r 

Initial 2007/2008    

Verbal Numerical reasoning 165,486 0.05* 

Reaction Time 496,776 0.27* 

Numeric Memory   51,811 0.08* 

Visual Pairs matching 118,547 0.01* 

Prospective memory 171,569 0.01* 

     

Online tests (2014/2015)    

Trail Making (#1) Online  104,052 0.27* 

Trail Making (#2) Online  104,050 0.34* 

Symbol Digit Substitution Online  118,490 0.43* 

Verbal Numerical reasoning Online  123,665 0.12* 

Numeric Memory Online  111,086 0.13* 

Principle Component analysis factor 111,039 0.39* 
*Correlation is significant at the 0.01 level. 

 

 

Figure 3.1: GWAS of RT in UK biobank (n= 333,664) 

The Y axis shows the -log10 transformed P-values of each SNP from the GWAS. The x axis shows the base pair 

position along the chromosomes. The dotted read line shows the Bonferroni corrected P-value (P<5.0E-8). 

 

In addition, some cognitive tests were performed online. I considered combining these to 

produce a measure of ‘g’ which measures overall intelligence using principal component 

analysis (PCA) in SPSS (see 2.1.4). The resultant variable showed a moderate correlation 

with age (r = 0.39, P <0.01) but was limited to 111,039 individuals. When combined with 
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genetic data, there were 66,740 participants in the dataset. Running a GWAS in plink 1.9 

using this phenotype found just one significant locus on chromosome 16 (Figure 3.2).   

 

Figure 3.2: GWAS of ‘g’ in UKB (n=66,740) 

The Y axis shows the -log10 transformed P-values of each SNP from the GWAS. The x axis shows the base pair 

position along the chromosomes. The dotted read line shows the Bonferroni corrected P-value (P<5.0E-8). 

 

Given the stronger signal of RT vs ‘g’ and the association of processing speed with cognitive 

ageing (see 1.2.1), I decided to move forward using RT as my current cognitive measure.  

3.2.2 Proxy measures 

As described in 3.1, we first used RT, reflecting an individual’s processing speed, as a 

measure of current cognitive performance. Processing speed is a key component, and 

predictor, of cognitive ability (Deary, 2013; Schubert et al., 2019). In the absence of a direct 

measure of processing speed at an earlier timepoint, we used academic achievement 

measured by number of years in education (education years (EY)) as a proxy phenotype for 

cognitive performance in early adulthood, following several previous studies (Davies et al., 

2016; Plomin & von Stumm, 2018; Rietveld et al., 2014). Individual differences in 

processing speed are important in the relationship between executive functioning and 

academic performance (Gordon, Smith-Spark, Newton, & Henry, 2018). This approach 

captures an average time span of 40 years between past and current cognitive performance in 

UKB.  

Educational attainment or EY have both been used in the past as a proxy for cognition. Using 

a combination of both variables within the UKB (see 2.1.4), I created an education years 
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(EY) variable. When matched with genotypic data there were 332,087 individuals available 

for further analysis.  

3.2.3 Generation of the resilience phenotype 

There were 330,098 individuals that have both EY and RT data. I created binary variables for 

both variables as described in 2.1.4. I used EY as a proxy phenotype measuring past cognitive 

performance. Processing speed as measured by RT was chosen as an indicator of current 

performance given its strong correlation with age and the fact that data was available on most 

participants in UKB. We created a binary variable for each measure by using the average 

score within the dataset to split the participants into similarly sized groups. EY was split into 

above and below average based on participants completing greater than or equal to 17 years, 

or less than 17 years in education. RT was corrected for age and normalised using a log 10 

transformation and was split into faster and slower based on participants having a processing 

speed better or worse than the mean value, such that faster RT speeds reflected better 

processing speed, and thus cognitive performance, than slower RT. Using these two binary 

variables – above or below average EY and faster or slower RT – we created four groups of 

participants (Figure 3.3). One of these groups demonstrated high resilience and these were 

our cases for GWAS who had below average EY previously and faster than average RT now. 

A second group demonstrated low resilience or cognitive decline, and these were our controls 

for GWAS who had above average EY previously and slower than average RT now.  

 

 

 

 

 

 

 

(a) 
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(b) 

 

Figure 3.3: Creation of resilience phenotype.  

Using the two binary variables – above or below average EY and faster or slower RT – we created four groups 

of participants. (a) Black lines show groups that behaved as expected. Green line is those that demonstrated 

resilience and red showed low resilience. (b) The green group demonstrated high resilience, and these were our 

cases for GWAS who had below average EY previously and faster than average RT now. A red group 

demonstrated low resilience or cognitive decline, and these were our controls for GWAS who had above 

average EY previously and slower than average RT now. The black groups were our cases and controls for those 

that did not demonstrate either high or low resilience. 
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3.2.4 GWAS of Resilience groups 

To examine the genetics of resilience I performed a GWAS in Plink 2 (see 2.1.5) using the 

group that demonstrated high resilience and these were my cases for our first “Resilience” 

GWAS who had below average EY previously and faster than average RT now. A second 

group demonstrated low resilience or cognitive decline, and these were my controls for that 

GWAS who had above average EY previously and slower than average RT now. The two 

remaining groups of UKB samples displayed consistent cognitive performance over time. A 

Manhattan plot of this GWAS was generated in FUMA (Figure 3.4). 

However, when I compare this GWAS with a GWAS of EY I noted very similar results 

(Figure 3.5). When I ran a correlation analysis, I found a very high correlation between 

Resilience and EY (rg =-0.9, P = 1 x 10-10). A confounding factor in this strategy is that EY is 

highly heritability with a polygenic nature (Lee et al., 2018) that can mask the genetics of 

resilience. I therefore recognised that our Resilience GWAS had a stong EY component and 

from there I refered to it as the “EY+Res” GWAS. 

 

Figure 3.4: Manhattan plot of GWAS of EY+Res (n=156,008) 

The y-axis shows the -log10 transformed P-values of each SNP from the GWAS. The x-axis shows the base pair 

position along the chromosomes. The dotted read line shows the Bonferroni corrected P-value (P<5.0E-8). 
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Figure 3.5: Manhattan plot of GWAS of EY (n=165,000) 

The Y axis shows the -log10 transformed P-values of each SNP from the GWAS. The x axis shows the base pair 

position along the chromosomes. The dotted read line shows the Bonferroni corrected P-value (P<5.0E-8). 

 

 

To identify those SNPs that were associated with resilience alone I needed to remove those 

SNPs that were associated with the EY component of the phenotype. To identify the EY 

component I performed a second GWAS using the two remaining groups of UKB samples 

that displayed consistent (i.e., unchanging) performance over time. The first of these groups 

consisted of those with below average EY previously and slower than average RT now (i.e., 

consistently below average performance over time); the second group consisted of those who 

showed above average EY previously and faster than average RT now (i.e., consistently 

above average performance over time). I named this GWAS “EY/NonRes” because it 

identified SNPs associated with EY but not resilience (Figure 3.6).  

 

Figure 3.6: Manhattan plot of GWAS of EY/NonRes (n=174,113) 

The y-axis shows the -log10 transformed P-values of each SNP from the GWAS. The x-axis shows the base pair 

position along the chromosomes. The dotted read line shows the Bonferroni corrected P-value (P<5.0E-8). 
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3.2.5  Extraction of Res from EY+Res 

To identify the genetic component of resilience alone it was necessary to look at the 

difference between EY+Res and EY/NonRes. In other words, perform the following: 

EY+Res minus EY/NonRes = Resilience 

Initially I examined how we could perform this subtraction using the analysis of both GWAS 

in FUMA. 

3.2.5.1 Functional level  

I extracted the mapped genes from FUMA using the FUMA default parameters for EY+Res 

and EY/NonRes. EY+Res had 320 mapped genes and EY/NonRes had 423 mapped genes. A 

total of 107 genes were common to both GWAS (Figure 3.7). I also examined overlap 

between GO terms generated in FUMA and through processing non overlapped genes 

through consensus path DB. 

 

Figure 3.7: Overlap of mapped genes in EY+Res and EY/NonRes using BioVenn 
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3.2.5.2 SNP level 

To identify those SNPs associated with resilience alone I subtracted all SNPs with a 

nominally significant P value (P<.05) in EY/NonRes (n=1102,873) from significant SNPs 

(P<0.5 x 10-8) in EY+Res (n=5013). This results in a list of 1,431 SNPs that were 

significantly associated with Resilience with the interference from low/high EY removed. 

This SNP list was submitted to FUMA for analysis. As there are no SNPs with a P value 

greater than 0.5 x 10-8, the output is a partial Manhattan plot (Figure 3.8) These SNPs are 

clumped together into 50 loci (Table 3.2) 

.  

 

 

Figure 3.8: Manhattan plot of Resilience generated by subtraction of EY/NonRes SNPs from EY+Res 

SNPs 

The y-axis shows the -log10 transformed P-values of each SNP from the GWAS. The x-axis shows the base pair 

position along the chromosomes. The dotted read line shows the Bonferroni corrected P-value (P<5.0E-8). 
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Table 3.2 : Genetic loci identified by manual subtraction of EY/NonRes SNPs from EY+Res SNPs. 

Locus rsID chr position p start end SNPs 

1 rs2494994 1 43924166 7.45E-11 43760236 43949718 3 

2 rs2647499 1 77949806 1.27E-09 77919310 78687156 8 

3 rs197374 1 112289983 3.13E-11 112273485 112328245 20 

4 rs74404380 1 114488628 1.02E-08 114467664 114506786 3 

5 rs1400101 2 51896988 1.89E-08 51816988 51936388 15 

6 rs778177929 2 100050426 4.75E-08 99573471 100109251 1 

7 rs9308868 2 104361420 7.90E-11 104056454 104479862 272 

8 rs13010673 2 161353564 1.25E-08 161080841 161367714 2 

9 rs34372833 2 175200014 1.84E-09 175199869 175200903 2 

10 rs2675964 2 233793676 4.80E-08 233698457 233807585 1 

11 rs17225749 3 50131140 4.03E-11 48793504 51549024 12 

12 rs77321042 3 53179543 8.74E-10 52492601 53556816 5 

13 rs113013592 3 108014239 2.83E-08 107864673 108031094 6 

14 rs13061117 3 181186466 4.89E-09 180524952 181205593 11 

15 rs843370 3 183875822 2.27E-08 183861243 183922076 1 

16 rs112261906 4 3050001 1.48E-10 2935618 3385176 5 

17 rs10014342 4 28751389 3.74E-08 28733631 28753519 7 

18 rs2454202 4 106205280 2.22E-17 106048291 106429390 90 

19 rs7718191 5 25895568 1.25E-08 25892558 26046971 28 

20 rs7717864 5 59486768 1.96E-08 59281617 59562579 1 

21 rs2914685 5 108774745 1.21E-08 108641351 108881782 5 

22 rs13186198 5 139652057 6.20E-14 139515394 139714837 193 

23 rs9469529 6 33587443 2.29E-08 33573994 33587443 9 

24 rs4839936 6 98489654 1.14E-08 98349189 98532334 3 

25 rs9398803 6 126683594 4.13E-09 126659043 127080700 22 

26 rs4719416 7 2106608 9.26E-10 1906466 2110850 1 

27 rs3735478 7 44800176 1.19E-08 44765133 44800176 1 

28 rs2944826 7 71792250 1.20E-08 71683050 71852951 3 

29 rs4392917 8 19680635 6.16E-09 19627586 19680979 4 

30 rs78126454 8 115967342 1.66E-09 115869157 116043658 35 

31 rs7903084 10 10861098 6.20E-11 10630010 11140234 64 

32 rs11599801 10 63447289 1.11E-08 63425243 63524979 4 

33 rs79550344 10 103613098 4.73E-09 103379885 104198528 41 

34 rs10895704 11 104395746 4.62E-08 104320214 104477159 1 

35 rs10772644 12 13417617 2.29E-12 13414139 13463954 5 

36 rs16921317 12 33979400 4.70E-08 33548001 34674292 1 

37 rs6580699 12 49478812 1.72E-13 49387955 49479968 38 

38 rs35638842 12 84304740 1.52E-08 84211940 84539271 5 

39 rs12831306 12 97664962 2.45E-08 97653869 97683185 2 

40 rs9569733 13 58316612 1.06E-09 58250322 58828747 25 

41 rs8019612 14 29822421 1.63E-10 29737713 29854122 40 
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Locus rsID chr position p start end SNPs 

42 rs11647572 16 12211417 5.88E-09 12159290 12219411 12 

43 rs11644601 16 15172118 2.61E-09 14961204 15255751 2 

44 rs2650494 16 28318440 8.95E-10 28299132 29001460 24 

45 rs6504165 17 61630076 2.17E-09 61606190 61747965 12 

46 rs870681 17 77773876 3.76E-09 77773876 77778226 2 

47 rs117623407 19 32204489 3.46E-10 32200518 32208909 1 

48 rs6073984 20 44630653 5.97E-09 44447625 44656140 28 

49 rs779402116 20 47530801 2.62E-14 47508077 47933479 337 

50 rs61746505 20 62839710 1.17E-08 62836637 62841415 2 

 

3.2.6 Extraction of Resilience using SEM 

In section 3.2.5, I described how we extracted data on Resilience by a manual subtraction that 

left us with a partial GWAS. This method was very limited in that I could not examine a full 

GWAS of Resilience and perform full functional analysis as with other published traits. In 

addition, this method is based on P values only and does not take odds ratios into account. It 

also eliminates all SNPs in Resilience that have a nominal association in EY/NonRes but may 

be highly significant in EY+Res. To overcome this I employed a recently published method 

which uses Genomics Structural Equation Modelling (GenomicSEM) (Grotzinger et al., 

2019) to perform a GWAS-by-subtraction (Demange et al., 2021) using two GWAS, one 

which captured genetic variants associated with EY and resilience (EY + Res as described in 

3.2.4) and a second which captured genetic variants associated with EY but not resilience 

(EY/NonRes). Subtracting one from the other generated two new GWAS, one capturing EY 

and the other capturing what I wanted - the genetics of a processing speed-based cognitive 

resilience phenotype.  

3.2.6.1 Initial phenotype development 

Figure 3.9 shows an overview of the analysis steps using the initial steps already outlined in 

Section 3.2.3 and a detailed description of the process used to generate the resilience variable 

is included in the Materials and Methods. Given the multi-step method proposed in this 

analysis, I sought to confirm findings using our method in an independent sample. Therefore, 

I divided the UKB into discovery (n=266,543; 81% of participants) and replication 

(n=63,554; 19% of participants) samples (Figure 3.9a). Sample sizes used for analysis are 

shown in Table 3.3. 
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Table 3.3: Sample size for GWAS analysis by cohort 

Sample Replication n=63,554 Discovery n=266,543 Full n=330,097 

 
EY+Res EY/NonRes EY+Res EY/NonRes EY+Res EY/NonRes 

Case 13,893 14,980 65,293 73,749 79,186 88,728 

Control 16,145 18,536 60,679 66,822 76,825 85,358 

Total 30,038 33,516 125,972 140,571 156,011 174,086 
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Figure 3.9: Flow chart of study design. 

 (a) The available UKB samples were split into Discovery (81%) and Replication (19%) samples. Following 

successful replication analysis, the Full sample was also put through the analysis pipeline. (b) For Discovery, 

Replication or Full, samples were assigned to one of four categories based on their EY and RT measures. (c) 

EY+Res cases and controls were analysed in a GWAS. (d) EY/NonRes cases and controls were analysed in a 

GWAS. (e) GBS used to subtract the genetic signals for EY/NonRes from EY+Res to result in a Resilience 

GWAS and an EduYears GWAS. (f) Resilience GWAS functionally analysed to identify associated SNPs and 

genes, and enriched tissues, cell types and pathways, identify genetic correlations with other traits and explore 

causal relationships between resilience and other traits using Mendelian randomisation. 
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I used GWAS-by-subtraction (GBS) (Demange et al., 2021) to subtract the results of 

EY/NonRes from EY+Res to leave SNP associations with resilience. This method uses 

GenomicSEM (Grotzinger et al., 2019) to integrate GWAS into structural equation 

modelling. Following the process described by Demange et al (Demange et al., 2021), I 

defined a Cholesky model using the summary statistics from the EY+Res and EY/NonRes 

GWASs. Both EY+Res and EY/NonRes were regressed on a latent factor, which captured the 

shared genetic variance in EY (hereafter “EduYears”). EY+Res was further regressed on a 

second latent factor capturing the variance in EY+Res independent of EY/NonRes, hereafter 

“Resilience”. Genetic variance in Resilience was independent of genetic variance in EduYears 

(rg = 0) as the Resilience factor represents residual genetic variation in our EY+Res 

phenotype that is not accounted for by the EduYears factor. These two latent variables, 

Resilience and EduYears were then regressed on each SNP in the original GWASs (EY+Res 

and EY/NonRes) resulting in new GWAS summary statistics for both Resilience and 

EduYears (Figure 3.9e). Figure 3.10 shows the Cholesky model with the pathway loadings 

for the full GWAS. The loading for the different sample sizes is described in Table 2.5. 
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Figure 3.10:SEM of GWAS-by-subtraction.  

The observed variables are the GWAS EY+Res and EY/NonRes and SNP and the latent variables (unknown) 

are Resilience and EduYears. There are two pathways for the SNPs analysis in this model to EY+Res – the first 

is through EduYears to EY+Res and EY/NonRes and incorporates the genetic effects of the variables used in the 

phenotype. The other path is through Resilience to EY+Res and measures the genetic effect of resilience 

independent of EduYears. To calculate the model, the genetic covariances between EY+Res and EY/NonRes 

and Resilience and EduYears are set to 0 and the variances of EY+Res and EY/NonRes are also set to 0. The 

variance is therefore explained by the latent factors. The SNP value is calculated as 2pq from allele frequencies 

of the 1000 Genome phase 3 data where p is the reference allele and q the alternative allele. This figure shows 

the pathway loadings for the full sample. See Figure 2.2 for the model without specific loadings.  

 

3.2.7 Discovery and replication analysis 

For the discovery sample, I performed the two initial GWASs (discovery.EY+Res and 

discovery.EY/NonRes) and then performed GBS on both sets of samples resulting in 

discovery.Resilience GWAS results and discovery.EduYears GWAS results. I repeated this 

for the replication sample to produce replication.Resilience GWAS results and 

replication.EduYears GWAS results. Comparison of the discovery.Resilience GWAS with 

the replication.Resilience GWAS by LDSR analysis (Grotzinger et al., 2019) showed 
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extremely high correlation between the two datasets (rg = 0.964, P = 4.45 x 10-44). The 

discovery.Resilience GWAS was then processed through FUMA v 1.3.6 (Watanabe et al., 

2017) and ten independent genome-wide significant SNPs were identified. When compared 

to the replication.Resilience GWAS, there was a consistent direction of effect for all ten 

SNPs (Binomial sign test, P = 9.77 x 10-4). Five of the ten SNPs were significant after 

Bonferroni multiple test correction (P < 0.005). Thus, we demonstrated that we could 

replicate genetic associations with Resilience in an independent sample. Results for the ten-

independent genome-wide significant SNPs and their replication analysis are in Table 3.4.  

Table 3.4: Replication of GWAS-by-Subtraction: Performed on two subsets of the UKB 

          Discovery aNeff =88,607 Replication aNeff=25,706 

SNP Chr Maf A1 A2 bBeta P Value bBeta cP Value 

rs1043357 20 0.41 C A 0.068 8.49E-09 0.044 2.20E-02 

rs1054442 12 0.37 C A -0.068 1.81E-08 -0.058 3.08E-03 

rs11065967 12 0.21 G T 0.080 3.93E-08 0.046 4.69E-02 

rs1347143 5 0.44 A G 0.079 2.59E-11 0.018 3.23E-01 

rs2189234 4 0.38 T G 0.077 1.46E-10 0.056 3.95E-03 

rs2352974 3 0.49 T C 0.071 1.48E-09 0.110 3.32E-08 

rs2426132 20 0.46 C G -0.070 2.93E-09 -0.029 1.18E-01 

rs2624824 3 0.48 C T -0.068 6.82E-09 -0.104 1.43E-07 

rs62074125 17 0.25 C A -0.082 1.44E-09 -0.055 1.16E-02 

rs7225002 17 0.42 G A 0.066 2.30E-08 0.060 1.91E-03 

         

 Notes: aNeff = effective N which is the sample size adjusted for GWAS-By-Subtraction, bBeta = effect size of 

the A1 (minor) allele, chighlighted in bold if significant after Bonferroni correction (P<0.005). 

Manhattan plots for the discovery and replication samples are shown in Figure 3.11. 
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Figure 3.11: Manhattan plot of discovery.Resilience (a) and replication.Resilience (b) 
The y-axis shows the -log10 transformed P-values of each SNP from the GWAS. The x-axis shows the base pair position along the chromosomes. The dotted read line shows 

the Bonferroni corrected P-value (P<5.0E-8). 

(a) 

(b) 
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3.2.8 Analysis of the full sample  

Next, we combined both the discovery and replication samples to run an analysis on the full 

sample (n=330,097). This resulted in initial EY+Res and EY/NonRes GWASs and following 

GBS, Resilience GWAS results and EduYears GWAS results. SNP based heritability estimate 

analysis showed a h2 value of 0.13 (SE = .006) for Resilience. For comparison in similarly 

sized samples, we also ran GWASs of EY and RT using participants randomly selected from 

UKB (EY, n=82,000 above average EY cases and n=81,999 below average EY controls; RT, 

n=82,000 faster than average RT cases and n=82,000 slower than average RT controls). 

These comparisons are shown in Table 3.5. This comparison shows that in similar sized 

samples, that one lead SNPs in Resilience is significant in EY (rs2352974, Chr 3, P < 3.00 x 

10-21) and a separate one in RT (rs62074125. Chr 17, P < 7.54 x 10-09). 

A Quantile-quantile (Q-Q) plot of Resilience and EduYears, on the full sample is shown in 

Figure 3.12. Manhattan plots are available in Figure 3.13. The other five GWAS (EY+Res, 

EY/NonRes, EY and RT) have been shown previously in this chapter.  

a                                                                                b 

  

 

Figure 3.12: Q-Q plots of Resilience GWAS (a) and EduYears GWAS (b) 

The x-axis shows the expected distribution of p-values from the GWAS across all SNPs, and the y-axis shows 

the observed p-values. The genomic inflation factor (lambda) as calculated by LDSC is 1.25 for Resilience and    

1.50 for EduYears.
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Table 3.5: Examining the results of effect sizes and P values for 13 SNPs in the contributing GWAS analysis using the independent significant SNPs in Resilience. 

  Resilience aNeff = 

111,316 

EY n=163,999 RT n=164,000 RT n=331,487 EY n=330,000 EduYears aNeff 

=165,000 

EY+Res 

n=157,000 

EY/NonRes 

n=176,000 

SNP Chr bBeta P value bOR P value bOR P value OR P OR P bBeta P value bOR P value bOR P value 

rs12474507 2 -0.06 4.19E-08 1.01 4.34E-01 0.98 7.89E-04 0.97 8.66E-09 1.01 2.01E-01 0.02 5.82E-03 0.96 4.79E-07 1.02 2.88E-03 

rs2352974 3 0.08 9.27E-15 0.93 3.00E-21 1.02 6.38E-03 1.02 1.90E-03 0.93 1.04E-45 0.05 6.96E-11 1.10 1.09E-38 1.05 1.29E-12 

rs2189234 4 0.07 3.14E-12 0.98 8.53E-04 1.02 1.72E-03 1.03 7.63E-09 0.97 5.66E-08 0.00 7.67E-01 1.06 2.22E-16 1.00 7.49E-01 

rs6857847 4 -0.08 4.99E-09 1.01 4.13E-01 0.96 3.46E-05 0.96 8.06E-10 1.01 4.12E-01 0.03 9.16E-04 0.95 2.25E-07 1.03 3.37E-04 

rs56335290 5 -0.07 2.59E-08 1.00 9.59E-01 0.97 2.33E-03 0.97 3.80E-08 1.01 1.51E-01 0.02 7.94E-03 0.95 2.06E-07 1.02 4.12E-03 

rs6870103 5 0.07 4.03E-11 0.98 4.86E-03 1.02 1.29E-03 1.03 7.30E-10 0.98 1.18E-05 -0.01 2.99E-01 1.06 2.00E-13 0.99 2.62E-01 

rs7747481 6 0.06 2.29E-08 0.95 3.21E-13 1.01 9.45E-02 1.01 2.75E-02 0.95 4.86E-25 0.04 6.72E-07 1.07 3.25E-21 1.04 7.10E-08 

rs1029388 12 0.07 6.50E-09 1.01 1.91E-01 1.04 6.22E-06 1.04 8.84E-11 1.01 3.55E-01 -0.04 2.00E-06 1.04 1.43E-05 0.96 2.57E-07 

rs2417261 12 0.09 1.35E-08 0.95 2.29E-06 1.03 1.71E-02 1.04 2.11E-06 0.96 4.59E-07 0.00 7.43E-01 1.09 3.24E-12 1.00 7.24E-01 

rs6580699 12 -0.07 1.29E-10 1.03 2.81E-04 0.97 7.71E-05 0.97 5.55E-09 1.03 6.19E-07 0.00 5.43E-01 0.95 1.72E-13 1.00 5.12E-01 

rs9569811 13 -0.09 1.14E-08 1.01 3.05E-01 0.97 2.62E-03 0.96 2.13E-07 1.02 1.24E-02 0.02 8.42E-02 0.94 4.25E-09 1.02 6.22E-02 

rs62074125 17 -0.08 8.31E-11 1.00 6.46E-01 0.95 7.54E-09 0.96 8.45E-13 1.00 7.77E-01 0.04 1.90E-06 0.96 2.10E-07 1.04 2.42E-07 

rs4810896 20 0.07 1.94E-10 0.97 3.19E-04 1.03 3.67E-04 1.03 7.81E-07 0.97 4.30E-07 0.00 9.46E-01 1.06 3.22E-14 1.00 9.42E-01 

Notes: The P and effect values of the genomic loci for Resilience and EduYears are compared to the values generated for the inputs to GBS (EY+Res and EY/NonRes) and to 

GWAS of the two variables used to create the phenotype (RT and EY). RT is examined using both a dichotomised sample similar in size to Resilience and using the full 

dataset (n=331,487). aNeff = effective N which is the sample size adjusted for GWAS-By-Subtraction, bBeta/ OR = effect size of the A1 (minor) allele. 
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Figure 3.13: Manhattan plots of Resilience GWAS (a) and EduYears GWAS (b). 

The y-axis shows the -log10 transformed P-values of each SNP from the GWAS. The x-axis shows the base pair position along the chromosomes. The dotted read line shows 

the Bonferroni corrected P-value (P<5.0E-8). 

(a) 

(b) 
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3.2.9 Correlation analysis 

Initially, both EY+Res and EY/NonRes had a strong negative correlation with EY (rg = -0.88 

and rg = -0.89 respectively (Figure 3.14). The strength of these correlations likely reflects the 

major contribution of EY to these phenotypes and they are negative because for EY+Res and 

EY/NonRes, the direction of effect is in the opposite direction to EY, as the cases are low EY 

whereas for the EY GWAS, the cases are high EY. EY+Res and EY/NonRes had a moderate 

positive correlation with each other (rg = 0.54). After GBS there was no genetic correlation 

between Resilience and EduYears (rg = 0.01, P = 0.803) suggesting that the subtraction had 

successfully separated out the genetic associations for both phenotypes.  

Although the EY component of Resilience was addressed by the GBS method, the RT 

component was not and the genetic correlation between Resilience and RT was strong (rg = 

0.80; Figure 3.14). This finding was examined further following functional analysis of 

associated loci and is documented in chapter 5.  

 
 

Figure 3.14: Heat map of genetic correlations 

Genetic correlations between the two GBS GWAS of Resilience and EduYears, the two inputs to GBS (EY+Res 

and EY/NonRes) and GWAS of the two variables used to create these phenotypes (EY and RT). 
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3.3 Conclusion 

In this chapter I outlined the limitations of the available cognitive data in the UKB to explore 

cognitive resilience. I showed how a resilience variable could be generated using a proxy 

measure for past cogntive performance but recognised that this variable was strongly 

influenced by EY which is highly heritability with a polygenic nature that can mask the 

genetics of resilience. 

To overcome this I employed Genomics Structural Equation Modelling (GenomicSEM) 

(Grotzinger et al., 2019) to perform a GWAS-by-subtraction (Demange et al., 2021) using 

two GWAS, one which captured genetic variants associated with EY and resilience and a 

second which captured genetic variants associated with EY but not resilience. Subtracting 

one from the other generated two new GWAS, one capturing EY and the other capturing the 

genetics of a processing speed-based cognitive resilience phenotype. Replication of this 

approach was shown using independent discovery and replication samples. The full GWAS 

results were now available for functional analysis, which is explored in chapter 4. 
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4 Functional analysis of Resilience 

4.1 Introduction 

 In chapter 3, I described how I researched methods to extract the genetic contribution of 

SNPs associated with Resilience from a GWAS that also contained a strong genetic 

contribution for EY. We showed that this method could be replicated in an independent 

sample and combining our discovery and replication sample we generated a GWAS of 

Resilience on 330,097 individuals in the UKB.  

In this chapter I perform functional analysis using an array of bioinformatic tools described in 

chapter 2 to connect the genetic associations in Resilience to genes, biological processes, 

tissues and cell types to gain insight into the biological nature of cognitive resilience. 

4.2 Description of genetic loci 

Function analysis was performed on Resilience in FUMA v 1.3.6 (Watanabe et al., 2017). 

(Note: see Table 2.7: Parameters used in FUMA for parameters used and results publicly 

available in FUMA ID:171).  

A total of 1,329 significant SNPs were tagged from the Resilience GWAS and were 

associated with 26 independent lead SNPs (P < 5 x 10-8). By including SNPs in the reference 

panel that are in LD with the independent SNPs, a total of 1,922 candidate SNPs were 

identified. Functional annotation of the candidate SNPs showed that 82% were 

intergenic/intronic (Figure 4.1). 
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Figure 4.1: Functional consequences of SNPs on genes 

This histogram displays the proportion of SNPs (all SNPs in LD of Ind. sig. SNPs) which have corresponding 

functional annotation assigned in FUMA. Bars are coloured by log2(enrichment) relative to all SNPs in the 

reference panel.  

 

A total of 84 SNPs had a Combined Annotation Dependent Depletion (CADD) score greater 

than the threshold of 12.37 which indicates that the variants are potentially pathogenic 

(Kircher et al., 2014) . A full list of these SNPs can be found in Table 4 of the Supplementary 

material attached to my published research (Fitzgerald et al., 2021). 

Lead SNPs were grouped into 13 independent genetic loci that are on 9 different 

chromosomes (see  Figure 4.2 and Table 4.1). Regional plots for all 13 loci are shown in 

Figure 4.3 to Figure 4.15.

 

Figure 4.2: Summary per genomic risk locus  

These histogram display summary results for the genetic risk loci by size, number of SNPS, mapped genes and 

number of SNPs physically located in the loci.
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Table 4.1: Thirteen genomic risk loci and their independent significant SNPs 

Genomic loci  Independent significant SNPs 

Locus SNP locus start locus end anSNPs bnGWAS 

SNPs 

SNP Position P value anSNPs bnGWAS 

SNPs 

2 rs12474507 59987310 59988258 2 1 rs12474507 59988258 4.19E-08 2 1 

3 rs2352974 49385350 50250837 568 402 rs2352974 49890613 9.27E-15 117 80 

  
    

  rs35999162 49597230 4.75E-09 142 92 

  
    

  rs1317140 49878652 1.84E-10 56 41 

  
    

  rs2883059 49902160 2.39E-10 205 160 

  
    

  rs7428430 50174184 2.49E-14 205 146 

  
    

  rs2526389 50192826 9.35E-11 30 28 

  
    

  rs1046953 50197097 1.07E-10 5 4 

  
    

  rs9858059 50227871 2.88E-08 82 67 

4A rs6857847 89455635 89612380 76 59 rs6857847 89514572 4.99E-09 62 52 

            rs57672162 89459723 3.71E-08 37 28 

4B rs2189234 106048360 106335951 92 65 rs2189234 106075498 3.14E-12 44 29 

            rs2726485 106263450 8.27E-09 80 56 

5A rs56335290 112015555 112176756 4 3 rs56335290 112036634 2.59E-08 4 3 

5B rs6870103 139517197 139714690 104 71 rs6870103 139692515 4.03E-11 104 71 

6 rs7747481 98274701 98450190 135 103 rs7747481 98315696 2.29E-08 135 103 

12A rs2417261 13414139 13417617 4 3 rs2417261 13414139 1.35E-08 4 3 

12B rs6580699 49387955 49479968 44 25 rs6580699 49478812 1.29E-10 44 25 

12C rs1029388 111818487 112817847 456 356 rs1029388 111926901 6.50E-09 456 356 

13 rs9569811 58250322 58796832 64 21 rs9569811 58646190 1.14E-08 64 21 

17 rs62074125 44040184 44852612 155 61 rs62074125 44852612 8.31E-11 10 2 

  
    

  rs10775404 44167366 1.35E-09 66 30 

  
    

  rs7225002 44189067 2.44E-10 19 1 

            17:44224272_G_A 44224272 4.52E-09 63 28 

20 rs4810896 47511792 47914180 218 159 rs4810896 47535298 1.94E-10 198 145 

            rs2426132 47723127 1.54E-09 21 15 

Notes: The 13 independent significant SNPs (in the right panel) have a P value > 0.5 x 10-8, with an LD limit of r2 =0.6, Genomic risk loci (left panel) have a further r2 limit 

of 0.1 and a maximum distance of 250 kb. Loci number reflects the chromosome number. Where there is more than one locus per chromosome the locus is given an A, B, C 
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in order of position. anSNPs = number of candidate SNPs in LD with the index or lead SNP, bnGWASSNPs = number of SNPs in the GWAS in LD with the index or lead 

SNP. 

 

  

 

 

Figure 4.3: Locus 2 - Regional plot - 2:59987310-59988258 

Regional plots were generated in FUMA (https://fuma.ctglab.nl). The x-axis is chromosomal position, the y-axis is significance of association with Resilience represented as -

log10 (P). The top lead or Index SNP is rs1247450. There are no other SNPs in LD with this SNP. There are no mapped genes in this locus. 
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Figure 4.4: Locus 3 Regional plot - 3:49385350-50250837.  

Regional plots were generated in FUMA (https://fuma.ctglab.nl). The x-axis is chromosomal position, the y-axis is significance of association with Resilience represented as -

log10 (P). The top lead or Index SNP is rs2352974. There are 402 GWAS SNPs in LD with this SNP including 7 other independent significant SNPs (Table 4-4).  
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Figure 4.5: Locus 4A Regional plot - 4:89455635-89612380.  

Regional plots were generated in FUMA (https://fuma.ctglab.nl). The x-axis is chromosomal position, the y-axis is significance of association with Resilience represented as -

log10 (P). The top lead or Index SNP is rs6857874. There are 59 GWAS SNPs in LD with this SNP including 1 independent significant SNP rs57672162 at 4:89459723. 

 

 



Chapter 4 

91 

 

 
 

Figure 4.6: Locus 4B Regional plot - 4:106048360-106335951. 

Regional plots were generated in FUMA (https://fuma.ctglab.nl). The x-axis is chromosomal position, the y-axis is significance of association with Resilience represented as -

log10 (P). The top lead or Index SNP is rs2189234. There are 65 GWAS SNPs in LD with this SNP including 1 independent significant SNP rs2726485 at 4:106263450. 
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Figure 4.7: Locus 5A Regional plot 5: 112015555-112176756.  

Regional plots were generated in FUMA (https://fuma.ctglab.nl). The x-axis is chromosomal position, the y-axis is significance of association with Resilience represented as -

log10 (P). The top lead or Index SNP is rs56335290. There are 3 GWAS SNPs in LD with this SNP. 
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Figure 4.8: Locus 5B Regional plot 5: 139517197-139714690.  

Regional plots were generated in FUMA (https://fuma.ctglab.nl). The x-axis is chromosomal position, the y-axis is significance of association with Resilience represented as -

log10 (P). The top lead or Index SNP is rs6870103. There are 71 GWAS SNPs in LD with this SNP. 
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Figure 4.9: Locus Regional plot – 6: 98274701-98450190.  

Regional plots were generated in FUMA (https://fuma.ctglab.nl). The x-axis is chromosomal position, the y-axis is significance of association with Resilience represented as -

log10 (P). The top lead or Index SNP is rs7747481. There are 103 GWAS SNPs in LD with this SNP. 
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Figure 4.10: Locus 12A Regional plot – 12: 13414139-13417617.  

Regional plots were generated in FUMA (https://fuma.ctglab.nl). The x-axis is chromosomal position, the y-axis is significance of association with Resilience represented as -

log10 (P). The top lead or Index SNP is rs2417261. There are 3 GWAS SNPs in LD with this SNP. 
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Figure 4.11: Locus 12B. Regional plot- 12: 49387955-49479968. 

Regional plots were generated in FUMA (https://fuma.ctglab.nl). The x-axis is chromosomal position, the y-axis is significance of association with Resilience represented as -

log10 (P). The top lead or Index SNP is rs6580699. There are 25 GWAS SNPs in LD with this SNP. 
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Figure 4.12: Locus 12C Regional plot – 12: 111818487-112817847. 

Regional plots were generated in FUMA (https://fuma.ctglab.nl). The x-axis is chromosomal position, the y-axis is significance of association with Resilience represented as -

log10 (P). The top lead or Index SNP is rs1029388. There are 356 GWAS SNPs in LD with this SNP. 
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Figure 4.13: Locus 13 Regional plot – 13:58250322 – 58796832. 

Regional plots were generated in FUMA (https://fuma.ctglab.nl). The x-axis is chromosomal position, the y-axis is significance of association with Resilience represented as -

log10 (P). The top lead or Index SNP is rs9569811. There are 21 GWAS SNPs in LD with this SNP. 
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Figure 4.14: Locus 17 Regional plot- 17: 44040184-44852612. 

Regional plots were generated in FUMA (https://fuma.ctglab.nl). The x-axis is chromosomal position, the y-axis is significance of association with Resilience represented as -

log10 (P). The top lead or Index SNP is rs62074125. There are 61 GWAS SNPs in LD with this SNP including 3 other independent lead SNPs (Table 4-4). 
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Figure 4.15: Locus 20 Regional plot – 20: 47511792-47914180. 

Regional plots were generated in FUMA (https://fuma.ctglab.nl). The x-axis is chromosomal position, the y-axis is significance of association with Resilience represented as -

log10 (P). The top lead or Index SNP is rs4810896. There are 159 GWAS SNPs in LD with this SNP including 1 other independent lead SNP rs2426132 20:47723127. 
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4.2.1 Conditional Analysis  

Conditional analysis was performed at each locus where there was more than one 

independent significant SNP within 1000 kb of the index SNP. These analyses showed that 

the significance of all independent lead SNPs at each locus was reduced when the GWAS 

was conditioned for the index SNP, confirming the linkage of the index SNP to each lead 

SNP (Table 4.2). 

4.2.2 Fine Mapping 

FINEMAP (Benner et al., 2016) was used to provide further information on significant SNPs 

in LD with the index SNP on each locus using the GWAS SNPs generated by FUMA . The 

log10 Bayes factor (B10) quantifies causal evidence for a particular SNP and a posterior 

probability value yielding a B10 greater than 2 indicates considerable evidence of causality 

(Benner et al., 2016). One SNP, rs62074125, on chromosome 17, exceeded this value (B10 = 

2.64). This SNP is an intron within the WNT3 gene, which is associated with cognitive 

function (Davies et al., 2018). Further examination in various genomic browsers does not 

identify a specific function for this SNP, however eQTL mapping shows expression in 

various brain regions associated with WNT3 and KANSL1. It has no reported clinical 

significance. The next highest result was on chromosome 4 where rs2189234 had a value 

slightly below 2 (B10 = 1.62). This SNP is an intronic variant in the TET2 gene, which is 

discussed below. FINEMAP analysis showed that the index SNP had the highest Bayes 

Factor for all loci with four exceptions. A summary of the FINEMAP analysis is shown in 

Table 4.3. Detail of the analysis by SNP are in Supplementary Table 7 (Fitzgerald et al., 

2021).
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Table 4.2: Conditional analysis of each locus conditioning for the index SNP in EY+Res 

  
    

Resilience EY + Res Conditioned on index 

SNP 

Locus rsID position start end aBeta SE P value aOR SE P value aOR SE P value 

3 rs2352974 49890613 49385350 50250837 0.080 0.010 9.27E-15 1.101 0.007 1.09E-38 NA NA NA 

  rs35999162 49597230 
  

-0.065 0.011 4.75E-09 0.914 0.008 2.37E-29 0.959 0.011 7.63E-05 

  rs1317140 49878652 
  

0.069 0.011 1.84E-10 1.077 0.008 5.50E-21 1.005 0.011 6.56E-01 

  rs2883059 49902160 
  

0.065 0.010 2.39E-10 1.090 0.007 4.35E-31 1.040 0.010 1.56E-04 

  rs7428430 50174184 
  

-0.078 0.010 2.49E-14 0.911 0.007 2.23E-36 0.946 0.011 3.94E-07 

  rs2526389 50192826 
  

0.067 0.010 9.35E-11 1.082 0.007 5.81E-26 1.035 0.009 2.45E-04 

  rs1046953 50197097 
  

-0.067 0.010 1.07E-10 0.924 0.008 3.40E-26 0.970 0.010 2.07E-03 

  rs9858059 50227871 
  

0.057 0.010 2.88E-08 1.075 0.007 2.99E-22 1.027 0.009 3.51E-03 

4A rs6857847 89514572 89455635 89612380 -0.076 0.013 4.99E-09 0.953 0.009 2.25E-07 NA NA NA 

  rs57672162 89459723 
  

-0.074 0.014 3.71E-08 0.952 0.010 4.76E-07 0.974 0.018 1.54E-01 

4B rs2189234 106075498 106048360 106335951 0.073 0.010 3.14E-12 1.064 0.008 2.22E-16 NA NA NA 

  rs2726485 106263450 
  

0.059 0.010 8.27E-09 1.058 0.007 3.98E-14 1.023 0.012 4.60E-02 

17 rs62074125 44852612 44040184 44852612 -0.077 0.012 8.31E-11 0.957 0.008 2.10E-07 NA NA NA 

  rs10775404 44167366 
  

0.080 0.013 1.35E-09 1.038 0.009 1.01E-04 1.026 0.010 8.08E-03 

  rs7225002 44189067 
  

0.065 0.010 2.44E-10 1.050 0.007 7.83E-11 1.040 0.008 3.67E-06 

  17:44224272_G_A 44224272 
  

-0.060 0.010 4.52E-09 0.961 0.007 7.77E-08 0.973 0.009 3.05E-03 

20 rs4810896 47535298 47511792 47914180 0.067 0.011 1.94E-10 1.060 0.008 3.22E-14 NA NA NA 

  rs2426132 47723127 
  

-0.062 0.010 1.54E-09 0.948 0.007 4.42E-13 0.972 0.010 4.95E-03 

Notes: The effect of conditioning of the index SNPs (highlighted in bold) on the independent significant SNPs was examined in EY+Res and not in Resilience due to the 

effects of the GBS manipulation. The effect of adding the index SNP as a covariate to the GWAS analysis diminished the effect of all the independent significant SNPs. 

aBeta/ OR = effect size of the A1 (minor) allele. 
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Table 4.3: Summary of Fine Mapping 

Index SNPs Independent Significant SNPs 

SNP Chr position P value start end SNP position P Value maf abeta se bprob clog10bf 

rs12474507 2 59988258 4.19E-08 59987310 59988258 rs12474507   4.19E-08 0.401 -0.057 0.010     

  3         rs35999162   4.75E-09 0.307 -0.065 0.011 0.001 -0.449 

  3 
    

rs1317140 
 

1.84E-10 0.320 0.069 0.011 0.002 -0.330 

rs2352974 3 49890613 9.27E-15 49385350 50250837 rs2352974 
 

9.27E-15 0.492 0.080 0.010 0.072 1.318 

  3 
    

rs2883059 
 

2.39E-10 0.428 0.065 0.010 0.000 -1.033 

  3 
    

rs7428430 
 

2.49E-14 0.487 -0.078 0.010 0.033 0.965 

  3 
    

rs2526389 
 

9.35E-11 0.425 0.067 0.010 0.002 -0.186 

  3 
    

rs1046953 
 

1.07E-10 0.415 -0.067 0.010 0.001 -0.644 

  3 
    

rs9858059 
 

2.88E-08 0.448 0.057 0.010 0.000 -1.102 

  4A          rs57672162   3.71E-08 0.171 -0.074 0.014 0.008 -0.492 

rs6857847 4A 89514572 4.99E-09 89455635 89612380 rs6857847   4.99E-09 0.193 -0.076 0.013 0.165 0.879 

rs2189234 4B 106075498 3.14E-12 106048360 106335951 rs2189234   3.14E-12 0.383 0.073 0.010 0.496 1.621 

  4B          rs2726485   8.27E-09 0.423 0.059 0.010 0.002 -1.158 

rs56335290 5A 112036634 2.59E-08 112015555 112176756 rs56335290 
 

2.59E-08 0.220 -0.068 0.012 0.838 0.758 

rs6870103 5B 139692515 4.03E-11 139517197 139714690 rs6870103 139692515 4.03E-11 0.450 0.068 0.010 0.059 0.464 

  5B          rs13186198 139652057 4.40E-11 0.44 0.068 0.01 0.059 0.465 

rs7747481 6 98315696 2.29E-08 98274701 98450190 rs7747481   2.29E-08 0.405 0.058 0.010 0.121 0.968 

rs2417261 12A 13414139 1.35E-08 13414139 13417617 rs2417261 13414139 1.35E-08 0.105 0.094 0.017 0.106 -0.879 

   12A         rs10772644 13417617 1.47E-08 0.11 0.093 0.016 0.526 0.092 

rs6580699 12B 49478812 1.29E-10 49387955 49479968 rs6580699   1.29E-10 0.434 -0.066 0.010 0.160 0.478 

rs1029388 12C 111926901 6.50E-09 111818487 112817847 rs1029388 111926901 6.50E-09 0.211 0.073 0.013 0.016 0.576 

  12C 
    

rs11065898 111862575 1.39E-08 0.21 0.07 0.012 0.054 1.132 

  12C          rs7953810 112029291 4.51E-08 0.21 0.068 0.012 0.021 0.710 

rs9569811 13 58646190 1.14E-08 58250322 58796832 rs9569811   1.14E-08 0.130 -0.086 0.015 0.160 0.397 

  17 
    

rs10775404 
 

1.35E-09 0.185 0.080 0.013 0.087 0.578 
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Index SNPs Independent Significant SNPs 

SNP Chr position P value start end SNP position P Value maf abeta se bprob clog10bf 

  17 
    

rs7225002 
 

2.44E-10 0.416 0.065 0.010 0.019 -0.114 

  17 
    

17:44224272_G_A 4.52E-09 0.452 -0.060 0.010 0.007 -0.556 

rs62074125 17 44852612 8.31E-11 44040184 44852612 rs62074125 
 

8.31E-11 0.253 -0.077 0.012 0.916 2.637 

rs4810896 20 47535298 1.94E-10 47511792 47914180 rs4810896 47535298 1.94E-10 0.366 0.067 0.011 0.004 -0.416 

  20 
    

rs2426132 47723127 1.54E-09 0.459 -0.062 0.010 0.011 0.075 

  20         rs1043361 47731158 7.09E-10 0.42 0.064 0.01 0.021 0.358 

Notes: Index SNPs are compared with independent significant SNPs for causality. SNPs other than independent SNPs having a higher bayes factor than the index SNPs are 

added in italics and their comparative positions are shown. abeta = effect of A1 (minor allele), bprob = the posterior probabilities that configurations are the causal 

configuration, clog10bf= the log10 Bayes factor. The Bayes factor quantifies the evidence for a causal configuration over the null configuration (no SNPs are causal). 
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4.2.3 Gene mapping 

Three approaches were used in FUMA to map the associated variants to genes: (a) Positional 

mapping SNPs to 141 genes based on their genomic location within a 10 kilobase window of 

known gene boundaries. (b) Expression quantitative trait (eQTL) analysis mapped 207 cis-

eQTL SNPs to genes whose expression they were associated with. (c) Chromatin interaction 

analysis using the 3D DNA to DNA interactions mapped SNPs to 243 genes. Circos plots for 

all loci are attached in Figure 4.16 to Figure 4.26.  

The circos plot from chromosome 3 shows that 102 genes were mapped to this region, 

representing 42% of the total genes mapped (I further explore the influence of this locus on 

the functional analysis in chapter 4). In addition, the circos plot from chromosome 17 shows 

two distinct clusters of SNPs. Genes in this region (MAPT, WNT3, CRHR1, KANSL1, and 

NSF) have been previously associated with general cognitive function but also with other 

cognitive indicators (Davies et al., 2018). Details of this gene mapping analysis is in 

Supplementary Table 9 (Fitzgerald et al., 2021).
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(a)                                                                                                         (b) 

  

Figure 4.16: Chromosome 2 circos plot showing mapped genes by eQTL and chromatin interactions   

Genomic loci are highlighted in blue. Orange represents genes that are mapped by chromatin interaction and green represents eQTL mapping. If genes are mapped by both, 

they are highlighted in red. The dark blue portion of the inner circles represents the loci. There are no mapped genes by eQTL and chromatin interactions on Chromosome 2. 

Figure (a) is the full chromosome. Figure (b) is an enlargement of the region in the box in figure 2a. 
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Figure 4.17: Chromosome 3 partial circos plot showing mapped genes by eQTL and chromatin interactions 

Genomic loci are highlighted in blue. Orange represents genes that are mapped by chromatin interaction and green represents eQTL mapping. If genes are mapped by both, 

they are highlighted in red. The dark blue portion of the inner circles represents the loci. All interactions are showed except for one chromatin interaction between RBM5 

3:50126341-50156454 to PBRM1 3:52579368-52719933.  
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(a)                                                                                                                   (b) 

  
Figure 4.18: Chromosome 4 circos plot showing mapped genes by eQTL and chromatin interactions 

Genomic loci are highlighted in blue. Orange represents genes that are mapped by chromatin interaction and green represents eQTL mapping. If genes are mapped by both, 

they are highlighted in red. The dark blue portion of the inner circles represents the loci. There are two loci associated with Resilience on chromosome 4 - locus 4A and 4B. 

Figure (a) shows the full circos plot for chromosome 4 and figure (b) is and enlargement of the locus 4A.  
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(a)                                                                                                          (b) 

 

Figure 4.19: Chromosome 4 circos plot showing mapped genes by eQTL and chromatin interactions 

Genomic loci are highlighted in blue. Orange represents genes that are mapped by chromatin interaction and green represents eQTL mapping. If genes are mapped by both, 

they are highlighted in red. The dark blue portion of the inner circles represents the loci. There are two loci associated with Resilience on chromosome 4 - locus 4A and 4B. F 

Figure (a) shows the full circos plot for chromosome 4 and figure (b) is and enlargement of the locus 4B. 
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(a)                                                                                                                            (b) 

 
Figure 4.19: Chromosome 5 circos plot showing mapped genes by eQTL and chromatin interactions 

Genomic loci are highlighted in blue. Orange represents genes that are mapped by chromatin interaction and green represents eQTL mapping. If genes are mapped by both, 

they are highlighted in red. The dark blue portion of the inner circles represents the loci. There are two loci associated with Resilience on chromosome 5 - locus 5A and 5B. 

This figure includes full circos plot of chromosome 5 (a) a partial circos plot of locus 5A (b). 
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(a)                                                                                                              (b) 

 

Figure 4.20: Chromosome 5 circos plot showing mapped genes by eQTL and chromatin interactions 

Genomic loci are highlighted in blue. Orange represents genes that are mapped by chromatin interaction and green represents eQTL mapping. If genes are mapped by both, 

they are highlighted in red. The dark blue portion of the inner circles represents the loci. There are two loci associated with Resilience on chromosome 5 - locus 5A and 5B. 

This figure includes full circos plot of chromosome 5 (a) a partial circos plot of locus 5B (b). 
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Figure 4.21: Partial circos plot showing locus 6 on chromosome 6 showing mapped genes by eQTL and chromatin interactions 

Genomic loci are highlighted in blue. Orange represents genes that are mapped by chromatin interaction and green represents eQTL mapping. If genes are mapped by both, 

they are highlighted in red. The dark blue portion of the inner circles represents the loci. 
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(a)                                                                                                                            (b) 

 

Figure 4.22: Chromosome 12 circos plot showing mapped genes by eQTL and chromatin interactions 

Genomic loci are highlighted in blue. Orange represents genes that are mapped by chromatin interaction and green represents eQTL mapping. If genes are mapped by both, 

they are highlighted in red. The dark blue portion of the inner circles represents the loci. There are three loci associated with Resilience on chromosome 12 - locus 12A,12B 

and 12C. This figure includes a full plot of all three loci (a) and a partial circos plot of 12A (rs2417261) and 12B (rs6580699) (b).  
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(a)                                                                                                         (b) 

 

Figure 4.23: Chromosome 12 circos plot showing mapped genes by eQTL and chromatin interactions. 

Genomic loci are highlighted in blue. Orange represents genes that are mapped by chromatin interaction and green represents eQTL mapping. If genes are mapped by both, 

they are highlighted in red. The dark blue portion of the inner circles represents the loci. There are three loci associated with Resilience on chromosome 12 - locus 12A,12B 

and 12C. This figure includes a full plot of all three loci (a) and a partial circos plot of 12C (b). 
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(a)                                                                          (b) 

  

Figure 4.24: Chromosome 13 circos plot showing mapped genes by eQTL and chromatin interactions 

Genomic loci are highlighted in blue. Orange represents genes that are mapped by chromatin interaction and green represents eQTL mapping. If genes are mapped by both, 

they are highlighted in red. The dark blue portion of the inner circles represents the loci (a). This figure includes a partial circos plot of 13 showing more detail (b).  
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Figure 4.25: Chromosome 17 partial circos plot showing mapped genes by eQTL and chromatin interactions  

Genomic loci are highlighted in blue. Orange represents genes that are mapped by chromatin interaction and green represents eQTL mapping. If genes are mapped by both, 

they are highlighted in red. The dark blue portion of the inner circles represents the loci. There is one interaction that is not included and that is a chromatin interaction 

between rs10775404 17:44224272 and HOXB 17:44605888 – 46683776. 
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Figure 4.26: Chromosome 20 circos plot showing mapped genes by eQTL and chromatin interactions 

Genomic loci are highlighted in blue. Orange represents genes that are mapped by chromatin interaction and green represents eQTL mapping. If genes are mapped by both, 

they are highlighted in red. The dark blue portion of the inner circles represents the loci. 
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4.2.4 Genome-wide gene-based association analysis (GWGAS)  

In addition to the three approaches above we also performed a genome-wide gene-based 

association analysis (GWGAS) using the MAGMA function within FUMA (Watanabe et al., 

2017), which looks at the aggregate association results of all SNPs in a gene in contrast to the 

previous analyses that examined the association signals at the level of individual SNPs. A 

GWGAS was performed using the Resilience GWAS on 18,879 protein-coding genes 

containing at least one SNP from the GWAS. Based on the number of genes tested, a 

Bonferroni-corrected threshold of P < 2.65 x 10-6 was used (see Q-Q plot of this association –

Figure 4.27). 

 

Figure 4.27: Q-Q plot of the gene-based test computed by MAGMA 

The x-axis illustrates the expected distribution of p-values from the association test across all SNPs, and the y-

axis shows the observed p-values. The genomic inflation factor (lambda) is 1.30. 

 

A total of 52 protein coding genes were identified as significantly associated (Table 4.4), 40 

of which were identified by the previously described strategies. A full list of results for all 

18,897 protein coding genes is in Supplementary Table 10 (Fitzgerald et al., 2021). 
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Table 4.4: Genes significantly associated with Resilience  

GENE Chr Start End nSNPs bZ stat P value Symbol 

ENSG00000164068 3 49726932 49758962 64 7.5392 2.36E-14 RNF123 

ENSG00000183763 3 49866034 49894007 45 7.5114 2.93E-14 TRAIP 

ENSG00000176095 3 49761727 49823975 135 7.4732 3.91E-14 IP6K1 

ENSG00000004534 3 49977440 50137478 321 7.4014 6.74E-14 RBM6 

ENSG00000164078 3 49924435 49941299 30 7.3465 1.02E-13 MST1R 

ENSG00000164076 3 49895421 49907655 20 7.1956 3.11E-13 CAMKV 

ENSG00000003756 3 50126341 50156454 35 7.1795 3.50E-13 RBM5 

ENSG00000187492 3 49828165 49837268 26 6.9757 1.52E-12 CDHR4 

ENSG00000228008 3 49941278 49954370 16 6.9327 2.06E-12 CTD-2330K9.3 

ENSG00000164077 3 49946302 49967606 32 6.9226 2.22E-12 MON1A 

ENSG00000181418 12 49388932 49393092 6 6.462 5.17E-11 DDN 

ENSG00000113068 5 139624624 139682706 107 6.4508 5.56E-11 PFDN1 

ENSG00000182179 3 49842640 49851379 16 6.4152 7.03E-11 UBA7 

ENSG00000001617 3 50192478 50226508 65 6.3309 1.22E-10 SEMA3F 

ENSG00000120306 5 139554227 139661637 236 6.0215 8.64E-10 CYSTM1 

ENSG00000124207 20 47662849 47713489 141 6.0163 8.92E-10 CSE1L 

ENSG00000145022 3 49449639 49453908 8 5.9428 1.40E-09 TCTA 

ENSG00000181929 12 49396057 49412980 18 5.9267 1.55E-09 PRKAG1 

ENSG00000167548 12 49412758 49453557 48 5.9137 1.67E-09 KMT2D 

ENSG00000124214 20 47729878 47804904 182 5.9119 1.69E-09 STAU1 

ENSG00000204842 12 111890018 112037480 199 5.6674 7.25E-09 ATXN2 

ENSG00000173402 3 49506146 49573048 118 5.633 8.85E-09 DAG1 

ENSG00000111252 12 111843752 111889427 56 5.624 9.33E-09 SH2B3 

ENSG00000233276 3 49394609 49396033 2 5.5844 1.17E-08 GPX1 

ENSG00000145020 3 49454211 49460186 8 5.5184 1.71E-08 AMT 

ENSG00000164061 3 49591922 49708978 201 5.432 2.79E-08 BSN 

ENSG00000164483 6 130465460 130686570 1090 5.3953 3.42E-08 SAMD3 

ENSG00000173531 3 49721380 49726934 7 5.3428 4.58E-08 MST1 

ENSG00000168769 4 106067032 106200973 361 5.3303 4.90E-08 TET2 

ENSG00000111271 12 112123857 112194903 96 5.1285 1.46E-07 ACAD10 

ENSG00000145029 3 49460379 49466759 6 5.1283 1.46E-07 NICN1 

ENSG00000257767 12 112191694 112229222 46 5.1068 1.64E-07 RP11-162P23.2 

ENSG00000089234 12 112079950 112123790 62 5.0607 2.09E-07 BRAP 

ENSG00000111275 12 112204691 112247782 57 5.0567 2.13E-07 ALDH2 

ENSG00000114349 3 50229045 50233949 3 5.0471 2.24E-07 GNAT1 

ENSG00000138641 4 89442199 89629693 486 5.0336 2.41E-07 HERC3 

ENSG00000138640 4 89647106 90032549 1224 5.0298 2.46E-07 FAM13A 

ENSG00000067560 3 49396578 49450431 107 4.9771 3.23E-07 RHOA 

ENSG00000124198 20 47538427 47653230 318 4.9599 3.53E-07 ARFGEF2 

ENSG00000089022 12 112279782 112334343 135 4.9066 4.63E-07 MAPKAPK5 

ENSG00000134569 11 46878419 46940193 123 4.7789 8.81E-07 LRP4 

ENSG00000165912 11 47199076 47207994 19 4.7726 9.09E-07 PACSIN3 

ENSG00000198270 12 112369086 112450970 177 4.7667 9.36E-07 TMEM116 
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GENE Chr Start End nSNPs bZ stat P value Symbol 

ENSG00000175216 11 46764598 46867847 178 4.7276 1.14E-06 CKAP5 

ENSG00000129158 11 17809595 18034709 410 4.7157 1.20E-06 SERGEF 

ENSG00000132535 17 7093209 7123021 56 4.6671 1.53E-06 DLG4 

ENSG00000149179 11 46958240 47185936 358 4.6491 1.67E-06 C11orf49 

ENSG00000100985 20 44637547 44645200 28 4.6029 2.08E-06 MMP9 

ENSG00000196141 2 201170604 201346986 466 4.5994 2.12E-06 SPATS2L 

ENSG00000165118 9 86553226 86571901 45 4.5751 2.38E-06 C9orf64 

ENSG00000138430 2 174937175 175113426 570 4.5657 2.49E-06 OLA1 

ENSG00000072778 17 7120444 7128592 14 4.5648 2.50E-06 ACADVL 

Note: Resilience GWAS SNPs were assigned to 18879 protein coding genes. Significant associations (P = 

0.05/18879 = 2.648e-6). anPARAM = the number of relevant parameters used in the model, bZ stat = the Z-value 

for the gene based on its p-value 

 

 In total, 33 genes were identified by all four mapping strategies (Figure 4.28 and Table 4.5).  

 

 

Figure 4.28: Venn diagram of overlapping mapped genes 

Showing 33 genes were mapped by all four strategies. These genes are listed underneath. 
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Table 4.5: Mapped genes by all 4 strategies- position, eQTL, chromatin interaction mapping and 

GWGAS. 

symbol Locus GWGAS 

P 

apos 

Map 

SNPs 

bpos Map 

Max CADD 

ceqtl 

Map 

SNPs 

dmin 

GWAS P 

SEMA3F 3 1.22E-10 43 19.09 435 9.27E-15 

RBM5 3 3.50E-13 33 18.47 262 9.27E-15 

RHOA 3 6.74E-14 38 19.22 369 9.27E-15 

MAPKAPK5 12C 3.23E-07 119 15.93 402 6.50E-09 

BRAP 12C 2.50E-06 21 11.71 395 6.50E-09 

SH2B3 12C 4.63E-07 34 21.4 209 6.50E-09 

ACAD10 12C 2.09E-07 45 11.71 322 6.50E-09 

ALDH2 12C 2.08E-06 26 14.56 400 6.50E-09 

PFDN1 5B 9.33E-09 56 14.14 89 4.03E-11 

GNAT1 3 1.46E-07 20 18.21 107 1.20E-14 

CYSTM1 5B 2.13E-07 68 16.53 88 4.03E-11 

CSE1L 20 5.56E-11 54 15.91 192 1.94E-10 

STAU1 20 2.24E-07 75 11.52 192 1.94E-10 

AMT 3 8.64E-10 10 19.06 460 9.27E-15 

TCTA 3 3.53E-07 11 19.06 399 9.27E-15 

NICN1 3 8.92E-10 12 19.06 456 9.27E-15 

BSN 3 1.69E-09 46 12.52 304 1.20E-14 

RNF123 3 1.20E-06 36 21 465 9.27E-15 

CAMKV 3 1.53E-06 24 18.51 410 9.27E-15 

MON1A 3 8.81E-07 27 13.15 340 9.27E-15 

MST1R 3 2.49E-06 21 18.51 465 9.27E-15 

TET2 4B 2.46E-07 26 13.4 61 3.14E-12 

DAG1 3 2.41E-07 35 15.6 258 9.27E-15 

MST1 3 1.71E-08 12 21 373 9.27E-15 

IP6K1 3 1.40E-09 86 17.96 385 9.27E-15 

DDN 12B 1.46E-07 8 10.57 34 1.29E-10 

PRKAG1 12B 1.67E-06 18 10.57 35 1.29E-10 

UBA7 3 2.79E-08 18 13.02 467 9.27E-15 

TRAIP 3 2.36E-14 37 17.61 115 9.27E-15 

TMEM116 12C 3.11E-13 72 17.1 402 6.50E-09 

ATXN2 12C 2.22E-12 99 18.59 287 6.50E-09 

CTD-2330K9.3 3 1.02E-13 20 13.15 419 9.27E-15 

GPX1 3 3.42E-08 11 19.22 399 9.27E-15 

Note: apos Map = positional mapping, bCADD = Combined Annotation-Dependent depletion score, ceqtl Map = 

eqtl mapping, dmin Gwas P = minimum GWAS P value of SNP(s)associated with the gene. 
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Many of these 33 genes have been connected with cognitive performance, neurodegenerative 

disorders or ageing and represent potential therapeutic targets: STAU1 (chr 20) and SEMA3F 

(chr 3) are predicted to control cognitive decline in ageing through formation of neural 

circuits and synaptic transmission (Tasaki et al., 2018). BSN (chr 3) codes for bassoon 

presynaptic cytomatrix protein which is implicated in the regulation of neurotransmitters at 

inhibitory and excitatory synapses (Annamneedi et al., 2018). IP6K1 (chr 3) codes for 

inositol pyrophosphate biosynthesis, and mouse studies have shown its involvement in short 

term memory by altering presynaptic vesicle release and short-term facilitation of 

glutamatergic synapses in the hippocampus (Kim et al., 2020). MST1 (chr 3) has been shown 

to play a role in protecting cells from oxidative stress which leads to ageing and eventual cell 

death (Wang et al., 2019). TET2 (chr 4) codes for ten eleven translocation methyl cytosine 

dioxygenase 2 which catalyses the production of 5-hydroxymethylcytosine and is associated 

with increased neurogenesis in the hippocampus and cognition in animal studies (Gontier et 

al., 2018). ATXN2 (chr 20) is involved in regulating mRNA and is linked to decline in 

cognitive function in older adults (Gardiner et al., 2019), general cognitive function (Davies 

et al., 2018) and neurodegenerative disorders (Lastres-Becker, Nonis, Nowock, & Auburger, 

2019). The ATXN2/BRAP locus has a strong association with parental lifespan (Timmers et 

al., 2019). Another mapped gene close to ATXN2 and BRAP is SH2B3, which encodes 

lymphocyte adaptor protein LNK, and plays a role in human ageing though the mechanism 

involved is not fully understood (Melzer, Pilling, & Ferrucci, 2020). The gene ALDH2 (chr 

12) codes for aldehyde dehydrogenase and there is a link between this enzyme and life span 

as well as cardiovascular ageing (Wu & Ren, 2019).  

Among the associated SNPs at the 33 prioritized genes are two UTR3 variants on 

chromosome 3 (rs2681781 (CADD=17.77) and rs4625 (CADD=15.6)) that map to RBM5 and 

DAG1 respectively. Animal studies have shown that RBM5 is a likely regulator of Rab4a, 

which in involved in many neurobiological functions including the transport of 

transmembrane proteins required for neurotransmission (Jackson, Kotermanski, & Kochanek, 

2017). DAG1 has been associated with increased cognitive performance and is associated 

with GABAergic signalling in the hippocampus (Panzanelli, Früh, & Fritschy, 2017). In 

addition, one other variant of note is rs1130146 that maps to DDX27 (chr 20), a gene that was 

mapped by all strategies except for GWGAS and is associated with longevity (McLaren et al., 

2016). This missense SNP has a CADD score of 31 and is predicted by SIFT to be deleterious 

and by PolyPhen to be possibly damaging.  
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4.2.5 Tissue, cell type and pathway enrichment analysis  

(See method section 2.1.10.1) 

4.2.5.1 Gene – tissue expression  

Using gene expression data for 53 tissues obtained from GTEx (Consortium, 2015), I found 

all brain regions to be significantly enriched for our associated genes with the strongest 

enrichments for the frontal cortex, BA9 (P = 2.26 x 10-11), the cortex (P = 8.48 x 10-11) and 

the cerebellar hemisphere (P = 1.18 x 10-10); (Figure 4.29, Figure 4.30). Table 4.6 shows the 

results for the 53 tissue types. There was no significant enrichment in other non-brain tissues 

of the body .  

 

Figure 4.29: MAGMA expression analysis across all tissue types. 

The y-axis shows the -log 10 transformed P-values of the GWGAS and the x-axis shows the tissue location. 

Significant associations are shown in red. 
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Table 4.6: Expression of mapped genes for the 53 tissue samples analysed. 

Tissue  Beta SE P value 

Brain_Frontal_Cortex_BA9 0.050 0.008 2.26E-11 

Brain_Cortex 0.050 0.008 8.48E-11 

Brain_Cerebellar_Hemisphere 0.042 0.007 1.81E-10 

Brain_Cerebellum 0.042 0.007 4.07E-10 

Brain_Anterior_cingulate_cortex_BA24 0.048 0.008 4.11E-10 

Brain_Nucleus_accumbens_basal_ganglia 0.046 0.008 1.73E-08 

Brain_Hypothalamus 0.047 0.009 5.38E-08 

Brain_Amygdala 0.044 0.009 1.01E-07 

Brain_Caudate_basal_ganglia 0.044 0.009 1.67E-07 

Brain_Hippocampus 0.043 0.009 3.04E-07 

Brain_Putamen_basal_ganglia 0.043 0.009 3.88E-07 

Brain_Substantia_nigra 0.036 0.009 6.71E-05 

Brain_Spinal_cord_cervical_c-1 0.023 0.009 7.98E-03 

Pituitary 0.012 0.010 1.05E-01 

Cells_EBV-transformed_lymphocytes 0.005 0.005 1.84E-01 

Muscle_Skeletal 0.002 0.008 3.83E-01 

Cells_Cultured_fibroblasts -0.001 0.007 5.49E-01 

Nerve_Tibial -0.002 0.011 5.70E-01 

Colon_Sigmoid -0.010 0.014 7.61E-01 

Ovary -0.011 0.011 8.46E-01 

Testis -0.007 0.006 8.82E-01 

Whole_Blood -0.008 0.006 8.99E-01 

Heart_Left_Ventricle -0.014 0.010 9.21E-01 

Esophagus_Muscularis -0.019 0.014 9.21E-01 

Skin_Not_Sun_Exposed_Suprapubic -0.012 0.008 9.24E-01 

Esophagus_Gastroesophageal_Junction -0.021 0.014 9.29E-01 

Adrenal_Gland -0.017 0.011 9.35E-01 

Skin_Sun_Exposed_Lower_leg -0.013 0.008 9.44E-01 

Artery_Tibial -0.021 0.011 9.70E-01 

Heart_Atrial_Appendage -0.020 0.010 9.72E-01 

Uterus -0.023 0.012 9.74E-01 

Esophagus_Mucosa -0.018 0.008 9.86E-01 

Pancreas -0.021 0.009 9.89E-01 

Cervix_Endocervix -0.029 0.013 9.90E-01 

Spleen -0.020 0.008 9.95E-01 

Cervix_Ectocervix -0.035 0.013 9.96E-01 

Liver -0.019 0.007 9.97E-01 

Artery_Aorta -0.032 0.011 9.98E-01 

Vagina -0.034 0.012 9.98E-01 

Colon_Transverse -0.040 0.013 9.99E-01 
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Tissue  Beta SE P value 

Thyroid -0.034 0.011 9.99E-01 

Kidney_Cortex -0.031 0.010 9.99E-01 

Prostate -0.044 0.013 1.00E+00 

Small_Intestine_Terminal_Ileum -0.036 0.010 1.00E+00 

Fallopian_Tube -0.045 0.013 1.00E+00 

Kidney_Medulla -0.035 0.010 1.00E+00 

Stomach -0.047 0.013 1.00E+00 

Artery_Coronary -0.048 0.013 1.00E+00 

Minor_Salivary_Gland -0.039 0.010 1.00E+00 

Bladder -0.056 0.014 1.00E+00 

Adipose_Subcutaneous -0.051 0.012 1.00E+00 

Adipose_Visceral_Omentum -0.060 0.012 1.00E+00 

Breast_Mammary_Tissue -0.068 0.014 1.00E+00 

Lung -0.047 0.010 1.00E+00 

Note: Total genes = 17234. Padj = 2.9E-6, significant associations are shown in bold. 
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Figure 4.30: Gene-tissue expression analysis based on GTEx RNA-seq data. 

The y-axis shows the -log 10 transformed P-values of the GWGAS and the x-axis shows the tissue type. Significant associations are shown in red.
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4.2.5.2 Gene-cell type expression 

Expression analysis at the cellular level was performed using datasets from the Human 

Prefrontal cortex by age (Zhong et al., 2018), the Human Cortex (Darmanis et al., 2015) and 

Linnarsson Mouse Brain Atlas (Zeisel et al., 2018). We analysed significant cell types across 

datasets, independent cell type associations based on within-dataset conditional analyses and 

pair-wise cross-datasets conditional analyses. Figure 4.31 and Table 4.7 show significant 

enrichments. For full analysis see Supplementary Tables 13 and 14 (Fitzgerald et al., 2021). 

These analyses identified four neuronal cell types to be enriched for our associated genes. For 

human data, these were neurons in the cortex (P = 2.16 x 10-6), and GW26 GABAergic 

neurons in the prefrontal cortex (P = 6.59 x 10-8). For mouse data, these were excitatory 

glutamatergic neurons in cortical pyramidal layer 5 of the cerebral cortex (TEGLU10; P = 

6.98 x 10-6) and excitatory glutamatergic/nitric oxide neurons in the tegmental reticular 

nucleus of the pons in the hindbrain (HBGLU8; P = 6.74 x 10-7). The enrichment in 

GABAergic neurons is interesting because there is growing evidence to suggest that 

impairment of the GABAergic system caused by ageing results in an imbalance in the 

inhibitory/excitatory process involved in the neuronal response to cellular challenges and 

environmental changes. This results in increased vulnerability to synaptopathy and cognitive 

decline (Rozycka & Liguz-Lecznar, 2017) . 

 

Figure 4.31: Independent cell type associations based on within-dataset conditional analyses. 

The y-axis shows the -log 10 transformed P-values of the GWGAS and the x-axis shows the cell type. 
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Table 4.7: Significant cell type associations across datasets.  

Dataset Cell_type Symbol Neurotransmitter SE P value 

GSE104276_Human_Prefrontal_cortex_per_ages  GW26_GABAergic_neurons 
  

0.012 6.59E-08 

Linnarsson_MouseBrainAtlas_level5 Excitatory neurons, 

hindbrain 

HBGLU8 VGLUT1VGLUT2 0.019 6.74E-07 

GSE67835_Human_Cortex neurons 
  

0.009 2.16E-06 

Linnarsson_MouseBrainAtlas_level5 Excitatory neurons, cerebral 

cortex 

TEGLU10 VGLUT1 0.035 6.98E-06 

Linnarsson_MouseBrainAtlas_level5 Excitatory neurons, hindbrain HBGLU7 VGLUT1VGLUT2 0.029 6.78E-07 

Linnarsson_MouseBrainAtlas_level5 Excitatory neurons, hindbrain HBGLU6 VGLUT1VGLUT2 0.029 1.54E-06 

Linnarsson_MouseBrainAtlas_level5 Inhibitory neurons, hindbrain HBINH5 GABAGly 0.036 1.80E-06 

Linnarsson_MouseBrainAtlas_level5 Excitatory neurons, hindbrain HBGLU9 VGLUT1VGLUT2 0.034 2.89E-06 

Linnarsson_MouseBrainAtlas_level5 Inhibitory neurons, hindbrain HBINH9 GABAGly 0.057 3.33E-06 

Linnarsson_MouseBrainAtlas_level5 Cholinergic neurons, hindbrain HBCHO2 VGLUT1VGLUT2ACh 0.026 6.30E-06 

Linnarsson_MouseBrainAtlas_level5 Excitatory neurons, hindbrain HBGLU1 VGLUT2VGLUT3 0.029 8.41E-06 

Linnarsson_MouseBrainAtlas_level5 Excitatory neurons, cerebral 

cortex 

TEGLU4 VGLUT1VGLUT2 0.039 1.55E-05 

Linnarsson_MouseBrainAtlas_level5 Cholinergic neurons, hindbrain HBCHO1 VGLUT1VGLUT2ACh 0.025 2.46E-05 

Linnarsson_MouseBrainAtlas_level5 Excitatory neurons, 

hippocampus CA1 

TEGLU21 VGLUT1 0.035 3.52E-05 

GSE104276_Human_Prefrontal_cortex_per_ages GW26 oligodendroxyte 

progenitor cell  

  
0.014 3.64E-05 

Linnarsson_MouseBrainAtlas_level5 Inhibitory neurons, hindbrain HBINH8 GABAGly 0.031 4.74E-05 

Linnarsson_MouseBrainAtlas_level5 Inhibitory neurons, hindbrain HBINH2 GABAGlyACh 0.026 8.92E-05 

GSE67835_Human_Cortex hybrid 
  

0.012 1.23E-04 

Linnarsson_MouseBrainAtlas_level5 Inhibitory neurons, hindbrain HBINH7 GABAGly 0.036 1.27E-04 

Notes: Associations of Resilience genes with individual cell types in three scRNA-seq datasets - human pre-frontal cortex, human cortex and the Linarrsson brain atlas. 

Datasets that survived conditional analysis within datasets are in bold. This table shows only significant associations. 



Chapter 4 

129 

 

4.2.5.3 Pathway enrichment analysis 

Gene-set analysis performed on curated gene sets and Gene Ontology (GO) (Ashburner et al., 

2000) terms using the full distribution of SNP P-values from the Resilience GWAS identified 

two GO terms to be significantly enriched after adjustment for multiple testing. These were 

the biological processes“ neuron differentiation” (P = 9.7 x 10-07) and the cellular component 

“synaptic part” (P = 2.14 x 10-06). Bi-directional conditional analysis using MAGMA 1.08 

(de Leeuw, Mooij, Heskes, & Posthuma, 2015) showed that these two annotations were 

independent of each other. (See Table 4.8 for top 10 enrichment GO terms). One term that 

was nominally significant for enrichment with a very large beta value was “Wnt 

signalosome”. There are 12 genes in this gene set, and I examined their P value in the 

GWGAS discussed in section 4.2.4. A total of 6 of the 12 genes had significant P values and 

three of these remained significant after correcting for multiple testing (Pbon=.0042) (See 

Table 4.9). Two of these genes are mapped in Resilience loci by eQTL analysis. The first is 

APC on locus 5A (Figure 4.19). The other is WNT3 on locus 17 (Figure 4.25). Deficient Wnt 

signalling is associated with loss of cognitive ability (Palomer, Buechler, & Salinas, 2019). 

This is discussed further in chapter 6. 

Table 4.8: MAGMA Gene-set Analysis 

VARIABLE N 

Genes 

Beta SE P value Conditional 

P value 

GO_bp:go_neuron_differentiation 1277 0.129 0.027 9.73E-07 7.97E-05 

GO_cc:go_synapse_part 890 0.146 0.032 2.14E-06 3.58E-05 

GO_bp:go_synaptic_vesicle_localization 156 0.328 0.073 3.25E-06   

GO_cc:go_synapse 1116 0.128 0.029 4.10E-06   

GO_bp:go_neuron_development 1040 0.133 0.030 4.27E-06   

GO_cc:go_wnt_signalosome 12 1.223 0.276 4.75E-06   

GO_bp:go_neurogenesis 1515 0.110 0.025 4.96E-06   

GO_bp:go_synaptic_signaling 681 0.158 0.036 6.50E-06   

GO_bp:go_signal_release 442 0.198 0.046 6.81E-06   

GO_bp:go_developmental_cell_growth 201 0.284 0.066 7.80E-06   

Note: Analysis is performed for curated gene sets and GO terms from MsigDB. Bidirectional conditional 

analysis in magma shows that both sets are independent. 
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Table 4.9: GWGAS P values for genes in the Wnt signalosome gene set 

Gene P value 

WNT2 6.16E-01 

ADGRA2 2.48E-01 

CTNNB1 1.45E-03** 

LRP5 1.34E-02* 

WNT3 1.53E-03** 

FZD1 9.06E-02 

RECK 3.18E-02* 

LRP6 1.27E-01 

DVL1 8.51E-01 

APC 1.23E-05** 

GSK3B 2.07E-01 

LRRK2 9.87E-03* 

*Nominally significant, **Significant (Pbon= 0.0042) 

      

4.2.6 Genetic correlations with other traits 

I compared our Resilience GWAS with recent published GWAS of cognitive phenotypes, 

psychiatric and neurological disorders, and global brain imaging phenotypes using LDSR 

analysis (see online methods 2.1.11). A moderate negative correlation of Resilience with 

intelligence (Savage et al., 2018) (rg= -0.26, P = 1.29 x 10-17) and educational attainment 

(Lee et al., 2018) (rg= -0.45, P = 1.64 x 10-56) is as expected given that the resilience 

phenotype was derived from individuals within the UKB that had lower than average 

education years. Of the 13-independent genome-wide significant SNPs for Resilience, 6 are 

associated with intelligence at genome-wide significant levels (P < 5 x 10-8) but the 

remaining 7 SNPs are not associated with intelligence (P > 0.01). This indicates that some of 

genetic basis of Resilience does not overlap fully with the genetics of intelligence. 

When genetic correlation analyses between Resilience and psychiatric phenotypes were 

corrected for multiple testing (Pbon < 2.4 x 10-3), Resilience had a small positive correlation 

with unipolar depression (Nagel et al., 2018) (rg = 0.17, P = 5.0 x 10-10), a small negative 

correlation with schizophrenia (Pardiñas et al., 2018) (rg = -0.18, P = 1.24 x 10-12) and bipolar 

disorder (Stahl et al., 2019) (rg = -0.17, P = 1.84 x 10-7), and a nominally significant negative 

correlation with neuroticism (Luciano et al., 2018) (rg= -0.07, P = 2.02 x 10-2). Examination 

of neurological disorders showed Resilience had a small nominally significant correlation 

with amyotrophic lateral sclerosis (ALS) (van Rheenen et al., 2016) (rg = -0.21, P= 1.44 x 10 

-2), stroke (Malik et al., 2018) (rg= 0.08, P = 1.89 x 10-2), and Parkinson’s disease (Nalls et 
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al., 2019) (rg = -0.08, P = 4.58 x 10-02), but Alzheimer’s disease (AD) (Jansen et al., 2019) 

was not significant (rg = 0.04, P=0.358), (Table 4.10 and Figure 4.32). Links to public studies 

are outlined in Table 2.6). 

Table 4.10: LD score regression analysis (LDSC) of cognitive, psychiatric, and neurological traits 

Symbol Trait N Z score  arg SE P value 

  Cognitive 
    

  

INT Intelligence 269867 -8.544 -0.258 0.030 1.29E-17 

EA Educational attainment 766345 -15.840 -0.452 0.029 1.64E-56 

  Psychiatric and 

Neurological 

    
  

ALS Amyotrophic lateral 

sclerosis 

36052 2.446 0.213 0.087 1.44E-02 

AD Alzheimer's Disease 455258 0.920 0.047 0.051 3.58E-01 

MDD Unipolar Depression 358000 6.219 0.173 0.028 4.99E-10 

SCZ Schizophrenia 105318 -7.101 -0.181 0.025 1.24E-12 

BIP Bipolar disorder 35802 -5.215 -0.179 0.034 1.84E-07 

PK Parkinson’s Disease 482730 -1.997 -0.079 0.039 4.58E-02 

STK Stroke 520000 1.870 0.084 0.045 1.89E-02 

NEU Neuroticism 329000 1.511 0.044 0.029 1.31E-01 

Note: arg =the genetic correction of the trait under examination and Resilience. P bon= 0.6E - 2   

 

The GWAS of 11 brain phenotypes from the UKB (Smith et al., 2020) were examined by 

LDSC for genetic correlation with the Resilience (Table 4.11 and Figure 4.32). The volume 

of global white and grey matter and cerebral white matter in the left and right hemisphere 

were examined based on the relationship between brain volumes and cognition (Nave, Jung, 

Karlsson Linnér, Kable, & Koellinger, 2019). Volume of cerebrospinal fluid was included 

based of its documented association with brain atrophy (Orellana et al., 2016) and the 

hippocampus, amygdala and nucleus accumbens were examined as moderators of cognitive 

function (Lisman et al., 2017) (Floresco, 2015). After adjusting for multiple testing (Pbon= 2.4 

x 10-3), the only significant correlations found were for white matter volumes where a small 

positive correlation was found between Resilience and global white matter volume (rg = 0.14, 

P = 1.19 x 10-3), and the volume of cerebral white matter in the left (rg = 0.148, P = 1.74 x 10-

03) and right hemisphere (rg = 0.160, P = 7.34 x 10-04). 
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Table 4.11: LDSC of brain imaging phenotypes 

Volume c ref drg SE P value 

ventricular cerebrospinal fluid a 3 -0.11 0.05 2.27E-02 

grey matter a 5 0.03 0.05 5.16E-01 

white matter a 7 0.15 0.05 1.19E-03 

left hippocampus  19 0.02 0.05 6.63E-01 

right hippocampus  20 0.11 0.06 7.83E-02 

left amygdala  21 0.09 0.06 1.14E-01 

right amygdala  22 0.03 0.07 6.51E-01 

left accumbens  23 0.04 0.06 5.24E-01 

right accumbens 24 0.06 0.06 3.58E-01 

cerebral white matter in the left hemisphere b 190 0.15 0.05 1.74E-03 

cerebral white matter in the right hemisphereb 207 0.16 0.05 7.34E-04 

Note: a = normalised for head size, b = generated by subcortical volumetric segmentation. P bon= 3.0E-3. 

Significant results highlighted in bold. cref = Reference of the imaging variable in the Oxford Brain Imaging 

Genetics Server - BIG40 atlas. drg =the genetic correction of the trait under examination and Resilience. 
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Figure 4.32: Genetic correlation with cognitive traits, psychiatric and brain disorders, and brain imaging 

Significant P values corrected for multiple testing are in bold. *Normalised for head size, **generated by 

subcortical volumetric segmentation. 

   

The correlations of cognitive and psychiatric and neurological disorders are largely supported 

by gene enrichment analysis of the genes associated with Resilience here and previous 
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GWAS of cognitive and psychiatric phenotypes. An analysis of published research from the 

GWAS catalog (Buniello et al., 2019) showed that the significant SNPs found in this study 

were previously cited 294 times. A total of 47% of these citations were from studies of 

cognitive phenotypes (educational attainment, cognitive ability, maths ability and RT) and 

5% were from studies of psychiatric disorders (Table 4.12).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4 

135 

 

Table 4.12: Resilience SNPs overlapping in published research in GWAS catalog. 

independent sig SNP Locus N 

studies 

Trait 

rs12474507 2 1 Reaction time 

rs35999162 3 6 Cognition/intelligence 

rs2352974 3 4 Cognition/intelligence 

rs1317140 3 3 Cognition/intelligence 

rs2883059 3 3 Cognition/intelligence 

rs7428430 3 4 Cognition/intelligence 

rs1046953 3 1 Cognition/intelligence 

rs2526389 3 3 Cognition/intelligence 

rs9858059 3 2 Cognition/intelligence 

rs35999162 3 3 Math ability 

rs2526389 3 3 Math ability 

rs57672162 4A 1 Reaction time 

rs6857847 4A 1 Reaction time 

rs2189234 4B 3 Cognition/intelligence 

rs2726485 4B 4 Cognition/intelligence 

rs2189234 4B 1 Extremely high intelligence 

rs2726485 4B 1 Math ability 

rs2189234 4B 1 Reaction time 

rs56335290 5A 1 Reaction time 

rs6870103 5B 4 Cognition/intelligence 

rs6870103 5B 1 Educational attainment  

rs6870103 5B 1 Math ability 

rs6870103 5B 1 Reaction time 

rs7747481 6 4 Cognition/intelligence 

rs7747481 6 1 Educational attainment  

rs2417261 12A 3 Educational attainment  

rs6580699 12B 5 Cognition/intelligence 

rs6580699 12B 2 Educational attainment  

rs6580699 12B 2 Math ability 

rs6580699 12B 1 Reaction time 

rs1029388 12C 2 Reaction time 

rs10775404 17 1 Reaction time 

17:44224272_G_A 17 1 Reaction time 

rs7225002 17 1 Reaction time 

rs62074125 17 1 Reaction time 

rs4810896 20 3 Cognition/intelligence 

rs2426132 20 5 Cognition/intelligence 

rs4810896 20 2 Educational attainment  

rs2426132 20 1 Educational attainment  

rs4810896 20 1 Reaction time 
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In addition, when this exercise was repeated for overlapping mapped genes, I found that there 

was considerable overlap with these phenotypes amongst others. The most significant overlap 

was where 40 mapped genes in the Resilience analysis overlapped with the 99 reported genes 

for short sleep duration (P= 2.03 x 10-57). In a recent Mendelian randomisation study on sleep 

duration it was suggested that sleep duration may represent a potential causal pathway for 

differences in cognitive ability (Henry et al., 2019) and increased sleep in adults over 60 is 

associated with poorer cognitive function (Low, Wu, & Spira, 2019). There was also a 

significant overlap with genes associated with extremely high intelligence (Coleman et al., 

2019) where 32 Resilience mapped genes overlapped with the 81 associated genes reported in 

that study (P = 1.17 x 10-45). Many of the overlapping genes for sleep duration and extremely 

high intelligence were on chromosome 3 (Table 4.13 and Supplementary Table 19 (Fitzgerald 

et al., 2021)). 

Table 4.13: Genetic overlap of gene enrichment 

GeneSet n 

Genes 

n 

overlap 

adjusted P 

value 

Sleep duration (short sleep) 99 40 3.68E-54 

Extremely high intelligence 81 32 1.06E-42 

Ulcerative colitis 366 43 1.85E-33 

Regular attendance at a religious group 78 26 2.80E-32 

Inflammatory bowel disease 640 49 8.12E-30 

Crohn's disease 600 47 5.06E-29 

Body mass index 1358 63 9.39E-27 

Intelligence  313 35 1.70E-26 

General cognitive ability 242 31 3.51E-25 

Regular attendance at sports club 42 18 1.13E-24 

Reaction time 49 18 3.18E-23 

Mood instability 61 14 1.31E-14 

Blood protein levels 1776 53 6.70E-14 

Cognitive function 85 14 1.59E-12 

Handedness  10 7 3.62E-11 

Alcohol use disorder  39 10 7.85E-11 

Handedness  12 7 2.08E-10 

Response to alcohol consumption  13 7 4.22E-10 

Note: This table shows the top 18 of 86 associations. For the full list see Supplementary Table 19 (Fitzgerald et 

al., 2021). 
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4.2.7 Mendelian randomisation 

To investigate whether genetic correlations reflected causal effects, I examined the potential 

credible causality of the relationship between Resilience and phenotypes where independent 

samples were available using Generalised Summary statistics-based Mendelian 

Randomisation (Zhu et al., 2018) (GSMR) (Table 4.14 and Section 2.1.12). I observed a 

significant bidirectional causal effect of Resilience on schizophrenia (bxy = -0.25, P = 7.02 x 

10-9) and schizophrenia on Resilience (bxy = -0.07, P = 3.80 x 10-7) indicating an inter-

relationship between the two phenotypes. By contrast, bipolar disorder and ALS did not have 

significant credible causality relationships with Resilience.  

GSMR analysis was also performed using white matter volume variables and Resilience. To 

maintain independence between GWAS datasets, I used the discovery.Resilience GWAS that 

did not include UKB participants with imaging data. The low level of independent significant 

SNPs in the discovery GWAS did not allow for analysis of the causal effect of Resilience on 

white matter. A nominally significant causal association of white matter volume with 

Resilience was detected (bxy = 0.13, P = 0.049) along with causal associations of left and right 

cerebral hemisphere white matter volume with Resilience. The association with the right 

hemisphere survived multiple test correction (left: bxy = 0.15, P = 0.005; right: bxy = 0.17, P = 

0.002). There is no evidence of substantial pleiotropy in the GSMR analysis.
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Table 4.14: Generalised Summary data based Mendelian Randomisation. 

Exposure Outcome abxy se p bNSNP N SNPS 

filtered 

by 
cHEIDI 

Pleiotropic 

SNPs 

Resilience White matter nan nan nan nan 44 0 

White matter Resilience 0.13 0.07 4.90E-02 9 

Resilience Cerebral white matter (left) nan nan nan nan 1 0 

Cerebral white matter (left) Resilience 0.15 0.05 5.12E-03 12 

Resilience Cerebral white matter (right) nan nan nan nan 1 0 

Cerebral white matter 

(right) 

Resilience 0.17 0.05 1.96E-03 12 

Resilience Amyotrophic lateral sclerosis -0.01 0.08 9.43E-01 13 0 0 

Amyotrophic lateral 

sclerosis 

Resilience nan nan nan nan 

Resilience Schizophrenia -0.25 0.04 7.02E-09 13 2 5 

Schizophrenia Resilience -0.07 0.01 3.80E-07 152 

Resilience Bipolar disorder -0.05 0.06 4.12E-01 12 0 1 

Bipolar disorder Resilience 0.00 0.04 9.92E-01 13 

Note: Bidirectional GSMR results with various phenotypes and Resilience. abxy = the estimate effect coefficient, bNSNP = Number of independent significant SNPs after 

clumping, cHEIDI = is an outlier method to remove horizontal pleiotropic SNPs, dnan= not applicable as NSNP is less that the threshold value, P bon= 4.2E-3. Significant 

results highlighted in bold.
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4.3 Conclusion 

I have successfully identified 13 independent genome-wide significant loci resulting in 366 

mapped genes and 33 prioritized genes for Resilience. Functional analysis showed significant 

expression of associated genes in all brain tissues, and particularly in the frontal cortex. 

Significant enrichment of associated genes was also found at the cellular level in both 

GABAergic and glutamatergic neurons indicating an excitatory/inhibitory control in the 

prefrontal cortex, and within biological processes related to neuron differentiation and 

synaptic activity.  

Mapping of GWAS results identified genes that have been previously associated with 

cognitive decline including STAU1, SEMF3A, IP6K1, MST1, the ATNX2/BRAP locus, 

ALDH2 and DDX27, where a likely functional missense variant is highly associated. Other 

associated genes involved with synaptic activity and neurogenesis include BNS, DAG1, 

IP6K1 and TET2, pointing to potential targets for improvement of cognitive resilience.  

On completion of this analysis, I performed ad hoc analysis to satisfy questions arising from 

this analysis.  

• Am I detecting a true Resilience variation, or a variation based solely on high/low 

RT? 

• Almost 30% of the mapped genes and over 50% of prioritized genes can be attributed 

to a single large locus on chromosome 3. Could the size of this locus have an undue 

influence on the functional analysis findings? 

• Is it possible, given the lack of current genetic data on cognitive change in ageing to 

replicate these findings in other datasets? 

I explore these questions in Chapter 5. 
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5 Ad hoc testing to explore GWAS of Resilience. 

5.1 Introduction:  

In Chapter 3, I described how I created a cognitive resilience variable using the UKB and 

extracted the SNPs that were associated with Resilience and in Chapter 4, I outlined 

functional analysis processes to help identify the biology behind cognitive resilience. In this 

chapter I further probe three questions that arose from this analysis to strengthen our findings. 

These are as follows: 

• What role does RT play in Resilience? 

• Does the large locus on chromosome 3 unduly influence the functional analysis? 

• Can findings be replicated in a longitudinal sample without using proxy measures for 

past cognitive performance? 

 

5.2 Analysis 

 

5.2.1 Examination of the relationship of Resilience with RT 

Given the strong positive correlation of Resilience with RT (rg = 0.80) a possible concern was 

that I was just identifying genetic associations with RT that are independent of EY. To 

examine this further I performed a functional analysis on a GWAS of a dichotomised RT 

phenotype using all suitable participants in the UKB (n=333,664). This GWAS was perfectly 

correlated (rg = 1, P = 7.24 x 10-115) with a previously published GWAS where RT was 

studied as a quantitative phenotype (Davies et al., 2018). However, when I compared results 

for the 13 index SNPs in the Resilience GWAS in a similar sized GWAS of RT as a stand-

alone phenotype only one of the 13 SNPs was itself genome-wide significant for RT and just 

three others were associated at P < 1 x 10-4 (Table 5.1). I compared the Resilience GWAS to 

both dichotomised and quantitative RT phenotypes. 
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Table 5.1: Comparison of the thirteen index SNPs associated with Resilience in GWAS of RT 

  Resilience aNeff = 111316 RT n=164000 

(dichotomised) 

RT n=165224 

(continuous) 

RT n=333,664 

(dichotomised) 

Davies low RT n=330,069 

(continuous) 

SNP Chr A1 A2 Beta P OR P Beta P OR P A1 A2 Beta P 

rs1029388 12 C T 0.07 6.50E-09 1.04 6.22E-06 -0.007 2.35E-08 1.040 8.84E-11 C T -0.012 3.01E-11 

rs12474507 2 T C -0.06 4.19E-08 0.98 7.89E-04 0.005 1.43E-05 0.971 8.66E-09 T C 0.011 6.44E-11 

rs2189234 4 T G 0.07 3.14E-12 1.02 1.72E-03 -0.005 1.74E-06 1.030 7.63E-09 G T 0.008 2.13E-06 

rs2352974 3 T C 0.08 9.27E-15 1.02 6.38E-03 -0.002 2.82E-02 1.016 1.90E-03 T C -0.006 8.48E-04 

rs2417261 12 T G 0.09 1.35E-08 1.03 1.71E-02 -0.006 1.56E-03 1.039 2.11E-06 G T 0.006 1.09E-03 

rs4810896 20 A C 0.07 1.94E-10 1.03 3.67E-04 -0.004 1.54E-04 1.026 7.81E-07 C A 0.008 4.57E-06 

rs56335290 5 A C -0.07 2.59E-08 0.97 2.33E-03 0.006 1.52E-05 0.968 3.80E-08 A C 0.012 1.97E-12 

rs62074125 17 C A -0.08 8.31E-11 0.95 7.54E-09 0.007 1.12E-08 0.960 8.45E-13 C A 0.012 5.28E-12 

rs6580699 12 G T -0.07 1.29E-10 0.97 7.71E-05 0.005 2.76E-05 0.971 5.55E-09 G T 0.011 5.06E-11 

rs6857847 4 A G -0.08 4.99E-09 0.96 3.46E-05 0.005 2.06E-04 0.962 8.06E-10 A G 0.008 3.46E-06 

rs6870103 5 G T 0.07 4.03E-11 1.02 1.29E-03 -0.004 3.76E-04 1.031 7.30E-10 T G 0.010 1.88E-09 

rs7747481 6 T C 0.06 2.29E-08 1.01 9.45E-02 -0.001 4.42E-01 1.011 2.75E-02 T C -0.006 1.15E-03 

rs9569811 13 A C -0.09 1.14E-08 0.97 2.62E-03 0.003 3.57E-02 0.963 2.13E-07 A C 0.007 1.87E-05 

Note: I compared Resilience with RT output at a similar sample size and a full sample size using both dichotomised (case/control) variables and continuous variables. I also 

compared Resilience with a published GWAS (Davies et al., 2018).  
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5.2.1.1 Functional analysis (see method section 2.1.9. Identical settings were used to in 

this analysis to functional analysis of Resilience) 

To examine this further I performed a functional analysis on a dichotomised RT GWAS of all 

suitable participants in the UKB (n=333,664) and found that while nine of the 13 loci 

identified in the Resilience GWAS overlapped with RT, five loci did not match (Table 5.2). 

Table 5.2: Genetic loci overlap between RT and Resilience. 

Resilience 

locus 

SNP position P value in 

Resilience 

n 

SNPs 

Matched 

with RT 

2 rs12474507 59988258 4.19E-08 2 No 

3 rs2352974 49890613 9.27E-15 568 No 

4A rs6857847 89514572 4.99E-09 76 Yes 

4B rs2189234 106075498 3.14E-12 92 Yes 

5A rs56335290 112036634 2.59E-08 4 Yes 

5B rs6870103 139692515 4.03E-11 104 Yes 

6 rs7747481 98315696 2.29E-08 135 No 

12A rs2417261 13414139 1.35E-08 4 Yes 

12B rs6580699 49478812 1.29E-10 44 Yes 

12C rs1029388 111926901 6.50E-09 456 Yes 

13 rs9569811 58646190 1.14E-08 64 Yes 

17 rs62074125 44852612 8.31E-11 155 Yes 

20 rs4810896 47535298 1.94E-10 218 No 

Note: Column 6 shows the nine index SNPs in Resilience that were also significant in RT and the five that were 

not significant. 

There was a total of 534 mapped genes for RT and 366 for Resilience. Of these, 301 were 

unique to RT and 133 unique to Resilience. There were 223 shared genes (Figure 5.1). 

 

Figure 5.1: Venn diagram of overlap between mapped genes of Resilience and RT 
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 In addition, examination of prioritized genes using the four strategies in 2.1.9 showed 27 

prioritised genes for RT only 11 of whom overlapped with the 33 prioritized genes for 

Resilience (Figure 5.2 (a) and (b) and Table 5.3).              

(a)                                                     (b) 

 

Figure 5.2: Prioritised genes for RT and their overlap with prioritised genes for Resilience 

(a) Twenty-seven prioritised genes in RT of which (b) eleven overlap with prioritised genes for Resilience. 
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Table 5.3: Prioritized genes in RT and Resilience. 

RT Resilience 

ACAD10 ACAD10 

ALDH2 ALDH2 

ARFGAP2 AMT 

ARHGAP1 ATXN2 

ATXN2 BRAP 

BRAP BSN 

C11orf49 CAMKV 

C9orf64 CSE1L 

CUX2 CTD-2330K9.3 

CYSTM1 CYSTM1 

DDN DAG1 

DYNC1I2 DDN 

F2 GNAT1 

FDXR GPX1 

GRIN2C IP6K1 

LRP4 MAPKAPK5 

MAPKAPK5 MON1A 

METAP1D MST1 

PFDN1 MST1R 

PRKAG1 NICN1 

SAMD3 PFDN1 

SH2B3 PRKAG1 

SPATS2L RBM5 

TMEM104 RHOA 

TMEM116 RNF123 

TMEM200A SEMA3F 

ZNF408 SH2B3 
 

STAU1 
 

TCTA 
 

TET2 
 

TMEM116 
 

TRAIP 
 

UBA7 

Note: Shared genes highlighted in red 
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5.2.1.2 Pathway enrichment analysis: (Method section 2.1.10.1) 

Pathway enrichment analysis identified shared biological processes between RT and 

Resilience associated with synaptic activity (for example the cellular component “synaptic 

part” (RT: P = 2.2 x 10-07; Resilience P = 2.14 x 10-06) but also showed pathways related to 

neuronal processes that are only significant in Resilience (Table 5.4). 

Table 5.4: Comparison of GO terms between Resilience and RT. 

RT GO term P Resilience GO term P 

synapse part 2.20E-07 neuron differentiation 9.73E-07 

synapse  2.08E-06 synaptic part  2.14E-06 

postsynapse 2.32E-06 synaptic vesicle 

localization 

3.25E-06 

wnt signalosome 3.78E-06 synapse  4.10E-06 

intrinsic component of post synaptic 

membrane 

7.13E-06 neuron development 4.27E-06 

inhibitory extracellular ligand gated ion 

channel activity 

8.10E-06 wnt signalosome 4.75E-06 

presynapse 1.38E-05 neurogenesis 4.96E-06 

neuromuscular process controlling balance 1.60E-05 synaptic signalling 6.50E-06 

mesenchymal stem cell differentiation 1.61E-05 signal release 6.81E-06 

postsynaptic specialization membrane 2.20E-05 development cell 

growth 

7.80E-06 

Note: Shared biological processes are in bold 

5.2.1.3 Tissue and cell type enrichment analysis (Method section 2.1.10.1) 

Analysis of tissue and cell type enrichment analysis for RT showed similar findings to those 

of the Resilience GWAS where tissues from global brain regions showed significant 

enrichment with the strongest enrichments for the frontal cortex, BA9 (P = 5.05 x 10-12), and 

the cortex (P = 2.44 x 10-11) (Table 5.5). Both GWAS showed enrichment of GW26 

GABAergic neurons in the prefrontal cortex (RT: P = 7.5 x 10-8; Resilience P = 6.59 x 10-8) 

and excitatory glutamatergic neurons in cortical pyramidal layer 5 of the cerebral cortex (RT: 

P = 2.0 x 10-5; Resilience P = 6.98 x 10-6). Both phenotypes were significantly enriched for 

cells in the hindbrain whereas RT shows enrichment of cholinergic neurons in the medulla (P 

= 1.1 x 10-5), Resilience shows enrichment of glutamatergic/nitric oxide neurons in the 

tegmental reticular nucleus of the pons (Figure 5.3). 
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Table 5.5: Comparison of tissue enrichment of Resilience and RT  
Resilience RT 

Tissue  Beta SE P value Beta SE P value 

Brain_Frontal_Cortex_BA9 0.050 0.008 2.26E-11 0.051 0.007 5.05E-12 

Brain_Cortex 0.050 0.008 8.48E-11 0.051 0.008 2.44E-11 

Brain_Cerebellar_Hemisphere 0.042 0.007 1.81E-10 0.040 0.007 8.65E-10 

Brain_Cerebellum 0.042 0.007 4.07E-10 0.040 0.007 3.27E-09 

Brain_Anterior_cingulate_cortex_BA24 0.048 0.008 4.11E-10 0.047 0.008 9.64E-10 

Brain_Nucleus_accumbens_basal_ganglia 0.046 0.008 1.73E-08 0.042 0.008 1.69E-07 

Brain_Hypothalamus 0.047 0.009 5.38E-08 0.043 0.009 5.00E-07 

Brain_Amygdala 0.044 0.009 1.01E-07 0.040 0.009 1.14E-06 

Brain_Caudate_basal_ganglia 0.044 0.009 1.67E-07 0.041 0.009 8.27E-07 

Brain_Hippocampus 0.043 0.009 3.04E-07 0.043 0.009 3.41E-07 

Brain_Putamen_basal_ganglia 0.043 0.009 3.88E-07 0.041 0.009 7.84E-07 

Brain_Substantia_nigra 0.036 0.009 6.71E-05 0.036 0.009 7.04E-05 

Brain_Spinal_cord_cervical_c-1 0.023 0.009 7.98E-03 0.024 0.009 5.25E-03 

Pituitary 0.012 0.010 1.05E-01 0.010 0.010 1.57E-01 

Cells_EBV-transformed_lymphocytes 0.005 0.005 1.84E-01 0.003 0.005 2.72E-01 

Muscle_Skeletal 0.002 0.008 3.83E-01 0.006 0.008 2.03E-01 

Cells_Cultured_fibroblasts -0.001 0.007 5.49E-01 -0.006 0.007 7.99E-01 

Nerve_Tibial -0.002 0.011 5.70E-01 -0.015 0.011 9.16E-01 

Colon_Sigmoid -0.010 0.014 7.61E-01 -0.015 0.014 8.67E-01 
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Resilience RT 

Tissue  Beta SE P value Beta SE P value 

Ovary -0.011 0.011 8.46E-01 -0.023 0.011 9.85E-01 

Testis -0.007 0.006 8.82E-01 -0.006 0.006 8.38E-01 

Whole_Blood -0.008 0.006 8.99E-01 -0.002 0.006 6.54E-01 

Heart_Left_Ventricle -0.014 0.010 9.21E-01 -0.010 0.010 8.54E-01 

Esophagus_Muscularis -0.019 0.014 9.21E-01 -0.032 0.014 9.91E-01 

Skin_Not_Sun_Exposed_Suprapubic -0.012 0.008 9.24E-01 -0.005 0.008 7.32E-01 

Esophagus_Gastroesophageal_Junction -0.021 0.014 9.29E-01 -0.035 0.014 9.94E-01 

Adrenal_Gland -0.017 0.011 9.35E-01 -0.022 0.011 9.79E-01 

Skin_Sun_Exposed_Lower_leg -0.013 0.008 9.44E-01 -0.006 0.008 7.53E-01 

Artery_Tibial -0.021 0.011 9.70E-01 -0.013 0.011 8.85E-01 

Heart_Atrial_Appendage -0.020 0.010 9.72E-01 -0.022 0.010 9.83E-01 

Uterus -0.023 0.012 9.74E-01 -0.027 0.012 9.88E-01 

Esophagus_Mucosa -0.018 0.008 9.86E-01 -0.023 0.008 9.98E-01 

Pancreas -0.021 0.009 9.89E-01 -0.021 0.009 9.88E-01 

Cervix_Endocervix -0.029 0.013 9.90E-01 -0.037 0.013 9.98E-01 

Spleen -0.020 0.008 9.95E-01 -0.013 0.008 9.53E-01 

Cervix_Ectocervix -0.035 0.013 9.96E-01 -0.046 0.013 1.00E+00 

Liver -0.019 0.007 9.97E-01 -0.017 0.007 9.93E-01 

Artery_Aorta -0.032 0.011 9.98E-01 -0.023 0.011 9.80E-01 

Vagina -0.034 0.012 9.98E-01 -0.041 0.012 1.00E+00 

Colon_Transverse -0.040 0.013 9.99E-01 -0.037 0.013 9.98E-01 

Thyroid -0.034 0.011 9.99E-01 -0.027 0.010 9.96E-01 

Kidney_Cortex -0.031 0.010 9.99E-01 -0.028 0.010 9.98E-01 

Prostate -0.044 0.013 1.00E+00 -0.038 0.013 9.98E-01 

Small_Intestine_Terminal_Ileum -0.036 0.010 1.00E+00 -0.032 0.010 9.99E-01 

Fallopian_Tube -0.045 0.013 1.00E+00 -0.056 0.013 1.00E+00 

Kidney_Medulla -0.035 0.010 1.00E+00 -0.028 0.010 9.97E-01 



Chapter 5 

148 

 

 
Resilience RT 

Tissue  Beta SE P value Beta SE P value 

Stomach -0.047 0.013 1.00E+00 -0.043 0.013 1.00E+00 

Artery_Coronary -0.048 0.013 1.00E+00 -0.047 0.013 1.00E+00 

Minor_Salivary_Gland -0.039 0.010 1.00E+00 -0.032 0.010 9.99E-01 

Bladder -0.056 0.014 1.00E+00 -0.057 0.014 1.00E+00 

Adipose_Subcutaneous -0.051 0.012 1.00E+00 -0.046 0.012 1.00E+00 

Adipose_Visceral_Omentum -0.060 0.012 1.00E+00 -0.063 0.012 1.00E+00 

Breast_Mammary_Tissue -0.068 0.014 1.00E+00 -0.067 0.014 1.00E+00 

Lung -0.047 0.010 1.00E+00 -0.040 0.010 1.00E+00 

Total genes = 17234.Padj = 2.9E-6, significant associations are shown in bold 
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(a)                                (b)                                         

  

Figure 5.3: Comparison of single cell enrichment 

Note: (a) Resilience (b) RT. The y-axis shows the -log 10 transformed P-values of the GWGAS and the x-axis 

shows the cell type. 

 

5.2.1.4 LD regression analysis 

LD score regression analysis showed a positive correlation for RT with cognitive phenotypes 

(Intelligence: rg= 0.18, P = 1.87 x 10-11; Educational attainment: rg= 0.12, P = 9.54 x 10-7) 

which contrasts with that of Resilience. The RT GWAS was performed on all suitable 

individuals in the UKB, whereas the Resilience GWAS was generated from individuals with 

lower-than-average EA. Examining correlations with psychiatric and neurological 

phenotypes shows a significant small negative correlation with schizophrenia (rg= -0.19, P = 

1.89 x 10-14) and bipolar disorder (rg= -0.10, P = 2.53 x 10-3). Resilience had a similar 

correlation with schizophrenia and a larger negative correlation with bipolar disorder. 

Unipolar depression was not significantly correlated with RT (rg = -0.03, P = 2.59x 10-1) 

whereas it showed positive correlation with Resilience (for a comparison of this analysis see 

Table 5.6). 
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Table 5.6: Comparison of LDSR between Resilience and RT for cognitive, psychiatric, and neurological phenotypes   
Resilience Reaction time 

Trait N Symbol Z score  arg SE P value Z score  arg SE P value 

Cognitive 
     

          

Intelligence 269867 INT -8.54 -0.26 0.03 1.29E-17 6.72 0.18 0.03 1.87E-11 

Educational attainment 766345 EA -15.84 -0.45 0.03 1.64E-56 4.90 0.12 0.02 9.54E-07 

Psychiatric and Neurological 
     

  
   

  

Amyotrophic lateral sclerosis 36052 ALS 2.45 0.21 0.09 1.44E-02 1.36 0.12 0.09 1.73E-01 

Alzheimer's Disease 455258 AD 0.92 0.05 0.05 3.58E-01 -2.16 -0.11 0.05 3.05E-02 

Unipolar Depression 358000 MDD 6.22 0.17 0.03 4.99E-10 -1.13 -0.03 0.03 2.59E-01 

Schizophrenia 105318 SCZ -7.10 -0.18 0.03 1.24E-12 -7.66 -0.19 0.03 1.89E-14 

Bipolar disorder 35802 BIP -5.21 -0.18 0.03 1.84E-07 -3.02 -0.10 0.03 2.53E-03 

Parkinsons 482730 PK -2.00 -0.08 0.04 4.58E-02 -0.33 -0.01 0.04 7.45E-01 

Stroke 520000 STK 1.87 0.08 0.04 1.89E-02 -1.75 -0.08 0.00 8.01E-02 

Neurotism 329000 NEU 1.51 0.04 0.03 1.31E-01 -2.21 -0.06 0.03 2.74E-02 

Note: Significant results highlighted in bold 
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Examining correlations with brain imaging data showed similar results to Resilience where 

significant correlations were found for white matter volumes - a small positive correlation 

was found between RT and global white matter volume (rg = 0.13, P = 2.8 x 10-3), and the 

volume of cerebral white matter in the left (rg = 0.15, P = 8.29 x 10-04) and right hemisphere 

(rg = 0.16, P = 2.18 x 10-04). For a comparison of this analysis see Table 5.7. 

Table 5.7: Comparison of LDSR of brain volumes between Resilience and RT 

  Resilience RT 

  drg SE P value drg SE P value 

Volume of ventricular cerebrospinal 

fluid a -0.11 0.05 2.27E-02 -0.08 0.05 7.45E-02 

Volume of grey matter a 0.03 0.05 5.16E-01 0.03 0.05 6.17E-01 

Volume of white matter a 0.15 0.05 1.19E-03 0.13 0.04 2.80E-03 

Volume of left hippocampus  0.02 0.05 6.63E-01 0.03 0.06 5.67E-01 

Volume of right hippocampus  0.11 0.06 7.83E-02 0.11 0.06 7.03E-02 

Volume of left amygdala  0.09 0.06 1.14E-01 0.12 0.06 4.96E-02 

Volume of right amygdala  0.03 0.07 6.51E-01 0.02 0.07 7.34E-01 

Volume of left accumbens  0.04 0.06 5.24E-01 0.08 0.06 2.45E-01 

Volume of right accumbens 0.06 0.06 3.58E-01 0.05 0.06 4.07E-01 

Volume of CerebralWhiteMatter in 

the left hemisphere b 0.15 0.05 1.74E-03 0.15 0.04 8.29E-04 

Volume of CerebralWhiteMatter in 

the right hemisphereb 0.16 0.05 7.34E-04 0.16 0.04 2.18E-04 
Note: a = normalised for head size, b = generated by subcortical volumetric segmentation. P bon= 3.0E-3. 

Significant results highlighted in bold. drg =the genetic correction of the trait under examination and Resilience 

or RT. 

5.2.1.5 Mendelian randomisation 

Using GSMR, I observed a significant unidirectional causal effect of RT on schizophrenia 

(bxy = -0.05, P = 2.38 x 10-253). Due to the removal of a high level of pleiotropic SNPs there 

were insufficient SNPs to calculate the effect in the opposite direction. I had observed a 

significant bidirectional causal effect of Resilience on schizophrenia (bxy = -0.25, P = 7.02 x 

10-9) and schizophrenia on Resilience (bxy = -0.07, P = 3.80 x 10-7). See Table 5.8. 
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Table 5.8: Generalised Summary-data-based Mendelian Randomisation on RT 

Exposure  Outcome abxy  se  p  
bNSNP  

cHEIDI 

filtered 

SNPs 

RT Schizophrenia -0.045 0.001 2.38E-253 61 131 

Schizophrenia RT dnan nan nan 2 156 

RT Bipolar disorder 0.004 0.003 2.07E-01 23 15 

Bipolar disorder RT nan nan nan 7 6 

Note: Bidirectional GSMR results with various phenotypes and Resilience. abxy = the estimate effect 

coefficient, bNSNP = Number of independent significant SNPs after clumping, cHEIDI = is an outlier method to 

remove horizontal pleiotropic SNPs, dnan= not applicable as NSNP is less that the threshold value, P bon= 4.2E-

3. Significant results highlighted in bold. 

Examining the hypergeometric analysis of reported genes from GWAS-catalog shows an 

overlap of schizophrenia genes with Resilience (22 in total), and RT (45 in total), however, 

only 15 of these genes were shared between the two GWAS.  

In conclusion: 

While there were similarities in the GWAS and Resilience and RT for example tissue and cell 

type enrichment analysis, I showed a number of differences in associated genetic loci, 

mapped genes and pathway enrichment analysis. 

The genetic correlation between Resilience and RT is strong because this is an RT-based 

resilience phenotype; however, the top associated SNPs for RT were not being detected here. 

Instead, I detected SNPs associated with faster than average RT in individuals that previously 

showed below average EY, i.e., the resilience phenotype in this study. This phenotype 

represents those individuals in the UKB who preserved their capability to process information 

and respond over a 40 years’ time span and reflects the genetic difference between these 

individuals and those who showed diminishing processing speed. 

 

 

 

 



Chapter 5 

153 

 

5.2.2 Effect of large locus on chromosome 3 

Almost 30% of the mapped genes and over 50% of prioritized genes can be attributed to a 

single large locus on chromosome 3: 49385350 - 50250837 (see Figure 4.17 and Figure 

4.29). I was concerned that his locus might have an inflated influence on the functional 

analysis of Resilience. 

To investigate this, I extracted all SNPs in this locus from the GWAS of Resilience and 

reprocessed the GWAS through FUMA. Figure 5.4 shows a Manhattan plot Manhattan plot 

of Resilience minus locus 3. Figure 5.5 compares the summary data of Resilience and 

Resilience minus chromosome 3 showing the removal of the SNPs and mapped genes.  

 

Figure 5.4: Manhattan plot of Resilience minus Locus 3 (3: 49385350-50250837) 

The Y axis shows the -log10 transformed P-values of each SNP from the GWAS. The x axis shows the base pair 

position along the chromosomes. The dotted read line shows the Bonferroni corrected P-value (P<5.0E-8). 
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(a)

 

(b)

 

Figure 5.5: Summary per genomic risk loci 

Figure (a) is the summary for Resilience and Figure (b) is the summary of the same GWAS minus the region 

3:49385350-50250837. 

 

I repeated our functional analysis of GWAS results minus locus 3 and found that all 

enrichments in tissues (Table 5.9) cell types (Figure 5.6) and GO terms (Table 5.10) 

previously identified, remained significant. 
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Table 5.9: Comparison of tissue enrichment of Resilience with and without locus 3 

FULL_NAME Resilience 

minus locus 3 P 

Resilience 

With locus 3P 

Brain_Frontal_Cortex_BA9 1.28E-11 2.26E-11 

Brain_Cortex 6.00E-11 8.48E-11 

Brain_Cerebellar_Hemisphere 1.47E-10 1.81E-10 

Brain_Anterior_cingulate_cortex_BA24 2.29E-10 4.11E-10 

Brain_Cerebellum 3.63E-10 4.07E-10 

Brain_Nucleus_accumbens_basal_ganglia 1.10E-08 1.73E-08 

Brain_Hypothalamus 3.73E-08 5.38E-08 

Brain_Amygdala 6.26E-08 1.01E-07 

Brain_Caudate_basal_ganglia 1.07E-07 1.67E-07 

Brain_Hippocampus 1.96E-07 3.04E-07 

Brain_Putamen_basal_ganglia 2.27E-07 3.88E-07 

Brain_Substantia_nigra 4.70E-05 6.71E-05 

Brain_Spinal_cord_cervical_c-1 6.60E-03 7.98E-03 

 

(a)                                                       (b) 

 

Figure 5.6: Comparison of single cell type enrichment  

Note: (a) Resilience (b) Resilience minus locus 3. The y-axis shows the -log 10 transformed P-values of the 

GWGAS and the x-axis shows the cell type. 
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Table 5.10: Comparison of GO terms 

Go Term Resilience 

with Locus 3 

Resilience  

Minus Locus 3  
nSNPs P nSNPs P 

GO_bp:go_neuron_differentiation 1277 9.73E-07 1273 9.58E-07 

GO_cc:go_synapse_part 890 2.14E-06 887 1.13E-06 

GO_bp:go_synaptic_vesicle_localization 156 3.25E-06 156 3.01E-06 

GO_cc:go_synapse 1116 4.10E-06 1111 3.37E-06 

GO_bp:go_neuron_development 1040 4.27E-06 1036 4.23E-06 

GO_cc:go_wnt_signalosome 12 4.75E-06 12 4.48E-06 

GO_bp:go_neurogenesis 1515 4.96E-06 1511 4.91E-06 

GO_bp:go_synaptic_signaling 681 6.50E-06 679 4.57E-06 

GO_bp:go_signal_release 442 6.81E-06 442 5.82E-06 

GO_bp:go_developmental_cell_growth 201 7.80E-06 200 1.36E-05 

 

In addition, the genetic correlation with schizophrenia (rg -0.1796, P = 1.29 x 10-12) and white 

matter (rg = 0.158, P = 9.5E-04) remained significant. 

This analysis demonstrates that the large locus on chromosome 3 does not have an 

exaggerated role in the functional analysis of Resilience. 
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5.2.3  Exploration of HRS to verify findings 

In Chapter 3, I described how I extracted a GWAS of Resilience using SEM. I showed this 

method was robust by first using a discovery sample and repeating the analysis in an 

independent sample where I replicated the results. However, given the fact that I employed 

proxy measures for past cognitive performance, I examined ways in which I could verify our 

results in longitudinal datasets with direct cognitive measures. 

In Chapter 1, I discussed the very limited longitudinal data available to study cognitive 

resilience and the lack of significant findings generated using these datasets. The largest 

available dataset with cognitive measures over a long period of time is the HRS. I decided to 

use this dataset to specifically examine the influence of the 13 loci identified in the UKB. 

5.2.3.1 Generation of GWAS of cogntive change in HRS 

In Section 2.2.2, I describe the HRS dataset and the cogntive measures available. 

Unfortunately, there is no processing speed measure, so I examined both the total cognitive 

variable (COGTOT) and the immediate work recall variable (Recall). The Manhattan plots 

for the two cogntive measures have no significant genetic loci, however, there are more SNPs 

with P< 1 x 10-5 in the larger Recall GWAS. There were 291 candidate GWAS SNPs in 

Recall and 205 in COGTOT. The correlation between the two phenotypes was high (rg = 0.8, 

P <.001), however, the genetic correlation of the two GWAS was lower and was not 

significant (rg = -0.46, P =7.10 x 10-01). Examining the Q-Q plots for both GWAS shows a 

slightly better profile for Recall than COGTOT (Figure 5.8) indicating that the increase in 

sample size improves the outcome.  
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COGTOT (n=5,345) 

 

Recall (n=9526) 

 

Figure 5.7; Manhattan plots of COGTOT and Recall 

The Y axis shows the -log10 transformed P-values of each SNP from the GWAS. The x axis shows the base pair 

position along the chromosomes. The dotted read line shows the Bonferroni corrected P-value (P<5.0E-8). 
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(a)                                                              (b) 

  

Figure 5.8: Q-Q plots of (a) COGTOT and (b) Recall 

The x-axis shows the expected distribution of p-values from the GWAS across all SNPs, and the y-axis shows 

the observed p-values. The genomic inflation value (Lambda) calculated by LDSC is 1.0 for both plots. 

 

5.2.3.2 Examining the relationship of the HRS GWAS with Resilience 

5.2.3.2.1 Comparison of P and beta values 

Firstly, I looked at the 13 genetic loci identified in Resilience and compared their beta and P 

value to that of both COGTOT and Recall (Table 5.11). Due to the discreet origins of the two 

datasets (UKB and HRS) there were several SNPs that were not present in both datasets. 

When this occurred, I used a proxy SNPs that was in high LD with the lead SNP using 

Haploreg v4.1 (Table 2.1) employing a LD limit of r2 > 0.4. Only one of the thirteen SNPs 

was nominally significant in Recall; rs2883059, chromosome 3, P = 2.53 x 10-2 which was 

not significant when it was corrected for multiple testing (Bonferroni P value threshold = 

0.05/13 = 0.004). None of the SNPs were significantly associated in COGTOT. Examining 

the Betas values, 7 of 11 Recall beta values were in the opposite direction to the Resilience 

values and 4 were in the same direction (2 SNPs could not be matched). Looking at the 

COGTOT Beta values, 8 of 12 were in the opposite direction while 4 were in the same 

direction. 
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Table 5.11: Comparison of Beta and P values between genetic loci associated with Resilience and the two HRS GWAS 

UKB HRS   
Resilience n=111,316   Recall n=9526 Tot cog n=5345 

SNP 
 

Chr A1 A2 Beta P value A1 Beta 
 

  
 

rs12474507 59988258 2 T C -0.060 4.19E-08 T 0.005 2.82E-01 -0.003 6.07E-01 

rs2352974 49890613 3 T C 0.080 9.27E-15   
  

  
 

rs2883059 49902160 3 C T 0.065 2.39E-10 C -0.009 2.53E-02 0.006 2.89E-01 

rs2189234 106075498 4 T G 0.070 3.14E-12 T -0.006 1.47E-01 -0.003 5.92E-01 

rs6857847 89514572 4 A G -0.080 4.99E-09 A -0.005 3.17E-01 -0.008 2.92E-01 

rs56335290 112036634 5 A C -0.070 2.59E-08   
  

  
 

rs459552 112176756 5 T A -0.064 1.09E-07 T 0.001 7.66E-01 -0.013 6.03E-02 

rs6870103 139692515 5 G T 0.070 4.03E-11 G 0.000 9.39E-01 -0.007 2.10E-01 

rs7747481 98315696 6 T C 0.060 2.29E-08 T -0.003 4.89E-01 -0.008 1.75E-01 

rs1029388 111926901 12 C T 0.070 6.50E-09   
  

  
 

rs7134740 111927739 12 A G 0.070 2.56E-08 A 0.008 1.27E-01 0.001 8.58E-01 

rs2417261 13414139 12 T G 0.090 1.35E-08 T 0.000 9.65E-01 -0.005 5.83E-01 

rs6580699 49478812 12 G T -0.070 1.29E-10 G -0.001 9.05E-01 -0.009 1.11E-01 

rs9569811 58646190 13 A C -0.090 1.14E-08 A 0.009 1.51E-01 0.008 3.26E-01 

rs62074125 44852612 17 C A -0.080 8.31E-11   
  

  
 

rs7225002 44189067 17 G A 0.065 2.44E-10 G 0.005 2.20E-01 0.000 9.36E-01 

rs4810896 47535298 20 A C 0.070 1.94E-10   
  

  
 

rs2426132 47723127 20 C G -0.062 1.54E-09 C 0.001 7.25E-01 0.002 7.18E-01 

Note: SNPs in italics are proxy SNPs for the SNP immediately above. One SNP rs2883059 is nominally significant in HRS recall and is in bold. 
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To examine this relationship further I looked at a larger sample in the Resilience GWAS 

where I reset the level of cut off to recognise lead SNPs from a P value of 5 x 10-8 to 1 x 10-5 

in FUMA. Using the 109 lead SNPs in this analysis (Table 5.14) at the end of this chapter, I 

compared the P and beta values of Resilience with Recall. There were no proxys with LD r2 

values > 0.4 for 12 SNPs. For the remaining 97 SNPs, I found that there were 8 nominally 

significant SNPs in Recall listed in Table 5.12. None of these SNPs were significant after 

correcting for multiple testing (P < 0.0005). 

Table 5.12: Nominally significant SNPs in Recall  
Resilience Recall 

SNP Chr Position Beta P Beta P 

rs10125362 1 183546061 0.052 1.61E-06 -0.010 1.88E-02 

rs1029388 1 45209661 -0.063 9.01E-06 0.016 8.29E-03 

rs143875052 4 106150555 -0.064 3.22E-05 0.013 3.75E-02 

rs184738312 4 161505867 -0.052 1.00E-04 -0.011 5.00E-02 

rs3754028 1 112282873 0.056 7.30E-06 -0.010 4.76E-02 

rs2883059 3 49902160 0.065 2.39E-10 -0.009 2.53E-02 

rs10775404 1 77949129 0.051 8.23E-07 0.010 2.17E-02 

rs35428069 9 78579131 0.062 9.65E-04 -0.025 1.30E-03 

 

Analysis of beta values showed 49 SNPs that had opposite direction of effect and 48 that had 

the same direction of effect. This result shows that the direction of effect of the beta values is 

random and there is no significant relationship between Resilience and Recall (sign test P = 

0.5).  

5.2.3.2.2 Genetic correlation between Resilience and HRS GWAS 

I examined the genetic correlation using LDSC (2.1.11) between Resilience and the two HRS 

GWAS, COGTOT and Recall and sample size appears to play a role in the sensitivity of this 

analysis Table 5.13. There was a small non-significant negative correlation between 

COGTOT and Resilience (rg = -0.05, P = 7.3 x 10-1), however, the genetic correlation 

between Resilience and Recall was moderate and significant (rg = -0.64, P = 1.5 x 10-2). The 

reason this result is negative is that Recall is examining cognitive change whereas Resilience 

is looking at resistance to change. 

I further examined the genetic correlations between Recall and RT and intelligence and 

compared the results to other cognitive genetic correlation previously found for Resilience. 

The genetic correlation of Recall with RT (rg = -0.57, P = 4.0E x 10-3) low RT (rg = 0.33, P = 

1.7E-01) and intelligence (rg = 0.60, P = 4.7E x 10-3) are all in opposite directions to those 
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found for Resilience which is consistent with Recall and Resilience measuring opposite 

effects.  

 

Table 5.13: Genetic correlations Resilience and Recall and COGTOT 

   Recall COGTOT Resilience 

Source R P R P   

Resilience In house  -0.64 1.50E-02 -0.05 7.30E-01   

RT  In house -0.57 4.00E-03 
  

0.80 2.4E-62 

Low RT  Davies et al 2018* 0.33 1.7E-01   -0.84 4.0E-102 

Intelligence Savage et al 2018* 0.60 4.70E-03 
  

-0.25 1.29E-17 

COGTOT In house -0.46 7.10E-01 
  

  

Note: *See Table 2.6 for further information 

 

5.2.3.2.3 Conclusion of Comparison of Resilience in the HRS 

The HRS dataset is limited by sample size, but it has good longitudinal data on cognitive 

performance over a long period of time. Here I performed an analysis on two phenotypes 

total cognition (COGTOT, n=5,345) and word recall (Recall, n=9,526) using linear mixed 

modelling to define cognitive change over time. This analysis shows that sample size is 

important in that stronger associations with the cognitive change phenotypes are found in the 

larger GWAS shown by the number of significantly associated SNPs and an improved Q-Q 

plot for Recall. While phenotypic correlation is high the genetic correlation diminishes with 

sample size.  

Comparison between Resilience with the two HRS phenotypes shows a significant negative 

correlation with Recall (rg = -0.64, P = 1.5 x 10-2) and a small negative correlation with 

COGTOT which was not significant. However, only nominally significant overlap was seen 

at the SNPs level and the agreement between the direction of effect of the beta values was 

random. A larger dataset is needed to truly confirm these finding. This is discussed further in 

Chapter 6.   
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5.3 Conclusion to Chapter 5 

In this chapter I set out to examine questions that arose during functional analysis of 

Resilience in Cation, or a variation based solely on high/low RT? 

By comparing GWAS analysis of RT with Resilience, I showed that while there is a strong 

correlation between the two phenotypes (as Resilience is an RT-based phenotype), functional 

analysis shows that there are unique attributes. The top associated SNPs for RT were not 

being detected in Resilience. This phenotype represents those individuals in the UKB who 

preserved their capability to process information and respond over a 40 years’ time span and 

reflects the genetic difference between these individuals and those who showed diminishing 

processing speed. 

The second question I asked was whether the large genetic locus on chromosome 3 was 

overrepresented in the findings of the functional analysis. Processing a GWAS without this 

locus through FUMA did indeed show a substantial decrease in candidate SNPs and mapped 

genes, however, the main findings of the functional analysis remained unchanged.  

The third question was whether I could replicate our findings in an external dataset. Using the 

HRS dataset, I showed a significant correlation between cognitive change and Resilience. 

Given the size of this dataset I found only one of the 13 genetic loci identified in Resilience to 

be nominally significant in the cognitive change phenotype, Recall. Larger datasets are 

needed to further confirm these findings. 

The findings of the three questions in this chapter will be discussed further in Chapter 6. 
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Table 5.14: Comparison of Beta and P values between genetic loci associated with Resilience and Recall using 112 lead SNPs 

Resilience   Recall Proxy Recall Proxy Resilience  Sign 

SNP Chr Position Beta P Beta P SNP Position Beta P Beta P   

rs10125362 9 128490151 0.048 3.41E-06 
  

rs7023828 128498594 0.003 4.94E-01 0.046 8.42E-06 yes 

rs1029388 12 111926901 0.073 6.50E-09 
  

rs7134740 111927739 0.008 1.27E-01 0.070 2.56E-08 yes 

rs10432338 2 147806785 0.061 3.24E-06 
  

No proxy 
  

  
 

    

rs10521241 16 51357286 -0.057 2.49E-06 0.001 8.44E-01   
  

  
 

  no 

rs10747478 1 96901455 -0.050 1.18E-06 0.006 1.62E-01   
  

  
 

  no  

rs10769191 11 46157060 -0.061 4.97E-07 
  

rs78059714 46157568 0.009 1.10E-01 -0.043 1.97E-04 no 

rs10775404 17 44167366 0.080 1.35E-09 
  

rs117913167 44212362 0.001 2.75E-01 0.075 2.11E-08 yes 

rs10873201 14 67966599 -0.047 4.22E-06 
  

rs10133618 67981403 0.001 7.97E-01 -0.043 1.98E-05 no 

rs10906892 10 15389924 0.047 7.75E-06 0.002 6.08E-01   
  

  
 

  yes 

rs10962543 9 16698822 0.097 4.40E-07 -0.006 4.39E-01   
  

  
 

  no 

rs11024435 11 17946606 -0.046 7.86E-06 
  

rs379388 17944246 0.001 9.00E-01 -0.045 1.13E-05 no 

rs11148465 13 59930803 -0.048 9.99E-06 -0.004 3.25E-01   
  

  
 

  yes 

rs112261906 4 3050001 0.128 1.49E-06 
  

No proxy 
  

  
 

    

rs11647572 16 12211417 0.056 2.22E-06 
  

rs12596703 12213850 -0.003 5.87E-01 0.053 6.85E-06 no 

rs116802139 3 180079080 0.096 2.95E-06 0.006 4.33E-01   
  

  
 

  yes 

rs117623407 19 32204489 -0.069 1.34E-06 
  

No proxy 
  

  
 

    

rs11839321 13 59974439 0.058 3.97E-06 0.006 2.84E-01   
  

  
 

  yes 

rs12474507 2 59988258 -0.057 4.19E-08 0.005 2.82E-01   
  

  
 

  no 

rs12550380 8 87186583 -0.051 7.91E-06 -0.006 1.76E-01   
  

  
 

  yes 

rs12631730 3 47129903 0.063 3.20E-06 -0.011 6.14E-02   
  

  
 

  no 

rs12753665 1 183546061 0.052 1.61E-06 -0.010 1.88E-02   
  

  
 

  no 

rs12807111 11 46924174 -0.061 2.91E-07 
  

rs10769225 46982481 0.002 6.60E-01 -0.060 6.98E-07 no 

rs13175613 5 92026071 -0.053 6.30E-07 
  

rs7730365 92026606 0.002 7.35E-01 -0.050 3.76E-06 no 
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Resilience   Recall Proxy Recall Proxy Resilience  Sign 

SNP Chr Position Beta P Beta P SNP Position Beta P Beta P   

rs13254345 8 133019596 -0.051 9.12E-06 -0.001 7.76E-01   
  

  
 

  yes 

rs1351848 11 45073858 -0.048 2.13E-06 
  

No proxy 
  

  
 

    

rs142186733 1 145548981 0.107 9.58E-06 
  

No proxy 
  

  
 

    

rs142342829 5 93189775 -0.106 8.03E-06 0.019 7.68E-02   
  

  
 

  no 

rs150306 15 89951979 0.046 5.93E-06 0.008 6.64E-02   
  

  
 

  yes 

rs150817429 11 56003922 -0.205 7.42E-06 
  

rs148158820 56174037 -0.002 9.08E-01 -0.173 7.52E-05 yes 

rs16832210 1 45209661 -0.063 9.01E-06 0.016 8.29E-03   
  

  
 

  no 

rs17035310 4 106064754 -0.070 4.95E-06 
  

rs143875052 106150555 0.013 3.75E-02 -0.064 3.22E-05 no 

rs17039735 4 161476054 -0.065 1.04E-06 
  

rs184738312 161505867 -0.011 5.00E-02 -0.052 1.00E-04 yes 

rs17225749 3 50131140 0.072 1.52E-06 
  

rs17304079 50085153 -0.003 4.90E-01 0.011 1.05E-06 no 

rs17603622 2 181442373 0.056 7.56E-06 0.0004 9.43E-01   
  

  
 

  no 

rs17663027 2 147992667 -0.117 7.29E-06 
  

No proxy 
  

  
 

    

rs1768809 1 46502836 -0.051 4.49E-07 -0.001 8.29E-01   
  

  
 

  yes 

rs1815823 18 35101644 0.056 4.85E-06 
  

rs4426420 35104386 -0.001 8.28E-01 0.056 5.88E-05 no 

rs1830640 11 29778003 -0.073 9.42E-06 -0.003 6.08E-01 
   

  
 

  yes 

rs189033023 3 51033710 0.181 2.42E-06 
  

rs79073578 50999864 0.005 7.19E-01 0.117 4.28E-05 yes 

rs1970811 10 126696496 0.045 9.81E-06 -0.005 2.52E-01   
  

  
 

  no 

rs197374 1 112289983 0.054 1.95E-07 
  

rs3754028 112282873 -0.010 4.76E-02 0.056 7.30E-06 no 

rs1985721 4 40146842 -0.046 7.84E-06 
  

No proxy 
  

  
 

    

rs201281950 12 49672500 -0.058 1.27E-06 
  

No proxy 
  

  
 

    

rs2027130 1 43906896 -0.048 2.90E-06 
  

rs1334973 43921384 -0.002 6.69E-01 -0.047 4.83E-06 yes 

rs2102065 16 5080523 0.048 5.52E-06 
  

rs17706797 5063336 0.003 5.76E-01 0.043 2.07E-04 yes 

rs2177500 2 76413305 -0.069 1.17E-07 
  

No proxy 
  

  
 

    

rs2189234 4 106075498 0.073 3.14E-12 -0.006 1.47E-01   
  

  
 

  no 

rs2240287 11 61505583 -0.066 8.22E-06 0.0001 9.89E-01   
  

  
 

  no 

rs2257063 2 104092954 -0.055 6.72E-08 
  

rs6543211 104113747 -0.004 3.28E-01 -0.053 1.51E-07 yes 

rs2326942 6 130603039 0.061 8.30E-08 
  

No proxy 
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Resilience   Recall Proxy Recall Proxy Resilience  Sign 

SNP Chr Position Beta P Beta P SNP Position Beta P Beta P   

rs2352974 3 49890613 0.080 9.27E-15 
  

rs2883059 49902160 -0.009 2.53E-02 0.065 2.39E-10 no 

rs2417261 12 13414139 0.094 1.35E-08 0.0003 9.65E-01   
  

  
 

  yes 

rs2417262 12 13407132 -0.064 1.65E-07 -0.003 5.17E-01   
  

  
 

  yes 

rs254776 5 88006893 -0.049 8.17E-06 0.004 3.95E-01   
  

  
 

  no 

rs2702042 2 24546542 0.047 9.88E-06 -0.007 1.25E-01   
  

  
 

  no 

rs28370374 7 70676309 -0.046 6.84E-06 -0.007 1.04E-01   
  

  
 

  yes 

rs2863007 3 177203524 0.047 4.02E-06 
  

rs10428125 177194714 -0.005 2.20E-01 0.103 3.25E-05 no 

rs2944826 7 71792250 -0.071 6.53E-06 
  

No proxy 
  

  
 

    

rs3095843 5 172501829 0.050 8.05E-07 -0.005 2.11E-01   
  

  
 

  no 

rs3180887 9 86553589 -0.058 1.13E-06 
  

rs10115699 86554217 0.000 9.75E-01 -0.057 1.31E-06 yes 

rs33957528 16 28307940 -0.050 1.09E-06 
  

rs9939450 28301487 0.001 8.13E-01 -0.044 1.36E-06 no 

rs34372833 2 175200014 0.049 3.21E-06 
  

rs35548534 175200903 -0.005 2.36E-01 0.011 2.52E-04 no 

rs35871487 2 161351758 0.056 7.11E-06 
  

rs10204185 161336706 0.005 2.97E-01 0.011 4.70E-04 yes 

rs3819161 21 45092653 -0.048 3.74E-06 
  

rs8129601 45119104 -0.002 6.68E-01 -0.046 6.82E-06 yes 

rs4351477 9 76953396 0.067 2.31E-06 
  

rs72744343 76816724 0.009 1.01E-01 0.013 3.38E-05 yes 

rs446994 17 7116853 0.053 2.91E-07 0.003 4.78E-01   
  

  
 

  yes 

rs4810896 20 47535298 0.067 1.94E-10 
  

rs2426132 47723127 0.001 7.25E-01 -0.062 1.54E-09 no 

rs4875419 8 4825809 0.051 7.89E-07 -0.002 7.06E-01   
  

    no 

rs56335290 5 112036634 -0.068 2.59E-08 
  

rs459552 112176756 0.001 7.66E-01 -0.064 1.09E-07 no 

rs588470 11 16380754 0.053 3.08E-07 
  

rs10219384 16328969 0.001 8.82E-01 0.052 5.90E-07 yes 

rs60630276 2 222798862 0.056 7.15E-06 0.009 8.58E-02   
  

    yes 

rs6073984 20 44630653 0.072 1.18E-06 0.005 3.77E-01   
  

  
 

  yes 

rs6130929 20 44405013 0.050 3.09E-06 
  

rs1711203 44385389 0.006 1.74E-01 0.046 1.49E-05 yes 

rs62074125 17 44852612 -0.077 8.31E-11 
  

No proxy 
  

  
 

    

rs62308744 4 89782561 -0.058 1.95E-06 0.005 3.15E-01   
  

  
 

  no 

rs640999 11 63869425 -0.046 7.46E-06 -0.002 5.77E-01   
  

  
 

  yes 

rs6561817 13 55638594 0.049 2.71E-06 
  

rs1925060 55616633 -0.007 1.06E-01 -0.031 2.60E-03 yes 
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Resilience   Recall Proxy Recall Proxy Resilience  Sign 

SNP Chr Position Beta P Beta P SNP Position Beta P Beta P   

rs6580699 12 49478812 -0.066 1.29E-10 -0.001 9.05E-01   
  

  
 

  yes 

rs6792702 3 149565982 0.057 9.43E-07 0.004 4.13E-01   
  

  
 

  yes 

rs6850086 4 92782848 0.046 7.20E-06 
  

rs1385867 92750927 0.003 5.05E-01 0.044 1.47E-05 yes 

rs6857847 4 89514572 -0.076 4.99E-09 -0.005 3.17E-01   
  

  
 

  yes 

rs6870103 5 139692515 0.068 4.03E-11 0.000 9.39E-01   
  

  
 

  no 

rs690371 17 72859078 -0.053 6.71E-06 0.002 6.47E-01   
  

  
 

  no 

rs6918725 6 126990392 0.045 7.90E-06 
  

rs853982 127046121 0.004 3.63E-01 -0.040 7.23E-05 yes 

rs71581523 5 139363779 0.133 5.28E-06 -0.004 7.05E-01   
  

  
 

  no 

rs7163832 15 79906344 0.047 8.25E-06 0.004 3.27E-01   
  

  
 

  yes 

rs72750102 5 53874523 -0.086 4.14E-06 0.0004 9.63E-01   
  

  
 

  no 

rs72833334 10 63663562 -0.047 7.77E-06 
  

rs58936043 63674934 -0.006 1.79E-01 -0.046 1.49E-05 yes 

rs72889923 3 65137914 0.093 7.90E-06 0.008 3.28E-01   
  

  
 

  yes 

rs7528932 1 77949129 0.051 8.23E-07 0.010 2.17E-02   
  

  
 

  yes 

rs754298 3 50548895 0.071 1.81E-06 
  

rs73082948 50544417 -0.008 1.77E-01 0.060 2.04E-05 no 

rs75479062 11 45313976 -0.085 9.49E-06 0.002 7.88E-01   
  

  
 

  no 

rs75719921 2 174991914 -0.070 5.83E-08 0.004 4.35E-01   
  

  
 

  no 

rs75835456 6 68999978 -0.057 1.44E-06 
  

rs7451317 69021802  0.004 4.16E-01 -0.052 7.67E-06 no 

rs76074510 8 64862463 -0.064 2.77E-06 0.003 5.63E-01   
    

  no 

rs7689919 4 36330993 0.052 1.95E-06 -0.002 7.10E-01   
    

  no 

rs7717864 5 59486768 0.063 7.40E-06 
  

rs35265720 59359191 0.0032 6.45E-01 0.060 1.71E-05 yes 

rs77321042 3 53179543 0.105 4.75E-06 0.004 6.99E-01   
  

  
 

  yes 

rs7747481 6 98315696 0.058 2.29E-08 -0.003 4.89E-01   
  

  
 

  no 

rs778346 2 233799736 -0.052 2.63E-06 
  

rs1996342 233805499 0.005 2.90E-01 -0.040 3.06E-05 no 

rs7903084 10 10861098 -0.069 1.25E-07 -0.004 5.17E-01   
  

  
 

  yes 

rs79621462 6 152254115 0.048 7.55E-06 
  

rs9479142 152244787 -0.001 8.10E-01 0.050 9.32E-06 no 

rs7988108 13 59820720 0.051 2.36E-06 0.002 6.20E-01   
  

  
 

  yes 

rs79889335 9 78550303 0.087 6.93E-06 
  

rs35428069 78579131 -0.025 1.30E-03 0.062 9.65E-04 no 
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Resilience   Recall Proxy Recall Proxy Resilience  Sign 

SNP Chr Position Beta P Beta P SNP Position Beta P Beta P   

rs79967991 6 85822584 -0.205 2.08E-06 -0.003 8.47E-01   
  

  
 

  yes 

rs8019612 14 29822421 0.049 2.22E-06 
  

rs11849411 29845225 0.003 5.03E-01 0.047 6.39E-06 yes 

rs843370 3 183875822 -0.047 7.79E-06 0.002 6.88E-01   
  

  
 

  no 

rs9569811 13 58646190 -0.086 1.14E-08 0.009 1.51E-01   
  

  
 

  no 

rs9606967 22 32899516 -0.056 5.42E-06 
  

rs8142308 32905470 -0.007 2.00E-01 -0.050 3.12E-05 yes 

rs9911735 17 77778226 -0.061 5.89E-06 
  

rs1285248 77810444 -0.009 1.40E-01 -0.038 7.25E-03 yes 

rs9955131 18 34524533 0.047 7.86E-06 
  

rs11661504 34518724 -0.003 5.80E-01 0.048 1.94E-04 no 

Note: All SNPs that have a nominally significant P value are in bold. No proxy is where there was no comparable SNP in either dataset with an LD R value of >0.4. The 

minor allele was reversed for the Resilience and HRS in rs853982 - proxy for rs6918725. 
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6 Discussion  

6.1 Generating a resilience GWAS: 

During my research for this thesis, it became obvious that the genetic contributors to 

cognitive resilience were poorly understood. This was the case due to (a) the polygenic nature 

of cognition that requires large datasets to identify associated genetic variation and (b) the 

long timeframe over which cognitive data needs to be collected to provide longitudinal 

phenotypic data spanning several years or even decades. The added complexity is 

gene/environment interactions that influence resilience. In chapter 1, I discuss the difficulty 

in operationalising cognitive resilience and lack of progress to date.  

Driven by the need to understand the genetics of numerous complex human traits, biobank 

projects have been instigated to collect genetic and phenotypic data on very large samples of 

individuals. The first of these that is now publicly available for research, is the UKB where 

genetic and phenotypic data on approximately 500,000 participants has led to numerous 

publications that have improved our understanding of many human traits. 

As cognitive ageing has not been subject to large scale GWAS, I used the UKB in an attempt 

to fill an important gap in our understanding of the molecular genetic basis for cognitive 

resilience. While cognitive data is available in the UKB, the longitudinal cognitive data is of 

short duration and is only measured in a relatively low number of participants. In the absence 

of sufficient longitudinal data, I examined novel approaches to use this extensive resource to 

study cognitive resilience. In Chapter 3, I showed how using the proxy phenotype of 

education years for past cognitive performance and processing speed as measured by reaction 

time for current cognitive performance, could generate longitudinal cognitive resilience data 

over a 40-year period.  

The generation of a GWAS of Resilience proved complex due to interference from the highly 

heritable EY phenotype and I determined that to overcome this I needed to subtract the 

results of one GWAS from another – one showing resilience and EY and the other showing 

just EY. Fortunately, research was published around this time, using a novel bioinformatics 

tool, GenomicSEM, which allowed the subtraction of one GWAS from another. This method 

enabled me to separate out the genetic contribution to Resilience in a GWAS that I could 

bring forward for further analysis. 
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6.2 Replication and GWAS output 

As has become expected in current genomic research, it is necessary to show replication of 

the results in an independent sample. Given the number of steps involved in extracting the 

Resilience GWAS, demonstrating replication was essential. I was able to demonstrate 

replication using an independent sample from within the UKB that was separate from the 

discovery sample. My results showed excellent agreement between the two GWAS, 

demonstrating replication and allowing me to proceed to functional analysis on the full 

sample. 

Once I showed that the results replicated, I then combined the discovery and replication 

sample into a GWAS of the full sample. This GWAS identified 13 independent genome-wide 

significant loci resulting in 366 mapped genes and 33 prioritized genes for Resilience. 

6.3 Functional analysis  

A GWAS identifies genetic loci associated with particular traits but in order to use these 

findings to understand the potential biology underpinning these traits, it is necessary to use 

bioinformatic tools to integrate these findings with those from functional genomic datasets 

such as gene expression or chromatin interactions across tissue and cell types (Cano-Gamez 

& Trynka, 2020). 

Chapter 4 of this thesis describes the various methods used to understand the biological 

nature of Resilience. Functional analysis showed significant expression of associated genes in 

all brain tissues, and particularly in the frontal cortex. Significant enrichment of associated 

genes was also found at the cellular level in both GABAergic and glutamatergic neurons 

indicating an excitatory/inhibitory function in the prefrontal cortex, and within biological 

processes related to neuron differentiation and synaptic activity.  

One GO term that was nominally significant for enrichment with a very large beta value was 

the Wnt signalosome. There are 12 genes in this gene set that code for scaffolding proteins to 

form a signalosome at the cell membrane that provide a platform for interaction with effector 

proteins downstream and are involved in the transduction of Wnt signals (Gerlach et al., 

2018). The formation of the signalosome is part of the canonical Wnt pathway. Reduced 

levels of canonical Wnt signalling leads to synapse disassembly resulting in compromised 

synaptic signalling in the ageing brain (Palomer et al., 2019). 
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Mapping of GWAS results, identified genes that have been previously associated with 

cognitive decline including STAU1, SEMF3A, IP6K1, MST1, the ATNX2/BRAP locus, 

ALDH2 and DDX27, where a likely functional missense variant is highly associated. Other 

associated genes involved with synaptic activity and neurogenesis include BNS, DAG1, 

IP6K1 and TET2, pointing to potential targets for improvement of cognitive resilience.  

Several questions arose during this analysis that I examined in Chapter 5. The first of these is 

what is the influence of reaction time (RT) on Resilience? My study relied on RT to create 

the Resilience phenotype, which results in a strong genetic correlation between Resilience 

and RT (Section3.2.9). This reflected my study design that detected SNPs associated with 

faster than average RT or processing speed in individuals that previously showed below 

average EY. However, the majority of genes prioritized by my Resilience GWAS are not 

prioritized by the RT GWAS and vice versa. I conclude that these findings point to genes 

where genetic variation enhances maintenance of processing speed over the life span.  

The genetic correlation between Resilience and RT is strong because this is an RT-based 

resilience phenotype. However, there are differences in the associated genes being detected. 

This phenotype enabled the identification of genetic differences between those individuals in 

the UKB who preserved or maintained their capability to process information and respond 

over a 40-year time period compared to individuals who showed diminishing processing 

speed. 

The second question that arose from the functional analysis was whether the large associated 

locus on chromosome 3 was overrepresented in the findings? Processing a GWAS without 

this locus through FUMA did indeed show a substantial decrease in candidate SNPs and 

mapped genes, however, the main findings of the functional analysis remained unchanged. 

This region on chromosome 3 is gene rich and had been associated with traits associated with 

cognition in the past, for example educational attainment (Davies et al., 2016) (Lee et al., 

2018) and intelligence (Savage et al., 2018) but not RT (Davies et al., 2018). 

6.3 Replication of findings in an external dataset: 

Although I showed robustness of the method used to determine Resilience in the UKB by 

showing equivalent results in a discovery and replication sample and finding prioritized genes 

that were previously connected to cognitive decline, to confirm my findings I would like to 

replicate them in a dataset other than the UKB. As discussed in Section 1.3.4, suitable 
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datasets containing large genetic data coupled with strong longitudinal cognitive data are not 

available. However, the US HRS had strong longitudinal data on a relatively small number of 

individuals (in genomic analysis terms) so I used these data (n=9,526) to see if I could 

replicate my findings. I showed a genetic correlation between our Resilience findings in UKB 

and cognitive change in HRS (rg = -0.64, P = 1.5 x 10-2). However, most likely due to the low 

sample size, I was not able to replicate the genetic variants associated with Resilience genetic 

variants. Overcoming this issue of insufficient sample sizes available to confirm associations 

observed here can hopefully be addressed by various biobanks that plan new data collection 

in the future.  

My work with the HRS dataset is a demonstration of the effect of sample size. By increasing 

my analysis from an initial sample size of 5,345 to 9,526, I found more SNPs with lower P 

values approaching significance and improved the Q-Q plot of the outcome. This confirms 

what was previously found with other cognitive studies (see Figure 1.11). Understanding of 

the genetics of cognitive resilience would be greatly enhanced by the generation of large 

datasets with strong longitudinal cognitive data. 

 An alternative approach to replication with longitudinal data in an external dataset is to 

replicate the method used to examine Resilience in the UKB, in a second large dataset using a 

proxy phenotype. Very recent research has used cognitive data generated within the 23andMe 

dataset on over 300,000 individuals with cognitive measures of digit symbol substitution 

(n=132,807) and the Flicker test (n=158,888), both of which contain a strong element of 

processing speed. The participants had an average EY of 16 years (Carey et al., 2020). There 

is potential to analyse these data using a similar approach to my study to augment the 

findings with the UKB. 

6.4 Limitation of current analysis 

A limitation to my approach in this study was the use of a proxy phenotype for past cognitive 

performance that is different to the measure used for current cognitive performance. This was 

done to allow full use of the UKB. I used the proxy phenotype of academic achievement 

(EY) to represent past cognitive performance in the absence of a direct measure of processing 

speed. In support of this approach, a study using a sample of 1,560 pupils found that 

information processing speed is the key predictor of number sense, fluid intelligence and 

working memory, which in turn predict individual difference in academic achievement 

(Tikhomirova et al., 2020).  
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A further limitation is that processing speed as measured by RT is only one component of 

cognition and it may not be possible to extrapolate the results of this analysis to global 

cognitive resilience. I explored this using a general cognitive measure ‘g’ by combining 

various cognitive measures in the UKB as described in Section 3.2, however, this resulted in 

a considerable reduction in sample size for analysis. Therefore, to maximise the sample size 

available, I used RT alone as this parameter was measured in nearly all participants. 

The creation of binary phenotypes with high and low EY and RT had an influence on the 

direction of effect on the correlation of Resilience with other traits (see Section 3.2.9). This 

was driven by the lack of a direct measure of cognitive decline in the UKB and hopefully will 

be clarified in future datasets.  

The findings from functional analysis are limited by current knowledge of the function of 

genes involved in neurological processes. As our knowledge increases with the development 

of deeper and more accurate datasets (see section 6.6), our findings may change.   

The moderation effects of environmental factors on cognitive decline (see section 1.1.4) is 

well recognised. My research, however, did not include environmental effects and 

gene/environment interactions. 

6.5 Understanding the genetic contribution to cognitive resilience 

In Chapter 1 (Section 6), I listed six questions for my thesis to address. The first four have 

already been discussed where I have shown that individual genetic variations associated with 

cognitive resilience can be confirmed in the UKB and this finding is novel. I demonstrated 

replication within the UKB and highlighted brain regions, biological processes and biological 

pathways that are involved in cogntive resilience. I also showed limited confirmation of these 

findings in external datasets. 

There are two outstanding questions for discussion. The first of these is whether the findings 

support the contribution of brain reserve, cognitive reserve, and brain maintenance to 

cognitive resilience? 

In examining the findings of this research, I concluded that they support the theory that 

maintenance of processing speed over the life span is associated with Resilience to cognitive 

decline. Analysis of gene expression of associated genes shows enrichment in all brain 

regions, and most prominently in excitatory/inhibitory control in the prefrontal cortex. This 

coupled with a link to biological processes related to synaptic activity would suggest 
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enhanced synaptic activity due to strong cognitive reserve and maintenance of existing 

networks. However, increased synaptic activity may also be due to compensatory 

mechanisms where alternative pathways are activated when existing ones are damaged. 

Functional analysis also shows prioritized genes that have been previously linked to cognitive 

decline and of particular interest are genes involved with synaptic activity and neurogenesis 

including BNS, DAG1, IP6K1 and TET2, which would support cognitive reserve and 

maintenance theories. 

The causal link between resilience and white matter (WM) volume is interesting. WM 

volume increases during the life span and peaks at around 50 years of age, but then decreases 

from 60 years of age onwards. WM lesions are associated with cognitive decline (Liu et al., 

2017) indicating a role for both brain reserve (more WM to start) and maintenance of existing 

WM. 

The remaining question asks if there is more to superior cognitive resilience than superior 

intelligence? 

The Resilience GWAS was derived by examining the common genetic variants in individuals 

that had lower than average education years (EY) and higher than average reaction time 40 

years later. Given the correlation of EY and intelligence, this group have lower than average 

intelligence but have preserved cognitive function better when compared to others with 

higher intelligence. Seven of the thirteen genome-wide significant loci for Resilience are not 

associated with a recent GWAS of intelligence (Savage et al., 2018), indicating that factors 

such as reserve, compensation and maintenance may play a role over and above overall 

intelligence in determining resilience. 

6.6 Future studies  

There has been considerable and rapid progress in identifying the genetic architecture of 

cognitive performance in recent years (see Section 1.4.1.5). This has been aided, perhaps 

equally, by both improvements in genomic methods, and the increasing availability of data 

due to data sharing and cooperation. This progress has resulted in a stronger picture of the 

highly polygenic basis of cognitive performance, and of the multiple biological processes 

involved. The contribution of common genetic variation to explaining variation in cognitive 

performance is clear. The contribution of rare(er) variants both to intellectual disability but 

also cognitive variation in the general population is also clear (Ganna et al., 2016). The 

overlap, but also the discontinuity, between the polygenic variation underpinning cognitive 
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function, illness risk, and cognitive decline is also beginning to come into view. With this 

clarity, the need for further development of analytical and bioinformatic approaches to 

understand the biology of these processes has become visible. In particular, the need to more 

sharply identify the myriad biological pathways underpinning cognitive function is 

underlined (e.g., the contribution of oligodendroglial-related genetic variation to cognitive 

performance). Similarly, the need to model how genetic variation - both common and rare - 

interacts with environmental factors to predict cognitive performance is also a clear priority. 

Given the progress made in the past 5-10 years, furthering these objectives continues to hold 

significant promise for understanding cognitive ability. 

With a growing understanding of cognitive function, there should be a parallel growth in the 

understanding of what factors constitutes cognitive decline. Hopefully, the generation of 

large datasets with strong longitudinal, cognitive data will assist in this understanding. 

The type of study I would propose, given unlimited resources and time, to study cognitive 

resilience in healthy ageing is a long-term study on a large cohort (greater than 1 million) of 

cognitively healthy adults. The reason that a dataset of this size is needed is that the effect 

sizes of genetic variants associated with cognitive resilience are tiny, so very large samples 

are needed to detect genetic influences. The study would need to consider ethnic diversity in 

parallel and combined studies. Using this approach would allow us to boost our sample size 

and examine the divergence in findings in different groups while also allowing us to examine 

LD pattern differences and enhance our fine mapping findings (Fernández-Rhodes et al., 

2017; Lam, Chen, et al., 2019). The participants should be in the age range of 30 to 40 as 

recent research shows that this is the age of peak cognitive ability (Strittmatter, Sunde, & 

Zegners, 2020). I would use robust cognitive measures at base line and every five subsequent 

years (given the slow rate of change associated with cognitive decline) until death. As well as 

performing full genetic testing at baseline, I would also include epigenetic markers including, 

histone modifications and chromatin remodelling and DNA methylation (Zhang, Qu, Liu, & 

Belmonte, 2020) in blood samples at each time point and post-mortem brain samples. In 

addition, environmental measures such as fitness, weight, diet, smoking status, alcohol 

consumption, stress markers and social interactions will be recorded at each interval to enable 

gene/environment modelling. Recent findings on the role of rare and ultrarare variants in 

cognitive variation would warrant an analysis of their effects (see Section 1.4.1.3). Full 

genome sequencing would be performed to allow for the study of rare and ultra-rare variants 

that can shed light on the biological processes involved(Singh, Neale, & Daly, 2020).  
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Studying non-coding RNA has shown that age related disturbances of long non-coding RNA 

(lncRNA) expression may affect synaptic activity and neurogenesis (Pereira Fernandes, Bitar, 

Jacobs, & Barry, 2018).  

In the meantime, as the above proposed study would take years to generate meaningful data 

another alternative approach using related phenotypes such as longevity may be helpful. A 

study of cognition in 340 cognitively healthy Dutch centenarians with an average age of 

100.5 years was published recently. They went through a battery of cognitive tests which was 

repeated on an average of 1.6 years later and showed no cognitive decline. Post-mortem brain 

examinations were performed on 44 individuals which showed varying loads of hallmarks of 

AD, but this was not associated with cognitive decline. The research concludes that resilient 

individuals preserve cognition to exceptional ages despite the presence of risk factors of 

cognitive decline (Beker et al., 2021). However, this research did not include genetic 

analysis. As we are an ageing population, the number of people reaching older age is 

increasing so there is a possibility of collecting genetic data and cognitive data on a large 

population of cognitively healthy individuals over 85 years of age. Performing a GWAS 

using this data and comparing it to results of younger cohorts could pinpoint the genetic 

variants that are important to resilience. The cognitive data could be repeated 5 years later. 

Datasets available for functional analysis are increasing rapidly and should increase the 

accuracy in linking genetic findings to biological processes. Recent advancements in single-

cell RNA sequencing including microfluidics techniques and combinatorial indexing, and 

reduction in sequencing costs has greatly increased the output of available datasets and is 

adding to our knowledge of the functional consequences of genetic variation. While several 

published cell atlases are currently available, including the mouse brain, availability of 

human brain cell data is lacking. However, endeavours are underway to map human cells 

under the initiative of the Human Cell Atlas (Lähnemann et al., 2020; Regev et al., 2018). 

Limited data is currently available for human tissue including the developing brain (Eze, 

Bhaduri, Haeussler, Nowakowski, & Kriegstein, 2021). Adult brain cell data is acquired 

mainly through post-mortem samples, and this has proven a challenge for accurate recovery 

of neurons. Using single nuclei has improved results (Colonna & Brioschi, 2020). In addition, 

improving eQTL data from tissues is ongoing but with the development of single-cell RNA-

sequencing there are emerging opportunities for mapping eQTLs in dynamic processes and 

across different cell types. To this end the single-cell eQTLGen consortium had been 

established (van der Wijst et al., 2020). 
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Once the genetic variants associated with resilience are identified and functional analysis has 

indicated the biological pathways involved, I would then generate a PRS to identify, at an 

early stage, those individuals that are a vulnerable to cognitive decline who would benefit 

from either lifestyle changes or therapeutic intervention (if available). Pointing out a genetic 

vulnerability might persuade people to make these changes. The use of PRSs for polygenic 

traits is currently not advised due to lack of ethnic diversity in GWAS (Martin, Daly, 

Robinson, Hyman, & Neale, 2019; Martin, Kanai, et al., 2019). In addition, ethical use of 

PRS data needs to be considered. Consideration should also be given to including rare variant 

and copy number variants, and environmental effects when generating a PRS (Fries, 2020).  

Past candidate gene studies were generally unsuccessful as they were based on findings from 

limited studies and failed to replicate when larger samples were used (Chabris et al., 2012), 

however, with the advent of large GWAS, we have greater statistical assurance of genes 

involvement (see Section 1.4.1.4). Environmental parameters are particularly important in the 

study of cognitive decline and resilience given the proven role that lifestyle factors play in 

maintaining cognitive function (see Section 1.1.4) (Hasan & Afzal, 2019). 

Another approach using data generated by large scale GWAS is to investigate drug-gene 

interactions and druggable genes using the Drug-Gene Interaction Database (DGIdb) which 

gathers information on drug-gene interactions (Freshour et al., 2021). The use of this tool to 

examine drug-genes interactions was demonstrated in a study of genes associated with 

depression (Howard et al., 2019). 

Modelling environment interactions outputs on cognitive resilience using multifactorial 

analysis or SEM was discussed earlier (See section 1.3.3.2). Tools are being developed 

further to incorporate gene/environment interactions (Briley, Harden, Bates, & Tucker-Drob, 

2015). The incorporation of GWAS into structural equation modelling is possible through the 

advent of GenomicSEM (Grotzinger et al., 2019) and several modelling variations are 

described. One of these (GBS) was used as a pivotal tool in this thesis. 

Suitable lifestyle interventions to improve cognitive resilience are already well understood. 

However, therapeutic targets to boost resilience to cognitive decline in healthy ageing are not 

available. It is suggested that prevention of oxidative stress, which is associated with 

epigenetic changes in various systems, is a proposed strategy and has been examined in 

mouse models. Prevention of oxidative damage using compounds that inhibit apoptosis, 
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reduce reactive oxygen species or preserve chromatin structure in genes involved in learning 

and memory are proposed (Kandlur, Satyamoorthy, & Gangadharan, 2020). 

My research highlighted a number of genes involved in synaptic activity including the Wnt/β-

Catenin Signalling. Downregulation of this pathway is associated with cognitive decline in 

the elderly but can be attenuated by exercise in rat models (Chen et al., 2020). Restoring 

Wnt/β-catenin signalling is proposed as a therapeutic strategy for AD and general cognitive 

ageing (Jia, Piña-Crespo, & Li, 2019). In addition, this pathway has been extensively studied 

as it is highly activated in many human cancers which has led to the development of various 

Wnt signalling inhibitors for cancer therapies (Jung & Park, 2020). Perhaps antidotes to these 

inhibitors could make potential therapeutic targets. 

A further extension of therapeutic targets is the use of pharmacogenomics where genetic 

variants are identified that influence how individuals respond to medications to tailor their 

treatment. However, currently, there is little accumulated evidence of the clinical validity and 

utility of pharmacogenomics testing in the medication management of older adults. More 

research is needed so that this can be implemented in ageing subjects with comorbid 

conditions (Inventor & Paun, 2021). 

6.7 Further use of tools used in my research 

The ability to subtract one GWAS from another using GenomicSEM could be extended to 

other areas of interest within the CogGene group at NUIG. For example, preliminary research 

showed that subtraction of the most recent GWAS of schizophrenia (Ripke, Walters, & 

O’Donovan, 2020) and bipolar disorder (Mullins et al., 2021) in both directions generated 

interesting results and has the potential to be a future publication. 

Exploring the usefulness of FUMA as a functional analysis tool proved very useful. The 

ability to perform analysis on the one platform has advantages, for example, I initially looked 

at performing single–cell analysis using tools in R which required further data formatting, 

and there were limitations in dataset availability. I discovered that this analysis was available 

in FUMA and could be performed on my GWAS output which was already in FUMA and 

allowed access to a wide range of single-cell expression datasets. 

6.8 Challenges 

Given the highly polygenetic nature of cognition, the uncertainty around what constitutes 

intelligence (Deary & Sternberg, 2021), and the biological processes underpinning it, 

determining the genetics of cognitive resilience is a major challenge. I needed to be creative 
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in my approach to engineer longitudinal measures of cognition in large datasets and there 

really was no precedent to follow. In this thesis I have started to unravel the biology of 

cognitive resilience using big data. 

Another challenge with the emergence of big data is the support services needed to store, 

manage, process, and analyse the data. Unless one is based in a large institute with full IT 

infrastructure support, this is a challenge and has proved a challenge during my thesis. Lack 

of background expertise and computer servers configured to accept large datasets and the 

capacity and software to manipulate these data was a challenge. However, this was also an 

opportunity to delve into these processes for a greater understanding. In the future, the switch 

to using cloud computing services such as Amazon Marketing Services (AMS) and others 

should eliminate many of these challenges. The UKB plans to switch to this format for data 

access as opposed to local downloads within the next couple of months. 

A further challenge for me was my IT skills. Having grown up in a world when having 

expertise in Excel and SPSS was considered an advantage, I soon learnt that these packages 

were not suitable for large datasets and needed to learn how to manipulate data in Linux 

using bash commands and run packages in R. This is just a consequence of changing times 

and being part of an older demographic that evolved with different computer skills to the 

current generation.   

A further challenge in processing genetic data is learning to navigate its complicated 

background. As the field is rapidly evolving and improving methods of collecting and 

defining phenotypic and genetic data, working with older sets can present challenges. When 

using research data, one needs to know the origin of the reference genome. In this thesis, I 

used GRCh37 as this is the reference build used in the UKB and most public datasets. In 

addition, how SNP alleles are defined can differ between studies. The HRS data had SNPs 

containing kpg identification numbers instead of rsID numbers and needed to be converted. 

Genetic call data can be presented as a bed file (binary files) or pgen files (probability files) 

and pgen files will not run-on certain platforms.  

An additional challenge during this thesis was the restrictions on research caused by the 

Covid pandemic. Fortunately, I had spent my first two years with direct access to the 

facilities at NUIG and the expertise of my colleagues. This proved to be a challenge during 

lockdown, but I was fortunate in that my work was advanced enough to finish my analysis 

from home. 
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6.9 Concluding remarks 

Ageing is an inevitable part of our life cycle and can be compromised by ill health and 

cognitive and physical impairment. As life expectancy increases, understanding ageing 

processes is essential to implement effective policies that promote healthy ageing. It is now 

well accepted that a lifetime regime of healthy eating, exercise, sociability, regular sleep, and 

reduced stress can maintain wellness into older age. However, the biological pathways 

involved are poorly understood. 

Loosing cognitive ability is one of the most feared aspects of ageing and results in increased 

difficulty in performing tasks that require memory or rapid information processing and can 

have an increasingly detrimental effect on quality of life. Some people show a remarkable 

cognitive ability right through the ageing process while other non-pathologically healthy 

adults flounder. Understanding this variation could be a key to implementing therapeutic or 

lifestyle changes that increase cognitive resilience. 

My thesis addresses one aspect of the biological basis of healthy cognitive ageing by 

identifying common genetic variation associated with greater or lesser resilience to cognitive 

decline. And in so doing this helpfully informs us about some of the genetic architecture of 

ageing, and the biological processes involved. It also lays the foundation for future studies in 

this area. 
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